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Displacement convexity of Entropy and the distance
cost Optimal Transportation

Fabio Cavalletti (1),
Nicola Gigli (2) and Flavia Santarcangelo (3)

ABSTRACT. — During the last decade Optimal Transport had a relevant role in
the study of geometry of singular spaces that culminated with the Lott–Sturm–
Villani theory. The latter is built on the characterisation of Ricci curvature lower
bounds in terms of displacement convexity of certain entropy functionals along W2-
geodesics. Substantial recent advancements in the theory (localization paradigm
and local-to-global property) have been obtained considering the different point of
view of L1-Optimal transport problems yielding a different curvature dimension
CD1(K, N) [5] formulated in terms of one-dimensional curvature properties of inte-
gral curves of Lipschitz maps. In this note we show that the two approaches produce
the same curvature-dimension condition reconciling the two definitions. In particular
we show that the CD1(K, N) condition can be formulated in terms of displacement
convexity along W1-geodesics.

RÉSUMÉ. — Pendant la dernière décennie le Transport Optimal a eu un rôle re-
marquable dans l’étude de la géométrie des espaces singulièrs qui a culminé dans
la théorie de Lott–Sturm–Villani. Cette dernière repose sur la caractèrisation des
bornes inférieures de la courbure de Ricci en termes de convexité de déplacement
de la fonctionnelle entropie le long des W2-géodésiques. Récentes avancées dans la
théorie (technique de localisation et local-au-global propriété) ont été obtenus en
envisageant le différent point de vue du L1 Transport Optimal, en entraînant à la
differénte condition de courbure-dimension CD1(K, N) [5]. Cette dernière est formu-
lée en termes des propriétés 1-dimensionnelles de la courbure des courbes integralés
associées aux fonctions lipschitziennes. Dans la présente note on prouve que les deux
approches produisent la même condition de courbure-dimension, en conciliant les
deux définitions. En particulier, on prouve que la condition CD1(K, N) peut être
formulée en termes de convexité de déplacement le long des W1-géodésiques.
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1. Introduction

The formulation of an appropriate version of Ricci curvature lower bounds
valid for possibly singular spaces has been a central topic of research for
several years. During the last decade Optimal Transport had a relevant role
in the topic that culminated with the successful theory of Lott–Villani [10]
and Sturm [15, 16] of metric measure spaces verifying a lower bound on the
Ricci curvature in a synthetic sense.

The theory is formulated in terms of displacement convexity of the Renyi
entropy. The latter is defined on the set of probability measures SN ( · |m) :
P2(X, d)→ R as follows

SN (µ|m) := −
ˆ
X

ρ−1/N dµ,

where ρ denotes the density of the absolutely continuous part of µ with
respect to m. In rough terms, a space will satisfy the CD(K,N) condition if
the entropy evaluated along W2-geodesics is more convex than the entropy
evaluated along W2-geodesics of the model space with constant curvature K
and dimension N in an appropriate sense (see Definition 2.4).

The theory had a huge impact and a detailed discussion on its develop-
ment would be beyond the scope of the note. For our purposes, we mention
that substantial recent advancements in the theory (localization paradigm
and local-to-global property) have been obtained considering the different
point of view of L1-Optimal transport problems yielding a different curvature
dimension CD1(K,N) [5] formulated in terms of one-dimensional curvature
properties of integral curves of Lipschitz maps.

Motivated by the proof of the local-to-global property for the curvature-
dimension condition, in [5] has been shown that a metric measure space
(X, d,m) verifies CD(K,N) if and only if it satisfies CD1(K,N), provided X
is essentially non-branching (see Definition 2.1) and the total space to have
finite mass (i.e. m(X) <∞).

Moreover it was recently addressed whether or not the CD condition really
depends on the special exponent p = 2 used to check displacement convexity
of entropy. While for smooth manifold it is clear that it does not (being
equivalent to a lower bound on the Ricci tensor) the general case of metric
measure spaces has been considered in the recent [1] where complete equiva-
lence will be proved. It remained however unclear if the CD1(K,N) condition
could be equivalently formulated in terms of displacement convexity of the
Entropy functional along W1-geodesics.
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In this note we show that this is the case and the two approaches produce
the same curvature-dimension condition reconciling the two definitions. We
report here the main result of the paper.

Theorem 1.1. — Let (X, d,m) be an essentially non-branching metric
measure space and further assume m(X) = 1. Then (X, d,m) satisfies the
CD1(K,N) condition if and only if it satisfies the CD1(K,N) condition.

The CD1(K,N) condition is formulated, in analogy with the classical
CD(K,N), as displacement convexity of entropy alongW1-geodesics; its pre-
cise formulation is given in Definition 2.5.

2. Background material

In this section we will recall some basic notions used throughout the
paper.

