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ISG15 deficiency restricts HIV-1 infection
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Abstract

Type I interferons (IFN-Is) are a group of potent inflammatory and antiviral cytokines. They

induce IFN stimulated genes (ISGs), which act as proinflammatory mediators, antiviral effec-

tors, and negative regulators of the IFN-I signaling cascade itself. One such regulator is inter-

feron stimulated gene 15 (ISG15). Humans with complete ISG15 deficiency express

persistently elevated levels of ISGs, and consequently, exhibit broad spectrum resistance to

viral infection. Here, we demonstrate that IFN-I primed fibroblasts derived from ISG15-deficient

individuals are more resistant to infection with single-cycle HIV-1 compared to healthy control

fibroblasts. Complementation with both wild-type (WT) ISG15 and ISG15ΔGG (incapable of

ISGylation while retaining negative regulation activity) was sufficient to reverse this phenotype,

restoring susceptibility to infection to levels comparable to WT cells. Furthermore, CRISPR-

edited ISG15ko primary CD4+ T cells were less susceptible to HIV-1 infection compared to

cells treated with non-targeting controls. Transcriptome analysis of these CRISPR-edited

ISG15ko primary CD4+ T cells recapitulated the ISG signatures of ISG15 deficient patients.

Taken together, we document that the increased broad-spectrum viral resistance in ISG15-

deficiency also extends to HIV-1 and is driven by a combination of T-cell-specific ISGs, with

both known and unknown functions, predicted to target HIV-1 replication at multiple steps.

Author summary

Type I interferons (IFN-Is) are a group of potent inflammatory and antiviral agents. They

induce IFN stimulated genes (ISGs), which perform downstream functions to resolve
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viral infection, mediate the inflammatory response, as well as negatively regulate the IFN-

I signaling cascade to prevent hyperinflammation. One such negative regulator is inter-

feron stimulated gene 15 (ISG15). Humans that lack ISG15 have chronic, low levels of

antiviral ISGs, and ensuing broad-spectrum resistance to viral infection. We demonstrate

that IFN-I priming of ISG15-deficient cells leads to superior resistance to human immu-

nodeficiency virus 1 (HIV-1) infection compared to IFN-I primed healthy control cells.

This is true for fibroblast cell lines, as well as primary CD4+ T cells, the main target of

HIV-1. Analysis of the gene expression profiles show that ISG15-knockout CD4+ T cells

express similar inflammatory markers as ISG15-deficient patients. Overall, we show that

the broad-spectrum viral resistance in ISG15-deficiency extends to HIV-1.

Introduction

Type I interferons (IFN-Is) are the first line of defense against viral infections. IFN-I signaling

induces the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) path-

way, leading to transcription of about 400 IFN-I-stimulated genes (ISGs) [1]. These ISGs act as

antiviral effectors, but some also function as negative regulators of IFN-I signaling in order to

prevent overt inflammation. One such negative regulator of IFN-I signaling is interferon stim-

ulated gene 15 (ISG15). ISG15 exists as a free intracellular molecule, free extracellular cytokine,

and as a ubiquitin-like conjugate through a process called ISGylation [2–5]. Free intracellular

ISG15 aids the stabilization of the ubiquitin-specific peptidase 18 (USP18), which downregu-

lates IFN-I signaling by binding to the IFN-I receptor subunit, IFNAR2, and out-competing

JAK1 [6]. Thus, a loss of ISG15 leads to the destabilization of USP18, leading to continued

IFN-I signaling, and ensuing IFN-I mediated autoinflammation [7]. Free extracellular ISG15

serves to induce IFN-γ in natural killer (NK) and T cells, in synergy with IL-12. Individuals

with complete ISG15 deficiency are thus also more susceptible to Mycobacterial infections [8].

Finally, although ISGylation has been reported to alter the activities and functions of many

proteins, the exact role for ISGylation is still debated [9–24].

There are strong differences among species in the role for ISG15 in viral immunity, as

unlike human ISG15 which serves to stabilize USP18, the murine orthologue does not perform

such activity [25]. Thereby, mice lacking ISG15 were shown to be modestly more susceptible

to some but not all viruses [11,26–33], while humans with ISG15 deficiency have overactive

antiviral responses and no documented susceptibility to viral infections [6–8,25,34–36]. In

turn, these patients suffer from clinical sequalae of chronic inflammation marked by increased

levels of ISGs [6–8,34]. To recapitulate the persistent IFN-I signaling observed in ISG15-defi-

cient patients in vivo, we have optimized an in vitro protocol which permits testing of viral sus-

ceptibility in a physiologically-relevant cell culture model [6]. Replication of RNA and DNA

viruses such as VSV, HSV-1, Influenza A virus, Sendai virus, Nipah virus, and Rift Valley

Fever virus was attenuated in ISG15-deficient, IFN-I-primed cells as compared to healthy con-

trol IFN-I-primed cells [6]. These data suggest that ISG15-deficiency may actually provide for

increased resistance to severe viral infections.

