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Abstract

LANGUAGE and emotion are deeply entangled. In this dissertation we present a
theoretical model that addresses how language and emotions intertwine with
one another. To such end, we draw on the several results achieved in emotion

theory (either at the psychological and the neurobiological levels) that go under the
constructivist umbrella of the Conceptual Act Theory and those related to an emerging
theoretical framework for pragmatic inference, the Rational Speech Act framework.
We connect these theories and spell such connection in the language of probability,
namely in that of Bayesian probabilistic modelling.

Our endeavour is addressed to those fields of computer science such as artificial
intelligence and machine learning where, in spite of the remarkable progress in the
computational processing of language and affect, the study of their intersection is at best
at its infancy, in our view. We argue that any further step in such direction only can be
afforded by reducing the gap between Affective Science and computational approaches.
To pave the way, simulations of the proposed model are presented that account for well
known case-studies in pragmatics.

In brief, at a high-level abstract representation we consider two interacting agents-
in-context, where each agent performs a conceptual act based on interoceptive and
exteroceptive sensation, in order to regulate their body budget. The agents communi-
cate, performing communication acts that in turn regulate the agents’ conceptual acts
and vice versa, and in this way they create, communicate and share categories, and
even add new functions to the world. We implement this framework through two sim-
ulations of non-literal language use, namely hyperbole, irony, and a third dealing with
politeness, a form of social reasoning. In addition, a fourth simulation concerns the
assessment of the stochastic dynamics of the key component of the model, core affect.
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CHAPTER1
Introduction

HOW do language and emotions intertwine with one another? Language and emo-
tion are certainly linked. Humans use words to describe how we feel in spoken
conversations, when thinking to ourselves, and when expressing ourselves in

writing. Yet, a commonly held view is that the sole function of language is to commu-
nicate our thoughts. Shakespeare’s Juliet famously worded such surmise: “That which
we call a rose, by any other name would smell as sweet”. But findings from psychol-
ogy and neuroscience are beginning to suggest otherwise: a flower might indeed be
perceived as sweeter by virtue of being categorized as a “rose.” Language influences
what concepts, in the embodied or grounded cognition sense, are brought to mind when
constructing an experience.

In this perspective, language and emotion have more than a mere unidirectional rela-
tionship. Language plays a critical role both in communicating thoughts and emotions,
but also in constitutively creating emotions. Emotions in the view embraced in this
dissertation, a constructionist theoretical perspective, are instances of mental life: ex-
periences in which affective feelings (bodily feelings of arousal, pleasure/displeasure)
tend to be a salient feature, and that are organized and understood (made meaningful)
with respect to emotion categories such as anger, fear, joy, etc., at least in Western cul-
ture. The semantic representation of emotion concepts (the mental representation of
categories) is constitutive of emotion. Emotion words and the concepts they signify
shape and even help constitute emotional experiences. Strikingly, language does not
necessarily require rich narratives to modulate affective feelings: even simple verbal
suggestions and individual words can be impactful. Meanwhile, memories of emo-
tion perception are shaped by language: narrative processing can exaggerate memories
of others’ emotional expressions. Words people use to describe their experiences of
emotion and their autobiographical memories play a role in shaping those mental phe-

1
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Chapter 1. Introduction

nomena. Further, there is accumulating evidence that language may even be necessary
for the perception of emotions. The term “alexithymia” defines adults who struggle
with identifying and describing their emotions with words: adults who are high on
alexithymia also exhibit disruptions in emotion perception and experience.

On the other hand, language is a fundamentally social endeavor. It has been argued
that it is not language that makes human communication possible, but rather a special
underlying communicative ability that makes language possible. In many instances,
linguistic expressions are underdetermined with respect to the meaning that they con-
vey: what is said and what is understood are often not the same. Communication goes
further than the exchange of explicit propositions. The goal of the speaker is to either
change the mind of the listener, or to commit the addressee to the execution of certain
actions, such as closing the window in reply to the statement “It is cold here”. In other
words, a theory of speech acts is needed to understand how we get from coded meaning
to inferred speaker meaning. Pragmatics is the study of how speakers and listeners use
social reasoning to go beyond the literal meanings of words to interpret language in
context. Crucially, context is to be intended in a broad sense, including both linguis-
tic factors (such as the previous discourse or conversation) and extralinguistic elements,
from the physical setting to the psychological aspects of the interlocutors: world knowl-
edge, emotions, beliefs, stereotypes, etc. As individuals, we process words, search for
hidden meanings or innuendos, and react to sentiment and affect that is embedded in
sentences. But in a natural setting, things become more complex. Think for instance to
the utmost, though paradigmatic example of a conversation unfolding in a flirting con-
text: spoken words, prosody, coyly smiles and laughter, sing-song voices, hair touch,
eager glances, action lining up in mimicry, either voluntary or inescapable, entangle in
a unique voice to communicate with one another.

Clearly, the broad spectrum spanned by such mind-blowing problems require a truly
interdisciplinary lens that blends questions and tools from fields as far-ranging as lin-
guistics, psychology, neuroscience, biological anthropology, cultural anthropology and
sociology. Addressing this question is the purpose of Affective Science.

Our goal. The main concern of the present dissertation is to provide a theoretical
model that addresses the initial question of how language and emotions intertwine with
one another. Here the term “theoretical model” is precisely intended in the sense of
Marr’s computational theory and Anderson’s rational analysis: the what/why level of
analysis concerning the individuation of a computable function as a model of a given
behavioural phenomenon. To such end, we draw on the several results achieved in emo-
tion theory (either at the psychological and the neurobiological levels) that go under the
constructivist umbrella of the Conceptual Act Theory and those related to an emerging
theoretical framework for pragmatic inference, the Rational Speech Act framework.
We connect these theories and spell such connection in the language of probability,
namely in that of Bayesian probabilistic modelling.

Beyond the intrinsic appeal of modelling the conundrum of emotion and language
entanglement, our endeavour is addressed to those fields of computer science such as
Artificial Intelligence and machine learning where, in spite of the remarkable progress
in the computational processing of language and affect, the study of their intersection
is at best at its infancy, in our view. We argue that any further step in this direction only

2
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can be afforded by reducing the gap between Affective Science and those computational
approaches.

Motivations. In recent decades, there has been a veritable explosion of research on
both language and emotion in Affective Computing , which should be, in principle, the
computer science counterpart of Affective Science. Affective Computing is the inter-
disciplinary field of study concerned with recognizing, understanding, simulating and
stimulating affective states in the design of computational systems. Since the coining
of the term by Rosalind Picard, Affective Computing has emerged as a cohesive and in-
creasingly impactful discipline spanning computer science, psychology, neuroscience,
philosophy, art and industry. Technology giants such as Apple, Amazon, Google and
Facebook, as well as hundreds of smaller companies are deploying Affective Comput-
ing methods to predict or influence consumer behavior.

Unfortunately, Affective Computing has been slow to adopt the numerous advances
from the Affective Science field; consequently, many Affective Computing models are
rooted in outdated affect theories, such as Basic Emotion Theories, and methodology.
Clearly, there is a conceptual gap between social and biological scientists who try to
understand emotions on the one hand and computer scientists and engineers who try to
build emotion savvy applications on the other hand.

In this field we should take breath and turn back, humbly, to William James’ un-
escapable question: What is an emotion? All in all, to compute something, one is
expected to know what is being computed. At the light of this minimalist requirement,
computers scientists and engineers should understand that it is not sufficient for them
to rely on common sense knowledge of what constitutes emotions - or even worst on
outdated theories. Breathtaking models, techniques and technologies now available off
the machine learning and AI shelf offer modest help: the power of the engine is irrel-
evant, if the direction of the journey is unsettled. As Noam Chomsky put it : “you do
not get discoveries in the sciences by taking huge amounts of data, throwing them into
a computer and doing statistical analysis of them: that’s not the way you understand
things, you have to have theoretical insights.” This state of affairs is not specific to
Affective Computing, but a general challenge in the emerging context of computational
social science.

Consider language. Tremendous progress has been been made in Natural Language
Processing (NLP). Though, in principle, NLP should span from syntax to semantics
and to pragmatics, much less effort has been devoted to modelling pragmatic reason-
ing. Advancements mostly relate to deep learning methods for distributional semantic
models (e.g., word embeddings and transformers). These models seem to be learning
latent representations that capture the same basic ideas as grammars and semantic in-
formation. Data-driven models are easier to develop and maintain and score better on
standard benchmarks compared to hand-built systems - which explicitly take into ac-
count grammars, parsing, and semantic interpretation - that can be constructed using a
reasonable amount of human effort. This is a positive trend; however, it has been ar-
gued that many recent are surprisingly oblivious of the large body of previous work in
fields like cognitive science and computational linguistics. By and large, computational
paradigms such as NLP, as daily practiced in the machine learning arena, are uniquely
suited to resolve problems with low power in psychological science by incorporating

3
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Chapter 1. Introduction

millions of datapoints. At the intersection between NLP and Affective Computing,
what is now called “sentic computing” aims to bridge the gap between statistical NLP
and many other disciplines that are necessary for understanding human language, such
as linguistics, commonsense reasoning, semiotics, and affective computing. The task
of detecting emotions in textual conversations leads to a wide range of applications:
sentiment analysis, opinion mining and emotion mining are well known examples of
such effort. But even in the case of language, we are far from addressing our initial
question.

Such state of affairs has indeed provided the main motivation to engage in the chal-
lenging journey reported in this thesis.

Thesis plan. The present dissertation unfolds as follows.

• The Prelude (Chapter 2) sets an example for the arguments that follow.

• Chapter 3 discusses the methodological approach guiding our work

• Chapter 4 motivates the assumption that language is essentially a social endeavour
and frames the Communication Act. The key problem of conceptualization is
discussed to some depth.

• Chapter 5 deals with the fundamental problem of the Conceptual Act. Words,
concepts and categorization are revisited at its light.

• Chapter 6 lays down the model. First constraints for both acts are derived at
the neurobiological level and mapped onto the psychological level. A functional
architecture is outlined, which is then exploited to shape in the language of prob-
ability our model. To such end both Probabilistic Graphical Model and Prob-
abilistic Programming representation are used. Further theoretical implications
and perspectives related to the model are also discussed

• Chapter 7 presents and discusses model simulations accounting for well known
case-studies in pragmatics.

• Conclusions are drawn in Chapter 8

Technical subtleties and apparently less related topics are however included for the
sake of completeness, but these have been confined in the Appendices.

4



i
i

“output” — 2022/6/29 — 15:28 — page 5 — #13 i
i

i
i

i
i

CHAPTER2
Prelude

HOW much do our perceptions of things depend on our cognitive/affective ability,
and how much on our linguistic resources? Where, and how, do these two
topics meet?

These are the crucial questions that motivate this thesis.
Umberto Eco, in the endeavour of addressing such fundamental issues, which is

epitomized in the brilliant essay “Kant And The Platypus” (Eco, 2000), provides an
enlightening example by resorting to the story of Montezuma and the horses.

The story concerns the first Aztecs who hastened to the coast and witnessed the
landing of the conquistadors. Among the various things that must have completely
amazed them, Eco surmises that, in particular, the horses might have been perceptually
puzzling:

At first (maybe also because they did not distinguish the animals from the
pennants and armor that covered them), the Aztecs thought that the invaders
were riding deer. Oriented therefore by a system of previous knowledge but
trying to coordinate it with what they were seeing, they must have soon
worked out a perceptual judgment. An animal has appeared before us that
seems like a deer but isn’t [...] They must therefore have got a certain idea
of that animal, which at first they called maçatl, which is the word they
used not only for deer but for all quadrupeds in general. Later, since they
began adopting and adapting the foreign names for the objects brought by
the invaders, their Nahuatl language transformed the Spanish caballo into
cauayo or kawayo.

The Aztecs decided to send messengers to Montezuma to tell him of the landing
and of the marvels they were witnessing.

5
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Chapter 2. Prelude

One scribe gave the news in pictograms, and he explained that the invaders were
riding deer as high as the roofs of the houses:

I imagine that the messengers (worried about the fact that in their neck of
the woods, if the news was not to the hearer’s liking, there was a tendency
to punish the bearer of it) screwed up their courage and integrated the report
with more than just words, since it seems that Montezuma was wont to
require his informers to provide him with all the possible expressions for
one and the same thing. And so they must have used their bodies to hint
at the movements of the maçatl, imitating its whinnying, trying to show
how it had long hair along its neck, adding that it was most terrifying and
ferocious, capable in the course of the fray of overwhelming anyone who
tried to withstand it.

Thus, Montezuma received some descriptions, on the basis of which he tried to get
some idea of that as yet unknown animal, albeit it is difficult to tell how he imagined it.
He probably understood that it was a worrisome animal:

according to the chronicles, at first Montezuma did not ask other questions
but withdrew into a distressing silence, with head bowed and wearing an
absent, sorrowful air.

Eventually, the encounter between Montezuma and the Spaniards. As Eco puts it:

I would say that, no matter how confused the messengers’ description may
have been, Montezuma must have easily identified those things called maçaoa[
the plural of maçatl]. Simply, faced with the direct experience of the maçatl,
he must have adjusted the tentative idea he had conceived of them. Now,
like his men, every time he saw a maçatl, he too would recognize it as
such, and every time he heard talk of maçaoa, he would understand what
his interlocutors were talking about. Then, as he gradually got to know the
Spaniards, he would learn many things about horses, he would begin to call
them cauayo, he would learn where they came from, how they reproduced,
what they ate, how they were reared and trained, what other uses they could
be put to, and to his regret he would very soon understand how useful they
could be in battle.

The story puts on the table all the ingredients we are dealing with in this thesis:

• the initial, private but contextual construction of meaning from a referent object
situated in the world up to its mental representation, the concept, as an inference
grounded in the referent’s perceptual and affective features (terrifying and fero-
cious) by contrast to previously acquired knowledge (dear, quadruped, denoted
by maçatl), and its subsequent labelling based on a new word (cauayo);

• the multimodal communication with more than just words (gestures, body move-
ments, prosody and drawings) driven by the goal to optimally convey the meaning
sufficient to support Montezuma’s learning of the same concept, even in the ab-
sence of the physical referent, but on the base of a common ground both lexical
and conceptual (the animal named maçatl);

6
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• the subsequent broadening and updating of prior knowledge, via social commu-
nication, of the cauayo mental representation into a more general horse category.

The recipe we advocate to amalgamate such ingredients relies on the rationale that
humans are social animals born with a brain system that has evolved to support social
affiliation. A social species is one where animals regulate one another’s fundamental
physiological processes (or allostasis), so that their survival depends on social bonds
(Atzil et al., 2018).

Under such circumstances, many human psychological features can be best under-
stood in a social context. Language is one such case. It is a fundamentally social
endeavor: speakers and listeners use social reasoning to go beyond the literal meanings
of words to interpret language in context (Bohn and Frank, 2019).

Throughout early language development, social communication is the central orga-
nizing principle of language use. Learning occurs in the context of use and communi-
cation is central to learning as well.

Over and over, social animals, by using social communication, gradually learn to
regulate their own and others’ allostasis, namely the ongoing adjustment of the individ-
ual’s internal milieu, which is necessary for survival, growth and reproduction (Atzil
et al., 2018), and which is at the root of the storm of feelings that the individual experi-
ences everyday in life. During development, infants learn social concepts and skills to
prepare for allostatic needs, as caretakers introduce all the culturally relevant concepts,
using language. Meaning itself is largely grounded in the structure of the overarching
social interaction (Bohn and Frank, 2019).

The communicative act and the conceptual act, rooted in the entangled perceptions
of the external world and of the internal milieu, are but two sides of the same coin.
The modeling framework we present here is an attempt to incorporate both aspects in a
straightforward though principled way.

7
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CHAPTER3
A methodological foreword and a roadmap

AS we stated from the beginning, in this study we are addressing the relationship
between language and affect in the context of a dyadic interaction. The general
idea is outlined in Figure 3.1

Two agents, a speaker and a listener, are involved in a dyadic social interaction. A
speaker, who is observing an event/object in a context, utters a sentence/word U pass-
ing on information concerning the perceived state O of the outside world. The listener
will reason about speaker’s intents and actions within that context and may either take
some action and/or, by switching roles, reply to the speaker. Both agents share com-
mon perceptual and affective mechanisms, neurobiologically grounded in a common
brain/body structure, for inferring and conceptualize the external world and a common
language to communicate with one another. Also, beyond the propositional meaning of
the uttered sentence, the listener, to recover the speaker’s intended meaning, can rely
on speaker’s non-verbal signalling, such as gestures, prosody, facial expressions and so
on. Non-verbal signals might be intentionally conveyed by the speaker or might unveil
speaker’s affective state, which can thus be appraised by the listener. In a sense, the
speaker’s non-verbal behavior is part of the events E occurring in the external world
as perceived by the listener, i.e. O = {Oext,Ospeaker}, while the social interaction
unfolds.

In a subject such as this, it is perhaps best to start by establishing models of an apt
generality, so to avoid ad hoc heuristics, while considering relevant and yet well defined
case studies, in order not to complicate an already difficult problem.

Thus, in this chapter we first make clear the methodological framework we have
adopted. This can be characterised as a multilevel analysis framework, which aims at
devising a theoretical model but informed and constrained by knowledge that we have

9
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Chapter 3. A methodological foreword and a roadmap

Figure 3.1: A dyadic social interaction between a speaker and a listener, much like in the
Montezuma’s story. Note that in both speaker and listener we have highlighted either the
brain and the internal body milieu - represented by the heart - as intertwined components
enabling the dyadic communication act and the conceptual act that lies behind

available both at the psychological and at the neuroscience explanation levels.

3.1 Levels of explanation

Computational models in the cognitive and behavioural sciences can be used either as
analytical tools for analysing empirical data or as instantiations of cognitive hypotheses
(Palminteri et al., 2017). The work described in this thesis falls in the second case.
Then, it is important to note that, as instantiations of cognitive theories, computational
models can target different levels of description.

A key distinction (Palminteri et al., 2017) is that between aggregate versus mecha-
nistic models: aggregate models describe average behaviours using a synthetic mathe-
matical model; mechanistic models explain how behaviours are generated.

Such distinction has been further developed by Marr (1982), who proposed three
levels of description/explanation (see Fig. 3.2, left):

1. the what/why level (computational theory, i.e. the individuation of a computable
function as a model of a given behavioural phenomenon),

2. the how level (algorithm),

3. the physical realisation level (implementation).

Marr’s multilevel approach has become a sort of paradigm in research work on
the theoretical foundations of cognitive science (Dennett, 1987), while nourishing a
vast philosophical debate. But more importantly for us, Marr’s account can be seen,

10
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3.1. Levels of explanation

from a broader perspective, as the claim that the behaviour of a complex system, such
as a living organism, has to be explained at various levels of organization, including
psychological, neurological, cellular and biochemical levels.

Anderson (1991) remarkably synthesised the advantage of the distinction between
the computational and the algorithmic levels in particular:

The search for scientific explanation is easier in this approach. In a mecha-
nistic approach, we must consider any combination of mechanisms as basi-
cally equivalent to any other, and this creates an enormous search space of
possible mechanisms with no heuristics for searching it for an explanation
[...] There is a sense in which rational explanations are more satisfying than
mechanistic explanations. A mechanistic explanation treats the configura-
tion of mechanisms as arbitrary. The justification for the mechanisms is that
they fit the facts at hand. There is no explanation for why they have the form
they do rather than an alternative form. In contrast, a rational explanation
tells why the mind does what it does (p. 410)

A critical point here concerns the constraints assumed by computational theory (An-
derson’s“rational explanation”) when aiming to reduce the underdetermination and the
arbitrariness or ad-hocness or mimicry, as Marr put it, of cognitive models at the algo-
rithmic level (Anderson’s “mechanistic explanation”). In particular, the "heuristics for
searching an explanation" can be seen as a guide in the choice of a cognitively plausi-
ble mechanism, given that there are usually many mechanisms instantiating the same
performance. Briefly, this is the model underdetermination problem, which although
being a general problem in scientific explanation, has proven to be remarkably acute
for cognitive explanation. In classical Cognitive Science, this issue was deeply dis-
cussed in depth by Pylyshyn (1984) in terms of the specific constraints the cognitive
scientist has to assume in order to guarantee the "psychological reality" or plausibility
of computational models. This issue is also dealt with by embodied cognitive science
too, this time introducing plausible constraints stemming from the environment and the
body. Further, this seems to be an issue raised at the time of Cybernetics and early
Artificial Intelligence (AI); all these topics have been pointed out by recent analyses:
see Cordeschi (2002).

Indeed, a hallmark of the present state of research in Cognitive Science, is that
one is generally ignorant of how exactly to cast the different levels into a grounded
relationship, and any proposal has its limitations (Boccignone and Cordeschi, 2015).
Marr himself contended with a persistent ambiguity in the role of the implementation
level with respect to the algorithmic one. On the one hand, the implementation level
was hypothesised as a rather independent level of explanation, never constraining the
algorithmic level from the bottom up. On the other hand, it has occasionally been
endowed with the role of arbitrating the selection of the most suitable algorithm, from
among those that consistently embodied constraints imposed by the computational level
(see Marr, 1982 , Chapter 3). For in such a case, an algorithm is preferred by virtue of
its apparent greater biological or neurological (thus, implementation level) plausibility.

In the light of the growing exploitation of Bayesian methods in the cognitive sci-
ences, it has been argued (Chater et al., 2006; Knill et al., 1996; Boccignone and Corde-
schi, 2007) that Marr’s three-fold hierarchy could be reorganised into two levels: the
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Chapter 3. A methodological foreword and a roadmap

computational theory level, which can be formalised precisely in terms of Bayesian
theory, and the implementation theory level, embedding both Marr’s algorithmic and
physical realisation levels (see Fig. 3.2, right).

Figure 3.2: The levels of explanation in cognitive/behavioural sciences. Left: Marr’s original
proposal (Marr, 1982). Right: Marr’s revision according to Yuille and Kersten (adapted
from Knill et al., 1996).

As Figure 3.2, shows, within the Bayesian approach issues about constraints can
be settled in a way quite different from Marr’s, particularly in relation to his three-fold
hierarchy of levels of explanation.

Note that both levels are denoted “theories” here and, differently from Marr, a close
interaction between the computational (here Bayesian) theory and the implementation
theory level is assumed. Further, hypotheses and constraints are somehow shared be-
tween the two levels (see broken-line box in Fig. 3.2).

In this thesis we do endorse this two-level view. Also, we use the term “model” to
qualify the two theory levels in Fig. 3.2: briefly, in what follows we will refer to such
levels as the theoretical model1and the implementation model. This well reflects the
fact that, at both levels, the cognitive scientist is devising models embodying constraints
related to a number of physical or biological laws and theoretical hypotheses that are
relevant to the explanation of a given phenomenon. This is a point regarding both
models explaining behavioural regularities (at the Bayesian theory level) and models
explaining neural regularities (at the implementation theory level).

1In a sense, our use of the term theoretical model is close to that of the philosopher Ronald Giere, who reserved
the term “for a special class of abstract models, those constructed with the use of [...] theoretical principles":
Newton’s laws, Mendel’s or Darwin’s are different examples of such principles (Giere, 1999).
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3.1. Levels of explanation

3.1.1 The theoretical model

The computational theory level is the highest level of a cognitive theory. This is a
functional specification of cognition as “a mapping from one kind of information to
another” where “the abstract properties of this mapping are defined precisely (Marr,
1982). The details of how this mapping is implemented are left to lower levels. He gave
one example of a high-level theory from mathematics. The field axioms specify the
abstract properties of algebraic expressions, such as the commutativity of addition, but
are silent on low-level matters of implementation, such as how numbers are represented
(Roman numerals, base-10, base-2, etc.).

Marr’s computational theory can be specified in the Bayesian framework in terms of
the so called generative model: namely, the joint probability distribution P ({Xk}Kk=1)
of the random variables (RVs) of interest X1, · · · , XK factorised according to given
constraints. A representation of such generative model can be given in terms of a Prob-
abilistic Graphical Model (PGM) (Lauritzen, 1996; Jordan, 1998; Koller and Friedman,
2009), say G. For a straightforward introduction of PGMs see Appendix A

The graph G can be viewed in two very different ways:

• as a compact representation for a set of conditional independence assumptions
about a distribution;

• as a data structure that provides the skeleton for representing a joint distribution
compactly in a factorized way.

In general, the constraints to shape the G architecture can be derived “top-down” by
taking stock of common assumptions in the psychological literature. Nevertheless, a
theoretical model related to the behavioural level, as far as it can be identified in terms
of the underlying neural architecture, can be “bottom-up” constrained by the latter, thus
mirroring the organization of groups of neurons or of functional brain areas (depending
on the grain of the analyses).

3.1.2 Subtleties of the implementation model

The most straightforward implementation model to “put into work” the theoretical
model can be obtained by specifying the probability distributions defining the con-
ditional dependencies and by applying suitable PGM-based algorithms such as Belief
Propagation, Variational Bayes learning, etc. (but see Koller and Friedman, 2009 for
an in-depth introduction, and Erk, 2021 for a brief introduction oriented to language
modelling). This can be seen as the coarsest-grain implementation model. But it might
be the case that an implementation model at a finer grain is needed to be addressed.

Probabilistic models are also compositional in nature, a lower implementation level
can be devised by designing inference as a collection of local inference problems, de-
fined over sub-graphs of graph G. This indeed is the route we will follow to devise our
implementation model.

Clearly, there is a multiplicity of finer analysis levels downwards to the ultimate
neural level. If a neural grain of analysis is pursued, then it has been shown that the
PGM can be used as a blueprint for devising a neural implementation model (neural
architecture) and simulation can be performed at that level.
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Chapter 3. A methodological foreword and a roadmap

This raises the fundamental issue of what should be then considered as the neural
(implementation) level in cognitive science modelling. Clearly, paraphrasing Wiener
and Rosenblueth, the best material model of a brain is another, or preferably the same,
brain. Thus, in the end, if this ultimate level is addressed a rational / computational
theory explanation should confront with experimental data at this level (neurophysio-
logical, fMRI, etc.).

However, in the wild of the neural jungle, the gap between levels of explanations can
turn to be huge and a variety of sub-levels can be derived downward the hierarchy. In a
very elegant work (Abbott and Kepler, 1990), Abbott and Kepler have mathematically
derived from the Hogkin-Huxley model, via subsequent reductions and approximations,
the FitzHugh-Nagumo model, the integrate-and-fire model, and eventually the binary
Hopfield-type model. If one assumes tout court any of this “neural implementations”
as a proxy for the brain, one then must be aware of its explanatory limitations (which
could be enough, depending on the goal of the researcher). Note that levels can be
even explored further downward: Angela and Dayan (2005) have proposed that the
neuro-modulators acetylcholine and norepinephrine play a major role in the brain’s
implementation of Bayesian priors at the cognitive/behavioural level.

Thus, dealing with the implementation theory level, if neural simulation is ad-
dressed we must be ready to deal with a multiplicity of (sub) levels. Computations
can thus be carried out using classic artificial neurons, or at a lower level by using
membrane potential as the crucial variable, or further down, at a chemical level, by tak-
ing into account concentrations of calcium or other substances governed by reaction-
diffusion equations. As pointed out by Koch,

[...] the principal differences are the relevant spatial and temporal scales
dictated by the different physical parameters, as well as the dynamical range
of the [...] sets of parameters (Koch (1999), p. 279).

3.1.3 Putting all together: multilevel analysis

Multilevel analysis is a consistent way of dealing with the multiscale nature of cogni-
tive and behavioural processes. Behavioural and cognitive phenomena, and markedly
emotions, exists at multiple temporal and spatial scales.

The kind of explanatory pluralism that is involved by a Bayesian account of Marr’s
multilevel analysis, affords the scientist a method for developing fuller explanations of
relevant phenomena. To sum up the main features discussed above:

1. the notion of architecture becomes a central issue, since it embodies constraints
assumed by the cognitive scientist for his own purpose at the chosen level of
explanation;

2. the implementation level turns out to be a lower-level model, which is suitable to
be used for instantiating the computational theory level at different sub-levels;

3. Marr’s algorithmic level does not so far provide an autonomous level of expla-
nation, rather one encompassing simulations of different grains: from a coarse-
grained simulation of Bayesian inference and learning processes close to the be-
havioural/computational theory level, down to fine-grained simulation(s) at the
neural level.
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Top-down constraining affords the cognitive scientist a basis for unifying multi-
ple levels of analysis by identifying longer-scaled levels as contextual constraints for
the smaller-scaled levels. Bottom-up scaffolding provides a framework for identifying
what can emerge from lower-level patterns (i.e., patterns existing at shorter time scales
or smaller spatial scales), and the dynamics and processes by which these patterns are
formed. It is the substrates of lower levels that allow higher-level phenomena to emerge.

3.2 Roadmap

Taking stock of the above discussion, at the most general level, a theoretical model of
the interacting agents in its bare essential should be able to cope with the following
requirements:

• both agents are capable of a conceptual act, that is they can perceive and con-
ceptualize the states of the world P (C(world)|O(world)) given a collection of
events or outcomes O(world) occurring in the world; the world includes both
the environment and agents acting in the world: thus, crucially, the conceptual-
ization C(world) depends on both the perception of the external world and the
internal perception of agent’s body, which brings in the game the affective value
of what is externally perceived and of what is communicated (either intentionally
or not)

• the speaker can perform a communicative act by uttering a sentence or a word
to convey some meaning M concerning the current situation (state of the world
and speaker’s mental state) given a lexicon L and a language model LM, i.e.
P (u | C(world),M,L,LM).

• the listener, by hearing the utterance U and by observing world events (external
events and the speaker’s non-verbal behavior), can jointly reason about the states
of the world and the meaning the speaker intended to convey, P (C(world),M |
U,O(world),L,LM).

The scheme outlined in Figure 3.1 together with the probabilistic inferences intro-
duced above provide a blueprint (Tsuji et al., 2021) for setting out the model proposed
in this Thesis.

Beyond its apparent simplicity, a number of mind-blowing questions hide behind.
How do agents ground language in actual events in the world (semantics)? How

do they convey meaning under certain circumstances, context and goals (pragmatics)
along a social interaction? How do they conceptualize events in the world? What is the
role played by affect at the different stages?

In the following, we will first present and discuss theories and proposals that en-
gage with such questions. Given the terribly vast literature on these topics, we will
of necessity focus on aspects most relevant for our perspective in order to distill the
fundamental elements to detail the model’s blueprint.
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CHAPTER4
The communication act

WE discuss and motivate here the assumption that language is a fundamentally
social endeavor, where speakers and listeners use social reasoning to go be-
yond the literal meanings of words in order to interpret language in context.

The big picture is outlined in Figure 4.1 which expands Figure 3.1.
We will briefly touch on those aspects of semantics that are of interest for our re-

search. We also introduce the notions of concept and categorization, which we will be
re-examined and extended in Chapter 5, at the light of emotion theories, in particular
the Conceptual Act Theory (CAT).

Then we turn on pragmatics that frames communication acts.
While introducing aspects of semantics and pragmatics most relevant for us, we will

also touch on computational approaches that have been proposed to address problems
that, by and large, arise in both realms.

4.1 Semantics: The Relationship Between Words and Concepts

Semantics is the study of the meaning of words, phrases and sentences. In linguistics
and philosophy, semantics is taken to stand for the relation between language and the
world.

Historically, as a theory, it denotes the branch of linguistics and logic concerned
with meaning (Yule, 2020). The two main areas are logical semantics, concerned with
matters such as sense and reference and presupposition and implication, and lexical
semantics, concerned with the analysis of word meanings and relations between them
(but for a broad introduction, cfr. Speaks, 2021; Yule, 2020. For the purposes of this
thesis, we will be mostly involved with the latter aspect.
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Chapter 4. The communication act

Figure 4.1: Schematic overview of the communication process between a speaker and a listener
during which different sources of information are integrated. Observable variables are the
utterance (“maçatl”), the context, and additional social cues provided by the speaker. Unob-
served psychological variables are lexicon (and concepts), common ground, the cooperative
reasoning process, and the inner perceptual processes behind conceptualization. Modified
after (Bohn and Frank, 2019)

In semantics there is always an attempt to focus on what the words conventionally
mean, rather than on what a speaker might want the words to mean on a particular
occasion. When linguists investigate the meaning of words in a language, they are
interested in characterising the conceptual meaning or, less frequently, the associative
meaning of words.

Conceptual meaning covers those basic, essential components of meaning which
are conveyed by the literal use of a word. Simply put, some of the basic components
of a word like “horse” in English might include “large plant-eating domesticated mam-
mal with solid hoofs and a flowing mane and tail”. These components would be part
of the conceptual meaning of “horse”, namely the mental representation of the horse
category. In the sequel, we will adopt the following broad distinction between category
and concept (Murphy, 2004):

category : a population of events or objects that are treated as similar because they all
serve a particular goal in some context;

concept : the population of representations that correspond to those events or objects.

One may have “associations” or “connotations” attached to a word like “horse” that
lead to think of “hazard” in relation to racing bets, but the association usually is not
treated as a part of the conceptual meaning of “horse”.

Concepts and words seem to be closely related. One can talk about children learning
the concept of horse, say, but one can also talk about their learning the word “horse”.
In fact, much of the literature uses these two terms interchangeably (Murphy, 2004).
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4.1. Semantics: The Relationship Between Words and Concepts

Here, in the same vein of Murphy (2004) we will make a distinction between the
two. By concept, we denote a nonlinguistic psychological (mental) construct of a class
of entities in the world, namely an agent’s knowledge of what kinds of things there are
in the world, and what properties they have. By word meaning, we denote quite gen-
erally the aspect of words that gives them significance and relates them to the world.
Clearly, based on evidence provided by the psychological literature, words gain their
significance in virtue of being connected to concepts (Murphy, 2004). Figure 4.2 out-
lines at a glance these relationships in terms of a Peircean semiotics triangle (Peirce,
1991).

Figure 4.2: The conceptual view of word meaning. The scheme can also be more generally read
in terms of Peircean semiotics where a symbol is defined as a process having three elements.
The first is the sign (representamen), which describes the form that the sign takes; the sign,
e.g., words, visual signs, or pointing, is not a symbol itself. The second is the object, which is
something that the sign refers to. The third is the interpretant, which is the sense made of the
sign; the interpretant mediates between the sign and the object. In the Peircean definition,
a symbol is not a static material, but a dynamic process of interpretation. Peirce calls this
process “semiosis” (Peirce, 1991).

As said, we will not discuss in general linguistic meaning, which is an enormous
topic that has a huge literature in philosophy and linguistics (Speaks, 2021; Yule, 2020),
and the meaning of larger linguistic structures (sentence, discourse, or story). For our
purposes it will suffice to focus on how word meanings are psychologically represented.

It is however worth, for the sake of completeness, to briefly mention two milestones
in these fields that have been largely influential for subsequent studies.

4.1.1 A brief history of semantics

By the time Chomsky’s “Aspects of the Theory of Syntax” was published in 1965
(Chomsky, 1965), generative grammars were understood to have a semantic compo-
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Chapter 4. The communication act

nent in addition to a syntactic and phonological component. It was assumed that a
speaker’s knowledge of his language required her to have tacit knowledge of a gen-
erative grammar of it. A speaker of a natural language has the ability to understand
indefinitely many sentences of his language that he has never previously encountered.
Indeed, his ability to understand any sentence of his language does not depend on his
having a prior acquaintance with it. What explains this remarkable ability?

One answer can be shaped in the form of the generative grammar hypothesis (GGH):
the ability of a speaker of a natural language L to understand sentences of L requires
him to have tacit knowledge of a generative grammar of L, that being a finitely specifi-
able theory of L that generates one or more syntactic structures for each sentence of L
and interprets those structures both phonologically and semantically.

The question that defined semantics in linguistics was the form that the internally
represented semantic theory should take, and that is what the defining question was
taken to be in Katz and Fodor’s seminal 1963 manifesto, “The structure of a semantic
theory,” (Katz and Fodor, 1963) the first serious effort to do semantics in generative
linguistics. Katz and Fodor posited that understanding a sentence was the ability to
determine the number and content of the readings of a sentence, to detect semantic
anomalies, and to decide on paraphrase relations between sentences. The semantic
theory they claimed was needed to explain such ability, and thus to be the semantic
component of a generative grammar that verifies GGH, must have two components: (i)
a dictionary of the language and (ii) projection rules that select the appropriate sense of
each lexical item in a sentence in order to provide the correct readings for each distinct
grammatical structure of that sentence.

The impact of philosophy and logic on semantics in linguistic work of the 50’s and
60’s was limited; many linguists knew some first-order logic, aspects of which began to
be borrowed into linguists semantic representations, and there was gradually increasing
awareness of the work of some philosophers of language. Generative semanticists in
the late 1960’s and early 1970’s in particular started giving serious attention to issues
of "logical form" in relation to grammar, and to propose ever more abstract underlying
representations intended to serve simultaneously as unambiguous semantic represen-
tations and as input to the mapping from meaning to surface form (see, for instance,
Lakoff, 1971)

Then around 1970 linguistic semantics took a curious turn. Without rejecting the
claim that speaking a language requires tacit knowledge of a semantic theory of it,
linguists turned away from the project of characterizing the nature of that theory in
order to pursue instead the Montague-inspired project of providing for the languages we
speak the same kind of formal semantics that logicians devise for the artificial languages
of formal systems of logic. The external influence that set linguistic semantics on its
course was the model-theoretic approach to the metalogic of formal systems of logic
that emerged from the work of logicians Löwenheim, Skolem, Gödel, Tarski, Church,
Kripke and others in the years between 1915 and 1965.

Montague made three remarkable claims pertaining to natural language semantics
(but see Montague, 2019, for a recent account), namely: (1) there is no important the-
oretical difference between natural languages and the uninterpreted formal languages
of systems of logic; (2) it’s possible to treat a natural language as an uninterpreted for-
mal language and to construct for it a model-theoretic semantics of exactly the same
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4.1. Semantics: The Relationship Between Words and Concepts

meta-mathematical kind that a logician would provide for the formal language of a sys-
tem of intensional logic that captured the logical entailments expressible in the natural
language; (3) the construction of such a semantics should be the goal of any serious
semantics for natural language

Formal semantics originally signified semantics for formal languages devised for
the mathematical study of formal systems of logic, but the expression now has a mean-
ing akin to “analytical philosophy” and signifies the Montague-inspired approach to
the semantical study of natural languages. At the heart of the approach is Montague’s
Principle of Compositionality: The meaning of any complex expression is a function
of the meanings of its parts and of the way they are syntactically combined.

Indeed, the Fregean principle of compositionality was central to Montague’s the-
ory and remains central in formal semantics. The nature of the elements of both the
syntactic and the semantic algebras is open to variation; what is constrained by com-
positionality is the relation of the semantics to the syntax. The crucial structure for
syntax is the “derivation tree”, showing what parts have been combined at each step, by
what syntactic rule. In this perspective, syntax is an algebra of forms, semantics is an
algebra of meanings, and there is a homomorphism mapping the syntactic algebra into
the semantic algebra.

Nowadays, there are many theories of syntax, and many theories of semantics, and
the interface questions look different for all of them. For instance, taking a radical
stance, Jackendoff and Jackendoff (2002) suggests a view on which semantic structures
and syntactic structures are independently generated, and the interface conditions may
be quite complex.

An epistemological remark on computational ontologies

Computational ontologies are a means to formally model the structure of a system, i.e.,
the relevant entities and relations that emerge from its observation, and which are useful
to our purposes Guarino et al. (2009). Informally, an ontology is a formal, explicit
specification of a shared conceptualization. More formally, an ontology is a logical
theory designed to account for the intended meaning of the vocabulary used by a logical
language:

Let C be a conceptualization, and L a logical language with vocabulary V
and ontological commitment K. An ontology OK for C with vocabulary
V and ontological commitment K is a logical theory consisting of a set of
formulas of L, designed so that the set of its models approximates as well
as possible the set of intended models of L according to K

In this case the predicate symbol Horse has both an extensional interpretation (through
the usual notion of model, or extensional first-order structure) and an intensional in-
terpretation (through the notion of ontological commitment, or intensional first order
structure)

In this view, ontologies are collections of axioms that intend to capture the semantics
of the terms used in a certain domain of discourse and bring the text that belong to the
domain within the reach of standard, model-theoretic semantic approaches.

There are many critical aspects of this approach. Even a “perfect” ontology may fail
to exactly specify its target conceptualization, if its vocabulary (from informal glos-
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saries and data dictionaries to formal logical languages) and its domain of discourse
are not suitably chosen. A complete discussion is out of the scope of this thesis but we
leave to Santini and Dumitrescu (2008) for a poignant review of these topics. It will
suffice to highlight that the perspective on meaning given by computational ontologies
is very different from the contextual one that is necessary in order to create meaning,
and herein lies its main limitation. This limitation goes beyond the use of a specific
logic system: it derives from the disregard of interpretation as a creator of meaning
and, consequently, from the idea that meaning is a thing rather than a process (Santini
and Dumitrescu, 2008).

To conclude this brief review, many theorists -including many formal semanticists-
recognize that the theories semanticists construct under the formal semantics rubric
cannot plausibly be regarded as theories of the kind needed to explain a speaker’s
knowledge of her language.

This bifurcation raises concerns the relation between, on the one hand, the psy-
chologically explanatory semantic theories still thought to be needed but no longer
the object of study in linguistic semantics and, on the other hand, the theories formal
semanticists are concerned to construct. A cogent issue since a psychologically ex-
planatory theory can supersede even the best formal semantic theory.

To conclude this brief account, we observe that, by and large, in the various ap-
proaches that have flourished from the sixties, the theory of semantics is often spelled
in terms of referential semantics, arguing that, in the end, words get their meanings by
referring to real objects and events. Thus, a statement is true just in case it corresponds
to a situation in the world: word meaning is simply a relation between a word and the
world, i.e. a reference. In brief, the meaning of “horse” is the set of horses in the world.

Is this tenable as a psychological theory?

4.1.2 Word meaning, concepts and psychology: a first glance

Clearly, people do not know or have access to the sets all the horses in the world.
The psychological approach surmises that people do not know about every example

of each word they know. Instead, it assumes that people have some sort of mental
description, the concept, that allows them to pick out examples of the word and to
understand it when they hear it. Word meanings are psychologically represented by
mapping words onto conceptual structures.

Yet, in turn, this assumption raises a number of issues (Murphy, 2004).
The first relates to the kind of mapping. In the simplest view, we have a one-to-

one mapping (word = concept). Beyond the problem of accomodating synonyms and
ambiguous words, the real challenge is that there are many concepts that do not have
a word to go with them (for instance, “The moist residue left on a window after a dog
presses its nose to it”). In this case we have to admit that word < concept, in the sense
that some concepts are not labeled by words.

Further, even unambiguous words often have a number of different, related senses.
For example, “theater” can refer to the institution which puts on plays and the building
in which one views the plays: they are related but they are not the same thing. To sum
up, the word/concept mapping is not a simple one, if one has to account polysemy (e.g.
“Put it on the table” vs. “The entire table shared pizza”) and contextual modulation (but
again, cfr. Murphy, 2004 for an in-depth discussion)
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4.1. Semantics: The Relationship Between Words and Concepts

In the end it must be admitted, that a complete model of word meaning cannot be
represented in a simple mapping, because the number of variables and complexity of
the structures involved precludes a simple depiction. If one abstracts the conceptual
structure in the shape of a graph, where nodes and arcs (their connections), words are
likely to be connected to a node or subgraph. A word usually has a number of different
senses, like word 2 in Figure 4.3. The meaning of the word then consists in coher-
ent chunks of conceptual knowledge that are picked out by the lexical item. However,
note that the conceptual component also includes other information from the general
domain, including superordinates, coordinates (nodes that share an immediate superor-
dinate), and other related concepts. Clearly, the substructure being picked out by the
word is not a simple list of components, but a possibly elaborate structure. Further,
the conceptual structure being picked out by the word is closely integrated with related
structures, and these probably have considerable influence on the use of the word. For
example, the word “horse” is embedded in biological knowledge of animals in gen-
eral as well as knowledge of horse riding and so forth, and this knowledge might be
activated to various degrees on some occasions in which one hears the word “horse”
though it is not an official part of the meaning.

On the one hand, a sub-graph being selected by the word is not a simple list of
components, but a possibly elaborate structure. It is in general hard to know how to
determine the number of nodes, links, and their relations in order to assess each word’s
overall complexity. On the other hand, although one needs not assume that every aspect
of conceptual knowledge is retrieved when a word is understood, adjacent related con-
ceptual chunks are important for specifying the meaning by providing contrast, back-
ground knowledge, and underlying assumptions.

This very fact has important theoretical implications. First it is very difficult to
provide a simple set of components that is a word’s meaning. This undermines classic
theories of semantic representation stating that word meaning can be cast as a list of
semantic components (Katz and Fodor, 1963) that can be gained via a look-up in a
dictionary.

Second, and most important for us, relates to the problem of how to exploit the
conceptual structure, namely which process is put into action on the structure. When a
sentence emphasizes one aspect of a word meaning, that aspect is more activated, and
other aspects may not be activated. This implies that in order to exploit the structure
some kind of constructive/inferential process is needed in order to constrain possible
senses.