A triple (X, d,m) is called a metric measure space if (X, d) is a Polish
space (i.e. a complete and separable metric space) and m is a positive Radon
measure over X. In what follows we will always deal with m.m.s. in which m
is a probability measure, i.e. m(X) = 1; we will denote with P(X) the space
of all Borel probability measures over X.

A curve γ ∈ C([0, 1], X) is called a constant speed geodesic if
d(γs, γt) = |s− t|d(γ0, γ1), ∀ s, t ∈ [0, 1].

From now on the set of all constant speed geodesics will be denoted with
Geo(X) while et : Geo(X) → X will denote the evaluation map defined
by et(γ) = γt. Moreover we will call (X, d,m) geodesic if, for any choice of
x, y ∈ X, there exists γ ∈ Geo(X) with γ0 = x, γ1 = y.

As usual, for any p > 1, Pp(X) will denote the space of probability
measures with finite p-moment, i.e.

Pp(X) =
{
m ∈ P(X) :

ˆ
X

dp(x, x0)m(dx) < +∞, for some x0 ∈ X
}
,

and with Pp(X, d,m) its subspace of m-absolutely continuous probability.
The space Pp(X) will be endowed with the Lp-Wasserstein distance Wp

defined by

Wp(µ0, µ1) =
(

inf
π

ˆ
X×X

dp(x, y)π(dxdy)
)1/p

, (2.1)

where the infimum is taken in the class of all probability measures in P(X×X)
with first and second marginal given by µ0 and µ1 respectively.
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It is a classical fact that if (X, d) is geodesic then (Pp(X),Wp) is geodesic
too and a curve [0, 1] 3 t 7→ µt ∈ Pp(X) is a geodesic if and only if there
exists ν ∈ P(Geo(X)) such that (e0, e1)]ν realizes the minimum in (2.1)
and µt = et]ν. We will summarize these two properties saying that ν is an
optimal dynamical plan ν ∈ OptGeop(µ0, µ1). Finally, A ⊂ Geo(X) is called
a set of non-branching geodesics if for any γ1, γ2 ∈ A
∃ t ∈ (0, 1) : γ1(s) = γ2(s), ∀ s ∈ [0, t ] =⇒ γ1(t) = γ2(t), ∀ t ∈ [0, 1].

Finally we recall the classical definition of essentially non-branching. This
notion has been firstly introduced in [13] and considers only the case p = 2.

Definition 2.1 (Essentially non-branching). — Let (X, d,m) be a
m.m.s.. We say that (X, d,m) is W2-essentially non-branching if for any
µ0, µ1 ∈ P2(X, d,m) any element of OptGeo2(µ0, µ1) is concentrated on a
set of non-branching geodesics.

2.1. L1-Optimal Transport

To any 1-Lipschitz function u : X → R can be naturally associated a
d-cyclically monotone set Γu defined in the following way:

Γu := {(x, y) ∈ X ×X : u(x)− u(y) = d(x, y)}.
We define the transport relation Ru and the transport set Tu in the following
way:

Ru := Γu ∪ Γ−1
u , Tu := P1(Ru \ {x = y}), (2.2)

where {x = y} denotes the diagonal {(x, y) ∈ X2 : x = y}, Pi the projection
onto the i-th component and Γ−1

u = {(x, y) ∈ X ×X : (y, x) ∈ Γu}.

Since u is 1-Lipschitz, Γu,Γ−1
u and Ru are closed sets, and so are Γu(x)

and Ru(x) (recall that Γu(x) = {y ∈X : (x, y)∈Γu} and similarly for Ru(x)).
Consequently Tu is a projection of a Borel set and hence it is analytic; it fol-
lows that it is universally measurable, and in particular, m-measurable [14].

The transport “flavor” of the previous definitions can be seen in the
next property that is immediate to verify: for any γ ∈ Geo(X) such that
(γ0, γ1) ∈ Γu, then

(γs, γt) ∈ Γu, ∀ 0 6 s 6 t 6 1.

Finally, recall the definition of the sets of forward and backward branching
points introduced in [4]:

A+,u := {x ∈ Tu : ∃ z, w ∈ Γu(x), (z, w) /∈ Ru},
A−,u := {x ∈ Tu : ∃ z, w ∈ Γu(x)−1, (z, w) /∈ Ru}.
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Once branching points are removed, we obtain the non-branched transport
set and the non-branched transport relation,

T bu := Tu \ (A+,u ∪A−,u), Rbu := Ru ∩ (T bu × T bu ); (2.3)

the following was obtained in [4] and highlights the motivation to remove
branching points.

Proposition 2.2. — The set of transport rays Rbu ⊂ X×X is an equiv-
alence relation on the set T bu .

Noticing that once we fix x ∈ T bu , for any choice of z, w ∈ Ru(x), there
exists γ ∈ Geo(X) such that

{x, z, w} ⊂ {γs : s ∈ [0, 1]},

it is not hard to deduce that each equivalence class is a geodesic.

