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ABSTRACT

A time-frequency representation of sound is commonly ob-
tained through the Short-Time Fourier Transform. Identi-
fying and extracting the prominent frequency components
of the spectrogram is important for sinusoidal modeling
and sound processing. Borrowing a known image pro-
cessing technique, known as seam carving, we propose
an algorithm to track and extract the sinusoidal compo-
nents from the sound spectrogram. Experiments show how
this technique is well suited for sound whose prominent
frequency components vary both in amplitude and in fre-
quency. Moreover, seam carving naturally produces some
auditory continuity effects. We compare this algorithm
with two other sine extraction techniques, based on peak
detection on spectrogram frames. The seam carving skips
this step and turns out to be applicable to a variety of sounds,
although being more computationally expensive.

1. INTRODUCTION

For the analysis of audio signals, the most commonly-used
representation is the intensity spectrogram, which is essen-
tially a regular tessellation of the time-frequency plane,
resulting from the magnitude of the Short-Time Fourier
Transform (STFT). For impact sounds with stable fre-
quency components it is of primary importance to identify
the resonance frequencies and their respective decay rates,
so to make re-synthesis and processing possible. More
generally and more interestingly, in speech and audio sig-
nal processing it is important to extract – or to track –
the prominent sinusoidal components from those signals
where these components are time-varying, both in ampli-
tude and in frequency. This opens the possibility of resyn-
thesis with modification, as in time stretching or pitch trans-
position [1–3]. Most often, the trajectories in the time-
frequency plane are drawn by tracking individual magni-
tude peaks of frames of the Discrete Fourier Transform
(DFT), with no special regard to how frequency trajecto-
ries actually emerge in auditory perception, where they are
typically segregated as streams [4].

In this contribution we propose a tracker that extracts the
most prominent sinusoidal components (or partials) from
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a time-frequency spectrogram matrix, based on the seam
carving algorithm [5], that was originally proposed for con-
tent-based image resizing. No preliminary computation of
the DFT peaks is necessary and no heuristics on track cre-
ation, extinction, or continuation are used. To extract each
trajectory (seam), the algorithm computes an energy ma-
trix by dynamic programming in time proportional to the
number of frames and to the number of frequency bins of
the STFT, and then backtracks to extract the seam. We will
show how this method would come useful both for impact
sounds with frequency-stationary decaying modes, as well
as for sounds with erratic resonances. Moreover, some
continuity effects as found in auditory perception naturally
emerge from seam carving as an analysis method.

Section 2 introduces the seam carving algorithm and its
adaptation to audio spectrograms. Section 3 elaborates on
the parameters of the carving algorithm, of STFT analysis,
and on their impact on computational cost. Section 4 illus-
trates how the algorithm can be applied to extract relevant
acoustic information from the extracted seams. Section 5
compares audio seam carving with two other techniques
to track and extract the prominent sinusoidal components.
Finally, section 6 shows how seam carving naturally repro-
duces some relevant perceptual contininuity effects.

2. CARVING SPECTROGRAMS AS IMAGES

An audio spectrogram, or at least the matrix containing its
magnitude, can be treated as an image and manipulated
by image-processing techniques. In the literature there are
several examples of conversion of image-processing meth-
ods and algorithms to transform or synthesize audio [6].
Recent progress in generative neural networks for audio is
largely due to transportation of image-based techniques to
time-frequency representations such as the spectrogram [7].

Seam carving, used to resize an image by removing paths
that are minimally relevant for the displayed content, is a
popular image-processing algorithm that has found only
limited use in audio [6,8–10]. The image-processing algo-
rithm is based on the construction of an energy matrix, and
on the computation of a minimum-energy path connecting
two opposite image edges. The energy function, that deter-
mines the energy matrix, can be tuned to the content to be
removed, thus guiding the removal process towards those
image areas that are the least important for the human eye.

