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Abstract
Engineering distributed self-adaptive systems is challenging due to multiple interact-
ing components, some of which monitor and possibly modify the behavior of managed
components that operate in highly dynamic settings. Formalizing such systems having a
decentralized adaptation control has been recognized as a hard task. In this article, we
introduce a formal framework based on Symmetric Nets (a well-established subclass of Col-
ored Petri nets) for modeling and analyzing distributed self-adaptive discrete-event systems.
Even though Petri Nets represent a sound and expressive formal model of concurrency and
distribution, they cannot specify in a natural way structural changes enacted by adaptation
procedures. We overcome this limitation by means of a two-layer modeling approach that
enables clear separation of concerns and allows multiple decentralized adaptation proce-
dures to be specified, validated, and verified against formal requirements. Validation and
verification techniques are supported by powerful off-the-shelf tools tailored to Symmetric
Nets. A self-healing manufacturing system case study is used to show applicability, advan-
tages, and shortcomings of the approach. In particular, complexity issues are thoroughly
discussed and mitigated by adopting complementary approaches based on interleaving
reduction and behavioral symmetries exploitation.

Keywords Self-adaptive systems · Self-healing systems ·
Distributed discrete-events systems · Petri nets

1 Introduction

Modern distributed discrete-event Systems (DESs) typically operate in dynamic environ-
ments and deal with frequently changing operational conditions. In particular, distributed
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components may become temporarily or permanently unavailable, can disappear and
appear, for instance due to faults and on-the-fly repairs. Self-adaptation – see de Lemos
et al. (2013) – is an effective approach to deal with the increasing complexity and
dynamism of these systems. Self-adaptation is often used as a means to achieve rapid
adjustment of both production capacity and functionality, in response to new execution
circumstances (operational contexts, environments and requirements), by reorganizing or
changing its components (e.g., machines of the production systems, mechanisms for indi-
vidual machines, sensors, controllers) directly in production. In this context there exists
more than ever the need for robustness, resiliency, dependability. As stated by Weyns et al.
(2013) and Arcaini et al. (2017), facing such a complexity in a distributed (decentralized)
setting has been recognized as a major challenge in the field of self-adaptation. For this
reason, formal methods providing the ability to reason on such a complexity are highly
demanded. In particular, formal models representing both the structure and the behavior of
self-adaptation and approaches to validate and verify them at design-time are of extreme
importance to engineer self-adaptive systems.

Petri Nets (PNs) are a sound and expressive formal model of concurrency and distri-
bution. However, both low-level and high-level PNs (even if Turing complete in some
extensions) cannot represent in a natural way the ability of modifying their behavior and/or
structure in response to their perception of the system itself as well as their surroundings
and their goals. Several attempts to face this critical issue gave rise to new PN exten-
sions, in which enhanced modeling power is not always accompanied by adequate analysis
techniques. A representative example in this category is the “nets within nets” paradigm,
introduced by Valk (2004). In this approach tokens represent themselves PNs. This ensures
more flexibility in modeling, but significantly reduces the applicability of traditional PN
analysis techniques.

To face this major challenge we propose a two-layer formal approach based on Sym-
metric Nets (SNs),1 introduced by Chiola et al. (1993). Our approach gives to designers the
ability to model distributed DESs in both their nominal and evolutionary behaviors, through
a clear separation of concerns. The key idea, introduced in this article, is to exploit a “spe-
cial” SN called emulator to encode, execute and change the behavior of any given P/T
system. The design of the managed and managing subsystems are clearly separated. The
modeler can specify the nominal behavior of the system and its own evolutionary behavior
by means of adaptation procedures (one foreach adaptation concern). An adaptation pro-
cedure makes use of a collection of APIs, acting as sensors and actuators on the managed
subsystem. Namely, they give the ability to read and modify the structure of the managed
subsystem in order to achieve specific adaptation goals. Our modeling framework2 allows
behavioral symmetries to be exploited in order to analyze the symbolic state space in a
efficient way. Furthermore, formal verification activities can take advantage of existing
off-the-shelf software tools, such as GREATSPN introduced by Baarir et al. (2009).

A preliminary introduction of this ongoing research activity has been presented by (Capra
and Camilli 2018). Here, we provide an extended presentation of the approach exemplifying
both specification and verification using a self-healing manufacturing system case study.
Self-healing (or self-repairing) refers to the ability of detecting faults/failures and recover-
ing autonomously by changing the current configuration of the system. In this article, we

1SNs were previously known with the name Well-formed Nets. The new name was assigned after the
formalism successfully underwent a standardization process.
2The framework and all the SN models presented in this article, including adaptation procedures and running
examples, are publicly available at https://github.com/SELab-unimi/sn-based-emulator.
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present: (i) a more accurate comparison with the state of the art; (ii) an improved defini-
tion and formal description of the framework; (iii) additional evaluation activities; (iv) and
a new case study, i.e., a self-healing manufacturing system that shows adaptation behavior
to achieve reconfigurability and fault tolerance. Specifically, the contribution of this article
can be summarized as follows.

– we define a SN-based modeling framework for self-adaptive distributed DESs having
decentralized adaptation control;

– we discuss the usage of symbolic structural analysis techniques to validate our modeling
framework;

– we describe the applicability of our approach using a self-healing manufacturing system
case study;

– we show how native SN analysis/verification techniques can be used to analyze systems
modeled by using our framework.

The remainder of this article is as follows. In Section 2, we recall background notions
of P/T nets and SNs. In Section 3, we present an example of self-healing manufacturing
system used as main case study. In Section 4, we introduce an informal overview on our
approach to model self-adaptive distributed systems using SNs. In Section 5, we formalize
the emulating framework. In Section 6, we describe validation activities conducted on of
the emulating framework. In Section 7, we describe how the modeler can specify adaptation
procedures and how to compose them to create the whole system. In Section 8, we discuss
complexity issues and how to tackle them. In Section 9, we describe formal verification of
requirements. In Section 10, we discuss related work. Finally, in Section 11 we draw our
conclusion and we outline future directions of our work.

2 Background

This section collects all the definitions used in the rest of the paper, and introduces the P/T
net and SN formalisms. The reader may refer to (Reisig 1985) and (Chiola et al. 1993) for
a detailed description of P/T nets and SN, respectively.

2.1 Multisets, Multiset-functions, and their operations

A multiset (or bag) over a domain D is a map b : D → N, where b(d) is the multiplicity of
d in b. The support b is {d ∈ D|b(d) > 0}: d is said an element of b (d ∈ b) if and only
if d ∈ b. A bag whose elements have multiplicity one is said set-type. A multiset b may be
expressed as a weighted formal sum of its elements, where weights represent multiplicity (if
equal to one it may be omitted). With some overloading, b may also denote the bag

∑
d∈b d .

The empty multiset, i.e., the multiset with an empty support, is denoted ∅D , or just ∅ if its
domain is implicit.3 The whole set of bags overD is denotedBag[D]. Let b1, b2 ∈ Bag[D].
The sum b1 + b2, the difference b1 − b2, and the intersection b1 ∩ b2 are bags in Bag[D]
defined, for any d ∈ D, as: b1 + b2(d) = b1(d) + b2(d); b1 − b2(d) = b1(d) − b2(d)

if b1(d) ≥ b2(d), 0 otherwise; b1 ∩ b2(d) = min(b1(d), b2(d)). Two bags b1, b2 are
said disjoint if b1 ∩ b2 = ∅. Associativity holds for +, ∩ (which may be treated as n-ary

3The same symbol denotes an empty set, letting the context to disambiguate.
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operators), but not −. Relational bag-operators apply component-wise, e.g., b1 < b2 if and
only if b1(d) < b2(d), ∀d ∈ D.

Let k ∈ N, the scalar product k · b1 is b′
1 ∈ Bag[D], s.t. b′

1(d) = k · b1(d), ∀d ∈ D.
Let bi ∈ Bag[Di], i : 1 . . . n. The Cartesian product b1 × b2 × . . . bn is the bag b′ ∈

Bag[D1 × D2 × . . . Dn] defined as:

b′(〈d1, d2, . . . , dn〉) = b1(d1) · b2(d2) · . . . bn(dn),∀d1 ∈ D1, . . . , dn ∈ Dn (1)

Bag-operators have intuitive functional extensions. Let f1, f2 : D → Bag[D′], and op

be a binary operator4: f1 op f2 : D → Bag[D′] is f1 op f2 (d) = f1(d) op f2(d),
∀d ∈ D. Analogously, f1 : D → 2D′

is f1(d) = f1(d). The support is a bridge between
bag- and set-functions. As for relational operators, f1 < f2 if and only if f1(d) < f2(d),
∀d ∈ D. The symbol ∅D,D′ , or ∅ if the arity is implicit, denotes the function D → ∅D′ ,
∀d ∈ D. Function equivalence is naturally set as f1 ≡ f2 if and only if f1(d) = f2(d),
∀d ∈ D. The notions of set-type and disjoint extend to bag-functions as well, considering
all the elements of function(s) domain(s).

Let fi : D → Bag[Di]. The scalar product k · fi is k · fi(d), ∀d ∈ D. The function
Cartesian product f1 × f2 × . . . fn : D → Bag[D1 × D2 × . . . Dn] is defined as:

f1 × f2 × . . . fn(d) = f1(d) × f2(d) × . . . fn(d),∀d ∈ D (2)

The notation 〈f1, f2, . . . , fn〉, called function-tuple, is used in place of f1×f2×. . . fn. Two
operators are peculiar to bag-functions. Let f : D → Bag[D′]. The transpose f T r : D′ →
Bag[D] is f T r (x)(y) = f (y)(x), ∀x ∈ D′, y ∈ D. The linear extension f ∗ : Bag[D] →
Bag[D′] is f ∗(b) = ∑

x∈b b(x) · f (x), ∀b ∈ Bag[D]. Function composition builds on
linear extension. Let h : Dprimeprime → Bag[D], then f ◦ h : Dprimeprime → Bag[D′] is
f ◦ h(d) = f ∗(h(d)), ∀d ∈ Dprimeprime. We use the same notation (f ) for a function and
its linear extension, implicitly referring to the latter when the argument is a bag.

Finally, let {fi} be a family of functions D → Bag[D′]. A linear combination F =∑
i λi · fi , λi ∈ Z, is a function D → Bag[D′] if and only if ∀d ∈ D, x ∈ D′: F(d)(x) =

(
∑

i λi · fi(d)(x)) ≥ 0. In that case, F is called well-defined.

2.2 Place/Transition (P/T) nets with inhibitor arcs

A P/T net enriched with inhibitor arcs is a 5-tuple (P, T , I, O, H), where:

– P , T are non-empty, finite sets such that P ∩ T = ∅
– I, O,H are functions P × T → N, i.e., {I,O,H } ⊂ Bag[P × T ]
– every element of P ∪ T occurs in I , O, or H .

The elements of P and T are called places and transitions, respectively. The former,
drawn as circles, represent system state-variables, whereas the latter, drawn as bars, rep-
resent state local changes. The overall (distributed) state of a P/T net, called marking, is
defined as a bag m ∈ Bag[P ]. The marking of p is m(p).

A P/T net is a kind of directed, bipartite multi-graph, with input, output, inhibitor edges
(the latter, drawn with an ending small circle), described by I , O, H , respectively. Let
f ∈ {I,O,H }: if f (p, t) = k, k > 0, then a corresponding weight-k arc connects p

to t . The assumption that there is no isolated node, i.e., a node that no edge is incident

4Operators are implicitly overloaded.
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to, is more than acceptable from the modeling point view and plays an important role in a
reconfigurable context.5

The behavior of a P/T net in a given marking is specified by the transition firing rule. A
transition t ∈ T is enabled in a marking m if and only if:

∀p ∈ P : I (p, t) ≤ m(p) ∧ (H(p, t) �= 0 ⇒ H(p, t) > m(p)). (3)

If t is enabled in m then it may fire, leading to marking m′, where:
∀p ∈ P : m′(p) = m(p) + O(p, t) − I (p, t). (4)

This is denoted m[t〉m′.
A pair (N,m), where N is a P/T net and m is a marking of N , is called P/T system.

The interleaving semantics of a P/T system (N,m0), where m0 represents the initial state,
is specified by the reachability graph (RG), an edge-labelled, directed multi-graph (V ,E)

whose nodes are markings. The RG is defined inductively: m0 ∈ V ; if m ∈ V and m[t〉m′,
m′ �= m, then m′ ∈ V and m

t−→ m′ ∈ E. The set V is called reachability set.

2.3 Symmetric nets

Symmetric Nets (SNs),6 introduced by Chiola et al. (1993), are a high-level Petri net stan-
dard7 formalism featuring a particular syntax which highlights the behavioral symmetries
of systems. SNs are a flavor of Colored Petri nets, introduced by Jensen (1997), that have
two different types of transitions, for observable (time-consuming, in stochastic SN) and
immediate (logical, non-observable) events. The latter are drawn as tiny bars and take pri-
ority over the former type. In this section, we formally define SNs using the net in Fig. 1 to
illustrate the base elements of the syntax. Figure 1 represents an excerpt of a simple broad-
cast communication protocol among nodes of a network. A node of the network (logically
partitioned in two sub-networks) broadcasts messages to the other nodes. Upon reception
of a data-message, a node broadcasts in turn an ack to the others. An ack is kept by the ini-
tial sender and discarded by the remaining nodes. A session successfully ends if the initial
sender receives ack replies by all the others. Messages sent between the sub-networks may
get lost but the excerpt here shown does not handle this event.

2.3.1 SNs and Color-annotations

A SN is a 9-tuple (P, T , C,D, g, I,O,H, π), where P and T are the finite, disjoint sets
of places and transitions. C = {Ci, i = 1 . . . , n}, n ∈ N

+, holds the color classes, which
define the SN color structure: they are finite, pair-wise disjoint sets, each representing (at
least two) system entities of a certain kind. A color class Ci may be either circularly ordered
or partitioned into static subclasses Ci,j . The static partitioning of classes determines the
symmetry of a SN model, indeed, all and only the colors of a subclass denote homogeneous
components with an equivalent behavior. For instance, the SN in Fig. 1 has two color classes
N, L, representing network nodes and (types of) messages, respectively, each partitioned in
two static subclasses. The elements of each subclass of N (representing a sub-network) are
symmetric, i.e., undistinguishable from one another. The two subclasses of L are singletons.
Each SN model is also provided with a neutral color class X = {•}.

