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Abstract—Unmanned aerial vehicle (UAV) remote sensing im-
ages used for semantic segmentation possess distinct features
compared to urban street scene images, including high resolution
and a complex background. Spatial information plays a pivotal
role in enhancing the performance of semantic segmentation
for high-resolution images. The dual-branch architecture for
semantic segmentation incorporates supplementary branches to
capture spatial information. However, prior research on dual-
branch semantic segmentation neglected the interaction between
the contextual and spatial branches, leading to suboptimal
model performance. In this discourse, the paper introduces
a dual-branch semantic segmentation framework. This design
advances the system’s understanding of spatial information while
facilitating inter-branch learning through two key modules.
Initially, the spatial calibration feature extraction module em-
ploys frequency domain processing and learning tactics distinct
from the contextual approach to generate image features under
varied noise conditions. Calibration is achieved by generating
features from diverse angles. Subsequently, the spatially-guided
loss function directs the acquisition of spatial information for
the spatial branch by condensing the deep image characteristics
for the context branch. To assess the generalization capac-
ity of the proposed method, experiments will be conducted
on three different datasets. The proposed method’s modules
will be integrated into three representative dual-branch net-
works, allowing assessment of the generalization capacity of
the key DBCG components. Empirical evidence demonstrates
that this approach is highly effective, significantly surpassing
the performance of the baseline network. Code is available at
https://github.com/yikuizhai/DBCG-Net-master.

Index Terms—CNN, deep learning, semantic segmentation,
dual-branch calibration guided network, UAVs.
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I. INTRODUCTION

COmpared to satellite and aerial remote sensing, UAVs
provide high-resolution imagery, detailed information on

specific areas, and flexible imaging characteristics. Conse-
quently, UAVs have emerged as a field of considerable interest
[1], [2]. UAV imagery has found extensive applicability in
research disciplines, notably environmental surveillance [3],
precision farming [4], [5], accurate vehicle segmentation [6],
and urban scene analysis [7]. UAVs frequently serve in damage
assessment caused by natural calamities due to their rapid
deployment prowess and adaptable information gathering ca-
pacity. For example, emergency detection of building col-
lapses, floods, and fires [8], [9]. Within the realm of preci-
sion agriculture, UAVs prove to be instrumental in detecting
crop lodging conditions [10]. Furthermore, in response to the
scarcity of UAV datasets, a multitude of UAV datasets have
emerged in recent years. For instance, ManipalUAVid [11]
offers a dataset for UAV-based video semantic segmentation.
Additionally, UAVPal [12] presents complex urban scenes
from the UAV’s perspective in Bhopal, Madhya Pradesh.
Furthermore, there has been burgeoning interest in broad-
scale models. SpectralGPT [13] introduced a comprehensive
large-scale model tailored for the processing of remote sens-
ing imagery. Currently, UAVs are utilized in both civilian
and strategic capacities with an emphasis on information
acquisition via visual sensors. Deep learning methods play
a crucial role in enhancing UAVs’ understanding of image
data. Currently, UAVs have witnessed substantial progress
in tasks, including object detection and recognition, within
the domain of image applications. In recent years, research
on UAV semantic segmentation has proliferated, indicating
considerable potential for advancements in this area.

Semantic segmentation, pivotal for scene comprehension,
is a deep learning-based image processing technique designed
for dense prediction through pixel-by-pixel classification. This
approach has found widespread application in distinct sec-
tors, such as autonomous driving [14] and medical imaging
[15]. Particularly, for applications requiring both location and
boundary information in images, UAV semantic segmentation
proves indispensable. This information can be captured at
any moment, laying the groundwork for subsequent tasks.
Research on semantic segmentation for UAV imagery is crucial
for advancing applications utilizing UAV technology. While
semantic segmentation algorithms have achieved significant
results in the realm of autonomous driving, UAV scenarios
present unique challenges, including higher image resolution,
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Fig. 1. A Dual-branch Calibration Guided Deep Learning Framework. ARM denotes Attention Refinement module, and FFM denotes Feature Fusion Module
in [21]. The SCFEM is depicted in the pink background box, while the blue dashed box serves to delineate the Filtering process.

a larger field of vision, and more complex background data
compared to images from autonomous driving contexts. For
example, in UAV-related scenarios, object size variations are
more pronounced compared to autonomous driving scenes,
primarily due to differences in altitude. To address this is-
sue, [16] introduces a solution in the form of a multi-scale
convolutional neural network architecture, complemented by
the utilization of superpixels. To tackle large-scale variations
in UAV images, [17] introduces a multi-attention network that
incorporates bidirectional fusion of multi-scale features, lead-
ing to enhanced feature extraction across multiple scales. The
efficacy of this approach was demonstrated through promising
results obtained on the UAVid dataset [18]. Despite significant
progress made by existing semantic segmentation networks
across various scene segmentations, UAV remote sensing
semantic segmentation still faces numerous challenges, such as
UAV images frequently encompassing a multitude of objects
and intricate environments, making the detection of smaller
objects within the images arduous. Moreover, challenges are
compounded in UAV semantic segmentation due to factors
like indistinct segmentation boundaries and ambiguity in seg-
menting the surrounding environments. To address challenges
related to small objects and segmentation boundaries, a V-
shaped encoder-decoder architecture is proposed [1]. This
architecture incorporates upsampling, downsampling, and skip
connections to enhance segmentation effectiveness for small
targets and boundaries by refining the spatial detail feature
maps extracted from the backbone. Cross-city scenarios could

potentially impact the model’s performance. C2Seg [19] offers
a cross-city multimodal remote sensing dataset and introduces
HighDAN (High-Resolution Domain Adaptive Network) to
improve the model’s generalization across diverse urban envi-
ronments. As a result of the aforementioned challenges and
difficulties, conventional semantic segmentation algorithms,
originally intended for autonomous driving, tend to exhibit
inadequate performance when applied to UAV images. This
underscores the significance of devising robust semantic seg-
mentation algorithms specifically tailored for UAV images.