The seam-carving algorithm was adapted by Tarrat-Masso
to perform audio time scaling [6] with preservation of some
important audio features such as tempo and sound attacks,
that would be easily distorted if simply compressing or



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

443

stretching the signal in time. In his application, the seams
are carved vertically from the spectrogram, connecting high
to low frequencies. Barnwal et al. proposed an algorithm
derived from seam carving to produce feature vectors that
characterize the harmonic signature of human voice [9].
Their method assumes that the high-energy paths, as they
are found as seams in the magnitude spectrogram, bring
information that is relevant to classify speech sounds. The
use of seam carving for sinusoidal component tracking was
also proposed to estimate the speed from the captured sound
of vehicles passing by [8]. All the three mentioned works
were based on some spectrogram pre-processing: to pre-
serve the sound features while scaling [6] or to improve
seam extraction [8, 9].

The use of seam carving on the STFT matrix for multi-
trace frequency tracking has been recently proposed by
Zhu et al. [10], and shown to outperform probabilistic mod-
els in both accuracy and speed, especially for noisy sig-
nals. Our approach is similar, as it extracts traces by dy-
namic programming and spectral compensation, and was
independently developed as part of the master’s thesis of
the first author [11]. The method by Zhu et al. is com-
putationally more expensive, as it admits arbitrarily steep
frequency trajectories, while at the same time introducing
a regularization term that penalizes ample frequency devia-
tion. They demonstrated the validity of the method to sepa-
rate a heart-pulse signal from a motion signal in a mixture.
Our method, instead, sets the maximum frequency slope
as a parameter, and does not use any regularization terms.
We present this technique in the context of audio signal
processing, showing its usefulness for sinusoidal modeling
synthesis and transformation, as well as its relation with
perceptual auditory streaming.

2.1 Seam carving for image resizing

The seam-carving algorithm for image resizing was pro-
posed by Avidan and Shamir in 2007 [5], as an improve-
ment over conventional resizing that is blind to the image
content, thus introducing distortions of the relevant por-
trayed objects [12]. Conversely, seam carving is content
aware, as it preserves important image features, such as
the object proportions. The algorithm operates by itera-
tively removing seams, which are paths of adjacent pixels
traversing the image, vertically or horizontally. Each seam
is formed and removed by minimizing an energy function
that weighs the importance of each pixel in terms of local
variation. By playing with the energy function, different
operators can be implemented according to the desired im-
age manipulation, for example for the removal of selected
objects or to change the aspect ratio for image retargeting.

On images, the seam-carving algorithm is usually for-
mulated as dynamic programming, and it is linear in the
number of pixels. Alternatively, the optimal seam may be
extracted as the shortest path in a graph connecting the ad-
jacent pixels.

Consider an image I of size h×w, and a cost (or energy)
function E representing the importance of each pixel as re-
ferred to the scene content. The objective is that of remov-
ing a given number of optimal (or minimum cost) seams

Figure 1: Example computation of the energy matrix C
and identification of the minimal seam. Numbers in cor-
ners represent intensity values. Numbers in the middle of
cells represent energy accumulated along paths.

from the image. The algorithm is iteratively applied, each
iteration requiring the energy matrix computation in order
to detect and remove the optimal path of pixels. If proceed-
ing top to bottom, the seam removal implies a shift of all
pixels on the left of the removed seam.

Formally, a vertical seam is defined as

sx = {sxi }h−1
i=0 = {(i, x(i))}h−1

i=0 ,

s.t. ∀i, |x(i)− x(i− 1)| ≤ 1. (1)

For each row i, the value x(i) is the column position of the
seam pixel. A vertical seam is a connected path of pixels,
from top to bottom of the image, containing one pixel per
row. Similarly, a horizontal seam can be defined.

Given a vertical seam s and the image I , the image pixels
belonging to the seam are

Is = {I(si)}h−1
i=0 = {I(i, x(i))}h−1

i=0 . (2)

The cost of the seam is defined as its cumulated pixel
energy E(s) = E(Is) =

∑h−1
i=0 e(I(si)) and, therefore,

the minimal cost seam s∗ to be found is

s∗ = arg min
s

E(s) = arg min
s

h−1∑
i=0

e(I(si)). (3)

The minimal seam s∗ can be found by dynamic program-
ming. The image is scanned from its second to its last row
to define the matrix C containing the minimal costs for
all possible seams. For each pixel in position (i, j), with
1 ≤ i ≤ h− 1 and 0 ≤ j ≤ w − 1, we have

C(i, j) = e(i, j) + min(C(i− 1, j − 1),

C(i− 1, j), C(i− 1, j + 1)). (4)

At the end of this first phase, the minimal seam is indicated
by the smallest element of the last row of C. The second
phase is a backtracking process starting from such element,
which removes the identified seam and shifts the pixels as
required. The whole process is exemplified in figure 1.