The next step is to use this partition of the transport set made of equiv-
alence classes to obtain a corresponding decomposition of the ambient mea-
sure m restricted to T bu . Disintegration Theorem (for an account on it see [2])
will be the appropriate technical tool to use. The first step is to obtain an
m-measurable quotient map f for the equivalence relation Rbu over T bu whose
construction is by now a classical procedure. It is worth stressing that the
quotient set will be identified with a subset of T bu containing a point for each
equivalence class, i.e. for each geodesic forming T bu . In particular, there will
be an m-measurable quotient set Q ⊂ T bu , image of f . The Disintegration
Theorem (for an account on it see [2]) then implies the following disintegra-
tion formula:

mxT bu=
ˆ
Q

mαq(dα), (2.4)

where q = f]mxT bu , and for q-a.e. α ∈ Q we have mα ∈ P(X), mα(X \Xα) =
0, where we have used the notation Xα to denote the equivalence class of
the element α ∈ Q (indeed Xα = R(α)). In [4], it was proved that under
RCD(K,N) condition the measure of the sets of branching points is zero.
As already observed several times in the literature, the proof only requires
existence and uniqueness of optimal maps for p = 2.

Theorem 2.3. — Let (X, d,m) be a m.m.s. such that for any µ0, µ1 ∈
P2(X) with µ0 � m any W2-optimal transference plan is concentrated on
the graph of a function. Then for every 1-Lipschitz function u : X → R we
have

m(A+,u) = m(A−,u) = 0.

It is worth here recalling that if (X, d,m) verifies MCP(K,N) and is essen-
tially non-branching, then [6] implies that (X, d,m) verifies the assumptions
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of Theorem 2.3 implying m(A+,u) = m(A−,u) = 0, for any u : X → R
1-Lipschitz function.

2.2. Curvature-Dimension conditions

We conclude this section by quickly recalling the main definitions of syn-
thetic Ricci curvature lower bounds relevant to this note. We start with the
first one that has been given by Lott–Villani [10] and Sturm [15, 16].

Given a metric measure space (X, d,m) and N ∈ R, N > 1, we define the
Renyi entropy functional SN ( · |m) : P2(X, d)→ R as follows

SN (µ|m) := −
ˆ
X

ρ−1/N dµ,

where ρ denotes the density of the absolutely continuous part of µ with
respect to m. We also recall the definition of distortion coefficients. For every
K,N ∈ R with N > 1, we set

DK,N :=
{

π√
K/N

K > 0 , N <∞,

+∞ otherwise.

Given t ∈ [0, 1] and 0 6 θ < DK,N , the distortion coefficients σ(t)
K,N (θ) are

defined by

σ
(t)
K,N (θ) :=



∞ if Kθ2 > Nπ2,
sin(tθ

√
K/N)

sin(θ
√
K/N)

if 0 < Kθ2 < Nπ2,

t if Kθ2 < 0 and N = 0, or if Kθ2 = 0,
sinh(tθ

√
−K/N)

sinh(θ
√
−K/N)

if Kθ2 6 0 and N > 0.

Finally, given K ∈ R, N ∈ (1,∞] and (t, θ) ∈ [0, 1]× R+, τ (t)
K,N (θ) :=

t
1
N σ

(t)
K,N−1(θ)1− 1

N . When N = 1, set τ (t)
K,1(θ) = t if K 6 0 and τ (t)

K,1(θ) = +∞
if K > 0.

Definition 2.4 ([16]). — Given two numbers K,N ∈ R with N > 1 we
say that a metric measure space (X, d,m) satisfies the curvature-dimension
condition CD(K,N) if and only if for each pair of µ0, µ1 ∈ P2(X, d,m) there
exist an optimal coupling π of µ0 = ρ0m and µ1 = ρ1m and a W2-geodesic
{µt} interpolating the two such that

SN ′(µt|m) 6 −
ˆ
X×X

[
τ

(1−t)
K,N ′ (d(x, y))ρ−1/N ′

0 (x)

+ τ
(t)
K,N ′(d(x, y))ρ−1/N ′

1 (y)
]
dπ(x, y) (2.5)
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for all t ∈ [0, 1] and all N ′ > N .

One can also prescribe the convexity inequality (2.5) to hold along a Wp-
geodesic, getting to the more general definition of CDp(K,N). In this note
we will deal with the case p = 1, that, due to the lack of strict convexity of
the exponent, needs a more refined definition.

Definition 2.5. — Given two numbers K,N ∈ R with N > 1 we say
that a metric measure space (X, d,m) satisfies the CD1(K,N) if and only if
for each pair of µ0, µ1 ∈ P1(X, d,m) there exists a Borel probability mea-
sure π ∈ P(C([0, 1], X)) concentrated on constant speed geodesics, such that´

d(γ0, γ1) dπ(γ) = W1(µ0, µ1) for which the inequality

SN ′(µt|m) 6 −
ˆ
X×X

[
τ

(1−t)
K,N ′ (d(γ0, γ1))ρ−1/N ′

0 (γ0)

+ τ
(t)
K,N ′(d(γ0, γ1))ρ−1/N ′

1 (γ1)
]
dπ(γ) (2.6)

holds for all t ∈ [0, 1] and all N ′ > N , where µt := (et)∗π and µt � m and
(ei)]π = µi for i = 0, 1.