The suboptimal performance observed when traditional se-
mantic segmentation methods are applied to high-resolution
UAV imagery can be attributed, in part, to the resolution itself.
Effective semantic segmentation algorithms excel for several
reasons, as indicated by prior research [20], with the vital
role of spatial information being one of them, contributing to
improved segmentation performance. A deeper understanding
of such spatial elements can enhance the processing of high-
resolution images. Consequently, developing methods to more
effectively learn and utilize spatial details could significantly
advance UAV scene semantic segmentation techniques. Exist-
ing strategies, such as dilated convolution, aim to uphold ac-
curacy by preserving high resolution. However, the application
of this method incurs significantly high computational costs in
an effort to maintain superior resolution. In reaction to this,
the dual-branch network [21] incorporates an added branch
to learn spatial detail information, ensuring lower resolution
while compensating for spatial information loss through an
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auxiliary branch. Considering the effectiveness of these dual-
branch networks within the domain of semantic segmentation,
adjustments were made to streamline the original structure and
corresponding adjustments to the semantic branch. Regarding
the augmented computational demands imposed by [22], the
integration of an additional spatial branch necessitated the
subsequent recalibration of this specific branch, conducted by
[23].

The fusion of information between the two branches en-
hances the model’s learning efficacy, supported by numerous
studies [24], [25], [26]. Prior methodologies, however, primar-
ily facilitated learning across branches through feature fusion.
In the study by [24], the integration of low-level features
with high-level features is explored, focusing on promoting
information fusion between the dual branches. This integration
aims to facilitate the fusion of high-level features with low-
level features. Nevertheless, these blending techniques share
a common drawback: the discrepancy between deep and
shallow features requires either up-sampling of low-resolution
elements or down-sampling of high-resolution ones. In this
process, an inevitable loss of information may occur, leading to
suboptimal outcomes. Drawing from the concept of knowledge
distillation [27], we view this as an information compression
and refinement process. The deep semantic information ap-
proximates what we describe as the teacher model, while the
student model is likened to shallow spatial information. By
condensing the deep semantic information and extracting its
knowledge, we facilitate the learning of shallow information,
thereby addressing the aforementioned issues.

When reviewing the dual-branch network [21], [22], [23],
we identified several issues. Firstly, the spatial branch appears
overly simplistic in its configuration, hindering effective ex-
traction of spatial feature information. Both branches operate
independently without any interaction of information. Sec-
ondly, the direct fusion of information between the two distinct
branches may encounter potential issues due to the significant
difference between semantic and spatial information, poten-
tially compromising the model’s learning efficiency. Lastly,
using identical images as inputs for both branches leads to a
lack of diversity.

In this work, we introduce an Dual-branch Caibration
Guided Neural Network architecture(DBCG-Net). Fig. 1 illus-
trates the main framework diagram. The novelty of this study
lies in the introduction of the concepts of ”calibration” and
”guidance” when compared to existing literature. Firstly, we
propose the notion of ”calibration” within a dual-branch net-
work. Knowledge calibration is a process aimed at improving
accuracy through calibration, which can be achieved using two
methods. The first method, known as repetitive calibration,
involves evaluating the problem repeatedly from the same
perspective and using the same method. Conversely, the sec-
ond method, called differential calibration, entails examining
the problem from distinct perspectives or adopting diverse
approaches. It is evident that employing different methods
or viewpoints to tackle the same problem can yield higher
accuracy in comparison to repeatedly checking from the same
perspective or using the same method. Therefore, based on this
notion, we propose that ”differential calibration” is superior to

repetitive calibration. Building upon this idea, we introduce
the SCFEM module. Diverging from previous dual-branch
networks, which employ identical image features as inputs for
both branches, we advocate for introducing some variation
in the input images between the different branches. The
SCFEM module initially transforms the spatial branch’s image
through frequency domain methods, enabling the capture of
image features while accommodating diverse noise conditions.
Finally, calibration is accomplished by merging the outputs of
the dual branches.

Our proposal focuses on the concept of ”guidance” in dual-
branch learning. Earlier research on the interaction between
dual branches mainly used feature fusion methods, involving
merging the context branch’s features into the spatial branch
or vice versa. In contrast, our paper proposes the use of
knowledge distillation as a technique for feature extraction. We
facilitate the information exchange between the dual branches
by guiding the learning of the spatial branch using deep knowl-
edge from the context branch. We validate the effectiveness of
the proposed method by conducting experiments to introduce
these two concepts. Notable contributions of this research are
summarized below:

1) We presented a dual-branch semantic segmentation
framework designed to improve image semantic seg-
mentation in UAV scenes. The approach focuses on en-
hancing information exchange between the two branches
and increasing the spatial feature information extraction
capacity.

2) The proposed architecture includes a spatial calibration
extraction module. Calibration is an effective method for
ensuring accuracy, and differential calibration surpasses
repetitive calibration. Building upon this concept, the
spatial calibration module introduces variations using fre-
quency domain processing and accomplishes differential
learning through two branches having distinct structures.

3) A spatially-guided loss function is proposed, intended to
deliberate the learning of the spatial branch by leveraging
the compression knowledge derived from deep features of
images in the context branch. This approach promotes
harmonious learning between the two branches of the
dual-branch network during the training phase.

4) This study verified the generalization of the method
on three datasets by integrating the core module of
DBCGNet into three typical dual-branch networks. The
proposed method demonstrated improvements compared
to the baseline networks. Through comparative experi-
ments, this method demonstrates certain competitiveness
over other methods.

The remainder of this paper is structured as follows: Section
II discusses existing methods pertinent to the research. Section
III provides a comprehensive explanation of the methodology
proposed in this study. Section IV delves into detailed exper-
imental results and corresponding analyses. Finally, conclu-
sions drawn from this research are concisely summarized in
Section V.
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II. RELATED WORK
This section provides a concise discussion of methodologies

proposed by researchers in the field of spatial feature extrac-
tion, exploring the evolutionary development of dual-branch
networks.