5In an ordinary context, it might be further constrained to I,O edges
6Originally equipped with a stochastic semantics and known as Well-formed Nets.
7ISO/IEC documentation available at https://www.iso.org/standard/43538.html.
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Fig. 1 SN example of a simple broadcast protocol (annotations follow the syntax of the GREATSPN graphical
interface)

D maps each v ∈ P ∪ T to a color domain, usually defined as a Cartesian product of
color classes: D(v) = ∏

Ci∈C′ C
ei

i , where ∅ ⊂ C ′ ⊆ C, and ei ∈ N
+ is the number of

repetitions of Ci in the domain. There may also be nodes with a neutral domain D(v) = X.
A place color domainD(p) defines the possible colors (tuples of color elements fromD(p))
of the tokens which can stay in p. For instance, the color domain of the place EnRoute
is N2 × L. A transition color domain D(t) defines the possible firing instances of t : these
are tuples of color elements, and typed local variables (V ar(t)) are used to refer to such
elements in a tuple in D(t): for each Ci ∈ C ′, there are ei distinct type-Ci variables. Thus
V ar(t) implicitly defines D(t). A transition instance may be intuitively seen as a binding
of colors to transition’s variables. An instance of transition broadcast (the model’s only
observable transition), with D(broadcast) = N × L, e.g., is a color binding of variables
n and l. At the beginning, the place Sender holds a single token 〈s1, data〉, in that case the
only possible binding for broadcast is (n = s1, l = data). Formally, transition variables
are interpreted as projection functions (Section 2.3.3).

A transition t with V ar(t) = ∅, or a place p that holds undistinguishable tokens, has a
neutral domain. For simplicity, the arcs that a neutral SN node is incident to are inscribed
by N

+ values. Similarly, the marking of a neutral place p is expressed by a value in N.
g maps each t ∈ T to a guard g(t) : D(t) → {true, f alse}, formally defined in

Section 2.3.3. A guard restricts a transition’s instances. A transition instance b ∈ D(t), also
denoted (t, b), is said valid if and only if g(t)(b) = true. The color domain of t actually
refers to the restriction ofD(t) to valid instances of t (assumed non-empty). For simplicity,
we use the same symbol. When omitted, a transition guard is meant equal to the constant
true.

I[p, t],O[p, t],H[p, t], are families of functions,D(t) → Bag[D(p)], defined for each
pair (p, t) ∈ P × T , annotating input/output/inhibitor arcs respectively. The syntax of an
arc function is formally defined in Section 2.3.3.
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Finally, π is a map T → N, and π(t) is the priority of t . A transition t is said observable
if and only if π(t) = 0, otherwise t is said immediate. All the transitions in Fig. 1 but
broadcast are immediate and have the same priority.

2.3.2 Semantics

A SN marking m is a P -vector such m[p] ∈ Bag[D(p)]. We call m[p] the marking of p,
the elements ofm[p] tokens. The dynamics of a SN is defined by the firing rule. We assume
that missing arcs are annotated by empty bag-functions.

An instance (t, b) has concession in a marking m if and only if:

– ∀p ∈ P : I[p, t](b) ≤ m[p]
– ∀p ∈ P , x ∈ H[p, t](b): H[p, t](b)(x) > m[p](x)

An instance (t, b) is enabled inm if and only if (t, b) has concession inm and there is no
higher priority transition’s instance having concession in m. Assuming the aforementioned
(initial) marking for place Sender (i.e., a single token 〈s1, data〉), the instance (n = s1,
l = data) of broadcast is enabled. If enabled, (t, b) may fire, leading to a marking m′
formally defined as:

∀p : m′[p] = m[p] − I[p, t](b) + O[p, t](b)

m′ is said reachable from m through (t, b), and this is denoted m[t, b〉m′. The firing of
(broadcast, n = s1, l = data), according to the arc-function semantics illustrated
in the next section, withdraws the token 〈s1, data〉 from the input place Sender and
puts the (type-set) bag of tokens

∑
x∈N,x �=s1

1 · 〈s1, x, data〉 into output place EnRoute,
representing a broadcast data-message sent by node s1.

A marking m is said vanishing if there are some immediate transition instances enabled
in m, tangible otherwise. A SN model is a SN with a tangible initial marking m0.
Assuming that there are no infinite sequences of immediate transition instances, it is pos-
sible to define the tangible reachability graph (TRG) of a SN model, an edge-labelled,
directed multi-graph (V ,E) whose nodes are tangible markings: m0 ∈ V ; if m ∈ V

and there exists a (possibly empty) sequence {(ti , bi), π(ti) > 0}, i : 1 . . . n ∈ N, such
that m[t, b〉m1[t1, b1〉 . . .mn[tn, bn〉m′, with m′ tangible, m′ �= m, then m′ ∈ V and

m
t,b−→ m′ ∈ E.

2.3.3 Guards and Arc-functions Syntax

We use a simple convention for color-classes and variables. Color classes are denoted by
single capital letters in normal font, e.g., V. The i-th static subclass of V, if any, is denoted
by Vi . The set V ar(t), t ∈ T , includes all and only the variable symbols occurring in g(t)

or in any function I[p, t],O[p, t],H[p, t], ∀p ∈ P . A variable is denoted by a single lower-
case letter, which implicitly refers to the variable’s type, e.g., vi is a class-V variable. The
number of V-variables in V ar(t) coincides with the repetitions eV of V inD(t): a subscript
i ranging in 1 . . . eV is used to differentiate variables of the same class. It may be omitted if
eV = 1.

Projections The adopted convention outlines the transition variable semantics: vi ∈
V ar(t) is a function D(t) → Bag[V] that maps a color-tuple b to the i-th occurrence of
color V in b (formally, a singleton bag).
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Guards A transition guard g(t) : D(t) → {true, f alse} is defined in terms of basic
predicates and the usual logical connectives. Referring to a generic class V, a basic predicate
is any of the following:

– v1 = ( �=) v2 true (for a given b ∈ D(t)) when
v1(b) = ( �=) v2(b)

– vi ∈ (/∈) Vj true when v1(b) belongs (does not belong) to subclass Vj

– d(v1) = ( �=)d(v2) true when v1(b), v2(b) belong to the same (different) subclass(es).8

The 2nd and 3rd predicates are admitted if the class V is partitioned. If V is ordered, then
in the first type of predicate projections may be suffixed by ++, −−, denoting the mod|V|
successor/predecessor of selected color.

For example, the guard of transition lostMsg in Fig. 1, whereD(lostMsg) = N2×L,
indicates that only messages that are sent from a sub-network to the other may get lost.

Arc-function syntax SN arc-functions are built of class-functions. We consider any arc
linking a place p to a transition t and assume that color class V occurs in D(p).

A class-V function fi is a mapD(t) → Bag[V], which is defined as a linear combination
of (type-set) elementary functions:

fi =
∑

h

αh.eh, αh ∈ Z, (5)

where eh may be any of {vj ,Vq,V} (symbol All may be used in place of V):

– vj is a projection, possibly suffixed (if V is ordered) by ++, −−
– Vq (admitted if V is partitioned) and V (All) are constant functions mapping to∑

x∈Vq
1 · x and

∑
x∈V 1 · x, respectively.

The class-N functionAll−n appearing on the output arc from broadcast to EnRoute
(Fig. 1), e.g., maps a color pair 〈c1, c2〉 ∈ N × L = D(broadcast) to

∑
x∈N,x �=c1

1 · x,
which represents the whole set of network nodes but c1.

An arc-function F [p, t] : D(t) → Bag[D(p)] is in turn defined as a linear combination:

F [p, t] =
∑

k

λk .Tk[gk], λk ∈ Z, (6)

where Tk is a Cartesian product 〈f1, . . . , fn〉 of class-functions9 (Section 2.1, Eqs. 2) and
gk is an (optional) guard defined on D(t), with the same syntax as transition guards:
Tk[gk](b) = Tk(b) if gk(b) = true, otherwise Tk[gk](b) = ∅, ∀b ∈ D(t).

Scalars in Eqs. 5 and 6 must ensure that linear combinations are well-defined.
The arc-function O[EnRoute,broadcast] = 〈n, All − n, l〉 (Fig. 1), e.g., when eval-

uates on 〈c1, c2〉 ∈ N × L = D(broadcast) results in 〈c1,∑x∈N,x �=c1
1 · x, c2〉, a bag

Cartesian product which corresponds to all triplets with c1 as 1st element, a node other than
c1 as 2nd element, and c2 as 3rd element. That is, a type-c2 broadcast message sent by
node c1.

A worthwhile property of SN arc-functions is that any F [p, t] can be equivalently
expressed as

∑
i λiTi[gi],

where each term Ti[gi] is:

8This syntax is not currently supported by the GREATSPN GUI.
9The color-class of each fi has to match D(p).
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– type-set
– pairwise-disjoint
– constant-size, i.e, ∃k ∈ N

+ ∀b gi(b) = true ⇒ |Ti(b)| = k

For example, 2 · 〈All − v1, v2〉[v1 �= v2] + 1 · 〈v2, v2〉 : Vk → V2, k > 1 ≡ 2 ·
〈All − v1 − v2, v2〉[v1 �= v2] + 3 · 〈v2, v2〉[v1 �= v2] + 1 · 〈v2, v2〉[v1 = v2]. The size of
〈All − v1 − v2, v2〉[v1 �= v2] is |V| − 2, the other tuples are size-one.

Wemay therefore assume that arc functions are linear combinations of type-set, constant-
size (and, if needed, pair-wise disjoint) function-tuples.

3 The self-healingmanufacturing system case study

In this section, we introduce a self-healing (or self-repairing) manufacturing system exam-
ple to put into place the major concepts of our approach. Here adaptation procedures run
over a distributed infrastructure in order to reconfigure the usage of the available resources
depending on the current condition of the system itself and the environment. To achieve
this goal, the system defines primitive actions to be applied in production, such as connec-
tion/inhibition of the available/faulty production lines and migration of the raw products
among available machines of the production system.

In our running example, we consider a Manufacturing System (MS) composed of two
production lines, that refine a number of raw pieces in order to compose the final product.
Typically, the reconfiguration process consists in deciding whether to inhibit faulty com-
ponents and/or migrate raw products towards available resources of the system, depending
on a set of metrics (either simple or derived). For the sake of simplicity, we confine our
example to two metrics: the status of the available production lines and the workload in
terms of assigned raw products. The value associated to these metrics will be used to plan
and execute the adaptation. In particular, the system must be endowed with the ability of
recognizing the status of the production lines and change accordingly the current availabil-
ity of resources and the current workload. As described by Dicesare et al. (1993), Meng
(2010), and Capra (2016), this scenario is very common in smart MS, where reorganizing
or changing components must be taken into account in the system design in order to achieve
robustness, flexibility and resiliency in the production environment.

Symmetrical fault schema Fig. 2 shows a P/T net modeling the MS with a symmetrical
fault schema (i.e., SMS). Two production lines are represented by the subnets { pl1, tl1,
pw1 } and { pl2, tl2, pw2 }, respectively. The two lines refine raw pieces of the same type,
represented by tokens inside the two corresponding subnets. Pairs of refined pieces are taken
from both lines, then assembled to get the final product (represented by the firing of ta1,
i.e., the assembler component). The loader component (transition tlo1) initializes
the whole process by picking up two raw pieces a time from the storage component
(place pin1) initially holding N pieces, and putting them onto the lines. After the expected
number of final items is obtained, the system starts again (transition trs1). The model
contains also the specification of a faulty behavior. In fact, a product line is periodically
subject to failures (represented by tfa1 and tfa2). Faults can occur and block the lines.
Faults are modeled by means of tokens inside the place pb1 (i.e., faults in the first line) or
inside pb2 (i.e., faults in the second line). We here assume that the probability of having
failures on both the lines at the same time is negligible.
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Fig. 2 P/T net modeling the nominal behavior of the SMS

For this reason, the transitions tfa1 and tfa2 (representing the occurrence of a failure
in the first and second production line, respectively) are in structural conflict. This setting
can be easily generalized to the case where failures may arbitrarily occur at any time on
any production line. Nevertheless, this choice simplifies the description of the adaptation
procedures reported in the next sections.

Asymmetrical fault schema. The Asymmetrical version of the previous model (i.e., AMS)
can be obtained by removing either the transition tfa1 or tfa2. In this case, a single
product line is subject to failures. As the previous model, the occurrence of a failure causes
the line to be blocked.

Indeed, blocked lines hinder the liveness of the whole production process. Thus, a com-
mon adaptation scenario for both the SMS and the AMS is the reconfiguration of the system
to handle occurrences of faults. In fact, the production should continue without shutting
down the system using the available resources (i.e., the remaining production lines). The
faulty lines must be inhibited or detached from the system, and the behavior of both the
loader and the assembler must be changed accordingly. Namely, the loader must
put two raw pieces a time on the available line, and the assembler must take pairs of
refined pieces from the working line. As soon as the failing component is repaired, the
system should go back to its nominal configuration.

Although P/T nets represent an expressive model of concurrency and distribution, the
adaptation scenario reported above (involving structural changes of the model) cannot be
specified in a natural way. In the next section, we describe how our modeling framework
can be used to overcome this limitation by introducing the self-adaptation process with clear
separation of concerns.

4 Preview of the approach

According to de Lemos et al. (2013), we adopt the general terms managed (or base-level)
andmanaging (or reflective) subsystems to denote the two main parts of an adaptable/evolvable
system.
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The environment refers to the external world, such as physical and/or software com-
ponents, in which the system runs/interacts, and where the effects of the system (in its
nominal and adapted behaviors) will be observed. The managed subsystem provides sup-
port for monitoring and executing adaptations controlled by the managing subsystem. This
latter component contains the adaptation logic that deals with one or more concerns. In our
framework, the adaptation logic is viewed as a set of adaptation procedures realizing mul-
tiple (concurrent) feedback control loops, as introduced by Brun et al. (2009). We assume
the target system (both managed and managing components) is distributed and we assume
decentralization of the control decisions.