IFN-I signaling and the role of ISG15 in the context of HIV-1 infection is poorly under-

stood. As expected, IFN-I stimulation has been shown to inhibit HIV-1 replication, due to the

induction of several ISGs that function as general antivirals [37–52]. Among these, ISGylation

of Gag was demonstrated to inhibit HIV-1 budding [11,53–55]. Yet, more recently, a proviral

role for USP18 in primary human macrophages was described [56,57]. Given these conflicting

data regarding the HIV-1-specific antiviral or proviral effects of ISG15, we sought to
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investigate the role of ISG15 in regulating susceptibility to HIV-1 infection. Specifically, we

investigated these functions under the physiological low-level expression of ISGs observed in

ISG15-deficiency.

Results

ISG15 deficient, IFN-primed cells are less susceptible to HIV-1 infection

To determine HIV-1 susceptibility of ISG15-deficient, IFN-I-primed cells, we used hTERT-

immortalized fibroblasts derived from ISG15-deficient patients to generate a tractable cell cul-

ture model system [7]. We used healthy control or ISG15-deficient patient fibroblasts trans-

duced with either RFP-luciferase (negative control) or wildtype (WT) ISG15 [7]. Cells were

prime-rested with IFN-I by treating them with 1000 IU/mL IFNα2b for 12 hours, upon which

cells were washed and allowed to rest for 36 hours (Fig 1A). At this timepoint, cells with WT

ISG15 are no longer signaling an IFN-I response, whereas cells lacking ISG15 remain in an ele-

vated inflammatory state, which recapitulates chronic IFN-I signaling that persists in patients

with ISG15 deficiency [6]. After this prime-rest, cells were infected with increasing doses of a

single-cycle HIV-1 NL4-3 Δenv expressing Firefly Luciferase in the position of Nef and pseu-

dotyped with a VSVg envelope (HIV-1e- Luc/VSVg). At day 2 post infection (96h in Fig 1A),

the level of infection was measured by quantifying luciferase expression. Single-cycle HIV-1

infection was reduced by more than 100-fold in IFN-I-primed ISG15-deficient cells compared

to unprimed ISG15-deficient cells, while only a modest 2.8-fold difference was observed in

WT IFN-primed cells compared to WT unprimed cells (Fig 1B). This result suggests that,

indeed, the absence of ISG15 limits HIV-1 infection.

To confirm that the effect observed was specifically dependent on ISG15 deficiency, we

complemented the ISG15-deficient or healthy control cells with WT ISG15 or RFP as a

Fig 1. ISG15 deficient, IFN-primed cells are less susceptible to HIV-1 infection. A: hTERT-immortalized fibroblasts

were primed with type I IFN (IFNα2b, 1000 units/mL) for 12 hours, washed and rested for 36 hours followed by

infection with HIV-1-VSV-Luc. Cells were lysed 48 hours after infection, upon which HIV-1-luciferase expression was

measured. B: Serially diluted HIV-1 (0.1, 0.5, 2.5 and 12.5 μL) was used to infect WT and ISG15-/- cells with and

without IFN priming. Infections were done using cell lines from 2 unrelated WT controls and 2 unrelated ISG15-/-

patients. Representative experiments are shown. RLU: relative light units. C: The parental ISG15-/- cell lines were

complemented with RFP or ISG15 and infected as described above. Complementation with ISG15 abolishes the

restriction. All infections were conducted in triplicates. Error bars represent SD. Significance was determined using t-

tests (Prism 7 software; ���� denotes P<0.0001; �� denotes P<0.01).

https://doi.org/10.1371/journal.ppat.1010405.g001
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negative control and infected these cells following the same prime-rest procedure outlined in

Fig 1A. Consistent with Fig 1B (right), ISG15-deficient, IFN-I-primed cells are less susceptible

when compared to ISG15-deficient unprimed cells (Fig 1C). Complementation of ISG15-defi-

cient cell lines with WT ISG15 yields IFN-I-primed cells that are more susceptible to HIV-1

infection compared to RFP-complemented ISG15-deficient cells. Taken together, these data

suggest that ISG15-deficient cells restrict HIV-1 in an ISG15-dependent manner.