A. Spatial Feature Extraction

Previous research [15] has indicated that an effective se-
mantic segmentation network should exhibit the following
key attributes: 1. A robust backbone network with profound
extraction capabilities. 2. The integration of multiscale fea-
tures. 3. Implementation of a spatial attention mechanism. 4.
Minimal computational complexity. Previous networks have
consistently aimed to extract spatial information. For instance,
[27] introduced a Context Propagation Network (CPN) guided
by spatial details. This network employs strategies focused on
propagating spatially detailed context, using superficial spatial
details to guide the dispersion of low-resolution contextual
data, thereby reducing computational costs. [28] proposed an
improved dual-branch network, accompanied by a multi-scale
context fusion module (DAPPM), which operates effectively
at low resolution. One branch concentrates on extracting
contextual features, while another emphasizes the retrieval of
spatial information. Subsequently, these contextual and spatial
features undergo fusion at various scales through a multi-
scale context fusion module. The study [29] proposes a model
named HR-ASPP, incorporating precise extraction of spatial
features as well as enhanced extraction of shape features. It
suggests utilizing parallel multi-resolution images and a fusion
structure at multiple scales for effective extraction of spatial
information, resulting in obtaining more accurate positional
information. the SSFA module is proposed [30] to efficiently
map semantic information onto spatial features, thereby im-
proving the saliency of the target region of interest. To obtain
rich spatial features of different scales, [31] applied multi-scale
2-D Singular Spectrum Analysis (SSA) after dimensionality
reduction with SPCA on the image.

Various methodologies outlined above utilize direct spatial
feature extraction on the original image. Nevertheless, owing
to the substantial redundancy inherent in spatial visual infor-
mation, it may lead to heightened computational demands and
the acquisition of superfluous redundant data. Consequently,
parallel subsampling is utilized on the original image to enable
a faster capture of spatial information whilst simultaneously
filtering out superfluous details. Subsequent learning of the
spatial data is guided by context information to foster better
interaction between the two branches, thereby bolstering the
model’s learning capability.

B. Dual Branch Network

Presently, two fundamental framework structures dominate
mainstream semantic segmentation networks: the encoder-
decoder structure and the dual-branch structure. Within the
encoder-decoder architecture, the encoder typically operates
as a robust feature extraction network, deployed to extrapolate
semantic features. It condenses spatial information from im-
ages through repeated convolutional processes, consequently

yielding high-level semantic data. The decoder utilizes an
upsampling technique to reinstate the feature map to the
original dimensions of the image, enabling dense image pre-
dictions. Standard encoder-decoder architectures, exemplified
by UNet [32], incorporate ancillary lightweight lateral connec-
tions above the fundamental processes of encoding and decod-
ing, facilitating upsampling to offset the deficiency in spatial
data. Many subsequent methods are researched based on the
foundation of encoding and decoding. Example models such
as ERFNet [33] and ESPNet [34] utilize an encoder-decoder
structure. While popular, this architecture has two principal
limitations: Firstly, its full U-shaped configuration exacerbates
computational requirements and notably hinders operational
speed when employed with high-resolution feature maps. Sec-
ondly, the compression effect triggered by multiple encoding
convolutions substantially diminishes the spatial information
captured from an image, leading to significant information
loss. Nonetheless, the skip connections employed in U-shaped
structures merely serve as a palliative for spatial information
loss, rather than providing a fundamental solution to the
problem. To address the challenges inherent in the encoding-
decoding framework, [21] proposed a dual-branch structure.
Presently, numerous efficient methods utilize this structure,
including Fast-SCNN [24]. This notable example incorporates
a ”learning downsampling” module to compute the low-level
features across multiple resolution branches based on the
dual-branch structure. BiSeNetV2 [22] advances the usage of
global average pooling for context embedding and additionally
introduces an attention-based fusion module. The CABiNet
[35] utilizes a similar framework to that of the Fast-SCNN
network and employs a more efficient encoding architecture,
specifically, MobileNetV3 [36], during its encoding phase.
In order to enhance the comprehensive integration of global
and spatial information, [37] proposed DBFusion, a dual-
branch network that combines convolutional neural networks
and Swin transformers. The main advantage of this network
lies in its ability to foster complementary interaction between
local and global information through its unique dual-branch
structure. The study by [38] encodes information regarding
small objects by employing a dual-branch network along
with a dual-mask branch to extract features using the dual-
path masking technique. In previous work, each branch of
a dual-branch network previously processed identical input
images independently. These methodologies utilize a dual-
pronged approach for feature extraction from an identical
image. In applied scenarios, the optimal strategy involves
scrutinizing the prevailing problem from multifaceted perspec-
tives, subsequently endorsing and evaluating to diminish error
rates. Hence, the dual-branch input images undergo processing
with distinct forms of noise. Specifically, the context branch
utilizes the pristine image for feature extraction, while the
spatial branch employs a filter on the same image to yield
an alternative noisy output. This strategy facilitates feature
extraction from multiple viewpoints by leveraging the anomaly
between the two branches. The dual-branch network consists
of two branches that operate independently. This is evident in
models such as BiSeNetV1 [21] and BiSeNetV2 [22]. Recent
studies have initiated an exploration into information sharing
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Fig. 2. The workflow diagram of the Spatial Calibration Feature Extraction
Module comprises two main parts. The first part, known as ”Filter,” is
primarily employed for extracting features under different noise conditions.
The second part, referred to as ”Fusion,” assumes the main responsibility of
integrating contextual and spatial branch information.

between these two distinct branches of the dual-branch net-
work. Nonetheless, a noteworthy discrepancy exists between
deep features and shallow features. Their hasty integration
could potentially yield counter-productive results. As indicated
by the Gate-SCNN model [25], the suggested context branch
has attained an elevated comprehension of semantic scene
understanding. The approach employed here diverges from
a conventional process where two branches of features are
reciprocally merged; rather, high-level semantic informational
features direct the shallow features’ development. This paper
aims to enhance the spatial branch’s feature extraction ability,
guiding it towards learning spatial features through the lens of
the context branch’s features.

III. METHODOLOGY
This study introduces a dual-branch calibration guided deep

learning architecture designed for semantic segmentation of
high-resolution remote sensing images gathered from UAVs.
This section delineates each module within the proposed deep
learning structure in detail.