In particular, we consider decentralization at the level of the adaptation procedures, as
introduced by de Lemos et al. (2013). Figure 3 shows an abstract overview of our modeling
framework. In this section we introduce the rationale of the major components that we
further detail in Section 5.

The base-level contains the definition of the managed subsystem as a P/T system. It
describes the system’s nominal behavior and its interaction with the environment. For
instance, the SMS model in Fig. 2 specifies the nominal behavior of our case study. Such a
model represents the base-level layer of a self-adaptive manufacturing system.

The base-level is then endowed with self-adaptation capability.
These additional features are specified in the high-level layer which implements the

system’s adaptation logics. In our modeling framework, the components inspecting and
possibly modifying the base-level are formalized as SN models. The structure of the
higher-level is shown in Fig. 3. The major components are as follows:

– emulator;
– net-interface;
– atomic transformation rules;
– evolutionary API;

Managed subsystem

Emulator

Evolutionary
API

Transformation
rules

P1

Managing subsystem

Pn...

Adaptation procedures

Base-level layer (P/T net models)

High-level layer (SN models)

monitor execute/adapt

Net
interface

User-defined componentsPre-defined components

Fig. 3 Preview of the modeling framework

Discrete Event Dynamic Systems (2021) 31:609–657 619



– managing subsystem as a number of adaptation procedures.

The emulator is a built-in SN model provided by our framework. The role of the emu-
lator is to encode a given P/T net and emulate its dynamics. The target base-level (a P/T
system) is encoded as a marking of the emulator, so that it can be manipulated by transitions
linked to the emulator net through a well-defined interface. The base-level manipulation
may cause base-level’s structure/state be consistently changed, and may be concurrent with
emulation. The modeler can specify and validate atomic transformation rules to be applied
to the encoded P/T net. Transitions are provided through SN models. A symbolic struc-
tural calculus for SN is used to (automatically) check the soundness of transformation rules,
and safely link them (through arc functions) to the rest of the model. The evolutionary
API provides a basic (yet complete) collection of pre-defined primitive transformations to
perform introspection/intercession on the base-level. For instance, the API can provide the
current configuration of the encoded system, add/remove P/T nodes and edges, and change
its marking. Each primitive is defined by a SN subnet that modifies the encoded net consis-
tently and atomically. The net-interface plays a crucial role, providing an interface between
user-defined transformations/API primitives and the emulator. It manages, in particular, the
consistent update of essential data-structures (SN places) which are used in the emulation
algorithm to improve efficiency.

Themanaging subsystem contains a collection of adaptation procedures, specified as dis-
joint SNs. Each procedure manages an adaptation concern, and implements a feedback loop
monitoring the base-level subsystem. In our selected case study, the following adaptation
concerns are treated:

(i) fault tolerance – continue producing in presence of a faulty line, which is temporarily
put off-line, without shutting down the system;

(ii) load balancing – bring raw pieces to all the available production lines, to optimize
resource usage.

Adaptation procedures are specified independently, and are activated in specific con-
ditions evaluated on the base-level encoding. Procedures are concurrent, also with the
base-level dynamics, and operate different adaptation plans. In this sense, we do not assume
the existence of a centralized controller. The modeling framework guarantees a theoretically
consistent evolution of the system, whereas logical correctness is formally checked by using
consolidated analysis techniques for SNs.

Procedures may use predefined, primitive API operations representing a base set of sen-
sors and actuators. In addition, they may also integrate user-defined transformation rules,
that enhance model flexibility. For instance, the procedure (i) fault tolerance, directly
accesses the emulator’s evolutionary interface (a set of SN places encoding the base-level)
to recognize the presence of a token either in pb1 or pb2 (a failure occurrence). When a
failure occurs, it carries out a number of changes to the base-level by using write API prim-
itives. For instance, residual raw pieces on the faulty line are moved to the working one.
Then, the loader and assembler components are adapted to ensure system operation even in
presence of a failure.

Our modeling framework also allows temporal aspects to be specified. In this case, the
modeler uses the native stochastic extension of SNs (i.e., SSNs) to enrich the system spec-
ification. Namely, transitions representing observable events can be associated with rates
characterizing exponential firing delays.
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5 The emulation framework

The emulator reproduces the interleaving semantics of a P/T system encoded as a SN col-
ored marking. In this section, we first introduce the notion of net encoding in Section 5.1,
and then we formally describe the behavior and the structural properties of the emulator
in Section 5.2. We introduce the notion of user-defined transformation rules in Section 5.3
and we describe how to link them to the emulator through the net-interface in Section 5.4.
We also describe the set of pre-defined primitives that compose the evolutionary API in
Section 5.5.

5.1 P/T nets encoding

As anticipated, our approach is based on encoding a P/T net as the marking of specific places
of the emulator SN. These places compose the evolutionary interface, which is defined as
follows:

EI = {IN,H,O I,I O,MARK} (7)

Intuitively, the EI is suitably linked to both the emulator model (that cause the encoded
P/T to be executed) and additional SNs implementing net-transformation rules (comparable
to the rules of graph transformation systems).

The emulator’s color structure builds on two color-classes P, T, holding descriptors for
the nodes of a P/T net, and on color domain Arc = P × T, whose color-tuples describe
the edges of a P/T net. For the sake of simplicity, we will use the same symbols for colors
and corresponding P/T nodes, letting the context disambiguate their role. We assume that
classes P and T are either circularly ordered or partitioned for modeling reasons, as detailed
in the following.

Let (N,m) = (P, T , I, O, H, m) be a P/T system. The SN places IN, H, O I, I O
encode the graph structure N , whereas place MARK encodes m. We assume |P | ≤ |P|,
|T | ≤ |T| or, according to the adopted convention, P ⊆ P, T ⊆ T.

Definition 1 (encoding of (N,m)) Let (N,m) = (P, T , I, O, H, m) be a P/T system. An
SN marking m is an encoding of (N,m) if and only if:

m[IN]=I m[H]=H m[O I]=O − I m[I O]=I − O m[MARK]=m.

The encoding mechanism allows the firing of P/T transitions to be emulated efficiently.
The explicit representation of bag differences I − O and O − I reduces the complexity
of the computation of transition firing effects. In the following, we use the notation mN to
indicate a SN marking which encodes a given P/T net.

The other way around, the conditions ensuring that a SN marking encodes a P/T system
are formally expressed by:

Definition 2 (P/T-encoding marking) m is a P/T encoding if and only if

1. m[O I] + m[IN] + m[H] �= ∅
2. m[I O] ≤ m[IN] ∧ m[O I] ∩ m[I O] = ∅
3. m[MARK] ⊆ p1 ◦ (m[IN] + m[O I] + m[H])

The 1st condition is related to non-emptiness of a P/T net. The 2nd condition to the
meaning of bag differences I − O and O − I , and to the fact that output edges of a P/T net
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are implicitly represented. The third condition ensures the absence of isolated places: p1 is
the projection P × T → P.

The absence of isolated nodes is relevant in a context where the structure/state of the
managed subsystem may change due to adaptation procedures. In this setting, spurious
transformations may lead a system to an inconsistent state. The implicit representation of
P/T nodes by means of edges avoids any trickiness due to possible dangling edges, as it
happens in graph transformation approaches.

The P/T net corresponding to a graph-encoding m is defined as follows.

Definition 3 (encoded P/T system) Let m be a P/T encoding (Def. 2). The encoded P/T
system is (P, T , I, O, H, m), where P , T are implicitly defined by I , O, H and

I = m[IN] H = m[H] O = m[O I] + m[IN] − m[I O] m = m[MARK]

Property 1 Denoting with m(N,m) the encoding of a P/T system and withN (m) the P/T
system encoded by a P/T encodingm, it holdsN (m(N,m)) = (N,m).

As an example, the encoding of the AMS model introduced in Section 3 is as follows.

m[IN] = 〈pnf1,tfa1〉 + 〈pnf1,tfa2〉 + 2 · 〈pin1,tlo1〉 + 〈pl1,tli1〉
+〈pl2,tli2〉 + 〈pw1,ta1x〉 + 〈pw2,ta1〉 + N/2 · 〈pa1,trs1〉

m[H] = 〈pb1,tli1〉 + 〈pb2,tli2〉
m[O I] = 〈pl1,tlo1〉 + 〈pl21,tlo1〉 + 〈pw1,tli1〉 + 〈pw2,tli2〉 + 〈pa1,ta1〉

+ N · 〈pin1,trs1〉 + 〈pb1,tfa1〉 + 〈pb2,tfa2〉
m[IO ] = m[IN]

m[MARK] = N · pin1 + pnf1

5.2 The emulator

For the sake of readability, we introduce the emulator component through the pseudocode
in Algorithm 1. The complete SN specification is available in Appendix A.

The rationale of the main operations performed by the emulator can be summarized
as follows. A reachable tangible marking of the SN matches a reachable marking of the
encoded P/T net (N,m), an enabled instance of the only observable transition PT fire
with D(PT fire) = T, matches an enabled P/T transition. When a firing occurs, an
instance (PT fire, t = tk) triggers a sequence σ of immediate transition instances emu-
lating the firing of tk , in accordance with the atomic semantics of Petri nets. The main steps
executed in the sequence σ are denoted by steps i, ii, and iii in the pseudocode (and the SN
model in Appendix A). The description of these steps follows.

i This step is triggered by a token in neutral place beginTestEnab. All and only P/T
transitions in the place checkList are marked as “to be checked”. These transitions
are tested for enabling, by moving tokens from checkList to toTest and by con-
sidering first input places then inhibitor places (once a time). At the end of this process
the place checkList is emptied, and enabList is filled up. The step i ends by
firing the transition endTestEnab.
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ii This step starts with the firing of a color-instance of transition PT fire. The effect
is to non-deterministically chose a P/T transition t (according to the semantics of P/T
nets) from place enabList. Thus, the marking of place MARK is modified, according
to the firing rule of P/T systems. Namely, for each element in (I − O)(p, t), m(p) is
decremented and for each element in (O − I )(p, t), m(p) is incremented. This step is
triggered by a token in neutral place beginFiring.

iii This step updates the marking of two places holding the transitions that were enabled
before the firing of t (place enabList) and those whose enabling must be checked
upon it (place checkList), respectively, by taking account of the (asymmetric) Struc-
tural Conflict (SC) and Structural Causal Connection (SCC) relations between P/T
transitions, formalized at lines 24 and 30 of Algorithm 1, respectively: t SC t2 if and
only if t may disable t2 in a marking, whereas t SCC t2 if and only if t may enable t2.
The use of these two auxiliary places may greatly enhance the efficiency of the whole
emulation process.
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The behavior of the emulator SN which is mechanically translated from Algorithm 1 is
formalized as follows.

Property 2 Let (N,m) be a P/T system, E(m) the set of transitions enabled in m andm an
emulator’s tangible marking encoding (N,m) (Definition 1) such that:

1. m[enabList] = ∑
tr∈E(m) 1 · tr ,

m[toTest] = nil,10 m[beginFiring] = 1
2. m[p] = ∅ (0), for every other place p

Thenm
PT fire,trk−→ m′, for any trk ∈ T, if and only if m[trk〉m′, wherem′ is the tangible

marking encoding (N,m′) such thatm′[enabList] = ∑
tr∈E(m′) 1·tr andm′[p] = m[p],

for any other place p.

As a direct corollary of Property 2, we have:

10nil represents a kind of default class-T color.
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Corollary 1 The tangible reachability graph of the emulator whose initial marking m0
encodes a P/T system (N,m0) and matches conditions 1,2 of Property 2 is isomorphic to
the reachability graph of (N,m0).11

The emulation process must coherently resume after any structural change to the encoded
system. Property 3 defines a state (vanishing marking) from which the emulation of a
P/T system may coherently restart. The rationale is that from this state, assuming that all
P/T transitions potentially disabled by a structural change were moved from enabList
to checkList then all those potentially enabled (not in enabList) were added to
checkList, the emulator eventually reaches a tangible marking that satisfies Property 2.
The net-interface component of the framework (Section 5.4) transparently manages all that.

Property 3 Let (N,m) be a P/T system, m be an emulator vanishing marking encoding
(N,m) (Definition 1) such that:

– m[beginTestEnab] = 1, m[toTest] = trj , for any trj ∈ T
– m[checkList] is type-set
– for every other place p, p �= enabList: m[p] = ∅

Then, from m we eventually reach through any vanishing path the tangible marking m′
such that:

– m′[beginFiring] = 1, m′[toTest] = nil, m′[checkList] = ∅
– m′[enabList] = m[enabList] + (

∑
tr∈E(m) 1 · tr) ∩ m[checkList]

– for every other place p,m′[p] = m[p].

5.3 Transformation rules

We first introduce a general transformation rule of the encoded system, as a user-defined
SN transition that is directly connected to the emulator’s interface EI (7). Then we present
an API of base transformation primitives. Transformation rules/primitives are transparently
linked to the emulator through a net interface.

We follow a structural approach, by defining parametric (i.e., not depending on the
encoded system) structural conditions ensuring that transformations are consistent, accord-
ing to Def. 4, and the emulation of the encoded system is correct also in the face of changes
to its state/topology. All these conditions (stated in a series of lemmas) can be automatically
checked using the SN calculus introduced by Capra et al. (2005, 2015) and implemented
on the tool SNEXPRESSION.12 In such a calculus, structural conditions are formalized
as symbolic expressions that are directly derived from SN arc-functions and manipulated
algebraically.

Definition 4 (Valid P/T transformation) A SN transition t linked to the emulator’s evolu-
tionary interface EI is a valid P/T transformation if and only if, for any P/T encoding m,
∀b ∈ D(t):m[t, b〉m′ ⇒ m′ is a P/T encoding.

11E(m0) can be automatically computed, instead of being pre-calculated, by setting a transient initial (tangi-
ble) marking with a token in neutral place startUp, 〈All〉 in checkList, and with places beginFiring
and enabList empty. From such a marking we eventually reachm0
12Publicly available at: www.di.unito.it/∼depierro/SNex.
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The SN calculus provides support for the computation of the following structural proper-
ties: conflict, causal connection, mutual exclusion, and some kinds of coloured semi-flows.
It builds on the ability to solve symbolic formulae that are defined in terms of a language
L and a base set of functional operators, under which L is closed: difference, intersection,
composition, transpose, and bag support. The terms of L are SN arc functions possibly
prefixed by guards (called filters) on function co-domains.