Remark 2.6. — Notice that since we are dealing with the 1-transportation
distance, there are dynamic transport plans which are not concentrated on
constant speed geodesics. Insisting on this property in the definition above
seems the natural choice to make in connection with the analogous definitions
for p > 1, see e.g. Lemma 3.2.

We now recall the definition of the CD1(K,N) condition introduced in [5]
and based on another principle: the localization of Ricci curvature lower
bounds along integral curves associated to 1-Lipschitz function.

Definition 2.7 (CD1(K,N) when supp(m) = X). — Let (X, d,m) be a
metric measure space such that supp(m) = X. Let us consider K,N ∈ R,
N > 1 and let u : (X, d)→ R be a 1-Lipschitz function. We say that (X, d,m)
satisfies the CD1

u(K,N) condition if there exists a family {Xα}α∈Q ⊂ X such
that :

(1) There exists a disintegration of mxTu on {Xα}α∈Q:

mxTu=
ˆ
Q

mα q(dα), where mα(Xα) = 1, for q-a.e.α ∈ Q.

(2) For q-a.e. α ∈ Q, Xα is a transport ray for Γu.
(3) For q-a.e. α ∈ Q, the metric measure space (Xα, d,mα) satisfies

CD(K,N).

We say that (X, d,m) satisfies the CD1(K,N) condition if it satisfies the
CD1

u(K,N) condition for every u : X → R 1-Lipschitz.
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By transport ray, we mean that Xα is the image of a closed non-null
geodesic γ parametrized by arc length on an interval I in such a way the
function u ◦ γ is affine with slope −1 on I, moreover it is maximal with
respect to inclusion.

Remark 2.8. — It is well known that the last condition of Definition 2.7
is equivalent to ask mα ∼ hαL1x[0,|Xα|] where |Xα| denotes the length of the
transport ray Xα (∼ means up to isometry of the space) and the density hα
has to satisfy (

h1/(N−1)
α

)′′
+ K

N − 1h
1/(N−1)
α 6 0, (2.7)

in the distributional sense. In turn this is equivalent to the fact that the
continuous representative of hα (which exists by (2.7) and that we shall
continue to denote by hα) satisfies

hα((1− t)R0 + tR1)
1

N−1

> σ(1−t)
K,N−1(R1 −R0)hα(R0)

1
N−1 + σ

(t)
K,N−1(R1 −R0)hα(R1)

1
N−1 ,

for any R0, R1 ∈ [0, |Xα|], R0 6 R1, and t ∈ [0, 1].

3. Equivalent Formulations of Ricci Curvature bounds

In this section we obtain the equivalence between CD1(K,N) and
CD1(K,N). Recall that to avoid pathologies we assume supp(m) = X.

Theorem 3.1. — Let (X, d,m) be an essentially non-branching metric
measure space and further assume m(X) = 1. Then (X, d,m) satisfies the
CD1(K,N) condition if and only if it satisfies the CD1(K,N) condition.

We will present separately the two implications needed for the proof of
Theorem 3.1.

3.1. CD1(K,N) =⇒ CD1(K,N)

So consider fixed u : X → R a 1-Lipschitz function and (X, d,m) be
essentially non-branching and verifying CD1(K,N) with m(X) = 1.

Step 1: Disintegration formula. — First notice that CD1(K,N) implies,
reasoning for instance like [16] in the case p = 2, that the space is proper.
Moreover CD1(K,N) implies the following variant of MCP(K,N) (for the
definition of MCP we refer to [11] and [16]):
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Lemma 3.2. — Let (X, d,m) be a m.m.s. with m(X) = 1 and satisfying
CD1(K,N). Then (X, d,m) satisfies the following version of MCP(K,N).
For any µ0 ∈ P(X) with µ0 � m and x0 ∈ X there exists a curve (µt)t∈[0,1]
which is a Wp-geodesic for any p ∈ [1,∞) from µ0 to µ1 := δx0 such that
µt = ρtm + µst for all t ∈ [0, 1) andˆ

X

ρ
−1/N ′
t µt >

ˆ
X

τ
(1−t)
K,N ′ (d(x, x0))ρ−1/N ′

0 (x)µ0(dx), (3.1)

for all t ∈ [0, 1) and N ′ > N .