A. Overall Architecture
The DBCG-Net deep learning framework primarily com-

prises two core components: the Spatial Calibration Feature
Extraction Module (SCFEM) and the spatially-guided loss
function(SGL). In the initial phase of the framework, the
system acquires knowledge primarily via two branches that
utilize different noise and learning strategies, processing the
same image from distinct perspectives. Subsequently, in the
second phase, integration of information from both branches
allows for successful calibration and validation functions.
Guided by a deep comprehension of image features contextu-
alized by the teacher model, the spatially-guided loss function
directs the acquisition of shallow spatial details in the spatial
branch. This methodology fosters information sharing between
both branches. while subsequent sections introduce two key
proposed modules: the Spatial Calibration Feature Extraction
Module(SCFEM) and the spatially-guided loss function(SGL).

B. Spatial Calibration Feature Extraction Module
This study proposes the adoption of distinct learning strate-

gies for spatial branches, enabling the transformation of the

supplied input image x′ ⊂ RH×W×C . Such a method allows
both the spatial and context branches to acquire images under a
diverse range of noise conditions. Spatial features are extracted
via the spatial branches of disparate learning frameworks. The
context branch serves to guide spatial branch learning, thereby
supplanting the reciprocal integration previously occurring
between both branches. The flowchart as a whole of the
Module for Spatial Calibration Feature Extraction can be seen
in Fig. 2

Primarily, achieve x′ ⊂ RH×W×C by transmuting the
provided input image, denoted as x′ = FT (x). FT denotes
the transformation function that converts x into x′. The
Fast Fourier Transform (FFT) algorithm is applied to the
image, resulting in fCH . Construct a transformation matrix,
DM ⊂ RH×W , after multiplying the acquired fCH with the
transformation matrix DM ⊂ RH×W , take the absolute value
of the fast Fourier inverse transform to obtain a new image
x′ ⊂ RH×W×C . The transformation function is defined as:

X ′ = |IFFT (FFT (X)DM )| (1)

Construct the transformation matrix, DM ⊂ RH×W . The
primary purpose of this matrix is to filter out noise. Once
filtered, the features of various noise types can be obtained
for use as inputs. To construct DM ⊂ RH×W , it is essential
to determine the distance from each point in the image to the
central point. Here, d and n serve as hyperparameters that aid
in adjusting the extent of noise removal. Let Ldis denote the
Euclidean distance from each point to the central point. In
this context, C denotes the value of the central point, while
xi, xj ⊂ RH×W represents the values of all other points.

DM =
1

(1 + (Ldis/d))2n
(2)

Ldis =
√
(Ci − xi)2 + (Cj − xj)2 (3)

The learning of space information characteristics is steered
by context branching, which in turn informs spatial branching.
Given the substantial redundancy inherent in the original
image data, it becomes vital to compress the transformed
image x′, into a more efficient representation. Doing so allows
for enhanced capture of spatial features. Consequently, parallel
initialization operations are utilized to condense the original
data. Specifically, downsampling and max-pooling operations
are executed independently on the original dataset. Following
the procurement of the preliminary feature map, termed as
x

′

init ⊂ Rc×R
4 ×R

4 , the secondary feature map (denoted as
x

′

e ⊂ Rc×R
4 ×R

4 ) is acquired via the implementation of dilated
convolution. The objective of this phase is to enhance the
spatial receptive field. By directing the learning process of
the spatial branch, the context branch can circumvent the
issue of guidance difficulty that arises due to a substantial
divergence between the two branches. At this stage, the
feature map xs1 ⊂ RC×R

4 ×R
4 , originating from the initial

convolutional layer of the context branch, is combined with
x

′

e to form the feature map xspa This resultant feature map is
subsequently processed through an activation function, thereby
deriving spatial information features. The entire process can
be illustrated as follows:
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Fig. 3. Diagram illustrating the framework of the spatially-guided loss
function (SGL).The proposed architecture employs deep semantic features
to guide spatial branch learning. In this study, we denote the SGL method
proposed in this paper as L.

xspa = σ(cat(conv(Finit(x
′), xs1))) (4)

C. Spatially-Guided Loss Function

Neural networks predominantly generate class probabilities
for each category utilizing a ”softmax” output layer. The
outputs from this layer are transformed from variable zi to
probability pS .

pi =
zi/τ∑

j exp(zj/τ)
(5)

Herein, τ represents temperature, typically assigned a value of
1. An increase in the value of τ results in a more diluted class
distribution. Knowledge Distillation (KD) predominantly em-
ploys Kullback-Leibler divergence to define the loss function.
It posits the spatial branch as the student model, denoting the
context branch as the teacher model. Accordingly, it leverages
the context branch for guiding the learning process of the
spatial branch. Hence, there is a modification in the original
loss function, which is illustrated in Equation (6).

LKD = KL(PC ∥ pS) =

C∑
i=1

pCi log

(
pCi
pSi

)
(6)

In this context, pC symbolizes the class probability resulting
from the transformation of context branch’s output layer zi.
Concurrently, pS represents the class probability derived from
the transformation of the spatial branch’s output layer zi.

An additional dice loss function has been implemented
to address the issue of class imbalance arising from the
rough outcomes produced by the cross-entropy loss function.
Because this function is not sensitive to either foreground
or background information, it can effectively mitigate class
imbalance.

The overall loss function is characterized as follows:

Ldice(pd, gd) = 1−
2
∑H×W

i pidg
i
d + ϵ∑H×W

i (pid)
2 +

∑
i HW (gid)

2 + ϵ
(7)

Loral(·) denotes the original loss function of the model,
Fig. 3 illustrates the schematic diagram of the Spatially-guided
Loss (SGL) method, pd signifies the final prediction result, and
gd stands for Ground Truth. λ is a key hyperparameter; empir-
ical evidence suggests optimal outcomes when this parameter
is set to 0.1. Hence, in the experimental section, the default

value for λ is established as 0.1. Ldice(pd, gd) denotes the dice
loss function, which is given as follows:

L = Loral(pd, gd) + λLKD(PC , PS) + βLdice(pd, gd) (8)

IV. EXPERIMENTS

A. Dataset and Evaluation Metrics

1) Evaluation Metrics: A set of experiments will be carried
out using three distinct datasets: UDD6 [39], UAVid [40], and
Potsdam. These datasets will primarily serve for both ablation
studies and comparative analyses. The network optimization
will employ the Stochastic Gradient Descent (SGD) optimizer,
configured with a learning rate of 0.01 and a momentum set
to 0.9. Ubuntu 18.04 served as the operating system for all
experiments. The code was adapted, and experiments were
conducted using mmsegmentation. The system specifications
included CUDA 11.1, CuDNN 8.0.5, OpenCV 4.6.0, MMCV
1.3.16, and Python 3.7. All experiments were performed on
an NVIDIA GeForce RTX 3080 GPU with a batch size of 1
to assess the performance of different methods. The training
cycle comprises 300 epochs, with the minimum learning rate
identified as 1e-4. Details regarding the specific pre-processing
of images are thoroughly addressed in the introductory seg-
ment of the dataset.