Let f : A → Bag[B], then [g]f : A → Bag[B] is:
[g]f (a)(x) = f (a)(x), if g(x) = true, otherwise [g]f (a)(x) = 0,∀a ∈ A, x ∈ B (8)

A helpful operator that can be derived from the available ones is the function restriction.
Let F : A → Bag[B], G : A → 2B , then F[G] : A → Bag[B] is defined as:

F[G](a)(b) = F(a)(b) if b ∈ G(a), otherwise F[G](a)(b) = 0,∀a, b (9)

The SN calculus operates as a rewriting system. Any expression (formula) e is reduced
to a normal form e′ ∈ L, where tuples may contain intersections of class-functions and be
prefixed by filters. A term’s normalization is denoted e → e′.

As described by Capra et al. (2015), equivalence between expressions can be syntacti-
cally proven, thanks to the following base property of the calculus:

e ≡ ∅ ⇔ e → ∅ (10)

The ability to syntactically check equivalences is exploited in relational operators. Let e,
e′ be bag-expressions of the same arity:

e ≤ e′ ⇔ e − e′ ≡ ∅ e ⊆ e′ ⇔ e − e′ ≡ ∅ (11)

You can also syntactically verify whether an expression never evaluates to empty, i.e.:

∀d ∈ D(e) e(d) �= ∅ denoted as G e �≡ ∅ (12)

If e is suffixed by a guard g, then Eq. 12 only applies to those d satisfying g.
Two basic place invariant properties used to verify the validity of P/T transformations

follow.

Definition 5 (Mutually-exclusive places) Let p, p′ be any two different SN places such that
D(p) = D(p′). p, p′ are mutually-exclusive (p ME p′) if and only if m[p] ∩ m[p′] = ∅,
for every reachable marking m.

Definition 6 (Color-safe place) p ∈ P is color-safe if and only if m[p] is type-set, for
every reachable marking m.

In the sequel, we assume that a (non-trivial) transition guard g(t) is implicitly appended
to each adjacent arc-function. That is, F(p, t) becomes F(p, t)[g(t)].

A mostly structural characterization of SN transitions preserving place mutual-exclusion
is formalized as follows.

Some auxiliary formulae defined/described in Table 1 are used. AllD,D′ denotes the
function-tuple D → Bag[D′] uniquely composed of All class-functions.

Lemma 1 (P mutual-exclusion preservation) Let p, p′ be any two different SN places such
that D(p) = D(p′), t ∈ T . If m[p] ∩ m[p′] = ∅ and, given A, B, C defined below,
A ∧ (B ∨ C) ≡ true and the other way around, by swapping p and p′, then:

m[t, b〉m′ ⇒ m′[p] ∩ m′[p′] = ∅,∀b ∈ D(t).
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Table 1 Auxiliary symbolic expressions

Symbol Definition Description

D(t) → Bag[D(p)]
W+[p, t] O[p,t]−I[p,t] Multiset of colors actually put in place

p by an instance of t .

W−[p, t] I[p,t]−O[p,t] Multiset of colors actually removed
from place p by an instance of t .

D(t) → 2PEIN ={IN,H,O I}
AbI (t) p1 ◦ ∑

p∈EIN O[p, t] Set of P -colors representing P/T places
that edges (re)inserted by an instance of
t are incident to.

RbI (t) p1 ◦ ∑
p∈EIN I[p, t]−AbI (t) Set of P -colors representing P/T places

that only edges potentially erased by an
instance of t are incident to.

A : O[p, t] ∩ O[p′, t] ≡ ∅
B : W+[p, t] ⊆ H[p′, t] ∧ H[p′, t][W+[p,t]] − I[p′, t] ≤ AllD(t),D(p′)

C : W + p, t ⊆ Ip′t ∧ m[p′] is type-set

Proof The conditionA∧(B∨C)means that, for any instance b ∈ D(t), every color x which
is put in place p (i.e., x ∈ O[p, t](b)) is actually erased from p′, because A) x /∈ p’t (b)

and: either B) there is an upper-bound for the occurrences of x in p′ due to the inhibitor
arc-function, matching the occurrences of x withdrawn from p′ (indeed, H[p′, t](b)(x) −
I[p′, t](b)(x) ≤ 1; note that if I[p′, t] is null, then H[p′, t] is type-set); or C) x occurs at
most once in p′ and belongs to I[p′, t](b) (thus it is withdrawn from p′, if t is enabled).

Condition C of Lemma 1 is not entirely structural, however, it extends the applicability
of the lemma. We write p SMEt p′ to mean that a transition t meets conditions A and B of
Lemma 1, i.e., t preserves mutex of places p, p′ structurally.

Lemma 2 (Structural characterization of a valid P/T Transformation) Let EIN =
{IN,H,O I} ⊂ EI, t ∈ T .

If the conditions C1-C5 below are satisfied, then t is a valid P/T transformation (Def. 4).

C1 ∀p ∈ EIN I[p, t] ≡ ∅ ∨ ∃p ∈ EIN G O[p, t] �≡ ∅
C2 O I SMEt I O
C3 W−[I O, t] ≥ W−[IN, t] ∧ W+[I O, t] ≤ W+[IN, t]
C4 O[MARK, t] − I[MARK, t] ⊆ AbI (t)

C5 RbI (t) ∩ O[MARK, t] ≡ ∅ ∧ RbI (t) ⊆ H[MARK, t] ∧ H[MARK, t][RbI (t)] −
I[MARK, t] ≤ 〈All〉

Before the formal proof, let us give an intuitive interpretation for each of the conditions
above. We assume to start from a P/T encoding (Def. 2) and to fire any enabled instance of
t . C1 preserves the non-emptiness of the encoding. C2 preserves mutex of places O I and
I O. As for C3, it preserves the inclusion relationship between the marking of places I O
and IN. Finally, C4, C5 retain the absence of isolated nodes. In particular, C4 considers the
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insertion of new P/T places in the current marking whereas C5 deals with the removal of
P/T edges (the two operations that may affect that requirement).

Proof Letm be a P/T encoding, b ∈ D(t), andm[t, b〉m′. The condition C1 means that no
color-tuple (edge) is either removed or added by (t, b).

The conditionC2 ensures thatm′[O I]∩m′[I O] = ∅. The conditionC3 means that each
color-tuple (edge) added to place I O by (t, b) is also added to place IN. In the same way,
each color-tuple (edge) withdrawn from place IN is also removed from I O, thus preserving
the relation m′[I O] ≤ m′[IN].

Condition C4 can be interpreted as follows: if the instance (t, b) inserts a potentially new
P-color x in place MARK, then there is some edge (of any type) contextually (re)inserted by
(t, b), that x is incident to. However, C4 itself is not enough to ensure absence of isolated
nodes. In fact, C5 considers removal of color-edges by (t, b). It is a conjunctive form, built
of three clauses. The set RbI (t)(b) holds P-colors representing places that only edges (of
any kind) potentially erased by (t, b) are incident to. The first clause of C5 ensures that no
such color may be added to place MARK. The second clause means that there is an upper
bound for each color x ∈ RbI (t)(b) in SN place MARK, due to a inhibitor arc function
(otherwise instance b wouldn’t be enabled). The third clause ensures that, for any x ∈
RbI (t)(b), there cannot be more instances of x in MARK than those which are withdrawn by
b (i.e., the upper-bound for color x coincides with In MARKt (b)(x), the number of instances
of x withdrawn by b). As a consequence, also the last point of Def. 2 is met.

Figure 4 shows an example of user-defined transition that may verify Lemma 2, i.e.,
represent a valid P/T transformation. Conditions C1-C4 are satisfied, indeed. The condi-
tion C5 is satisfied if the parameter k on HMARKt is not greater than 3 (if k < 3 t is
not enabled).

Fig. 4 A transition possibly verifying Lemma 2
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5.4 The net-interface

A crucial aspect of the emulation approach is played by the consistent management of the
places enabList and checkList, which are efficiently updated by exploiting the struc-
tural properties of the encoded P/T system. When connecting a transformation rule to the
emulator, the semantics of these places must be preserved. In general, this is not at all easy.
Therefore, we introduce a net-interface that links together the framework’s components by
transparently handling these aspects.

Formally, places enabList and checkList must be mutually-exclusive and color-
safe to allow the emulation of a P/T system to be carried out consistently. A mostly structural
characterization of place color-safeness is given by the following.

Lemma 3 (Characterization of place color-safeness) Let t ∈ T , p ∈ P .
If m[p] is type-set and one of the two conditions below is satisfied then: m[t, b〉m′ ⇒

m′[p] is type-set, ∀b ∈ D(t).

C1 H[p, t] ≤ AllD(t),D(p) ∧ W+[p, t] ≤ H[p, t]
C2 W+[p, t] ≤ AllD(t),D(p) ∧ ∃p′ �= p : m[p] ∩ m[p′] = ∅ ∧ W+[p, t] ≤ I[p′, t]

Proof Letm[t, b〉m′. Based on C1, H[p, t](b) is set-type and, because of the enabling rule,
H[p, t](b) ∩ m[p] = ∅; since H[p, t](b) includes all the colors which are put in place p

by the firing of (t, b), also m′[p] is type-set. Based on C2, W + [p, t](b), which holds the
colors put in p by (t, b), is type-set. Due on the hypothesis on place p′, every color of this
set is present in p′, and not in p. Thus,m[p′] is type-set.

Color-safeness and mutual-exclusion of places enabList and checkList can be eas-
ily verified on the emulator SN using Lemma 1 and 3. These two invariants are preserved
by linking a valid P/T transformation rule t to places enabList and checkList through
the net-interface, which coherently updates their marking based on the annotations of t . That
may require a preliminary rewriting of functions In Ht , O[H, t] in disjoint terms that syntac-
tically identify the instances of t that decrease (increase) the multiplicity of inhibitor arcs of
an encoded P/T net and those that remove (add) inhibitor arcs. Indeed, decreasing (increas-
ing) the weight of an inhibitor arc provides the opposite effect on the enabling of the linked
transition of removing (adding) one such a arc. Such a rewriting is always possible and can
be easily automated (we omit the boring technical details). Its semantics is formalized by
Def. 7, where subscripts d, r and i, a used for the terms of In Ht and O[H, t], respectively,
denote the different effects described above (i.e., decrease, remove, increase, add).

Definition 7 (Well-linked transformation rule) Let t be a valid P/T transformation. We say
that t is well-linked (to the emulator) if and only if:

1. I[H, t] = I[H, t]r + I[H, t]d where
I[H, t]r ∩ O[H, t] ≡ ∅ ∧ H[H, t][I[H,t]r ] − I[H, t]r ≤ AllD(t),D(H) ∧ In Htd ⊆ O[H, t]

2. O[H, t] = O[H, t]a + O[H, t]i where
H[H, t][O[H,t]a ] ≡ O[H, t]a ∩ AllD(t),D(H) ∧ O[H, t]i ⊆ In Ht

For any enabled instance (t, b), the term I[H, t]r results in a bag of colors that are all
removed (erased) from place H (∀x H[H, t](b)(x) − I[H, t]r (b)(x) ≤ 1). The term In Htd ,
instead, results in a bag of colors that are all left in H, even with lesser multiplicity. The term
O[H, t]a results in a bag of colors none of which present in place H because the restriction
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of HHt on O[H, t]a is type-set. The term O[H, t]i , instead, results in a bag whose elements
are all already present in H.

For example, the transition t in Fig. 4 is trivially well-linked. Indeed, any color instance
of t adds a new weight-2 inhibitor arc to the encoded P/T net, due to the type-set function
HHt = 〈p1, All〉. Therefore, O[H, t] = O[H, t]a (O[H, t]i = ∅). In general, matching
Definition 7 may require splitting a transition in a number of mutually-exclusive replicas,
as further detailed later on this section. As an example, if in Fig. 4 HHt had been empty
then t should have been split in t ′ and t ′′ where O[H, t ′] = 2 · 〈p1, t3〉, H[H, t ′] = 〈p1, t3〉,
and O[H, t ′′] = 3 · 〈p1, t3〉, I[H, t ′′] = 〈p1, t3〉 (and all the other arc-functions unchanged)
to distinguish between the addition of an inhibitor arc and the increase of the weight of an
existing one.

Assuming that a valid transformation t matches Def. 7, we can compute the parametric
sets of P/T transitions potentially-enabled and potentially-disabled by any instance of t ,
whose expressions are described in Table 2 (where t1 is a projection). The parametric color-
set PD(t) represents the P/T transitions for which there are: i) input edges newly added or
with an increased weight; or ii) newly added inhibitor edges; or iii) inhibitor edges with a
decreased weight. The parametric color-set PE(t) represents, in some sense, the opposite.
Note that the sets PE(t) and PD(t) may not be disjoint.

Moreover, the expressions W+[MARK, t], W−[MARK, t] represent the parametric sets of
P/T places whose marking is increased or decreased, respectively, by an instance of t . By
definition, it holds: W+[MARK, t] ∩ W−[MARK, t] ≡ ∅.

A P/T transformation t is mechanically linked to the emulator through the net-interface
modules shown in Figs. 5 and 6. The link is formally defined by the following output arc-
functions, where the function support implicitly denotes the corresponding type-set bag
expression (we use the set-notation for readability):

O[potDisab, t] = PD(t)O[potEnab, t] = PE(t)

O[markInc, t] = W+[MARK, t]O[markDec, t] = W−[MARK, t]
O[beginUpdate, t] = 1

Figure 5 shows the module which manages the update of places enabList and
checkList due to a firing of t , by preserving their invariant properties. Figure 6 shows
the module performing a preliminary step, which consists of computing all P/T transitions
which may be indirectly enabled/disabled due to a P/T transformation occurrence, because
of the increase/decrease of the marking of some input/inhibitor place. The two modules are
composed through a simple superposition of SN places sharing the name.

Table 2 Parametric sets used to safely update enabList and checkList

Symbol Definition Description

D(t) → 2T

PD(t) t1 ◦ (W+[IN, t] + O[H, t]a + (I[H, t]d −O[H, t])) T-colors representing P/T transitions
potentially disabled by an instance of t.