Complementation with WT or ΔGG ISG15 is sufficient to restore HIV-1

susceptibility

To test whether ISGylation or the negative regulatory function of free ISG15 is necessary for

the observed proviral phenotype, we used healthy control and ISG15-deficient patient-derived

fibroblasts, transduced with either empty vector containing RFP-luciferase (negative control),

WT ISG15, or ISG15ΔGG [7]. The ISG15ΔGG mutation was previously shown to maintain

the negative regulatory capacity due to its retained ability to bind and stabilize USP18, while

failing to modify targets by ISGylation [7]. Fibroblasts were prime-rested as previously

described in Fig 1A and infected with single cycle HIV-1e- GFP/VSVg (in this case, luciferase

was replaced by GFP to allow for enumeration of infected cells by flow cytometry) as described

above. GFP-positive cells were quantified by flow cytometry analysis, and infectivity was calcu-

lated as percent of GFP-positive cells relative to C1 healthy control cells (Fig 2A and 2B). As

anticipated, ISG15 complementation of control cells, which endogenously express ISG15, did

not change susceptibility to infection with or without IFN-I-priming (Fig 2A). Complementa-

tion with WT ISG15 in the ISG15-deficient patient cells significantly increased the percent of

GFP-positive cells in IFN-I-primed cells (Fig 2B). Similarly, complementation with

ISG15ΔGG in the ISG15-deficient patient cells also significantly increased infection in IFN-

primed cells (Fig 2A and 2B), while complementation with RFP did not change the number of

HIV-1 infected cells. To confirm these results in an isogenic system, we also compared an

ISG15 CRISPR knock out (KO) cell line (C1 ISG15KO) generated on a WT background to

their parental line (healthy control C1), by infecting each with single-cycle HIV-1e- GFP/

VSVg and quantifying infectivity by flow cytometry analysis on day 3 post infection (Fig 2C

and 2D). Again, complementation with WT ISG15 or ISG15ΔGG in C1 ISG15KO cells, but not

control C1 cells, increased infection in IFN-I-primed cells. Together these findings indicate

that the proviral role of ISG15 in HIV-1 infection is an ISGylation independent process.

ISG15-deficient primary CD4+ T cells were less susceptible to HIV-1

infection

To more closely approximate natural HIV-1 infection, we next investigated the role for ISG15

with and without an IFN-I prime in primary human CD4+ T cells, the physiological target of

HIV-1 infection. We generated ISG15 knockout CD4+ T cells using CRISPR-Cas9 nucleofec-

tion (outlined in Fig 3A). CD4+ T cells were edited with either non-target control guide 1

(NTCg1) or ISG15 guide 1 (ISG15g1) CRISPR Cas9 ribonucleoproteins (RNPs). Efficient

ISG15 knockout in primary CD4+ T cells (with and without 24 hours of IFN-I treatment) was

confirmed by Western blot (Fig 3B). Four days after CRISPR genome editing (and 24 hours

after IFN-I treatment), we observed a low level of basal ISG15 expression in NTCg1-targeted

cells, which increased upon IFN-I treatment (Fig 3B, left). In contrast, ISG15g1-targeted cells

did not express detectable levels of ISG15 protein with or without IFN-I treatment (Fig 3B,

right).

In order to determine the role of ISG15 in HIV-1 infection in primary CD4+ T cells, we

infected the ISG15KO CD4+ T cells with HIV-1. Briefly, CRISPR-targeted cells that were
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stimulated with anti-CD3/CD28 were rested for 3 days, after which they were stimulated with

0, 10, 100, or 1000 IU/mL of IFNα2b (Fig 3A). Samples of cells were lysed for Western blot

analysis to validate ISG15 knockout (Fig 3B). After 24 hours of IFN-I stimulation (day 4, Fig

3A), cells were infected with replication-competent HIV-1 NL4-3 Nef-IRES-GFP (HIV-

1-GFP) for 8 hours. Infection was measured by quantification of GFP-positive cells by flow

cytometry at day 6 post infection (day 10 after CRISPR, Fig 3A). Individual donor GFP-posi-

tive percentage results are shown in S1 Fig. To combine results of three donors, duplicates

were averaged and percent infectivity was calculated relative to NTC-targeted cells without

IFN-I treatment. Our results demonstrate that ISG15 KO cells are less susceptible to HIV

infection when pretreated with 1000 IU/mL of IFNα2b (Fig 3C). This is true for the 10 and

100 IU/mL doses as well, but the donor variation limits the statistical significance.

Fig 2. ISG15 complementation restores HIV-1 susceptibility. A, B,: hTERT-immortalized fibroblasts from healthy

controls (A) and ISG15-deficient patients (B) were complemented with WT ISG15, ISGylation defective ISG15, or

Luciferase RFP as a negative control. Cells stimulated with IFN-I overnight and rested for 36 hours were infected with

HIV-1-VSV-GFP reporter virus. Flow cytometry was performed to quantify GFP-positive HIV-1-infected cells.