The metric employed for performance evaluation is the
Mean Intersection over Union (mIoU), representing the av-
erage IoU across all categories within the dataset. The math-
ematical formulation of mIoU can be defined as follows:

mIoU =
1

k

k∑
i=1

TP

FN + FP + TP
(9)

In this study, ”TP” denotes True Positives, ”FP” represents
False Positives, ”TN” indicates True Negatives, and ”FN”
refers to False Negatives.

2) Dataset: The UDD dataset is a collaborative effort
involving Peking University, Huludao City, Henan University,
and Cangzhou City, amalgamating various unmanned aerial
vehicle image datasets. This dataset encompasses five pri-
mary categories: vegetation, buildings, roads, vehicles, and
backgrounds. The images in this dataset were segmented into
dimensions of 512×512. Post-segmentation, 3880 images were
assigned to the training set, while 1280 images were allocated
to the test set.

The UAVid dataset represents a comprehensive, high-
resolution semantic segmentation dataset derived from UAV
imagery, particularly focusing on urban street scenes at a
resolution of 3840×2160. This dataset includes 420 images
divided into three distinct sets: 200 images for the training
set, 70 images for the validation set, and the remaining 150
images for the testing set. Given its intricate scenes and high
resolution, it serves as a challenging benchmark. The image
size maintained during the training process is 512×1024 pixels.
Importantly, no data augmentation techniques were applied at
any stage of the process.

The Potsdam dataset consists of high-resolution images
(6000×6000 pixels) with a Ground Sampling Distance (GSD)
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Fig. 4. Example images and labels from ISPRS Potsdam dataset and Processed Example images, The figure comprises color-coded labels, original images
along with their corresponding labels, and processed images employed in the training process.

TABLE I
SPATIAL CALIBRATION FEATURE EXTRACTION MODULE ABLATION

EXPERIMENT

Method mIoU(UDD) mIoU(UAVid) mIoU(Potsdam)
BiSeNetV1 67.4 61.1 69.7
BiSeNetV1+SCFEM 67.9 64.6 70.3
BiSeNetV2 64.2 64.5 67.8
BiSeNetV2+SCFEM 65.6 65.3 68.3
STDC 67.2 65.4 70.1
STDC+SCFEM 69.8 66.1 71.1

TABLE II
SPACE SHARING LOSS FUNCTION ABLATION EXPERIMENT

Method mIoU
(UDD)

mIoU
(UAVid)

mIoU
(Potsdam)

BiSeNetV1+SCFEM 67.9 64.6 70.3
BiSeNetV1+SCFEM+SGL 68.2 66.1 71.0
BiSeNetV2+SCFEM 65.6 65.3 68.3
BiSeNetV2+SCFEM+SGL 66.8 68.8 68.4
STDC+SCFEM 69.8 66.1 71.1
STDC+SCFEM+SGL 72.8 67.6 71.4

of 5 cm, ensuring exceptional clarity. During the training
phase, 3465 images from this dataset were used. Due to the
resource-intensive nature of handling 6000×6000 pixel images
during training, they were resized to 512×512 pixels. The
remaining images constituted the validation set and underwent
identical processing as the training ones. Refer to Fig. 4 for
examples of the cropped dataset’s images and annotations.

B. Ablation Experiments

The ablation study conducted in this article seeks to validate
the efficacy of the Spatial Calibration Feature Extraction
Module (SCFEM) and the Spatially-guided Loss Function
(SGL) proposed in our methodology. Separate ablation studies
will be performed on BiSeNetV1, BiSeNetV2, and STDC. The
detailed testing results are presented in Table I.

TABLE III
ABLATING EXPERIMENT ON THE SCFEM MODULE

Filter Fusion mIoU
(UDD)

mIoU
(UAVid)

mIoU
(Potsdam)

× × 58.9 55.0 57.8
× ✓ 59.2 59.5 66.1
✓ ✓ 64.6 67.9 70.3

Table I shows the improved model. It achieved an accuracy
of 69.8% on the UDD dataset, 66.1% on the UAVid dataset,
and 69.8% on the Potsdam dataset, which reflects an enhance-
ment compared to the baseline. Initially, the top two rows
of the table indicate ablation studies conducted on BiSeNet.
With the advent of the UAVid dataset, an improvement of
3.5% is observed relative to the original methodology. In
the Potsdam dataset, we observed a 0.6% improvement over
the original method, whereas the UDD dataset displayed a
0.5% enhancement when compared to the initial approach.The
central two rows of the table pertain to ablation experiments
conducted on BiSeNetV2, resulting in a performance improve-
ment of 1.4% on the UDD dataset. The model further exhibited
an advancement of 0.8% on the UAVid dataset and a 0.5%
enhancement on the Potsdam dataset. The final two lines
highlight the enhancements achieved on STDC. Consequently,
there is a recorded increase of 2.6% on the UDD dataset, an
improvement of 0.7% on the UAVid dataset, and progress of
1.0% on the Potsdam dataset. As evidenced by the integrated
analysis, the proposed Spatial Calibration Feature Extraction
Module (SCFEM) asserts its superiority over the existing
baseline, thereby affirming its effectiveness.

The outcomes of the ablation experiment for SGL are
depicted in Table II. This study is performed for comparison
purposes using SCFEM as a basis, given that SGL is an
enhanced version of SCFEM. As such, there have been no
ablation experiments to contrast the initial method with SGL.