At this point, it is clear that the issues we have discussed, the merits and faults of
the different approaches for solving the semantic problem, crucially depend on how we
define a concept and its structure.

The problem here is that the literature on word meaning has not been directed to-
wards distinguishing theories of concept representation Murphy (2004).

The concept conundrum: prototypes or many exemplars?

We have defined a concept as the mental representation of a category. This raises a
question: what is a mental representation and how it is shaped? Early psychological
approaches to concepts took a definitional approach, a view that has been dominant
one since Aristotle. The classical view Murphy (2004), which can be dated back to
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Figure 4.3: Word meaning as a complex mapping of words on a conceptual structure shaped
as a graph. Individual, unambiguous, words usually have a number of different senses, for
example word 2. These senses are rendered as overlapping sub-graphs of the structure.
Sense 1 of word 2 picks out a single node, N2, in the conceptual structure. Yet, note that N2
has superordinate N1, coordinates N3 and N4, and subordinates N5 and N6. Adjacent sub-
graphs might be suitable to provide background knowledge. Adapted from Murphy (2004)

Hull’s early work, posits that: 1) concepts are mentally represented as definitions that
provide characteristics that are a) necessary and b) jointly sufficient for membership
in the category; 2) every object is either in or not in the category, with no in-between
cases.

If description of a horse picks out all horses and nothing else, one has given a
successful definition. An animal that has the feature common to all horses is thereby
a horse, just the same as any other thing that has that feature. Clearly, even most
definitions in dictionaries do not meet this criterion. .

There are many problems with the equation “concept = definition”, either theoretical
and empirical. A remarkable argument was proposed by the philosopher Wittgenstein
in the definition of what is a game.

As a matter of fact, the work of Eleanor Rosch in the 1970s essentially ruled out
the classical view from the field of psychology. What was proposed by Rosch it is
known as the prototype view. It is usually defined in terms of every category being best
represented by a single prototype or best example: the category of horses is represented
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by a single ideal horse, which best embodies all the attributes normally found in horses.
Clearly, this view is questionable. If from horses, one moves to birds, what single

“best bird” could work for penguins, ostriches, pelicans, hummingbirds, turkeys, par-
rots, and sparrows? Also, a single prototype is unsuitable to account for the variability
within a large category. Due to such drawbacks, the prototype view has most often
been interpreted as a summary representation, namely a description of the category as
a whole, rather than describing a single, ideal member. The representation itself could
be described in terms of family-resemblance, where the concept is conceived as the
ensemble of features that are usually found in the category members, with some fea-
tures being more relevant than others. A similarity computation can be used to identify
similar exemplars, in the form of an additive function of matching and mismatching
features.

Clearly, by substituting the single best example with an ensemble of features, raises
in turn the issue of how to determine and organize the feature list. Different proposals
have been advanced such as feature combinations and schemata, that also have been
influential in the early Artificial Intelligence community.

A radical alternative to the prototype view (and to previous theories of concept)
is the exemplar view proposed by Medin and Schaffer (1978), named context model.
Here, an individual is not supposed to have an entire representation of a category. In-
stead, a person’s concept of horses is the set of horses that the person remembers. In
a sense, there is no actual concept, because there is no summary representation that
stands for all horses. The decision on distinguishing a horse from a non-horse depends
on the similarity to other horses one has seen in the past. Medin and Schaffer (1978)
also proposed a computational procedure based on adding up the similarity scores for
each exemplar in a category. If one has 50 exemplars of horses in memory, the similari-
ties of the observed animal to these 50 items are added up, the result providing evidence
for the animal being a horse; the same is performed with respect to other animal cate-
gories, say deer, and so on. The category with the most similarity to the item will win
the contest.

The evolution of the Medin and Shaffer context model is the Generalized Context
Model (GCM). In the GCM the distance (dissimilarity) between two items indexed i
and j, where i indexes the object to be categorized, and j one of the remembered exem-
plars, is calculated as dij =

√∑
mwm(xmi − xmj)2, where xmk is the m-th “feature”

of the vector xk, and wm represents the item weight for dimension m. The similarity
score is then computed as sij = exp−cḋij , and eventually the Luce Choice Axiom is
used to turn this similarity into a response, by cacalculating the posterior probability
that the object i, is to be assigned to category, J , P (J | i) =

∑
j∈J sij∑

K

∑
k∈K sik

. The more
similar the item is to known exemplars in J , the higher this probability. The denomi-
nator is the similarity of i to members of all known categories K.

GCM has been an extremely influential categorization model. It is easy to note the
relation between the GCM and many models used in modern machine learning and
pattern recognition (e.g., clustering). To sum up, according to exemplar models of cat-
egorization, people decide what a new item is by accessing already-known examples
and relying on them, which, in some sense, can be thought of as relying on analogy. For
an in-depth discussion of theoretical and empirical evaluations of this model, and sub-
sequent variations, that stand on a voluminous literature on comparisons of exemplar
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models and prototype models of categorization one should refer to Murphy (2004).
There is prima facie an enormous difference between prototype and exemplar mod-

els. The prototype view argues that people learn a summary representation of the whole
category and use that to decide category membership. Category learning involves the
formation of that prototype, and categorization involves comparing an item to the pro-
totype representation. The exemplar view posits that people’s category knowledge is
represented by specific exemplars, and categorization involves comparing an item to
all (or many) such exemplars. Thus, conceptual representations and the processes of
learning and categorization all differ between these two models.

Some scholars have concluded that one cannot readily resolve the exemplar-prototype
question. Most notably, Barsalou (2014) provided a very detailed analysis, concluding
that there is no specific pattern of performance that could be accounted for by only one
kind of theory.

Yet, a synthesis is possible at the computational theory level as it has been shown
by (Anderson, 1991).

Towards a synthesis: rational analysis of human categorization

Anderson (1991) aims at providing a rational analysis of categories (rational model
of categorization, RMC), that is a theoretical model in the sense we have specified in
Chapter 3.

He considers three views of the origins of categories:

1. Linguistic: A linguistic label provides a cue that a category exists, and people
proceed to learn to identify it

2. Feature overlap: People notice that a number of objects overlap substantially and
proceed to form a category to include these items

3. Similar function. People notice that a number of objects serve similar functions
and proceed to form a category to include them.

These three views need not be in opposition. They are all special cases of the pre-
dictive nature of categories. Categorization is justified by the observation that objects
tend to cluster in terms of their attributes, be these physical features, linguistic labels,
functions, or whatever.

Thus, according to the RMC, categorization is a special case of feature induction,
in which the learner uses the observed features of a stimulus to predict its unobserved
features, using the previous stimuli to guide the prediction. Since the model treats
category linguistic labels as features, these labels are the obvious features to predict,
but other features can be predicted as well.

The basic goal of categorization is to predict the probability of various unexperi-
enced features of objects. The situation can be characterized as one in which n objects
have been observed, they have an observed feature structure Fn, and one wants to pre-
dict whether a particular object will display some value j on dimension i unobserved
for that object.

This amounts to the marginalization

Pi(x | Fn) =
∑
k

P (k | Fn)Pi(x | k)
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The sum is across all possible partitionings/categories k of the n objects into disjoint
sets, Pi(x | k) is the probability that the object in question would display value x on
dimension i if k were the partition.

P (k | Fn) is the posterior probability of category k given the objects display feature
structure Fn, to be inferred via Bayes rule:

P (k | Fn) =
P (Fn | k)P (k)∑
k′ P (Fn | k′)P (k′)

The sum in the marginalization and the denominator of Bayes’equation are in-
tractable for large n, as the number of partitions grows rapidly with the number of
stimuli. Consequently, an approximate inference algorithm is needed.

Anderson identified two desiderata for an approximate inference algorithm: that it
be incremental, assigning a stimulus to each cluster as it is seen, and that these assign-
ments, once made, be fixed. These desiderata were based on beliefs about the nature of
human category learning: that people need to be able to make predictions all the time
not just at particular junctures after seeing many objects and much deliberation, and
that people tend to perceive objects as coming from specific categories. To such end,
he developed a simple iterative inference algorithm that satisfies these desiderata.

Impressively, Anderson independently discovered one of the most celebrated mod-
els in nonparametric Bayesian statistics, the Dirichlet process mixture model (DPMM
(Sanborn et al., 2010)), deriving this distribution from first principles. Namely, the
problem of predicting an arbitrary feature of a stimulus can be solved by estimating
the joint probability of the features of a set of stimuli. This is the statistical problem
of density estimation. In Bayesian statistics, this problem is addressed by defining a
prior distribution over a set of possible densities, and then updating this distribution
with the observed data to obtain a posterior distribution over densities. In nonparamet-
ric Bayesian statistics, the goal is to define a prior that includes as broad a range of
densities as possible, so that complex densities can be inferred if they are warranted by
the data.

The RMC uses a flexible representation that can interpolate between prototypes and
exemplars by clustering stimuli into groups, adding new clusters to the representation
as required. When a new stimulus is observed, it can either be assigned to one of the
pre-existing clusters, or to a new cluster of its own.

Viewing category learning in this way helps to clarify the assumptions behind the
two main classes of psychological models, the exemplar and prototype views. As we
have seen, exemplar models assume that a category is represented by a set of stored
exemplars, and categorizing new stimuli involves comparing these stimuli to the set of
exemplars in each category (e.g., Medin and Schaffer, 1978). Prototype models assume
that a category is associated with a single prototype and categorization involves compar-
ing new stimuli to these prototypes. These approaches to category learning correspond
to different strategies for density estimation used in statistics, being nonparametric and
parametric density estimation respectively. RMC takes a third approach, modeling cat-
egory learning as Bayesian density estimation. This approach encompasses both proto-
type and exemplar representations, automatically selecting the number of clusters to be
used in representing a set of objects. To sum up the RMC is an example of a success-
ful Bayesian model of cognition. It provides a reasonable explanation of how objects
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should be grouped into clusters and the result of this clustering can be used to explain
many categorization experiments (Sanborn et al., 2010).

4.1.3 Grounding concepts: The knowledge based approch

In contrast to prototype and exemplar representations, the knowledge approach argues
that concepts are part of our general knowledge about the world. We do not learn
concepts in isolation from everything else; rather, we learn them as part of our overall
understanding of the world around us. When we learn concepts about animals, this
information is integrated with our general knowledge about biology, about behavior,
and other relevant domains. This relation works both ways: concepts are influenced
by what we already know, but a new concept can also effect a change in our general
knowledge (consider again the initial Montezuma example). In general, this approach
emphasizes that concepts are part and parcel of the individual’s general knowledge of
the world, and so there is pressure for concepts to be consistent with whatever else the
individual knows.

This bears a consequence that is central in our investigation: in order to main-
tain such consistency, part of categorization and other conceptual processes may be a
reasoning process that infers properties or constructs explanations from general knowl-
edge. People use their prior knowledge to reason about an example in order to infer
what category it is, or in order to learn a new category. This aspect of concepts was
referred to as “mental theories about the world”. In this framework, knowledge of how
each category fits in with other parts of our lives shapes the ideal of the category: for
instance, vehicles are made so that people can be moved from place to place; thus, the
most typical vehicles would behave this way in the best possible way.

The importance of such knowledge can be illustrated even more by a kind of cat-
egory that Barsalou (1983, 1985) called goal-derived categories or ad-hoc categories.
These are categories that are defined solely in terms of how their members fulfill some
desired goal or plan (e.g., the category of things to take from one’s house during a fire).
This is an important assumption: as we will see in Chapter 5, emotions will be exactly
defined in terms of ad-hoc categories. Barsalou found that the most typical examples
of goal-derived categories were the ones that were closest to the ideal.

One of the themes of the knowledge approach, then, is that people do not rely
on simple observation or feature learning in order to learn new concepts. They pay
attention to the features that their prior knowledge says are the important ones, under
the given goal. They may make inferences and add information that is not actually
observed in the item itself. Their knowledge is used in an active way to shape what is
learned and how that information is used after learning.

The grounding problem

One important topic is the tight connection between conceptualization/categorization
and perception as depicted in Figure 4.2.

In most theories, the concept-learning device takes in category exemplars as de-
scribed by a preexisting vocabulary of features, and it then outputs a category descrip-
tion in terms of those features. However, in a different vein it has been argued that
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learning must occur at the perceptual level as well; the features themselves must be
constructed, often in parallel with category learning.

Indeed, categorization can change the boundaries of perception. For example, per-
ceptual discrimination is heightened along category boundaries, meanwhile perceptual
effects such as the “magnet effect” (e.g., the continuum of the color spectrum perceived
as bands of segmented colors) arise as a consequence of categorization. Such effects
can be elegantly accounted for by the knowledge-based approach shaped in the form
of a Bayesian model: the prior term models available knowledge and the likelihood
term models the incoming perceptual stimulus, the final effect being summarised by
the posterior distribution.

A deep issue behind this findings is whether concepts and knowledge are really
perceptual or symbolic: should concept representations be thought of as perceptual or
symbolic? Indeed, if our symbolic representations are not all innately given, it is ar-
gued, then they may well come from perceptual representations. After all, humans can
learn the use of language through physical interaction with their environment and semi-
otic communication with other people. It is very important to obtain a computational
understanding of how humans can form a symbol system and obtain semiotic skills
through their autonomous mental development.

Unfortunately, early AI mutuated from logic the idea of symbols. In predicate logic,
which is a representative of symbolic logic, predicates and variables that represent real-
world phenomena are given as discrete representations in a top-down manner. The
fundamental assumption is that our world can be distinguished and segmented into a
discrete “symbol” system, and that the system is deterministic and static. The Physical
symbol system hypothesis, proposed by (Newell, 1980) was no exception to such as-
sumtpion. As a consequence, the meaning of a symbol is syntactically determined in
relation with other symbols.

However, a relationship between two signifiers can never provide the relationship
between a signifier and a signified object (cfr. Figure 4.2). Harnad (1990) put on the
table the symbol grounding problem, which is one of the most famous problems in AI:

What is the representation of a zebra? It is just the symbol string “horse
& stripes”. But because “horse” and “stripes” are grounded in their respec-
tive iconic and categorical representations, “zebra” inherits the grounding,
through its grounded symbolic representation. In principle, someone who
had never seen a zebra (but had seen and learned to identify horses and
stripes) could identify a zebra on first acquaintance armed with this sym-
bolic representation alone (plus the nonsymbolic – iconic and categorical –
representations of horses and stripes that ground it) (Harnad, 1990)

.
In robotics, Brooks (1991) representatively criticized and insisted that sensory-

motor coupling with the environment is primarily important for robots to achieve ev-
eryday tasks in our daily environment. For a critical survey of the problem in robotics,
see Taniguchi et al. (2016).

In cognitive science, physical symbol systems have also been criticized. Barsalou
(1999) proposed the concept of Perceptual Symbol System (PSS), to place an emphasis
on perceptual experiences for theories of knowledge and categorization
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In its bare essentials (but see Barsalou, 2008 for an overview), a perceptual state
can contain two components: an unconscious neural representation of physical input,
and an optional conscious experience. Once a perceptual state arises, a subset of it
is extracted via selective attention and stored permanently in long-term memory (cfr.
Figure 4.4).

On later retrievals, this perceptual memory can function symbolically, standing for
referents in the world, and entering into symbol manipulation. As collections of per-
ceptual symbols develop, they constitute the representations that underlie cognition.
Perceptual symbols are modal and analogical. They are modal because they are rep-
resented in the same systems as the perceptual states that produced them. The neural
systems that represent color in perception, for example, also represent the colors of
objects in perceptual symbols, at least to a significant extent. On this view, a common
representational system underlies perception and cognition, not independent systems.

The very notion of concept in this framework, which is radically different than those
previously discussed is that of simulation: a concept is a dynamic entity a simulator.

Viewing concepts as simulators suggests a different way of conceiving categoriza-
tion. Whereas many theories assume that relatively static, amodal structures determine
category membership (e.g., definitions, prototypes, exemplars, theories), simulators
suggest a more dynamic, embodied approach: if the simulator for a category can pro-
duce a satisfactory simulation of a perceived entity, the entity belongs in the category.
If the simulator cannot produce a satisfactory simulation, the entity is not a category
member (Barsalou, 1999). For example, the perceptual simulations used to categorize
chairs approximate the actual perceptions of chairs. In contrast, amodal theories as-
sume that amodal features in concepts are compared to perceived entities to perform
categorization (Barsalou, 1999, 2008). Cogently, it is this idea of simulation that paves
the way to the notion of conceptual act, which will be discussed in the next chapter.

The PSS hypothesis currently animates hot research fields that are beyond psychol-
ogy, for instance robotics (Taniguchi et al., 2016). Robotics indeed makes a real case for
learning of abstract words such as “use” and “make” in humanoid robot experiments,
and the acquisition of numerical concepts via gesture and finger counting strategies.
The current approaches share a strong emphasis on embodied cognition aspects for
the grounding of abstract concepts, and a continuum, rather than dichotomy, view of
concrete/abstract concepts differences (see, Cangelosi and Stramandinoli, 2018 for a
review).

4.1.4 Other approaches to meaning: associative models

We have been focusing on a conceptual approach to word meaning here, but this has
not always been the major approach to word meaning in linguistics and psychology.
However, one general approach that has been important in the history of psychology
has been based on word associations. That is, the meaning of a word is the set of other
words (or perhaps words plus other mental entities) it is associated to. This is the bulk
of the Distributional Hypothesis (DH) proposed by Harris (1954)

The degree of semantic similarity between two linguistic expressions A and
B is a function of the similarity of the linguistic contexts in which A and B
can appear.
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Figure 4.4: The PSS hypothesis. Upper panel: the basic assumption underlying amodal symbol
systems. Perceptual states are transduced into a completely new rep- resentational system
that describes these states amodally. As a result, the internal structure of these symbols
is unrelated to the perceptual states that produced them, with conventional associations
establishing reference instead. Bottom panel: the basic assumption underlying perceptual
symbol systems. Subsets of perceptual states in sensory-motor systems are extracted and
stored in long-term memory to function as symbols. As a result, the internal structure of these
symbols is modal, and they are analogically related to the perceptual states that produced
them. Adapted from Barsalou (1999).

According to Harris, the semantic similarity between two words is, in fact, a func-
tion of the degree of the similarity of their “linguistic environments”, i.e. of the degree
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to which they can occur in similar contexts. For example, the near-synonymy between
oculist and eye-doctor depends on the possibility to use these words interchangeably
in most linguistic contexts . Harris inherits from Bloomfield the refusal of meaning as
an explanans in linguistics. However, at the same time he reverses the direction of the
methodological arrow, and claims that similarity in distributions should be instead taken
as an explanans for meaning itself, and therefore used to build paradigmatic classes out
of distributionally semantic similar linguistic expressions Lenci (2008).

This approach has become more prominent again, due to some high-profile com-
putational models that use text association to specify the meaning of a word. These
approaches may seem at odds with the conceptual view.

A general and potentially useful attempt to represent meaning came about with
the development of scaling procedures in the 1960s, such as multidimensional scaling
(MDS) and various clustering techniques. These procedures require information about
the similarity of different words. This has most often been obtained by asking subjects
to rate the similarity of pairs of words. For example, how similar are “horse” and
“deer”? “horse” and “donkey”? “donkey” and “deer”? and so on. These similarities
between all pairs of words being studied would be input into a program, which would
output a structure. In the case of MDS the latter would be a similarity space.

When such techniques were developed, there was some hope that they could provide
a more quantitative basis for representing word meaning. However, they also have
severe limitations as representations of meaning. Solutions obtained simply do not
represent much of the meaning. Word meaning is extremely complex, and no small set
of dimensions (2 o 3) can account for how words are used.

Further, the solutions obtained depend greatly on the particular set of items tested.
For example, when only mammals are considered that size and predacity are important
dimensions. However, when plant-eating animals are tested, it is likely that predacity
would no longer be a dimension, and some other difference among the animals would
have become more salient and would have appeared in the solution.

More recent versions of associative models have gained great currency, especially
within the computational modelling realm.

One seminal approach is Latent Semantic Analysis (LSA, Landauer and Dumais,
1997). By using very large text corpora (over millions of words), one can derive via
LSA that certain words tend to occur together in a document and other words hardly
ever co-occur. These patterns of co-occurrence, the matrix of word-document co-
occurrences represent meaning: words with similar patterns have similar meanings.
One can compute the dimensions of this latent space, via a reduced-rank Singular-
value decomposition (SVD) in which the k largest singular values are retained so that
the resulting reduced-dimension SVD representation is the best k-dimensional repre-
sentation to the original matrix (in the least-squares sense). Each word then has a value
on each latent dimension and word position (now a k-dimensional vector) in the latent
space serves as the new kind of semantic indexing. The semantic similarity between
two words can eventually be calculated as the dot-product or cosine distance between
the two vectors.
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State of the art in statistical semantics

From the original LSA model a number of associative approaches have flourished,
that might be characterised as the field of “statistical semantics” (Sikström and Gar-
cia, 2020).

Probabilistic Latent Semantic Indexing (pLSI) (Hofmann, 1999) is the probabilistic
version of LSA that models each word in a document as a sample from a mixture model
of conditionally independent multinomial distributions. Each document consists of top-
ics, and each topic consists of words. pLSI has an improvement over LSA in terms of
the interpretability of word-topic and topic-document relations. Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003) was proposed to overcome the overfitting problem in
pLSI by introducing the Dirichlet prior over the multinomial topic distribution. Inter-
estingly enough

The basic rationale of this research program is the one that has motivated LSA. In a
nutshell:

• Meaning is created by co-occurrences of concepts in the world (namely, the DH).
These can be used to create semantic representations of concepts.

• Semantic representations can be generated by applying data-compression algo-
rithms on co-occurrence of words in text corpora.

When we see a dog, we also see a tail, paws, eyes, legs, fur, and and so on. In this
context, we may also see an owner, that goes for a walk in the park with the dog that is
attached to a leach, and the dog might bark. Thus, dog is connected to other concepts,
and when these concepts reliable co-occur with each other, then the meaning of dog as
a concept is created (Sikström and Garcia, 2020).

In this perspective, a variety of text representation methods, and model designs have
blossomed in the context of Natural Language Processing (NLP), including state of the
art Language Models (LM). Here an LM basically means trying to predict the next word
wt+1 given the previous words wt, wt−1, · · · , w1 in a sentence (in probabilistic terms,
P (wt+1 | wt, wt−1, · · · , w1))

While LSA takes a geometric approach to extracting meaning from co-occurence
statistics, and LDA uses a probabilistic generative approach to the problem, recent mod-
els use a neural network approach to extract the semantic vectors.

These models are trained to either predict the most likely word given some context,
or, in reverse direction, the most likely context for a given word. The word vectors that
emerge as a side-effect of this prediction task, have turned out to be of much higher
quality than the word vector from classical distributional semantics.

The origins of neural word embeddings can be traced back to the proposals of Hin-
ton et al. (1986) and Bengio et al. (2003), who used neural architectures in the derivation
of word meanings.

Neural word embeddings can transform large volumes of text into effective vector
representations capturing the same semantic information. Further, such representations
can be utilized by various machine learning (ML) algorithms for a variety of NLP-
related tasks. Based on the association hypothesis, text representation methods have
evolved from manually selecting the features called feature engineering to represen-
tational learning methods that leverage deep neural networks to discover relevant em-
beddings, most notable example being Word2vec (Mikolov et al., 2013) The resulting
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representation is encoded with word meaning, so similar words will have similar vector
representations, for example, the vector(‘car’) will be similar to the vector(‘driver’).
Moreover, the relationship between words is also preserved in term of displacement
between points such that basic vector operations on these points will be meaningful,
for example, vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) will result in a vector
very similar to the vector(‘Rome’). Also, the displacement can capture syntactic rela-
tions, for instance, vector(‘sweet’) - vector(‘sweetest’) + vector(‘fastest’) will result in
a vector very similar to the vector(‘fast’)

For an in-depth, comprehensive analysis and survey, which is out of the scope of
this thesis, the reader is urged to refer to Naseem et al. (2021). It will suffice to say
that, based on the idea of continuous word embedding in which text from the corpus is
mapped as vectors under the distributional hypothesis, such methods have evolved from
non-contextual embeddings (e.g., Word2vec, GloVe, FastText), to contextual word rep-
resentations (e.g., Context2Vec, CoVe, and ELMo, a weakly bi-directional model)
based on LSTMs / Recurrent approaches in deep learning. Continuous word representa-
tion models have drastically improved text classification results (Naseem et al., 2021).
The next step has been represented by truly bi-directional contextual representations
relying on deep learning transformer architectures such as GPT-OpenAI Transformer,
BERT and variants (XLNet, RoBERTa, ALBERT, DistilBERT, MegatronLM, ERNIE,
SpanBERT, BART, etc.) (Naseem et al., 2021).

The recent neural word embedding models built on those successes, and moreover
showed that automatically learned word representations encode many linguistically rel-
evant relations be- tween words. But distributional and neural word vectors have little
to say about how sentence meanings can be constructed (Repplinger et al., 2018). On
the other hand, The symbolic models of language in the tradition of Montague empha-
sized the compositional semantics of sentences, but largely ignored how the meaning
of words can be modelled and relied on hand-built grammars specifying the syntac-
tic and semantic properties of words. In the last few years, much research is devoted
to bringing together insights about compositionality from the symbolic tradition, and
insights from vector-space models of word meaning from the distributional and neu-
ral traditions, giving rise to compositional distributional semantics (Repplinger et al.,
2018).

The seminal work by Mitchell and Lapata (2010) has shown how to use different
types of composition functions , such as additive, multiplicative and tensor-based com-
position, that can be used in vector space models to compose sentence meaning from
the meaning of smaller units, such as words.

Current research on compositional distributional semantics exists in two flavors.
One class of models, type-based tensor approaches, combines a powerful composi-
tional mechanism with a robust distributional foundation of word meaning at the cost
of very high computational complexity. The other class of models consists of deep
neural network architectures that implic- itly or explicitly—account for the demands of
semantic compositionality (Repplinger et al., 2018).

As technological advances have emerged over time, these have been globally used
in many domains such as medicine, social sciences, healthcare, psychology, law, en-
gineering, and so on. In particular, these LMs have been used in many different areas
of text classification tasks such as Information Retrieval, Sentiment Analysis, Recom-
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mender Systems, Summarization, Question Answering, Machine Translation, Named
Entity Recognition, Adversarial Attacks and Defenses, and so on (Naseem et al., 2021).

4.1.5 Final remarks on computational models

The success of statistical semantics models could be taken as undermining the concep-
tual approach to meaning taken in this chapter. If these models can truly account for
how words are used, then word meaning may be a large associative network that merely
encodes patterns of co-occurrence.

However, the general problem with nets of associations is that knowing what words
are associated to one another does not specify what the meaning of an individual word
is. Words must be connected to our knowledge of things in the world, not just other
words. Although “jugs” may be related to both “vinegar” and “bottles”, one would not
know from the scores that “Put it in the jugs” is similar to “Put it in the bottles” but not
“Put it in the vinegar.”

Since concepts are our non-linguistic representation of the world, by connecting
words to these representations, we can explain how people can connect sentences and
words to objects and events in the world (in the vein outlined in Figure 4.2). Concepts
are just the things that are evoked by our perceptual systems and that control our ac-
tions. Thus, by hooking up words to concepts, we can break out of the circle of words
connected to words and tie language to perception and action. And, as we will see, to
emotions.

This challenge is vividly present when the problem of word (and language) acquisi-
tion in children is addressed: a question that lies at the very heart of cognitive science.
In a sense, modern NLP models, such as BERT, ELMo and GPT-3, are already close
to simulating children’s language acquisition. So what is missing? The main thing
they currently lack is exactly a real world representation of semantics that allows them
to map from form to meaning and vice-versa, with “meanings” represented solely as
contextualized word embeddings. Indeed, if our goal is to translate from one natural
language to another, to develop a predictive-text application, or to generate passages
of text given a prompt (e.g., GPT-3), contextualized word embeddings will probably
do a better job. But if our goal is to simulate children’s language acquisition, we have
develop real-world semantic representations in the sense discussed above. Again, this
fundamental problem is one of the most challenging and intriguing issues in current
robotics Taniguchi et al., 2016; Cangelosi and Stramandinoli, 2018.

Yet, in the current computational modelling practice, markedly in robotics the story
is much more nuanced than it would suggest the in principle stark contrast between
statistical semantics and conceptual/grounded approaches.

For instance, in Taniguchi et al. (2016) one can find a detailed discussion of how,
starting from a paradigmatic statistical semantics tool such as LDA, one can extend
the original model by incorporating multi-modal perceptual information (vision, touch,
speech) to a multi-modal LDA thus providing an appropriate grounding.

For instance, pairing words with “words” that represent object features and that are
taught by humans along human-robot interaction, the robot can acquire word meanings.
In turn, the robot can recall the multimodal information that can be represented by the
word, much like Anderson suggested in his RMC. Thus, we may say, at the light of
previous discussion, that the robot has formed an object concept and learned speech
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recognition similarly to infants by using multi-modal information obtained from objects
and teaching utterances given by humans. Moreover, by connecting the recognized
words and concepts, the robot can also acquire word meanings To sum up, the robot is
considered to have “understood” word meanings through its own body.

Beyond robotics, a similar avenue has been taken in those research fields lying at the
intersection between Computer Vision and NLP, such as image captioning, video cap-
tioning, visual question answering, visual retrieval (Wiriyathammabhum et al., 2016).

To sum up the whole discussion, whatever the modelling approach is chosen, it
should be able to account for the following fundamental characteristics of the human
symbol system (Taniguchi et al., 2016):

Grounded : A symbol does not have any meaning without being grounded or inter-
preted.

Dynamic : There does not exist an objectively true symbol system that can be deter-
mined in top-down manner in our human society.

Social : An individual representation system and the socially shared symbol system
are not same.

But, as to the problem of the social grounding of meaning, we need to jump from
semantics to pragmatics, which will be the topic of the next Section.

Interestingly enough, this view, is not a novel one. It was already present in Au-
gustine (1876) “Confessions”, where he describes how he learnt to use language (and
acknowledged by Wittgenstein, 2009 at the beginning of his “Philosophical Investiga-
tions”):

When grown-ups named some object and at the same time turned towards
it, I perceived this, and I grasped that the thing was signified by the sound
they uttered, since they meant to point it out. This, however, I gathered
from their gestures, the natural language of all peoples, the language that
by means of facial expression and the play of eyes, of the movements of
the limbs and the tone of voice, indicates the affections of the soul when it
desires, or clings to, or rejects, or recoils from, something. In this way, little
by little, I learnt to understand what things the words, which I heard uttered
in their respective places in various sentences, signified. And once I got my
tongue around these signs, I used them to express my wishes

4.2 Pragmatics: How Use Contributes to Meaning

Much work in semantics follows the tradition of positing systematic but inflexible the-
ories of meaning. In practice, however, the meanings listeners derive from language
are heavily dependent on nearly all aspects of context, both linguistic and situational.

In daily conversations, spoken sentences do not always mean what they literally
mean. In many cases, language use cannot be handled without pragmatics.

The term pragmatics concerns the flexible use of language in context, deriving from
the Greek noun pragma, which refers to an act or deed. Literally, pragmatics refers to
aspects of linguistic meaning that derive from the act of speaking in a particular situated
context.
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An “in principle” distinction between semantics and pragmatics in addressing mean-
ing is outlined in Figure 4.5 (though, in many practical cases such distinction tends to
blur)

Figure 4.5: Kinds of meaning that are in principle addressed by semantics and pragmatics.
These include both conventional and conversational (to be inferred) aspects of meaning.
Adapted from Terkourafi (2021).

There are three representative theories currently supported in pragmatics: (1) speech
act theory by Austin (1962), (2) theory of implicature by Grice (1989), and (3) rele-
vance theory by Sperber and Wilson (1986). These theories have provided many rea-
sonable explanations, analyses, suggestions, and implications regarding language use,
and have had a great influence on several academic disciplines.

By and large, these approaches point out that communication cannot be reduced to
a code model: a communicator encodes her intended message into a signal, which is
decoded by the audience using an identical copy of the code. They laid the foundations
for an inferential model of communication (Grice, markedly), as an alternative to the
classical code model.

According to the inferential model, a communicator provides evidence of her inten-
tion to convey a certain meaning, which is inferred by the audience on the basis of the
evidence provided. An utterance is, obviously, a linguistically coded piece of evidence,
so that verbal comprehension involves an element of decoding. However, the linguistic
meaning recovered by decoding is just one of the inputs to a non-demonstrative in-
ference process which yields an interpretation of the speaker’s meaning (Sperber and
Wilson, 1986).

4.2.1 Austin: speech acts

Half a century ago, Austin presented a new picture of analysing meaning; meaning is
described in a relation among linguistic conventions correlated with words/sentences,
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the situation where the speaker actually says something to the listener, and associated
intentions of the speaker. The idea that meaning exists among these relations is depicted
successfully by the concept of acts: in uttering a sentence, that is, in utilizing linguistic
conventions, the speaker with an associated intention performs a linguistic or speech
act to the listener. Austin’s analysis of meaning is unique in the sense that meaning
is not explained through some forms of reduction. In reductive theories of meaning,
complexities of meaning expressed by a sentence are reduced by a single criterion to
something else, and this is claimed to be the process of explaining the meaning of the
sentence.

As we have seen modern truth-conditional semanticists adopt the Russellian idea of
explaining the meaning of a sentence and the Russellian/Tarskian idea of correlating a
sentence, as its meaning, with a fact or state of affairs: to explain the meaning of a sen-
tence is to specify its truth conditions, i.e., to give necessary and sufficient conditions
for the truth of that sentence.

Austin warned against oversimplifying complexities of meaning and emphasised
the importance of describing the total speech act in the total speech situation in which
the language users employ the language: the speaker utters a sentence and performs a
speech act to the hearer.

The preliminary distinction in Austin’s approach is between assertions or statements
– to which Austin refers with the term constatives (“My daughter’s name is Frauke”)
and utterances with which something is done; Austin refers to these utterances with the
term performatives(“I bet you six pence Fury will win the race”). The latter make the
action performed by the speaker explicit: these sentences perform an act (betting) and
they are neither true nor false. Clearly, performatives can go wrong (e.g., the bet after
the race is over): in this situation, the performative utterance is in general “unhappy”.
Thus performatives have to meet the so-called felicity conditions

Austin’s felicity conditions define the elements which structure the speech situation,
in terms of which a purported act succeeds/fails (Austin, 1962):

• (Conventionality) (i) There must exist a conventional procedure having a cer-
tain conventional effect (uttering of certain words by a speaker in certain circum-
stances) (ii) The circumstances and persons must be appropriate, as specified in
the procedure.

• (Actuality) The procedure must be executed by all participants both (i) correctly
and (ii) completely.

• (Intentionality) Often (i) the persons must have the requisite thoughts, feelings
and intentions, as specified in the procedure, and (ii) if consequent conduct is
specified, then the relevant parties must so do.

Through a description of the success/failure of the speech act purported, which
is explained as a violation/observation of the felicity conditions, Austin formulated a
method to describe a sentence in terms of the speech situation where it is uttered: by
means of associated linguistic conventions, the speaker, with an associated intention,
actually performs an act to the hearer, which induces a certain response from the lis-
tener.

The next turn in Austin’s approach relies on showing how the difference between
constative and performative utterances is somehow artificial: the apparently constative
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“France is hexagonal” is neither true nor false, it is simply a rough geometrical de-
scription, which might hold in certain circumstances. Thus, he proposes a framework
in terms of which all speech acts, i.e. constatives as well as performatives, can be
described: more fundamentally they are both embedded into the act of “saying some-
thing”, the locutionary act. The study of utterances is the study of locutions, or of
full units of speech. Further, locutionary acts are also and at the same time illocu-
tionary acts, i.e. acts of doing something in saying something (e.g., accusing, asking
and answering questions, apologizing, blaming, informing, ordering, assuring, warn-
ing, announcing an intention, making an appointment). Illocutionary acts conform to
conventions and have a certain conventional force. Eventually, Austin finally contrasts
locutionary (“He said to me: kiss her!”) and illocutionary acts (“He urged me to kiss
her”). with ‘perlocutionary’ acts (“He got me to kiss her”), i.e. acts of doing some-
thing by saying something like persuading, alerting, convincing, deterring, surprising
and getting somebody to do something. Perlocutionary acts produce effects upon the
feelings, thoughts or actions of the addressee(s) and thus have psychological and/or
behavioural consequences.

Also, perlocutionary acts are causal. Interestingly, the response or sequel of per-
locutionary acts can also be achieved by non-verbal means (intimidation may be achieved
by waving a stick or pointing a gun). Contrary to illocutionary acts, perlocutionary acts
are not conventional: effects of the speaker’s perlocutionary acts may be intended by
the speaker, but they may also be unintended. A perlocutionary act is performed when-
ever the speaker is (at least partially) responsible for some act or state of the listener.

It is worth recalling, at this point, some further analysis due to Austin’s student
John R. Searle who systematized and somewhat formalized Austin’s ideas. For Searle,
speaking is performing illocutionary acts in a rule-governed form of behaviour: acts
have an effect on the hearer; the hearer understands the speaker’s utterance.

According to this insight, a sentence has two parts: a proposition-indicating element
and the function-indicating device which reveals what illocutionary force the utterance
is to have and thus what illocutionary act the speaker is performing in the utterance of
the sentence. These devices include – at least for English - word order, stress, intonation
contour, punctuation, the mood of the verb, and finally a set of so-called performative
verbs. Meaning is more than a matter of intention, it is also a matter of convention.
Both the intentional and conventional aspects of illocutionary acts must be captured
and especially the relationship between them. In the performance of an illocutionary
act the speaker intends to produce a certain effect by means of getting the hearer to
recognize his intention to produce this effect, and furthermore, if he is using words
literally, he intends this recognition to be achieved in virtue of the fact that the rules
for using the expressions he utters associate the expressions with the production of that
effect. Indeed, according to Searle there are three principal dimensions of differences
between speech acts: the illocutionary point, the direction of fit, and the expressed
psychological states. For example, utterances “I suggest we go to the movies” and “I
insist that we go to the movies” both have the same illocutionary point but are presented
with different strengths.

Another important distinction Searle makes between direct and indirect speech acts.
The utterance “Can you pass the salt?” has a specific meaning but that also means
something else: is also a request addressed to the hearer that should make him pass
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the salt to the speaker. The sentence has an ulterior illocutionary point beyond the
illocutionary point contained in the meaning per se of the sentence. Namely, in indirect
speech acts we observe a difference between what is said and what is actually meant
by the speaker. The listener must then follow some sort of cooperative principle in
conversation that operates on both the speaker and the listener and makes the inference
that the speaker wants him to pass the salt.

Indirect speech acts, including perlocutionary acts, are often subject to social and/
or linguistic convention, which has to be learned in order to participate adequately in
a society. It’s communicative function is to be derived by means of sensible social
reasoning, as when the speaker utters “It’s cold in here” hoping that the listener will
take the hint and turn the heating up or shut the window.

The cooperative principle of conversation that was set by H. Paul Grice’s theory of
implicature and conversational maxims.

4.2.2 Grice: the inferential stance

Grice presented an initial framework theory for pragmatic reasoning, positing that
speakers are taken to be cooperative, choosing their utterances to convey particular
meanings. Gricean listeners then attempt to infer the speaker’s intended communicative
goal, working backward from the form of the utterance. This goal inference framework
for communication has been immensely influential.

The central point, again, is that there is a difference between what is said and what is
actually meant by the speaker: the listener has to make certain inferences to recognize
and understand this actual meaning which is implicated by the speaker in what he or she
said. said. The notion of a conversational implicature is that of a default inference, one
that captures our intuitions about a preferred or normal interpretation’ of a sentence, an
utterance, a conversation or a text. In the dialog

A Will you go to Mark’s PhD party?

B I have to prepare my inaugural lecture

speaker A will understand that speaker B implies with his or her answer (an indirect
speech act) that he or she will not or cannot go to this party.

The core of Grice’s proposal was a set of conversational maxims (informativeness,
truthfulness, relevance and clarity). These are a set of principles/categories that ground
Grice’s Cooperative Principle:

Quantity Avoid obscurity: (i) Make your contribution as informative as is required
(for the current purposes of the exchange); (ii) Do not make your contribution
more informative than is required

Quality Try to make your contribution one that is true: (i) Do not say what you believe
to be false; (ii) Do not say that for which you lack adequate evidence.

Relation Be relevant.

Manner Be perspicuous

For instance, in the conversation
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A Marco doesn’t seem to have a girlfriend these days.

B He has been paying a lot of visits to Rome lately

speaker B implicates that Marco has, or may have, a girlfriend in Rome.
Indeed, interesting cases are those where the maxims are violated: ironic statements,

metaphors, and understatements (e.g., speaking about a drunken man who has broken
all his furniture as if “he was a little intoxicated”) all break the maxim of Quality.
Figures of speech like irony, metaphor and understatement are paradigmatic examples
requesting implicatures.

Implicatures are not fully determinable, that is to say there is no one-to-one linkage
between the form of an implicature and its intended meaning. A sentence like “Marco
is a machine” might mean that Marco is unemotional, a hard worker, or efficient, de-
pending on the circumstances of the conversation and the common ground of speaker
and listener. Further, implicatures might involve complex inferences from non strictly
linguistic behavior, such as prosody or silence (Senft, 2014):

A Mrs. X is an old bag.

(silence)

B The weather has been quite delightful this summer, hasn’t it?

Violation here concerns the maxim of Relation. The utterance of speaker A there is
acknowledged via a moment of embarrassed silence. Then, speaker B utters about
the weather, blatantly refusing to make what he or she says relevant to A’s preceding
remark. Here, speaker B implicates not only that A’s remark should be ignored, but
also that A has committed a social faux pas (Senft, 2014).

Indeed, implicatures, though being non-conventional and distinguishable from other
deductive processes,according to Grice can be calculated. However, attempts to build
on these ideas by providing a specific set of formal principles that allow the deriva-
tion of pragmatic inferences have met with difficulty. The Rational Speech Act (RSA)
theory, which we shall address later on, is one example where this goal has been suc-
cessfully addressed.

The relevance-theoretic account is based on another of Grice’s central claims: that
utterances automatically create expectations which guide the hearer towards the speaker’s
meaning.

4.2.3 Sperber and Wilson: Relevance Theory

The relevance-theoretic account is based on Grice’s central claim: utterances auto-
matically create expectations which guide the listener towards the speaker’s meaning.
Here, the aim is to explain in cognitively realistic terms what these expectations of rele-
vance amount to, and how they might contribute to an empirically plausible account of
comprehension (Sperber and Wilson, 1986). In relevance-theoretic terms, any external
stimulus or internal representation which provides an input to cognitive processes may
be relevant to an individual at some time.

Indeed, the search for relevance is a basic feature of human cognition. As a result
of constant selection pressure towards increasing efficiency, the human cognitive sys-
tem has developed in such a way that our perceptual mechanisms tend automatically to
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pick out potentially relevant stimuli, our memory retrieval mechanisms tend automati-
cally to activate potentially relevant assumptions, and our inferential mechanisms tend
spontaneously to process them in the most productive way.

A sight, a sound, an utterance, a memory is relevant to an individual when it con-
nects with background information he has available to yield conclusions that matter to
him. Importantly, an input is relevant to an individual when its processing in a context
of available assumptions yields a positive cognitive effect (Sperber and Wilson, 1986).

In such endeavour, the most important type of cognitive effect achieved by process-
ing an input in a context is a contextual implication, a conclusion deducible from the
input and the context together, but from neither input nor context alone.

An important role is played by ostensive-inferential communication, which involves
an extra layer of intention:

1. The informative intention: the intention to inform an audience of something.

2. The communicative intention: the intention to inform the audience of one’s infor-
mative intention

A clear example is provided by Sperber and Wilson (1986). A person might leave
her empty glass in the partner line of vision, intending him to notice that she might like
another drink. This is not yet a case of inferential communication because, although she
did intend to affect her partner thoughts in a certain way, she gave no evidence of her
intention. However, instead of covertly leaving her glass in his line of sight, she might
touch his arm and point to her empty glass, wave it at him, ostentatiously put it down
in front of the partner, stare at it meaningfully, or just say “My glass is empty”. An
ostensive stimulus is designed to attract the audience’s attention. Given the universal
tendency to maximise relevance, an audience will only pay attention to a stimulus that
seems relevant enough.

The Communicative Principle of Relevance and the notion of optimal relevance are
the key to relevance-theoretic pragmatics.

It is in the communicator interest to make ostensive stimulus as easy as possible for
the audience to understand, and to provide evidence not just for the cognitive effects
the communicator aims to achieve in the audience but also for further cognitive effects
which, by holding attention, will help the communicator to achieve the goal.

Implicatures to identify, illocutionary indeterminacies to resolve, metaphors and
ironies to interpret require an appropriate set of contextual assumptions, which the lis-
tener must also supply. The Communicative Principle of Relevance and the definition
of optimal relevance suggest a practical procedure for performing these subtasks and
constructing a hypothesis about the speaker’s meaning. The hearer should take the
linguistically encoded sentence meaning; following a path of least effort, he should
enrich it at the explicit level and complement it at the implicit level until the resulting
interpretation meets his expectation of relevance.