Infectivity normalized to the parental cell-line is shown for mock primed (no IFN) and IFN primed cells. Error bars

denote SD. (N = 4) ���� denotes P<0.0001; ��� denotes P<0.001; �� denotes P<0.01; � denotes P< 0.05 as determined

by student’s two-tailed t-test. C, D: hTERTimmortalized fibroblasts from healthy controls (C) or ISG15 knockout

healthy controls (D) were complemented with WT ISG15, ISGylation defective ISG15 (ISG15ΔGG), or Luciferase RFP

as a negative control. Cells stimulated with IFN-I overnight and rested for 36 hours were infected with HIV-

1-VSV-GFP reporter virus. Flow cytometry was performed to quantify GFP-positive HIV-1-infected cells. Infectivity

normalized to the parental cell-line is shown for mock primed (no IFN-I) and IFN-I primed cells. Error bars denote

SD. (N = 3) ���� denotes P<0.0001; ��� denotes P<0.001; �� denotes P<0.01; � denotes P<0.05 as determined by a

student’s two-tailed T test.

https://doi.org/10.1371/journal.ppat.1010405.g002
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Interestingly, MX1, an antiviral host protein, expression is increased in IFN-I stimulated,

ISG15 gRNA targeted cells compared to NTC gRNA targeted controls (Fig 3B), suggesting

ISG15-deficient cells upon IFN-I stimulation may be in a heightened antiviral state compared

to control IFN-I stimulated cells. Taken together, the loss of ISG15 expression restricted HIV-

1 infection, not only in hTERT-immortalized fibroblasts, but also in primary human CD4+ T

cells, the main target cell population of HIV-1.

Loss of ISG15 in primary CD4+ T cells lead to an increase in select

interferon stimulated genes

To investigate the mechanisms of how ISG15 deficiency shapes the transcriptomic landscape

to enhance HIV-1 immunity of T cells, we performed RNA sequencing on CRISPR-edited pri-

mary CD4+ T cells. Non-electroporated, NTCg1- and ISG15g1-targeted CD4+ T cells were

incubated with IFNβ (1,000 IU/mL) for 24 hours and lysed prior to RNA extraction and RNA

sequencing (RNAseq). Unstimulated non-electroporated, NTCg1- and ISG15g1-targeted

CD4+ T cells were used as controls.

The transcriptome analysis revealed that the knock-down of ISG15 in primary CD4+ T cells

resulted in upregulation of a specific ISG signature upon IFNβ stimulation (Fig 4A and 4B).

Among these, IFI27, ISG20, HERC6, MX2, N4BP1, MICB, YTHDF3, and IRF7 have previously

been described to negatively affect HIV-1 replication, [42–44,58–63]. In addition, our study

also indicated a putative role for novel mediators of HIV-1 immunity, namely ZBP1, LAMP3,

CXCL10, LGALS9, and ANKYF1, all of which have been associated with HIV-1/AIDS disease

progression [64–71]. LY6E was shown to differentially regulate HIV-1 infection depending on

cell surface CD4 expression levels [71,72]. Although not a canonical ISG, we document

YTHDF3 expression as increased in ISG15-deficient CD4+ T cells stimulated with IFN-I (Fig

4A). We and others previously reported that YTHDF3 negatively affects HIV-1 replication by

Fig 3. ISG15-deficient primary CD4+ T cells are less susceptible to HIV-1 infection. A: Primary CD4+ T cells were

targeted with either non-targeting control (NTC gRNA) or ISG15 (ISG15 gRNA) CRISPR RNPs. On day 3, cells were

treated with 0, 10, 100, or 1000 IU/mL IFNα2b for 24 hours. On day 4 (24 hours after IFN treatment) cells were

infected with replication-competent HIV-1-GFP. Flow cytometry was performed on Day 10 (6 days post HIV-1

infection) to quantify GFP-positive HIV-1-infected cells. B: ISG15 knockout efficiency in primary human CD4+ T cells

was assessed by Western blotting. Representative Western blot of CRISPR-targeted CD4+ T cells lysed 24 hours post