PE(t) t1 ◦ (W−[IN, t] + I[H, t]r + (O[H, t]i −I[H, t])) T-colors representing P/T transitions
potentially enabled by an instance of t.
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Fig. 5 Part of the net-interface in charge of updating enabList and checkList

5.5 The evolutionary API

In addition to user-defined transformations, the modeling framework supplies a collection
of built-in read and write primitives, which can be used to sample and safely modify the
state/structure of the base-level in procedures implementing the adaptation logics. This evo-
lutionary API allows the internal mechanics of the emulator to be abstracted away from the
modeler.

Fig. 6 Part of the net-interface in charge of updating potEnab, potDisab
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Table 3 Read API primitive (sensors)

τin τout emulator places rationale

mark : P mResult MARK : P It returns the number of tokens in the given

place p ∈ P .

weightIn : Arc wInResult IN : Arc It returns the weight of the given input arc

〈p, t〉 ∈ IN.

weightOut : Arc wOutResult OUT : Arc It returns the weight of the given output arc

〈p, t〉 ∈ OUT.

weightH : Arc wHResult H : Arc It returns the weight of the given inhibitor

arc 〈p, t〉 ∈ H.

Definition 8 (API Primitive) An API primitive is a SN subnet Na composed of immediate
transitions, such that:

– Na places include a non-empty subset of EI and a disjoint set L of local places;
– every Na transition (linked to EI) verifies the conditions of Lemma 2;
– pin ∈ L, with domain P, T, or Arc, such that ∀t ∈ Na W+[pin, t] = ∅;
– if pout ∈ L, with D(pout ) = D(pin), then ∃t ∈ Na W+[pout , t] �= ∅;
– if m[pin] �= ∅ ∧ (pout ∈ L ⇒ m[pout ] = ∅), we eventually reachm′, m′[pin] = ∅;
– L − {pin, pout } are covered by P -invariants (i.e., P semi-flows).

The places pin, pout represent a routine’s in/out parameters. We can distinguish between
read and write primitives, since only the formers including pout .

The available read and writeAPI primitives are described on Tables 3 and 4, respectively.
For each primitive, the input/output places and the involved EI elements are listed.13 In the
following, we use API to denote the whole set of the API input/output places.

An example of read primitive is mark, which may be used to get the marking of a given
P/T place p. It implements a loop which counts for the occurrences of color p in place
MARK, putting the result (a weighted tuple λ · 〈p〉) in place mResult.

An example of write primitive is addInk , depicted in Fig. 7. This primitive adds k

occurrences of an input P/T edge, denoted by a color-tuple 〈p, t〉 in place addIn, to the
base-level encoding. The operation is atomic: each transition ai , i : 0 . . . k − 1, matches a
condition in which there are i occurrences of color 〈p, t〉 in place O I (which encodes the
difference between P/T functions O − I ), whereas ak matches a state in which O I holds
at least k occurrences of color 〈p, t〉. This primitive represents a template, whose actual
configuration depends on parameter k. Our case study makes use of addInk to implement
some of the actuators. For instance, the fault tolerance procedure uses addIn1 to increase
the weight of input arc 〈pli ,Assembler〉 as a part of system’s reconfiguration upon the
failure of one production line.

It is worth noting that each P/T transformation implemented by the API primitives is
valid and it meets Lemma 2. In particular, it preserves mutual exclusion between places O I
and I O.

13The entire collection of API primitives may be found online, in the public repository containing all the SN
models presented in this article.
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Table 4 Write API primitive (actuators)

τin τout emulator places rationale

addInk : Arc – IN : Arc, I O : Arc, O I : Arc It adds an input arc 〈p, t〉 ∈ Arc with

multiplicity k.

addOutk : Arc – OUT : Arc, I O : Arc, O I : Arc It adds an output arc 〈p, t〉 ∈ Arc with

multiplicity k.

addHk : Arc - H: Arc It adds a inhibitor arc 〈p, t〉 ∈ Arc with

multiplicity k.

delInk : Arc – IN : Arc, I O : Arc, O I : Arc It removes k occurrences of the input

arc 〈p, t〉 ∈ Arc.

delOutk : Arc – OUT : Arc, I O : Arc, O I : Arc It removes k occurrences of the output

arc 〈p, t〉 ∈ Arc.

delHk : Arc – H : Arc It removes k occurrences of the inhibitor

arc 〈p, t〉 ∈ Arc.

addTokenk : P – MARK : P It adds k tokens inside element p ∈ P .

delTokenk : P – MARK : P It removes k tokens from p ∈ P .

6 Validation of the emulating framework

In this section we describe the validation activities conducted upon the emulating frame-
work. In particular we show how symbolic structural analysis techniques have been used
to validate the behavior of this core component. To make the paper self contained, in
Section 6.1 we introduce preliminaries and basic notions. In particular, we introduce the
basics of symbolic structural analysis as well as the properties of interest that can be effi-
ciently verified. In Section 6.2, we describe the activity carried out to validate the emulating
framework.

Fig. 7 The addInk API primitive’s template
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6.1 Basic structural relations

Table 5 reports the symbolic structural relations that we leverage. A symbolic relation
between SN nodes e, e′ is a mapR(e, e′) : D(e′) → 2D(e).

Their formulae involve arc functions and functional operators, in particular, transpose
and composition. A description of each relation follows.

Asymmetric Structural Conflict (SC): sets the necessary condition for transition dis-
abling. It maps an instance b′ of t ′ to the set of color instances t that may disable (t ′, b′),
because they withdraw colors (tokens) from an input place of t ′, or put colors into an
inhibitor place of t ′. Different instances of the same transition may be in self-conflict. In
this case, the formula is similar, but for subtracting the identity.

Structural Causal Connection (SCC): defines the necessary condition for enabling. It
maps an instance b′ of t ′ to the set of instances of t that may enable (t ′, b′), because they
put colors into an input place of t ′, or withdraw colors from an inhibitor place of t ′.

Structural Mutual Exclusion (SME): (t, b) and (t ′, b′) are in structural mutual exclusion
if, whenever one is enabled, the other is not, and vice-versa. This happens if a place p is
input for t and inhibitor for t ′, and the number of a color-token required for the enabling of t

is as much, or more, than the limit for that color due to the inhibitor arc function. SME(t, t ′)
maps an instance b′ of t ′ to the set of instances of t that cannot be enabled if (t ′, b′) is
enabled. The formula on Table 5 works for type-set functions. P -invariants can be also taken

into account. For instance, if p ME p′, then the term I[p, t]T r ◦ I[p, t ′]+ I[p′, t]T r ◦ In p′t ′
should be added to SME(t, t ′).

Another interesting possibility offered by SN is the automated verification of structural
invariants involving place marking (P semi-flows) or transition sequences (T semi-flows).
Even though these invariants do not take account inhibitor arcs and priorities, they allow
us to formally and efficiently check properties complementary to structural relations. More
in details, focusing on P -invariants, we can distinguish between colored (symbolic) and
numerical ones. By using SNEXPRESSION we can check whether a given P -indexed vector
of multiset-expressions defines a colored P-invariant, and possibly prove the coverage of all
place instances. The expressions in the P -indexed vector denote functions from the place
color domains to the invariant’s domain. Such a vector is a P -invariant (or semi-flow) if, for
each transition t , the sum over all places of the compositions of P -invariant’s entry pinv[p]
with the linear combination O[p, t] − 1 · I[p, t] results in the null function. The invariant
marking expression is:

∑
p pinv[p](m0(p)).

Numerical P -semi-flows (or minimal semi-flow bases) can be checked as well. In fact,
SN arc-functions can be rewritten as sums of guarded tuples mapping to constant-size bags,
but for those color instances that falsify the guards. As an example, 〈Ci − c〉, depending on

Table 5 Symbolic structural relations in SN

Notation Formula (IdeD : D → Bag[D] is Ide(d) = 1 · d, ∀d ∈ D)

SC(t, t ′), t �= t ′
∑

p∈P W−[p, t]T r ◦ I[p, t ′] + W+[p, t]T r ◦ H[p, t ′]
SC(t, t)

(∑
p∈P W−[p, t]T r ◦ I[p, t] + W+[p, t]T r ◦ H[p, t]) − IdeD(t)

SCC(t, t ′), t �= t ′
∑

p∈P W+[p, t]T r ◦ I[p, t ′] + W−[p, t]T r ◦ H[p, t ′]
SME(t, t ′), t �= t ′

∑
p∈P I[p, t]T r ◦ H[p, t ′] + H[p, t]T r ◦ I[p, t ′]

SME(t, t) (
∑

p∈P I[p, t]T r ◦ H[p, t]) − IdeD(t)
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whether the color bound to c belongs to subclass Ci or not, is either |Ci | − 1 or |Ci |-size.
This may be rewritten as 〈Ci − c〉[c ∈ Ci] + 〈Ci〉[c /∈ Ci]. This is the normal form for
bag-expressions used by SNEXPRESSION.

As a consequence, by embedding function-tuple guards in transition guards, any SN
transition can be split into a number of equivalent, mutually-exclusive replica,14 whose I/O
arc functions are constant-size, for all valid transition instances. In analogy with low-level
PN, a |P |·|T | integer matrixH is defined, whose [p, t] entry holds |O[p, t](b)|−|I[p, t](b)|,
for any instance b of t . Any non-null P -vector i which is a positive integer solution of the
matrix product iH = 0 is a semi-flow, expressing a conservative law for the tokens flowing
through the places corresponding to non-zero entries, abstracting from the token color. A
place p is said covered by a semi-flow is the corresponding semi-flow entry is not null. A
net is said covered if every place is covered. One such net is bounded.

6.2 Net-interface validation

The crucial aspect of the emulation framework is played by the consistent management of
the places enabList and checkList. In fact, since transformations are interleaved (not
mutually exclusive) with the nominal execution of the base-level layer, they shall be applied
safely and avoid any inconsistency due to loss of information and/or addition of spurious
information along the interleaved transformation and execution processes. As anticipated
in Section 5, such a general property reduces in our context to check whether the places
enabList and checkList are mutually-exclusive and color-safe. In the following we
prove that these properties hold by means of the basic structural relations introduced above.

The SN model in Fig. 5 illustrates the part of the net-interface in charge of updating
these two places. The model shares the places enabList, checkList, beginFiring,
beginTestEnab with the emulator. The transitions that put colors into enabList,
checkList, are pe2, pd1. The following holds:

W+[checkList,pe2] = 〈t〉, and W+[checkList,pd1] = 〈t〉 (13)

Thus, color-safeness of enabList is trivially preserved. According to Lemma 1 (A and
B), pe2 preserves mutual-exclusion between enabList and checkList:

enabList SMEpe2 checkList (14)

Transition pe2 preserves color-safeness of checkList due to Lemma 3(C1). Tran-
sition pd1 preserves mutual exclusion between enabList and checkList and color-
safeness of checkList since it meets Lemma 1 (A and C) and Lemma 3 (C2),
respectively. The two basic invariant properties of enabList, checkList are thus
retained.

The non-empty structural relations (see Table 5) are listed below by category. In addition
to assessing the validity of the emulating framework, we use these properties to reduce the
whole model complexity. In fact, from this analysis it emerges that the color domain of tran-
sitions is T, but for endUpd, which is neutral domain. Therefore, we can ignore conflicts
between endUpd and the other transitions since ∀t �= endUpd, SME(t,endUpd) =
〈All〉. This means that endUpd is mutually exclusive with any instance of every other
sub-model transition.

14This means that t may be replaced in the SN by EQ = {ti}, such that D(t) = D(ti ), ∀ti ∈ EQ, and
m[t, b〉m′ ⇔ ∃ti ∈ EQ : m[ti , b〉m′, ∀m, b ∈ D(t).
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Structural Conflict: ∀i, j, i �= j SC(pei ,pej ) = 〈t〉; ∀i, j, i �= j SC(pdi ,pdj ) = 〈t〉;
SC(pd1,pe2) = 〈t〉; SC(pd1,pe3) = 〈t〉.
Mutual Exclusion: SME(pd1,pe1) = 〈t〉; SME(pd1,pe2) = 〈t〉; SME(pe1,pe2) =
〈t〉; SME(pe2,pe3) = 〈t〉; SME(pe1,pe3) = 〈t〉; SME(pd1,pd2) = 〈t〉.
Causal Connection: SCC(pd1,pe1) = 〈t〉; SCC(pd1,pe2) = 〈t〉; SCC(pe2,pe1) =
〈t〉; ∀i SCC(pdi ,endUpd) = 〈All〉, ∀j SCC(pej ,endUpd) = 〈All〉.
As expected, structural relations between transitions involve only instances of the same

color. Most of potential conflicts, however, are apparent, because the involved instances are
mutually exclusive (possibly due to place mutual exclusion).

Places beginFiring and beginTestEnab are covered by a semi-flow on the emu-
lator model, ensuring that m[beginFiring] + m[beginTestEnab] ≤ 1, for each m
reachable from m0. The sub-model’s correct behavior is expressed by the following path
property.

Property 4 Ifm[beginStep2] = 1∧m[beginFiring] = 1, then we eventually reach
m′ such that:

– m′[beginStep2] = 0 ∧ m′[beginFiring] = 0 ∧ m′[potEnab] = ∅ ∧
m′[potDisab] = ∅

– ∀tr ∈ T:

tr ∈ m′[checkList], if tr ∈ m[potDisab] ∩ m[enabList];
tr ∈ m′[checkList], if tr ∈ m[potEnab] ∧ tr /∈ m[checkList] +
m[enabList];
otherwise, m[enabList](tr) = m′[enabList](tr) ∧ m[checkList](tr) =
m′[checkList](tr).

Proof This property is met if m[potEnab] = ∅ ∧ m[potDisab] = ∅. In this case
the only enabled transition (due to SME) is endUpd. Let m[potEnab] �= ∅: ∀tr ∈
m[potEnab] there is one instance (pei , tr) which is enabled, in mutual exclusion with
endUpd, withdrawing a token of color tr from place potEnab (and leaving the neutral
token in beginStep2). Similarly, if m[potDisab] �= ∅ ∀tr ∈ m[potDisab], there
is one instance (pdi , tr) which is enabled, withdrawing color tr from place potDisab.
Thus, the places potDisab and potEnab become eventually empty.