In many non-verbal cases (e.g. pointing to one’s empty glass, failing to respond
to a question), use of an ostensive stimulus merely adds an extra layer of intention
recognition to a basic layer of information that the audience might have picked up
anyway.

Clearly, the range of meanings that can be non-verbally conveyed is necessarily
limited by the range of concepts the communicator can evoke in the audience by draw-
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ing attention to observable features of the environment. Verbal communication can
achieve a degree of explicitness not available in non-verbal communication. Yet, the
relevance-theoretic comprehension procedure applies in the same way to the resolution
of linguistic underdeterminacies at both explicit and implicit levels.

Most notable, for Relevance Theory comprehension is an on-line process, and hy-
potheses about explicatures, implicated premises and implicated conclusions are de-
veloped in parallel against a background of expectations (or anticipatory hypotheses)
which may be revised or elaborated as the utterance unfolds.

Some utterances (technical instructions, for instance) achieve relevance by convey-
ing a few strong implicatures. Other utterances achieve relevance by weakly suggesting
a wide array of possible implications, each of which is a weak implicature of the utter-
ance. This is typical of poetic uses of language, and has been discussed in relevance
theory under the heading of poetic effect.

Meaning is thus recovered by a mixture of decoding and inference based on a variety
of linguistic and non-linguistic clues: for example word order, mood indicators, tone of
voice, facial expression (Sperber and Wilson, 1986)

More generally, on both Gricean and relevance-theoretic accounts, the interpreta-
tion of every utterance involves a high degree of metarepresentational capacity, since
comprehension rests on the ability to attribute both informative and communicative in-
tentions. For instance, there is evidence that irony involves a higher order of metarepre-
sentational ability than metaphor. Higher order representational performance involves
the ability to recognise that the speaker is thinking, not directly about a state of af-
fairs in the world, but about another thought or utterance that she attributes to some-
one else. Experimental evidence from the literature on autism, child development and
right hemisphere damage, has shown that the comprehension of irony correlates with
second-order metarepresentational abilities, while the comprehension of metaphor re-
quires only first-order abilities.

From a psychological perspective, this raises the question of how pragmatic abilities
are acquired, and how they fit into the overall architecture of the mind. Relevance
theory addresses the issue and in this sense it qualifies as a cognitive psychological
theory.

Grice’s analysis treats comprehension as a variety of the Theory of Mind (ToM)
or mind-reading. However, there are different interpretations in the literature as to the
mind-reading problem (see Goldman and Sripada, 2005 for a discussion).

Mind-reading is the capacity to identify the mental states of others, for example,
their beliefs, desires, intentions, goals, experiences, sensations and also emotion states.
One approach to mind-reading holds that mental-state attributors deploy a naive psy-
chological theory to infer mental states in others from their behavior, the environment,
and/or their other mental states. According to different versions of this “theory-theory”
(TT), the naive psychological theory is either a component of an innate, dedicated mod-
ule or is acquired. by domain-general learning. A second approach holds that people
typically execute mind-reading by a different sort of process, a simulation process.
Roughly, according to simulation theory (ST), an attributor arrives at a mental attribu-
tion by simulating, replicating, or reproducing in his own mind the same state as the
target’s, or by attempting to do so. For example, the attributor would pretend to be in
initial states thought to correspond to those of the target, feeds these states into parts
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of his own cognitive equipment (e.g. a decision-making mechanism), which would op-
erate on them to produce an output state that is imputed to the target. TT vs. ST is
a longstanding controversy (Goldman and Sripada, 2005), though much recent neuro-
scientific work is quite receptive to simulationist ideas (Gallese, 2007; Rizzolatti and
Sinigaglia, 2016). In recent years a number of researchers have moved away from pure
forms of TT or ST in the direction of some sort of TT/ST hybrid (e.g., Adolphs, 2002).

In this respect, Sperber and Wilson (1986) depart from the classic TT account of
Fodor, where mind-reading is due to a central thought process, with a sharp distinc-
tion between a relatively undifferentiated central processes supported by modular input
processes modular view of the mind. However, they endorse even more modular ac-
counts of inference, supported by special-purpose inferential procedures, attuned to the
properties of this particular domain, such as the Eye Direction Detector and the In-
tentionality Detector (Baron-Cohen, 1997). Since, inferential comprehension typically
involves several layers of metarepresentation, while in regular mind-reading a single
level is generally enough, they argue that such discrepancy might be accounted for by a
specialised sub-module dedicated to comprehension, which might have evolved within
the overall mind-reading module, with its own proprietary concepts and mechanisms.
One example is language development. In their view, children come with a substantial
innate endowment, so they do not have to learn what ostensive-inferential communica-
tion is. However, two-year-old children fail on regular first-order false belief tasks, and
have no chance to recognise and understand the peculiar multi-levelled representations
involved in verbal comprehension. Along development and learning, a child with lim-
ited metarepresentational capacity might start out as a Naively Optimistic interpreter,
who accepts the first interpretation he finds relevant enough regardless of whether it
is one the speaker could plausibly have intended. Subsequently, a child might pass
through different developmental stages: the Cautious Optimist, with enough metarep-
resentational capacity who can pass first-order false belief tasks; the the Sophisticated
Understander endowed with the metarepresentational capacity to deal simultaneously
with mismatches and deception.

Eventually, besides such specific assumptions, which are questionable or at best
incomplete with respect to most recent advances in social neuroscience, we can state
that Relevance Theory has the merit to qualify as a cognitive psychological theory, with
experimentally testable predictions.

4.2.4 At the origins of the communication act

There are some lessons that we can learn from the above discussion. First, the ontology
underlying natural language is not the one that underlies the standard modern approach
to logic and its application to natural language.

Second, the communicative acts involve, whatever the actual mechanisms, an infer-
ence process in the listener(s) which yields an interpretation of the speaker’s meaning
(mind-reading). This relies on context, mutually assumed conceptual common ground
(Clark and Brennan, 1991) and mutually assumed cooperative motives. Note that con-
text and common ground are different concepts. If, for example, a speaker utters “It’s
there” while pointing to a bicycle in a car park (the context) and smiling, the listener
might reach different conclusions whether both know (common ground) that the bike
was stolen two days ago, or that the listener’s ex-boyfriend owns a bike.
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Third, as in the example above, the communicative act is based either on verbal
utterances and non verbal signals such as prosody, gestures (pointing to the bike), facial
expression and so on.

Fourth, and markedly in the Gricean and the Relevance Theory approaches, every
speech act creates an accountability relation, a socially binding force, no matter how
trivial or insignificant, between the speaker and the listener. As Seuren (2009) puts it:

all speech acts ... are performative in that they create a socially binding re-
lation or state of affairs ... The primary function of language is not commu-
nication, in the sense of a transfer of information about the world, but social
binding, that is, the creation of specific interpersonal, socially binding re-
lations with regard to the proposition expressed by an utterance or speech
act. It will be clear that this kind of social binding is a central element in
the social fabric that is a necessary requirement for human communities.

From a broader perspective, the key point here is that linguistic acts are social acts
that one person, the speaker, intentionally directs to another, the listener, in order to
condition her attention and imagination in particular ways so that she will do, know, or
feel what he wants her to.

Clearly, beyond common ground, these acts work only under the assumption that
participants are both endowed with a psychological infrastructure of skills and motiva-
tions of shared intentionality evolved for facilitating interactions with others in collab-
orative activities. The speaker informs the listener of her ex-boyfriend’s likely presence
or the location of her stolen bicycle simply because the speaker surmises that the lis-
tener would want to know these things; in other terms the speaker acts on prosocial
motivation (Tomasello, 2010).

Linguistic communication, is thus not any kind of object, formal or otherwise. It
is a form of social action constituted by social conventions for achieving social ends,
premised on at least some shared understandings and shared purposes among the com-
municating agents, which is recognized as shared intentionality. Shared intentionality
or “we” intentionality (Searle et al., 1995) is what is necessary for engaging in uniquely
human forms of collaborative activity in which a plural subject “we” is involved: joint
goals, joint intentions, mutual knowledge, shared beliefs—all in the context of vari-
ous cooperative motives. It is, in brief, the the cooperative infrastructure of human
communication (Tomasello, 2010).

In these perspective, the discussion on pragmatics (and semantics) goes beyond
language itself. The origins of such capabilities lies in the evolutionary process by
which basic cognitive skills have developed phylogenetically, up to the point of en-
abling the creation of cultural products historically. This way, children are provided
with the biological and cultural tools they need to develop ontogenetically, a process
which culminates in the skills of linguistic communication.

The story of how it happened is long and complicated. Thus, for our purposes, it
will suffice to draw on Tomasello (2010) account.

Based on a vast literature on developmental psychology and ethology, Tomasello
(2010) characterizes human cooperative communication as follows:

1. It emerged first in evolution (and the same holds in individual ontogeny) in the
natural, spontaneous gestures of pointing and pantomiming.
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2. It is crucially grounded in a psychological infrastructure of shared intentionality,
which originated in support of collaborative activities. Intentionality rests on: (a)
social-cognitive skills for creating with others joint intentions and joint attention
(and other forms of common conceptual ground), and (b) prosocial motivations
and norms for helping and sharing with others.

3. Conventional communication, as embodied in human language, is possible only
when participants already possess: (a) natural gestures and their shared intention-
ality infrastructure, and (b) skills of cultural learning and imitation for creating
and passing along jointly understood communicative conventions and construc-
tions.

Figure 4.6: The psychological infrastructure of human cooperative communication represented
both in terms of phylogeny and ontogeny development. First column: elements already
present in great apes. Second column: the new human components. Third column: how the
human version is transformed by recursivity; the latter stage is the one previously detailed
in Figure 4.1 at the beginning of this chapter. Adapted from Tomasello (2010).

The main steps of such evolutionary development are outlined at a glance in Figure
4.6.

The road to human cooperative communication begins with great ape intentional
communication. Intentional signals allow communicators for attempting to influence
the behavior or psychological states of recipients intentionally. This is the starting point
for communication from a psychological point of view. Non-human primates exhibit
vocal displays (e.g., the “snake alarm call,” in vervet monkeys), the capability to extract
information from vocal calls, and even to learn during ontogeny to respond to novel
calls. Yet, the repertoire is rather limited and linked to specific emotional episodes
(human attempts to teach new vocalizations to monkeys and apes always fail). Vocal
calls seem to be mainly individualistic expressions of emotions, not recipient-directed
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acts. Indeed, the production of a sound in the absence of the appropriate affective
state (and related functional needs, escaping predators, surviving in fights, keeping
contact with the group) seems to be an almost impossible task to learn. Also, calls are
broadcasted to the group and they cannot be easily directed to selected individuals.

Gestures are the other form of ape intentional signals. Precisely, gesture designates
a communicative behavior in the visual channel: mostly bodily postures, facial expres-
sions, and manual gestures. Many of them are genetically fixed (displays), others are
individually learned and flexibly used, especially in the great apes. There are two ba-
sic types of great ape gesture, based on how they function communicatively. The first
are intention-movements (e.g., arm-raise to initiate play and touch-back by infants to
moms to request being carried). These dyadic gestures and they are typically learned
by imitation.

The second type concerns attention-getters (ground-slap, poke-at, throw-stuff, etc.)
that are are used quite often by youngsters. In the prototypical case, the youngster is in
a play mood—which is apparent from her mood-induced play face and posture display
— and the attention-getter serves to draw attention to the display. In some cases, the
communicator offers to another individual either a body part, typically for grooming,
or an object. In either cases, these might involve triadic intentional communication.

There are difference among apes too. Pollick and De Waal (2007) considered two
captive bonobo groups, a total of 13 individuals, and two captive chimpanzee groups, a
total of 34 individuals. The study distinguished 31 manual gestures and 18 facial/vocal
signals. It was found that homologous facial/vocal displays were used very similarly
by both ape species, yet the same did not apply to gestures (Figure 4.7).

Figure 4.7: A juvenile chimpanzee tries to reclaim food that a dominant has taken away by com-
bining the reach out up begging gesture with a scream vocalization. Adapted from Pollick
and De Waal (2007).

Both within and between species gesture usage varied enormously. Moreover, bono-
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Chapter 4. The communication act

bos (the most emphatic ape species) showed greater flexibility in this regard than chim-
panzees and were also the only species in which multi-modal communication (i.e.,
combinations of gestures and facial/vocal signals) added to behavioral impact on the
recipient.

In gestures, great apes reveal social intention and some basic referential intention,
and most important they mark the capability of paying attention to the attention of
others. Further, apes raised in rich human contexts, similar to the way human children
are raised, have been observed to request things imperatively by pointing (e.g., pointing
to a locked door when they want access behind it, so that the human will open it for
them). Tomasello argues that human-raised apes have a fairly flexible understanding
that humans control many aspects of their world, and that these humans can be induced
to do things that help them reach their goals in this human environment with some kind
of attention-directing behavior. Interestingly, apes point for humans, but not for one
another.

To conclude, a large body of research has demonstrated that great apes understand
much about how others work as intentional, perceiving agents. Specifically, great apes
understand something of the goals and perceptions of others and how these work to-
gether in individual intentional action in ways very similar to young human children
(cfr. Figure 4.7).

There is some debate on whether apes do have a true ToM (the ability to recognize
the mental states of others). For instance, De Waal et al. (2006) are convinced that apes
take one another’s perspective, and that the evolutionary origin of this ability is not to
be sought in social competition, even if it is readily applied in this domain but in the
need for cooperation. At the core of perspective-taking is emotional linkage between
individuals—widespread in social mammals—upon which evolution (or development)
builds ever more complex manifestations, including appraisal of another’s knowledge
and intentions.

In any case, apes and young human children both understand in the same basic way
(in simple situations) that individuals pursue a goal in a persistent manner until they
have reached it—and they understand the goal not as the result produced in the external
environment, but rather as the actor’s internal representation of the state of the world
she wishes to bring about.

These primitive codes provides the means for establishing language. Indeed, If we
want to understand human communication, we cannot begin with language. Rather,
we must begin with unconventionalized, uncoded communication, and other forms of
mental attunement, as foundational. Candidates for this role are natural gestures such
as pointing and pantomiming. Human gestures, in fact: direct the attention of a re-
cipient spatially to something in the immediate perceptual environment (deictically);
direct the imagination of a recipient to something that, typically, is not in the imme-
diate perceptual environment by behaviorally simulating an action, relation, or object
(iconically)

However, human cooperative communication is more complex than ape intentional
communication because its underlying social-cognitive infrastructure comprises not
only skills for understanding individual intentionality but also skills and motivations
for shared intentionality.

At some point basic signalling integrates in more complex processes that allow hu-
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man beings for being able to communicate with one another: human beings cooperate
with one another in species-unique ways involving processes of shared intentionality.
As said, the latter denotes behavioral phenomena that are both intentional and irre-
ducibly social, in the sense that the agent of the intentions and actions is the plural
subject “we” (Searle et al., 1995).

Shared intentionality, when employed in certain social interactions, generates joint
goals and joint attention, which provide the common conceptual ground within which
human communication most naturally occurs.

The basic cognitive skill of shared intentionality is recursive mindreading and its
basic motives are helping and sharing. When employed in interactions, these generate
the three basic motives of human cooperative communication: requesting (requesting
help), informing (offering help in the form of useful information), and sharing emotions
and attitudes (bonding socially by expanding common ground).

Such phylogenetical path is recapitulated in the ontogeny of human infants’ gestural
communication, especially pointing, which provides evidence for the various compo-
nents of the hypothesized cooperative infrastructure and a connection to shared inten-
tionality. All these components must be present for onset of language acquisition.

Infants’ iconic gestures emerge on the heels of their first pointing, requiring a com-
municative intention to be effective (otherwise they are just empty actions). Iconic
gestures represent symbolic ways of indicating referents. They are promptly replaced
by conventional language, while basic pointing is not displaced by the emergence of
language.

The ontogenetic transition from gestures to conventional forms of communication,
including language, also relies crucially on the shared intentionality infrastructure —
especially joint attention in collaborative activities — to create the common ground
necessary for learning “arbitrary” communicative conventions.

The ontogenetic transition from gestures to language demonstrates the common
function of (i) pointing and demonstratives (e.g., this and that); and (ii) iconic gestures
and content words (e.g., nouns and verbs).

To sum up, sharing emotions and attitudes with others may have arisen as ways
of social bonding and expanding common ground within the social group (tied to cul-
tural group selection)— with the actual norms that govern cooperative communication
originating from group sanctions for not cooperating.

4.2.5 State of the art in computational pragmatics

Computational pragmatics is a branch of computational linguistics, located between
computer science and technology and pragmatics in theoretical linguistics. Bunt and
Black (2000) introduced computational pragmatics as the study of the relationship be-
tween utterances and contextual information from a computational standpoint, by rely-
ing on abduction, belief and context. Jurafsky (2004) points out, in the same vein of
Bunt and Black (2000), that the basic problems can be cast as an inference task, one of
somehow filling in information that isn’t actually present in the utterance at hand. In
this effort, one approach is inferential models are based on belief logics and use logical
inference to reason about the speaker’s intentions (for example BDI - belief, desire, and
intention or o plan-based model, proposed in AI by Allen (1995)). A second approach,
is represented by cue-based models thinking of the surface form of the sentence as a
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set of cues to the speaker’s intentions. The cue-based models tend to be probabilistic
machine learning models, in particular Stolcke et al. (2000) proposed a Hidden Markov
Model to the purpose of decoding dialogue acts. They see interpretation as a classifi-
cation task, and solve it by training statistical classifiers on labeled examples of speech
acts. Despite their differences, these models have in common the use of a kind of ab-
ductive inference (Jurafsky, 2004).

Following the statistical strand, more recent developments are oriented towards the
solution of problems in a bewildering variety of application fields by exploiting ma-
chine learning techniques and in particular deep learning techniques. For instance, due
to the extensive use of slangs, bashes, flames, and non-literal texts, tweets are a great
source of figurative language, such as sarcasm, irony, metaphor, simile, hyperbole, hu-
mor, and satire (Abulaish et al., 2020). Another area of interest is that of Conversational
recommender systems (CRS) that are conceived support a richer set of interactions than
classic RS. These interactions can, for example, help to improve the preference elici-
tation process or allow the user to ask questions about the recommendations and to
give feedback (Jannach et al., 2021). Automatic generation of stories with minimum
effort and customization of stories for the users’ education and entertainment needs
(Alhussain and Azmi, 2021) is also an active field of investigation. Specific pragmatic
problems are of current interest such as sarcasm detection (Joshi et al., 2017), metaphor
detection (Rai and Chakraverty, 2020) or hate in speech (Fortuna and Nunes, 2018). A
wide panorama of approaches are used, ranging from a hand-coded rule system to more
recent deep learning techniques. The latter basically rely on the neural approaches de-
veloped in distributional semantics that we have previously touched on (for instance,
by extending word embeddings to sentence embeddings). These approaches are in fact
often characterized as “neural text generation” (Clark et al., 2018), “neural metaphor
processing” (Tong et al., 2021) and so on.

Also, a great deal of such approaches, markedly for solving detection problems,
rely on the classic pattern recognition paradigm (feature extraction → classification)
which is modernly declined in the end-to-end training or fine tuning of deep nets. This
is somehow a consequence of the fact that like much of NLP, distributional semantics
is largely bottom-up: the goals are usually to improve performance on particular tasks,
or particular datasets. Yet, when contrasted against the truth-conditional approaches
which is largely top-down, where the goal is known, one has to admit that those theories
haven’t reached the goal. But for an enlightening and critical discussion of the field,
the reader might refer to Emerson (2020).

On the other hand, these approaches witness the probabilistic turn in semantics and
pragmatics (Erk, 2021). Word and sentence meanings as fluid and flexible. Probabilistic
and graded approaches can then be used to describe similarities between meanings, as
well as degrees of influence of context on sense choice. Beliefs, and preferences of
speakers and listeners are often best described in graded or probabilistic terms.

Also, it is worth noting that neural models, currently the most widely used form of
machine learning model, used to be considered a framework distinct from and incom-
patible with Bayesian models, but the boundary has been blurred on both theoretical
and practical levels (Goodfellow et al., 2016).

A prominent example is the Rational Speech Act (RSA) model (Goodman and
Frank, 2016).
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The Rational Speech Act model

RSA is an agent-based approach to formalizing pragmatic reasoning. Listeners are
modeled as reasoning recursively about the goals of speakers, and vice versa. Al-
though the framework is explicitly designed to capture the back-and-forth of Gricean
reasoning, it is consistent with much newer theorizing as well (for example, it explicitly
incorporates a relevance distribution over possible messages).

The basic architecture is the following. The task of the listener L is to estimate the
probability of a particular intended message m given the observed utterance u by the
speaker, which we notate PL(m | u). Here, the m conveys information over the states
of affairs (generically, the “world”) as conceptualised by the speaker. By convention,
the utterance u comprises linguistic as well as nonlinguistic components.

The listener is assumed to compute the posterior probability PL via Bayesian infer-
ence through the integration of two components, the likelihood of the utterance given
the message and the prior probability of the message:

PL(m | u) ∝ PS(u | m)P (m).

The characteristic feature of RSA is the way that the likelihood term PS (represent-
ing the speaker) is computed. The listener L is assumed to have an internal model of
the speaker S, who is modeled as choosing their utterance by maximizing their own
utility US(u;m):

PS(u | m) ∝ expαUS(u;m).

The scalar value α can be interpreted as an indicator of how rational the speaker
is in choosing utterances (i.e., how strongly they prefer the higher utility option). The
speaker’s utility is higher the more information they transmit through their utterance.
Utility maximization through cooperative communication reflects the central idea that
humans communicate in a relevant (Sperber and Wilson, 1986) and cooperative (Clark
and Brennan, 1991; Grice, 1989; Tomasello, 2010) way.

The utility of an utterance in turn depends on how much epistemic certainty it pro-
vides to the listener:

US(u;m) = logPLit(m | u)

To avoid infinite recursion, the listener is taken to be a literal listener, say PLit who
interprets utterances in accordance with their literal semantics:

PLit(m | u) ∝ δ[[u]](m)P (m).

Here, [[u]] is a semantic denotation for each sentence, concerning whether or not
the utterance is true of a given message. P (m) is the prior probability of the conveyed
message. This prior term can be considered a distribution over relevant messages in
context: it represents evidence for or against a particular message, independent of the
utterance.

Through this recursive reference back to a listener, the model captures the inter-
dependence of speaker and listener in communicative interactions (cfr., Figure 4.1).
The combination of these two terms — speaker likelihood and prior — the listener’s
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belief represents the outcome of a social-cognitive inference about the likely intended
meaning of an utterance in context.

The RSA framework, which builds upon and synthesizes a number of formal tradi-
tions in the study of human inference, from game theory to models of human reasoning
it is well suited for our purposes. It is a description of the computational problem being
solved by agents rather than being a model of a psychological process; thus, it provides
a theoretical model, in the precise sense described in Chapter 3.

Also, it is suitable to capture and formalize most relevant inferential theories of
pragmatics that we have discussed in this section (Grice, 1989; Clark and Brennan,
1991; Sperber and Wilson, 1986; Tomasello, 2010). These theories have been im-
mensely influential, but they are verbal descriptions of the psychological processes
involved in communication, and the actual computations that lead to inference are not
further specified.

RSA and its variants have now been used successfully to de- scribe and predict a
wide variety of phenomena, including implicature (Goodman and Stuhlmüller, 2013),
hyperbole (Kao et al., 2014), vagueness (Lassiter and Goodman, 2017), generic lan-
guage (Tessler and Goodman, 2019), and politeness (Yoon et al., 2020).

Importantly, RSA can offer a pragmatic perspective on language development. Bohn
and Frank (2019) have argued for pragmatic reasoning supporting children’s learning,
comprehension, and use of language, providing evidence for developmental continuity
between early nonverbal communication, language learning, and linguistic pragmatics.
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CHAPTER5
The conceptual act

TURNING back to the roadmap outlined in Section 3.2, we have discussed so far
how a speaker can perform a communicative act by uttering a sentence/word
to convey some meaning and how the listener, by hearing the utterance, might

reason about the meaning and the states of the world.
This is possible prima facie in reason of the common language and lexicon between

the speaker and the listener, but more deeply because the speaker and the listener share
the Shakespearean fate of being “made of the same stuff”. Under a common neurobio-
logical/cognitive infrastructure and socio-cultural context, both agents share the capa-
bility of performing a conceptual act, namely the inference P (C(world)|O(world)),
to perceive and conceptualize the states of the world, given a collection of events or
outcomes O(world).

The dividing line between our brain and world is permeable, perhaps nonexistent.
The brain’s core systems combine in various ways to construct perceptions, memories,
thoughts, feelings, and other mental states.

A brain is constantly faced with continuous sensory inputs such as dynamically
changing wavelengths of light, air pressure, chemical concentrations, and so on, which
are noisy and ambiguous in their meaning. Yet, an agent does not perceive the world as
a continuum of “blooming, buzzing confusion”, as William James noted (James, 1890),
but as an orderly world of discrete objects. And concepts pave the way to achieve such
order. Everything that is perceived is represented by concepts in the brain.

Infants awash in sensory input, there is a point in our ontogeny (cfr. Figure 4.7
and Figure 5.1, which expanding on it), where the outside world seeds our earliest
concepts, as our brain hardwires itself to the realities of the physical world (Hoemann
et al., 2020b, 2019).

As brain develops and we begin learning words, we connect to the social world,
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and through cooperative communication we begin creating purely mental concepts.
Concepts from our culture appear to be in the outside world, but they are constructions
of our conceptual system. Brains grow socially (Atzil et al., 2018): culture helps to wire
our brain, and we behave in certain ways that wire the brains of the next generation. As
Barrett (2017b) puts it, “It takes more than one brain to create a mind”.

What we have learned from the discussion given in Section 4 is that concepts are
grounded, dynamic and social. Further, we have seen that a rational analysis of concept
formation, in terms of a Bayesian setting Anderson (1991), can be given and meanwhile
extended in order to be grounded in sensorimotor interactions. Here we take a step
further.

The literature we have so far discussed mostly concerns with concept formation
from perception, but limited to external perceptions as gathered through sight hearing
and touch, or, at least in the case of robotics, the proprioception of self-movement and
body position.

However, along with exteroceptive processing, interoceptive processing give birth
to agents’ feelings of affect, and influences every action the agents performs, speech
acts being no exception. Interoception here denotes the sensory data that collectively
describe the constantly changing physiological state of the body, arising from the al-
lostatic regulation of various bodily systems, including the autonomic nervous system,
the endocrine system, and the immune system (Barrett, 2017c).

Interoception enables the agent’s brain to construct the environment in which the
agent lives and, eventually, to give meaning to words. Deprived of interoception, with-
out affect and feelings, the agent would be unlikely to survive for long (Barrett, 2017b).

Yet, at a more fundamental level, the human brain did not evolve to think or feel
or see, but to efficiently maintain energy regulation in the body (namely, allostasis,
Schulkin and Sterling, 2019; Sterling, 2012). Energy regulation (e.g, metabolism) is
likely to be at the core of the human mind, regardless of whether a person is thinking,
feeling or perceiving.

To such end, brains do not react to the world, but instead predict and then test their
hypotheses against incoming sensory evidence. Their hypotheses constitute internal
models of the body in the world. Brain’s internal model consists of embodied, whole
brain representations that predict what is about to happen in the external environment
and the best course of action for dealing with these impending events. Allostasis itself
can thus be defined in terms of prediction: a brain maintains energy regulation by
anticipating the body’s needs and preparing to satisfy those needs before they arise
Schulkin and Sterling, 2019; Sterling, 2012.

In brief, brain’s internal model runs on concepts. On the one hand, the brain trans-
form sensory inputs from the body and the world in the context of a concept. On the
other hand, conceptual representations are tested against the incoming sensory evidence
to categorize incoming sensory signals according to past experience (Barrett, 2017a).
The resulting categorization enables allostasis, allowing the brain to efficiently predict
energy expenditures for motor actions, as well as the benefits that will result.

This idea of the brain as a predictive machine (the Bayesian brain) has gained
currency in cognitive and theoretical neuroscience in contrast to traditional stimulus-
response “feedforward” frameworks (see, Vilares and Kording, 2011; De Ridder et al.,
2014; Aitchison and Lengyel, 2017; Chater et al., 2020; Colombo and Seriès, 2020;
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Yon and Frith, 2021; Marino, 2020, for general reviews and problems). According to
these theories, the Bayesian brain can be conceptualized as a probability machine that
constantly makes predictions about the world and then updates them based on what it
receives from the senses (De Ridder et al., 2014 and see Appendix B for a thorough
introduction).

Whatever the brain might be doing — thinking, seeing, tasting — it is also pre-
dictively regulating the body’s physiological systems in the service of allostasis. In
every waking moment, the brain gives sensations, either exteroceptive or interoceptive,
meaning.

Under such circumstances, there is no specific difference between emotion, vision
or audition. When, we focus on some of those sensations that are interoceptive ones,
the resulting meaning can be an instance of emotion (Barrett, 2017c).

The interoceptive network issues predictions about the body, tests the resulting sim-
ulations against sensory input from the body, and updates the brain’s model of the body
in the world. Interoceptive sensations are routinely experienced as lower dimensional
feelings of affect (valence and arousal, Barrett and Russell, 2014). If interoception
plays a role in allostasis, and allostasis is at the core of the brain’s computational archi-
tecture, then the properties of affect — valence and arousal — are best thought of as
basic features of consciousness, rather than properties of emotion per se (Barrett and
Satpute, 2019).

In this view (originally called the Conceptual Act Theory, CAT, Barrett et al., 2015),
emotions are constructed concepts, and words like “happiness” and “fear” labels of the
related categories, much like the word “red” stands for the categorization of the percep-
tion of a visual stimulus occurring within a certain range of visible light wavelengths
(Hoemann et al., 2019; Barrett, 2017b).

The physical changes in the natural world (internal physical changes occurring
within a perceiving agent, and sensory changes from the world such as from other peo-
ple’s facial muscle movements, actions, the physical surroundings, etc.) become real
as emotion (as fear, anger, etc.) when they are categorized as such using emotion con-
cept knowledge within the perceiver. These concepts have been learned from language,
socialization, and other cultural artifacts within the person’s day-to-day experience.

Indeed, language and emotions are tightly intertwined (Lindquist et al., 2015a).
On the one hand, language has a constitutive role in emotion. Infants and children
learn emotion categories the way they learn other abstract conceptual categories – by
observing others use the same emotion word to label highly variable events.

On the other hand, language communicates emotional states. Whether spoken or
written, words allow the members of a culture to dynamically re-establish category
boundaries by labeling instances, reinforcing the social reality that they create. Through
dialog during social interaction, people come to use the same words to categorize ob-
jects, actions, and events, progressively aligning the associated concepts. This may be
one mechanism by which people communicate emotion and help to co-construct each
other’s emotional experiences.

Eventually, emotions ground the communicative act, and, ostensively or not, con-
tribute to convey some intended affective meaning that the listener might infer from
speaker’s utterance or from the speaker’s non-verbal behaviour as a part of the world
state. Emotional expressions can be rich communicative devices: they do much more
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5.1. Word and concepts reloaded: how concepts shape perception

than simply expressing emotions (Scarantino, 2017). Bodily displays are sophisticated
social tools that can communicate the signaler’s “intentions” and “requests”. Emotional
expressions are a means not only of expressing what’s inside but also of directing other
people’s behavior, of representing what the world is like and of committing to future
courses of action (Scarantino, 2017). In some cases, it is possible to engage in analogs
of speech acts without using language at all.

Yet, emotion categories, need to be made real through shared intentionality. A
speaker to communicate to a listener that he feels happy, needs a shared understanding
of “happiness” with the listener.

Eventually, putting feelings into words (also known as “affect labelling”) can atten-
uate individual emotional experiences. Research investigating affect labeling has found
it produces a pattern of effects like those seen during explicit emotion regulation, sug-
gesting affect labeling is a form of implicit emotion regulation (Torre and Lieberman,
2018).

In the following we shall give a precise form to the above observations and assump-
tions.

5.1 Word and concepts reloaded: how concepts shape perception

We shall first review categories: they are important because they determine how we see
and act upon the world (Harnad, 2003); emotions at the highest level will be defined as
categories (“fear”, “anger”, etc.)

We have previously defined a concept as a mental representation of a category. A
category, or kind, is a set of things (cfr. Section 4.1).

Membership in the category may be all-or-none (e.g., “apple” or a matter of degree
(e.g., “small”). In the latter case, the category is said to be continuous. Concrete
sensorimotor categories (items of which can be seen and touched), are a mixture of
the two: categorical at an everyday level of magnification, but continuous at a more
microscopic level (Harnad, 2003).

An interesting example is represented by color categories : central reds are clearly
reds, and not shades of yellow. Yet, in the orange region of the spectral continuum,
red/yellow is a matter of degree; context and contrast effects can also move these re-
gions around somewhat. An example is provided in Figure 5.2

When the category of “red” is joined with the concept of “apple” to form the “red
apple” category, the population of red items becomes even looser (cfr. Figure 5.3).

5.1.1 Categorical perception

According to the “Whorf Hypothesis” (the linguistic relativity hypothesis, Whorf, 1964),
colors are determined by how our culture and language happens to subdivide the spec-
trum: colors are perceived categorically only because they happen to be named cate-
gorically. Whorf famously argued that, to an Eskimo, it would be unthinkable to use
the same word for all types of snow because of its wide range of types and different
uses.

In brief, for the brain to convert a visual sensation into the experience of red, it must
possess the concept “red.” This concept may come from prior experience with apples,
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Chapter 5. The conceptual act

Figure 5.2: When looking at a rainbow, we perceive discrete bands of color. However in nature,
a rainbow has no stripes — it’s a continuous spectrum of light, with wavelengths that range
from approximately 400 to 750 nanometers. This is one example of categorical perception
where mental concepts for colors like “red,” “orange,” “yellow” implies a reorganization
of incoming stimuli within a common structure, here the color bands

Figure 5.3: Apple images retrieved on the fly by searching “red apple” on Google images.
Under this goal, a red apple is a compound concept/category (apple + red) whose exemplars
have a high statistical variation and rely at best upon a “loose”, ad hoc concept of red
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5.1. Word and concepts reloaded: how concepts shape perception

roses, and other objects one perceives as red, or from learning about red from other
people. Without this concept, the apple would be experienced differently.

The study by Davidoff et al. (1999), for instance, has shown that to the Berinmo peo-
ple of Papua New Guinea, a stone-age culture, apples reflecting light at 600 nanometers
are experienced as brownish, because Berinmo concepts for color divide up the contin-
uous spectrum differently.

Categorical effects are found across speech sound categories, with the degree of
these effects ranging from extremely strong categorical perception in consonants to
nearly continuous perception in vowels (Feldman et al., 2009; Kronrod et al., 2016).

Similar patterns have been observed in the representation of objects belonging to
artificial categories that are learned over the course of an experiment as well as in the
perception of facial expressions such as facial expressions of emotion in stimuli con-
structed from line drawings, photograph-quality stimuli. Stimuli for these experiments
were drawn from morphed continua in which the endpoints were prototypical facial
expressions (e.g., happiness, fear, anger) (Feldman et al., 2009). With few exceptions,
results showed discrimination peaks at the same locations as identification boundaries
between these prototypical expressions. Figure 5.4 qualitatively illustrates such effect
on a continuum of facial expressions, from neutral to angry.

Figure 5.4: Warping from actual (a continuum of facial expression from neutral to angry, on
the top) to perceived stimuli on the bottom is shown in the dispersion of the vertical bars
toward category centers (neutral and angry faces) acting as “perceptual magnets” (Feldman
et al., 2009). The Gaussian-like curves displayed over the bars, qualitatively represent the
distributions of the two target categories that cluster the actual stimuli in the perceived
stimuli around the distribution means.

All of these categorical effects are characterized by better discrimination of between-
category contrasts than within-category contrasts (a sort of perceptual “magnet effect”),
although the magnitude of the effect varies between domains.

In speech perception, categorical effects in speech perception are typically studied
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through behavioral identification and discrimination tasks, which provide data on lis-
teners’ ability to classify the sounds (identification) and to differentiate sounds along
an acoustic continuum (discrimination). The stimuli that participants hear in each task
typically lie along a one-dimensional continuum between two phonemes. As a sim-
ple example, consider a continuum between two phonemes (categories), C = c1 and
C = c2, with seven equally spaced stimuli S1 · · ·S7. For example, if c1 = /b/ and c2 =
/p/, stimuli might be created by varying the voice onset time (VOT) of the signal. The
identification task consists of choosing between two competing labels, c1 and c2, in a
forced choice paradigm. Participants choose one of the two labels for every stimulus
heard, even if they are unsure of the proper classification. By examining the frequency
with which participants choose each category, one can observe an apparent boundary
between the categories and can determine the sharpness of this boundary (Kronrod
et al., 2016).

In the tradition of rational analysis Feldman et al. (2009) considered the abstract
computational problem posed by speech perception as described above. The theoretical
model proposed is a Bayesian generative model which, for its relevance, we analyse to
some extent.

The model begins with the listener’s knowledge of the two categories, C = c1 and
C = c2. The next steps concern the process that the listener presumes to have generated
the sounds heard.

The speaker chooses one of the two phonetic categories. Categories can be rep-
resented in our model as a distribution P (C | θc) around the category mean µc with
variance σc, θc = {µc, σc} (e.g., in their model a Gaussian distribution is used). For-
mally, the choice can be written as the sampling step

c ∼ P (C | θc)
It is assumed that parameters θc of the category being used in the generative proce-

dure by the speaker are known by the listener from previous exposure to sounds from
this category in the language.

The next step in the generative process is the selection of an intended target produc-
tion from the previous distribution. Denote T the intended target production. Then,

t ∼ P (T | C = c, θt).

Once the intended target production t is chosen, it needs to be articulated by the
speaker and perceived by the listener. This process introduces additional articulatory,
acoustic, and perceptual noise that distorts the signal. Denote S the possible speech
sounds related to the underlying category chosen by the speaker at the beginning of the
generative procedure. Hence, sound emission is sampled as:

s ∼ P (S | T = t, θs).

The ratio between the category variance and the total variance provides a measure of
warping from the actual to the perceived stimulus, that is the dispersion of the vertical
bars toward category centers as illustrated in Figure 5.4.

This simple model is important beyond the specific application to categorical speech
perception. On the one hand, it can be formally considered as a simplified version of
the Anderson RCM we have discussed in Section 4.
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On the other hand, in its simplicity, it can be exploited to describe at a more general
level how Perceptual Categorization works in more complex perceptual cases. Con-
sider, for instance, the famous dalmatian dog example recapped in Figure 5.5.

Figure 5.5: The famous dalmatian dog. When viewing the first time this stimulus, a bare
ensemble of blobs, the brain is working hard to make sense of them. Neurons in the visual
cortex are processing lines and edges. Sub-cortically, the amygdala is firing rapidly because
the input is novel. Other brain regions are sifting through past experiences to determine if
any input like this has been encountered before and are conversing with the body to prepare it
for an as-yet-undetermined action in a state of experiential blindness. Then, by scrutinizing
the red silhouette and coming back to the raw stimulus, blobs are no longer perceived as
formless, but a familiar object takes form. The brain has exploited its vast array of prior
experiences and constructed the familiar object you now see in the blobs. Neurons in the
visual cortex changed their firing to create lines that are not present, linking the blobs into
a shape of a dalmatian that is not physically there. The brain changed the firing of its
own sensory neurons in the absence of incoming sensory input, performing a simulation of
a likely shape under the guide of concepts previously constructed. When the process has
reached equilibrium, it is virtually impossible to “unsee” the object

This is a difficult case in perception, but the perceptual effect experienced when
viewing the picture can be suitably explained in terms of the generative model presented
above and in terms of predictive activity of the brain. The result can be summarised in
the semiotic triangle presented in Figure 5.6.

In a Bayesian generative/predictive account, we might re-appraise the Peircean dy-
namic process of interpretation as follows:

• a category representing items is labelled through a word, e.g. “dalmatian”; con-
textual and background knowledge on the population of events/objects that de-
fines the category can be shaped in terms of the prior probability P (C)

• the interpretant relies on the concept that mentally represents such category, which
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Figure 5.6: The dalmatian dog experience summarised in the semiotic triangle. At a point,
the interpretant is consciously aware of perceiving an dog-like object, which she names
“dalmatian”, though the entire process of construction is invisible to her. The object itself,
the referent, is not a static entity but the result of making sense of the “blooming, buzzing
confusion” characterizing the physical world (in this case, meaningless blobs).

can be defined as predictive model (a dynamic process of interpretation) that
mediates between the sign/word and the object / stimulus S: conceptualization
amounts to the backward inference S → C computed via the posterior distribu-
tion P (C | S) given the sensory data S; in turn, prediction/simulation of sensory
data can be achieved by running the model in a forward mode C → S via the
conditional probability P (S | C) apt to generate the most likely stimulus S given
the category C

The details of how this process is actually instantiated depend on the implemen-
tation model chosen to approximate optimal Bayesian calculations: predictive coding,
active inference, probability coding, direct variable coding, sampling and so on (Aitchi-
son and Lengyel, 2017; Sanborn and Chater, 2016).

Yet, beyond the apparent simplicity of this explanation, one should be aware that
the interplay between bottom-up features that guide attention toward a target, and top-
down conceptually driven simulation that generates hypothetical shapes can be subtle,
as demonstrated by van Tonder and Ejima (2000) in a well-known experiment.

The model can naturally provide a simple and elegant account for these effects as
depicted in Figure 5.8, which also outlines at a glance the model structure in terms of
the underlying PGM.

To sum up, categorical perception is not just categorization. It implies a reorga-
nization of representations within a common structure that allows a more pronounced
boundary between exemplars from one category and exemplars from an otherwise per-
ceptually adjacent category.
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Figure 5.7: The interplay between bottom-up features that guide attention toward a target, and
top-down conceptually driven simulation that generates hypothetical shapes can be subtle.
In a famous experiment, van Tonder and Ejima (2000) by cleverly manipulating bottom-up
features strongly related to surface interpolation, found that many subjects assigned incor-
rect head and limbs to the hypothetical body and ended in recovering different objects such
as a hulkish lion cub, a dog with a tiny head, a funny bear, a cow with a big head, a jogger
stretching out, an iguana, and even two strange elephants.

Figure 5.8: A generative view of categorical perception
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This is an important issue for our work. We will assume that, to support the brain
predictive striving, grounded concepts build upon and make sense of both exterocep-
tive and interoceptive sensations, and that, in the light of Conceptual Act Theory (CAT)
emotions themselves, as we name them, are nothing but categories in service of allosta-
sis.

5.2 Categorization and the Conceptual Act Theory

The basic features of Perceptual Categorization that we have discussed above to some
extent, can be generalised, conforming to Barrett et al. (2015), as follows:

• Sensory input is categorized using conceptual knowledge from past experience.
Prior experience is used to predict and make meaning of sensations

• Prior knowledge is enactive along perceptual inference: not only elements not
immediately present in the visual input are inferred, but also extra experiential
detail can be filled in either exteroceptive (odour, touch sensations, etc.) or inte-
roceptive (e.g.,gut feelings); altogether, this is often defined as a simulation in the
vein of Barsalou (2008) or categorization tout court by Barrett et al. (2015);

• The inferential process induced by categorization prepares for situated action

• Categorization, being enactive and preparing for specific actions, produces some
kind of automatic change in the physical state of the agent. Change impacts the
internal, interoceptive sensations contributing to the core affective tone (pleasant-
ness, arousal). As such, it is a tool to modify and regulate the body, and in turn to
create feelings.

• The process of meaning making rarely happens because of a deliberate, conscious
goal to figure things out.

In this framework, to sum up, the process of applying prior knowledge to incoming
sensory input is named conceptual act. Emotion, per se is nothing but an abstract, ad
hoc category, mentally represented by a situated conceptualization, or more precisely a
set or a manifold of situated conceptualizations. One clear example concerning fear is
provided in Figure 5.9.

Just like any other form of categorization it is a construction across many levels of
abstraction (Figure 5.10.

It is an act rather than a passive event, because the agent is not merely detecting
and experiencing what it is out there in the world or what is going on inside the body:
agent’s prior knowledge plays a role in creating momentary experience. Thus, any con-
ceptual act is embodied, because prior experience, in the form of category knowledge,
comes about as the activation of sensory and motor neurons, thereby reaching down
to influence bodily states and/or their representations and sensory processing (Barrett
et al., 2015). A glimpse of the process, from the Bayesian listener’s perspective, is
shown in Figure 5.11.

What is novel here, with respect to classic Categorical Perception, is the role that
interoceptive sensations play in addition to the exteroceptive ones. Interoception deter-
mines which parts of the world are worth caring about in the moment. Without it, an
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Trends in Cognitive Sciences 
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Fear as a set of situatedBradycardia ++ + + conceptualizations

Blood flow to ++ ++ 
hindlimbs
 

Raised eyebrows ++
 
Smiling ++
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A situated conceptualization imposed upon a new instance of features creates fear 
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boundary effects 
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Figure I. Fear from a Constructionist Theoretical Perspective. 

DMN has structural and functional features that suggest it is well suited to support conceptualiza
tion and abstraction. Our account leads to novel predictions regarding when the DMN is more or 
less in demand when creating emotional experiences, and how the function of the DMN in emotion 
varies depending on phylogenetic and ontogenetic trajectories and health versus disease. 