IFNα2b treatment. C: Infection of IFNα2b-primed, CRISPR-targeted CD4+ T cells using HIV-1-GFP was performed

in duplicate. Duplicates were averaged and percent infectivity was calculated relative to NTC-targeted non-IFN-I

treated. Three donors are shown. GFP-positive cells were quantified 6 days post infection. Multiple, unpaired T tests

were performed and P value is denoted in the figure. NS denotes T test result was non-significant.

https://doi.org/10.1371/journal.ppat.1010405.g003
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Fig 4. RNA-seq analysis of CRISPR-Cas9 ISG15 knockout in primary CD4+ T cells reveals parallels to human

ISG15 deficiency. A: Differential gene expression heatmap between IFNβ stimulated (1000 IU/mL) CRISPR-Cas9

ISG15 knockout primary CD4+ T cells and non-targeting/non-edited controls shows elevated levels of interferon-

stimulated genes (ISGs) in ISG15ko primary CD4+ T cells. Represented genes are the union of differentially expressed

genes identified during IFNβ stimulation of CRISPR-Cas9 ISG15ko and IFNβ stimulation of the non-targeting controls,

respectively. Differentially expressed genes (DEGs) were further filtered against a p-value of p<0.01. Flagged genes

represent differentially expressed interferon-stimulated genes. YTHDF3 is not an ISG and is denoted by a star in the

heatmap. B: Normalized count bar plots derived from RNA-seq data of select differentially expressed genes during

IFN-b stimulation reveal elevated levels of ISGs in ISG15ko primary CD4+ T cells relative to non-targeted guide control

cells. Bars represent mean normalized count values. C: Gene set variation analysis of differentially expressed genes

identified during IFN-b stimulation of CRISPR-Ca9 ISG15ko primary CD4+ T cells confirms an IFN-I response

signature in ISG15ko primary CD4+ T cells. D: UMAP representation of unsupervised clustering results of single-cell

RNA of 3,780 ISG15-/- patient (n = 2357 cells) and age-matched healthy control (n = 1423 cells) peripheral blood

mononuclear cells. Points are colored by CD4+ T cell subset supervised annotation. E: Gene expression UMAPs of

classical CD4+ T cell marker gene RNA transcripts in ISG15-/- patient and age matched healthy control PBMCs. Point

color intensity is scaled between the 1st percentile (lo) and the 99th percentile (hi) of natural log normalized gene
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limiting HIV-1 reverse transcription [62,73]. Further, unsupervised gene set variation analysis

showed expected expression signatures in IFNβ stimulated primary CD4+ T cells (Fig 4C).

Together, these results suggest that there is likely a set of ISGs in ISG15-deficient CD4+ T cells

that is sufficient to reduce the susceptibility of primary CD4+ T cells to HIV-1 infection.

To assess whether the elevated ISG expression signatures detected were comparable to pat-

terns identified in ISG15-deficient patients, we re-analyzed a single cell RNA-sequencing data-

set [34,74] of PBMCs isolated from an ISG15-deficient patient and a healthy control (Fig 4D).

A closer investigation into the CD4+ T-cell compartment (defined based on the expression of

canonical markers), our supervised analysis identifies four clusters present in both ISG15-defi-

cient patient and healthy controls (Fig 4D and 4E). Gene set score analysis of the IFN-alpha

response signature at single cell resolution reveals elevated levels of ISGs in ISG15-deficient

patient CD4+ T cell subsets, with significant differences in clusters 1 and 3 (Fig 4F). Evaluation

of average expression values of IFN-I related genes in the CD4+ T cell compartment suggests

that our CRISPR edited ISG15KO primary CD4+ T cell model are transcriptionally similar to

patient derived CD4+ T cells (Fig 4G). Indeed, the transcriptional program of CD4+ T cells

from an ISG15-deficient patient noted here is likely to result in increased resistance to HIV-1

replication.

Discussion

The function of ISG15 in HIV-1 immunity remains an area of active investigation [6,8,36]. We

observed here that ISG15-deficient patient fibroblasts were more resistant to HIV-1 infection

than WT cells (Figs 1 and 2). This susceptibility was reversed when cells were complemented

with WT or ΔGG ISG15 (Figs 1 and 2), suggesting that ISGylation was dispensable for this pro-

cess. We found ISG15 deficiency limits HIV-1 infection not only in fibroblasts, but also in

human primary CD4+ T cells (Fig 3).