Assuming that tr ∈ m[potDisab] ∩ m[enabList], the only instances of color tr

which are enabled are (pd1, tr) and (pe3, tr) in case tr ∈ m[potEnab] (according to
SME). The latter instance is neither in structural conflict with the former one, nor causally
connected to any other instance. Thus, (pd1, tr) eventually fires, by moving color tr from
enabList to checkList, from where it cannot be removed by any instance.

If tr ∈ m[potEnab], tr /∈ m[checkList], and tr /∈ m[enabList], the only tran-
sition instances of color tr which are enabled are (pe2, tr) and, if tr ∈ m[potDisab],
(pd2, tr). Also in this case, the latter instance cannot be in conflict (neither directly
nor indirectly) with the former one, which eventually fires, by putting color tr into
checkList.

In all the other cases, the only transition instances of color tr which may fire preserve
the marking of both checkList and enabList, and are not causally connected to any
other instance of the same color.
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Considering the model shown in Fig. 6, the following numerical semi-flow holds:

Inv = beginUpdate + incP + updDec + decP + beginStep2 (15)

This equation outlines the control-flow of this portion of the net-interface and it helps us
to prove the following path property, which takes into account that transitions endIteInc,
endIteDec (ending the loops managing P/T places whose marking has been possibly
increased/decreased, encoded in marKInc, marKDec) have lower priority.

Property 5 If m[beginUpdate] = 1 ∧ ∀p ∈ Inv − {beginUpdate},m[p] =
0 (∅), we eventually reach m′, where m′[beginStep2] = 1 ∧ m′[marKInc] = ∅ ∧
m′[marKDec] = ∅.

The proof in this case is omitted since is comparable to the one of Property 4.
Property 4 and Property 5 together ensure consistent behavior of the whole emulator,

once it has been linked to valid P/T transformations through the net-interface. The linking
mechanism that allows the whole system to be composed will be described in Section 7.

A last remark concerns two other structural invariant properties of the sub-module
in Fig. 6. It preserves color-safeness of places potDisab, potEnab, that matters for
efficiency reasons. In addition, it meets the elementary colored semi-flows [IdeD(p)]p ,
∀p ∈ EI, meaning that it preserves the emulator’s interface.

7 Themanaging subsystem andmodule composition

In this section we show how to use the evolutionary API to create adaptation procedures
(Section 7.1). We also introduce how to build the target self-adaptive system as a whole by
leveraging SN module composition. (Section 7.2).

7.1 Managing subsystem

The managing subsystem has a decentralized layout composed of independent adaptation
procedures. Each procedure implements a feedback control loop, taking into account an
adaptation concern, and has a simple characterization. Let APIin be set the set of API input
places, APIR ⊂ APIin be the input places of read primitives, and, if p ∈ APIR , out (p) ∈
APIout be the companion output place.

Definition 9 (Adaptation procedure) An adaptation procedure P is a SN subnet such that:

– P places include a non-empty subset of EI ∪ API and a disjoint set L of local places,
with start ∈ L

– every P’s transition t matches Lemma 2 (if linked to EI) and:

∀p ∈ APIin I[p, t] = ∅ ∧ ∀ p′ ∈ APIout O[p′, t] = ∅
(∃p ∈ APIR O[p, t] �= ∅) ⇒ H[out (p), t] = AllD(t),D(out (p))

– L places are covered by semi-flows.

Summarizing, an adaptation procedure may include both visible and immediate tran-
sitions, user-defined P/T transformations, as well as calls to the evolutionary API. It can

Discrete Event Dynamic Systems (2021) 31:609–657 637



be linked to API input/output places exclusively by means of output/input arc functions,
respectively.

Moreover, when invoking read API primitives, the corresponding output places must be
empty. The assumption on local places ensure a (local) boundedness, and suggests that they
represent a procedure’s control-flow.

Figure 8 shows the adaptation procedure (i) fault tolerance of the self-healing man-
ufacturing system example. This procedure applies to both the symmetric (SMS) and
asymmetric (AMS) fault schema. Its structure meets Definition 9. Being only composed of
observable transitions, it is potentially concurrent with the emulated system. The procedure
embeds read operations, by directly accessing the emulator’s interface EI (through pairs
of identical I/O arc functions), whereas indirectly carries out changes to the base-level by
means of the evolutionary API.

We assume that the manufacturing system (see Section 3) is encoded in the emulator EI,
and, as shown in Fig. 8, color classes P and T are partitioned into subclasses identifying P/T
elements. We do not assume mutual-exclusion between the base-level and the high-level
layers. Namely, the manufacturing system continues the production while the adaptation
procedures monitor the base-level and enact changes. As discussed in Section 6, the mod-
eling framework ensures that any changes on the base-level leads to a consistent structure.
However, the logical correctness of the whole system depends on how the procedures are
implemented by the modeler.

As an example, the procedure (i) is triggered when a place pbi is marked, meaning
that one of the two lines is faulty (e.g., assume line 1). The blockLoader transition
checks for this by reading the place MARK of EI. When firing, it also blocks the loader
by adding an inhibitor arc between place pb1 and transition tlo1, with the addH1 actu-
ator of the API in order to temporarily isolate the failed production line and rearrange the
job on the available line. Then, the procedure adapts the assembler component (i.e., tran-
sition changeAssembler), by increasing the weight of the edge 〈pw2,ta1〉 through
the addIN1 primitive, and removing the edge 〈pw1,ta1〉 using the delIN1 primitive.
A link between the lines is created, by inserting a new transition, tfl1, flushing resid-
ual row pieces on the faulty line to the other one. Similarly, the procedure adapts the

Fig. 8 The SN model of the (i) fault tolerance adaptation procedure
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Fig. 9 SMS model after the changes applied by the procedure (i) fault tolerance

loader component in order to avoid loading raw pieces into the faulty line. The transi-
tion changeLoader uses the addOut1 and delOut1 primitives to increase the weight
of edge 〈pl2,tlo1〉 and withdraw the edge 〈pl1,tlo1〉, respectively. Finally, the man-
aged subsystem is resumed by removing the inhibitor arc between Broken and Loader.
Figure 9 shows the base-level P/T net at the end of the adaptation process. The new transition
tre1, added by procedure (i), simulates the repair activity on the faulty line.

The procedure (ii) load balancing brings the manufacturing system back to its nominal
layout, after the faulty line has been repaired, and the system has entered a safe state (i.e.,
the place holding Worked pieces is empty). The formal specification of this procedure is
available with the additional material included on the online repository accompanying this
article.

7.2 Module composition

The SN models of our modeling framework (i.e., emulator, net-interface, API primitives,
and adaptation procedures) are brought together through superposition of shared places
(i.e., having same name and equal domain). This represents a convenient and simpler choice
compared to transition superposition, since it does not require any rewriting of arc functions.

More precisely, given the emulator net E, a non-empty collection of adaptation proce-
dures (Pi )i:1...n, the API primitives (Nai)i:1...k used by anyPi , and the net-interface (Figs. 6,
5), their composition results in a SN model M , whose elements (nodes, color structure, arc
functions) are the sum of corresponding elements of involved modules.

To obtain the final SN model we merge the shared places included in the following
components:

EI ∪ API ∪ {potEnab,potDisab,beginUpdate} (16)

Subnet composition through superposition of shared places is automated by the ALGE-
BRA module of GREATSPN introduced by Baarir et al. (2009). The initial marking of M

corresponds to the initial marking of its components, defined, as for the fixed parts of the
model, in previous sections; all start places of adaptation procedures hold a neutral token.

In order for the different components of themodel to correctly synchronize, immediate transi-
tions of different modules are assigned different priority levels,15 according to a partial order.

15The priorities assigned to immediate transitions in each module are relative.
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Table 6 Structural complexity of models

Model N User-defined components
(base-level and procedures)

Emulator SN
+ encoding

Equivalent P/T net
(unfolding)

Emulator - - 0+29+34+222 0+987+4634+26492

AMS 2 4+37+13+15 28+29+34+222 26+1182+4198+52007

4 6+37+13+15 30+29+34+222 32+1182+4198+52007

8 10+37+13+15 34+29+34+222 44+1182+4198+52007

16 18+37+13+15 40+29+34+222 68+1182+4198+52007

SMS 2 4+38+15+18 32+29+34+222 42+1655+6218+79869

4 6+38+15+18 34+29+34+222 48+1655+6218+79869

8 10+38+15+18 38+29+34+222 60+1655+6218+79869

16 18+38+15+18 46+29+34+222 84+1655+6218+79869

πN1 < πN2 means that the greatest priority in N1 is set less than the lowest in N2

πPi
< πNai

< πnet in < πemulator

Table 6 gives empirical evidence of how the emulation-based approach can effectively
handle the descriptive complexity of models of self-adapting systems. It reports the number
of elements of different Petri Nets that refer to different parts (steps) of a self-adaptive sys-
tem’s model built using the emulation-based approach, by varying the system’s parameter
(the number N of raw pieces).

The 1st column refers to the user-defined parts of the model, that is, the base-level P/T net
used as a case study (both the AMS and the SMS schemas are considered) and the adaptation
procedures. The 2nd column refers to the fixed part, i.e., the Emulator SN encoding the base-
level. The 3rd column, instead, refers to the P/T system obtained by applying the unfolding
procedure to the overall SN model resulting from the composition of the fixed and user-
defined modules.

The unfolding of an SN model, as described by Chiola et al. (1993), is an equivalent P/T
net (with priorities) where each node represents an instance of a corresponding SN node.
The unfolding of a stochastic SN is a Generalized Stochastic Petri Net (GSPN) introduced
by Chiola et al. (1993).16

The numeric values in each column refer to tokens, places, transitions, and arcs, respec-
tively. We observe that the structural complexity of the emulation-based mechanism is more
than acceptable (also when considering the module composition) whereas it explodes when
using directly P/T nets: the number of net elements needed to model a semantically equiva-
lent system is hundreds of magnitude orders bigger. This huge difference reflects, obviously,
the greater expressivity of high-level PN versus classical ones. But it also highlights the
enormous difficulty to embed adaptation issues in a plane, non-layered model.

8 Dealing with complexity issues

Major shortcomings of our emulating framework come from the limited data-abstraction
capacity of SNs. A high number of immediate transitions are needed to preserve the atomic

16The stochastic extension doesn’t influence the model’s interleaving semantics.
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firing semantics of PN transitions, and ensure consistency of the adaptation logic. Legacy
solvers/analysers for SNs, integrated in GREATSPN, do not efficiently manage large
amounts of immediate transitions in state space generation or discrete-event simulation. In
particular, they do not implement any technique to reduce the interleaving of immediate
transition color instances, which, when simultaneously enabled, fire in all possible com-
binations (even when independent from one another). This may result in a combinatorial
explosion of vanishing paths/states. GREATSPN state space builders do not even use any
on-the-fly reduction (i.e., vanishing paths are erased at the end of the building process). To
overcome these issues we discuss in this section on how structural techniques may signifi-
cantly alleviate the overhead due to immediate transitions. We also consider an orthogonal
approach, typical of SN, based on symmetries exploitation.

8.1 Transition interleaving reduction through structural relations

As previously mentioned, the unfolding of a (stochastic) SN results in a GSPN (a P/T net
with priorities). GSPN immediate transitions are partitioned into equivalence classes, known
as Extended Conflict Sets (ECS) introduced by Balbo (2001).

Each ECS represents a maximal set of transitions of the same priority potentially in
(direct or indirect) conflict in a marking. The ECS builds on the indirect structural conflict
described by Balbo (2001), recursively defined using the low-level structural conflict SC,
and causal connection SCC (lines 24 and 30 of Alg. 1):

tl ISC tk iff πl ≥ πk ∧ ∃tj : πj > πk ∧ tl SCC tj ∧ (tj SC tk ∨ tj ISC tk) (17)

The symmetric structural conflict (SSC) is defined as:

ti SSC tj iff πi = πj ∧ ti SC tj ∨ tj SC ti ∨ ti ISC tj ∨ tj ISC ti (18)

Letting ∗ denote the transitive closure, ECS(ti) = {tj , ti SSC∗ tj ∧ ¬ti SME tj }. As
thoroughly discussed by Balbo (2001), under very general conditions the order in which
transitions on different ECS fire does not influence the behavior of a GSPN in terms of its
tangible reachability graph (and time semantics). If we chose an arbitrary firing order we
may greatly reduce the interleaving of immediate transitions.

We might calculate symbolic ECS directly at SN level, by computing the symmetric and
transitive closure of symbolic relations (Capra et al. 2015) on Table 5.

As for the emulator, due to some regularity in its structure, we can use a similar, but
much simpler technique, based on detection of apparent conflicts. If the following holds:

SC(t, t ′) ⊆ SME(t, t ′) (19)

it means that all the color-instances of t which are potentially in conflict with any instances
of t ′ are actually mutually exclusive with them.

For instance, consider the net-interface in Fig. 5. In this model we have checked that the
only non-apparent conflict is: SC(pd1,pe3) = 〈t〉. That is, any color-instance 〈tr〉 of pe3
may be disabled by an instance of the same color of of pd1. According to ECS definition,
two such color instances should belong to the same ECS. But, if we take a deeper look, we
figure out that they are independent. The situation is described by the diagram in Fig. 10,
where: tr ∈ m[potEnab] ∧ tr ∈ m[potDisab] ∧ tr ∈ m[enabList].

You may observe that (pd1, tr) disables (pe3, tr) and enables (pe1, tr). Transitions
pe1, pe3, however, are firing-equivalent since:

W−[p,pe1] = W−[p,pe3] ∧ W+[p,pe1] = W+[p,pe3], ∀p (20)
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Fig. 10 Conflicting, but actually independent transitions

Moreover, there are no indirect conflicts among net-interface’s transition instances,
because the higher-priority transitions of the emulator that may be causally connected to
or in conflict with them may only be enabled (due to the place-invariant involving place
beginFiring) by endUpd, whose firing disables each transition of the net-interface.

We can thus avoid the interleaving among the sub-model’s transition instances by
assigning each pdi , pej a different priority.

Using similar arguments, we can check, for instance, that the pairs of transitions
checkEnabIn, checkDisabH and checkEnabH, checkDisabIn in Fig. 6 may fire
in an arbitrary order, as well transitions ai of the addINk primitive in Fig. 7.