The DMN 
The DMN refers to a set of brain regions that show greater metabolic activity during rest in com
parison with other brain regions [17], greater functional activity during rest than when engaged in 
a cognitive task [26], and greater temporal correlations in functional activity with each other than 
with other brain regions [19,20]. Researchers hypothesized that during rest, people are likely to 
engage in internally focused processes such as mind wandering [26–28]. It was thus thought 
that increased activation during rest may reflect mental processes such as thinking about the 
future or past or about the self or social situations – all of which are phenomena that may also 
incidentally evoke affect and emotion. Subsequent studies confirmed the involvement of the 
DMN in internally focused states (for a review, see [18]) such as prospective and autobiographical 
memory [29,30], rumination [31,32], social cognition [33,34], valuation [32,35], internal mentation 
[36], and conscious awareness [37]. 

Of the studies that have linked the DMN to emotion, many do so incidentally, insofar as emotions 
are thought to relate with phenomena already associated with the DMN (e.g., theory of mind [33] 
or internal mentation [35]). Studies have also linked the DMN to emotion because it encompasses 

emotions. People low in granularity do not 
differentiate amongst their emotions 
across instances (e.g., discrete emotions 
like fear, sad, or disgust are not keenly 
separable experiences and converge into 
a one dimensional representation of 
feeling corresponding with displeasure). 
These individuals have a paucity of 
conceptual knowledge about emotion 
[98,131,134]. 
Representational content: 
information that distinguishes different 
states (e.g., discrete emotions) from one 
another. This information can be 
estimated from functional brain activity 
(e.g., patterns amongst voxels in the brain 
that help to differentiate one emotion from 
another). 
Representation of emotion: this 
phrase is sometimes used to refer to how 
affect is represented; how emotion as a 
broad category (i.e., in comparison with 
social cognitions or thoughts) is 
represented; or how a discrete emotion 
such as anger is represented as a unique 
activation pattern for all instances of 
anger. We use this phrase to refer to the 
general notion that discrete emotions 
must, in some way, be represented. 
However, our usage is nonspecific about  
whether the representation for a given 
emotion category is invariant across 
instances versus involves heterogeneous 
spatiotemporal patterns; whether it is the 
same or varies across individuals; and 
whether it is conserved across species. 
Theory of Constructed Emotion: a 
version of constructionist theories of 
emotion that hypothesizes that emotions 
are created via the combination of more 
basic psychological (and corresponding 
neural) phenomena that are not specific 
to emotion. The theory of constructed 
emotion focuses on the role of affective 
sensations and conceptualization in 
creating emotion. 

Trends in Cognitive Sciences, October 2019, Vol. 23, No. 10 853 

Figure 5.9: Conceptualization of fear. The table outlines four hypothetical instances of fear
that involve a set of features that vary in kind (along rows) and intensity (number of +s). For
example, Instance 1 may involve rock climbing (heights), being watched (social evaluation),
and physiological and behavioral responses (hyperventilation and freezing). Instance 2 may
involve encountering a tarantula while hiking, bradycardia, redistribution of blood to the
legs, and eye widening to increase visual input. Instances can be represented in a high-
dimensional feature space (simplified to two dimensions for the sake of illustration). Situated
conceptualizations are modeled as a landscape of attractor basins. Grouping together the
full collection of variable instances as fear is, by definition, an abstract category that refers
to the representational space of fear. The abstract representation of those instances as all
belonging to the same category of fear may differ between individuals and may be uniquely
human. Adapted from Satpute and Lindquist (2019)
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Figure 5.10: The nested hierarchy of increasing abstraction from broad and abstract categories
of mental experience to concrete sensory and motor features that are associated with those
mental states. An emotional experience manifests when there is resonance across levels,
that is, concrete features are made meaningful as a conceptualization of a discrete emotion
category, in a given context. Without higher levels making meaning of lower levels, elemen-
tal concrete features (e.g., tachycardia), or combinations of features (e.g., tachycardia and
hindlimb locomotion), are not necessarily a manifestation of an emotional experience. With-
out top-down categories and conceptualizations an instance of features may be experienced
in alternative ways, for example, as merely a behavior (e.g., running), visceral sensation
(e.g., stomach sinking), or general affective feeling (e.g., displeasure). Adapted from Sat-
pute and Lindquist (2019)

Figure 5.11: A glimpse of the conceptual act in meaning making from the listener’s perspective.
In a Bayesian view, the listener engages in the backward process of inferring / categorizing
the novel “object” in context, (e.g., a horse in a bad temper). Her inference is based on both
exteroceptive and interoceptive sensations, together with prior conceptual knowledge that,
after hearing the world “maçatl”, is available to her. In the forward, top-down process,
predictions are issued by generating / simulating exteroceptive and interoceptive signals to
be compared against actual sensations in the effort of making meaning of them.
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actual agent would not appraise relevant features of the physical surroundings or even
care for conversational partners.

Interoception is fundamental to build a fundamental psychological primitive named
the “core affect”. Core affect can be described as a state of pleasure or displeasure
(valence) with some degree of arousal (Barrett, 2006b,c; Russell, 2003; Russell Barrett,
1999). Together, valence and arousal form a unified state. Although it is possible to
focus on one property or the other, people cannot feel pleasant or unpleasant in a way
that is isolated from their degree of arousal. This kind of affect is referred to as “core”
because it is grounded in the internal milieu, an integrated sensory representation of
the physiological state of the body: the somatovisceral, kinesthetic, proprioceptive, and
neurochemical fluctuations that take place within the core of the body.

Core affect is thus realized by integrating incoming sensory information from the
external world with homeostatic and interoceptive information from the body. The
result is a mental state that can be used to safely navigate the world by predicting reward
and threat, friend and foe. Indeed, affect is a central feature in many psychological
phenomena, obviously including emotion. But by no means affect can be equated to
emotion.

Further, these three sources — sensations from the world, sensations from the body,
and prior experience — are continually available, and they form three of the fundamen-
tal aspects of all mental life.

As Barrett and Bliss-Moreau (2009) put it:

Core affect [...] represents a basic kind of psychological meaning. The basic
acoustical properties of animal calls (and human voices) directly act on the
nervous system of the perceiving animal to change its affective state and in
so doing conveys the meaning of the sound [...] All words (regardless of
language) have an affective dimension of meaning, so that people cannot
communicate without also (often inadvertently) communicating something
about their affective state. Learning a new language fluently does not merely
require making a link between the phonological forms of words and their
denotation, but a connection to affective changes must also be forged.

In this perspective, even though CAT is mostly referred to as a psychological con-
struction theory of emotion, emotion is au pair with cognition and perception: no
longer are these Platonic essences, faculties instantiated in modules of our brain, but
names that we use to describe mental states, complex psychological categories, under
certain circumstances. So, perception is the name for psychological moments in which
the focus is on understanding what externally driven sensations refer to in the world.

Cognition is the name for psychological moments in which the focus is on under-
standing how prior experiences are reinstated in the brain. When a person experiences
the act of remembering, this mental activity is called memory. When they do not, it is
called thinking. When the mental activity refers to the future, it is called imagining.

Emotion is the name for psychological moments in which the focus is on under-
standing what the internal sensations from the body represent.

These three complex psychological categories rely on basic processes or psycho-
logical primitives: the ingredients in a recipe that produces a psychological moment —
what we might call an emotion, or memory, or thought, and so on — although they are
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not specific to any one kind of moment. Core affect, categorization, executive attention
are but three examples of such primitives. Depending on the combination and on the
weighting of primitives (and depending on the purposes of the observer), mental states
mental might be called seeing or thinking or feeling (cfr. Figure 5.12.

Figure 5.12: Mental states, iconically depicted as brain states, comprised of different com-
binations of the same three psychological primitives (represented in red, green, and blue).
Depending on the recipe (the combination and relative weighting of psychological primitives
in a given instance) and a psychologist’s interest, mental states are called seeing/hearing or
thinking or feeling.

As we have said, in every waking moment, the core business of our brain is not per-
ceiving, or thinking or feeling, but, more generally to make predictions in order to give
sensations, either exteroceptive or interoceptive, meaning in the service of allostatis,

The history of emotion theories is a longstanding one, and other competing theories
have been proposed. It is important to provide a brief overview, because this makes
clear what assumptions are made, explicitly but more often implicitly, in computational
theories of emotions in general, but markedly in the affective computing field, which is
somehow central in Computer Science and Artificial Intelligence.

5.3 What is an emotion? Perspectives and theories

So far, to smooth the way for illustrating the main rationales of this thesis, we have
straightforwardly introduced the CAT approach and its view on emotions. Yet, in the
study of emotion there are other competing theories, some of which are certainly rele-
vant on the computational modelling side.

As a matter of fact, the attempt at answering the fundamental question posed by
James (1884), “What is an emotion?”, as the title of an essay he wrote for Mind well
over a century ago, has a long-standing and turbulent history in the Western culture. For
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an in-depth discussion, the reader should refer to the superb accounts by philosophers
Leys (2017) and Nussbaum (2003).

Philosophers have been concerned about the nature of emotion since Socrates and
the “pre-Socratics” who preceded him, and although the discipline has grown up as
the pursuit of reason, the emotions have always lurked in the background. Plato him-
self wrote that the human psyche consists of three parts: rational thoughts, passions
(which today we call emotions), and appetites like the drive for hunger and sex. Ra-
tional thought was in charge, controlling the passions and appetites, as a charioteer
wrangling two winged horses. This essentialist view might be considered the begin-
ning of the classical view of emotion. By contrast, Aristotle seems to have anticipated
most of the main contemporary appraisal theories. His analysis of emotion includes a
distinctive cognitive component, a specified social context, a behavioral tendency, and
a recognition of physical arousal (Solomon, 2008).

In the classical view, an emotion is understood as a separate and independent abil-
ity, or faculty, caused by its own separate processes. In this approach, emotions are
categorically different phenomena from perceptions and cognitions, and each emotion
(eg, anger, sadness, fear, and so on) is categorically different from every other emotion,
each being caused by a different mechanism.

The classical view is essentialist by very nature: each emotion faculty is assumed to
have its own innate physical essence or “fingerprints” that distinguishes it from all other
emotions. Modern versions of the classical view of emotion include Basic Emotion
Theory (BET) approaches and causal appraisal approaches: are united by a similar
hypothesis regarding emotion “fingerprints”.

In the construction view, either psychological or social, an emotion is not a dis-
tinct faculty with its own distinct mechanism. Emotion categories are not natural kinds.
Instead, one key hypothesis that unites all constructionist theories is that an emotion
word, such as “happiness”, refers to a population of highly variable instances, each
of which is tailored to a specific situation or context (Barrett, 2016; Gross and Feld-
man Barrett, 2011). So an emotion is not an entity with firm boundaries in nature: it is
a category of instances. Instances within a category vary because each one is tailored
to the environment, that is, there are no Platonic emotion essences or fingerprints.

A number of appraisal theories can be situated between these two contrasting views
as illustrated in Figure 5.13. Constitutive appraisal theories (eg, Ortony et al., 1990)
have more in common with psychological construction theories than causal appraisal
approaches, the latter being in some respect closer to BET approaches.
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Figure 5.13: Navigating emotion Theories. Theories are loosely arranged along a continuum,
which could be defined in terms of a gradient of essentialism, the highest degree located
at the left. Four “zones” are distinguished: (1) Basic Emotion Theories (BET), in red (for
example, Anderson and Adolphs, 2014; Damasio, 1999; Ekman and Friesen, 1971; Izard,
1993; Levenson, 1988; Panksepp, 2004; Tomkins, 1962); (2) Appraisal Theories, in yellow
(for example, Arnold, 1960; Ortony et al., 1990; Lazarus, 1991; Ellsworth and Scherer,
2003; Frijda, 1986); (3) Psychological Construction Theories, in green (Duffy (1941), James
(1884), Barrett, 2009; Russell, 2003; LeDoux and Hofmann, 2018; Mandler et al., 1975;
Schachter and Singer, 1962); (4) Social Construction Theories. in blue (e.g, Solomon, 2007;
Averill, 1980; Mesquita et al., 2016; Wood and Harré, 1986). Theories in the red band
and the left-most portion of the yellow band are much more essentialist than those in the
right-most part of the yellow band and the green/blue bands (which are all non-essentialist
theories). The greatest heterogeneity in essentialist assumptions lies in the appraisal zone,
where classical appraisal theories (eg, Arnold, 1960; Lazarus, 1991 share many similar
assumptions with BET, whereas constitutive appraisal theories (eg, Ortony et al., 1990) have
more in common with psychological construction theories. Adapted from Barrett (2016);
Gross and Feldman Barrett (2011)
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5.3.1 The classical view

The most representative approach of the classical view currently is the Basic Emotion
Theory (BET). In its modern version, it was pioneered by the american psychologist
Silvan S. Tomkins. Tomkins posited the existence of a limited number of discrete,
primary, or “basic emotions” as part of a universal human nature. These were held
to be characterized by signature facial expressions and specific patterns of behavioral
and autonomic responses. Tomkins’ approach paved the way to Carroll Izard and Paul
Ekman, the foremost theorist of the concept of “basic emotions”. Here, we focus on
Ekman’s proposal, because of the currency it has impressively gained as a founding
paradigm of ongoing affective computing research.

Following Tomkins’s theorizing, Paul Ekman, together with associate Wallace Friesen
and anthropologist E. R. Sorensen, published highly cited and influential studies of fa-
cial expressions of nonliterate indigenous peoples in exotic locales, such as the Fore
tribe in Papua New Guinea (Ekman et al., 1969). The initial studies produced disap-
pointing results when participants were asked to label the faces freely (Fridlund and
Russell, 2021). To boost recognition rates, Ekman et al. shifted to Tomkins and Mc-
Carter’s tactic of having participants pick the closest match from a short list either of
emotion labels or emotion-related stories. The list was tailored to fit the six face photos
and prescribed emotions which Ekman selected somewhat arbitrarily from Tomkins’s
eight, with the terms slightly renamed: happiness, sadness, anger, fear, surprise and dis-
gust. Translators asked participants to make the matches, and Sorenson later disclosed
his uncertainty about whether the translation included coaching. Ekman codified his
claims and presented them as his Neurocultural Theory (Eckman, 1972).

Ekman originally cast his theory as under Darwin’s imprimatur: at some early time
in history certain facial movements were acquired to serve some biologically adaptive
function, but are now vestiges which do communicate feelings, but which do not have
as their primary purpose the expression of an inner state to another person. Ekman
also claimed that facial movements were nonetheless instigated by a specialized “facial
affect program” (FAP), neurally coded instructions that were phyletic and universal,
as were many of the triggers that activated them. Thus Ekman’s Neurocultural The-
ory simultaneously portrayed our faces as vestigial, but with brain circuitry evolved to
produce them.

To make a long story short, the key features of Ekman’s “neurocultural” model
(Ekman et al., 1969; Ekman and Friesen, 1971; Eckman, 1972; Ekman and Rosenberg,
1997; Ekman, 1993; Ekman and Rosenberg, 1997,?; Ekman, 1999) can be summarized
as follows:

1. There exists a small set of basic emotions, defined as pan-cultural categories or
“natural kinds.” These include fear, anger, sadness, disgust, joy, and surprise.
Basic emotion are evolved, genetically hardwired, reflex-like responses of the
organism.

2. Each basic emotion manifests itself in distinct physiological and behavioral pat-
terns of response, especially in characteristic facial expressions that are automat-
ically recognized.

3. The face expresses the emotions, except when expressions are disguised by cul-
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tural or conventional norms (display rules) for controlling and managing emo-
tions in public, or are masked by deliberate deception. Under pure or unfiltered
conditions, facial displays are authentic “readouts” of the discrete internal states
that constitute the basic emotions. Ekman called the muscles involved in the facial
expression of the emotion “reliable” muscles because they are difficult to control
and hence produce expressions that are hard or costly to fake.

4. Each basic emotion is linked to specific neural substrates or subcortical affect
programs. This assumption involves some degree of modularity and information
encapsulation in brain functions (for instance, the amygdala has been pinpointed
as the neural seat of fear, while the insula has been implicated in disgust).

5. Although the emotions can and do combine with cognitive systems in the brain,
emotion and cognition are essentially separate. Emotional expressions are special
because they are involuntary, not intentional: they occur without choice. The
communicative value of a signal differs if it is intended or unintended: emotional
expressions are unintended.

In the Ekman’s Neurocultural Theory, a prominent role is assigned to facial expres-
sions. There were originally six iconic expressions, each produced by a basic emotion:
happiness, sadness, anger, fear, surprise, and disgust. Facial expressions of emotion
are biological and universal: they have phylogenetic origins and are hard-wired in the
brain.

Under such circumstances, Ekman promoted a method for measuring facial move-
ments (and thus the internal emotional state of the expresser) with human coders, the
Facial Action Coding System, or FACS (Ekman and Rosenberg, 1997). FACS is a sys-
tematic approach to describe what a face looks like when facial muscle movements have
occurred. Human coders train for many weeks to reliably identify specific movements
called action units (AUs). Each AU is hypothesized to correspond to the contraction
of a distinct facial muscle or a distinct grouping of muscles that is visible as a specific
facial movement. For example, lowering of the inner corners of the brows (activation
of the corrugator supercilii, depressor glabellae, and depressor supercilii) corresponds
to AU 4. Figure 5.14 displays the original FACS codes for the configurations of the
facial movements that have been proposed.

A set of FACS can be used to univocally code a prescribed (facial expression of)
emotion (emotion FACS, EMFACS, Figure 5.15) among the prototypic (facial expres-
sion of) emotions: anger, disgust, fear, happiness, sadness, and surprise, respectively.

Scientists agree that facial movements convey a range of information and are im-
portant for social communication, emotional or otherwise. People do sometimes smile
when happy, frown when sad, scowl when angry, and so on, as proposed by BET, more
than what would be expected by chance. Yet how people communicate anger, disgust,
fear, happiness, sadness, and surprise varies substantially across cultures, situations,
and even across people within a single situation. Furthermore, similar configurations
of facial movements variably express instances of more than one emotion category. In
fact, a given configuration of facial movements, such as a scowl, often communicates
something other than an emotional state.

In brief, instances of an emotion category are signaled with a distinctive config-
uration of facial movements that has enough reliability and specificity to serve as a
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Figure 5.14: The Facial Action Coding System. AU = action unit. Adapted from Barrett et al.
(2019)
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Figure 5.15: Emotion FACS (EMFACS). From left to right: the proposed expression for anger
corresponds to a prescribed EMFACS code for anger (described as AUs 4, 5, 7, and 23);
disgust (described as AU 10); fear (AUs 1, 2, and 5 or 5 and 20); happiness (AUs 6 and 12);
sadness (AUs 1, 4, 11, and 15 or 1, 4, 15, and 17); surprise (AUs 1, 2, 5, and 26). Adapted
from Barrett et al. (2019)

diagnostic marker of those emotion states.
In a detailed and technical review of these claims, Barrett et al. (2019) have shown

that this Ekman’s approach suffers from:

• limited reliability: instances of the same emotion category are neither reliably
expressed through nor perceived from a common set of facial movements;

• lack of specificity: there is no unique mapping between a configuration of facial
movements and instances of an emotion category;

• limited generalizability: the effects of context and culture have not been suffi-
ciently documented and accounted for;

• questionable validity: whether an observed variable actually measures what is
claimed (for example, whether a facial movement reliably expresses an emotion -
convergent validity - and specifically that emotion - discriminative validity) where
the presence of the emotional instance can be verified by objective means.

Barrett et al. (2019) also propose a cautious list of recommendations when adopting
a FACS based approach for emotion detection/recognition.

Numerous critiques of BET have appeared since its inception. To addresse them, by
and large, Ekman and other BET theorists have “weakened” in varying degrees some
of their original assumptions. This extensions aim at accounting for more nuanced and
complex processes involved in emotion recognition, in the structure of how people per-
ceive emotional expression and finally, in weighing contextual influences upon emotion
recognition. One example of the FACS encoding how facial configurations might re-
late to different emotion words (categories) depending on culture is provided in Figure
5.16.

A recent review of such advancements has been given by Keltner et al. (2019).
Notwithstanding, Ekman’s approach is nowadays judged to be more and more con-

troversial, at the light of new empirical evidence in emotion neuroscience. For in-depth
reviews, see Fridlund and Russell (2021); Crivelli and Fridlund (2019); Barrett and
Satpute (2019); Leys (2017).
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Figure 5.16: Culturally common facial configurations and related emotion words/phrases in
UK end China. Red coloring indicates stronger AU presence and blue indicates weaker
AU presence. Some words and phrases that refer to emotion categories in Chinese are not
considered emotion categories in English. Adapted from Barrett et al. (2019)
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5.3.2 The Appraisal Theory view

Appraisal theory, as we know it today, is usually attributed to Arnold (1960), who made
an early and influential statement of the cognitive approach to emotion. She proposed
that people implicitly appraise or evaluate everything they encounter, and that such
evaluations occur immediately and automatically.

Appraisal theories of emotion propose that emotions or emotional components are
caused and differentiated by an appraisal of the stimulus as mis/matching with goals
and expectations, as easy/difficult to control, and as caused by others, themselves or
impersonal circumstances. Specifically, the appraisal is a process in which values are
determined for a number of appraisal factors such as goal relevance, goal in/congru-
ence, un/expectedness, control, and agency.

Using a surface taxonomy, appraisal theories can be divided into two flavors based
on what they try to explain (Moors, 2020). A first flavor of appraisal theories tries to
explain specific emotions; these set out to explain specific emotions as they figure in
natural language, such as anger, fear, sadness, and happiness.

A second flavor of appraisal theories tries to explain certain striking features or
components of emotions, such as their intense, overwhelming, nature, that they have
positive or negative valence, and/or their embodied aspects. For instance, features to
be considered might be specific action tendencies (e.g., tendencies to flee, fight, and
give in), specific somatic response patterns, specific facial expressions, and/or specific
feelings.

As to the causal explanation of emotion, appraisal theories, in contrast do the classic
view, emphasize that there are hardly any one-to-one relations between features of stim-
uli and features of emotions. One stimulus can produce different emotions in different
individuals or on different occasions.

For what concerns mechanistic explanation, theories of appraisal split the process
from stimulus to emotion into two steps: one step in which a stimulus is processed by
appraisal and another step in which the output of the appraisal process is translated into
a specific emotion (in first-flavor appraisal theories) or in specific values of the other
emotional components (in second-flavor appraisal theories).

Regarding the first step, there are no restrictions on the operations that may be in-
volved in appraisal, as long as the output of these operations are representations of
values on the proposed appraisal factors. For what concerns the second step, appraisal
theories of the first flavor set out to explain specific emotions. They propose that the
appraisal pattern resulting from the appraisal process is integrated in a summary ap-
praisal value (called a core relational theme by Lazarus, 1991) and that this summary
value determines the specific emotion that is at stake. This, in turn, determines the
values of the output components. Appraisal theories of the second flavor, by contrast,
set out to explain the values of the output components, without linking them to specific
emotions. They propose that each appraisal value has a separate influence on the values
of the output components and together these values form the emotion (Scherer, 2009).
Each appraisal output has an influence on the action tendency, which mobilizes somatic
responses that prepare the organism for overt action. Aspects of all these components
seep into consciousness where their integrated sum makes up the content of the feeling
component. In this scenario, the organism at no point has to determine the specific
emotion that is at stake; instead, emotions are considered as emergent phenomena.
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This for the general aspects. In the following we largely draw on Barrett’s taxonomy
(Barrett, 2016) in order to discuss appraisal theories in relation to other approaches.

Causal appraisal theories

According to causal appraisal approaches, a cognitive appraisal (Arnold, 1960; Lazarus,
1991), or a suite of appraisals (Roseman, 1984; Scherer, 2009; Smith and Ellsworth,
1985) makes meaning of the stimulus situation. This in turn triggers the emotion.

As in BET, many early causal appraisal approaches assumed that the resulting emo-
tion triggers a set of consistent and specific physiological changes, facial muscle move-
ments, behavior, feelings, and so on (e.g., when a person appraises that a dark alley is
uncertain, unpleasant, and that she lacks control of the situation, she might experience
fear which in turn generates an increased heart rate, sweating, widened eyes, and the
tendency to run away)

Emotions are natural kinds by virtue of homology: all instances of the same cate-
gory (e.g., anger) emerge from the same causal mechanism. By hypothesizing that the
appraisal is an intervening mechanism between the stimulus and emotion, causal ap-
praisal models made it easier to accommodate evidence of variability in physiological,
facial, and behavioral patterns into the natural kinds framework: such variability could
occur because different people appraise the same stimulus in a different way, and thus
experience different emotions.

Prima facie, causal appraisal models appear similar to psychological construction-
ist approaches, especially since both can accommodate greater variability in emotional
responding than basic emotion approaches. Yet they differ from constructionist ap-
proaches in two important ways. First, causal appraisal approaches view appraisals as
a specific mechanism that is itself distinct from the emotion. Second, causal appraisal
models assume that emotions include distinct steps: appraisals evaluate the stimulus
situation (Ellsworth and Scherer, 2003), which then causes the emotion, which causes
associated bodily changes.

Constitutive appraisal theories

Recent constitutive appraisal approaches have moved away from making strong causal
hypotheses about the role of appraisals in emotion (e.g., Clore and Ortony, 2008;
Moors, 2013; Scherer, 2001). Like causal appraisal approaches (and unlike psycho-
logical constructionism), constitutive appraisal models still assume that emotion cat-
egories refer to distinct states with specific functional importance. Yet unlike causal
appraisal approaches (and like psychological constructionism), constitutive appraisal
approaches highlight the informational content of appraisals rather than viewing them
as mechanisms of the emotion, per se. Some constitutive appraisal models (e.g., Clore
and Ortony, 2008) are thus quite similar to psychological constructionist approaches
because they view appraisals as descriptions of what it is like to experience an emo-
tion (for discussions, see Gross and Feldman Barrett, 2011; Lindquist, 2013; Lindquist
et al., 2012; Barrett, 2016).

One clear example is the OCC model (the model proposed by Ortony, Clore and
Collins, 1988), one of the several appraisal theories that arose in the 1980s. This
psychological model is relevant beyond its theoretical merits also because it became
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popular among computer scientists building systems that reason about emotions or in-
corporate emotions in artificial characters.

According to OCC (Clore and Ortony, 2013): (a) emotions are more readily distin-
guished by the situations they signify than by patterns of bodily responses; (b) emotions
emerge from, rather than cause, emotional thoughts, feelings, and expressions; (c) the
impact of emotions is constrained by the nature of the situations they represent; (d)
appraisals are psychological aspects of situations that distinguish one emotion from
another, rather than triggers that elicit emotions; (e) analyses of the affective lexicon
indicate that emotion words refer to internal mental states focused on affect; (f) the
modularity of emotion, long sought in biology and behavior, exists as mental schemas
for interpreting human experience in story, song, drama, and conversation.

Consistent with a constructivist approach, the OCC model posits that emotions are
emergent conditions reflecting multiple modalities of affective reactions to psycholog-
ically important situations. The model distinguishes 22 emotion types differentiated
by the psycholog- ically significant situations they represent. It distinguishes emo-
tions involving a focus on events from those focused on actions and those focused on
objects. Emotions concerned with outcomes of events are distinguished by such fac-
tors as whether they concern one’s own (e.g., sad) or another’s outcomes (e.g., pity),
and whether they involve prospective outcomes (e.g., fear) or known outcomes (e.g.,
grief). Among emotions focused on prospective outcomes, some concern whether such
prospects have been realized (e.g., satisfaction, fears confirmed) or not (e.g., disap-
pointment, relief). But not all emotions are about the outcomes of events. Some con-
cern the agency of actions. These emotions involve appraisals of actions as praisewor-
thy (e.g., pride) or blameworthy (e.g., shame). Within this focus, it matters whether a
praiseworthy or blameworthy action is one’s own (e.g., pride, shame) or another’s (e.g.,
admiration, reproach).

The OCC argument is not that emotions are situations, but rather that emotions are
embodied, enacted, and experienced representations of situations. Specific emotions
surely do involve patterns of physiology, neurology, experience, expression, motivation,
and so on. But the variation in these responses within a particular kind of emotion may
be too great to discriminate among emotions on such bases (Clore and Ortony, 2013).

Central to OCC is the notion of (mental) schemas. People all have accessible,
stereotypic scenarios of anger, fear, jealousy, and other emotions. These stereotypic
scenarios can bring order to what people have to say. They provide ready-made frames
for everyday experiences, and help interpret the present, remember the past, and antic-
ipate the future. These schemas are not emotions, of course, but cartoon versions of
emotions that provide categories for interpreting and communicating the essential as-
pects of important situations to self and others in a compelling form (Clore and Ortony,
2013).

5.3.3 The constructionist view

The constructionist view of emotion includes social construction theories (e.g., Averill,
1980; Mesquita et al., 2016), psychological construction theories (e.g., (Barrett et al.,
2015; Russell, 2003)), and descriptive appraisal theories (e.g., Ortony and Clore, 2015),
as well as the theory of constructed emotion that integrates social construction and
psychological construction, as well as neuroconstructive and rational constructionist
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perspectives (Barrett and Satpute, 2019; Barrett, 2017c; Atzil et al., 2018).

Psychological Construction Models

In these models, emotions are not special mental states, unique in form, function, and
cause from other mental states such as cognition and perception. This is because emo-
tions are not caused by dedicated mechanisms. Instead, all mental states are seen as
emerging from an ongoing, continually modified constructive process that involves
more basic ingredients that are not specific to emotion (see Table 5.1). Psychological
construction models treat emotions as folk categories, where each category is associated
with a range of measurable outcomes. By some psychological construction accounts,
emotions (like all mental states) are the emergent products of psychological ingredients
— they are more than the sum of their parts — making these views continuous with
descriptive appraisal accounts found to the very right of the yellow zone.

Social Construction Models

The right-most band (Figure 1, in blue) is occupied by social construction models.
Here, emotions are viewed as social artifacts or culturally-prescribed performances that
are constituted by sociocultural factors, and constrained by participant roles as well as
by the social context (see Table 5.1). Some social construction models (particularly
in psychology) treat social configurations as triggers for basic emotional responses,
much as early appraisal models conceived of appraisals as cognitive triggers of basic
emotions. However, other models in this zone view emotions as socio-cultural products
that are prescribed by the social world and constructed by people, rather than by nature.
Emotions are performances of culture, rather than internal mental states. Whether a
socially constructed event is seen as an emotion (as opposed to some other kind of
psychological event) depends on the network of social consequences it produces. To
the extent that cognitive processes are involved as transmitters of cultural expectations
and constraints, they are seen as learned, rather than given by nature (in contrast to some
appraisal views), so that such cognitions vary from culture to culture. Both the mental
and the behavioral components of emotion are thought to co-evolve as a function of
local social meanings, and are considered primarily for their social function.

The different approaches to answer James’ original question can be graphically
summarized as in Figure 5.17. The Figure also highlights the relation between the
different approaches and language concepts.

5.3.4 Conclusive remarks on CAT in the context of emotion theories

CAT has been originally proposed as a theory of constructed emotion relying on the
predictive brain hypothesis. In its development it has been extended so to integrate
social construction and psychological construction, as well as neuroconstructive and
rational constructionist perspectives (Atzil et al., 2018; Barrett and Satpute, 2019). In
the remainder of this thesis, this extended CAT will be referred to as CAT tout court,
for simplicity.

We have straightforwardly introduced CAT drawing on the rational or theoretical
model perspective, namely in the framework of Bayesian theories. Motivation for this
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Figure 5.17: Theories of emotion and language. In basic emotion theories emotion is triggered
by a stimulus, each emotion (e.g., anger) having its own innate mechanisms. Causal ap-
praisal models hypothesize that the cognitive appraisal (or a suite of appraisals) of the stim-
ulus situation triggers a discrete emotion. In this regard, they are similar to basic emotion
approaches, and are natural kinds approaches. Psychological constructionist approaches
hypothesize that core affective changes (caused in part by interactions with the stimulus sit-
uation) are made meaningful using representations of prior experiences that are tied to the
context. In a BET view, linguistic concepts are at most invoked after an emotion has formed
and are purely used for communicating emotions to others. Causal appraisal models hypoth-
esize that a cognitive appraisal intervenes between the stimulus and emotion, but this is not
typically thought to be a linguistic process per se. By contrast, in a constructionist view, lin-
guistic concepts help make meaning of ambiguous body states in light of the present context.
Linguistic concepts are thus constitutive of the emotion, helping to create the experience in
the first place. Adapted from Lindquist et al. (2015b); Lindquist (2013)
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choice relies on the central role played in the theory by category/concepts as gener-
ative tools and the possibility of exploiting approaches that have been previously set
for modelling categorical perception of objects. Indeed, there is a close connection be-
tween categorical perception of objects and that of affect along ontogeny development
(Hoemann et al., 2020b) as it has been summarized in Figure 5.1.

What we have assumed here is the following central hypothesis:

All brains are faced with an inverse inference problem, that is Bayesian in-
ference: ambiguous, noisy sense data continually arrives from inside the
animal’s body (the result of allostasis) and from the surrounding environ-
ment (the animal’s niche). The brain does not have access to the causes of
the sense data so it must infer them. So, a brain constructs inferences —
hypotheses about the causes of sensations — by remembering past events
that are similar to present conditions.

The brain solves the inference problem by continually constructing ad hoc
concepts to make sense of the harsh discordant mixture of signals arriving
from its sensory organs. By “concept” we denote a mental representation of
a category, a group of events or objects that are similar in some way.

It is worth noting that in most recent versions of CAT, the rational analysis frame-
work is often equated with the predictive coding approach. However, in our perspective,
as discussed at the beginning of this Chapter, predictive coding is but one of the viable
alternatives apt to provide a solution to the complexities entailed by Bayesian inference
(thus at the implementation model level), rather than a theoretical framework per se.

The aspects of CAT, involved by its extension to cope with subjects’ social interac-
tions (Hoemann et al., 2020b), are particular appealing for us because of the prominent
role played by words and language (cfr., Figure 5.17).

Words set a powerful context for shaping mental inferences because they are a spe-
cial type of sensory input that is inextricably linked to concepts and categories. Sim-
ply perceiving a word involves remembering related concept knowledge. Conceptual
knowledge is a context that categorizes incoming sensory inputs and makes them mean-
ingful, thereby influencing how facial configurations and other sensory signals are un-
derstood and acted upon.

As we have previously remarked, language and emotions are tightly intertwined:
language and words have a constitutive role in emotion and the communicative act
always conveys emotions, either unintentionally or through shared intentionality; com-
municating through language can even modulate emotion regulatory processes.

Further, in line with social constructionism, CAT suggests that emotion categories
are a product of social reality and are culturally relative. Similarly, emotion concepts
develop through contextualized social interactions in which language plays a signifi-
cant part. In this way, CAT is consistent with perspectives that highlight the inherent
intersubjectivity of emotional development. However, CAT extends beyond these per-
spectives to emphasize the role of the body and its anticipated energy needs. Social
constructionism holds that emotion concepts are inherently about the relationship be-
tween social interactants. In comparison, the CAT account anchors the construction of
emotion concepts (like all concepts) in the service of efficient physiological regulation.
Humans interactively establish and reinforce emotion categories to co-regulate each
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other, but this is always in support of keeping bodily systems in balance (Atzil et al.,
2018; Barrett and Satpute, 2019; Hoemann et al., 2020b).

5.4 What is a computational model of emotion? State of the art

Trying to exhaustively review the contributions to the field of computational models of
affect, in order to systematically compare the different approaches is a mind-blowing
endeavour and out of the scope of this thesis. We urge the reader to refer to some in-
depth reviews (Gratch, 2021; Ma and Yarosh, 2021; Zhao et al., 2021; Schuller et al.,
2021; Susanto et al., 2021; Ong et al., 2019b; Wang et al., 2020; Richardson, 2020;
Schuller and Schuller, 2018; Hortensius et al., 2018; D’Mello et al., 2018; Poria et al.,
2017; D’Mello and Kory, 2015; Ojha et al., 2021; Dimitrievska and Ackovska, 2020;
Sheridan, 2020; Cavallo et al., 2018; Reisenzein et al., 2013).

It goes without saying, that the last two decades have seen a proliferation of interdis-
ciplinary works of competing and complementary computational models contributing
to a situation of potential confusion, worsened by the lack of a common lexicon be-
tween the psychological and computational worlds they derive from. As a result, a
systematic review of such models is not a simple task.

We shall try to delineate at least some trends, by considering models developed
within the main research programs involving the computation of affect and to relate
them to psychological theories we have discussed so far.

That being so, we arm the reader with a preliminary map outlined in Figure 5.18.
Such map shows at a glance that there are different research programs that contend

for the computation of affect, which can be roughly identified as machine learning-
based models, robotic models, cognitive artificial intelligence (AI) based models. It
is shown how several research areas have contributed, in different vein and substance,
to such programs, psychological and neurobiological theories providing the necessary
underpinning, at least in our view. Other areas that have fostered the flourish of methods
are machine-learning and artificial intelligence (AI), either in their classic knowledge-
based or the probabilistic, uncertainty-based accounts.

5.4.1 The affective computing / machine learning way

Affective Computing (AC) is the interdisciplinary field of study concerned with recog-
nizing, understanding, simulating and stimulating affective states in the design of com-
putational systems. Since the coining of the term by Picard (1997), affective computing
has emerged as a cohesive and increasingly impactful discipline spanning computer sci-
ence, psychology, neuroscience, philosophy, art and industry. Technology giants such
as Apple, Amazon, Google and Facebook, as well as hundreds of smaller companies
are deploying affective computing methods to predict or influence consumer behavior
(Gratch, 2021; Schuller et al., 2021).

Picard’s definition of the field was quite broad:

I call “affective computing,” computing that relates to, arises from, or influ-
ences emotions.

In such perspective artificial agents might have the ability to
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Figure 5.18: A map of the main research programs in which the field of computational mod-
elling of affect has been developed: machine learning-based models, cognitive robotics’
models, cognitive artificial intelligence (AI) based models. Boxes and related arrows rep-
resent independent research areas and theories that have mainly contributed to such field.
Adapted from Cuculo (2018)
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1. recognise/detect emotion,

2. express emotion,

3. “have emotions”,

the latter point being the hard stuff.
However, as witnessed by a recent review Ma and Yarosh (2021) a large number of

papers (75%) that have been published in the field deals withe the detection problem
(cfr., Figure 5.19, top panel).

Considering modalities, facial expressions, vocal expressions and others play a ma-
jor role (circa 50%, cfr., Figure 5.19, centre panel), but also physiological signals are
considered (20%), and more recently, multi-modal analysis (D’Mello and Kory, 2015;
Schuller et al., 2021). Text and music (20%) are relevant too, the former fostered by re-
cent developments in computational language processing, markedly sentiment analysis
(Susanto et al., 2021; Wang et al., 2020).

As to the psychological models adopted, basically 50% of the works adopt vari-
ants of BET, and address the recognition of Ekman’s six basic emotions moving more
recently to consider a higher number. Within the field this is usually referred as the cat-
egorical or discrete approach to emotion recognition. Other works rely on the Russell’s
core affect, valence/arousal (V/A) space, which is commonly named the continuous or
dimensional approach to emotion recognition. It is worth remarking, that the choice of
the V/A representation is most of the times instrumental, being such representation a
rather impoverished version of the original, at best, if not wrongly interpreted. Basi-
cally, the V/A affect space it is conflated tout court with discrete categorical emotion
space, so that each emotion (e.g., anger) is assumed to be represented as a point in such
two-dimensional continuous space. This merging of two completely different levels
(affect and emotion), is clearly inconsistent with the constructionist view where core
affect was conceived

The main problem in this field, beyond the original Picard’s statement of its research
program, is that, by and large, the detection problem is solved through the classic pat-
tern recognition pipeline

signal→ feature extraction→ classification / regression

where, more recently, supervised deep learning techniques applied to very large datasets
(notably, in facial expression recognition, much like in NLP, have fused the feature ex-
traction→ classification steps, thus avoiding the need of hand-crafted features .

This is well described by D’Mello et al. (2018). The goal of the AC approach is
to computationally model the link between signals and affect/emotion inference, which
requires solving two main challenges. The first is to obtain abstractions (called de-
scriptors or features) from raw signals recorded by sensors. The second main challenge
is to produce affect estimates from the descriptors. The most common approach uses
techniques from a subfield of machine learning. The term computational model in most
cases boils down to computing the output of a supervised classifier. Based on the su-
pervised learning method, the computational model can take on many forms, such as an
equation, a set of rules, a decision tree, a forest of decision trees, and a neural network
(D’Mello et al., 2018). Interestingly enough, D’Mello and Kory (2015) have provided
a meta-analysis of multi-modal AC which is unique in this research field.
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Figure 5.19: Distribution of papers over topics (top panel), modalities (centre), psychological
models (bottom). Adapted from Ma and Yarosh (2021)
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5.4.2 The cognitive Artificial Intelligence way

The aim of AI-oriented models of emotion is to the enhance human-computer interac-
tion, by controlling the behaviour of virtual agents to motivate and establish empathy
and bonding. A lucid and in-depth review of the relationships between computational
modelling of emotion and the general goals of AI, when these are restricted to the do-
main of emotions, has been provided by Reisenzein et al. (2013). More recent and up
to date reviews are Gratch (2021); Ojha et al. (2021); Ong et al. (2019b).

In this field, the goals of computational modeling of emotion largely correspond to
the general goals of AI (in particular to classic AI), when these are restricted to the do-
main of emotions: (i) achieve a better theoretical understanding of emotions in natural
and artificial agents by creating computational models of them (theoretical goal); (ii) to
enrich the architecture of artificial agents with emotion mechanisms similar to those of
humans, and thus with the capacity to “have” emotions (applied goal, Reisenzein et al.,
2013).

The two goals are intertwined: endowing artificial agents with truly human-like
emotion mechanisms presupposes reasonably faithful computational models of these
mechanisms; conversely, by synthesizing mental processes, including emotions, in ar-
tificial agents is suitable way to attain a deep theoretical understanding of them. The
common ground is the functionalist view of mental states of classic AI: understanding
the capacity of artificial agents to have internal states that are functionally equivalent
or at least similar to emotions in humans, i.e., that play causal roles in the agent archi-
tecture that mimic those played by emotions in humans. The causal effects of emotions
that can be modeled in artificial agents include self-awareness of emotions when they
occur, albeit no claim is made that artificial agents, at least those that currently exist, are
conscious of their emotions in the sense of having qualitative phenomenal experiences.
In this perspective, this research program is akin to the original affective computing
research program as stated by Picard (1997).

Such goals have been pursued following two main paths (Reisenzein et al., 2013):
1) formalizing emotion theories in implementation-independent formal languages (set
theory, agent logics, e.g., Broekens et al., 2008); 2) modeling emotions using general
cognitive architectures (such as Soar and ACT-R), general agent architectures (such as
the Belief-Desire-Intentions, BDI, architecture) or general-purpose affective agent ar-
chitectures (e.g., the EMA - EMotion and Adaption - architecture, Marsella and Gratch,
2009, or the FAtiMA architecture, Dias et al., 2014).

Appraisal and componential theories have been largely influential in this research
program. Computational models of emotion had early success exemplified by Scherer’s
GENESE expert system. GENESE was built on a knowledge base that mapped ap-
praisals to different emotions as predicted by Scherer’s heuristics and theory (Scherer,
1993). However, despite its value as a tool to test emotion theories, the system was
too limited for most real-world applications. It is too difficult, if not impossible, to
construct the significant knowledge base needed for complex realistic situations. More
recently, the OCC model by Ortony et al. (1990) has been widely adopted.

As to the formal treatment of emotion theories, fresh attempts have been proposed
to bridge BDI and the OCC model of emotions by using probabilistic logic (e.g., Gluz
and Jaques, 2017).

The BDI (Belief-Desire-Intention) model is a well known reasoning model in ar-
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tificial intelligence research. It provides a high-level abstraction of human reasoning,
allowing reasoning process modeling using only three mental states: belief, desire and
intention, which represent, respectively, the informational, motivational and delibera-
tive states of an intelligent agent. These agents are generally characterized by affective
states such as emotions, mood or personality but sometimes also by affective capacities
such as empathy or emotional regulation. (Sánchez-López and Cerezo, 2019)

As to architectures (at the implementation model level, in our perspective), a large
number has been proposed over years (Ojha et al., 2021). A snapshot of their logic
can be captured by considering the example of F FAtiMA (Fearnot AffecTIve Mind
Architecture,Dias et al., 2014). This is an agent architecture with planning capabilities
designed to use emotions and personality to influence the agent’s behaviour. FAtiMA
processing cycle is based on the following steps 1. perception of events; 2. on this
basis, memory is updated and 3. appraisal processes are triggered; 4. an affective
state is generated; 5. actions are executed based on goal-based planning (a BDI-style
reasoning process); and 6. actions are executed. For a detailed up-to-date review of
these architectures based on the appraisal theory of emotion, and related critical issues,
see Ojha et al. (2021).