2.2 Carving sinusoidal components from audio

Seam carving can be used to extract the parameters char-
acterizing the most relevant time-varying sinusoidal com-
ponents of sound. The magnitude spectrogram mX gen-
erated by the STFT analysis provides the image where the
seams are to be found:

mX(i, j), 0 ≤ i ≤ h− 1 e 0 ≤ j ≤ w − 1. (5)



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

444

As opposed to visual image carving, however, in audio
seam carving we seek for maximal, rather than minimal,
seams, that represent the most relevant sinusoidal compo-
nents of the signal. Equation 4 is, therefore, replaced by

C(i, j) = mX(i, j) + max(C(i− 1, j − 1),

C(i− 1, j), C(i− 1, j + 1)). (6)

The spectrogram image is visualized so that sounds pro-
ceed along time, left to right. The i index indicates the i-th
time slice, and the j index represents the j-th frequency bin
of the DFT. Called t the number of modal resonances to be
extracted, algorithm 1 proceeds on the computed magni-
tude spectrogram through t iterations.

Algorithm 1 Extraction of audio seams from spectrogram

Inputs: number of seams, magnitude spectrogram
for each seam do

for all (i, j) in mX with
1 ≤ i ≤ h− 1 and 0 ≤ j ≤ w − 1 do

compute the cumulative energy matrix C
according to equation 6

find the maximum element in the last row of C
and backtrack to find the maximal seam;

extract the parameters (frequency tracks,
magnitude peaks) of the seam and
remove it from mX;

In a python implementation 1 , the cumulative energy
matrix C is called distTo, as every element can be con-
sidered as a distance from the seam beginning. The matrix
upLink is also simultaneously produced, which contains
the directions to backtrack along the optimal seam: -1 : for
distTo[i-1][j-1]; 0 : for distTo[i-1][j]; 1 :
for distTo[i-1][j+1].

Figure 2 (left) shows the spectrogram of a bell sound 2

as well as the seams found after 40 iterations. Figure 2
(right) shows the cumulative energy matrix that is com-
puted to find the first seam. Many of the found seams can
be visually clustered in bold paths. This can be both due to
resonances that are close to each other or to deficiencies in
the seam removal process. In fact, the simple removal of a
path of pixels may be adequate for images, but it does not
take the specific properties of spectrograms into account.

Two other examples of carving, for sounds 3 whose sinu-
soidal component frequencies are clearly time-varying, are
reported in figure 3.

Of course, results will change according to the parame-
ters of the STFT (DFT size N , window size M , hop size
H , window type), to the kind of signal, and to the strength
of overlapping noise. In any case, we can say that the
seam cancellation is often not sufficient to eliminate the
energy band of the partial. Some different strategies have

1 https://github.com/GiovanniCapizzi/
SeamCarvingAudio

2 https://freesound.org/people/cheira/sounds/
430511/

3 https://freesound.org/people/josepharaoh99/
sounds/368175/ and https://freesound.org/people/
qubodup/sounds/331381/

Figure 2: (left) Forty seams extracted from the spectro-
gram of a bell sound; (right) The cumulative energy matrix
that is computed to find the first seam. DFT computed on
N = 4096 points with a Blackman-Harris window of M =
4096 points, hop size H = 1024

Figure 3: Carving eight seams from sounds whose sinu-
soidal component frequencies vary in time: (left) N =
1024, M = 511, H = 127; (right) N = 1024, M = 611, H
= 152

been attempted to pre-process the spectrogram before carv-
ing. In particular, we tried smoothing the spectra in fre-
quency and eliminating all components that lie below the
smoothed profile. We also tried classic image processing
filters such as Sobel. These pre-processing procedures,
however, did not produce significantly better carved tra-
jectories and, for the sake of simplicity, they were not used
any further. All the examples presented in this paper use
a Blackman-Harris window, and the effect of window type
on seam carving and cancellation is not discussed.