Our results point to ISG15 as a predominantly positive regulator of HIV-1 infection (“a

proviral ISG”) in human cells, unlike previous studies suggesting an antiviral role for ISGyla-

tion. It was previously reported that ISG15 expression is elevated in PBMCs of patients

infected with HIV-1 compared to healthy controls, and that ISG15 expression levels correlated

with higher plasma viral loads [75]. While this elevation is likely a result of the elevated sys-

temic inflammation in HIV-1 positive individuals, these elevated levels of ISG15 may be

advantageous for HIV-1 replication as it enhances the inhibition of IFN-I signaling.

Since IFN-I pre-treatment limited HIV-1 infection in WT primary human CD4+ T cells

(Fig 3C and 3D), and to a greater extent in ISG15KO cells, upregulation of a combination of dif-

ferentially expressed genes is likely responsible for the HIV-1 resistance demonstrated here. Of

the upregulated genes, a large fraction are ISGs (Fig 4A, right). Among these ISGs, many of

them have previously been reported to be antiviral against HIV-1 or antiviral in general and

likely contribute to limiting HIV-1 replication in the absence of ISG15 (Fig 4A–4C).

The results of this study align with previous results demonstrating that ISG15 deficiency

restricts different viral infections [6–8,25,34–36]. Interestingly, ISG15 has previously been

shown to act as an antiviral HIV-1 restriction factor. First, ISGylation was shown to restrict

HIV-1 by limiting accumulation of misfolded p53 [56]. This manuscript demonstrates that the

expression count values. F: Gene set score distributions for IFNα signaling in CD4+ T cell subsets. The HALLMARKS:

IFNa_RESPONSE gene set was extracted from MSigDB Hallmark collection and used as input in Seurat’s

AddModuleScore function. G: Average gene expression heatmap of the HALLMARKS: IFNa_RESPONSE gene set in

ISG15-/- patient and healthy control CD4+ T cell subsets. Heatmap color intensity represented log normalized average

expression. Average expression value for each patient-cluster condition calculated from Seurat’s AverageExpression

function.

https://doi.org/10.1371/journal.ppat.1010405.g004
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protease activity of USP18 stabilizes misfolded mutated p53, which requires ISG15 for its deg-

radation. Second, ISGylation of Gag by the E3 ligase HERC5 was shown to restrict HIV-1 par-

ticle production in U2OS cells [54]. Finally, overexpression of ISG15 was shown to restrict

HIV release in 293T cells [53]. While all these well controlled studies indicate that ISG15 can

be antiviral, these studies did not examine the role for ISG15 in the context of its negative regu-

latory capacity of IFN-I. In the naturally occurring ISG15 deficiency, the primary role for

ISG15 is that of a negative regulator of IFN-I, which minimizes ISG15’s function as an antiviral

molecule.

Furthermore, and in line with our work, two independent studies show that USP18 knock-

down restricts HIV replication [52,57]. Given that ISG15 acts to stabilize USP18, which nega-

tively regulates JAK-STAT signaling, this makes ISG15 deficiency a de facto partial USP18

deficiency [7], which results in restriction of HIV-1 replication.

Overall, our findings confirm the principal role for ISG15 as a negative regulator of IFN-I

signaling and points to novel ISGs in primary human CD4+ T cells whose effector function in

the context of HIV-1 replication remains to be explored.

Materials and methods

Ethics statement

Peripheral blood lymphocytes were purchased from New York Blood Center from anonymous

donors. The investigators had no direct interactions with blood donors or influence on the

selection of PBMCs. This work is regarded as non-human subject research.

Cell culture

hTERT immortalized fibroblasts were stably complemented with ISG15, ISG15ΔGG or lucifer-

ase by lentiviral transduction [6,7]. hTERT immortalized fibroblasts, and the TZM-bl reporter

cell-line (cat#8129, NIH AIDS Reagent Program, Division of AIDS, NIAID, National Institutes

of Health [76–80]) were maintained in Dulbecco’s modified Eagle medium (DMEM, Corning)

in the presence of 10% fetal bovine serum (FBS; GemCell), 100 IU penicillin, and 100 μg/mL

streptomycin (D-10) at 37˚C and 5% CO2.