Clearly, although symbolic/cognitive architecture approaches are capable of solving
a variety of AI tasks, they are limited with respect to learning from exploration and
feedback in unstructured tasks. More recently, the effort of bridging the cognitive AI
approach to machine-learning based affective computing - and, in perspective, deep
learning techniques (Schuller and Schuller, 2018), has gained currency (e.g., in the
reinforcement learning setting, see Moerland et al., 2018, for a detailed review and
discussion)

5.4.3 The cognitive roboticist’s way

The research landscape of cognitive robotics, markedly social robotics (Sheridan, 2020),
is more nuanced with respect to the cognitive AI and ML-based affective computing
fields, and a plurality of methods and approaches have been adopted by virtue of the
very fact that roboticists are confronted with hard problems: actual bodies, real environ-
ments, computational time constraints (Yan et al., 2021; Dimitrievska and Ackovska,
2020; Sheridan, 2020; Hortensius et al., 2018; Cavallo et al., 2018).

Rapid progress in robotics calls for naturalistic interaction between humans and ma-
chines, where the emphasis is on collaboration, learning via imitation and socialising
(Billard et al., 2016; Natale et al., 2013). It goes without saying, these are quite dif-
ferent scenarios with respect to the off-line learning / classification over billions of, for
instance, facial pictures. In a sense, problems posed in such realms are better conceived
in terms of learning using few labeled examples (Yang et al., 2013; Lake et al., 2015).

For instance, in social robotics, an important challenge is to determine how to de-
sign robots that can perceive the user’s needs, feelings, and intentions, and adapt to
users over a broad range of cognitive abilities. It is conceivable that if robots were
able to adequately demonstrate these skills, humans would eventually accept them as
social companions. This approach requires understanding how humans interact with
each other, how they perform tasks together and how they develop feelings of social
connection over time, and using these insights to formulate design principles that make
social robots attuned to the workings of the human brain.
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Wiese et al. (2017) argue that the likelihood of humanoid robots being perceived as
social companions can be increased by designing them in a way that they are perceived
as intentional agents that activate areas in the human brain involved in social-cognitive
processing, and provide an in-depth and wide review of how neuroscientific methods
can contribute to make robots appear more social. Robots that are supposed to act as
social interaction partners in the future need to fit in human-attuned environments by
emulating human form and cognition. Indeed, psychological research has shown that
anthropomorphism, and specifically mind perception, are highly automatic processes
that activate social areas in the human brain (Wiese et al., 2017).

When talking about humanoid robot interaction, their social appearance is con-
cerned with both the “bodyware” or hardware of the machine, and the behaviour con-
cerning the observable results of the workings of its “mindware” or software (Wiese
et al., 2017). As to mindware, an important distinction needs to be made between neu-
rally accurate models, often proof of principles, and actual working implementations
on real hardware, with profound differences between computers and human brains, im-
peding accurate real-time neural simulations of large brain systems, such as those of
the social brain. Given the technological limitations associated with trying to repro-
duce large brain networks on actual bodyware, the goal needs to be the identification of
a minimal set of features that can reliably trigger mind perception in non-human agents.

First attempts to build socially competent robots can be traced back to the work
done at MIT Brook’s robotics lab, e.g., Cog (Brooks et al., 1999) and Kismet (Breazeal
and Scassellati, 1999; Breazeal, 2003). Kismet is still a paradigmatic example of the
problems to be solved in this field and of the consequent methodological pluralism
therein adopted; thus, it is worth being presented to some detail.

With Kismet, Breazeal and Scassellati (1999) studied how an expressive robot elicited
appropriate social responses in humans by displaying attention and turn-taking mech-
anisms. They also identified some of the requirements of the visual system of such
robots (Breazeal et al., 2001) as for example the advantages of foveated vision, eye
contact, and a number of sensorimotor control loops (e.g., avoid and seek objects and
people). Cognitive/social visual behaviour grounded in a motivation system which con-
sisted of drives and emotions. The robot’s drives represent the basic needs of the robot:
to interact with people (the social drive); to be stimulated by toys and other objects
(the stimulation drive); to rest (the fatigue drive). For each drive, there is a desired
operation point, and an acceptable bound of operations around that point (the homeo-
static regime). Unattended drives drift toward an under-stimulated regime. Excessive
stimulation (too many stimuli or stimuli moving too quickly) push a drive toward an
over-stimulated regime. When the intensity level of the drive leaves the homeostatic
regime, the robot becomes motivated to act in ways that will restore the drives to the
homeostatic regime.

The robot’s emotions, in turn, were a result of its affective state. The affective state
of the robot was represented as a point along three dimensions: arousal (i.e. high,
neutral, or low), valence (i.e. positive, neutral, or negative), and stance (i.e. open, neu-
tral, or closed). This core affective state is thus based on Russell’s core affect concept
(Russell, 2003). Operatively, the affective state is computed by summing contributions
from the drives and behaviours. Percepts may also indirectly contribute to the affective
state through the releasing mechanisms. Each releasing mechanism has an associated
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somatic marker processes, which assigns arousal, valence and stance tags to each re-
leasing mechanism (a technique inspired by the Damasio’s somatic marker hypothesis,
SMH, in emotion neuroscience, Bechara et al., 2000; Bechara and Damasio, 2005).
At the same time, this continuous state was partitioned into a discrete set of emotion
regions, which roughly correspond to Ekman’s discrete emotions (Ekman, 1993).

Since then, several empathic robots that consider the internal state of others for
their own expressions have been proposed (Yan et al., 2021; Dimitrievska and Ack-
ovska, 2020; Sheridan, 2020; Hortensius et al., 2018; Cavallo et al., 2018). If one
glimpse over these reviews, it is readily apparent that roboticists have drawn on either
BET and appraisal models, at the theoretical level, and exploited a wealth of cognitive
AI / ML affective computing approaches, moving more recently to deep learning, at the
implementation theory level. Also, there has been a turn currently towards psychologi-
cal constructivism theories, mostly related to concept and abstract concept learning and
the modelling of communication acts in dyadic interactions for learning (Cangelosi and
Stramandinoli, 2018).

Indeed, there is a tradition of robotic research that utilised neuroscience studies as
a starting point (Kawato, 1999; Scassellati, 2002; Demiris et al., 2014).

For example, following the discovery of mirror neurons in non-human primates
and their involvement in action understanding (see, Rizzolatti and Sinigaglia, 2016
for a general introduction), neuroscientifically inspired approaches to robotics mainly
focused on developing models for action recognition and imitation (Metta et al., 2006;
Oztop et al., 2013). The mirror neuron system activates both during the execution of
their own actions and while observing the same actions performed by others. In the
context of emotional communication, this mechanism is assumed to enable people to
imagine the emotional state of others based on their own experiences of expressing the
corresponding emotion.

The key concept of shared sensorimotor representations, dating back to Liberman
and Mattingly (1985), guided a variety of implementations utilising, for example, re-
current neural networks (Tani et al., 2004) or various other machine-learning methods
that learn direct-inverse models from examples (but see, for a review, Oztop et al.,
2006, 2013). Among these attempts to implement a mirror neuron system into artifi-
cial agents, some models were more neuroscientifically accurate than others. Inspired
by the mirror neuron systems, Lim and Okuno (2014) proposed multimodal emotional
intelligence (MEI), which utilises an integrated architecture to recognise the emotional
states of others and generate its own emotional facial expressions.

Brain-inspired models have dominated the field for several years, but are being
replaced by the modern “brute force” data-driven approach of using deep networks,
in particular, convolutional neural networks (Goodfellow et al., 2016) and managing
the increased computational cost through specialised processors (e.g., GPUs), resulting
in an improvement in performance of orders of magnitude.

Yet, there are still efforts to reconcile these two perspectives. Barros and Wermter
(2016) have recently proposed a model that simulates the innate perception of audio-
visual emotion expressions with deep neural networks, that learns new expressions (via
a convolutional neural network) by categorising them into emotional clusters with a
self-organizing layer. This process implements the emotion perception stage where
the agent -the robot NICO, Neuro-Inspired COmpanion - observes the environment
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consisting of human and other artificial agents expressing a particular emotion, for
example, a human smiling at the agent (Churamani et al., 2017). Then, in the emotion
synthesis step, the robot factors in its own goals and beliefs to estimate an emotional
state for itself; this is based on the inference engine of the agent so as to react to the
perceived input from the environment. Eventually, once the agent has received an input
from the environment, it then expresses its emotional state in the form of facial gestures,
synthetic speech etc. evoking another response from the environment (Churamani et al.,
2017). Clearly, here there is a sort of direct mapping (no internal simulation) from the
latent space of categorising in discrete form, affective expressions learnt in a bottom-up,
feed-forward sweep.

Kim et al. (2013) have rectified their MEI/SIR original proposal using deep neural
networks that learn to extract features for emotional categorisation from audio-visual
signals. In their system, deep belief networks (DBNs) comprising restricted Boltzmann
machines (RBMs, see Goodfellow et al., 2016) were used as unsupervised learning
mechanisms. The RBM can abstract input signals and reconstruct the signals there-
from. In experiments, their model extracted emotion specific features from general
ones, which are not always important for the classification of emotion.

More recently, Horii et al. (2016) proposes a model that can estimate human emo-
tion and generate its own emotional expressions to imitate the human expressions based
on the estimation of his/her emotion in human-robot interaction. The model overcomes
two issues confronting the previous emotional model: constructing an emotional rep-
resentation of multimodal signals for estimation and generation for emotion instead of
using heuristic features, and actualising mental simulation to infer the emotion of others
from their ambiguous multimodal signals. In the same vein of Kim et al. (2013), they
employed RBMs to address these two issues as they are able to abstract input signals
and recall the signals there from. The abstraction capability of RBMs was exploited
to overcome the first limitation by reducing the dimensions of multimodal signals and
associating the multimodal signals. The model also carries out mental simulation by ex-
ploiting the ability to generate sensorimotor signals. The mental simulation mechanism
enables the model to estimate the emotional states of others from partial multi- modal
expressions based on its own experiences. Related to this proposal, Boccignone et al.
(2018a) have presented a theoretical Bayesian model of multimodal affect enactment,
at the core affect level, triggered by facial expressions displayed in the course of an
expresser/observer interaction. The goal of the model is to allow the observer to reach
a core affect state similar to that of the expresser. Indeed, such condition is suitable to
ground subsequent cognitive processing for affect understanding Adolphs (2002). The
model accounts for mirroring, simulation-based mechanisms that are likely to be at the
heart of face-based emotion understanding Adolphs (2002); Wood et al. (2016), and,
more generally of affective interactions. Further, it can address a flexible, multimodal
and embodied representation of perceived facial actions while lending itself well to the
task of learning from few as possible examples (in the experiments reported here just
one expresser example, much like as in a mother/infant interaction). The core imple-
mentation model was set from a predictive processing perspective and based on deep
Gaussian processes architecture (Boccignone et al., 2018a).

Indeed, there is in cognitive robotics a growing interest in the predictive process-
ing framework and its associated schemes, such as predictive coding, active inference,
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perceptual inference, and free-energy principle (for an in-depth review, see Ciria et al.,
2021). Yet, to the best of our knowledge, there are no principled approaches addressing
the bridge between communication acts and conceptual acts,integrating emotions and
affect from a constructivism standpoint.
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CHAPTER6
The Model

In this chapter, taking stock of the discussion presented in previous chapters, we present
the model that unifies in a probabilistic framework what we have named the communi-
cation and the conceptual acts.

To such end, following the methodology discussed in Chapter 3, we first devise
the constraints at the neurobiological and the psychological description levels. As to
the former, we will present in Section 6.2 a synthesis drawing on results of a vast and
controversial literature. Many details are left in the Appendices. Then, a bridge to
the psychological level will be provided in Section 6.4 in order to provide the nec-
essary psychological infrastructure that underpins the theoretical model discussed in
Section 6.5.

6.1 Model Overview

At the core level, we can straightforwardly frame our problem of an agent involved
in some kind of interaction as an agent-in-context model Koban et al. (2021). Self-
in-context models endow events with personal meaning and allow predictive control
over behaviour and peripheral physiology, including autonomic, neuroendocrine and
immune function. In brief (cfr., Fig. 6.1), over time, the agent is influenced at the
conceptual level by the social and environmental context (social norms, relationships,
cultural beliefs, neighbourhood characteristics, etc.). The agent is also shaped by be-
liefs, memories and learning. At the perceptual level the agent takes into account, both
exteroceptive sensations from the world and interoceptive sensations from the body.
Accordingly, the agent regulates his/her body’s visceral physiology and behavioural
outflow. To provide a principled framework for self-in-context models we shall re-
sort to recent developments in computational neuroscience concerning the view of the
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brain as a predictive machine Zhang et al. (2019); Chanes and Barrett (2016); Barrett
and Simmons (2015); Hutchinson and Barrett (2019), which will be discussed in the
following.

Figure 6.1: Self-in-context model of the agent. Over time, the agent exhibits a dynamics which
involves coordination at different levels: conceptual, perceptual, and body’s behavioural/-
physiological responses (see also Fig. 5.12). Adapted from Koban et al. (2021)

In a nutshell, Figure 6.1 draws on Figure 5.12 (right side) and proposes a scheme
(left side) where mental states, comprised of different combinations of psychological
primitives (represented in red, green, and blue), are the result of the generative/predic-
tive dynamics of brain and body coordination. Based on the combination and relative
weighting of psychological primitives in a given instance, mental states might be rec-
ognized as seeing/hearing or thinking or feeling. We refer to the model presented in
Figure 6.1 as the core model.

The core model is then subsequently extended so that the context might include at
least another agent. This extended agent-in-context model, outlined in Figure 6.2 pro-
vides the infrastructure needed to account for all the elements involved by the commu-
nication act, first of all language capabilities and the minimal ability to gauge another
agent’s intentions and behaviour.

6.2 Structural Constraints: The Neurobiological Level (core)

As discussed in Chapter 3, the theoretical model, which casts our problem at the be-
havioural level, can be structurally constrained from the “bottom-up” by resorting to the
underlying neural architecture. Obviously, even limiting to the last decade, there is a
tremendously vast (and often controversial, Barrett and Satpute, 2019) amount of work
concerning the neural underpinnings of language, emotions, and social interactions. It
is out of the scope of this thesis a complete discussion.

At the neurobiological level the most suitable grain of analysis, to ground psycho-
logical primitives is that of functional brain areas, markedly, area networks (Figure
6.3), as usually specified by functional Magnetic Resonance Imaging (fMRI) studies
(see Appendix D for a quick tour).
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Figure 6.2: Extending the self-in-context model (Fig.6.2). Two interacting agents exhibit, over
time, a dynamics which involves both within-agent and between-agent activities that coor-
dinate ate the different levels conceptual, perceptual, and body’s behavioural/physiological
responses

Figure 6.3: The meta-networking approach of complex cerebral functions. Basic sensory in-
puts are processed by anatomically highly segregated and local networks. Higher-order
cognitive and emotional functions, or mental states, are rather sustained by cortical net-
works that are widely distributed at the whole-brain level. The information processed by the
different cortical unities forming a relatively specialized cortical area is integrated locally
(local integration); then, the information from each cortical area forming the specialized
network is integrated globally (within-network integration). In the context of highly com-
plex, goal-directed, and flexible cognitions/behaviors, the information coming from different
specialized networks is integrated in a context-sensitive manner (i.e., as a function of cur-
rent cognitive demands). This specific pattern of between-network integration corresponds
to a functional meta-network transiently generated to reach a complex goal or to produce a
flexible behavior. Adapted from Herbet and Duffau (2020)
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As we are about to see, the novel perspective of the predictive brain, is the most
suitable to account for the overall framework on language and emotions that we have
outlined in previous chapters. Further details can be found in Appendix E.

The basic assumptions of such perspective can be summarised as follows (Barrett,
2020, 2017b).

1. The brain is not for thinking (or loving). Its most important function is neither
rationality, nor emotion, nor imagination, but rather to control the agent’s body
for managing allostasis, by predicting energy needs before they arise so that the
agent can efficiently act and survive.

2. There is one and only brain. It has not phylogenetically evolved by adding layers
as blueprints of specific functions ( survival/reptilian brain → limbic/emotional
brain → human neocortical/rational brain). Rather, brains of all species, follow
a common “manufacturing plan”, albeit developing at different size, organization
and complexity.

3. The brain is a network. Basically, a network of 128 billion neurons, by and large,
connected as a single, massive flexible structure, resulting in trillions of activity
patterns, where connections become stronger or weaker depending on what is
happening in the world and in the agent’s body throughout life. No single neuron
or area is the locus of a single psychological function (vision, touch, reasoning,
memory, etc.). See Figure 6.3.

4. The brain develops by wiring itself to its world. Ontogenetically, infant’s genes
carrying neural wiring instructions, are guided and regulated by the surrounding
physical and social environments that help in tuning and pruning neural connec-
tion in order to manage the body budget (cfr., Hyp. 1,3). In such endeavour, a
brain becomes optimized for the particular environment in which it develops.

5. The agent’s brain predicts what the agent does. Moment by moment, predictions
are exploited to test conceptual representations against the incoming, buzzing sen-
sory evidence - from the external world and from the body - to categorize it ac-
cording to past experience (prior knowledge/ memories/learned representations),
in the effort of anticipating body’s needs and preparing the optimal “actions” to
satisfy those needs before they arise.

6. A brain works with other brains. In social species, agents regulate one another’s
body budgets through their (inter)actions. Humans are unique in the animal king-
dom, because they can afford regulation with words. Many regions involved in
language also control the proper body (e.g., areas of the “language network” are
involved in heart regulation). This kind of regulation is a powerful one since it can
be performed across distances and time (e.g., a phone call or reading an ancient
text)

7. One brain makes more than one kind of mind. Agents come into the world with
a basic brain plan that can be wired in a variety of ways (Hyp. 4). Beyond the
individual, micro-wiring is tuned and pruned by social groups and culture.
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8. Brains can create reality. Boundaries between social and physical realities is
porous (e.g., studies showing that people judge wine as tasting better when ex-
pensive). Brains do not just select information from the environment, but by
creating categories add new functions to the world. These are communicated and
shared with other brains and weaved into the world to become part of the social
environment, which, in turn, will help to wire novel brains (cfr., Hyp. 4,6)

These assumptions are difficult to reconcile with the classical view of “faculty psy-
chology”1, where specific mental functions are assumed to be instantiated in a given
brain area, (or network of areas). For instance, limbic regions, such as portions of the
cingulate cortex, orbitofrontal cortex, entorhinal cortex, and anterior insula (together
with other subcortical regions, such as the amygdala), are considered to “host” emo-
tions (see Figure 6.4); in the most extreme version, some of these regions might be the
organs of specific emotions: the amygdala for fear, the insula for disgust, and so on.

Figure 6.4: The classical view of the organization of the human cortex. For more than a century,
neuroscientists have studied the cerebral cortex by delineating individual cortical areas and
mapping their function. Numbers identify the Brodmann areas: these were originally defined
and numbered by the German anatomist Korbinian Brodmann based on the cytoarchitectural
organization of neurons he observed in the cerebral cortex

However, a different perspective can be taken. An elegant account for grounding
Hypotheses 1, 2, 3 and 5 is provided by the Structural Model (SM, see Appendix E for
details), a model of cortical systematic variation (García-Cabezas et al., 2019; Barbas
and García-Cabezas, 2016).

1In faculty psychology, the mind is thought to consist of functionally encapsulated mental faculties or “mental
organs” (akin to the organs of the body), each with a specific and distinct physical cause. In modern neuroscience,
this view manifests as the hypothesis that a specific faculty corresponds consistently and specifically to increased
activity in a given brain area, network of areas, or even in specific neurons.
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The SM describes how agranular cortical areas, regardless of their placement on
the cortical mantle, modulate granular cortices through feedback connections and, in
the opposite direction, granular cortices project into agranular cortices via feedforward
pathways. This way the functional architecture of the brain is derived in terms of corti-
cal types (agranular, dysgranular, eulaminate, etc) rather than spatial cortical placement
of specific areas (each associated to a specific function, as suggested by the classical
view, cfr. Figure 6.4).

Chanes and Barrett (2016) argued that feedback and feedforward communication
flows can be conceived in terms of prediction and prediction-error signalling, respec-
tively (see Figure E.3, Appendix E for details). In a crude summary, predictions flow
from cortical regions with less laminar differentiation to regions with increasing lam-
inar differentiation (e.g., from limbic cortices to motor, interoceptive, and primary so-
matosensory, auditory, and visual cortices); prediction-errors are obtained in the oppo-
site, feedforward direction (Hutchinson and Barrett, 2019; Chanes and Barrett, 2016).
Limbic cortices, plus the hippocampal areas, are the source of prediction signals, driv-
ing action and perception in an inferential way concerned with energetics, not just dur-
ing episodes of emotion, but during all mental events (Hyp. 1). According to the SM,
these have anatomical features that place them at the top of a predictive architecture
and provide the initial representations of prediction signals that propagate throughout
the cortex (Hutchinson and Barrett, 2019; Chanes and Barrett, 2016). The limbic en-
semble, via a series of connections to the hypothalamus and throughout the brain stem,
is also responsible for regulating the body’s global energy budget via control of the au-
tonomic nervous system, the neuroendocrine and neuroimmune systems, and the other
systems of the body’s internal milieu. Such ensemble is thought to regulate the body
by anticipating its needs and attempting to meet those needs before they arise, namely
the process of allostasis (Schulkin and Sterling, 2019). Efficient energy regulation and
metabolism are at the core of the brain’s internal model.

The overall result of the approach, in a nutshell, is that the brain hosts an internal
model of the world from the perspective of its body’s physiological needs. Over time,
predictions/simulations are generated and issued from the top of the hierarchy to lower
levels. At any level, comparisons between prediction signals and ascending sensory
input results in prediction error that is available to update the brain’s internal model so
to provide efficient body regulation.

Due to the complexity of the system, the functional architecture of such predictive
machine (see Figure 6.5) is best described in terms of intrinsic networks, each including
areas with varying degree of laminar differentiation. To recap the analysis detailed in
Appendix E in terms of the levels presented in Figure 6.1:

• Conceptual level. The default mode network (DMN), frontoparietal central exec-
utive network (CEN) and the limbic network (LN) cooperating with the salience
network (SN) account for conceptualization based on context and background
knowledge mostly retained in DMN/parahippocampal areas in the medio-temporal
lobe (MTL). In particular, the DMN conceptualizes perceptual input for the body
and from exteroceptive sensory systems based on past experience. The DMN
also initiates simulations and represents part of their pattern; its multimodal sen-
sorimotor summaries become more detailed and particularized as they cascade
out to primary sensory and motor regions. The CEN represents multimodal prior
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expectations (goal states) and the associated top-down prediction can amplify or
suppress activity in other cortical systems based on current goals. It sculpts and
maintains simulations for longer than the several hundred milliseconds required
to process imminent prediction errors. It may also have a role in managing sen-
sory prediction errors, by applying attention to select those body movements that
will generate the expected sensory input (on the basis of subcortical cerebellar
and striatal prediction errors). These movements then generate the sensory inputs
that reduce prediction error and confirm an existing prediction.

• Perceptual level. The somatic interoceptive system represents and regulates cur-
rent somatic / visceral states; the exteroceptive system represents and controls
perceptions of the external world flowing from main peripheral perceptual net-
works (visual, auditory, etc.). Signals forwarded bottom-up from the body, are
taken into account by the somatomotor network (SMN) (which includes primary
and secondary somatosensory regions within parietal cortex and posterior insula,
and premotor/motor cortex regions, among others). The SN (the anterior insula
being the most relevant area) sends predictions that adjust the internal model to
the conditions of the sensory periphery. The SN anticipates which prediction
errors are likely to be allostatically relevant and therefore worth the metabolic
cost of encoding and consolidation, and then modulates the gain on those errors
accordingly.

• Corporeal level. This level accounts for the behavioural/physiological actions of
the body (thus, both external, oriented towards the surrounding world, and inter-
nal). These are mediated by a complex variety of subcortical and peripheral con-
trol and sensing nuclei and ganglia. These involve the skeletal-motor system, the
autonomic nervous system, the neuroendocrine and neuroimmune systems, and
general reward system. Of particular relevance is the role of the amygdala sig-
nalling uncertainty about the predicted sensory input (via the basolateral complex)
that help to adjust physiological functions in support of allostasis. The arousal
signals that are associated with increases in amygdala activity can be considered
as learning signals, at the core of what is usually named automatic emotion atten-
tion. However, it is worth recalling that, in the framework of the predictive brain,
information flowing from the amygdala to the cortex is not emotional per se. The
amygdala signalling activity (in either direction) has the general role of assigning
higher weight to prediction-error signals estimated to have higher reliability in
the current context.

The resulting neurobiological functional architecture that substantiates the self-in-
context model presented in Figure 6.1 (left side) is shown in Figure 6.5.

6.2.1 What about emotion?

It is clear from the overall picture we have so far outlined, that it makes no sense
questing for the neurobiological basis of emotion, in terms of identifying a defined set
of brain areas or a circumscribed network suitable to provide the emotion “fingerprint”
in the brain.
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Chapter 6. The Model

Figure 6.5: A neurobiological view of the predictive/generative architecture of the agent-in-
context, from the top level of the limbic ensemble (enacting the conceptual level) to the
bottom level of body’s behaviour and internal states (corporeal level). Solid arrows denote
(top-down/feedback) prediction signals; dashed arrows, (bottom-up/feedforward) prediction
error signals. The first two levels map (cortical components of) the main intrinsic networks
recruited at each level: DMN, default mode network; CEN, frontoparietal central executive
networ; LN, limbic network; SN, salience network; SMN, somatosensory network; hip, hip-
pocampus; PH, parahippocampal formation (at the intersection of DMN and LN). For sake
of clarity, motor networks, dorsal and ventral attention networks, and perceptual networks
(auditory, visual, etc) have been omitted
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Surprisingly, the core architecture devised in Figure 6.5 will suffice (apart from the
linguistic process that we shall discuss later on) to account for emotion too.

As previously outlined in Figure 5.12, emotion is just one possible state of mind
among other states that can be experienced (cognition, perception, sense of self, etc)
and result from the different combinations and relative weighting of psychological
primitive processes (such as categorization, core affect and so on) in a given instance
of time (Hyp. 1: brain is not for thinking or loving).

On one side we have sensations, from the external world and from the inner body;
on the other side, we have a categorization process that drives predictions (see Figure
5.10). The core business of the brain is to make predictions in order to give sensa-
tions meaning in the service of allostatis. Emotion like fear or happiness might be
recognized as such depending on the categorization at a certain time and on the weight-
ing/relevance assigned to the core affect state (valence and arousal), which is in turn
based on interoception and exteroception. Emotion is just the name for psychological
moments in which the focus is on understanding what the internal sensations from the
body represent.

In Section 5.2 we have introduced and defined the psychological primitive named
as “core affect”. In modern psychological usage, “affect” refers to the mental coun-
terpart of internal bodily representations associated with emotions, actions that involve
some degree of motivation, intensity, and even personality dispositions. In the science
of emotion, “affect” is a general term that has come to mean anything emotional. A
cautious term, it allows reference to something’s effect or someones internal state with-
out specifying exactly what kind of an effect or state it is. This way researchers can
talk about emotion in a theory-neutral way. Under such circumstances, if one observes
the “neural reference space” of core affect (as for instance presented in Figure 6.6, this
might be considered as the neural underpinning of emotion.

However, this is not the case. This neural reference space can be subdivided into
two related functional networks (Barrett and Bliss-Moreau, 2009).

• Sensory integration network: establishes an experience-dependent, value-based
representation of an object that includes both external sensory features of an ob-
ject along with its impact on the homeostatic state of the body. It includes the
cortical aspects of the amygdala (specifically, the basolateral complex (BL)), the
central and lateral portions of OFC, as well as most of the adjacent agranular insu-
lar areas. The sensory integration network has robust connections with unimodal
association areas of many sensory mod- alities, including the anterior insula that
represents interoceptive sensations.

• Visceromotor network: it is part of a functional circuit that guides autonomic, en-
docrine, and behavioral responses to an object. It includes the medial portions of
the OFC (extending into what is sometimes called the vmPFC), as well as sub-
genual and pregenual areas of the ACC, with robust reciprocal connections to all
limbic areas (including many nuclei within the amygdala, and the ventral stria-
tum), as well as to the hypothalamus, midbrain, brainstem, and spinal cord areas
that are involved in internal-state regulation. These areas modulate changes in
the viscera associated with the autonomic nervous system (including tissues and
organs made of smooth muscle, such as the heart and lungs) and neuroendocrine
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Figure 6.6: Neural reference space for core affect. 165 neuroimaging studies of emotion (58
using PET and 107 using fMRI) summarized in a multilevel meta-analysis to produce the
observed neural reference space for emotion. These areas include (from top left, clockwise)
anterior insula (aIns), lateral OFC (lOFC), pregenual cingulate cortex (pgACC), subgenual
cingulate cortex (sgACC), ventral medial prefrontal cortex (vmPFC), temporal cortex/amyg-
dala (TC/Amygdala), thalamus, ventral striatrum (v Striatum), nucleus accumbens, hypotha-
lamus, midbrain, pons, medulla, OFC, and basal forebrain. Other areas shown in this figure
(e.g., inferior frontal gyrus (IFG), superior temporal cortex (sTC), dorsal medial prefrontal
cortex (dmPFC), posterior cingulate cortex (PCC), medial temporal cortex (mTC), and cere-
bellum (CB)) relate to other psychological processes involved with emotion perception and
experience. From Barrett and Bliss-Moreau (2009)

102



i
i

“output” — 2022/6/29 — 15:28 — page 103 — #111 i
i

i
i

i
i

6.2. Structural Constraints: The Neurobiological Level (core)

changes that affect the same organs by way of the chemicals released into the
bloodstream via hypothalamic regulation of the pituitary gland. In addition, the
visceromotor network (particularly the vmPFC) is important for altering simple
stimulus-reinforcer associations via extinction or reversal learning and appears
to be useful for decisions based on intuitions and feelings rather than on explicit
rules, including guesses and familiarity based discriminations.

To sum up, some parts of affective circuitry are strongly interconnected with sensory
cortical areas. Others are strongly interconnected with areas that direct the autonomic
and hormonal responses to regulate the homeostatic state of the body. The strongly
re-entrant nature of neural activity makes it difficult to derive simple cause and effect
relationships between the brain and the body, or between sensory and affective process-
ing (Barrett and Bliss-Moreau, 2009).

The key concept here is that the circuitry within the neural reference space for core
affect binds sensory information from the external world to sensory information from
the body, so that every mental state is intrinsically infused with affective content.

When core affect is in the background of consciousness, it is perceived as a property
of the world, rather than as the person’s reaction to it. It is under these circumstances
that scientists usually refer to affect as “unconscious” (we have another sip of Barolo
because it tastes so good). When core affect is in the foreground of consciousness,
it is experienced as a personal reaction to the world. It is at these times that feelings
which can be described as pleasant or unpleasant content with some degree of arousal
can serve as information for making explicit judgments and decisions. In this case such
experience might be categorized as that of feeling an emotion.

In a Wundtian sense, affect is a feeling state that is a fundamental ingredient of the
human mind, a psychological primitive. Affect and sensation are two sides of the same
mental coin (Barrett and Bliss-Moreau, 2009). As such the core affect provides a source
of attention in the human brain (where attention is defined as anything that increases or
decreases the firing of a neuron). Affect does not reveal what in the world has changed,
where the change is, or what to do about it. Rather, it is just a quick and dirty sixth
sense that something has happened. That particular something may be outside the body
and require a rapid and energetically costly response (Barrett and Quigley, 2021).

This implies that core affect has an important role to play in normal perceptual
functioning, including consciousness. When sensory information from the world suf-
ficiently influences a person’s internal bodily state, the processing of that information
is prioritized so that the resulting object is more easily seen and remembered. In brief,
core affect is a fundamental feature of conscious experience.

More generally, by scrutinizing areas depicted in Figure 6.6 and by taking stock of
what we have outlined so far concerning the structure of the brain and the role played
by intrinsic networks, we can find such neural reference space as defined by the inter-
play of the two main networks accounting for allostasis and interoception: the salience
network (SN) and the default mode network (DMN) The DMN and SN are concur-
rently regulating and representing the internal milieu, while they are routinely engaged
in a wide range of tasks spanning cognitive, perceptual and emotion domains, all of
which involve value-based decision-making and action. Tract tracing and functional
connectivity studies suggest that the DMN and salience network share hubs in the tha-
lamus, hypothalamus, amygdala, and ventral striatum; areas that themselves control
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visceral activation. This suggest (Kleckner et al., 2017) that whatever other psycholog-
ical functions the DMN and the SN are performing during any given brain state, they
are simultaneously maintaining or attempting to restore allostasis and are integrating
sensory representations of the internal milieu with the rest of the brain. In other terms,
the default mode and salience networks create a highly connected functional ensemble
for integrating information across the brain, with interoceptive and allostatic informa-
tion at its core, even though it may not be apparent much of the time.

On the other hand, considering the top-level of mental abstraction, DMN may be
involved in emotion by supporting conceptualization. Conceptualization requires gen-
eration of an internal prediction about the meaning of internal and external sensations
and behaviors given the present context. To such end it must extend across levels of ab-
straction, spanning across sensory features, multimodal sensory information, and more
abstract levels (e.g., dimensions of meaning). It has been proposed by Satpute and
Lindquist (2019) that the DMN plays a role in representing discrete emotions because
it abstracts across instances with heterogeneous features. The neuroanatomical prop-
erties of the DMN support its role in abstraction and recent findings findings are con-
sistent with the idea that the DMN drives autonomic and visceromotor activity to be
situationally appropriate with respect to the more abstract adaptive themes associated
with a given emotion category (Satpute and Lindquist, 2019). Increased connectivity
occurs between DMN and salience nodes during discrete emotions and may reflect in-
formation processing as DMN uses conceptualizations (i.e., draws on prior experience
and knowledge) to drive somatovisceral activity in a given context.

6.3 Structural Constraints: The Neurobiological Level (extended)

In order to fully address the hypotheses stated ad the beginning of this Section, we
need to extend our core architecture to account for the capability of the brain to grow
by wiring to the world and function as a “social brain” interacting with other brains
(hyp. 4, 6, 7, and 8). In other terms, the self-in-context model must be extended so that
the context might include at least another brain (Figure 6.2).

As we have discussed in Section 4.2.4, we need a neurobiological infrastructure
of shared intentionality, which, either phylogenetecally and ontogenetically (Figures
4.7 and 5.1), has developed from gestures to language (in humans). The bare essen-
tials of the neurobiology of language, in general, and of semantics and pragmatics are
presented in Appendix F.

To recap the key points:

1. The language network plausibly includes a functionally specialized “core” (brain
regions that coactivate with each other during language processing, also named
the perisylvian system) and a domain-general “periphery”, namely a set of brain
regions that may coactivate with the language core regions at some times but with
other specialized systems at other times, depending on task demands Hertrich
et al. (2020);

2. The extended language network (Figure F.6) is suitable to underpin the brain
semantic network; in particular, semantic processing might be accounted for
through the cooperation of three networks (Xu et al., 2017): (1) the perisyl-
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vian “language-supported system” (partially overlapping with the core language
network), (2) the “multimodal experiential system” also addressed as the DMN,
integrating experience-based knowledge across multiple modalities, and (3) the
left-dominant frontoparietal CEN as a semantic control system;

3. Agents interacting through language couple through their DMN activity; the DMN
- that integrates over time incoming external information with intrinsic informa-
tion (long-term memories, LTMs, conditional responses, beliefs) and exhibits a
tight connection with the theory of mind (ToM) networks, which is in turn syn-
chronized with the language network during language comprehension (Hertrich
et al., 2020; Xu et al., 2017) - provides a space for negotiating a shared neu-
ral code necessary for establishing shared meanings, shared communication tools
and narratives (Yeshurun et al., 2021) at the conceptual level (cfr., Figure 6.2).

Points 1 and 2 can be schematized as the extended neurobiological architecture of
Figure 6.7.

Figure 6.7: Extending the infrasctructure of Fig. 6.5. Core language area/hubs interact with
main intrinsic networks DMN, CE, SN and the motor system in order to frame phonolog-
ical/synctactical capabilities within agent’s semantics and pragmatics at the conceptual
level. Now, brain’s conceptualization processes can rely on the language neural reference
space (lexicon and semantics) for handling and updating available categories and for shap-
ing novel ones

By taking considering point 3), the functional architecture outlined in Figure 6.7
can be easily exploited to address the case of two interacting agents as in Figure 6.8.

Eventually, this modelling step fully provides the neural infrastructure necessary to
account for Hypotheses 6,7 and 8.
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Figure 6.8: Neurobiological infrastructure of two interacting agents-in-context. Agents’ brains
synchronize (via the DMN, which integrates over time incoming external information with
intrinsic information ). Each agent performs a conceptual act, based on interoceptive and
exteroceptive (visual and auditory) sensation, and undertaken actions (external and internal)
in order to regulate her body budget. The communication act is one such action. Spoken and
heard utterances are such that the communication act between agents regulates agent’s con-
ceptual acts and vice versa. This way, agents regulate one another’s body budgets through
their interactions, create communicate and share categories, even add new functions to the
world (Hyp. 6,7,8)
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6.4 Structural Constraints: The Psychological Level

The setting of our problem at the psychological level entails the difficult and contro-
versial issue of providing a mapping between the brain and the mind. As James (1890)
put it: “A science of the relations of mind and brain must show how the elementary
ingredients of the former correspond to the elementary functions of the latter”.

In our case, as sketched in Figure 6.9 we need to bridge the neurobiological infras-
tructure defined in Figure 6.8 with the psychological structure of the agent-in-context
model, to address how agents mental states are originated (Figure 5.12).

The constructionist view we have embraced in this thesis offers suitable means fur
such mapping (Barrett, 2009).

On the one hand, we have made clear that psychological faculties such as emotion
cognition, perception, sense of self are not natural kinds, that is they cannot be onto-
logically reduced (one-to-one mapped) to the activity of circumscribed brain regions.
Such complex, discrete psychological moments are experienced by the agent (and “rec-
ognized” by an external observer) as the result of the continuous fundamental brain
dynamics: making predictions in the service of allostasis by combining three sources
of information: sensory stimulation from the world outside the skin (exteroceptive sen-
sations), sensory signals captured from within the body (interoceptive sensations), and
prior experience that the brain makes available by the reactivation and reinhibition of
sensory and motor neurons.

On the other hand, we have seen so far that the brain contains a set of intrinsic
networks that can be understood as performing domain-general operations. These op-
erations serve as the functional architecture for how mental events and behaviors are
constructed.

Figure 6.9: Moving to the psychological level: the problem of brain/mind mapping

Under such circumstances, the following hypotheses can be assumed:

1. the mind is realized by the continual interplay of more basic primitives that can
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be described in psychological terms;

2. all mental states (however categorized: emotion, perception, cognition, etc.) can
be mapped to these basic psychological primitives;

3. basic psychological primitives are functional abstractions of fundamental net-
works in the brain (or, more precisely, functional motifs of such networks2);

4. depending on the combination and the relative weighting (e.g., via the focus of
attention) of psychological primitives in a given instance, mental states can be
categorized as seeing or thinking or feeling

As represented in Figure 6.10, complex psychological constructs, like emotion, cog-
nition and social cognition, emerge as a weighted mixture of a number of primitives,
such as executive function, motor movements, conceptualization, and so on. In other
terms, complex constructs are actually better understood as arising from a smaller set of
common computational building blocks, with prediction-related processing at the core.
For instance, interoception, as a result of somatovisceral integration, which is usually
experienced as a low-dimensional form of valence and arousal core affect, might be
better thought of as properties of consciousness, rather than properties of emotional
episodes per se. In this perspective, all psychological events exist in affective space:
thus, all words have affective connotations and even putatively neutral objects are ex-
perienced with subtle affective features.

Figure 6.10: Bridging levels: from intrinsic networks up to complex psychological categories.
For clarity’s sake, some intrinsic networks have been omitted (e.g., visual network, limbic
network, etc.)

2A structural motif consists of a set of brain areas and pathways that can potentially engage in different patterns
of interactions depending on their degree of activation, the surrounding neural context or the behavioral state of the
organism. Functional motifs represent elementary processing modes of a network and refer to specific combinations
of nodes and connections contained within structural motifs that may be selectively recruited or activated in the
course of neural information processing (Sporns et al., 2004)
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6.4. Structural Constraints: The Psychological Level

Based on this assumption, and constrained by the hierarchy of neural components
previously schematized in Figure 6.7, we can outline, at the psychological level, the
infrastructure presented in Figure 6.11. The infrastructure specifies both the different
representations involved and the primary processes that generate/act upon them, the
latter abstracting main functional motives of intrinsic networks (Figure 6.10)

The infrastructure is suitable to support the general hypothesis that complex men-
tal phenomena are constructed from more basic components or ingredients in accord
with the psychological constructionist view. Perceptions, cognitions, emotions, mem-
ories, etc. are superordinate categories, not mechanisms, that describe and organize
mental phenomena. The identified processes (colored ovals) are coordinated in the uni-
fying predictive/generative dynamics of the mind unfolding in time in order to give
meaning to external and internal perceptions and to program appropriate actions for
self-regulation.

As a consequence, performing, for instance, a complex action such as a speech act
will involve the intertwining of many primitives such as the conceptualization of ex-
teroceptive and interoceptive sensations, with respect to a context while focusing on
a specific event/object within the context, executive control to pursue the goal behind
speaker’s own communicative intentions framed by the evaluation of listener expecta-
tion/intentions (theory of mind), motor control of speech production and accompaning
gestures/body behavior.

Figure 6.11: The psychological infrastructure. The main representations (boxes) and the pro-
cesses (ovals, see legend on the left) involving such representations at the different levels
(conceptual, perceptual, corporeal). Processes include the “primitives” introduced in Fig-
ure 6.10 and the intrinsic unimodal perceptual networks (grey ovals: visual network, audi-
tory network, etc.) Attention/focusing primitives and representations have been omitted for
simplicity.

Meanwhile, beyond naturally underpinning the communication act, language plays
a constitutive role in the conceptual act. Words and the concepts they refer to, when
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Chapter 6. The Model

viewed as situated conceptualizations, contribute to create emotion and memory (here,
as a mental state, simply defined as subjectively remembering something that hap-
pened). Indeed, narratives are considered in psychology to generate mental models
in people’s minds (rather than represent a set of logical propositions). Narratives create
expectations that guide how incoming information is processed. A situated concept,
as activated by a word (for instance the emotion of anger through the word “anger”),
also creates a brain state (composed of expectations) for how to process future infor-
mation. This general idea extends to the use of both rich narratives and simple, singular
words. Crucially, these expectations are not simply posthumous, after an event oc-
curred. Rather, they can infiltrate consciousness itself. Language, therefore, plays a
constitutive role for categories in general (emotion, memory, the self etc.) by shaping
which expectations, and deviations from expectations (or prediction errors), occur dur-
ing the creation of mental phenomena. It activates different top–down predictions, that
are generally experienced as semantic or episodic memory, about bottom–up informa-
tion, either ongoing processing, or incoming sensory input both from the body and the
world.

Eventually, to sum up, we have all the ingredients to support both the communica-
tion and perceptual acts as summarised in Figure 6.12, and all necessary constraints to
devise the theoretical model.

Figure 6.12: The common psychological infrastructure of the speaker and the listener support-
ing both the communication and perceptual acts.

6.5 Theoretical Model

At the most general level, we are interested in reasoning about the state of an agent (a
speaker or a listener) as it evolves over time, in terms of a system state whose value at
time t is a snapshot of its relevant attributes, hidden or observed, at that time.
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6.5. Theoretical Model

Due to the stochastic nature of the system at hand, we represent the agent-in-context
state St at time t as a collection of RVs St and we denote by St1:t2 the random process
{St : t ∈ [t1, t2]} indexed over the subset of reals [t1, t2].

Each “possible world” in the probability space defining the agent is then a trajec-
tory, namely, an assignment of values to each RV of interest, collected in S , for each
relevant time t.

We then introduce two simplifying assumptions.
Our first simplification is to discretise the timeline into a set of time slices, that are

measurements of the system state taken at intervals that are regularly spaced with a
predetermined time granularity ∆. Thus, we can restrict our set of RVs to S0,S1, · · · ,
where St are the ground random variables that represent the system state at time t ·∆.
Without loss of generality, this assumption simplifies our problem from representing
distributions over a continuum of RVs to representing distributions over countably
many RVs, sampled at discrete intervals.

Under such assumption, consider a distribution P (S0:T ) over trajectories sampled
over a prefix of time t = 0, ..., T . We can reparametrise the distribution using the chain
rule for probabilities, in a direction consistent with time:

P (S0:T ) = P (S0)
T−1∏
t=0

P (St+1 | S0:t) (6.1)

Thus, the distribution over trajectories is the product of conditional distributions,
for the variables in each time slice given the preceding ones.

The second simplification entails the Markovianity of the process. A dynamic sys-
tem over the variable S satisfies the Markov assumption if, ∀t ≥ 0,

(St+1⊥St−1 | St).

The Markov assumption allows us to define a more compact representation of the
distribution in Eq. 6.1:

P (S0:T ) = P (S0)
T−1∏
t=0

P (St+1 | St). (6.2)

The conditional distribution P (St+1 | St) represents the dynamics of the system
and captures the Markov assumptions that the variables in St+1 cannot depend directly
on variables in St′ for t′ < t.