In Table II, the enhanced methodology yields a score of
72.8% on the UDD dataset, 67.6% on the UAVid dataset,
and 71.4% on the Potsdam dataset. This table’s initial two
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Fig. 5. Ablation experiments on each category, This study presents a comparative analysis between three dual-branch networks and the proposed method,
utilizing incremental bar charts. (a) The performance of the proposed method was evaluated on the UDD dataset. (b) The performance of the proposed method
was evaluated on the UAVid dataset. (c) Performance analysis was carried out on the Potsdam dataset. The proposed method is depicted in gray on the graph.

Fig. 6. Comparative visualization between the model inference and ground truth on the UDD test dataset. (a) Image. (b) Ground truth. (c) BiSeNetV1. (d)
BiSeNetV2. (e) STDC. (f) DBCG.

Fig. 7. Comparative visualization between the model inference and ground truth on the UAVid test dataset. (a) Image. (b) Ground truth. (c) BiSeNetV1. (d)
BiSeNetV2. (e) STDC. (f) DBCG.

rows present a comparison of their effects on BiSeNet. The
results showed a 0.3% increase in the UDD dataset, a 1.5%
increase in the UAVid dataset, and a 0.7% increase in the
Potsdam dataset. The center rows of the table illustrate an
enhancement in BiSeNetV2’s performance, indicated by a
surge of 1.2% on the UDD dataset, 3.5% on the UAVid dataset,
and a marginal increase of 0.1% on the Potsdam dataset.
The final two sentences present comparative results from the
STDC study. An improvement of 3% was observed in the
UDD dataset, with a 1.5% and a slight 0.3% increase recorded
for the UAVid and Potsdam datasets respectively. Through in-

depth analysis, we found that the spatial sharing loss function
has been optimized. However, the results on several datasets
did not show statistically significant effects. This indicates
that there are still differences between the teacher model and
the student model, thereby affecting the student’s ability to
understand the teacher model. Exploring this issue will be one
of the key focuses of future research.

In Table III We performed ablative experiments on two
modules of SCFEM, utilizing the backbone is Resnet18.
Firstly, upon comparing the initial two rows of the comparative
table, it becomes evident that the spatial branch significantly
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Fig. 8. Comparative visualization between the model inference and ground truth on the Potsdam test dataset. (a) Image. (b) Ground truth. (c) BiSeNetV1.
(d) BiSeNetV2. (e) STDC. (f) DBCG.

TABLE IV
EXPERIMENTAL INVESTIGATION OF LAYER ABLATION BETWEEN DUAL

BRANCHES

Layer mIoU
(UDD)

mIoU
(UAVid)

mIoU
(Potsdam)

None 69.5 62.4 67.7
Layer1 72.8 67.6 71.4
Layer2 72.0 63.1 69.6
Layer3 72.3 63.3 70.4
Layer4 71.5 63.2 70.1

influences the performance of the dual-branch network. Not
including the spatial branch adversely affects the model’s
performance. Secondly, upon comparing the final two rows in
the subsequent tables, the importance of filters for the overall
SCFEM module becomes apparent. Additionally, this finding
supports the notion that obtaining features under diverse noise
conditions enhances the differential detection method.

In Table IV an ablation experiment was conducted to
explore the optimal layer for sharing by comparing the contri-
butions of different layers between the contextual branch and
the spatial branch. Comparisons with no sharing and other

layers indicate that layer sharing between the dual branches
improves model performance. When comparing Layer 1, Layer
2, Layer 3, and Layer 4, we conclude that the sharing effect is
optimal when applied to Layer 1. This is because the first layer
retains a significant amount of detailed information, which
is inevitably lost during the learning process of the spatial
branch. Sharing the first layer helps compensate for this loss
of information. Fig. 9 displays the visualization results of the
shared layers for the UDD6 dataset. Refer to Fig. 11 for
the visualization results of the shared layers for the UAVid
dataset. Fig. 11 illustrates the visualization results for the
Potsdam dataset. The visual analysis confirms that Layer1
performs optimally, displaying precise detection coverage and
finer edges than other layers.The second figure, as shown in
Fig. 11, demonstrates that the red low vegetation other layer
is classified as ”clu.”, whereas Layer1 accurately identifies it.

C. Ablation Experiments on Each Category

This section examines the effects of the proposed method
on each category. The method will be evaluated for its impact
on each category. Ablation experiments for each category
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Fig. 9. Comparing the visualized results obtained from different shared layers using the UDD6 test dataset.

Fig. 10. Comparing the visualized results obtained from different shared layers using the UAVid test dataset.

Fig. 11. Comparative visualization between the model inference and ground truth on the Potsdam test dataset.

will be depicted using incremental bar charts as a visual
representation, as illustrated in Fig. 5.

Among them, (a) indicates the performance on the UDD
dataset. The graph clearly indicates that the gray color corre-
sponds to the proposed method in this paper. The prevalence
of gray color at the top clearly demonstrates that the pro-
posed method achieves the highest accuracy in all categories.

Moreover, notably in the roof, vegetation, and Rood categories,
there is a substantial increase in the gray color area, indicating
significant enhancements achieved by the proposed method
across these specific categories. Additionally, it is evident that
the categories experiencing the most notable changes are the
ones with initially low accuracy. Consequently, the proposed
method effectively improves the accuracy for these previously

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3378695

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE V
COMPARATIVE EXPERIMENTAL RESULTS ON THE UAVID DATASET

Method Bui. Tree clu. Roa. Veg. Sta.Car. Mov.Car Hum. mIoU
SexNext [41] 86.0 66.4 53.0 66.4 59.3 29.6 35.5 3.1 50.2
Topformer [42] 85.9 67.3 52.7 68.4 42.2 67.3 57.5 2.2 53.4
Seaformer [43] 83.7 67.1 49.1 67.0 56.9 41.1 50.1 3.7 52.3
Fast-SCNN [24] 87.7 72.6 56.9 73.9 63.8 47.1 59.6 15.5 59.6
BiSeNetV2 [22] 90.1 75.0 60.9 76.5 65.5 57.3 64.3 27.4 64.6
APCNet [26] 90.6 76.2 61.9 76.2 66.7 61.0 65.7 24.9 65.3
STDC [23] 91.0 75.6 77.7 62.5 65.9 59.8 66.4 24.5 65.4
ICNet [44] 90.3 75.3 61.8 66.5 77.3 60.5 68.0 25.4 65.6
BiSeNetV1 [21] 85.7 78.3 64.7 61.1 77.3 63.4 48.6 17.5 61.5
ShelfNet [45] 76.9 73.2 44.1 61.4 43.4 21.0 52.6 3.6 47.0
BANet [46] 85.4 78.9 66.6 80.7 62.1 52.8 69.3 21.0 64.6
SwiftNet [52] 85.3 78.2 64.1 61.5 76.4 62.1 51.1 15.7 61.1
Ours 91.3 76.8 79.5 64.4 67.7 65.1 69.3 26.1 67.6