Proof of Lemma 3.2. — Let µ0 ∈ P(X, d,m) and x0 ∈ X be given. Since
supp(m) = X, we can consider µ1,ε := cεmxBε(x0), with cε > 0 normalisation
constant. Let πε be given by Definition 2.5 and put µt,ε := (et)∗πε. It is
classical to check that properness of X implies that πε is precompact and
therefore we can obtain a limit dynamical plan π concentrated on constant
speed geodesics and with marginals at time 0, 1 given by µ0 and µ1 = δx0

respectively. Putting µt := (et)∗π, the fact that (µt) is aWp-geodesics follows
from the chain of (in)equalities

Wp(µs, µt)

6

(ˆ
dp(γs, γt)

) 1
p

= |s− t|
(ˆ

dp(γ1, γ0)
) 1
p

= |s− t|Wp(µ0, µ1),

where the first step is justified by the fact that (es, et)∗π is an admissible
transport plan from µs to µt and the last one by the fact that (e0, e1)∗π =
µ0 × δx0 is the only transport plan from µ0 to δx0 and thus is optimal
for every p ∈ [1,∞). Finally, the validity of (3.1) simply follows by lower
semicontinuity of entropy and the claim follows. �

The version of MCP(K,N) obtained in Lemma 3.2 is actually equivalent
to the classical one, provided the space is essentially non-branching: we refer
for its proof to [5, Lemma 6.13] (see also [12, Section 5]). Hence in our
framework we can directly use the classical MCP(K,N).

Immediately we deduce that X is a geodesic space. Hence, as discussed
in Section 2.1, the following disintegration formula is valid:

mxTu= mxT bu=
ˆ
Q

mα q(dα), (3.2)

where q = f](mxT bu ), and for q-a.e. α ∈ Q we have mα ∈ P(X), with
mα(X \ Xα) = 0: the notation Xα is used to denote the equivalence class
of the element α ∈ Q that is, in particular, a transport ray. Notice that the
first identity follows from the essentially non-branching assumption and the
discussion after Theorem 2.3.

Hence it is only left to show that (Xα, d,mα) satisfy CD(K,N).
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Step 2: Intermediate regularity of conditional measures. — It is already
present in the literature how to improve the validity of (3.1) to any µ1 ∈
P(X), provided the space is essentially non-branching and the geodesic
(µt)t∈[0,1] is a W2-geodesic.

This will be enough to deduce a first result on the regularity of mα. In-
deed localization for MCP(K,N) was, in a different form, already known
in 2009, see [3, Theorem 9.5], for non-branching m.m.s.. The case of essen-
tially non-branching m.m.s.’s and an effective reformulation (after the work
of Klartag [9]) have been recently discussed in [8, Section 3] to which we
refer for all the missing details (see in particular [8, Theorem 3.5]). Here we
briefly report the following fact:

If (X, d,m) is an essentially non-branching m.m.s. with supp(m) = X
and satisfying MCP(K,N), for some K ∈ R, N ∈ (1,∞), then, for q-a.e.α,
mα = hαH1xXα and the one-dimensional metric measure space (Xα, d,mα)
verifies MCP(K,N); in particular hα is strictly positive in the relative interior
of Xα and locally Lipschitz.

Step 3: CD(K,N) estimates for one-dimensional spaces. — In order to
conclude, it remains to show that for q-a.e. α ∈ Q, the one-dimensional
metric measure space (Xα, d,mα) satisfies CD(K,N). It is useful to introduce
the following ray map g : Dom(g) ⊂ Q× R→ Tu, defined as follows:

graph(g) :=
{

(α, t, x) ∈ Q× [0,+∞)× T bu : (α, x) ∈ Γ, d(α, x) = t
}

∪
{

(α, t, x) ∈ Q× (−∞, 0]× T bu : (x, α) ∈ Γ, d(x, α) = t
}
.

The ray map g enjoys several properties already obtained in [4, Proposi-
tion 5.4]:

• g is a Borel map;
• t 7→ g(α, t) is an isometry. If s, t ∈ Dom(α, · ) with s 6 t, then

(g(α, s), g(α, t)) ∈ Γ;
• Dom(g) 3 (α, t) 7→ g(α, t) is bijective on f−1(Q) ⊂ T bu .

In particular, via g we will identify the set of definition of the densities hα
with real intervals.

We start with the following preliminary result.

Lemma 3.3. — For any Q ⊆ Q Borel set with positive q-measure and
for R0, R1, L0, L1 ∈ R such that R0 < R1, L0, L1 > 0 and [R0, R1 + L1]
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belongs to the domain of q-a.e. hα, it holds:

(Lt)
1
N sup

Q̄

h
1
N
α (Rt) > (L0) 1

N τ
(1−t)
K,N (d(R0, R1)) inf

Q̄
h

1
N
α (R0)

+ (L1) 1
N τ

(t)
K,N (d(R0, R1)) inf

Q̄
h

1
N
α (R1), (3.3)

for every t ∈ [0, 1], where Rt = (1− t)R0 + tR1 (the same holds for Lt).