Next, we need to specify the state of the agent S.
Use the following time-indexed collections or ensembles of RVs.

• Ct: the ensemble of RVs denoting the conceptual states;

• Et: the ensemble of RVs denoting the exteroceptive states;

• It: the ensemble of RVs denoting the interoceptive states;

• At: the ensemble of RVs indicating the states supporting both motor and allostatic
actions and planning
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• X i
t : the ensemble of RVs standing for the low-level states of action directed at the

regulation of the internal milieu;

• X e
t the ensemble of RVs representing the low-level states of actions directed to-

wards the external world;

• Ot: the ensemble of RVs standing for the possible outcomes of low-level body
“sensors” capturing signals either from the external world (visual, auditory, etc.)
or from the internal milieu body (heart activity, respiratory activity, etc); in princi-
ple one should distinguish between exteroceptive outcomes Oet and interoceptive
onesOit; from a computational modelling standpoint the former are in general ob-
servable, whilst the observability of the latter depend on the experimental setting
(the suitability/availability of physiological sensing devices, for instance)

Then, the state of the agent at time t is fully specified as

St =
〈
Ot, It, Et,X e

t ,X i
t ,At, Ct

〉
We assume that only outcomes from the external world and the body milieu are ob-

servable (perceivable), whilst the other ensembles are hidden or latent representations.
Thus,

Shiddent =
〈
ItEtX i

t ,X e
t ,At, Ct

〉
Sobst = 〈Ot〉

Under such basic setup, the probabilistic model of the agent state (and its dynamics)
is captured by the joint distribution P (Shidden0:T ,Sobs0:T ).

The observable/hidden distinction allows to further refine the Markovian assump-
tion over the state variables through the following conditional independence (CI) as-
sumptions.

The latent state variables evolve in a Markovian way

(Shiddent+1 ⊥Shidden0:t−1 | X hidden
t ). (6.3)

The observation variables at time t are conditionally independent of the entire hid-
den state sequence given the state variables at time t:

(Sobst+1⊥Shidden0:t−1 ,Shiddent+1:∞ ) | Shiddent ) (6.4)

These assumption account for the dynamics of the agent as a state-observation
model. In a state-observation model, we view the system as evolving naturally on
its own, with observations of it occurring in a separate process (Koller and Friedman,
2009).

Thus, we can write Eq.6.2 as

P (S0:T ) = P (S0)
T−1∏
t=0

P (Sobst+1 | Shiddent+1 )P (Shiddent+1 | Shiddent ). (6.5)
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Figure 6.13: An overview of the theoretical model

We can further simplify Eq. 6.5 by individuating other CI conditions. This is
straightforward by defining a probabilistic graphical model GM based on the func-
tional/structural constraints given at the psychological and neurobiogical levels. The
PGM is presented in Fig. 6.13.

By construction,the GM is an I-map (independency map) for the joint probability
P , that is IM`(GM) ⊆ IM(P ), IM`(GM) being the set of local independencies
associated with GM, 3 (Koller and Friedman, 2009).

Thus, the following factorisation of Eq.6.5 formally holds:

P (Shidden0:T ,Sobs0:T ) = P (S0)
T−1∏
t=0

P (Ot+1 | Ot,X i
t ,X e

t , It+1, Et+1) (6.6)

P (X e
t+1 | At+1,X e

t )

P (X i
t+1 | At+1,X i

t )

P (At+1 | At, Ct+1)

P (Et+1 | Et, Ct+1)

P (It+1 | It, Ct+1)

P (Ct+1 | Ct,At)

3Denoting XS the the set of RVs forming the subgraph S ⊆ GM, then we can wite XA⊥XB | XC if A is
independent of B given C in the graph GM. Let IM(GM) be the set of all such CI statements encoded by the
graph. We say that GM is an I-map (independence map) for P , or that P is Markov wrt GM, iff IM(GM) ⊆
IM(P ), where IM(P ) is the set of all CI statements that hold for distribution P . In other words, the graph is an
I-map if it does not make any assertions of CI that are not true of the distribution. This allows us to use the graph as
a safe proxy for P when reasoning about P ’s CI properties.
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Chapter 6. The Model

Equation 6.6 fully specifies, under the simplifying assumptions previously intro-
duced, the inferential processess that define the infrastructure model.

• Conceptual level. The distribution P (Ct+1 | Ct,At) captures the conceptual en-
semble update at time t+ 1, Ct+1, given its previous state Ct and action plan state
At.
In turn, the current action planAt+1, depends on its previous stateAt, and current
conceptual state Ct+1

• Perceptual level. Based on the current conceptual state, Ct+1, both interocep-
tive and exteroceptive predictions are generated, through distributions P (It+1 |
It, Ct+1) and P (Et+1 | Et, Ct+1), respectively. Such distributions also capture the
dependency (dynamics) of current states It+1 and Et+1 from their previous ones,
It and Et.
In succession, It+1 and Et+1 contribute to shape the prediction/inference of likely
perceptual outcomes Ot+1. The latter is formalized via the distribution

P (Ot+1 | Ot,X i
t ,X e

t , It+1, Et+1)

Clearly, outcome prediction/generation also is conditioned upon: 1) actual ac-
tions previously performed at time t, at the motor/allostatic level, X i

t ,X e
t (for

instance, the shifting of gaze, as occurring in visual attention processes, focuses
a circumscribed region of the viewed scene on retinal receptors, thus inducing a
shift Ot → Ot+1, depending on visual RVs, say Vt ⊂ Ot, included in the out-
come ensemble Ot; 2) the base outcome dynamics Ot → Ot+1. The latter, at the
most general level, is intended to capture the external world and internal milieu
dynamics.

• Corporeal level. The current action planAt+1 is exploited to generate appropriate
motor actions X e

t ), via P (X e
t+1 | At+1,X i

t ), towards the external world (e.g., by
uttering a word, moving a limb, making a gaze shift), or actions intended for
the body internal milieu, X i

t+1 (e.g., moderating the heart rate), via P (X i
t+1 |

At+1,X i
t ) in the service of allostatic regulation.

Meanwhile, the body perceptual apparatus provide necessary inputs concerning
the state of the external world and the state of the internal milieu in order to
shape current perceptual outcomes Ot+1. For biological agents, this entails the
signals collected from either visual, auditory, touch, etc. receptors together with
internal body/visceral receptors (e.g., baroceptors, etc.). When an artificial agent
is considered, then their number depends on the measurement modalities available
(cameras, physiological, motion capture sensors, for example)

As discussed above the Eq. 6.6 and the PGM shown in Figure 6.13. We notice
however, that we have so far considered e very high-level abstract representation of our
problem. As we will see, the abstract structure needs to be further detailed in terms
of the definition of the random ensembles introduced in order to operationalize it. In-
deed, PGM-based systems are suitable to provide model components that hide under-
lying complexity. In general they are able to express many components of a theoretical
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model, yet they lack expressivity as to the core of such models, concerning the stochas-
tic processes behind the structure and anything dependent on those processes and their
dynamics. Further, parts/components of the overall structure might evolve along a pos-
sible simulation so that their structure might not constrain to a fixed topology. One
example, in our case, could be the unfolding of the action planning component/ensem-
ble. Thus, it is sometimes necessary, for actual problems, to describe the model as an
unbounded stochastic loop or recursion over potential PGMs. Also, notwithstanding
the time-slice representation the inferential dynamics is not readily apparent.

These expressivity problems can be solved using universal probabilistic program-
ming languages (PPLs), a kind of modelling approach that has a long history in Com-
puter Science, but which has gained currency in recent years (Goodman, 2013; Ghahra-
mani, 2015, but see van de Meent et al., 2018 for an in-depth introduction).

The basic idea in probabilistic programming is to use computer programs to rep-
resent probabilistic models. One way to do this is for the computer program to define
a generator for data from the probabilistic model, that is, a simulator. This simula-
tor makes calls to a random number generator in such a way that repeated runs from
the simulator would sample different possible data sets from the model. This simu-
lation framework is more general than the PGM framework since computer programs
can allow constructs such as recursion (functions calling themselves) and control flow
statements (for example, “if” statements that result in multiple paths a program can
follow), which are difficult or impossible to represent in a finite graph (Ghahramani,
2015).

Thus, on the one hand, a “universal PPL” (UPPL) which is generally defined as
an extension of a Turing-complete general-purpose language, can express models with
an unbounded number of random variables. This means that random variables are not
fixed statically in the model (as they are in a finite PGM) but can be created dynam-
ically during execution. On the other hand, due to recent and exciting advancements
in this research field, concrete PPLs have been specified that can rely on sophisticated
algorithms and tools developed in the machine learning community based on more re-
cent advancements in Markov Chain Monte Carlo (MCMC) and variational inference
techniques. These efforts have produced powerful PPL platforms that can “compile”
a theoretical probabilistic model into an implementation model suitable to work in the
real world Bingham et al. (2019); Tran et al. (2016); Salvatier et al. (2016).

In brief, like probabilistic graphical modeling, PP allows one to capture abstract,
conceptual knowledge as generative models. Instead of a graphical representation, PP
represents conceptual knowledge as stochastic programs—chunks of code that embed
randomness into their execution. The core idea is representing a probabilistic model as
specified through a GM in terms of probabilistic programs. Thus, unlike deterministic
programs that always produce the same output when given the same input, probabilistic
programs instead produce samples from a distribution of possible outputs. This allows
explicit modeling of uncertainty, whether such uncertainty arises from (i) incomplete
knowledge about the world and agents unobservable mental states, (ii) incomplete the-
ory, or (iii) inherent randomness in the generative process.

UPPLs (UPPLs) solve the expressivity problem by providing additional expressive
power over PGMs. A PPL model description is essentially a simulation program (or
generative model). Each time the program runs, it generates a different outcome. The-
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oretically, if it is executed an infinite number of times, we obtain a probability distribu-
tion over outcomes. Probabilistic programs are usual functional or imperative programs
with two added constructs: (1) the ability to draw values at random from distributions,
and (2) the ability to condition values of variables via observation.

Conceptually, conditioning needs to compute input states of the program that gen-
erate data matching the observed data. Canonical programs are conceived to run from
inputs to outputs, conditioning involves solving the inverse problem of inferring the in-
puts (in particular the random number calls) that match a certain program output. Such
conditioning is performed by a “universal inference engine”, usually implemented by
Monte Carlo sampling over possible executions of the simulator program that are con-
sistent with the observed data.

Thus, a UPPL provides two special constructs, one for drawing a random variable
from a probability distribution, e.g., “∼” and one for conditioning a random variable on
observed data, say “OBSERVE”. The former is a way to define P (Z, Y ) and the latter
is the same as standard Bayesian conditioning P (Z|Y ). These special constructs are
used by the PPL inference algorithms to manipulate executions of the program during
inference. Many PPLs are embedded in existing programming languages, with these
two special constructs added.

Below, for simplicity, we use a simple, abstract PPL-like specification of the model.
This will suffice for the current purposes. However, in the Simulations chapter, we will
exploit the Pyro PPL to provide concrete proofs of the concepts outlined here.

The generative/predictive dynamics of the agent based on the GM unfolds as fol-
lows (see Algorithm 1).

Algorithm 1 Simulation-based one-step dynamics

Input: Agent’s state St and related state distribution (prior); current observed outcome Ot+1

and its distribution (evidence)
Output: Agent’s state St+1 and updated state distribution (posterior)

Conceptual sampling:
Ct+1 ∼ P (Ct+1 | Ct,At)
At+1 ∼ P (At+1 | At, Ct+1) . action plan sampling
Perceptual sampling:
It+1 P (It+1 | It, Ct+1) . interoceptive sampling
Et+1 ∼ P (Et+1 | Et, Ct+1) . exteroceptive sampling
Corporeal sampling and observation:
X it+1 ∼ P (X it+1 | At+1,X it ) . internal motor sampling
X et+1 ∼ P (X et+1 ∼ At+1,X et ) . external motor sampling
OBSERVE(P (Ot+1 | Ot,X it ,X et , It+1, Et+1) : Ot+1) . sensing

In brief we can consider such model specification as computing an approximate
posterior distribution over latent state ensembles. In particular, the last step relies on
the observed outcomeOt+1, which in turn depends on the states of the latent ensembles
Shiddent+1 . More precisely, since the one-step procedure returns Shiddent+1 , the result of this
“program” is the posterior marginal distribution over Shiddent+1 .

Two cogent issues are worth a remark.

• First, a model of an agent defined as above, might even operate as “detached”
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from the world by purely relying, at the observation stage, on the predictive
dynamics Ot → Ot+1. This is important, for instance, when accounting for
simulation-based, embodied theories of affect (thus, CAT), grounding in “as if”
simulation ability (e.g., Boccignone et al., 2018b; Horii et al., 2016).

• Second, since PP can explicitly represent conditioning as part of a model, it en-
ables us to describe reasoning about others’ reasoning using nested conditioning.
Much of human reasoning is about the beliefs, desires, and intentions of other
people: PP can be used to formalize these inferences in a way that captures the
flexibility and inherent uncertainty of reasoning about other agents. If reasoning
can be viewed as probabilistic inference, then reasoning about others’ reasoning
boils down to inference about inference; however, if inference is not itself rep-
resented as a probabilistic model we cannot formulate inference about inference
in probabilistic termsStuhlmüller and Goodman, 2014. In brief, as Stuhlmüller
and Goodman (2014) have argued, PP offers a powerful opportunity for model-
ing theory of mind, and, consequently, the very nature of the communication act
based on recursive reasoning, the RSA theory being one notable example.

To make a step further in this direction we need to detail to some extent the agent’s
architecture outlined in Fig. 6.13, markedly at the conceptual level. At the same time
we will embrace some simplifying assumption for parts of the model that are less rel-
evant for our research problem: modelling the wiring between words and emotions.
For instance, since here and in the case studies presented in the next Chapter, we are
not specifically dealing with an agent moving in the real world, grasping objects, etc.,
(which would be important for modelling concept learning in robot/human interaction),
actual motor behaviour will be simplified to the point. In the same way, details of how
allostatic physiological control is performed will be overlooked.

Specifying the conceptual level To expand on the conceptual level, we briefly introduce
some definitions usually exploited in classic AI (Russell and Norvig, 2022), substan-
tially in the BDI (Belief-Desire-Intention) modelling research field (Sánchez-López and
Cerezo, 2019; Reisenzein et al., 2013).

At the conceptual level we can broadly consider three kinds of mental states: beliefs,
desires and intentions, which represent the informational, motivational and deliberative
states of an agent, respectively. More precisely:

• Beliefs: generally represent environment/context characteristics, which are up-
dated accordingly after the perception of each action. They can be seen as the
informative component of the system.

In our case, belief states are RVs Bt ∈ Bt encoding possibly related concept
states (which might be simply represented through a list of concepts, up to a more
complex representational structure such as those involving Relational Probability
Models, Russell and Norvig, 2022). A belief state is usually defined as a repre-
sentation of the set of possible states of the world (in our case, both external and
internal worlds). Thus, (degrees of) beliefs can be accounted for by probability
distributions over such states, (Russell and Norvig, 2022)).
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• Desires: are generally defined as the motivational state of the system (Russell and
Norvig, 2022). They have information about the objectives to be accomplished,
i.e., what priorities or payoffs are associated with the various current objectives.
Desires represent situations that an agent wants to achieve. The fact that an agent
has a desire does not mean that the agent will satisfy it. The agent carries out
a deliberative process in which the agent confronts its desires and beliefs and
chooses a set of desires that can be satisfied.
In the case of pragmatic communication, the intention can be identified as that of
conveying meaning to another agent.

– Goals: A goal, denoted via the RV Gt ∈ Gt is a desire that the agent chooses
for active pursuit. Goals should be consistent. Desires can be contradictory
to each other, but the goals cannot. Thus, an agent can desire P and ¬P at
the same time, but only one of the two can become a goal.

• Intentions: is a goal that is chosen to be executed by a plan, namely the cur-
rent action plan state At ∈ At. They capture the deliberative component of the
system. This choice is made because the agent believes it can satisfy the goal
(it is not rational for an agent to carry out something that it does not believe it
can achieve). Plans are procedures that depend on a set of conditions for being
applicable. Intentions are persistent and represent the currently chosen course
of action. An agent will not give up on its intentions - they will persist, until
the agent believes it has successfully achieved them, it believes it cannot achieve
them or the purpose of the intention is no longer present.
In the case of a communication act an action/intention can boil down to the actual
planning suitable to support the conveyance of meaning by uttering a word or a
sentence or providing a non behavioral signal, such as a facial expression, a body
posture or a gesture.

For the purpose of modelling concepts and pragmatic communication, in addition,
we need to embed language within the conceptual level. To such end, first, a lexicon
L should be defined, namely a list of allowable words. An associated dictionary can
provide a suitable prior on word semantics.

Including words at the conceptual level is mandatory in our case, not only for com-
munication purposes, but also to defining categories a key, constitutive notion in CAT,
as we have largely discussed. Any concept itself is a mental representation of a cate-
gory that is labelled through a word. Emotion categories themselves have no particular
citizenship in this respect, and an emotional word, e.g. “happy” is constitutive of that
emotion.

Accordingly, following Atzil et al. (2018), a concept state C can be defined as
C ∈ L × E × I, that is a state within the joint state-space of lexicon, exteroceptive
and interoceptive states. A concept is thus a probability distribution over a concept
state C = c, e.g. P (w, e, i), with e ∈ E , i ∈ I Such definition is the baseline. At
a higher level the concept could be defined recursively in terms of another concept.
A concrete example of interest is when generalizing the interoceptive sensation to an
abstract categorical emotion, say happiness, indexed for short by the corresponding
emotion word P (w, e,“happy”).

118



i
i

“output” — 2022/6/29 — 15:28 — page 119 — #127 i
i

i
i

i
i

6.5. Theoretical Model

Second, we take into account a language model LM, P (wt+1 | wt<t+1,LM),
which can be generically defined as a probability distribution of any string (charac-
ters, words, sentences). Most often, an LM is used to predict the next word in text
given the previous words and is often used as a building block for more complex tasks.

In principle, handling language calls for grammars and parsing. However, from
a more practical stance, current implementation models available for LM that embed
words in contextual representations (e.g., of a word in a sentence) are likely to implicitly
learn latent representations that capture the same basic ideas as grammars and even
shallow semantics representations (cfr. Section 4.1.4).

Eventually, a state at the conceptual level can be defined as the ensemble

(Bt, Ct,Gt,At,LMt,Lt)

(for generality, we have time indexed the lexicon Lt to encompass cases of dynam-
ical lexicon learning or restriction)

Specifying the perceptual level The perceptual level basically relies on exteroceptive
and interoceptive ensembles, Et and It, respectively.

We denote RVs Y e
n,t, n = 1, 2, · · · the unimodal sensing variables or features (e.g.,

vision), while Y i
m,t,m = 1, 2, · · · are unimodal physiological variables (e.g heart rate,

skin conductance).
At a higher level Ze

t and Zi
t stand for the multimodal exteroceptive and interoceptive

representations, respectively, that integrate unimodal features.
While not strictly necessary, but to keep with classical CAT theory of affect (and

other emotion theories), we introduce as a summary of the overall physiological state
of the body the core affect state space Ft = V × A. This is described in terms of the
continuous stochastic variables of valence Vt and arousal At. Core affect is a suitable
tool, not only for summarisation purposes, but also to control the “granularity” of the
perceived affect state.

Eventually, the exteroceptive and exteroceptive ensembles are defined as:

Et = ({Y e
n,t}, Ze

t )

It = ({Y i
n,t}, Zi

t , Ft)

Specifying the corporeal level Ot represent the outcome signals from the body. In the
case of exteroception these will be a set of stochastic signals from external perceptual
and somatosensory systems, {Oe

p,t}, p = 1, 2 · · · (e.g., visual, auditory, touch, etc.).
Signals from the body internal milieu will be denoted {Oi

q,t}, q = 1, 2 · · ·
Thus,

Ot = ({Oe
p,t}, {Oi

q,t})

At the corporeal level, we also consider RVs Xe
t = {Xe

r,t}, represent a set of exter-
nally executed actions directed towards the world (limb movements, eye movements,
gestures, postures expressions); as we have seen, their execution can change the per-
ception of the world at time t+ 1.
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Chapter 6. The Model

Figure 6.14: The infrastructure PGM of the agent-in-context. The PGM further details the
structure of the theoretical model of the agent presented in Fig. 6.13. For sake of clarity
only the GM slice at time t is shown, the only exception being the generation of a word
sequence according to some language model. Coloured boxes functionally map the large-
scale network processes that were captured in the scheme of the psychological infrastructure
presented in Fig. 6.11 as psychological “primitives”
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RVs X i
t = {Xe

s,t} are a set of internally executed actions, such as those allowing
allostasis, and they will not be further considered, though interesting work is currently
addressing this level in robotics (e.g., Khan and Cañamero, 2018).

For completeness sake, one should take into account an intermediate level between a
planned action At and its terminal realizationXt. Specially when dealing with artificial
agents, robots in particular, a motor program or sequence (motor parameters)Rt should
be devised to implement the plan and guideXt. One elegant example has been provided
by Metta et al. (2006) for what concerns the probabilistic modelling of mirror neurons.
A similar approach was exploited by Boccignone et al. (2018b) for simulation-based
(mimicry) affect enactment.

For instance, when the agent has the intention to utter a word, following the concep-
tualization stage (in which the intention to create speech links a desired concept to the
particular spoken words to be expressed) an action plan is setup. This, in the simplest
case is represented by a string of characters. Accordingly, appropriate phonological
information is enacted by interacting with the core language network (actually,this for-
mulation stage should involve grammatical encoding, morpho-phonological encoding,
and phonetic encoding); subsequently, supplementary motor areas in the premotor cor-
tex are activated to coordinate the appropriate motor plan. The latter further involves
motor areas, that trigger subcortical regions (e.g, the cerebellum) for the control of ar-
ticulation, which is the execution of the articulatory score by the lungs, glottis, larynx,
tongue, lips, jaw and other parts of the vocal apparatus resulting in the final vocalization
of the word (sound wave) in the external world (Tatham and Morton, 2006). A simi-
lar scheme is involved in writing a word, but, obviously, the final motor coordination
involves either limb/hand movements and oculomotor shifts (Coen-Cagli et al., 2009;
Cagli et al., 2008).

We can thus assume that the ensemble (At,Rt,Xt) by and large abstractly accounts
for the motor and allostatic regulation systems.

The PGM related to the specifications introduced above is outlined in Fig. 6.14.
Conditional independencies are derived drawing from the base PGM presented in Fig.
6.11. Under such conditions the general PPL model (Algorithm 1) can be written as in
Algorithm 2.

Modelling the communication act Having defined the conceptual act of the agent, now
we need to formally define the communication act. To such end we resort to the
RSA framework (Goodman and Frank, 2016) that we have briefly introduced in Sec-
tion 4.2.5.

In the discussion that follows, for the sake of clarity, we will omit time dependencies
t → t + 1, considering only the situation at time t. This will suffice to set up the
communication component of the model grounded in the conceptual act component.

RSA deals with a pragmatic communication occurring between two agents, a speaker
S and a listener L. The task of the listener L is to estimate the probability of a particular
intended message m given the heard, observed utterance u by the speaker.

Assume that at time t, given the outcomeO and prior beliefs concerning the current
context, an ensemble of inferred beliefs and supporting concepts B, C

The latter according to the model presented in Algorithm 2 can involve lexicon L
and a language model LM to be established as summarized by the following sampling
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Chapter 6. The Model

Algorithm 2 Full simulation-based one-step dynamics

Input: Agent’s state St and related state distribution (prior); current observed outcome Ot+1

and its distribution (evidence), a lexicon L, a language model parametrized by LM
Output: Agent’s state St+1 and updated state distribution (conditional posterior)

// Conceptual sampling:
Bt+1 ∼ P (Bt+1 | Bt,At) . belief update sampling
Lt+1 ∼ P (Lt+1 | Bt+1,Lt) . current lexicon sampling
Ct+1 ∼ P (Ct+1 | Ct,Bt+1,Lt+1) . concept sampling
wt+1 ∼ P (wt+1 | wt+1,Lt+1, Ct+1,LM) . word/sentence sampling
Gt+1 ∼ P (Gt+1 | Ct+1,Bt+1) . goal sampling
At+1 ∼ P (At+1 | At, wt+1,Gt+1,Bt+1) . action plan sampling
// Perceptual sampling:
Ft+1 ∼ P (Ft+1 | Ft, Ct+1) . core affect sampling
Zit+1 ∼ P (Zit+1 | Zit , Ft+1,Bt+1) . multimod. interoceptive
Y i
n,t+1 ∼ P (Y i

n,t+1 | Y i
n,t, Z

i
t , Ft+1) n = 1, 2, · · · . unimod. interoceptive

Zet+1 ∼ P (Zet+1 | Zet , Ft+1,Bt+1) . multimod. exteroceptive
Y e
m,t+1 ∼ P (Y e

m,t+1 | Y e
m,t, R

e
m,t, Z

e
t , Ft+1) m = 1, 2, · · · . unimod. exteroceptive

// Corporeal sampling and observation:
Rit+1 ∼ P (Rit+1 | At+1, R

i
t) . internal motor sampling

Ret+1 ∼ P (Ret+1 | At+1, R
e
t ) . external motor sampling

Xi
t+1 ∼ P (X it+1 | Rit+1, X

i
t) . internal motor exec.

Xe
t+1 ∼ P (X et+1 | Ret+1, X

e
t ) . external motor exec.

OBSERVE(P (Ot+1 | Ot, Xi
t , X

e
t , Y

i
t+1, Y

e
t+1)← Ot+1) . internal/external sensing

steps:
Bt+1 ∼ P (Bt+1 | Bt,At) (6.7)

Lt+1 ∼ P (Lt+1 | Bt+1,Lt) (6.8)

Ct+1 ∼ P (Ct+1 | Ct,Bt+1,Lt+1) (6.9)

wt+1 ∼ P (wt+1 | wt+1,Lt+1, Ct+1,LM) (6.10)

More precisely, at the conceptual level the agent has available a state-space of con-
cepts that in its simplest form can be denoted L × Ze × F , in simple terms a concept
is represented by some multimodal exteroceptive representation together with affective
value and a word from available lexicon L indexing a category. Bt be the current set
of beliefs over the conceptualized states of the world the agent senses through avail-
able observations Ot, thus defining a state-space S . Define the overall state space
M = S × L × Ze ×F

Then, the speaker’s desire of conveying a meaning m represents the speaker’s cur-
rent goal gt ∈ Gt, which can be defined as the projection

gt :M→MX (6.11)

where MX ⊆M is the meaningful subspace relevant for the speaker. Thus, mt ∈MX .
This contextualizes goal sampling

Gt+1 ∼ P (Gt+1 | Ct+1,Bt+1). (6.12)
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Uttering a word/sentence is supported by the simulation model via the sampling
cascade

Aet+1 ∼ P (Aet+1 | At, wt+1,Gt+1,Bt+1) (6.13)

Re
t+1 ∼ P (Re

t+1 | At+1, R
e
t ) (6.14)

Xe
t+1 ∼ P (X e

t+1 | Re
t+1, X

e
t ) (6.15)

In a straight information-based communication act, the speaker’s goal pursues re-
stricts to the communication of the (semantic) literal meaning m, where MX = L, via
the utterance ut ∈ UT of the word wt ∈ L (or a sentence in the most complex case, but
which in principle can be conceived as a sequence wt = wτ1 , wτ2 , · · · , wτr , generated
by some language model LM). The uttering action aut ∈ UT ⊂ At boils down to the
mapping,

aut : L → UT , (6.16)

thus, ut = aut (wt). Note that according to the model, such generative mapping entails
all the previously described motor planning steps necessary to operationalize wt → ut,
to generate the actual vocalization ut. Clearly, when the action is a full sentence then
UT ⊂ L × LM

Eventually, this will be sensed (heard) by the listener as the outcome O(ut) ∈ Ot.
Assume in the following, for notational simplicity and without loss of generality, a
perfect sensing ut = O(ut).

However, in the case of a pragmatic communication act the intended meaning of the
speaker goes beyond the literal meaning (the truth value according to some established
semantics) of a word or sentence. In the classic RSA framework the joint communica-
tion between the listener and the speaker is accounted for via the joint distribution over
meaning and utterance P (mt, ut | gt, Ct) given the current goal and conceptual state, gt
and Ct, respectively.

The speaker’s perspective can be generally represented through the generative fac-
torization

P (mt, ut | gt, Ct) = PS(ut, | mt, Ct)P (mt | gt, Ct) (6.17)

where Ct is, as defined before (cfr. Algorithm 1), a representation of the general con-
ceptual level, in this case of the speaker.

In other terms, speaker’s communication act is that of uttering ut conditionally on
goals (intended meaning m) and conceptual/belief states established on the rationally
observed state of the world, which amounts to the forward step mt → ut,

mt ∼ P (mt | gt, Ct) (6.18)
ut ∼ PS(ut, | mt, Ct) (6.19)

In the baseline RSA, the speaker S chooses the utterance by maximizing his own utility
US(u;m):

PS(ut, | mt, Ct) ∝ expαUS(u;m) (6.20)

The utility of an utterance, in turn, depends on how much epistemic certainty it
provides to the listener:

US(u;m) = logPL(mt | ut, Ct) (6.21)
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The scalar value α can be interpreted as an indicator of how rational the speaker is
in choosing utterances (i.e., how strongly speakers prefer the higher utility option). The
speakers’ utility is higher the more information they transmit through their utterance.
Utility maximization through cooperative communication reflects the central idea that
humans communicate in a relevant (Sperber and Wilson, 1986) and cooperative (Clark
and Brennan, 1991; Grice, 1989; Tomasello, 2010) way.

On the other side, the listener’s perspective is an inferential one; namely, to recover
the meaning from the utterance. This can be written as the backward step mt ← ut, so
that the joint probabilities of meaning and utterance factorize as

P (mt, ut | gt, Ct) = PL(mt | ut, gt, Ct)P (ut | gt, Ct) (6.22)

Eqs. 6.17 and 6.22 can be used to join the two perspectives

PL(mt | ut, gt, Ct)P (ut | gt, Ct) = PS(ut, | mt, Ct)P (mt | gt, Ct),

in order to allow the listener to capture the most likely meaning:

PL(mt | ut, gt, Ct) =
PS(ut | mt, Ct)P (mt | gt, Ct)

P (ut | gt, Ct)
. (6.23)

A first remark on Eqs. 6.23 concerns the fact that such inferential activity sets the
listener as a Bayesian listener whose inference on meaning is performed through Bayes
rule (Eq. 6.23), briefly PL(mt | ut, gt, Ct) ≈ PS(ut | mt, Ct)P (mt | gt, Ct).

Yet, the listener is an agent in context, whose forward model is set by Algorithm
1. Thus, listener’s inference entailed by Eq. 6.23 is achieved, according to the PPL
model, by listener’s sampling through the forward step defined in Eq. 1 under common
ground (priors). This means that the listener unfolds her action plan by adopting the
sampling step ut ∼ PS(ut | mt, Ct). In other words, the listener takes the intentional
stance of putting herself in the speaker’s shoes: the listener commits herself to consider
how the speaker generates, via PS the heard utterance ut. As a result, in a nutshell, the
generative story of the listener’s L reasoning relies on the simulation of the speaker S.

A second remark is that the unfolding of the communication act follows a recursive
structure. In fact, by inspecting Eqs. 6.20 and 6.21, it is apparent that the speaker utters
ut having in mind a model of the listener. In the RSA framework, to avoid infinite
recursion, the base is provided by the so called literal listener Lit (or L0) who interprets
utterances in accordance with their literal semantics

PLit(mt | ut, Ct) ∝ δ[[ut]](mt)P (mt | Ct), (6.24)

Here, [[u]] is a semantic denotation for each sentence, concerning whether or not the
utterance is true of a given message. P (mt | Ct) is the prior probability of the conveyed
message. This prior term can be considered a distribution over relevant messages in
context: it represents evidence for or against a particular message, independent of the
utterance.

It is through this recursive reference back to a listener, that the model captures the
interdependence of speaker and listener in communicative interactions. The combina-
tion of these two terms — speaker likelihood and prior — to form the listener’s belief
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represents the outcome of a social-cognitive inference about the likely intended mean-
ing of an utterance in context.

This for what concerns the baseline RSA agents.
Cogently, our speaker-in-context, beyond the intentional utterance ut intended to

convey meaning mt is likely to generate other executed external actions (beyond the
internal allostatic ones), either intentional or unintentional, conditionally on goals and
conceptual/belief states that ground in the currently observed state of the world, but
perceived through the “filtering” of interoceptive/exteroceptive states.

This means that, beyond the uttering action, can rely on Eqs. 6.37,6.38 and 6.39,
for the sampling of other external actions.

For example, the speaker might want to communicate an affective feeling jointly
with the word, which might or might not be congruous with the literal meaning. Fur-
ther, even if speaker’s intention is that to convey bare literal meaning, his nonverbal
behaviour, which is observed by the listener, provides a “context” to frame the literal
meaning.

Actually, together with the observed speaker’s utterance ut and the environmental
outcomes Oenvt (e.g., defining the context of the scene where the communication act
unfolds, which is in common with the speaker), also considered the classic RSA frame-
work, the listener has available at least one other outcome from the sensed world, the
speaker non verbal behavior OSNVt (e.g., facial expression, gesture, posture, prosody).

Assume that, to keep simple the discussion, together with the uttering action ut =
aut (wt), the speaker performs a facial expression action xft = aNVt (Ct) as a result of
speaker’s overall conceptual state Ct. Here, we might distinguish between two cases
that are relevant from the standpoint of emotion theories (Crivelli and Fridlund, 2019;
Fridlund and Russell, 2021).

1. The facial expression action xft is the outcome of an intended, “voluntary” social
signalling of the speaker. In this case, xft is au pair with ut. It is a nonverbal
cue constrained by the meaning m the speaker wants to convey together with the
verbal cue (for instance, to enforce or to bias its literal meaning). Thus, speaker’s
forward sampling is, in principle, a bare multi-cue extension of Eq. :

mt ∼ P (mt | gt, Ct) (6.25)

ut, x
f
t ∼ PS(ut, x

f
t | mt, Ct) (6.26)

2. The facial expression action xft is the unintended, albeit to some extent compul-
sory outcome of speaker’s current conceptualization, which is in turn constructed,
as seen before, also based on the speaker’s affective/interoceptive state (in the ex-
treme case of BET, xft would be recognised as a facial expression of emotion).
We can formally express this case by considering two options. The first is, by
referring to Fig. 6.14 is to exploit the direct conditioning from (a subset of) the
current belief states Bt, that might link memories of past contextual situation
bearing a high interoceptive/affective value, and available actions At leading to a
higher probability of sampling an “affective ” external action xft = aNVt (Bt), thus
by-passing, in this case, the goal sampling stage.
The other option is to adopt a finer distinction between kinds of goals. In the psy-
chological/neurobiological literature it is often the case that a general distinction

125



i
i

“output” — 2022/6/29 — 15:28 — page 126 — #134 i
i

i
i

i
i

Chapter 6. The Model

is made between exogenous (originating from outside the observer’s organism,
e.g., the instruction to perform a task) and endogenous (internal) goals. How-
ever, a finer distinction can be made according to the different types of reward
that is expected in pursuing a certain goal as discussed in-depth by Berridge and
Robinson (2003). High level mental states such as “cognition” “motivation”, and
“emotion” involve explicit and implicit psychological component processes. Ex-
plicit processes are consciously experienced (e.g. explicit desire, expectation or
pleasure), whereas implicit psychological processes are unconscious in the sense
that they can operate at a level not always directly accessible to conscious expe-
rience. Examples of the latter are implicit incentive salience (unconscious “want-
ing”), habits, and implicite “liking” reactions. For instance, one might distin-
guish between a conscious pleasure (liking), tied to explicit hedonic feelings, and
core hedonic “liking” involving affective reactions, e.g., a non voluntary facial
expression, and implicit affect (Berridge and Robinson, 2003). Additional psy-
chological and neural processes of cognitive awareness can sometimes transform
the products of implicit processes into explicit representation, but explicit aware-
ness is not necessary for implicit processes (and beliefs) to powerfully influence
behavior (Berridge and Robinson, 2003). Achieving reward, either explicit or im-
plicit, is at the basis of allostatic regulation of the body budget, and reward is in
generally achieved by setting some goal. Under such circumstances, we might
generally distinguish between explicit and implicit goals G = (Gexp,Gimp). Then

xft ∼ PS(xft | g
imp
t , aNVt , Ct).

Further, one might associate a biological, implicit functional meaningmimp
t to the

executed action. Eventually, the speaker’s sampling writes:

mexp
t ∼ P (mexp

t | gexpt , Ct) (6.27)

mimp
t ∼ P (mimp

t | gimpt , Ct) (6.28)
ut ∼ PS(ut | mexp

t , Ct) (6.29)

xft ∼ PS(xft | m
imp
t , Ct). (6.30)

What is interesting here is that the listener has now available two sources of out-
come ut and xft (again under the simplifying notation xft = ONVt (xft )), beyond the
environmental outcomes Oenvt to infer meaning m

PL(mt | ut, xft , gt, Ct) =
PS(ut, x

f
t | mt, Ct)P (mt | gt, Ct)
P (ut, x

f
t | gt, Ct)

, (6.31)

Clearly, the speaker might have chosen the bare informative option mt as in case 1),
i.e., sampling via Eq. 6.26, or acted as in case 2), i.e., via 6.30, where mt represents the
pair (mexp

t ,mimp
t ). In the most natural settings, the listener is likely to be confronted

with cases in which, for instance, the speaker had the intention to act according to
Eq. 6.26 by displaying a constructed facial expression (e.g., a non Duchenne smile,
adopting BET’s jargon, or simply a fake smile), while other sensed non verbal actions
(prosody or postures) appear to contrast the speaker’s intended meaning.
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Clearly, Eq.6.31 provides a simplified view of the complete conceptual act underly-
ing such inferential step. As represented in Algorithm 2, such inference is actually to
be performed through the predictive sampling, based on current beliefs and concept, of
core affect together with exteroceptive and interoceptive states down to the perceived
outcomes Ot+1

Ft+1 ∼ P (Ft+1 | Ft, Ct+1) (6.32)

Zi
t+1 ∼ P (Zi

t+1 | Zi
t , Ft+1,Bt+1) (6.33)

Y i
n,t+1 ∼ P (Y i

n,t+1 | Y i
n,t, Z

i
t , Ft+1) n = 1, 2, · · · (6.34)

Ze
t+1 ∼ P (Ze

t+1 | Ze
t , Ft+1,Bt+1) (6.35)

Y e
m,t+1 ∼ P (Y e

m,t+1 | Y e
m,t, R

e
m,t, Z

e
t , Ft+1) m = 1, 2, · · · (6.36)

A subtle but cogent point is that the listener actually has as available as actually
observable outcomes the environmental outcomes Oenvt and the speaker non verbal
behavior outcome OSNVt . Thus, in principle she should form her beliefs and concepts
based only on the backward inference, say P (Bt, Ct | Oenv

t ,OSNVt ). However, the
simulation loop provides her with the ability of generating “internal” action aiming at
regulating physiological behavior,

Ait+1 ∼ P (Ait+1 | At, wt+1,Gt+1,Bt+1) (6.37)

Ri
t+1 ∼ P (Ri

t+1 | Ait+1, R
i
t) (6.38)

X i
t+1 ∼ P (X i

t+1 | Ri
t+1, X

i
t). (6.39)

Thus, when inferring belief and concepts based on the environmental Oenvt and the
observed speaker’s non verbal behavior outcome OSNVt , the listener can rely on her
internally perceived physiological outcomes O(X i

t+1) “as if” they were generated by
the speaker (who indeed shares the same infrastructure), in order to “fine tune” her own
inference.

Indeed, this “as if” mode of operating is a key concept in the simulation-based,
embodied approaches to affect understanding (e.g., for grounding empathy) and more
generally to shape a theory of the mind of others. This crucial capability will be ad-
dressed in the simulations Chapter.

Eventually, note that other and more subtle variations of the behaviour of the model
can be achieved by designing appropriate utility functions (Goodman and Frank, 2016).
Indeed the notion of the speaker’s utility (what is rewarding for a speaker) is central to
the RSA approach. The basic RSA model captures the speaker’s need to be informative
to a listener (Eq. 6.21). Different utilities lead to different kinds of speaker, which in
turn lead to different interpretations by the pragmatic listener. Several utility refine-
ments and their combinations have been considered.

Utterance cost can be introduced to capture a tendency of speakers to be parsimo-
nious we can simply add a cost term:

US(u;m) = logPL(mt | ut, Ct) + cost(u) (6.40)

The cost may reflect actual production cost (such as number of words) or proxies, such
as word frequency. and is related to Grice’s maxim of manner.

127



i
i

“output” — 2022/6/29 — 15:28 — page 128 — #136 i
i

i
i

i
i

Chapter 6. The Model

When the speaker does not have full knowledge of the world he should choose an
utterance according to the expected utility:

US(u; k) = EP (m|k) [US(u;m)] (6.41)

where k summarizes the speaker’s knowledge or observations.
Other social goals can be modulated by designing specific utility functions to take

into account non-informational utilities, such as utility directed toward kindness, po-
liteness, etc., (Goodman and Frank, 2016). This approach is consistent with the reward
based assumptions discussed in case 2) above.

Clearly this is an abstract model which might be operationalized through the adop-
tion of different implementation models even under suitable approximations.

6.6 Theoretical analysis of the model

Our model has been so far designed and discussed in terms of the structural/functional
constraints derived at the neurobiological/psychological levels of explanation. In what
follows, we investigate the theoretical implications of its structure to provide further
insights. In particular its connections with the predictive processing hypothesis and the
theory of stochastic processes will be taken into account.

Cogently, we made the first move by focusing on the novel perspective of the pre-
dictive brain as the most suitable to account for the overall framework on language
and emotions. As a matter of fact, the neurobiological constraints we have devised
are solidly grounded in such perspective. Emotions are not organized reactions to the
world. They are guesses about what to do next, rooted in prior experience, and the
sensory consequences of those guesses (as well as the sights, sounds, smells and other
experiences of the world). Emotions may be the Bayesian filters, predictions, or active
inferences (what we have referred to as embodied concepts), the representations that
typically dominate as intrinsic brain activity. The psychological view of CAT largely
draws from such perspective Hutchinson and Barrett (2019). Yet, the formalization of
the theoretical model seems to leave on the background this fundamental aspect.

In order to shed some light on this problem, it is best to refer to the model in the
more compact form, Eq. 6.5, which we now write as

P (Sobs1:T ,Shidden1:T , ) =
T∏
t=1

P (Sobst | Shiddent )P (Shiddent | Shiddent−1 ), (6.42)

with
Shiddent =

〈
ItEtX i

t ,X e
t ,At, Ct

〉
Sobst = 〈Ot〉

Since the variables accounting for the hidden states, as represented through the model
PGM, are provided in the form of a hierarchy, we make explicit this fact by rewriting
them more abstractly as follows

Shiddent =
〈
Z(L)
t , · · · Z(l+1)

t Z(l)
t Z

(l−1)
t · · · Z(1)

t

〉
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The PGM slice at time t, considering the L levels of latent variablesZ(L)
t , factorizes

as

P (Ot,Z1:L
t ) = P (Ot | Z1:L

t ,Ot−1)
L∏
l=1

P (Z(l)
t | Z

(l+1)
t ,Z(l)

t−1). (6.43)

Thus, the joint density of the hidden and the observable ensembles writes

P (O1:T ,Z1:L
1:T ) =

T∏
t=1

P (Ot | Z1:L
t Ot−1)

L∏
l=1

P (Z(l)
t | Z

(l+1)
t ,Z(l)

t−1). (6.44)

This shows that overall our model provides a form of a dynamic hierarchical autore-
gressive latent variable model.

The hierarchy of the structure is captured by the dependency Z(l+1)
t → Z(l)

t . How-
ever, the state of the PGM node Z(l)

t at time t is subject to two sources of information:
that of its previous state, Z(l)

t−1 → Z
(l)
t , and that from the upper level Z(l+1)

t → Z(l)
t .

The latter can be conceived as a control input, which can be made explicit, by resorting
to the notation used in the control theory literature, using U (l)

t to represent the control
input of Z(l)

t .
Consider for simplicity level l = 1, in order to explicitly account for the outcomes

O1:T ; what follows can be generalized to any level l by straightforwardly considering
theZ(l−1)

t “signal” as the outcome ofZ(l)
t and the downwardZ(l+1)

t signal as the control
input signal U (l)

t to Z(l)
t . In some hierarchical structures, to mirror the structure of level

l = 1 at any level, an intermediate outcome O(l+1)
t of Z(l+1)

t is exploited, which in turn
becomes the control input to Z(l)

t , i.e. O(l+1)
t = U (l)

t (e.g., Friston, 2008).
Thus, at level l = 1, by omitting the level index for notational simplicity, using

controls Ut together with the CIs encoded in the PGM, Eq. 6.5 writes

P (O1:T ,Z1:T ,U1:T )) =
T∏
t=1

P (Ot | ZtOt−1)P (Zt | Zt−1,Ut)P (Ut). (6.45)

Equation 6.45 shows that, in control theory terms, the model is working in the so-
called driven mode, controlled by an input sequence of observed random vectors U1:T ),
in which case O1:T is seen as the output sequence.