3. TUNING THE CARVING

3.1 Extending the neighborhood

One of the limitations of the proposed carving algorithm
is evident when there are rapidly varying frequency com-
ponents, as in figure 3. In order to induce the algorithm
to search beyond diagonal trajectories, we need to enlarge
the neighborhood that is explored during the computation
of the cumulative energy matrix. The modifications to the
original carving algorithm are straightforward, and a new
parameter hwidth can be introduced in the code and set to
a small positive integer. This parameter represents the in-
teger half number of pixels to include in the neighborhood
during the matrix computation. The algorithm, being able
to find its way through larger neighborhoods, behaves as
depicted in figure 4 for hwidth = 2 (i.e., five-cell neigh-
borhood). This parameter acts as a limit in the steepness of
frequency trajectories.
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Figure 4: Carving eight seams as in figure 3, with hwidth
= 2, corresponding to a 5-element search neighborhood

(a) 1024, 1024, 1024 (b) 2048, 2048, 512

(c) 2048, 4096, 2048 (d) 4096, 4096, 4096

Figure 5: Carving four seams for different STFT param-
eters. Each subcaption reports the values of parameters
M,N,H .

3.2 Choosing the STFT parameters

To see the effect of different STFT parameters on the qual-
ity of carving we consider a synthetic sound made of fre-
quency-modulated and amplitude-decaying sinusoidal com-
ponents. Figure 5 shows some combinations of M , N , and
H . It is evident how a small window, while producing low
frequency resolution, produces consistent traces. Choos-
ing N larger than M (zero padding) often leads to poor
tracking, so it is preferred to keep N equal to M .

The interaction between the window size M and the hop
size H is illustrated in figure 6. The parameters of fig-
ure 6c (M = 4096, H = 2048) and those of figure 6d
(M = 2048, H = 512) afford a complete tracing of the
three components of the inharmonic chirp. The analysis
of figure 6c is more computationally demanding, but it has
higher resolution and affords a higher quality resynthesis
from the extracted seams.

3.3 Cost of spectrogram carving

If we consider a spectrogram with m frames, each com-
puted on n bins, and a neighborhood of k elements, the
algorithm to carve a seam:
• zeroes the elements of the first row (temporal col-

umn in the rotated spectrum) of the distance matrix;
• for each element of each subsequent row, performs

at most k − 1 comparisons among neighboring ele-

(a) M=8192, Overlap=0% (b) M=8192, Overlap=50%

(c) M=4096, Overlap=50% (d) M=2048, Overlap=25%

Figure 6: Carving three seams for different values of win-
dow and hop size

Figure 7: Empirical effect of window and hop size on seam
carving time for figure 6. The reported times are computed
as the average extraction time on three seams. The compu-
tation time of the STFT is not included.

ments of the previous row, searching for the maxi-
mum.

By protecting the frame boundaries with very large values
it is possible to have the same number of comparisons for
all bins in a frame, so that the total number of comparisons
is simply calculated as

nc = n(k − 1)(m− 1). (7)

The operation of backtracking and seam canceling takes
time proportional to the m frames, and is therefore super-
seded by nc.

Figure 7 shows the measured experimental computation
time required by the extraction of a seam from the chirp
of figure 6, for different values of window size and rela-
tive window overlap. Different choices of M lead to very
similar execution times, just because shorter windows are
computed proportionally more often, for a given percent
overlap.
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(a) Extracted magnitude of a seam (b) Linear regression of the
backward-integrated decay

Figure 8: Measuring the decay time of a sound partial

(a) Re-synthesis from extracted pa-
rameters

(b) Resizing the bell

Figure 9: Extraction and synthesis of a bell sound. In 9b a
variation of the original sound is produced.

4. APPLICATIONS OF SEAM CARVING

4.1 Parameterizing resonances from impact sounds

Impact sounds are most often characterized by exponential-
ly-decaying partials, each at a given frequency. The identi-
fication of such components can be done by seam carving
where, for each extracted seam, the following parameters
are computed: (i) peak magnitude; (ii) decay time; (iii)
frequency.