Proof of Lemma 3.3. —

Step 1. — Fix Q ⊆ Q Borel set with positive q-measure and consider
R0, R1, L0, L1 ∈ R such that R0 < R1 and L0, L1 > 0. Define for i = 1, 2 the
probability measures:

µi = 1
q(Q)

ˆ
Q̄

g(α, · )]
(

1
εLi
L1x[Ri,Ri+εLi]

)
q(dα).

First of all observe that, for such measures, the transport has to be performed
along the rays {Xα}α∈Q̄. For sure an optimal plan with this property ex-
ists, since the plan π rearranging the mass monotonically along each ray
is optimal; hence supp π ⊂ Γ, so it is d-cyclically monotone and therefore
W1-optimal. The aim is to prove that all the other optimal plans enjoy the
same property.

Indeed, if not, there would exist at least one optimal plan π such that,
for some Q1 ⊂ Q of positive q-measure and for some S ⊂ R, it holds

π{(g(α, s), g(α′, s′)) : α, α′ ∈ Q1, s, s
′ ∈ S withα 6= α′} > 0,

with Q1 × S ⊂ Dom(g). Let us consider the plan

π∗ = π + π

2 ;

trivially, it is still optimal for the couple µ0, µ1. By construction this plan
splits some points, generating in this way a set of branching points with pos-
itive measure. This will lead to a contradiction. Consider indeed the Kan-
torovich potential v associated to theW1-optimal transport problem between
µ0 and µ1, possibly different from the 1-Lipschitz function u we fixed above.
Theorem 2.3 applied to v implies that necessarily that m(A±,v) = 0. Since
A±,v will contain P1({(g(α, s), g(α′, s′)) : α, α′ ∈ Q1, s, s

′ ∈ S withα 6= α′})
considered above, and µ0 � m, the contradiction with π({(g(α, s), g(α′, s′)) :
α, α′ ∈ Q1, s, s

′ ∈ S withα 6= α′}) > 0 follows. Hence, every optimal plan
will have support contained in the set

Aε
Q̄

:= ∪α∈Q̄g(α, [R0, R0 + εL0])× g(α, [R1, R1 + εL1]).
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Step 2. — Since by definition µ0, µ1 � m, there exists a dynamic trans-
port plan π as in Definition 2.5 such that for µt := (et)∗π = ρtm the
inequality (2.6) holds true. Step 1 above and the fact that π is concen-
trated on constant speed geodesics completely characterize π; in particular
we have that for q-a.e. α ∈ Q the function ρt is 0 mα-a.e. outside the ‘inter-
val’ g(α, [Rt, Rt+εLt]). Hence using the Disintegration Theorem and Jensen
inequality we can estimate the left-hand side of (2.6) by:
ˆ
X

ρ
1− 1

N
t dm

=
ˆ
Q̄

ˆ
Xα

ρt(x)1− 1
Nmα(dx)q(dα)

=
ˆ
Q̄

ˆ Rt+εLt

Rt

ρt(g(α, s))1− 1
N hα(s)dsq(dα)

6 (εLt)
ˆ
Q̄

sup
[Rt,Rt+εLt]

h
1
N
α

 Rt+εLt

Rt

(
ρt(g(α, s))hα(s)

)1− 1
N dsq(dα)

6 (εLt)
1
N

ˆ
Q̄

sup
[Rt,Rt+εLt]

h
1
N
α

(ˆ Rt+εLt

Rt

ρt(g(α, s))hα(s)ds
)1− 1

N

q(dα)

6 (εLtq(Q)) 1
N sup

Q̄

(
sup

[Rt,Rt+εLt]
h

1
N
α

)
.

Arguing similarly, the right-hand side of (2.6) can be estimated in the fol-
lowing way where π = (e0, e1)]π:
ˆ
X×X

ρ
− 1
N

0 (x)τ (1−t)
K,N (d(x, y)) + ρ

− 1
N

1 (y)τ (t)
K,N (d(x, y))π(dx, dy)

> inf
Aε
Q̄

τ
(1−t)
K,N (d(x, y))

ˆ
X

ρ
1− 1

N
0 (x)m(dx)+ inf

Aε
Q̄

τ
(t)
K,N (d(x, y))

ˆ
X

ρ
1− 1

N
1 (y)m(dy)

> (εq(Q)) 1
N

[
inf
Aε
Q̄

τ
(1−t)
K,N (d(x, y)) inf

Q̄

(
inf

[R0,R0+εL0]
h

1
N
α

)
(L0) 1

N

+ inf
Aε
Q̄

τ
(t)
K,N (d(x, y)) inf

Q̄

(
inf

[R1,R1+εL1]
h

1
N
α

)
(L1) 1

N

]
.