TABLE VI
COMPARATIVE EXPERIMENTAL RESULTS ON THE POTSDAM DATASET

Method imp. Bui. Low.
Veg.

Tree Car clutter mIoU

SexNext [41] 79.8 87.3 71.2 73.2 77.5 34.0 70.5
Topformer [42] 66.1 65.2 77.3 71.5 60.0 55.3 65.9
Seaformer [43] 59.9 63.2 64.6 64.9 57.4 48.8 59.8
Fast-SCNN [24] 72.5 80.2 60.3 52.8 60.1 9.7 55.9
BiSeNetV2 [22] 79.5 86.7 68.5 68.3 76.3 27.3 67.8
STDC [23] 80.4 88.1 70.1 71.7 75.7 34.5 70.0
ICNet [44] 78.2 84.9 64.4 65.3 78.5 25.5 65.4
BiSeNetV1 [21] 79.9 87.0 70.3 70.5 77.3 33.2 69.8
APCNet [26] 77.8 84.5 67.0 71.2 78.9 25.0 67.6
ANNNet [47] 79.8 87.4 69.8 71.2 79.1 35.9 70.5
PSANet [48] 77.7 83.6 66.2 68.2 76.7 27.8 66.7
PSPNet [49] 79.5 86.8 68.6 69.0 76.7 29.8 68.4
Ours 81.2 88.7 71.9 72.4 78.7 35.4 71.4

low-accuracy categories in the UDD dataset. Notably, Be-
SeNetV2 demonstrates the lowest performance on the UDD
dataset, exhibiting lower accuracy compared to BeSeNetV1.
The detection results of STDC in the Vegetation category
fail to attain satisfactory performance. Fig. 6 displays the
visualization diagram. In the visualization of the first figure,
inside the red box, other categories often detect a broader
region along the road edge and classify it as Road, whereas our
method closely matches the ground truth (GT) range. Within
the orange box, roofs have a tendency to be misclassified
as roads, however, our method accurately recognizes them as
roofs in contrast to other methods. The second visualization
diagram showcases that our method exhibits finer edge details
within the red box in comparison to other methods. (b)
showcases the performance on the UAVid dataset. Although
there is a minor decrease in accuracy compared to BiSeNetV1
in specific categories like Hum., clu., and Tree, it consistently
outperforms BiSeNetV1 in all other categories. Nevertheless,
there is only a marginal difference in overall performance area
when compared to BiSeNetV1, while its accuracy significantly
exceeds that of BiSeNetV1 in other categories. Fig. 7 displays
the visualization diagram. The first visualization diagram de-
picts that small vehicles may be missed or incorrectly detected
in alternative methods, however, our approach ensures more

TABLE VII
EXPERIMENTAL RESULTS ON THE UDD6 DATASET COMPARED TO THE

PROPOSED METHOD

Method Other Fac. Roa. Veg. Veh. Roof mIoU
SexNext [41] 88.9 71.1 66.6 60.5 87.1 59.3 72.3
Topformer [42] 84.9 63.5 54.6 45.6 80.7 47.8 63.2
Seaformer [43] 82.9 49.0 47.5 34.4 71.2 30.1 52.5
APCNet [26] 84.3 65.9 56.8 42.7 76.5 50.7 62.3
BiSeNetV2 [22] 87.4 62.2 61.0 44.3 78.4 51.9 64.2
ICNet [44] 87.5 63.2 57.3 47.2 81.1 52.7 64.8
STDC [23] 88.5 67.0 64.0 43.7 84.4 55.9 67.2
BiSeNetV1 [21] 88.2 64.6 60.6 54.7 82.2 54.1 67.4
ANNNet [47] 87.7 67.0 63.7 53.0 79.6 54.1 67.6
DANet [50] 88.0 62.6 65.4 58.2 80.6 56.4 68.6
Fast-SCNN [24] 89.2 68.4 66.7 49.2 84.6 59.0 69.5
CCNet [51] 88.9 68.9 65.8 63.9 85.3 60.0 72.2
Ours 89.0 69.8 69.4 61.7 85.6 61.0 72.8

precise segmentation. In the second figure, it illustrates how
our method attains a distinct boundary between stationary cars
and roads. Our method exhibits higher accuracy in detecting
human edges. Alternatively, other methods display both missed
detections and coarse linear edges in human subjects. (c)
illustrates the effectiveness of our proposed method on the
Potsdam dataset. The graph clearly shows that each category
is positioned on the far right side, indicating the excellent
performance attained by the approach presented in this pa-
per. Notably, BiSeNetV2 displays the poorest performance,
whereas STDC underperforms specifically in the car cate-
gory.Despite surpassing the remaining three dual-branch net-
works, the extent of improvement indicated by the gray color
area suggests that the achieved enhancement with our method
is relatively insignificant. Hence, there is still ample scope for
improvement. Fig. 8 displays the visualization diagram. The
first and third figures reveal that the proposed method achieves
a more comprehensive detection of roads and buildings in
comparison to the other three methods. The second figure
demonstrates lower rates of misjudgment compared to the
other three methods. For instance, BiSeNetV1 and STDC
misclassified tree objects as clutter. Some parts of the road
were misclassified as low vegetation by BiSeNetV2. The
fourth figure demonstrates that the proposed method produces
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more detailed results for smaller clutter when compared to the
aforementioned three methods.