8.2 Auto-Interleaving Reduction through Ordering/Partitioning Color Classes

The interleaving among color-instances of an immediate transition is another major concern.
Experimental evidence shows that a major source of inefficiency is the enabling test (step
i of Algorithm 1). The bottleneck is represented by the transition toTestT, which non-
deterministically selects the next P/T transition to check for enabling. The interleaving of
its color-instances can be significantly reduced by defining color class T as ordered. This
solution, implemented in a second version of the emulator drops the (potential) number of
vanishing paths from O(|T|!) to O(|T|). The same idea can apply to color class P, in the
further steps of the emulation. Unfortunately, ordering color classes prevent symmetries
from being exploited if, for modeling reasons, they are further partitioned into subclasses,
as explained in the next subsection.

The interleaving among color-instances of transition toTestT can be also reduced by
observing that SC(toTestT,toTestT) = ∅, i.e., there are no structural auto-conflicts
among instances of this transition, and no indirect conflicts caused by higher-priority transi-
tion instances. We can thus (automatically) split toTestT into an equivalent set of replicas,
each one with a guard ensuring the membership of the color bound to transition’s variable t1
to a given subclass of T. Each replica is assigned a different priority. The emulator potential
complexity, in terms of vanishing paths, lowers toO(s ·max({|Ti |, i : 1 . . . s})!), where s is
the number of subclasses. We can analogously reduce auto-interleaving of other transitions
(e.g., testNextIn, testNextH), by exploiting the partition of class P (if any).

8.3 Space complexity reduction through symmetries exploitation

Behavioral symmetries are implicitly expressed in SN models, through the particular syn-
tax of their color annotations. Symmetries are exploited to build a symbolic, quotient
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reachability graph (SRG) and, in SSN, an associated lumped CTMC, or to drive an efficient
discrete-event simulationof SN models.17

A syntactical state equivalence relation is provided by the symbolic marking (SM) notion.
A SM is an equivalence class of SN markings: m, m′ are equivalent if and only if one is
obtained from the other through a color permutation preserving the static partition and the
circular ordering of color classes (if any). As described by Chiola et al. (1993), the SRG
built from an initial SM through a symbolic firing rule, retains all the information of the
ordinary SN reachability graph.

A SM is defined in terms of dynamic subclasses, denoting parametric partitions of each
color (sub)class. A dynamic subclass has a cardinality, i.e., it may represent a set of different
colors in a (sub)class. Dynamic subclasses of ordered classes are ordered too, representing
contiguous sets of colors. A color class which is both ordered and partitioned is like a
completely split class, thus the only possible permutation on it is the identity.

An initial SM for the emulator-based model is simply defined from the ordinary initial
marking, by replacing color-tokens {pli} and {trj } of P, T, with cardinality one dynamic
subclasses {zpi} and {ztj }, respectively, each referring to a given subclass in the case of a
static partition of P, T. The nodes (SM) of the resulting SRG, may thus represent classes
of isomorphic P/T systems.18 Checking graph isomorphism is in general complex.19 In SN
encoding of bipartite graphs, it corresponds to bringing a SM into a canonical form, as
described by Chiola et al. (1993). Most of the inefficiency of legacy SRG algorithm is due to
a brute-force enumeration of color permutations done during SM canonization. Therefore,
although the SRGmay result in a more compact structure than the ordinary RG, its execution
time may be incomparably higher.

8.4 Experimental results on complexity

Table 7 reports some experimental data. All results reported henceforth have been obtained
running GREATSPN on FEDORA Gnu/Linux release 25 operating system, using a machine
equipped with a 2.5 GHz INTEL Core i5 processor, and 16 GB 1600 MHz DDR3 RAM.

Data refers to the state space building process of the emulating framework encoding the
SMS example (without adaptation procedures) by varying the model size N (i.e., number
of raw pieces). In case the computation succeeds, the Table reports the execution time and
the corresponding number of Tangible Marking (TM) and Vanishing Markings (VM). Oth-
erwise it reports either FAIL (i.e., out of memory) or TIMEOUT (i.e., 3 hours). Data has
been collected by using different versions of the emulating framework (EMU1-EMU4) that
implement different techniques to reduce the complexity discussed above.

The overhead due to immediate transitions clearly emerges. Nevertheless, it is possible
to quantify the contribution of each reduction technique used to optimize the emulating
framework. It is worth noting that, without any optimization, we have been able to solve
models up to N = 8. In this case, we observe a number of VMs 9 times larger than what we
obtain by using the EMU1 version.

We also observe that the reduction of VMs achieved by ordering class T is comparable
with the one obtained by partitioning T, whereas the latter adds up to the reduction due to

17In this context we only consider analytical solutions.
18An isomorphism between P/T systems is a permutation of the corresponding bipartite graph’s nodes
preserving connections and marking.
19Graph isomorphism belongs to NP, but is thought to be neither P nor NP-complete.
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the symmetries. Experiments confirm that the SRG structure is smaller compared to the RG.
Nevertheless, the time complexity of the SRG algorithm is higher as discussed above.

When considering the SMS example in Fig. 2 (two parallel production lines), the
exploitation of symmetries reduces the state space by a factor of ∼ 2 (according to the
model’s layout). Nonetheless, symmetries become crucial when considering systems hav-
ing a high number of replicated components. For instance, consider the parametric model
represented by the SN in Fig. 11 composed of M modules (i.e., production lines), working
in parallel and synchronizing at a given point (M = 2 corresponds to the SMS example in
Fig. 2).

When M grows up, the exploitation of symmetries becomes the only effective way to
deal with the model’s scalability. The intrinsic combinatorial complexity of one such model
is untreatable otherwise (to give an idea, forM = 8 there are several dozens millions of ordi-
nary states against just a few thousands of symbolic ones). Once again, the drawback here
is the inefficiency (in terms of execution time) of the legacy SRG builder of GREATSPN,
whose re-engineering is planned as a part of our future work.

9 Formal verification

In this section, we discuss significant verification activities that can be carried out on adap-
tive systems modeled with our framework. Since this approach relies on SNs, we can
leverage a wide range of consolidated techniques. The techniques discussed in this section
have been applied to our selected case study (both ASM and SMS schemas).

9.1 Timing analysis

As anticipated in Section 4, the emulator model can be used to model/simulate also stochas-
tic PNs (SPNs), Each SPN transition tk is associated with a rate ρk ∈ R

+ representing
the parameter of a non-negative exponential density function from which the firing delay
of tk is sampled, once it is enabled in a marking. Rates can be marking-dependent. This

Fig. 11 SN model of a SMS composed of M symmetric modules
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Fig. 12 PT fire partitioning to encode the SPN manufacturing system

enhances the expressiveness of SPNs. As a result, a SPN is isomorphic to a Continuous
Time Markov Chain (CTMC) – see Gagniuc (2017) – whose states are the SPN’s reachable
markings. The [i, j ] component of the CTMC generator matrix (i �= j ) is the sum of rates
of transitions that lead from mi to mj . Performance indices such as transition throughputs
and token distribution in places can be computed from either the transient or (if the model
is ergodic) the steady-state probability vector. The CTMC is automatically derived from the
SRG structure. This latter model can be efficiently solved (instead of the original one), to
get performance indices.

To emulate a SPNs, we need to consider the emulator as a stochastic SN (SSN), formerly
known as SWN, introduced by Chiola et al. (1993). The timed semantics of a SSN is that of
its unfolding, i.e., a Generalized SPN. Observable transitions (called timed) are associated
with exponential rates, as in SPN. Immediate transitions fire in zero-time with priority over
timed ones, and are assigned weights used to solve in a probabilistic way possible conflicts
arising in vanishing paths. As a result, the semantics of a SSN is a CTMC isomorphic to
its TRG. The probabilities associated with vanishing paths determine, together with timed
transition rates, the entries of the CTMC generator matrix. If an initial symbolic marking is
set for a SSN, then it is possible to derive a lumped CTMC isomorphic to the tangible part
of its SRG.

Rates/weights can be associated with SSN transition color-instances, or be marking-
dependent, according to the static partitioning of color classes.20 In the emulator module,
arbitrary rates can be attached to immediate transitions color-instances of the model’s fixed
parts without affecting its stochastic behavior.

To encode a SPN in the emulator, we may have to partition the emulator’s color class T,
so that we can distinguish groups of P/T transitions with different firing rates. P/T transitions
are in fact encoded as color-instances of the SN timed transition PT fire.

Figure 12 shows how the PT fire transition of the emulator has been automatically
split in order to encode a stochastic version of the MS running example. Each individual
PT firei instance has a different firing rate, and corresponds to the firing of a subclass
of T.

Table 8 shows data obtained by analyzing the self-healing manufacturing systems (both
AMS and SMS), including the adaptation procedures (managing line-faults and subsequent
repairs), with different model size N . The reachability graph built by using the optimized
EMU3 version (i.e., transition interleaving reduction and partitioned classes) holds one max-
imal strongly-connected component (i.e., the initial marking is a home state), thus there is a
steady-state solution of the corresponding CTMC.

20The current GREATSPN release doesn’t support these features
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Table 8 Reachability graph building and transition throughputs

Model N |RG| (TM/VM) time (s.) |SRG| (TM/VM) Time (s.) Throughput Time (s.)

AMS

2 55/3484 0.15 55/3484 3.40 0.20074 0.66

4 184/13906 2.31 184/13906 10.06 0.26590 1.12

8 985/91586 8.04 985/91586 64.11 0.33175 5.36

16 7964/886842 77.11 7964/886842 622.91 0.38866 49.71

SMS

2 92/6708 1.71 48/3437 5.36 0.19532 0.93

4 276/23268 2.79 184/13906 10.06 0.25852 1.88

8 1289/131761 10.12 662/66663 91.66 0.32164 5.59

16 9103/1114027 99.05 4634/561461 816.71 0.37521 62.27

The first significant remark here is that the RG and the SRG in the AMS example have the
same size. In this example, we do not reduce the space complexity with the SRG structure.
This result reflects the structural properties of this model (i.e., it does not have behavioral
symmetries). The SMS is composed of two symmetric parts (i.e., two faulty production
lines). Here, the size of the SRG is reduced by a factor of ∼ 1.9 (considering both the
tangible and the vanishing markings). The time instead increases by a factor of ∼9,

varying from a few milliseconds (0.15 s. with N = 3) to a few minutes (208.11 s.
with N = 6). The throughput column in Table 8 shows the average throughput of the
Assembler component (i.e., the number of firings of the transition ta1 in a time unit) of the
encoded SPN. This value is congruently the same for the ordinary CTMC and the lumped
one derived from the SRG. The last column of Table 8 reports the time required to compute
the throughput value for all the transitions of the model. This value ranges from a few
milliseconds (0.66 s. with N = 2) to a few seconds (49.71 s. with N = 16).

9.2 Model checking

The MC4CSLT A model checker, introduced by Amparore and Donatelli (2010), has been
used to verify the correctness of our case studies with respect to design-time requirements.
MC4CSLT A is a probabilistic model checker embedded in GREATSPN for the stochastic
logic CSLT A. In the following, we provide a brief overview on the CSLT A stochastic logic
to make the article self contained. We refer the reader to Amparore and Donatelli (2010) for
a more details.

The CSLT A stochastic logic for CTMCs is characterized by the possibility of speci-
fying path formulas through a single-clock Deterministic Timed Automata (DTA). Given
λ ∈ [0, 1] a probability value, p ∈ AP an atomic proposition, and �� ∈ {≤, <, >,≥} a
comparison operator, a CSLT A state formula Φ is defined as follows:

Φ ::= p | ¬Φ | Φ ∧ Φ | S��λ(Φ) | P��λ(A),

where A is a single-clock DTA. CSLT A uses DTAs to specify (timed) accepted paths and
the model checker goal is to compute the probability of the set of accepted paths. A DTAA
is composed of a set of states and a set of edges (e.g., see Fig. 13a). Each DTA is equipped
with a clock (usually named x), that runs constantly and whose value increases linearly
over time. Edges describe the transition relation and can be labeled with a clock and action
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Fig. 13 DTAs used in the CSLT A properties (21) and (22), respectively

constraints. The DTA in Fig. 13a has two states l0 and l1. The state l0 is initial, and l1 is
final. An edge with a constraint in the form x = α is a boundary edge (marked with the 	

symbol), and is triggered by elapsed time. An edge with a constraint α < x < β is an inner
edge and is triggered by a transition firing in the PN model. States can have an associated
boolean formula which predicates on the marking of the PN model.

Formal requirements in our framework can be expressed as general reachability, safety,
liveness properties and invariants using the CSLT A stochastic logic. The properties can
refer either to the behavior of the managing (i.e., the adaptation procedures) or the managed
(i.e., the encoded base-level model) subsystem.

Safety Safety properties can predicate over either the nominal behavior or the adaptation
process. For instance, we verified that the manufacturing systems (considering all their pos-
sible evolutions) does not lose raw pieces during the production. Equation 21 shows the
formula used to verify the property. We use #p to denote the number of tokens inside the
place p.

P≤0 safety (Φ0 := #pin1 + #pl1 + #pl2 + #pw1 + #pw2 + 2 · #pa1 �= N), (21)

Figure 13a shows the safety DTA embedded in this formula. The Act label represents a
wildcard action and it stands for “any firing transition”. Since in the current example we do
not take into account time, we leave a default check x > 0 on the clock variable x. This
means that the actions are executed at any time greater than zero (i.e., Zeno behavior is not
admitted).

Robustness An example of robustness property verified on the manufacturing systems fol-
lows. If no failures occur (i.e., #pb1 = 0, #pb2 = 0), the production lines work correctly
and they eventually assemble all the raw pieces (i.e., #pin1 = 0 ∧ #pa1 = N/2). On the
contrary, if a failure occurs, the system is able to reconfigure itself and restore its own nom-
inal behavior. The CSLT A formula follows. The embedded robustness DTA is reported in
Fig. 13b.

P≥1 robustness (Φ0 := #pin1 ≥ 0 ∧ #pb1 = 0 ∧ #pb2 = 0,

Φ1 := #pb1 > 0 ∨ #pb2 > 0, Φ2 := #pb1 = 0 ∧ #pb2 = 0,

Φ3 := #pin1 = 0 ∧ #pa1 = N/2) (22)
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Liveness An example of liveness property verified on the manufacturing systems is
reported in (23). It states that if a failure occurs, the fault tolerance procedure always statrs
(i.e., #procedure1Start > 0). Figure 14a shows the embedded liveness DTA.