Primary human CD4+ T cells were purified from peripheral blood lymphocytes obtained

from anonymous healthy blood donors (New York Blood Center). Ficoll (Ficoll Hystopaque;

Sigma) density centrifugation was performed as per the manufacturer’s instructions. CD4+ T

cells were negatively selected using magnetic beads (CD4+ T-cell Isolation Kit I; Miltenyi Bio-

tec) and were maintained in RPMI 1640 (Corning) supplemented with 10% FBS (Gibco), 100

IU penicillin, 100 μg/mL streptomycin, 1x Glutamax, 10 mM HEPES, and 20 U/mL recombi-

nant human IL-2 (NIH AIDS Reagent Program, Division of AIDS, NIAID, National Institutes

of Health) (R-10-IL2) at 37˚C and 5% CO2.

Genome editing

Primary human CD4+ T cell Cas9 Ribonucleoprotein (RNP)-mediated gene editing experi-

ments were carried out as previously described [62,81,82]. Primary CD4+ T cells (2.5 × 106

cells/mL) were stimulated for 3 days at a volume of 500 μL per well with plate-bound anti-CD3

(Clone UCHT1; Tonbo) and suspended anti-CD28 (5 μg/mL; Clone CD28.2; Tonbo). Guide

RNA (gRNA) was designed using the Benchling tool to target ISG15 (ISG15g1: 5’-CCGCCAG

CATCTTCACCGTC-3’). The non-targeting control guide (NTCg1) used was previously pub-

lished [82]. Generation of Cas9 RNPs and nucleofection of primary CD4+ T cells was per-

formed exactly as previously described [62].

PLOS PATHOGENS ISG15 deficiency restricts HIV-1 infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010405 March 25, 2022 9 / 17

https://doi.org/10.1371/journal.ppat.1010405


Western blots

Primary CD4+ T cells were lysed in RIPA buffer (Thermo Fisher Scientific) supplemented

with 1x protease/phosphatase inhibitor cocktail (Cell Signaling Technology). Lysates were

incubated with DTT and NuPAGE LDS sample buffer (Invitrogen). Lysates were run on 12%

Criterion TGX gels (BioRad) and transferred to Amersham Hybond polyvinylidene difluoride

(PVDF) blotting membranes (Cytiva). Western blots were blocked in 5% BSA in TBS 0.1%

Tween and washed in TBS 0.2% Tween. Western blots were incubated with secondary anti-

body in 5% milk in TBS 0.1% Tween. Western blot chemiluminescence was detected with

SuperSignalTM West Femto Substrate (Thermo Scientific). Imaging of the Western blot bands

was performed using AlphaView software (ProteinSimple). The following antibodies were

used for immunoblots: α-ISG15 (clone F9, 1:500, Santa Cruz Biotech, Cat# sc-166755), α-MX1

(1:1000, Abcam, ab95926), α-GAPDH (clone 6C5, 1:10,000, Sigma Aldrich, MAB374).

Plasmids

The HIV-1 NL4-3 Δenv Luc construct was kindly provided by N. R. Landau [83]. HIV-1 NL4-

3 Δenv eGFP (reagent #11100, [84]) was obtained through the AIDS Research and Reference

Reagent Program, Division of AIDS, NIAID, National Institutes of Health. The VSVg envelope

was expressed from plasmid phCMV G [85]. The HIV-1 NL4-3 Nef-IRES-GFP (HIV-1-GFP)

construct was kindly provided by B. K. Chen [86].

Production of viral stocks

Single-cycle viruses HIV-1 NL4-3 Δenv-eGFP and HIV-1 NL4-3 Δenv-Luc were generated

and pseudotyped with VSVg by transfection of HEK293T cells with Polyethylenimine (PEI)

(Polysciences). Three days after transfection, culture supernatants were harvested, clarified at

500 x G, filtered (0.45 μm), aliquoted, and stored at -80˚C.

Replication competent (HIV-1-GFP) virus was generated by transfection of HEK293T cells

with PEI (Polysciences). Two days after transfection, culture supernatants were harvested, fil-

tered (0.45 μm), aliquoted, and stored at -80˚C.

TZM-bl cells containing the β-galactosidase reporter gene driven by the HIV-1 long termi-

nal repeat, were used to determine viral titers (TCID50/mL) of viral stocks produced as previ-

ously described [87].

IFN-I priming

Fibroblasts were prime-rested as described previously [6], by treating with IFNα2b (Merck

Intron A 0085-4350-01) (1000 IU/mL) in D-10 media for 12 hours, upon which cells were

washed three times with PBS, fresh D-10 media was added, and the cells were allowed to rest

for 36 hours before infection.

CRISPR-targeted CD4+ T cells were stimulated with IFNα2b (10, 100, 1000 IU/mL) in R-

10-IL2 media for 24 hours.