D. Comparative Experiments

In this section, a comparison will be made between the
network proposed in this paper, and existing semantic seg-
mentation algorithms like Fast-SCNN and ICNet. The goal is
to obtain an objective statistical evaluation that demonstrates
the effectiveness of the proposed architecture. Quantitative
analysis of the proposed method will be conducted based on
Intersection over Union (IOU) and mean Intersection over
Union (mIoU) metrics for each category.

The performance of the proposed method on the UAVid
dataset is presented in Table V. The table clearly demon-
strates that the proposed method surpasses other approaches,
achieving an accuracy of 67.6%. Our approach achieves the
highest accuracy among all methods for the categories Bui.,
Clu., and Mov. Car, obtaining percentages of 91.3%, 79.5%,
and 69.3%. It is worth noting SexNeXt [41], Topformer [42],
and Seaformer [43] have demonstrated promising performance
in urban street scenes. However, experimental results indicate
that these models do not perform well on datasets involving
unmanned aerial vehicles (UAVs). In particular, the detection
of human-related categories in the UAVid dataset exhibits
generally low accuracy, leading to an overall decline in
performance. Conversely, the method presented in this paper
exhibits exceptional performance on the dataset collected by
drones, highlighting the merits of our approach in regard to
drone data. After conducting an analysis, it is evident that
the proposed method still has certain limitations. Since the
method relies on convolutional neural networks (CNNs), it
inevitably encounters a limitation commonly associated with
CNNs - their limited capacity to integrate global information.
Despite the overall advantages of the proposed method, it
fails to fully integrate both global and local information.
Moreover, the proposed method exhibits suboptimal accuracy
when distinguishing between vegetation and trees. This dis-
crepancy arises due to the top-down or side-view perspective
typically captured by unmanned aerial vehicles (UAVs), which
deviates from the conventional viewpoint observed in urban
scenes. Analysis of the collected dataset reveals a diminished
distinction between vegetation and trees within this particular
viewing angle, consequently considerably augmenting the seg-
mentation challenge for both categories. Future investigations
aim to develop attention mechanisms applicable to unmanned
aerial vehicle scenarios in order to tackle these challenges.

Table VI presents the results of the comparative exper-
iment on the Potsdam dataset, with our proposed method
demonstrating superiority over other network models. While
some categories have not achieved the optimal level, the
difference compared to the optimal category is relatively small.
Consequently, an overarching conclusion can be drawn that
our method exhibits superior overall performance.

Experiments comparing the selected networks were exe-
cuted using the UDD dataset. The segmentation test results, as
shown in Table VII, provide comparative insights into the per-
formance of different networks. Upon evaluation, it becomes

evident that our method outperforms other network models.
Notably, the mIoU achieved was 72.8%. However, the accu-
racy of the ”Veg.” category is relatively lower when compared
to SegNeXt. Upon analyzing these categories’ accuracy, the
variance appears insignificant. Notwithstanding, the improved
method exhibits superior accuracy in other categories, trans-
lating to an overall advantage. By analyzing three datasets,
the proposed method demonstrates several advantages. How-
ever, it also exhibits significant shortcomings, particularly in
accurately categorizing vegetation, failing to meet the desired
outcome. Recognizing this category becomes challenging due
to the unique perspective offered by unmanned aerial vehicles
(UAVs). To address and overcome this issue, further research
will be undertaken.

V. DISCUSSION

In this section, we will discuss the inspiration and back-
ground that our research contributes to future studies, as well
as its impact on potential areas of interest.

Dual-branch calibration: We propose the introduction of
the concept of calibration in a dual-branch network. Multiple
solutions and perspectives are possible when solving a problem
or understanding a phenomenon. If multiple perspectives or
methods arrive at the same result, it is considered correct.
Differential testing is a method of verification that enhances
accuracy. Building upon this concept, we present SCFEM as
our proposition. Further exploration opportunities exist regard-
ing this concept, including the investigation of calibration
between different models and the implementation of more
refined differential testing techniques.

Dual-branch guidance: we introduce the concept of dual-
branch guidance as the basis for our research. We propose a
novel technique called SGL that aims to facilitate information
interaction between the two branches. SGL not only considers
knowledge distillation as a means of extracting knowledge
from one model to another but also promotes the learning
process within each branch of the model itself. The implica-
tions of this approach are significant and can inspire future
research endeavors.

Looking Ahead: This study offers novel insights into the
aspect of information interaction within the dual-branch archi-
tecture for semantic segmentation in drone technology, thereby
serving as a source of inspiration. The ideas presented in this
study expand the avenues for future research.

VI. CONCLUSIONS

This study introduces DBCG-Net to address UAV-based
semantic segmentation in remote sensing images. We conduct
an analysis of the inherent limitations of current dual-branch
architectures, exemplified by BiSeNet, and manage these defi-
ciencies using two key architectural modifications. The Spatial
Calibration Feature Extraction Module efficiently tackles the
problem of insufficient feature extraction in spatial branches
when processing high-resolution images. By utilizing different
types of noise, the reciprocity between the two branches of
the dual-branch network facilitates mutual error correction.
Additionally, the spatially-guided loss function conceptualizes
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the contextual branch as a teacher model and the spatial branch
as a student model. This framework encourages learning
transfer from the contextual to the spatial branch. The efficacy
of this proposed method has been validated through empirical
testing. The methods presented here have been substantiated to
exhibit enhancements over the established baseline. Moreover,
they achieved an accuracy of 67.6% on the UAVid dataset,
71.4% on the Potsdam dataset, and 72.8% on the UDD dataset.

Our future work will address the following two aspects.
First, the experimental results indicate suboptimal performance
in the tree and vegetation categories. This can be attributed
to the unique perspective of UAVs, which results in nuanced
variations in category characteristics. Second, the differing
structures between the two branches prevent the student model
from fully comprehending the knowledge transferred from
the teacher model. Consequently, the improvement effect of
SGL has failed to meet the expected outcome. Based on these
analyses, we aim to employ more sensitive feature extraction
methods, enhance the learning approach, and improve informa-
tion transfer efficiency between the teacher and student models
to resolve these concerns.
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Milano, in 2014, the master’s degree in computer
science from the Università degli Studi di Milano, in
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