Hence, considering both the estimates obtained so far, we get

(Lt)
1
N sup

Q̄

(
sup

[Rt,Rt+εLt]
h

1
N
α

)
> inf

Aε
Q̄

τ
(1−t)
K,N (d(x, y)) inf

Q̄

(
inf

[R0,R0+εL0]
h

1
N
α

)
(L0) 1

N

+ inf
Aε
Q̄

τ
(t)
K,N (d(x, y)) inf

Q̄

(
inf

[R1,R1+εL1]
h

1
N
α

)
(L1) 1

N .
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Sending ε→ 0, we obtain

(Lt)
1
N sup

Q̄

h
1
N
α (Rt) > (L0) 1

N inf
AQ̄

τ
(1−t)
K,N (d(x, y)) inf

Q̄
h

1
N
α (R0)

+ (L1) 1
N inf
AQ̄

τ
(t)
K,N (d(x, y)) inf

Q̄
h

1
N
α (R1),

where AQ̄ := ∪α∈Q̄{(g(α,R0), g(α,R1))}. Since g(α, · ) is an isometry, (3.3)
is proved. �

We are now ready to prove the following:

Proposition 3.4. — For q-a.e. α ∈ Q, the metric measure space
(Xα, d,mα) satisfies CD(K,N).

Proof. — By Remark 2.8, to prove the claim is sufficient to show that:

hα((1− t)R0 + tR1)
1

N−1 > σ(1−t)
K,N−1(R1 −R0)hα(R0)

1
N−1

+ σ
(t)
K,N−1(R1 −R0)hα(R1)

1
N−1 , (3.4)

for all t ∈ [0, 1] and for R0, R1 ∈ [0, Lα] with R0 < R1, where we have
identified the transport ray Xα with the real interval [0, Lα] having the
same length.

As already did in [7], it is sufficient to show that for every R0, R1 ∈ [0, Lα]
with R0 < R1 and L0, L1 > 0, we have that for q-a.e. α ∈ Q

(Lt)
1
N h

1
N
α (Rt) > (L0) 1

N τ
(1−t)
K,N (d(R0, R1))h

1
N
α (R0)

+ (L1) 1
N τ

(t)
K,N (d(R0, R1))h

1
N
α (R1), (3.5)

for all t ∈ [0, 1], where Lt = (1− t)L0 + tL1 (the same for Rt). Indeed, if this
is the case taking also into account the already established continuity of hα,
one can make the choice

L0 =
σ

(1−t)
K,N−1(d(R0, R1))h(R0)

1
N−1

1− t , L1 =
σ

(t)
K,N−1(d(R0, R1))h(R1)

1
N−1

t
,

obtaining exactly (3.4). Thus, our aim will be proving (3.5). Arguing by
contraddiction, let us assume that there exist R0, R1 ∈ [0, Lα], L0, L1 > 0
with R0 +L0, R1 +L1 < Lα and a Borel set Q1 ⊆ Q with positive q-measure
such that for every α ∈ Q1 it holds:

(Lt)
1
N h

1
N
α (Rt) < (L0) 1

N τ
(1−t)
K,N (d(R0, R1))h

1
N
α (R0)

+ (L1) 1
N τ

(t)
K,N (d(R0, R1))h

1
N
α (R1). (3.6)

By Lusin Theorem, there exists a Borel set Q2 ⊂ Q1 with positive q-measure
on which the maps α 7→ hα(Ri), for i = 0, t, 1 are continuous. Hence, fixed
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δ > 0, there exists Q3 ⊂ Q2 with positive q-measure such that

(Lt)
1
N h

1
N
α (Rt) < (L0) 1

N τ
(1−t)
K,N (d(R0, R1))h

1
N
α (R0)

+ (L1) 1
N τ

(t)
K,N (d(R0, R1))h

1
N
α (R1)− δ, ∀ α ∈ Q3.

In particular, for every Q ⊂ Q3 compact set with positive q-measure:

(Lt)
1
N sup

Q̄

h
1
N
α (Rt) < (L0) 1

N τ
(1−t)
K,N (d(R0, R1)) sup

Q̄

h
1
N
α (R0)

+ (L1) 1
N τ

(t)
K,N (d(R0, R1)) sup

Q̄

h
1
N
α (R1)− δ.

Combining the latter inequality with (3.3), we deduce that for any Q ⊂ Q3
Borel set with positive q-measure

(L0)
1
N τ

(1−t)
K,N (d(R0, R1)) inf

Q̄
h

1
N
α (R0) + (L1)

1
N τ

(t)
K,N (d(R0, R1)) inf

Q̄
h

1
N
α (R1)

< (L0)
1
N τ

(1−t)
K,N (d(R0, R1)) sup

Q̄

h
1
N
α (R0)+(L1)

1
N τ

(1−t)
K,N (d(R0, R1)) sup

Q̄

h
1
N
α (R1) − δ.

Since the parameter δ does not depend on Q, we obtain a contradiction. �

This concludes the proof of the implication CD1(K,N) =⇒ CD1(K,N).
We will next move to the opposite implication.

3.2. CD1(K,N) =⇒ CD1(K,N)

Notice that CD1(K,N) implies that (X, d,m) is a proper geodesic space
and verifies MCP(K,N) (see for all the details [5]).