HIV-1 infection experiments

Prime-rested fibroblasts were infected with increasing doses of HIV-1-VSV-Luc. The level of

infection was determined 48 hours post infection by quantifying Firefly Luciferase using the

Luciferase Assay System kit (Promega).

Prime-rested fibroblasts were infected in triplicate with HIV-1-VSV-GFP overnight in the

presence of polybrene (5 μg/mL). D-10 media was changed the next morning. The level of

infection was determined on day 4 post infection by quantifying GFP-positive fibroblasts by
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flow cytometry (Luminex Guava easyCyte). Flow cytometry data was analyzed with Luminex

Guava InCyte software.

IFN-primed CD4+ T cells were infected with HIV-1-GFP for 8 hours in the presence of

polybrene (2 μg/mL). After 8 hours, viral supernatant was removed and R-10-IL2 culture

media was replenished. Media was changed on days 3 and 5 post infection. The level of infec-

tion was determined on day 6 post infection by quantifying GFP-positive CD4+ T cells by flow

cytometry (Luminex Guava easyCyte). Flow cytometry data was analyzed with Luminex

Guava InCyte software.

RNAseq

Primary CD4+ T cells were nucleofected with NTCg1 or ISG15 CRISPR RNPs as described

above for 3 days and then either stimulated or not with 1000 U/mL of IFNβ1b (PBL Assay Sci-

ence, cat. 11420–1) for 24h. Cells were lysed in TRIzol Reagent (Invitrogen) and RNA was

extracted per the manufacturer’s instructions. Total RNA was treated with RNase-Free DNase

(QIAGEN 79254) and prepped for RNAseq with the TruSeq RNA Sample Prep Kit v2 (Illu-

mina). 75 bp unpaired reads were generated on a NextSeq 550 (Illumina). Raw bcl image pro-

cessing, fastq generation, reference genome alignment and feature counting were conducted

using the RNA Express module in the BaseSpace suite (Illumina). Raw gene-sample counts

matrices were extracted and read into the R statistical environment and further analyzed using

the DESeq2 package [88]. Differentially gene expression testing was conducted contrasting

CRISPR ISG15ko primary CD4+ T cells during IFN stimulation. Similar DGE testing was done

contrasting the non-targeting guide controls. Resulting gene lists were filtered on a p-value of

p<0.01 and expression values visualized using the ComplexHeatmap and ggplot2 packages.

Single-cell RNAseq (scRNAseq)

Previously published single-cell RNA-sequencing data of PBMCs from a patient with human

ISG15 deficiency (N = 1) and a healthy control (N = 1) from Martin-Fernandez et al. (34) was

accessed and analyzed. Raw gene-cell matrices were read into the R (v4.0.4) statistical environ-

ment and analyzed using Seurat (v4.0.1) for quality control, integration, clustering, and differ-

ential gene expression [89]. For quality control, data were filtered to exclude genes detected in

less than three cells (per subject), to exclude cells with < 200 expressed genes (empty droplets)

and to exclude cells with> 7.5% UMIs assigned to mitochondrial genes (dying cells). Filtered

data were independently normalized using Seurat’s SCTransform function (developer’s default

parameters) [90]. To account for subject-specific effects, both data sets were integrated using

Seurat’s FindIntegrationAnchors and IntegrateData functions (developer’s default parame-

ters). Dimensional reduction of the integrated data set was performed by principal component

analysis (PCA) and first 25 principal components were used for unsupervised graph-based

clustering (resolution: 1.2) and visualized by Uniform manifold approximation and projection

(UMAP; parameters: n.dims: 25, n.neighbors: 30, metric: cosine). Supervised analysis was then

conducted to subset CD4+ T cell clusters using canon immune markers (CD3, CD4, CD27,

CCR7). IFNa gene signature scores (input genes were included from MSigDB HALLMARKS:

IFNa RESPONSE) were then computed at single-cell resolution using Seurat’s AddModule-

Score function.

Supporting information

S1 Fig. Primary CD4+ T cells were targeted with either non-targeting control (NTC gRNA)

or ISG15 (ISG15 gRNA) CRISPR RNPs. On day 3, cells were treated with 0, 10, 100, or 1000
IU/mL IFNα2b for 24 hours. On day 4 (24 hours after IFN treatment) cells were infected with
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replication-competent HIV-1-GFP. Infection of IFNα2b-primed, CRISPR-targeted CD4+ T cells
using HIV-1-GFP was performed in duplicate. Flow cytometry was performed on day 6 post
infection to quantify GFP positive cells. The percent of GFP positive cells is shown for three
donors.
(TIF)
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