To simplify the analysis, by “freezing” as observed at each time step, the given input
sequence U1:T ), we can focus on modeling the distribution P (O1:T ,Z1:T | U1:T ))

P (O1:T ,Z1:T | U1:T )) =
T∏
t=1

P (Ot | ZtOt−1)P (Zt | Zt−1,Ut). (6.46)

which represents an input driven autoregressive State Space Model (SSM).
Note that in control theory the driving input Ut can be used to generate either Zt,

as in our case, or Ot or both. Also, in other autoregressive models Ut might in turn
depend on Zt−1 and/or Ot−1. This corresponds to feedback or closed-loop control
in control theory, which is also strongly connected to the concept of autoregressive
process, jointly found in the control theory, signal processing or time series analysis
literature.

This for what concerns the representational properties of the model. The interesting
issue is then to frame the inferential/learning processes given the representation.
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Chapter 6. The Model

The inference problem. We have so far discussed the inferential process in terms of the
Monte Carlo approximation which straightforwardly stems from the sampling-based
nature of the PPL model.

More generally, a full Bayesian analysis is computationally complex because com-
plicated multiple integrations are involved. Except for specific cases (Gaussian distri-
butions, etc.), involved integrals have no general analytic solution, particularly when
the generative model is nonlinear; thus, some algorithmic approximation should be
devised.

There are actually two roads that can be pursued: free-form, Monte Carlo based
approximation and variational, deterministic approximations. As to the first option,
Markov chain Monte Carlo for numerical integration helps to side-step this problem,
but it is clearly time-consuming; samples of parameter values are required to be stored
and there are risks to be run as to whether or not convergence has occurred. In en-
gineering and machine learning, free-form densities are usually approximated by the
sample density of a large number of “particles” that populate state-space. In statistics
the problem of Bayesian inference for both the state and parameters, within partially
observed, non-linear diffusion processes has been tackled using Markov Chain Monte
Carlo (MCMC) approaches based on data augmentation, Monte Carlo exact simulation
methods, or Langevin / hybrid Monte Carlo methods (Bishop, 2006; MacKay, 2004).
Within the signal processing community solutions to the so called Zakai equation based
on particle filters, a variety of extensions to the Kalman filter/smoother and mean field
analysis of the SDE together with moment closure methods have also been proposed
(Archambeau et al., 2008).

A deterministic approximate approach to the intractable Bayesian inference prob-
lem, the variational Bayesian approximation (VB), has been introduced (see Beal and
Ghahramani, 2003; MacKay, 2004 for an insightful discussion). Rather than use sam-
pling, the main idea behind variational inference is to use optimisation. In a nutshell
(but see Appendix C for the mathematical details), it relies on the following steps:

1. posit a family of approximate densities, namely a set of densities over the latent
variables (either states and/or parameters); then,

2. try to find the member of that family that minimises the “distance” to the exact
posterior.

Variational Bayes draws together variational ideas from the analysis of intractable la-
tent variable models and from Bayesian inference. This framework facilitates ana-
lytical calculation of posterior distributions over the hidden variables, parameters and
structures. For instance, they might be computed via an iterative algorithm, VBEM, a
generalization of the classic EM algorithm (Beal and Ghahramani, 2003). Variational
approximations rely on bound approximation, by adopting approximating posteriors.
Further, if a fixed-form approximation is adopted, this choice allows one to represent
the density in terms of a small number of quantities, namely its sufficient statistics.

Interestingly enough, the neural/realisation level plausibility (Marr, 1982) of each
approach is currently matter of a fierce debate in the theoretical neuroscience field.

Sanborn and Chater (2016) argue that sampling provides a natural and scalable im-
plementation of Bayesian models. In this view “Bayesian brains” need not represent
or calculate probabilities at all and are, indeed, poorly adapted to do so. Instead, the
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brain is a Bayesian sampler. Only with infinite samples does a Bayesian sampler con-
form to the laws of probability; with finite samples it systematically generates classic
probabilistic reasoning errors, including the unpacking effect, base-rate neglect, and the
conjunction fallacy. A key insight is that, although explicitly representing and working
with a probability distribution is hard, drawing samples from that distribution is rela-
tively easy. Sampling does not require knowledge of the whole distribution. It can work
merely with a local sense of relative posterior probabilities.

In a different vein, Friston (2008) suggests that free-form approximations and their
related sampling schemes are not really viable in a neuronal context. The dimension-
ality of the representational problems entailed by neuronal computations probably pre-
cludes particle-based (i.e., free-form) representations: face analysis, a paradigmatic ex-
ample in perceptual inference. Faces can be represented in a perceptual space of about
thirty dimensions (i.e., faces have about thirty discriminable attributes). To populate a
thirty-dimensional space we would need at least 230 particles, where each particle could
correspond to the activity of thirty neurons (note that the conditional mean can be en-
coded with a single particle). The brain has about 211 neurons at its disposal (Friston,
2008), hence a fixed-form assumption should be mandatory for the brain.

The predictive brain hypothesis is closely connected to the variational approach.
Thus, by embracing the optimization perspective, we can proceed as follows. Consider
the generalization of Eq. 6.46, which fully factorizes the conditional joint distribution
P (O1:T ,Z1:T | U1:T ):

P (O1:T ,Z1:T | U1:T ) =
T∏
t=1

P (Ot | Z1:tO1:t−1,U1:t)P (Zt | O1:t−1,Z1:t−1,U1:t).

(6.47)

The distribution of interest for solving the inference problem is the posterior distri-
bution of state sequence Z1:T , Pθ(Z1:T | O1:T ,U1:T ), where we have explicitly denoted
the parameters θ characterizing such distribution, Pθ; note, however, that this is just
a matter of notational convenience; in the Bayesian setting the θ parameters are just
latent RVs much like Z1:T and the former could be easily incorporated as a subset of
the latter.

The posterior Pθ is generally intractable. Hence, in the variational setting, one
defines an inference model Qφ(Z1:T | O1:T ,U1:T ), which is an approximation of the
posterior Pθ. The index φ ∈ Φ explicitly refers to the set of variational parameters the
must be “adjusted” to minimize the divergence between the true and the approximating
distributions.

It is reasonable to assume that a good candidate for Qφ would have the same struc-
ture as the exact posterior distribution Pθ. This means that variable dependencies used
to factorize P (O1:T ,Z1:T | U1:T ), in virtue of the d-separation property of PGMs, can
be used to simplify posterior dependencies in Qφ.

Variational inference is based on the maximization of the variational free energy
F (Q) also named, in the current deep learning literature, the evidence lower bound
ELBO(Q); for a detailed and formal definition see Appendix C. In the case of the
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model in Eq. 6.47 the free energy can be generally written as

F (Q) =EQφ(Z1:T |O1:T ,U1:T ) [lnPθ(Z1:T ,O1:T | U1:T )]− (6.48)

EQφ(Z1:T |O1:T ,U1:T ) [lnQφ(Z1:T | O1:T ,U1:T )] (6.49)

Exploiting the factorization of Eq. 6.47 and the properties of the expectation E [·]
with respect to conditional distributions,

EQφ(Z1:T |O1:T ,U1:T ) [f(Z1:T )] = (6.50)

EQφ(Z1|O1:T ,U1:T )

[
EQφ(Z2|Z1,O1:T ,U1:T )

[
· · ·EQφ(ZT |Z1:T ,O1:T ,U1:T ) [f(Z1:T )]

]]
,

where f(Z1:T ) is a generic function of Z1:T , Eq. 6.49 writes

F (Q) =
T∑
t=1

EQφ(Z1:t|O1:T ,U1:T ) [lnPθO(Ot | O1:t−1Z1:t,U1:t)]− (6.51)

T∑
t=1

EQφ(Z1:t−1|O1:T ,U1:T ) [KL(Qφ(Zt | Z1:t−1,O1:T ,U1:T )‖PθZ (Zt | O1:t−1,Z1:t−1,U1:t))]

Note that, in principle, the F (Q) should be maximized with respect to all pa-
rameters φ, θZ , θO. A general procedure would require to compute Monte Carlo esti-
mates (i.e., empirical averages), using samples drawn from Qφ(Z1:τ | O1:T ,U1:T ), with
τ ∈ {1, · · · , T}, an arbitrary time index. Sampling each random vector Z1:τ at a given
time instant is straightforward, as Qφ(Z1:t | O1:T ,U1:T ) is analytically specified by the
chosen inference model (often a Gaussian distribution). Doing so, the variational free
energy becomes differentiable and can then be optimized using gradient-ascent-based
algorithms such as the CAVI.

In the case of the classic SSM, the model simplifies as follows:

PθO(Ot | O1:t−1,Z1:t,U1:t) = PθO(Ot | Zt) (6.52)
PθZ (Zt | O1:t−1,Z1:t−1,U1:t) = PθZ (Zt | Zt−1,Ut), (6.53)

thus,

PθO(O1:T | Z1:T ) =
T∏
t=1

PθO(Ot | Zt) (6.54)

PθZ (Z1:T | U1:T ) =
T∏
t=1

PθZ (Zt | Zt−1,Ut). (6.55)

Then, the variational free energy for the SSM can be written as

F (Q) =
T∑
t=1

EQφ(Zt|O1:T ,U1:T ) [lnPθO(Ot | Zt)]− (6.56)

T∑
t=1

EQφ(Zt−1|O1:T ,U1:T ) [KL(Qφ(Zt | Zt−1,Ot:T ,Ut:T )‖PθZ (Zt | Zt−1,Ut))] .

This last representation allows us to relate the model to the predictive coding frame-
work.
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6.6.1 Connection to predictive coding

The optimization perspective on the inferential step that we have discussed above is
based on the variational free energy key concept. The free energy principle (but see
Appendix C) for a detailed mathematical treatment) has been set as the basis for a gen-
eral theory of the necessary information-theoretic behaviours of systems which main-
tain a separation from their environment. A core postulate of the theory is that complex
systems can be seen as performing variational Bayesian inference and minimizing the
variational free energy. The free energy principle originated in, and has been extremely
influential in theoretical neuroscience, having spawned a number of neurophysiologi-
cally realistic process theories, while maintaining close links with the Bayesian Brain
viewpoints.

The motivation for the free-energy principle is simple but fundamental, as stated
by Friston (2009) . It rests upon the fact that self- organising biological agents re-
sist a tendency to disorder and therefore minimize the entropy of their sensory states.
Minimizing entropy corresponds to suppressing surprise over time. In brief, for a well
defined agent to exist it must occupy a limited repertoire of states. This means the equi-
librium density of an ensemble of agents, describing the probability of finding an agent
in a particular state, must have low entropy: a distribution with low entropy just means a
small number of states are occupied most of the time. Because entropy is the long-term
average of surprise, agents must avoid surprising states. Yet, agents cannot evaluate
surprise directly. This would entail knowing all the hidden states of the world causing
sensory input. However, an agent can avoid surprising exchanges with the world if it
minimises its free-energy because free- energy is always bigger than surprise.

These arguments suggest that biological systems sample their environment to fulfil
expectations that are generated by the model implicit in their structure. From the agent
perspective, the environment is an accommodating place; fluctuations or displacements
caused by environmental forces are quickly explained away by adaptive re-sampling.
How do living systems preserve their order (i.e. configurational entropy), immersed
in an environment that is becoming irrevocably more disordered? The premise here is
that the environment unfolds in a thermodynamically structured and lawful way and bi-
ological systems embed these laws into their anatomy. The existence of environmental
order is assured, at the level of probability distributions, through thermodynamics. Sys-
tems that minimise the surprise of their interactions with the environment by adaptive
sampling can only do so by optimising a bound, which is a function of the system’s
states. This is exactly the physical (variational) free energy, or Gibbs’ free energy FG
(Appendix C): when the free-energy is minimised, the ensemble density encoded by
the system’s parameters becomes an approximation to the posterior probability of the
causes of its sensory input. The free-energy principle, in its simplicity, states that sys-
tems change to decrease their physical free-energy. The concept of free-energy arises
in many contexts, especially physics and statistics. In thermodynamics, free-energy is a
measure of the amount of work that can be extracted from a system: it is the difference
between the energy and the entropy of a system (Appendix C).

The free energy approach has a clear connection to the theory of predictive coding,
a neurobiologically plausible process theory. Indeed, predictive coding can be derived
from the free energy principle under certain assumptions

The core of the predictive coding in the brain approach is based on two fundamental
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concepts. First, the idea of prediction error as the difference between the activity of the
neurons in a layer and the top-down predictions from higher layers. Second, the update
rule for the activities of a layer, which minimizes both the prediction errors at its own
layer, as well as the layer below.

In what follows, in order to keep up with the physical view of the free energy pos-
tulated by the free energy approach to the brain, we will explicitly denote F̃ the vari-
ational free energy in the sense of Gibbs’ free energy, thus (cfr., Eq. C.41, Appendix
C)

F̃(Φ) = FG = −F , (6.57)

where, as previously defined, Φ stands for the set of variational parameters.
Given the joint distribution P (O1:T ,Z1:L

1:T | U1:L
1:T ), consider the specific case of the

SSM family that we have previously dicscussed: the linear-Gaussian state space model
(LG-SSM):

P (Zt | Zt−1,Ut) = N (Zt | AtZt−1 + BtUt,Qt) (6.58)

P (Ot | Zt,Ut) = N (Ot | CtZt + DtUt,Rt) (6.59)

To simplify the notation, for the moment, we have dropped the conditioning on
the inputs Ut, and again we have assumed the control provided by the upper layer is
observed (known).

For formalizing such approximation we resort to the framework of inference as
optimization, as used in variational inference.

First, we rewrite the mean-field approximation (Eq. C.9, Appendix C) for the ap-
proximating posterior Qφ(Z1:T ), which gives the fully factorized form:

Qφ(Z1:T ) =
T∏
t=1

Qφ(Zt) (6.60)

Recall that, such temporal factorization of the free energy means that the minimization
at each time step is independent of the others.

Then, the variational free energy expressed by Eq. 6.56 can be compactly written in
terms of the physical free energy F̃ :

F̃(Φ) =
T∑
t=1

F̃t(Φ) =
T∑
t=1

EQφ(Zt) [KL(Qφ(Zt)‖P (Zt,Ot | Zt−1))] (6.61)

To develop it further, first, consider a Gaussian approximation for the variational
posterior Q at time step t,

Qφ(Zt) = Q(Zt | µt) = N (Zt | µt,Σt(µt)), (6.62)

where µt = Φ identifies the variational parameter of interest; the latter, once computed,
allows to derive the covariance matrix Σt(µt).

In the mean-field approximation, Eq. 6.60, we can consider the single time step; all
time steps will be identical in terms of the solution method. Then,
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F̃t(µt) = −EQ(Zt|µt)
[
lnP (Zt,Ot | µt−1)

]
−H(Q(Zt | µt)) (6.63)

The entropy of a Gaussian H(Q(Zt | µt) does not depend on the variational param-
eter µt, thus it can be omitted from the variational computation, which boils down to
optimizing

F̃t(µt) = −EQ(Zt|µt)
[
lnP (Zt,Ot | µt−1)

]
(6.64)

Use then the saddle-point or Laplace approximation in Eq. 6.64, that is the second
order Taylor series approximation around the mode

EQ(Zt|µt)
[
lnP (Zt,Ot | µt−1)

]
≈ (6.65)

EQ(Zt|µt)
[
lnP (Zt,Ot | µt−1)

]
+ (6.66)

EQ(Zt|µt)
[
∇ZtP (Zt,Ot | µt−1) |Zt=µt (Zt − µt)

]
+ (6.67)

EQ(Zt|µt)
[
∇2
ZtP (Zt,Ot | µt−1) |Zt=µt (Zt − µt)

2
]

= (6.68)
lnP (Zt,Ot | µt−1)+ (6.69)
∇ZtP (Zt,Ot | µt−1) |Zt=µt EQ(Zt|µt) [(Zt − µt)] + (6.70)

∇2
ZtP (Zt,Ot | µt−1) |Zt=µt EQ(Zt|µt)

[
(Zt − µt)

2
]

= (6.71)

lnP (Zt,Ot | µt−1) +∇2
ZtP (Zt,Ot | µt−1) |Zt=µt Σt (6.72)

where the linearity of the expectation has been used and that EQ(Zt|µt) [(Zt − µt)] = 0.
Thus, by neglecting the term independent of µt, the optimization problem to solve

is

µopt
t = arg min

µt
F̃t(µt) = arg min

µt
lnP (Zt,Ot | µt−1) (6.73)

= arg min
µt
−{(Ot −Cµt))

>Σ−1
O (Ot −Cµt))+ (6.74)

(µt −Aµt−1 −BUt−1)>Σ−1
Z (µt −Aµt−1 −BUt−1)} (6.75)

where the dependence of Zt on the control signal has been reintroduced for complete-
ness, but setting Dt = 0 in Eq. 6.59, since we are not considering the dependence of
outcomes Ot on control Ut (cfr. Eq. 6.53).

The problem posed in Eq. 6.73 can be solved by gradient descent. By using standard
results on the derivative of quadratic forms4:

∇F̃t(µt) = −C>Σ−1
O (Ot − µt) + Σ−1

Z (µt −Aµt−1 −BUt−1). (6.76)

Equation 6.76 tells that minimizing the variational free energy F̃t(µt) entails the
minimization of two errors:

4 ∂
∂s
(x − As)>W(x − As) = −2A>W(x − As) and ∂

∂x
(x − s)>W(x − s) = 2W(x − s), W being

symmetric, Petersen et al. (2008)
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• the error between the current observation and the prediction current observation

eO = Ot −Ctµt|t−1 (6.77)

weighted by precision Σ−1
O

• the error between the current state/variational parameter prediction current obser-
vation and the past state estimate;

eZ = µt −Aµt−1 −BUt−1 (6.78)

weighted by precision Σ−1
Z .

The gradient perfectly recapitulates the standard predictive coding scheme with pre-
cision weighted prediction errors. In fact under the LG-SSM assumption the minimiza-
tion described by Eq. 6.76 is exactly the same result obtained via Kalman filtering, an
optimal linear Bayesian filtering algorithm, (Eqs. B.6 and 6.59).

Kalman filtering analytically solves this objective directly, while in predictive cod-
ing the dynamics of the parameters are set to be a gradient descent on the variational
free energy: this reduces to the MAP objective solved by the Kalman Filter (cfr., Eq.
B.13 . To sum up, predictive coding and Kalman filtering derive their dynamics from a
gradient descent on the same objective.

Clearly, this result is easy to extend to hierarchical and nonlinear models. Also in
this case the procedure is to minimize the free energy using gradient descent.

Further, the procedure can be extended by optimize the free energy with respect to
the model parameters.

In the case of LG-SSMs, following the same gradient calculation as in Eq. 6.76, we
obtain the following results: for the dynamics matrix A,

∇AF̃t = −ΣZeO,tµ
>
t−1; (6.79)

for the control matrix B,

∇BF̃t = −ΣZeO,tU>t−1; (6.80)

eventually, for the observation matrix C,

∇CF̃t = −ΣZeO,tµ
>
t . (6.81)

Interestingly enough, the above equations can be generalized to nonlinear models
showing that predictive coding can approximate backpropagation for many kinds of
models Hosseini and Maida (2020).

To sum up, the theoretical model formalizing the infrastructure that enables the
conceptual and communication acts provides a generalized form of Bayesian predictive
processing.
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6.6.2 A stochastic process perspective

In the previous Section we have analyzed the model from a dynamic input-state-output
model to account for its overall dynamics. In particular we have seen that when the
model is reduced, under suitable assumptions to a hierarchical LG-SSM, its Gaussian
dynamics can be interpreted in terms of the basic predictive processing hypothesis.
At the different levels of the hierarchy, all state-space denoting variables actually are
stochastic processes, even though, for notational simplicity and presentation conve-
nience, we have treated them as one realisation of the process.

Let us now give a more precise shape to the stochastic view of the theoretical model
and to related implications.

On a measurable state-space (Ω,A,P) the following are given:

• a family of probability measuresM = {Pθ, θ ∈ Θ} depending on a parameter θ,
with density Pθ;

• a pair of stochastic processes Z = {Zt, 0 ≤ t ≤ T} and O = {Ot, 0 ≤ t ≤ T}
taking values in RZ and RO, respectively.

Suppose Z , under Pθ, is a Markov process with an infinitesimal generator, then we
can write the state-space equations of a dynamical stochastic system in the following
form of Itô SDE (to be interpreted as an Ito stochastic integral):

dZt = f(Zt,Ut)dt+D1/2dWt, (6.82)

dOt = g(Zt,Ut)dt+R1/2dVt, (6.83)

where W = {Wt, 0 ≤ t ≤ T} and V = {Vt, 0 ≤ t ≤ T} are respectively independent
standard processes (e.g. Wiener), of the same dimension ofZ sndO respectively. D,R
are difffusion coefficients. The latter could be in general a function of the states, i.e.
D = D(Zt), R = R(Zt)

The variable U also is defined for wider generality as the stochastic processes U =
{Ut, 0 ≤ t ≤ T}, though in specific cases can be deterministic, stochastic, or both.
It represents the system control, which is also variously referred to in the literature as
input, cause or source. This can be shaped in many ways, for example as a function of
both Z and O (e.g. to introduce feedback) or an exogenous input (e.g., the labelling
sequence provided along a supervised learning stage).

Also, we denote f and g the generic (vector or scalar valued) nonlinear, potentially
time-varying functions, i.e. mappings of the kind T × L2(Ω,A,P) 7→ L2(Ω,A, P )
to a (Lebegue square-integrable) Hilbert space L2(Ω,A, P ) with finite second-order
moments.

In fact, Eqs. 6.82 and 6.83 can be easily recognised as diffusion processes, f and g
being their respective drifts (Van Kampen, 2011).

We can think of this processes as the limit of the discrete-time processes

Zt+∆t −Zt = f(Zt,Ut)∆t+D1/2
√

∆tεZt , (6.84)

Ot+∆t −Ot = g(Zt,Ut)∆t+R1/2
√

∆tεOt , (6.85)
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Equations 6.84 and 6.85 are known as the Euler-Maruyama approximation of Eqs
6.82 and 6.83.

Assume that Ω is the canonical state-space Γ([0, T ];RZ+O), in which case Z and
O are the canonical processes on Γ([0, T ];RZ) and Γ([0, T ];RO), respectively, and Pθ
is the probability law of (Z,O). In such case Z is the state process, which is not
directly observed; rather, the information about its evolution is obtained through the
noisy observed process O.

Then, Eqs. 6.82 and 6.83 define a generalised input-output state-space system
(SSM) where the states Zt mediate the influence of the input on the output and en-
dow the system with memory. The state and observation perturbations or fluctuations
are provided by noise terms εZ , εO, which can be defined via the stochastic integrals
Wt =

∫ t
0
εZsds, Vt =

∫ t
0
εOsds. In the case of W,V being Wiener processes, εZ , εO

represent Gaussian additive noise, and have the same dimension of Z,O, respectively.
If errors are iid Gaussian random variables, then the specific scaling of the white noise
with ∆t gives rise to the nondifferentiable trajectories of sample paths characteristic for
a diffusion process.

The classic input-output SSM can be recovered from Eqs. 6.82 and 6.83, under the
independence assumption (Ot⊥Ot−1 | Zt):

dZt = f(Zt,Ut)dt+D1/2dWt, (6.86)

Ot = g(Zt,Ut) +R1/2εOs , (6.87)

Obviously, considering Eqs. 6.84 and 6.85, under the conditional independence
assumption (Ot+∆t⊥Ot | Zt+∆t), then Ot only depends on Zt,Ut and we recover the
discrete time input-output SSM. In such case, the stochastic difference equations can
be easily obtained.

Equations 6.82 and 6.83 above formalise the generative process: when the dynamics
unfolds, the process O generates a σ-algebra.

Denote Ot = O0:t = {O0,O1, · · · ,Ot} a filtration. We can define then an innova-
tion process E = {Et, 0 ≤ t ≤ T} or prediction error

Et = Ot −
∫ t

0

Eθ[g(Zs,Us) | O0:s,U0:s]ds (6.88)

which is central when we want to invert the model. Notably, this is the stochastic
process counterpart of the predictive error in predictive coding.

The framework defined via Eqs. 6.82 and 6.83 ensures that the probability mea-
sures inM are mutually absolutely continuous. Then, the connection of the stochastic
process to the Bayesian setting can be made via the Radon-Nikodym Theorem (Stuart,
2010). If we let θ0 be the reference set of parameter and write Pθ0 as P0 (prior measure,
with associated prior density P0), the Radon-Nikodym derivative of Pθ with respect to
P0 provides the complete data likelihood.

dPθ
dP0

=
Pθ(Ot | Ut)

Pθ(O0:T | U0:T )
(6.89)

Let POθ denote the restriction of Pθ to the σ algebra generated by processO, then the
likelihood function for estimating the parameters θ on the basis of a given observation
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6.6. Theoretical analysis of the model

path O = {Ot, 0 ≤ t ≤ T} can be expressed as (Wang and Titterington, 2004)

L(θ | O0:T ) = E0

[
dPOθ
dP0

| O0:T ,U0:T

]
. (6.90)

where E0 denotes the expectation under P0

This provides the necessary link to the Bayesian view of the dynamic stochastic
process, which is in turn instantiated in terms of a Probabilistic Graphical Model.

A key observation we have discussed in the previous section relates to the fact that
the optimisation of the free energy in dynamical systems involves the optimisation of
the prediction error entailed by the optimisation of the expected internal energy. In
stochastic processes terms this corresponds to the innovation (Eq. 6.88) of the process,

One interesting example has been provided by Daunizeau et al. (2009), for the case
of the classic input-output SSM. This as previously mentioned, can be recovered from
Eqs. 6.82 and 6.83, under the independence assumption (Ot⊥Ot−1 | Zt), rewritten
more compactly, with some abuse of notation:

Żt = f(Zt,Ut) + εZt , (6.91)
Ot = g(Zt,Ut) + εOt , (6.92)

where the dot notation stands for the time derivative d/dt.
In this case, under Gaussian assumptions on the state and observation noises and

under the Euler-Maruyama discretisation scheme (Eqs. 6.84, 6.85), the discrete-time
variant of the state-space model, by setting unitary time step ∆t = 1 yields the Gaussian
likelihood and transition densities

Zt+1 ∼ PZ(Zt+1 | Zt,Ut, θZ) = N (f(Zt,Ut), D−1), (6.93)

Ot ∼ PO(Ot | Zt,Ut, θO) = N (g(Zt,Ut), R−1) (6.94)

When the free energy F is derived (see Kilner et al., 2007; Friston, 2008), it can be
shown that at its heart F optimisation relies on computing prediction errors on hidden
states dynamics Żt, observations Ot and parameters θZ , θO.

Cogently, based on the stochastic process view of affect dynamics Oravecz et al.
(2011) have developed a model for temporal fluctuations in the core affect state over
time, with individual differences for the crucial parameters. The core of the model
can be described in terms of two equations. They focus on a particular case of the
system described by Eqs. 6.82, 6.83, where state equation (6.82) is assumed to be the
Ornstein-Uhlenbeck (OU) process (Uhlenbeck and Ornstein, 1930).

dZt = β(U − Zt)dt+D1/2dWt, (6.95)

Ot = Zt +R1/2εOs , (6.96)

where β > 0 and control U in the simplest case is assumed to be a constant, i.e. U =
const, or time-varying in the most general case. The instantaneous change in Zt, that
is, dZt, depends on how far the current state Zt is from the point U . This control
parameter is called a steady state or attractor: as a straightforward example in the one

139



i
i

“output” — 2022/6/29 — 15:28 — page 140 — #148 i
i

i
i

i
i

Chapter 6. The Model

dimensional case, if Zt is below U (i.e., U −Zt < 0), the first derivative is positive, and
consequently Zt will increase; the opposite holds when Zt is above. The parameter β
controls the magnitude of the “attraction” effect: if β is large ( β � 1), the difference
between the actual state and U tends to be magnified; therefore a faster change will
occur in the direction of U ; with small β), the change becomes substantially slower.
Based on this property, the parameter is often called the dampening force or centralising
tendency. The stochastic innovation term dWt incorporates the multiple smaller and
larger impacts that the core affect system undergoes at a given moment (Fig. 6.15).

Figure 6.15: The core affect dynamics according to Kuppens et al. (2010). The top panel
shows the key features of the model, where the dynamics is an instance of an OU stochastic
process; the bottom panel, shows the observed core affect trajectories of three participants
involved in the experience-sampling study on people’s core affective experiences. Adapted
from Kuppens et al. (2010)

Interestingly, U acts as a set point that reflects the baseline functioning of the sys-
tem, an affective “home base”, which reflect the affective comfort zone of an individ-
ual, signalling that everything is normal. The attractor keeps the system in balance by
pulling core affect back to its home base, creating an emergent coherence around it. It
is surmised, the attractor strength reflects the regulatory processes that are installed to
keep a person’s core affect in check.

To sum up, these three key processes - affective home base, variability, and attractor
strength -are largely responsible for producing the myriad ways people can display
changes and fluctuations in their core affect throughout daily life (e.g., Fig. 6.15, bottom
panel, (Kuppens et al., 2010).

The model has been empirically evaluated in two extensive experience-sampling
studies on people’s core affective experiences. The findings have shown that it is capa-
ble of adequately capturing the observed dynamics in core affect across both large and
shorter time scales and illuminate how the key processes are related to personality and
emotion dispositions. More precisely it was capable of replicating the shape of individ-
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6.7. A brief remark on the Implementation Model

uals’ core affect trajectories, how often they are in particular feeling states across time,
and the dynamical forces that impinge on their feelings when in different feeling states.
In conclusion, the model accounts for individual differences in temporal patterns and
trajectories observed in people’s affective experiences (Kuppens et al., 2010).

The model by Kuppens et al. (2010) constitutes a theoretical model of the core
affect dynamics, under the assumption that such state-space results from a complex,
open system. In this perspective, the model proposed here makes a step further in such
direction, by grounding core affect dynamics as the result of an open system interaction
with interoceptive and exteroceptive state-spaces. In turn, each state-space within these
routes undergoes a stochastic diffusion. Control variables and outputs account for the
information inflow/outflow between subsystems.

Indeed, the hierarchy we have stated from the beginning in this theoretical analysis
defines a hierarchy of stochastic processes, which can be written generalising the input-
output SSM (Eqs, 6.91, 6.92) as spanning on l = 1, · · · , L levels:

U̇ (L)
t = g(U (L+1)

t ) + ε
(L+1)
Ut ,

...

Ż(l)
t = f(Z(l)

t ,U
(l)
t ) + ε

(l)
Zt ,

U̇ (l−1)
t = g(Z(l)

t ,U
(l)
t ) + ε

(l)
Ut ,

...

Ż(1)
t = f(Z(1)

t ,U (1)
t ) + ε

(1)
Zt ,

Ȯt = g(Zt,Ut) + εOt (6.97)

Note that in the hierarchical form the controls U (L)
t ,U (L−1)

t , · · · U (1)
t are used to link

levels: U̇ (l)
t constrains as a top-down signal either U̇ (l−1)

t Ż(l−1)
t ; at the same time U̇ (l−1)

t

accounts for the emission of Ż(l−1)
t . The hidden states Z(L)

t ,Z(L−1)
t , · · · Z(1)

t provide
the necessary dynamics over time. This is in particular true when we assume time con-
ditional independencies between controls, i.e., (U (l)

t ⊥U
(l)
t−1), and between observations,

(Ot⊥Ot−1 | Zt)
In other terms, what we expect from an implementation of our model is that, under

suitable constraints (e.g., Gaussian SSM assumption), the core affect dynamics of the
stochastic process F = {Ft, 0 ≤ t ≤ T} exhibits similar properties to the OU process
posited and empirically measured by Oravecz et al. (2011).

6.7 A brief remark on the Implementation Model

As pointed out in Chapter 3, moving from the level of the theoretical model to the
level of the implementation model hides many subtleties. If a fine grain scale of imple-
mentation is not addressed, which might be the case for affective computing and NLP
purposes, there are, at least in principle, different viable solutions. Since our model is
essentially a Bayesian model, the first question to consider prima facie is whether to
pursue a straight Monte Carlo approximation or opt for optimization, variational tech-
niques, as considered in a straight predictive processing perspective. These are the two
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Chapter 6. The Model

most prominent strategies for approximating Bayesian inference: in the first case the
chain is run until it has hopefully reached equilibrium and collect samples to approx-
imate the posterior. In variational inference, as seen a flexible family of distributions
is defined over the hidden variables, indexed by free parameters, then a setting of the
parameters is found that is closest to the posterior, solving an optimization problem.

Yet, in current machine learning practice this the border between these to alterna-
tives is often blurred; one clear example is provided by generative deep neural networks,
such as variational autoencoders (VAE) or generative adversarial networks (GAN) and
related architectures, where sampling and optimization are intertwined. Another ex-
ample, as to learning, is stochastic variational inference (SVI) that has been conceived
for efficiently analyzing massive data sets with complex probabilistic models Hoffman
et al. (2013)

In the predictive coding perspective the general SSM model that underpins our
model might be implemented in terms of (hierarchy of) dynamical VAEs (DVAE). A
DVAE can be seen as a combination of a VAE and a a recurrent neural network (RNN).
One such example is provided by architectures based on variational recurrent neural
networks (VRNN, Chung et al., 2015); a variety of proposals addressing have been
published in the ML literature (but for an in-depth and insightful analysis, see Girin
et al., 2021.

As to the stochastic process perspective, the seminal work by Rezende et al. (2014)
on stochastic backpropagation (gradient backpropagation through stochastic variables)
was a milestone in making a connection between stochastic processes and deep neural
network fields of investigation. They derived an algorithm that allows for joint optimi-
sation of the parameters of both the generative and recognition models, such as Deep
latent Gaussian models, which has fostered a growing interest for considering neural
stochastic differential equations as deep latent models in the diffusion limit (e.g.,Tzen
and Raginsky, 2019a,b; Kidger et al., 2021; Massaroli et al., 2020). These works an-
alyze the diffusion limit of deep latent models, where the number of layers tends to
infinity. The limiting latent object is an Ito diffusion process that solves a stochastic
differential equation whose drift and diffusion coefficient are implemented by neural
nets. A variational inference framework is adopted for these neural SDEs via stochas-
tic automatic differentiation in Wiener space and where the computation of gradients is
based on the theory of stochastic flows. This allows, in principle, the use of black-box
SDE solvers and automatic differentiation for end-to-end inference.

Also, for what strictly concerns RSA, neural architectures have been considered
for implementing neural listeners and speakers, markedly in the specific field of image
captioning (e.g.,Andreas and Klein, 2016; Cohn-Gordon et al., 2018)

Clearly, all these neural-based approaches come into the game for scaling to large
datasets. But, conversely, deep neural models are effective if large datasets are avail-
able. The transfer learning solution, which often comes without additional costs for
research projects thanks to the availability of pretrained models, becomes rather prob-
lematic when the target domain might be highly specialized, inducing a large bias be-
tween the source and target domain. Indeed, generalizing well from limited data is a
cogent issue in machine learning, however works aiming at directly learning from small
datasets data are surprisingly scarce, and it is obviously beyond the scope of this thesis.
These issue will be further explored along the simulations presented in Chapter 7.
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CHAPTER7
Simulations

The blossoming of modern machine learning and its widespread adoption that came
about in the late 2000s relied and still rely on three structural prerequisites: the in-
creasing availability of large quantities of high quality data, the increasing complexity
of models, and the ever stronger support of both hardware and software computing
power for training these models. Indeed, these conditions have allowed some remark-
able advancements and applications that, though still in their infancy, are predicted to
disruptively and irrevocably alter many industries for the better. However, the same
conditions have also been pointed out as its bane. Gathering and cleaning data is costly,
more so given that most machine learning problems are framed as supervised learning
problems, requiring labeling of data, usually needing a human hand. The recent large
successes of machine learning can undeniably be attributed to the advances in deep
learning. Yet, deep learning models are data hungry and together with the issue of most
problems being dealt with in a supervised learning framework provide two learning
conditions that can hardly be reminiscent of learning conditions which a human may
experience and thrive in. This in turn has rendered difficult reaching the same advance-
ments in areas where data is more scarce, more costly or more difficult to acquire. The
handicap of data availability is particularly evident in fields relating to affective com-
puting. The datasets available are frequently of modest size and provide only a single,
or few modalities of otherwise multimodal complex phenomena.

Faced with this plight, and having to deal with a theoretical model of imposing
complexity considering an array of modalities, instead of developing implementations
that only partially or incompletely adhere to the theoretical model, we shy away from
implementation models that would require copious data. Instead, we proceed by con-
sidering models that, albeit rendered much more straightforward in certain regards by
introducing appropriate approximations to the theoretical model, are nonetheless able
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to capture it in its totality, provide a working proof of concept, and ultimately reveal
a remarkable complexity in their ability to simulate human behaviour. Namely, we
develop three models that are herein presented: two models of non literal language
use, hyperbole and irony, and a third model dealing with politeness, a form of social
reasoning.

These conversational implicatures are typical case studies in pragmatics, irony has
been known at least since Aristotle, with Grice being the first to systematically study
cases in which what a speaker means differs from what the sentence used by the speaker
means (Neale, 1992). The same were later to become the target of efforts in compu-
tational pragmatics. Recently, and most notably, the RSA framework has been suc-
cessfully used to model hyperbole (Kao et al., 2014), irony (Kao and Goodman, 2015),
and politeness (Yoon et al., 2020). Hyperbole and irony rely on communicating af-
fect through exaggerated utterances and utterances with apparent meaning opposite in
polarity to the intended meaning, respectively, while politeness involves intentions of
conveying information falsely and out of care for the listener’s feelings. However, the
simulations of the same under the RSA model have not included a general model of core
affect. Instead, the affective component was modelled in a more rudimentary manner,
e.g. using table lookup (Kao et al., 2014) or experimental data (Kao and Goodman,
2015; Yoon et al., 2020), with much of the focus laid primarily on modelling prag-
matics. In our case, having developed a general model of emotion as presented in the
previous section, we integrate the two approaches for a more comprehensive and ex-
haustive treatment of these phenomena.

Eventually, a fourth simulation will be concerned with assessing the stochastic dy-
namics of the key component of the model, core affect. In this case, we will exploit a
publicly available dataset.

The logical organization of the simulations that follows is outlined at a glance in
Fig. 7.1.

Figure 7.1: The organization of the simulations (case studies 1, 2, 3 and 4) related to the
in-context communication acts between agents as grounded in their conceptual acts
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7.1 Case study 1: Hyperbole

People do not always mean what they say. Imagine meeting a friend in the city on a
warm summer day, and as they arrive they say: "It’s a million degrees today!". Their
utterance is not likely to be interpreted literally, i.e. it’s unlikely that the listener would
actually believe the air temperature to be a million degrees. The speaker is obviously
referring to the weather being unusually and overwhelmingly hot, and are exaggerat-
ing to express their annoyance with it. Such non-literal interpretation of exaggerated
utterances intended to convey affect is called hyperbole.

The RSA model can be modified in such a way to account for hyperbole. We pro-
ceed by first introducing this model, and then altering it so that it includes a richer
communicative context with an additional channel of communication revealing the
speaker’s affect.

Implementation details The context of our example is that of a listener waiting on the
speaker that went to buy a bottle of wine. As they approach they utter to the listener:
"It cost me s dollars!" with s being its price. The belief state space in this example just
refers to the range of actual costs of a bottle of wine

B = {Bs}Ss0
and it relies on the joint concept state C = {Cbottle, Cwine, Cprice} of bottle, wine, and
price. In the simulation, it is an increasing series of integers between s0 = 50 and a
S = 10000.

In virtue of previous experience on affordable prices of wine bottles, the listener
has at time t a prior belief which we denote P (Bs) = P (s). In what follows we drop
the time index t when not explicitly needed. The listener assumes that such beliefs are
common ground with the speaker.

At a single level of recursion to which we’ll limit this example, the pragmatic lis-
tener reasons about a pragmatic speaker reasoning about a literal listener as per the
original RSA model, but we introduce two modifications. Other than wanting to com-
municate an objective state of the world Bs, the speaker might have a different com-
municative goal, that of communicating his affect state F = V × A. In this example
this space is restricted only to arousal values a ∈ A. Under such circumstances, the
interpretation space for the utterance has an additional dimension. The RSA model
we introduced in the previous chapter is thus extended with a P (a | s) with a ∈ A,
a prior on affect given a world state, and a goal function gt : M → MX projecting
the speaker’s communicative goal from the full space of meaningsM = S × A to the
appropriate subspace MX .

To keep things simple, we assume the following:

• Words are sampled one-to-one according to agent’s beliefs state concerning the
prices of wine bottles:

P (w) ≈ P (w | L)
∑
C6=Cprice

P (C | B,L) = δw=s,

with words denoting pricesw ∈ {“fifty′′, “fifty one′′, . . . , “ten thousand′′}
and we are not considering a role for the language model LM at this level
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• the external action plan concerning the utterance action,Autt ∼ P (Ae | w,G,B),
to be sampled at this point simply is the one necessary to operationalize the deci-
sion of uttering a specific word under a given goal; the external motor execution,
since we are not dealing with speech production issues, is assumed to precisely
provide the exact corresponding utterance,

P (X utt | Re,Autt) = δu=w,

such that u ∈ UT = X utt = {“fifty′′, . . . , “ten thousand′′}

• the listener has perfect perception of the uttered sound in the environmental con-
text, u = Zutt(O(X utt))

Thus, given the above steps the execution of the plan for uttering u boils down to
the following:

Autt ∼ P (Ae | w,G,B)

u ∼ P (X utt | Re,Autt)

Let us now consider the literal listener’s perspective as simulated by the pragmatic
speaker. The literal listener, endowed with a prior on world states and the speaker’s
affect, by way of the meaning function [[u]](s) interprets the utterance without taking
into account the speaker’s communicative goals:

PLit(s, a | u) ∝ δ[[u]](s)P (a | s)P (s) (7.1)

The pragmatic speaker then maximizes the epistemic utility considering the literal
speaker’s inferred meaning, while minimizing their utterance cost cost(u):

PS(u | s, a, g) ∝ expαUS(u | s, a, g)

US(u | s, a, g) = logPLit(g(s, a) | u)− cost(u)
(7.2)

The pragmatic listener L1 finally performs Bayesian inference by simulating the prag-
matic speaker S1 and marginalizing over the intended communicative goal g:

PL1(s, a | u) ∝ PS1(u | s, a, g)P (a | s)P (s)P (g). (7.3)

We assume A = {0, 1} to represent at a very coarse grain (low/high) the affec-
tive dimension of arousal. Furthermore, the prior over prices P (s) as a distribution is
decreasing, with most probability mass lying at lowest prices, and very high prices
being far less likely. The prior of the arousal being high conditioned on the state
P (a = 1 | s = s̃) is the reverse, and increases as the communicated price increases.
The speaker may choose to communicate the price s, his arousal a consequent on the
price paid, or both s, a, with the prior over the three goals P (g) being uniform. We
ignore the utterance cost term cost(u).

The above concerns the basic model of hyperbole. We now consider the full com-
plex communicative context where the speaker’s utterance is accompanied by a facial
expression. In this case, the speaker beyond the conscious decision of making the ex-
ternal utterance action Autt, consciously or unconsciously “decides” for a non verbal
external action Af , a facial expression, that will generate an appropriate motor plan of
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facial muscles, Rf ∼ P (Rf | Af ), giving rise to an executed facial expression action
Xface ∼ P (X f | Rf ). Thus, a specific facial expression, say X f will be produced.

In addition, now the listener, under the assumption that she holds the same, common
ground affective perspective of the listener (prior on F ), will take advantage of the fact
that she actually observes the non verbal behaviour of the speaker, in particular his
facial expression.

The exteroceptive unimodal representation Y NV is thus obtained through the back-
ward inference Y NV ← ONV (Xface) and giving rise to an actual exteroceptive instan-
tiation of the RV Y NV in terms of the set of facial action units AU :

Y NV = AU

In the experimental setup, the facial expression represented via the AU set is inferred
from an actual image depicting a face that exhibits one of the standard expressions that
are considered to be related to basic categorical emotions in the affective computing
literature.

To sum up, the listener, other than using the prior on arousal and the utterance
for inference over the speaker’s intended meaning has additional information on the
speaker’s affective state relayed through the facial expression.

The listener exploits the joint distribution over facial expressions and affect P (AU, af )
with af denoting the arousal (here subscripted with f to distinguish it from the prior),
and upon observing the the speaker’s expression ÃU , uses her internal generative model
to infer a distribution of the speaker’s affect P (af | AU = ÃU). To include the inferred
affect af in their reasoning about the speaker’s intended meaning, the listener performs
weak cue integration over the conditional prior on arousal, and the one inferred from
the observed facial expression to arrive at the integrated arousal ā:

P (ā | s, AU) = P (a | s)P (af | AU) (7.4)

The only piece of the RSA inferential machinery that needs adjustment is the pragmatic
listener’s in eq. 7.3:

PL1(s, a | u) ∝ PS1(u | s, ā, g)P (ā | s, f)P (s)P (g) (7.5)

whereby the pragmatic listener simulates the pragmatic speaker by sampling from P (ā |
s, AU) instead of P (a | s). Note that the literal listener’s behaviour is unaltered and
sampled from the conditional prior on arousal.