Once a seam has been found, the decay time can be com-
puted by Schroeder backward integration [13] and by lin-
ear regression. The instant when the regression line has
decreased below a predefined threshold (typically, 60dB)
is used to compute the decay time. Figure 8a shows a typi-
cal amplitude decay of a detected seam. The decay time is
computed by backward integration and linear regression,
illustrated in figure 8b. For accurate frequency estimation
and for better removal of the seam, parabolic interpolation
and spectral resynthesis are used [2, 3].

In figure 9 an example of extraction and synthesis is pro-
vided. The audio files are available in the example folder
of the code repository 1 . The original sound is used to ex-
tract the main spectral content of the bell, that becomes
ready for sound manipulation. For example, adding new
components and scaling them down in frequency, the bell
is effectively resized and made to sound bigger.

The identification of exponentially-decaying sinusoidal
components is often required to inform sound models of
contact sounds for interaction in everyday virtual environ-
ments [14]. In these application contexts, sometimes the
constraint of exponential decay is released and the whole
amplitude envelope is retained [15]. Given the ubiquity of
everyday sound modeling for interactive virtual and aug-

mented environments, it would be interesting to exploit
frequency constancy to speed up the carving process, as
proposed in section 5.

4.2 Following erratic resonances

As opposed to other identification methods, such as the
Matrix Pencil [16], that assume the signal as made of de-
caying exponentials, with seam carving we can extract si-
nusoidal components that vary both in amplitude and in
frequency. Therefore, seam carving can be used within
the analysis/synthesis framework based on spectral pro-
cessing, which makes a large range of high-quality audio
effects and sound transformations possible [2]. Among
these, we just mention pitch transposition, time stretching,
timbre modification and sound morphing. Moreover, from
the observation that seam carving is based on a definition
of energy and the construction of an energy matrix, we ex-
pect it to naturally mimic those auditory phenomena that
are energy based. In particular, we expect that some kind
of perceptual inertia, as found in auditory continuity ef-
fects, is reproduced while carving frequency trajectories.
The examples of section 6 are aimed at verifying this ex-
pectation.

5. SEAM CARVING VS. PEAK TRACKING

The sinusoidal model for the analysis and resynthesis of
sound belongs to the classic literature of signal process-
ing [1, 3, 17, 18]. Such model relies on tracking the si-
nusoidal components, as they are previously detected on
single spectrogram frames. Peak detection with parabolic
interpolation is found in the Spectral Modeling Synthesis
(SMS) tools 4 [2]. With such methods spurious peaks are
often found as a result of rapid spectral changes or as side-
lobes of the transform window.

McAulay and Quatieri proposed a method for tracking si-
nusoidal components in speech, based on the concepts of
birth and death of partials [1], with frame-to-frame peak
matching. Tracks are declared as dead or as born when a
match is not possible within a frequency interval ∆. This
method was also used by Smith and Serra in the more
general context of analysis/resynthesis of musical, possi-
bly inharmonic, sounds [19]. The method was later ex-
tended by introducing the concept of frequency guides,
whose behavior may be set according to the characteris-
tics of the sound being analyzed [2]. The complexity of the
McAulay–Quatieri matching operation between two frames
turns out to be quadratic in the number of peaks per frame,
in the worst case.

Another method, closer in spirit to seam carving, has
been proposed by the third author and implemented as a
modal tracker object for the Sound Design Toolkit [20].
The algorithm has been specifically tailored for the analy-
sis of impact sounds, and for their re-synthesis through a
physically-informed resonator made of exponentially-de-
caying sinusoidal oscillators, each controllable in ampli-

4 A page on SMS tools is https://www.upf.edu/web/mtg/
sms-tools, and python source code is available at https://
github.com/MTG/sms-tools. The SMS tools have been used in
the proposed implementation of audio seam carving.
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tude, frequency and decay time. The modal tracker
algorithm proceeds in three steps:

1. create a matrix of spectrogram peaks;
2. create a matrix of cumulated sums;
3. extract the partials one by one.