P≥1 liveness (Φ0 := #pb1 > 0 ∨ #pb2 > 0, Φ1 := #procedure1Start > 0) (23)

A similar liveness property can be verified by targeting the load balancing adaptation
concern. Namely, we verified that the load balance procedure always starts when a broken
production line has been fixed.

Furthermore, we verified the adaptation integrity constraint (i.e., a common meta-
property often verified in self-adaptive systems (Zhang and Cheng 2006)). This meta-
property states that once the adaptation starts, it must eventually complete. Thus, the
adaptation process eventually reaches its own final state and the desired changes are applied
to the base-level. In the manufacturing systems, we verified this constraint by using the
liveness formulas (24) and (25). The two CSLT A properties target the two adaptation
procedures, respectively.

P≥1 liveness (Φ0 := #procedure1Start > 0, Φ1 := #resumeProc1 > 0) (24)

P≥1 liveness (Φ0 := #procedure2Start > 0, Φ1 := #resumeProc2 > 0) (25)

Timed properties Up to this point, we introduced a number of absolute properties, i.e.,
verified either with probability ≥ 1 (i.e., always true) or with probability ≤ 0 (i.e., always
false). In fact, we considered so far a base-level encoded as P/T net. Nevertheless, a base-
level encoded as stochastic PN (see Section 9.1) opens up the possibility of verifying
probabilistic (timed) properties. Equation 26 reports an example of timed property verified
upon the stochastic AMS systems.

P>0.9 timed (α := 1, β := 10, Φ0 := #pb1 > 0 ∨ #pb2 > 0,

Φ1 := #pb1 = 0 ∧ #pb2 = 0) (26)

The probability states that the probability fixing a failed line, within 10 time units, is
greater than 0.9. The embedded timed DTA is shown in Fig. 14b.

Another example follows.

P>L timed2 (α := X, Φ0 := #pin1 = N,Φ1 := #pa1 = N/2) (27)

This latter property has been used to verify that the time required by the system to assem-
ble all the raw products, in X time unit, is greater than L. Figure 15 reports the embedded
timed2 DTA.

Fig. 14 DTAs used in the CSLT A properties (23), (24), (25), and (26)
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Fig. 15 DTA used in the CSLT A property (27)

Table 9 shows, for each property, the total execution time and space. Time values refer
to resources required by both on-the-fly state space construction and computation of the
forward steady-state solution of the

SN model. The last time column shows the average time value required by these two
(separated) activities. Results reveal that the amount of time required to compute the solu-
tion in both the two cases (AMS and SMS) is negligible and very low if compared with the
build time. The build time varies from few milliseconds (∼ 0.16s./∼ 0.46s. with N = 2)
to few minutes (∼ 44s./∼ 90s. with N = 16). The last column shows the average memory
usage during the verification activities. It is worth noting that the total amount of memory is
small even though the state space increases (especially in the number of vanishing markings)
when increasing the problem size N . Average values remain below 1MB (∼ 1KB/∼ 2KB
with N = 2 to ∼ 120KB/∼ 160KB with N = 16).

10 Related work

The approach described in this paper is part of our ongoing research activity on formal spec-
ification and verification of decentralized self-adaptive systems, as described by Camilli
et al. (2018), Capra and Camilli (2018), Camilli et al. (2019), and Capra and Camilli
(2020). Self-adaptation has been widely studied from different perspectives and different

Table 9 Verification time and space

Time (s.) Space (KB)

Model N (5) (6) (7) (8) (9) (10) (11) avg build+sol avg memory

AMS

2 0.16 0.16 0.17 0.16 0.16 0.15 0.16 0.16+0.00 1

4 0.64 0.59 0.62 0.62 0.63 0.58 0.58 0.61+0.00 3

8 4.06 4.05 4.05 4.04 4.03 4.05 4.27 4.06+0.01 16

16 44.9 45.10 43.77 43.80 44.62 43.24 44.28 43.88+0.37 121

SMS

2 0.43 0.49 0.43 0.47 0.48 0.47 0.46 0.46+0.00 2

4 1.52 1.53 1.54 1.54 1.52 1.50 1.55 1.52+0.01 6

8 9.07 9.05 9.71 9.10 9.13 9.14 9.10 9.14+0.04 25

16 86.40 98.96 92.61 91.31 93.13 88.81 84.31 90.49+0.29 160
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research communities, such as software architectures, programming languages, software-
engineering, and formal methods, to name a few. We let the reader refer to Salehie and
Tahvildari (2009), Weyns et al. (2012), de Lemos et al. (2017), and Arcaini et al. (2017) for
a more comprehensive overview on the landscape of self-adaptive systems. Here, we limit
the comparison to formal methods for specifying and verifying self-adaptation, with par-
ticular focus on models of concurrency and DESs, such as PN-based approaches. In fact,
although PNs represent a sound and expressive model of concurrency and distribution, they
cannot represent in a natural way structural changes able to express self-perceiving and
self-adaptation procedures (Reisig 1985). Several attempts to face this critical issue gave
rise to new PN-based formalisms, in which an enhanced modeling power is not always
accompanied by adequate analysis techniques.

The formal framework introduced in this article has been mainly influenced by differ-
ent existing approaches able to describe DESs with evolvable and/or adaptable behavior.
A different, even if somehow related, paradigm based on pure SPEC-inscribed (algebraic)
PNs – see Reisig (1991) – has been introduced by Capra (2016). The framework builds
on a compact algebraic net which emulates the behavior of any P/T system encoded as a
marking of the net. The model is completed by a library of atomic transformations (simi-
lar to graph-rewriting rules) implemented as (parametric) transitions, that one can use and
compose with the emulator net to describe self-adaptation procedures. The OBJ specifica-
tion language, introduced by Goguen et al. (1988) is adopted to inscribe the high-level nets.
Though inspired by the same principles and sharing most of the goals, the approach intro-
duced in this work is uniform and relies on well established formal methods. This choice
permits consolidated analysis techniques to be leveraged. In fact, the main drawback of
the algebraic emulator (and many other state of the art approaches) is the lack of support-
ing software tools. Currently available tools for algebraic PNs are based on too complex
higher-order languages to non-expert users. Moreover, they often have a non standard and
less intuitive semantics than the original one of pure algebraic specifications, introduced
by Reisig (1991).

The use of “higher-order” tokens in PNs dates back to the approach presented by Valk
(1998), where both system and object nets are Condition/Event systems. The synchronization
between these entities is performed though special interface transitions. While preserving
most principles of elementary nets theory, this technique does not allows dynamical trans-
formations to be represented. A survey of approaches that combine “higher-order” tokens
and the features of object-oriented programming has been presented by Valk (2004). In these
models objects are instances of classes and object transformations are specified by methods.

However, most of these formalisms do not have a clear denotational semantics, thus limit-
ing the applicability of classical analysis techniques. Reference Nets, introduced by (Cabac
et al. 2005), are the representative of this class of formalisms, being supported by a Java
software tool called RENEW. Another modeling approach, based on object-oriented Petri
nets, has been introduced by Meng (2010) to describe reconfigurable manufacturing sys-
tems. This model integrates object-oriented methods, stepwise refinement ideas and Petri
nets together. In particular the authors introduce the concepts of macro-place, used to model
the aggregation of many processes, and macro-transition, used to link all the related macro-
places. This work focuses on the modeling activity. Validation and verification of such a
models are currently not supported. Algebraic Higher-Order (AHO) nets, described by Hoff-
mann and Mossakowski (2002), are an extension of algebraic nets where the employed
algebraic specification language HASCASL is higher-order. Tokens in AHO-nets represent
P/T nets, that move across places, and that can be transformed using a restricted set of
algebraic net-operators applied by firing transitions. AHO-nets have been proposed as a
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unifying framework for the “nets within nets” paradigm. An interesting evolution of this
paradigm, based on AHO-nets and on the main ideas of graph transformation systems, has
been introduced by Hoffmann et al. (2005a, b), where the token game is integrated with
rule-based transformations of P/T nets. An algebraic extension of object nets called Higher
Order Recursive Nets is proposed in Köhler-Bußmeier (2009), where an algebraic structure
which refers to the topology of net-tokens is introduced, providing operators for nets compo-
sition. Net Rewriting Systems (NRSs) have been introduced by Llorens and Oliver (2004).
This formalism represents a model of the dynamic changes in the structure of Petri nets.
However such a formalism do not define analysis techniques able to formally verify design-
time requirements. Reconfigurable Petri Nets (RecPNs) represent a subclass of NRS where
reconfigurability is restricted to the flow relation (i.e., changes on place/transition elements
are not feasible). In RecPNs, a system configuration is described as a P/T net and a change
in the configuration is described as a graph rewriting rule. Verification algorithms here, are
based on a translation process between a RecPNs model to an equivalent P/T net, so that
the classical verification methods of P/T nets are applicable. An extension of NRSs (i.e.,
Improved RNSs) has been introduced by Li et al. (2009) to overcome property decidabil-
ity issues. In this extension, three basic properties (liveness, boundedness, and reversibility)
can be verified.

Other related approaches grounded on reflective frameworks have been introduced
by Capra and Cazzola (2006) and Camilli et al. (2018). In particular, Reflective Petri nets
(RPNs) aim at specifying and simulating evolving P/T systems through a meta-modeling
layer composed of guards and strategies, provided in term of high-level Petri nets. The
meta-modeling layer provides the ability to describe conditions (i.e., guards) that activate
specific routines (i.e., strategies) able to change the structure of the lower layer (i.e., the P/T
net). The main drawback of RPNs, once again, is the lack of supporting analysis techniques
and software frameworks/tools.

The development of (single layer) PN-based approaches to specify and verify self-adaptive
systems has been addressed by Zhang and Cheng (2006). An extension of this latter work,
which takes into account also temporal concerns in real-time self-adaptive systems has been
introduced by Camilli et al. (2015, 2018). The key idea of these modeling approaches is
to unfold the nominal and the evolutionary behaviors of a self-adaptive systems in a single
modeling layer, realizing a separation of concerns by means of zones (i.e., PN subnets).
However these approaches allow to represent the adaptation from an abstract perspective,
meaning that they do not allow the specification of adaptation procedures and the conditions
under which the system is required to adapt itself. Although they are well supported by both
design-time – see Bellettini et al. (2012) and Camilli (2014) – and runtime – see Camilli
et al. (2017a) – analysis techniques, these approaches have limited modeling capability and
they do not allow for an easy integration of structural changes in the model itself.

Other models of concurrency have been tailored to represent adaptable and/or evolv-
able systems. Process Algebras, such as Communicating Sequential Processes (CSP), have
been extended in Bartels and Kleine (2011) to model systems able to react upon exter-
nal stimuli by changing their internal behavior (e.g., to recover from errors). In this sense,
self-healing systems can be viewed as a reactive systems that adapts itself in response
to external inputs. Reconfiguration of systems is also supported by the work presented
by Allen et al. (1998). Systems are described using the Architecture Description Language
(ADL) Dynamic Wright. The formal semantics of the ADL is defined by a translation to
CSP. Hence, formal properties on the architecture of the system can be verified on the level
of CSP. These works focus on architectural aspects of adaptable system design and does not
consider functional aspects of the system behavior.
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11 Conclusion and future directions

In this paper, we introduce an SN-based formal modeling framework for self-adaptive sys-
tems with a decentralized adaptation control. SNs are a high-level PN formalism with a
syntax that outlines behavioral symmetries of systems. The framework builds on an SN
component that emulates the behavior of any P/T system (with inhibitor arcs) encoded as an
SN marking. The P/T system represents the base-level of the model, which can be arbitrar-
ily adapted using transformation rules/procedures logically forming the model’s high-level
layer. These two components are coherently linked through a net-interface.

Our approach exploits consolidated analysis techniques implemented by off-the-shelf
software tools. We provide a detailed, formal presentation of both the SN-based emulator
and the evolutionary components, that include an API of base transformations primitives
on which distributed adaptation procedures can be specified. Symbolic structural analysis
techniques have been used to validate the components of the emulation-based framework.
State-space exploration techniques have been used instead to formally verify the modeled
systems. At this stage, all the native SN features can be used: generation of a quotient
(symbolic) state space (exploiting behavioral symmetries), timed analysis (thanks to the
native stochastic extension of SN), and model checking to extract meaningful insights from
both the base-level layer (i.e., the managed subsystem) and the high-level layer (i.e., the
managing subsystem). The usability and effectiveness of our approach have been shown
on two variants of a self-healing manufacturing system. Our experiments show both the
applicability and the cost (in terms of time and space) required by verification activities.
Major complexity concerns have been illustrated, discussed, and (partially) faced. All the
models introduced in this paper have been released publicly to encourage the repetition of
experiments.

Our ongoing research activity includes the following main directions. We are developing
an easy-to-use Domain Specific Language to help non-expert users specify the decentral-
ized adaptation control loops and the (arbitrarily complex) patterns of coordination among
them. Furthermore, we are going to include explicit modeling of uncertain aspects of the
surroundings employing probabilistic approaches, as suggested by Camilli et al. (2017b,
2018). We also aim at addressing the scalability and complexity concerns of the approach
that arise when modeling realistic systems. On the one hand, we plan to enhance the current
version of the symbolic state-space builder of GREATSPN by exploiting symbolic struc-
tural analysis to reduce the immediate transitions’ interleaving. Indeed, the huge number of
immediate transitions needed to preserve the atomic firing semantics of the base-level and
to ensure the coherence in adaptation steps has been identified as a major bottleneck of our
approach. We also believe that simple syntactical extensions of SN, such as flush-arcs and
symmetric marking-dependent guards, could greatly alleviate this problem. On the other
one hand, we aim at exploiting the modularity of the model and some invariant properties
in its fixed parts.

Appendix A: Emulator SNmodel

Figure 16 shows the whole SN model implementing our emulating framework described in
Section 5. This model has been obtained mechanically by translating the listing reported in
Algorithm 1. The marking encodes the AMS case study described in Section 3.
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Fig. 16 Symmetric net emulating model along with color classes/domains
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