Let µ0, µ1 ∈ P1(X, d,m) be given. We will construct a W1-geodesic veri-
fying the Entropy inequality. Consider therefore u : X → R a Kantorovich
potential associated to the transport problem between µ0, µ1 with cost d.
Consider the associated Γu; then any optimal transport plan π has to be
concentrated over Γu, i.e. π(Γu) = 1. Moreover, with no loss in generality
we can assume that µ0 is concentrated over the transport set T bu : indeed the
part of µ0 outside of T bu is left in place by π; in particular, it will not give
any contribution in the Entropy inequality as τ (t)

K,N (0) = t.

Since u is 1-Lipschitz, by the CD1
u(K,N) condition there exist a family

of rays {Xα}α∈Q ⊂ X and a disintegration of mxTu on {Xα}α∈Q such that:

mxTu= mxT bu=
ˆ
Q

mα q(dα), where mα(Xα) = 1, for q-a.e.α ∈ Q, (3.7)
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where the first identity is given by Theorem 2.3 and (Xα, d,mα) ∈ CD(K,N).
It follows that

µ0 = ρ0m =
ˆ
Q

ρ0 mα q(dα) =
ˆ
Q

µ0,αq0(dα) (3.8)

where µ0,α = ρ0mα · (
´
ρ0mα)−1 and q0 = f](µ0) with f the quotient map.

Then we claim that for any Borel set C ⊆ Q it holds:

(f−1(C)×X) ∩ (Γu \ {x = y}) ∩ (T bu × T bu )
= (X × f−1(C)) ∩ (Γu \ {x = y}) ∩ (T bu × T bu ).

Indeed, since µ0(T bu ) = µ1(T bu ) = 1, then π((Γu \ {x = y}) ∩ T bu × T bu ) = 1;
hence if x, y ∈ T bu with (x, y) ∈ Γu, then it must be f(x) = f(y) since T bu
does not admit forward or backward branching points. This implies that

µ0(f−1(C)) = π((f−1(C)×X) ∩ (Γu \ {x = y}))
= π(X × f−1(C)) ∩ (Γu \ {x = y})
= µ1(f−1(C));

in particular q0 = q1 := f](µ1). Hence, we can write the following disinte-
gration:

µ1 = ρ1m =
ˆ
Q

ρ1 mα q(dα) =
ˆ
Q

µ1,αq0(dα),

where µ1,α = ρ1mα · (
´
ρ0mα)−1 and, q0-a.e., µ0,α, µ1,α are probability mea-

sures on Xα. Furthermore, by construction they are absolutely continuous
with respect to mα. By the CD1

u(K,N) condition, the metric measure space
(Xα, d,mα) satisfies CD(K,N) and hence there exists an optimal dynamical
plan να such that ρt,αmα = µt,α = (et)]να is a W 1-geodesic interpolating
µ0,α ad µ1,α and

ρ
− 1
N′

t,α (γt) > τ (1−t)
K,N ′ (d(γ0, γ1))ρ−

1
N′

0,α (γ0) + τ
(t)
K,N (d(γ0, γ1))ρ−

1
N′

1,α (γ1),
for να a.e. γ. (3.9)

It is then natural to proceed gluing 1-dimensional geodesics: define ν =´
Q
ναq0(dα) and set µt = (et)]ν. Observe that, it holds µt =

´
Q
µt,αq0(dα)
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and we claim that {µt} is a W1-geodesic interpolating µ0 and µ1. Indeed:

W1(µt, µs) 6
ˆ
X×X

d(x, y)(et, es)]ν(dxdy)

=
ˆ
Q

ˆ
Xα×Xα

d(x, y)(et, es)]να(dxdy)q0(dα)

= |t− s|
ˆ
Q

ˆ
Xα×Xα

d(x, y)(e0, e1)]να(dxdy)q0(dα)

= |t− s|
ˆ
X×X

d(x, y)(e0, e1)]ν(dxdy)

= |t− s|W1(µ0, µ1).

The last equality follows from the optimality of the plan: indeed (e0, e1)]ν
is concentrated on a d-cyclically monotone with marginals µ0 and µ1. To
conclude, we show the convexity inequality (2.6) along the geodesic µt.

If µt = ρtm, it follows from (3.7) that for each t ∈ [0, 1] it holds ρt,α =
ρt´
ρ0mα

. Hence the inequality (3.9) can be rewritten in the following way:

ρ
− 1
N′

t (γt) > τ (1−t)
K,N ′ (d(γ0, γ1))ρ−

1
N′

0 (γ0) + τ
(t)
K,N (d(γ0, γ1))ρ−

1
N′

1 (γ1),
for να-a.e. γ. (3.10)

Since for q0-a.e. α the inequality (3.10) holds for να−a.e. γ, a fortiori it holds
true for ν−a.e. γ; hence, the claim is proved.
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