The peak-picking phase proceeds by selecting local max-
ima in each spectrogram frame, namely the frequency bins
having the largest magnitude in a given neighborhood. In
the modal tracker implementation, a bin is considered
to be a peak if its magnitude is greater than the one of the
two bins above and the two bins below it. Only the peak
magnitudes are retained, while all the other values are dis-
carded.

In the second step, the cumulated sums are computed in
a way which is similar, though slightly different, to seam
carving: Sums are retained only where peak values in the
original spectrogram exist, and values are cumulated only
until there is a connecting path between peaks in the pre-
vious frame and peaks in the current frame. The width of
the search window used to determine if a path is connected
could be left as a free parameter of the algorithm, as it hap-
pens for seam carving, but in the modal tracker imple-
mentation it is rigidly set fixed to three cells, or radius = 1.
Only the maximum cumulated sum in the previous frame
is added to the peak in the successive frame, following the
same principle of seam carving. The additional constraints
though, namely the peak picking phase and most impor-
tantly the interruption of the cumulated sum if no peaks
are found in the neighborhood of a summation path, make
the algorithm behave in a very different way: Instead of
having ”cones” of energy covering the whole length of
the spectrogram, as shown in figure 2, the cumulated sum
matrix of the modal tracker algorithm shows well de-
fined tracks, exactly one pixel wide, which can begin and
end anywhere across the whole breadth of spectrogram.
The combined setup of a five-cell peak-picking window
and a three-cell peak tracking window avoids the forking or
joining of different summation tracks, because local max-
ima are at least three bins apart from each other and there-
fore the presence of at most one peak in a three-cell search
window is guaranteed. This is a desirable property for the
particular use case of resynthesizing sounds using a fixed-
size oscillator bank.

The final step consists in extracting the cumulated par-
tials. The absolute maximum in the summation matrix
should correspond to the end of the most prominent partial.
By performing backtracking, as already described for seam
carving, information about the partial is retrieved and then
removed from the summation matrix, in order to be able
to find other prominent components through consecutive
iterations of this extraction phase.

If we call n the number of frequency bins in a single
spectrogram frame, m the number of frames in the spec-
trogram, and p the number of partials to extract, the whole
algorithm has complexity O(nmp). In particular the peak
picking phase has complexity O(n), the energy summation
has complexity O(nm), and the backtracking phase has
complexity O(mp) if the positions of the p energy summa-
tion maxima are memoized during phase 2, and therefore

(a) modal tracker (b) seam carving

Figure 10: Extraction of a sinusoidal component in-
terrupted by amplitude-varying noise bursts. The
modal tracker is about six times faster, but it fails to
go through the bursts.

don’t need to be searched in the energy summation matrix.
The modal tracker requires, similarly to peak-track-

ing methods, the preliminary extraction of peaks from sin-
gle DFT frames. It also relies on slow variation of par-
tial frequencies, and is therefore mostly suitable for impact
sounds. Similarly to seam carving, however, it computes a
matrix of cumulated energies. Therefore, this method can
be seen as intermediate between peak tracking and seam
carving, and it turns out to be very efficient although not as
general as the two other methods.

6. STREAMS AS SEAMS

For the comparison of algorithms for the identification and
tracking of sinusoidal components, it is interesting to refer
to auditory continuity illusions [4] in auditory scene anal-
ysis. Among the many examples of continuity illusions
studied in the literature, we consider the perceived conti-
nuity of frequency glides and stationary frequency com-
ponents, when they are interrupted by noise bursts [21].
Figures 10, 11 and 12 show the spectrograms of three such
cases of continuity illusion. In all cases, the modal tra-
cker is faster but fails to go through the noise bursts.

(a) modal tracker (b) seam carving

Figure 11: Glide to stationary sine transition interrupted by
a noise burst. The modal tracker fails to on the gliding
start.

(a) modal tracker (b) seam carving

Figure 12: Stationary sine to glide transition interrupted
by a noise burst. The modal tracker fails at the noise
interruption.

If the purpose is that of identifying the most prominent
partials of a sound of impact, where the frequency of sinu-
soidal components is stationary, both modal tracker
and seam carving behave well, and the former is to be
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(a) modal tracker (b) seam carving

Figure 13: Extraction of seven partials from a bell sound.
modal tracker is 280 times faster.

(a) First seam (b) Second seam

Figure 14: Extracting two seams from crossing glides

preferred as significantly faster. However, seam carving
proves to be robust to the presence of noise in the spec-
trogram. Figure 13 shows the extraction of seven partials
from a recording of bell sound. Despite the differences in
the chosen partials, the resynthesis sounds convincing in
both cases.

Another interesting case from the literature of auditory
scene analysis is the perceptual segregation of crossing gli-
des. Figure 14 shows how seam carving reproduces the
results of experimental perceptual segregation of continu-
ous crossing glides [22]. Figure 15 shows an example of
stepped crossing glides. Although a spurious seam is ex-
tracted after the first, due to rapid frequency changes, the
first and third extracted seams correspond to perceptually
segregated streams.

Properly parameterized sinusoidal tracking, as implemen-
ted in the SMS tools, behaves well on both glides and sta-
tionary sounds, as shown in figure 16. In general, we found
that such tracking is more prone to the production of spu-

(a) First seam (b) Third seam

Figure 15: Extraction of three seams from crossing stepped
glides. The second seam is not shown, as largely at-
tributable to the residual energy left from the removal of
the first.

(a) ∆ = 10, maxnSines=40 (b) ∆ = 40, maxnSines=2

(c) ∆ = 20, maxnSines=30 (d) ∆ = 20, maxnSines=2

Figure 16: Sinusoidal tracking with the SMS tools on the
sounds of figures 12 and 10, respectively.

rious tracks, due to the stochastic component of the spec-
trum. Figure 16c shows that, as the number of admitted
tracks maxnSines is lowered and ∆ is properly adjusted,
the tracking improves. On the other hand, figure 16d shows
oscillations due to noise. With seam carving such oscilla-
tions are much smaller, thanks to the energy function and
to the limited neighborhood.

7. CONCLUSIONS

The most popular techniques for tracking sinusoidal com-
ponents from audio rely on peak picking on spectrogram
frames, and on matching and continuation algorithms a-
cross frames. As an alternative borrowed from image pro-
cessing, we propose seam carving: a technique that skips
the peak-picking stage and looks for paths of maximal ac-
cumulated energy in the spectrogram matrix.

Seam carving is quite general, as it behaves well for a
large variety of sounds, and is still practically efficient when
implemented via memoization and dynamic programming.
Some parameter calibration is still needed, as with the other
techniques, to achieve the best separation of sines from
noise and to minimize spurious tracks, given a sound mix-
ture. However, seam carving shows good robustness to
noise, to the point that it recreates some auditory continuity
effects, by naturally sticking to trajectories that are indeed
submerged in noise bands. These extensions of trajecto-
ries appear to the ears of the listener and are commonly
explained by gestalt principles of proximity or good con-
tinuation [23], but are not easily captured by techniques
based on peak picking.

There are ample opportunities to investigate the behavior
of audio seam carving further, by systematically varying all
aspects of time-frequency analysis (e.g., the window type),
by extending the repertoire of examples, and by consider-
ing other noteworthy perceptual effects. Horizontal (sine)
beam extraction can be combined with vertical (transient)
seam extraction, and the beams themselves may become
the object of analysis, comparison, warping, and morphing
in audio signal processing.



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

449

8. REFERENCES

[1] R. McAulay and T. Quatieri, “Speech analy-
sis/synthesis based on a sinusoidal representation,”
IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 34, no. 4, pp. 744–754, 1986.

[2] J. Bonada, X. Serra, X. Amatriain, and A. Loscos,
“Spectral processing,” in DAFX: Digital Audio Effects,
U. Zölzer, Ed. John Wiley & Sons, Ltd, 2011, pp.
393–445.

[3] J. O. Smith III, Spectral Audio Signal Processing.
W3K Publishing, 2011. [Online]. Available: https:
//ccrma.stanford.edu/∼jos/sasp/

[4] R. M. Warren, Auditory Perception: An Analysis and
Synthesis, 3rd ed. Cambridge University Press, 2008.

[5] S. Avidan and A. Shamir, “Seam carving for content-
aware image resizing,” in ACM Transactions on graph-
ics (TOG), vol. 26, no. 3. ACM, 2007, p. 10.

[6] J. M. Tarrat-Masso, “Adaptation of the seam carving
technique for improving audio time-scaling,” Master’s
thesis, Pompeu Fabra University, 2008.

[7] L. Wyse, “Audio spectrogram representations for
processing with convolutional neural networks,”
CoRR, vol. abs/1706.09559, 2017. [Online]. Available:
http://arxiv.org/abs/1706.09559

[8] S. Barnwal, R. Barnwal, R. Hegde, R. Singh, and
B. Raj, “Doppler based speed estimation of vehicles
using passive sensor,” in 2013 IEEE International Con-
ference on Multimedia and Expo Workshops (ICMEW).
IEEE, 2013, pp. 1–4.

[9] S. Barnwal, K. Sahni, R. Singh, and B. Raj, “Spec-
trographic seam patterns for discriminative word spot-
ting,” in 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2012, pp. 4725–4728.

[10] Q. Zhu, M. Chen, C. Wong, and M. Wu, “Adaptive
multi-trace carving based on dynamic programming,”
in 2018 52nd Asilomar Conference on Signals, Sys-
tems, and Computers, Oct 2018, pp. 1716–1720.

[11] G. Capizzi, “Identificazione ed inseguimento di com-
ponenti sinusoidali da matrici di analisi tempo-
frequenza di segnali audio,” Master’s thesis, Depart-
ment of Mathematics and Computer Science, Univer-
sity of Palermo, Italy, 2019.

[12] A. Shamir and S. Avidan, “Seam carving for media re-
targeting,” Communications of the ACM, vol. 52, no. 1,
pp. 77–85, 2009.

[13] M. R. Schroeder, “New method of measuring reverber-
ation time,” The Journal of the Acoustical Society of
America, vol. 37, pp. 409–412, 03 1965.

[14] J. Traer, M. Cusumano, and J. H. McDermott, “A per-
ceptually inspired generative model of rigid-body con-
tact sounds,” in Proc. International Conference on Dig-
ital Audio Effects, Birmingham, UK, 2019.

[15] D. B. Lloyd, N. Raghuvanshi, and N. K. Govindaraju,
“Sound synthesis for impact sounds in video games,”
in Symposium on Interactive 3D Graphics and
Games, ser. I3D ’11. New York, NY, USA:
ACM, 2011, pp. 55–62. [Online]. Available: http:
//doi.acm.org/10.1145/1944745.1944755

[16] J. Laroche, “The use of the matrix pencil method
for the spectrum analysis of musical signals,” The
Journal of the Acoustical Society of America, vol. 94,
no. 4, pp. 1958–1965, 1993. [Online]. Available:
https://doi.org/10.1121/1.407519

[17] P. Hedelin, “A tone oriented voice excited vocoder,” in
ICASSP’81. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, vol. 6. IEEE,
1981, pp. 205–208.

[18] L. Almeida and F. Silva, “Variable-frequency syn-
thesis: An improved harmonic coding scheme,” in
ICASSP’84. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, vol. 9. IEEE,
1984, pp. 437–440.

[19] J. O. Smith and X. Serra, “PARSHL: An analy-
sis/synthesis program for non-harmonic sounds based
on a sinusoidal representation,” in Proceedings of the
International Computer Music Conference, Urbana
Champaign, IL, 1987, pp. 290–297.

[20] S. Baldan, S. Delle Monache, and D. Rocchesso, “The
sound design toolkit,” SoftwareX, vol. 6, pp. 255–260,
2017.

[21] V. Ciocca and A. S. Bregman, “Perceived continuity
of gliding and steady-state tones through interrupting
noise,” Perception & Psychophysics, vol. 42, no. 5, pp.
476–484, 1987.

[22] Y. Tougas and A. S. Bregman, “Crossing of auditory
streams.” Journal of Experimental Psychology: Hu-
man Perception and Performance, vol. 11, no. 6, p.
788, 1985.

[23] A. S. Bregman, Auditory scene analysis: The percep-
tual organization of sound. Cambridge, MA: MIT
press, 1990.