As per the theoretical model, the surmised affective state underlying the speaker’s
beliefs cascades to the unfolding of an internal action plan which generates a physiolog-
ical regulation of the body, and, most importantly, an interoceptive prediction to make
meaning of the outcomes of the world, Yi

n ∼ P (Y i
n | Zi

t , Ft+1). The listener, grounding
in the same conceptual act structure, even in the absence of a concrete measurement of
the speaker physiological status, can rely on her own simulation.

Thus, the affect inferred from the facial expression sets off an internal simulation
loop where physiological signals are simulated in the listener’s system, and these in
turn end up reinforcing the listener’s estimate of arousal. Let P (Y i

1:N , ap) be the joint
distribution of N physiological signals Y i and arousal ap (subscripted for distinction).
The listener performs the following internal simulation to arrive at their estimate of
arousal, which in brief for this example boils down to the following steps:
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1. Sample the arousal inferred from the facial expression:

ãf ∼ P (af | AU = ÃU)

2. Sample the physiological signals conditioned on ãf :

Ỹ i
1:N ∼ P (Y i

1:N | ãf )

3. Use Ỹ i
1:N to get P (ap | Ỹ i

1:N)

The distribution from step three is then incorporated as a cue in Eq. 7.4 which then
becomes:

P (ā | s, AU, Ỹ i
1:N) = P (a | s)P (af | AU)P (ap | Ỹ i

1:N) (7.6)

And the pragmatic listener’s posterior instead becomes the following:

PL1(s, a | u) ∝ S1(u | s, ā, g)P (ā | s, AU, Ỹ i
1:N)P (s)P (g) (7.7)

We implement both P (AU, af ) and P (Ỹ i
1:N , ap) with a supervised probabilistic prin-

cipal component analysis model (sPPCA) (Yu et al., 2006) with Markov chain Monte
Carlo inference using the Pyro probabilistic programming language (Bingham et al.,
2019) in Python. The data used for training the two models was artificially generated
based on experimental relationships of the phenomena involved. As to the physiologi-
cal signals we use electrodermal activity (EDA), since it correlates well to the state of
arousal.

The electrodermal activity is a measure of the electrical skin resistance in the pres-
ence of sweat produced by the body. More precisely, when a condition of high sweat-
ing occurs, the electrical skin resistance drops down. A dryer skin produces essentially
higher resistance. Emotions with a prominent presence of positive or negative arousal,
such as excitement, stress or fear can induce fluctuations of skin conductivity (Lang
et al., 1993; Nakasone et al., 2005). A typical signal of this nature presents two main
additive components: a slowly changing tonic part, referred to as the skin conduc-
tance level (SCL), and a phasic skin conductance response (SCR), characterized by
rapidly changing peaks associated with short-term stimulus. In order to quantify the
SCR amplitude, a decomposition process over the original EDA signal is needed. The
adopted approach relies on the assumption that SCRs are caused by discrete episodes
of sudomotor bursts that can be approximated by an appropriate impulse response func-
tion (IRF). In particular, its dynamic can be modeled by a two-compartment diffusion
model, namely the ‘poral valve model’ (Edelberg, 1993) where the sweat is released to
the first compartment (sweat duct), floats to the second compartment (corneum) and is
eliminated by evaporation from the same. The Bateman bi-exponential function pro-
posed by Alexander et al. (2005) well describes the diffusion process, and is defined
as:

b(t) = c
(
e
−t
τ1 − e

−t
τ2

)
(7.8)

where τ1 measures the steepness of rise and τ2 its decay, while c is a constant term
for the gain. The deconvolution of original EDA signal with the IRF above permits to
extract the SCR components.
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7.1. Case study 1: Hyperbole

We followed the work of (Kreibig, 2010) to form the relationships between auto-
nomic nervous system activity parameters and the relevant affective dimensions. We
used the number of EDA peaks as a relevant identifier of the level of arousal, and the
two together form the inputs of the sPPCA model. The simulations of EDA are per-
formed using the neurokit2 package (Makowski et al., 2021). The relationship between
the facial expression and affective dimensions used for generating the data was formed
based on the facial action coding system (Ekman and Friesen, 1978), with action units
and affective dimensions forming the two inputs of the model. Exact Bayesian infer-
ence was used on the RSA models.

Results We first examine the results of the base model that are presented in figures
7.2 to 7.4. In fig. 7.2 the speaker utters 10000 as the price and the model correctly
infers that the speaker’s communicative intention was that of transmitting arousal, and
not the actual price. There is substantial probability mass on prices 50 and 51 with
the communicative goal of arousal. This is due to the prior on prices that is naturally
skewed towards lower prices. In contrast, a more certain posterior is seen in the case
of the utterance 500 in fig. 7.3 where the model again correctly infers the correct
communicative intention. The same is true of all other prices in between the two not
shown here. Finally, in fig. 7.4, where the speakers utters 50 the inference is again
correct with the model inferring that the communicative intention was to communicate
the price, and places a low probability mass over other prices.

These results show that in principle the RSA model is capable of modelling hy-
perbole. We now turn the modified model where other than the utterance, the listener
perceives a facial expression communicating arousal, which they then utilize for sim-
ulating physiological signals that in turn reinforce that arousal. The resulting arousal
value is then integrated as a cue with the prior, resulting in more intricate inferences of
the posterior.

In fig. 7.5 the listener hears 10000 and observes an angry facial expression. The
listener using their internal model infers a high probability of high arousal and the
physiological simulation reinforces it. Based on the utterance and on the final prob-
ability of high arousal after cue integration, the model infers as in the base case that
the speaker’s communicative intention was that of communicating arousal. Instead, the
same utterance but with a sad expression is represented in fig. 7.6. With sadness be-
ing marked by low arousal the model interprets the speaker’s communicative intention
as that of communicating price. This is a reasonable and expected result, where an
emotional expression made a statement with a low prior be much more likely. In other
words, it is the emotional expression, or rather the communicated emotional state of
the speaker that made an otherwise improbable inference probable.

The same is conclusion is evident in figures 7.7 and 7.8 that represent the posterior
for the utterance "500" with a happy facial expression and a sad expression, respec-
tively. A happy facial expression is commonly associated with a high value of arousal,
and in this case the inference is correct that the speaker wanted to communicate their
annoyance with the unreasonably high prices, instead of the literal meaning. Instead,
that same utterance accompanied by a sad facial expression turn the rather unlikely
communicative goal of the price actually being that high the most probable interpreta-
tion.
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Chapter 7. Simulations

Finally, for a reasonable price of 51 the result for the expression anger is depicted
in fig. 7.9. In this case, the strong prior on the price actually being that amount prevents
the model from inferring the speaker’s utterance as hyperbole, despite the expression
high in arousal.

The base case of hyperbole works because of two of its fundamental constituents:
the recursive Bayesian reasoning of the RSA model, and the priors over the prices and
arousal. The modifications introduced herein and the results thereof further underline
their importance, but also reveal the additional complexity an emotional dimension to
an exchange brings.
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State(price=50, arousal=False)

State(price=50, arousal=True)

State(price=51, arousal=False)

State(price=51, arousal=True)

State(price=500, arousal=False)

State(price=500, arousal=True)

State(price=501, arousal=False)

State(price=501, arousal=True)

State(price=1000, arousal=False)

State(price=1000, arousal=True)

State(price=1001, arousal=False)

State(price=1001, arousal=True)

State(price=5000, arousal=False)

State(price=5000, arousal=True)

State(price=5001, arousal=False)

State(price=5001, arousal=True)

State(price=10000, arousal=False)

State(price=10000, arousal=True)

State(price=10001, arousal=False)

State(price=10001, arousal=True)
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Figure 7.2: The posterior probability over all states for the hyperbole base model for the
utterance "10000".
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State(price=50, arousal=False)

State(price=50, arousal=True)

State(price=51, arousal=False)

State(price=51, arousal=True)

State(price=500, arousal=False)

State(price=500, arousal=True)

State(price=501, arousal=False)

State(price=501, arousal=True)

State(price=1000, arousal=False)

State(price=1000, arousal=True)

State(price=1001, arousal=False)

State(price=1001, arousal=True)

State(price=5000, arousal=False)

State(price=5000, arousal=True)

State(price=5001, arousal=False)

State(price=5001, arousal=True)

State(price=10000, arousal=False)

State(price=10000, arousal=True)

State(price=10001, arousal=False)

State(price=10001, arousal=True)
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Figure 7.3: The posterior probability over all states for the hyperbole base model for the
utterance "500".
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State(price=50, arousal=False)

State(price=50, arousal=True)

State(price=51, arousal=False)

State(price=51, arousal=True)

State(price=500, arousal=False)

State(price=500, arousal=True)

State(price=501, arousal=False)

State(price=501, arousal=True)

State(price=1000, arousal=False)

State(price=1000, arousal=True)

State(price=1001, arousal=False)

State(price=1001, arousal=True)

State(price=5000, arousal=False)

State(price=5000, arousal=True)

State(price=5001, arousal=False)

State(price=5001, arousal=True)

State(price=10000, arousal=False)

State(price=10000, arousal=True)

State(price=10001, arousal=False)

State(price=10001, arousal=True)
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0.5

0.6

Figure 7.4: The posterior probability over all states for the hyperbole base model for the
utterance "50".
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State(price=50, arousal=False)

State(price=50, arousal=True)

State(price=51, arousal=False)

State(price=51, arousal=True)

State(price=500, arousal=False)

State(price=500, arousal=True)

State(price=501, arousal=False)

State(price=501, arousal=True)

State(price=1000, arousal=False)

State(price=1000, arousal=True)
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State(price=1001, arousal=True)
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State(price=5001, arousal=True)
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Figure 7.5: The posterior probability over all states for the hyperbole base model for the
utterance "10000" and expression anger.
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State(price=50, arousal=False)

State(price=50, arousal=True)
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Figure 7.6: The posterior probability over all states for the hyperbole base model for the
utterance "10000" and expression sad.
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State(price=50, arousal=False)

State(price=50, arousal=True)

State(price=51, arousal=False)
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Figure 7.7: The posterior probability over all states for the hyperbole base model for the
utterance "500" and expression happy.
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State(price=50, arousal=False)

State(price=50, arousal=True)
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Figure 7.8: The posterior probability over all states for the hyperbole base model for the
utterance "500" and expression sad.
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State(price=50, arousal=True)

State(price=51, arousal=False)
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Figure 7.9: The posterior probability over all states for the hyperbole base model for the
utterance "51" and expression anger.
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7.2 Case study 2: Irony

In a non-ironic context, a speaker may want to communicate negative affect about a
situation (e.g. unhappiness about the cool temperature outside) instead of the precise
situation (the temperature outside), in which case choosing an exaggerated utterance
("It’s freezing outside!") effectively communicates negative affect and addresses the
question under discussion (QUD) or topic of conversation. A listener who reasons about
the speaker and QUD is then able to use his background knowledge to correctly infer
that the speaker is upset about the temperature. Irony, instead, is defined as utterances
whose apparent meanings are opposite in polarity to the speaker’s intended meaning.
In particular, since verbal irony involves expressing negative meanings with positive
utterances and vice versa, it calls for a rich space of affect that includes both positive
and negative affect states. For example, uttering "Oh, what lovely weather, let’s go the
beach!" while presented with below freezing atmospheric conditions would classify as
ironic.

We first present a case of how irony can be modelled in general by RSA, and then
proceed to extend the model to include inference on part of the speaker about both
the context in which the interaction is happening and its implications on the affect
the speaker might have experienced, and also similarly to the case of hyperbole, an
additional channel of communication through the listener observing the speaker’s facial
expression.

Implementation details The context of our example is that Alice (the listener) and
Bob (the speaker) are on a beautiful beach on a sunny day. A smiling Bob utters:
"Terrible!". What should Alice infer from the utterance and the context? What was
Bob’s communicative intention?

We assume a modelling perspective where the speaker’s intention is effectively con-
veyed in a single time instant, so we disregard the dynamics of the theoretical model.
First, assume at time t a discrete set of states corresponding to simple belief states of
weather states as conceptualized/inferred from viewed scenes (actual or captured by
photographs). This is the result of a belief update due to an observation action over the
external world At−1; i.e., Bt ∼ P (Bt | Bt−1,At−1), such that

B = {Bs1 , Bs2 , Bs3} = {terrible,ok,amazing},

where, for notational convenience we have dropped the time-index t, which in what
follows we will use only when needed.

Denote for simplicity P (s), s ∈ {s1, s2, s3} the prior probability over belief states
which can be instantiated in a given context. For instance, in a beach location, whether
in California or Sicily, higher prior probability may be placed on amazing and ok
than on terrible.

Clearly, in the given situation, which is observed by both Bob and Alice, if Bob
(the speaker) chooses to communicate amazing, he is just providing a plain, honest
description of the current state of affairs; differently, if Bob conveys terrible, he
might be making an ironic statement, or just lying, etc.

Performing the most probable inference is indeed the task of Alice (the listener),
who will use all the information available, including the possible affective states of the
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speaker.
At the mental level the core affect state F = V ×A provides a discretized/clustered

representation of the low-level continuous core-affect space, reflecting the affective
granularity of the subject. In this example, to simplify, we shall consider a rather coarse-
grained, binary representation of F :

v ∈ V = {−1, 1}

a ∈ A = {low, high}
Under such circumstances, priors over binary RV (V,A), conditionally on state s,

might be simply written,

PV (v | s) = Bern(v | πV (si))

PA(a | s) = Bern(a | πA(si))

where Bern() denotes the Bernoulli distribution, and

(πV (si), π
A(si)) = P (F | B = si,L)

Turning back to the speaker, in order to perform the speech action A1, Bob has to
choose a realizable communication goal g ∈ G ⊂ D, among his possible desires D
(in the BDI agent jargon). Formally, the goal represents the projection from the full
meaning space to the subset of interest to the speaker. The result might be any possible
subset MX of states and affect. For instance,

g(s, v, a) =


gs(s, v, a) = s,

gv(s, v, a) = v,

ga(s, v, a) = a.

The prior distribution on goals is chosen as a categorical distribution, whose pa-
rameters πGi represent the probability of sampling goal gi ∼ Cat(gi | πGi , i = s, v, a),
where the simplest case is represented by all πGi being equal (uniform sampling).

Much like to the hyperbole simulation, here we assume the following:

• Words are sampled one-to-one according to agent’s beliefs state concerning the
weather situation

P (w) ≈ P (w | L)
∑

C6=Cweather
P (C | B,L) = δw=s,

where w ∈ {“terrible′′, “ok′′, “amazing′′} and we are not considering a
role for the language model LM at this level

• the external action planAutt ∼ P (Ae | wt+1,G,B), to be sampled at this point, is
simply the one necessary to operationalize the decision of uttering a specific word
under a given goal; the external motor execution, since we are not concerned with
speech production issues, is assumed to precisely provide the exact corresponding
utterance,

P (X utt | Re,Autt) = δu=w,

such that u ∈ UT = X utt = {“terrible′′, “ok′′, “amazing′′}
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• the listener has perfect perception of the uttered sound in the environmental con-
text, u = Zutt(O(X utt)

In the mind of the actual listener (Alice), the communicative action plan Autt of
pragmatic Bob, under the assumptions stated above, unfolds as follows. The speaker
addresses a literal listener who represents an idealized, simple minded listener. The
literal listener L0 provides the base case for recursive social reasoning between the
speaker and listener. L0 interprets u literally without taking into account the speaker’s
communicative goals. Define the literal interpretation function [[u]] : S → Bool =
{0, 1}:

[[u]](s) = δu=s

The L0 inferential process, given the utterance u and communicative goal g, relies
upon the posterior

PLit(s, v, a | u, g) ∝ δu=sPV (v | s)PA(a | s)PS(s)

The pragmatic speaker S1, by generating an utterance u, aims at being informative,
as in Gricean theories of communication, but only with respect to a particular goal g or
topic, thus realizing a kind of relevance principle. This relevance is critical for deriving
non-literal interpretations.

To such end S1 relies on the inference of the literal listener’s posterior PLit(s, v, a |
u, g), to generate the most convenient utterance u under the given goal g via the poste-
rior:

PS1(u | s, v, a, g) ∝ PLit(s, v, a | u, g)P (u)

Recall that in RSA, S1 chooses utterances according to a softmax decision rule that
describes an approximately rational planner

PS1(u | s, v, a, g) ∝ eαU1(u|s,v,a,g)

where the parameter α tunes the speaker’s rational choice. The larger α is, the more
the speaker’s choice probabilities converge to a strict maximization of utility. The two
equations are equivalent in the case f α = 1.

At the top layer of inference, the pragmatic listener, L1, interprets utterance u to
update prior beliefs on meaning P (s) by taking into account how likely the speaker
would have been to produce the observed utterance u in various states and goals. To
such end L1 arrives at the following posterior:

PL1(s, v, a, g | u) ∝ PS1(u | s, v, a, g)PG(g)PV (v | s)PA(a | s)PS(s) (7.9)

We now complete the baseline irony inference with non-verbal cues. In this case,
the pragmatic listener is able to perceive the speaker’s facial expression which, other
than through the prior, provides an additional clue as to the affective state of the speaker.
Again, the speaker and listener share an external stimulus related to the context. They
see a wonderful picturesque beach in front of them on a sunny day. This stimulus
provides a category with its own affective meaning, to both listener and speaker, that
the listener exploits for setting the background mental simulation of the speaker.
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More formally, prior beliefs at current time are based on the conditional posterior at
previous time and are conditionally formed based on concepts available after the action,
P (Bt+1 | Ct,Lt+1).

Concepts are the formal result of the conceptualization act, which is summarized by
the conditional posterior distribution P (Ct | Ot). In this example we consider a simple
set of concepts states C ∈ L × F , where each concept is a joint state of a world label
and a valence/arousal, state concerning the external context, e.g,

C = {Cbeach, Csunny}

with Cbeach = (“beach′′, vbeach, abeach), Csunny′′ = (“sunny′′, vsunny, asunny), with
“beach′′, “sunny′′ ∈ L. In brief, beliefs are the inferential results due to the mapping
Oenv → B that both interlocutors experience and share over the common environmen-
tal outcomes Oenv. Belief states Bsi are in parallel supported by conceptual states
Cweather = {Csi}

In this simulation, differently from the previous one, we actually rely on the back-
ward inference P (Bt, Ct | Oenvt ,OSNVt ), where the environmental outcomes Oenvt are
presented to the agent’s in the form of static images representing beaches in a sunny
day.

More concretely, the implementation of the backward inference in the case of the
external stimulus related to the context is through an image captioning model. When
presented with an image, an image captioning model provides a verbal description of
image contents. In our case, for simplicity’s sake we keep only lemmatized nouns of the
generated description. In our example these words turn out to be beach and sunny.
These are looked up in the lexicon L containing English words and their associated
affective values based on experimental data. The three values, that is, the word, valence
and arousal, each form a concept (e.g. Cbeach), and the set of all such concepts is the
aforementioned C. The lexicon used is the NRC lexicon (Mohammad, 2018), and the
image captioning model used is a generic publicly available pretrained model.

Consequently, the probability of the overall affective state of the agents at this point
can be obtained by marginalizing with respect to the available lexicon

P (F | B,L) =
∑
L

P (C | B,L).

In addition, now the listener, under the assumption that she holds the same, common
ground affective perspective of the listener (prior on F ), will take advantage of the fact
that she actually observes the non verbal behaviour of the speaker, in particular his fa-
cial expression. As in this example we take into account both the affective dimensions,
we denote as P (AU,F ) = P (AU, v, a) the joint distribution of core affect F and the
perceived facial expression, with which the listener is equipped. The implementation
model of P (AU,F ) and the data used to train the model are the same as in the case of
hyperbole.

The contextual cues give rise the internal simulation loop of physiological states,
similar to the case of hyperbole, that evolves according to the following sampling steps
in the case of arousal:

1. Sample the arousal inferred from the observed context:

ãc ∼ P (ac | Oenv = ˜Oenv)
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2. Sample the physiological signals conditioned on ãc:

Ỹ i
1:N ∼ P (Y i

1:N | ãc)

3. Use Ỹ i
1:N to get P (ac | Ỹ i

1:N)

and analogously for valence. The contextual cues, the non-verbal cues and the physio-
logical cues are integrated according to the following expressions:

P (ā | Oenv, AU, Ỹ i
1:N) = P (ac | Oenv)P (af | AU)P (ap | Ỹ i

1:N)PA(a | s) (7.10)

P (v̄ | Oenv, AU, Ỹ i
1:N) = P (vc | Oenv)P (vf | AU)P (vp | Ỹ i

1:N)PV (v | s) (7.11)

The pragmatic listener’s posterior then becomes the following:

PL1(s, v, a, g | u) ∝PS1(u | s, v̄, ā, g)PG(g)P (ā | Oenv, AU, Ỹ i
1:N) (7.12)

P (v̄ | Oenv, AU, Ỹ i
1:N)PS(s) (7.13)

For what concerns the arousal estimate from physiological signal, we again rely on
EDA.

As to valence, we use heart rate (HR). Heart behaviour measured via electrocardio-
graphy is an important feature for affect measurement. Electrocardiography is the pro-
cess of recording electrical activity of the heart, typically involving electrodes displaced
on the skin. Its tracing consists of a sequence of well known patterns, including a P
wave (atrial depolarization), a QRS complex (ventricular depolarization) and a T wave
(ventricular repolarization), the main components of a single cardiac cycle, namely an
heartbeat. The time distance between two successive R peaks is referred as RR Interval
(RRI). This feature, and in particular the observation of the trend in the number of R
peaks, represents the basis of most of the analysis carried out on the electrocardiogram
signal. Indeed, the amount of complete heartbeats in a specific time window, referred
as heart rate (HR), is closely related to emotional arousal and linearly depends on the
activity of the sympathetic and parasympathetic nervous systems. Raw ECG tracing,
anyway, requires standard preprocessing to filter out noises and respiration trends. The
first ones, as in the case of EDA, are typically induced by power line interferences in
the recording instrumentation, as well as loss of contact between the electrodes and
the skin or motion artefacts. The respiration, on the other side, introduces a baseline
wander in the signal that may causes problems in the detection of peaks. Such wan-
der are characterised by a low frequency trend, that can be easily removed adopting an
high pass filter or a median filtering. The main steps of the ECG preprocessing can be,
therefore, summarised in three main consecutive steps:

1. de-trend and de-noise the raw ECG signal;

2. detect subsequent RR peaks looking at local maxima;

3. measure the time distance between two consecutive R peaks.

At the end of the aforementioned basic steps, the amplitude of the sample is computed
as the inverse of the time difference between consecutive R peaks and is placed at the
instant of the second R peak. In other experimental settings, the recorded cardiographic
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signal is the result of a blood volume pulse (BVP) sensor placed on a finger. This is a
non invasive mean to obtain an indirect measure of the heart rate, via the arterial oxy-
gen saturation of hemoglobin. This information, obtained via photoplethysmography
(PPG), consists in sending two lights at different wavelengths, namely 660nm (red light
spectrum) and 940nm (infrared light spectrum). The first wavelength is absorbed by
deoxyhemoglobin (Hb) and the second by hemoglobin (HbO2), which together affect
the blood stream. By considering the absorption levels it is possible to calculate the
heart rate with alternating vasodilatation and vasoconstriction. This signal is strictly
correlated with the heart rate measured via ECG and increases in presence of pleasant
stimuli Selvaraj et al. (2008). The value provided by PPG, indeed, corresponds to the
so called “instantaneous heart-rate” (Electrophysiology, 1996), namely the number of
times the heart would beat in one minute if the duration of successive cardiac cycles
were constant. Heart rate values are provided as the number of contractions of the
heart per minute (BPM) and directly relates to the RR distance, by following the basic
formula from the textbooks of physiology and medicine (Braunwald et al., 1998; Hall,
2010): RR[ms] = 60[sec] ∗ 1000/BPM .

Again, as in the arousal/EDA case, a synthetic simulation is performed such that
the agent has available the likelihood of the interoceptive cue about the current cardiac
status.

Results As in the previous example, we first examine the workings of the base model,
then proceed with a discussion of the modified model. Finally, we change the state
prior to see how it influences the posterior distribution.

The prior on the states is such that it is 50 times more likely to observe "ok" weather
and "amazing" weather than "terrible" weather. Figures 7.10, 7.11, 7.12 depict the
posterior for the three possible utterances respectively: "amazing", "ok" and "terrible".
For the utterance amazing the pragmatic listener correctly infers the state and that the
speaker’s communicative intention was to communicate the state with a high valence
and high arousal. There is however some probability mass on the same state but with
the goals of communicating their valence and arousal. In the case of "ok", the pragmatic
listener places almost the same probability mass on the speaker wanting to communi-
cate the state ok with high arousal, but is unsure of the valence being high or low. We
interpret the probability on the state amazing to be in this case due to the strong prior
on that state. Finally, when the speaker utters "terrible", the same is interpreted by the
listener as an ironic statement. The listener, using her prior knows it is highly unlikely
that the speaker was referring to the weather literally being terrible, and instead infers
the speaker had a different communicative goal, that of communicating their arousal.

These results demonstrate the capability of the model to make correct inference
over ironic statements. Now we proceed to the extended model in which, just as in the
previous case study, the listener perceives the speaker’s facial expression along with the
utterance. However, in this case the inference is over both valence and arousal instead
of only arousal, and the speaker is furthermore able to see the surroundings which all
together comprise a set of cues over the affective dimensions. These are integrated in
the inferential process and influence the posterior.

In the previous example uttering "terrible" produced an interpretation of the state-
ment as ironic. By definition of irony, negative utterances accompanied by positive
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affect should be interpreted as such. If the speaker chooses to accompany their utter-
ance of "terrible" with a smile, it should make the pragmatic listener even more certain
of the statement being ironic. The listener in addition has a strong prior for the weather
not being terrible and perceives the weather actually not being terrible. Indeed, the pos-
terior for this case is presented in fig. 7.13 and a larger probability mass is placed on
the state being amazing, with high valence and arousal, and the goal of communicating
arousal. Instead, under the same conditions, should the speaker instead of a smile ex-
press sadness, the statement should be perceived as less ironic as the facial expression is
more congruent with the speaker’s utterance. The posterior for that case is presented in
fig. 7.14. The pragmatic speaker confidently infers that the state the speaker refers to is
ok, with low valence and arousal, and that the speaker actually wanted to communicate
their valence. One might expect the inferred state to be terrible, however we remind
the reader that the prior is strongly skewed away from that state. Instead, the speaker’s
utterance is interpreted as an exaggeration in terms of its literal meaning with the aim
of communicating valence, in this case a disappointment the weather is not as nice as
they expected.

An emotional expression need not always alter the intended state or communicative
goal, but instead communicate concomitantly and parallelly an affective state alongside
an utterance. In the base example of the utterance "ok" the pragmatic listener was
indecisive about the speaker’s valence. Fig. 7.15 is depicted the posterior for the same
utterance accompanied by a happy expression. The posterior is largely similar, but
places a far greater probability mass on the valence being high due to the happy facial
expression of the speaker. The two channels of communication may interact in certain
contexts, but may also be parallel.

The prior over states influences heavily the inference the listener will make. It is
indeed a prerequisite for the successful interpretation of irony in the case of the base
model, but also in the case of the modified model plays a considerable role. To illustrate
its role we analyse the following three simulations with different state priors.

The first case is that of having a 10 times higher prior probability of the state being
ok instead of the other two states. The speaker utters "terrible" with a sad facial expres-
sion. The posterior, as depicted in fig. 7.16, reveals that the most likely interpretation
for the pragmatic listener is for the state ok and for the goal of communicating valence.
It should however be kept in mind that also in this simulation the observation of the in-
terlocutors’ surroundings which are that of perfect weather are included. In the second
case the prior over states is uniform, the speaker utters "terrible" with a neutral facial
expression. As might be expected, the inferred communicative goal is that the speaker
actually wanted to communicate the state terrible, as visible in fig. 7.17. Finally, in
the third example we have the converse case of irony. With a state prior for the state
terrible five times that of the other two states, the speaker utters "amazing" with a sad
facial expression, one that is incongruent to their utterance. The posterior, presented in
fig. 7.18, places confidently most of the probability mass on the state terrible with the
goal of communicating arousal, a result that is nearly the mirror image of the results in
figures 7.12 and 7.13.

From the above considerations we draw two main conclusions. Firstly, while a
working computational model of irony such as RSA is already a great advancement
towards better human-computer interaction, the complexity of human behaviour far
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exceeds that of only the linguistic domain. The alterations to the posterior introduced
by the modified model and the resulting interpretations highlight the importance of
non-verbal communication. Secondly, the importance of the prior knowledge shared
between the speaker and listener is paramount to successful interpretations of irony,
and other non-literal language uses. In our implementation of irony the priors are hard-
coded, but effort towards more automatic, general and diverse modelling of general
shared knowledge is central to further developments.
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Figure 7.10: The posterior probability over all states for the irony base model for the utterance
"amazing".
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Figure 7.11: The posterior probability over all states for the irony base model for the utterance
"ok".
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Figure 7.12: The posterior probability over all states for the irony base model for the utterance
"terrible".
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Figure 7.13: The posterior probability over all states for the modified irony model for the
utterance "amazing" and the expression happy.
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Figure 7.14: The posterior probability over all states for the modified irony model for the
utterance "amazing" and the expression sad.
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Figure 7.15: The posterior probability over all states for the modified irony model for the
utterance "ok" and the expression happy.
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Figure 7.16: The posterior probability over all states for the modified irony model for the
utterance "terrible" and the expression sad where the prior probability of state "ok" is ten
times that of the other states.
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Figure 7.17: The posterior probability over all states for the modified irony model for the
utterance "terrible" and the expression neutral with a uniform prior.
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Figure 7.18: The posterior probability over all states for the modified irony model for the
utterance "amazing" and the expression sad where the prior probability of state "terrible" is
five times that of the other states.
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7.3 Case study 3: Politeness

Your friend has a passion for the visual arts and enjoys painting, regardless of them
lacking notable talent in the field. One fine day they enthusiastically invite you for
coffee and proudly but shyly present you their latest artistic masterpiece and ask for
your opinion. You are presented with a piece of questionable aesthetic and artistic value
but you hear yourself utter "I like it!". They smile and say "Thank you!", knowing at
the same time that at least in part you said it out of politeness, being their friend and
caring for their feelings.

Most language models are not equipped to handle inference over such communica-
tive intentions as conveying information indirectly, falsely, or out of care for the lis-
tener’s feelings, as the assumption underlying them is that of an epistemic goal on part
of the speaker - conveying information accurately. However, the RSA model is capable
of modelling a speaker engaged in such an interaction with a listener who infers the
speaker’s intended motivations. We present the general model first, and then as in the
previous examples consider an extension that provides an additional channel of com-
munication, the speaker’s facial expression, revealing the speaker’s affective state in
regard to an external stimulus.

Implementation details The listener is curious about the rating the speaker gives the
drawing on a scale from 1 to 5, which defines the set of possible word states S =
{1, 2, 3, 4, 5}. The speaker may utter any of the following five utterances

UT = {"terrible", "bad", "okay", "good", "amazing"}

The literal listener will reason about the state s given the speaker’s utterance u in terms
of the literal meaning of the utterance (i.e. the literal interpretation function [[u]](s)),
employing their prior beliefs over the states P (s) to arrive at a posterior distribution
over world states:

PLit(s | u) ∝ δ[[u]](s)P (s) (7.14)

The pragmatic speaker considers the pragmatic listener seeking to maximize their util-
ity. However, instead of valuing only epistemic utility, the speaker is also interested in
not hurting the listener’s feelings. The speaker’s utility function is thus composed of
two terms: the usual surprisal based epistemic utility, and social utility:

Ue(u, s) = logPLit(s | u) (7.15)
Us(u, s) = EPLit(s|u)[V (s)] (7.16)

Social utility is calculated as the expected value of a transformation of the state of the
world inferred under the literal listener’s posterior. The transformation V is in our case
an affine transformation:

V (s) = as+ b (7.17)
a > 0 (7.18)

The pragmatic speaker is thus presented with a trade-off, they can either be sincere and
convey the true state of the world, or they can choose to be polite and lie by inflating
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their rating of the drawing. The choice is itself parameterized as a linear combination
of the two through the parameter φ. The speaker’s utility function then becomes:

U∗(u, s, φ) = φUe(u, s) + (1− φ)Us(u, s) (7.19)
0 ≤ φ ≤ 1 (7.20)

which they then use to choose their utterance:

PS1(u | s, φ) ∝ expαU∗(u, s, φ) (7.21)

The parameter φ represents the inclination of the speaker to be sincere instead of being
polite, a speaker with a value of φ closer to one will weigh being epistemic much
more in choosing the utterance, and vice versa. The pragmatic listener, instead, is
endowed with a prior distribution over the parameter φ which they then use to simulate
the speaker, finally arriving at a posterior distribution over the states s and the parameter
φ:

PL1(s, φ | u) ∝ S1(u | s, φ)P (s)P (φ) (7.22)

We now turn to the case where the listener other than hearing the speaker’s utter-
ance, also perceives the speaker’s facial expression. As in the previous simulations,
the exteroceptive unimodal representation Y NV is obtained through the backward in-
ference Y NV ← ONV (Xface) and gives rise to an actual exteroceptive instantiation of
the RV Y NV in terms of the set of facial action units. The listener is thus equipped
with a model of the joint distribution of the facial expression and valence P (AU, vf ).
The facial expression gives an additional cue to the listener as to the speaker’s actual
liking or disliking of the object through the valence generating the expression, and the
pragmatic listener uses it to infer the posterior on the state and parameter φ, i.e. the
speaker’s propensity for sincerity. This stimulus sets in motion an internal simulation
loop of physiological signals that in turn end up reinforcing the inferred affective state,
analogously to the previous two experiments.

Intuitively, the listener simulates a speaker who has two contradicting objectives:
that of correctly informing the listener, and that of being polite. With the added chan-
nel of communication through the facial expression, the speaker will in the case of
epistemic utility seek to express that which is coherent with their utterance. A bad
review will be accompanied by a facial expression communicating low valence, and
vice versa, a good review will be accompanied by an expression of high valence, e.g. a
smile. In the case of social utility, the speaker will nonetheless value more to facially
express happiness and contentment through high valence than otherwise, believing that
it will make the listener happy.

More formally, the speaker and listener are endowed with a prior over valence con-
ditional on the state. As in the example of irony we represent valence as a binary
variable, i.e. as being either high or low v ∈ V = {−1, 1}. The prior can thus be
expressed as

PV (v | s) = Bern(v | πV (si)) (7.23)

The literal listener uses this prior given an utterance u to arrive at the posterior over
meanings and valence:

PLit(s, v | u) ∝ δ[[u]](s)PV (v | s)P (s) (7.24)
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The pragmatic speaker simulates the pragmatic listener using their utility function U∗

to choose an utterance:

PS1(u | s, v, φ) ∝ expαU∗(u, s, v, φ) (7.25)

The speaker’s epistemic utility now has to also account for valence. We keep the spirit
the same as the base case and use the surprisal based epistemic utility, but in this case
over the joint posterior of the listener of meaning and valence. Should for a particular
utterance the speaker choose an unlikely facial expression under the literal listener’s
posterior, their epistemic utility will be lower. The speaker’s social utility is again the
expected value of a transformation of the state of the world inferred under the literal
listener’s posterior, but here we additively and analogously include valence. Note that
to calculate the expectations the speaker has to first marginalise the literal listener’s
posterior over valence and world states, respectively:

Ue(u, s, v) = logPLit(s, v | u) (7.26)

Us(u, s, v) = EPLit(s|u)[V
M(s)] + EPLit(v|u)[V

V (v)] (7.27)

with V S being the same function from eq. 7.17, and V V also being a linear transfor-
mation with different parameters. The two then form part of the speaker’s composite
utility U∗(u, s, v, φ) analogously to eq. 7.19:

U∗(u, s, v, φ) = φUe(u, s, v) + (1− φ)Us(u, s, v) (7.28)
0 ≤ φ ≤ 1 (7.29)

The trade off a speaker faces in choosing their action is a trade off between the
two aforementioned goals, an epistemic and a social goal. Given the parameter φ the
speaker through the optimization of U∗(u, s, v, φ) chooses the appropriate action Autt
that finally produces the utterance u. Both of the goals are intended and voluntary
social signaling the speaker makes, i.e. explicit goals Gexp, as described in the previous
section. However, the speaker may also have implicit goals, Gimp, which may come in
conflict with the explicit ones. Ideally, the listener would model both, as both represent
two possible sources of the observed outcome Xface. However, we restrict our analysis
to explicit goals Gexp.

Finally, exactly as in the previous examples the pragmatic speaker simulates the
pragmatic listener using the integrated cues at which point the pragmatic listener’s pos-
terior becomes:

PL1(s, φ | u,AU) ∝ S1(u | s, v̄, φ)P (v̄ | s, AU, p̃1,...,N)P (s)P (φ) (7.30)

The implementation models of the joint distribution of valence and face, P (AU, vf ),
and of the joint distribution of valence and physiological signals. P (Y i

1:N , vp), are the
same as in the two previous experiments.

Results As in the previous case studies, we first examine the inferences of the base
model and then consider the modified model and compare the two. Figures 7.19 to
7.22 depict the posterior over states and the parameter φ for the utterances "amazing",
"good" and "terrible", respectively. In the case of "amazing" the listener places the
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most probability on the state being amazing, but a considerable probability mass is dis-
persed on other states, most notably the state good that isn’t far behind. In addition, the
speaker is perceived as insincere, with the expected value of the posterior distribution
of φ being 0.37. In other words, the speaker is 37% sincere. This is in stark contrast
with the case of the utterance "terrible" where the inferred state is confidently terrible,
and the speaker is perceived as 76% sincere. In the case of "good" the listener infers the
most likely state to be okay instead of good, and the speaker is nonetheless perceived as
rather insincere. We interpret this result being due to two factors: the prior over states
given the utterance (which in this case is actually the literal listener’s posterior), and the
way the problem is fundamentally posed. Any positive statement has a possibility of
"coming" from either the speaker’s sincere opinion or their incentive to be polite. The
two coupled together provide the result that is seen here for the utterances "good" and
"amazing", i.e. positive statements may be viewed skeptically from the point of view
of sincerity.

terrible bad okay good amazing
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Expected State: 3.53

0.0 0.2 0.4 0.6 0.8 1.0
0.010

0.015

0.020

0.025

0.030

0.035
Expected = 0.37

Figure 7.19: The posterior probability of the states (left) and the parameter φ (right) of the
politeness base model for the utterance "amazing".

Turning to the modified model, in figures 7.23 and 7.24 are depicted the cases of
the utterance "okay" with a happy and sad facial expression, respectively, effectively
communicating high and low arousal. The effect the addition of facial expression has
on the posterior over the states is evident here. While in both cases the most likely state
for the listener is indeed ok, in the case of happy expression the rest of the probability
mass is largely placed on bad, and in the case of a sad expression it is largely placed
on more positive states. Both a high valence and low valence expression such as happy
and sad, respectively, are unlikely under the set prior for the state ok which is that of a
neutral valence. Curiously, however, only in the case of a sad expression is the speaker
perceived as insincere.

In a different vein, figures 7.26 and 7.25 present the posteriors for the utterance
"amazing" with a neutral and sad facial expression, respectively. There is little differ-
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terrible bad okay good amazing
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Figure 7.20: The posterior probability of the states (left) and the parameter φ (right) of the
politeness base model for the utterance "good".
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Figure 7.21: The posterior probability of the states (left) and the parameter φ (right) of the
politeness base model for the utterance "okay".
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terrible bad okay good amazing
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Figure 7.22: The posterior probability of the states (left) and the parameter φ (right) of the
politeness base model for the utterance "terrible".

ence between the base case for "amazing" and the one with the neutral expression. The
correct state is inferred but with a slightly higher probability placed on the state terrible.
We believe this to be due to the prior of high valence under the statement being high,
but at the same time observing a less likely neutral expression. However, a sad expres-
sion changes the inferred state making the state good more likely. Again, curiously
enough, in the case of a sad expression the speaker is perceived as slightly more sincere
at a mean value of φ of 0.48. However, the shape of the posterior on the parameter φ is
rather different than in the other examples. A mean value in this case does not represent
well the information the posterior presents. The shape of the curve is largely convex
with a sharp dip and local minimum around the value 0.2. A large probability mass
is placed on the values less than two, and another large portion on values higher than
two. In a certain sense, for the listener it is both likely that the speaker is sincere and
insincere.

While the results of the modified model are promising and do admit a sensible in-
terpretation for the posterior over the states, in general it seems to give answers that are
more difficult to intuitively interpret than in the other examples. This especially regards
the inference of the posterior of the parameter φ. This difficulty in finding an intuitive
interpretation might stem in part from the inherent complexity of the presented scenar-
ios. It would be unclear how to interpret even in real life should a friend utter "amazing"
with an extremely sad facial expression. Naturally one would not take seriously their
review, but might rather be concerned for the friend’s welfare as that reaction would be
highly peculiar, even bizarre. Nonetheless, these results further testify of the general
ability of the RSA approach to model highly complex linguistic phenomena, and not
only, but in general to model complex multimodal human communication.
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terrible bad okay good amazing
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Figure 7.23: The posterior probability of the states (left) and the parameter φ (right) of the
modified politeness model for the utterance "okay" and expression happy.
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Figure 7.24: The posterior probability of the states (left) and the parameter φ (right) of the
modified politeness model for the utterance "okay" and expression sad.
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Figure 7.25: The posterior probability of the states (left) and the parameter φ (right) of the
modified politeness model for the utterance "amazing" and expression sad.
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Figure 7.26: The posterior probability of the states (left) and the parameter φ (right) of the
modified politeness model for the utterance "amazing" and expression neutral.

7.4 Case study 4: Exploring core affect dynamics

Differently from previous experiments, here we focus on the dynamics at the core affect
level which is a key aspect of our model.

Recall that the phenomenological model by Kuppens et al. (2010), based on the
analysis of human collected data, posits that core affect dynamics is consequent on the
activity of a complex, open system. The latter is more suitably conceived as subject to
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stochastic variability resulting from the entanglement of many internal (and external)
activities that influence it. Across time, the core affect unfolding, as observed from the
sampling of experiential data, can be represented as a trajectory, i.e. a realisation of
a stochastic process. Such random path, an OU stochastic process, reflects the typical
pattern of affective changes and fluctuations that V/A levels undergo across time and
that characterise an individual Kuppens et al. (2010).

The aim of this simulation is thus to assess whether, as discussed in Section 6.6.2,
our model can reproduce such dynamics.

In this case, we can take advantage of a the publicly available dataset RECOLA
Ringeval et al. (2013). This dataset is a multimodal corpus of spontaneous collabo-
rative interactions in French. Aiming at studying the impact of emotional feedback
on teamwork quality and efficiency, 46 participants took part in the test where sev-
eral multimodal data, i.e., audio, video and physiological signals were recorded con-
tinuously and synchronously. In addition, 6 annotators concentrated on the labelling
of both the affective and social behaviours that were produced by participants during
their collaboration. As to affective behaviour, affect was measured continuously on
the two psychological dimensions of arousal and valence (corresponding to the process
F = {Ft, 0 ≤ t ≤ T}).

Implementation details The variational autoencoder (VAE) is an end-to-end latent vari-
able model based on deep neural networks fist introduced by Kingma and Welling
(2013). The VAE model posits a generative model as follows:

P (Z | O) =
P (Z,O)

P (O)
(7.31)

where the latent random variable Z captures the variability in the observed variable O.
The generative mapping p(x | Z) is commonly realized by a deep neural network which
allows for highly non-linear mappings in generation. However, this makes inference of
the posterior p(Z | O) intractable. The VAE hence uses a variational approximation
q(Z | O) by optimizing for the evidence lower bound or ELBO (see, Appendix C):

logP (O) ≥ −KL(Q(Z | O)‖P (Z)) + EQ(Z|O)[logP (O | Z)] (7.32)

The approximate posterior Q(Z | O) is originally a Gaussian N (µ, diag(σ)) whose
parameters are likewise the output of a non-liner mapping, usually a neural network. As
the inference model and the generative model are trained jointly, to allow the passage
of the gradient through the model, the so called "reparameterization trick" is applied
Z = µ+σε, where ε is sampled from standard multivariate Gaussian distribution. The
PGM of a VAE is depicted on the left of Fig. 7.27.

However, the VAE is not designed for capturing the dynamics of its latent space Z .
There are however different "flavors" of the VAE developed that tackle this issue (for
a comprehensive review see (Girin et al., 2021)). The variational recurrent neural net-
work (VRNN) model by Chung et al. (2015) models temporal dependence in the latent
space by introducing a prior through the hidden state of a recurrent neural network that
is motivated by the following factorization of the joint distribution:

P (O1:T ,Z1:T ) =
T∏
t=1

P (Ot | Z1:t,O1:t−1)P (Zt | O1:t−1,Z1:t−1). (7.33)
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Figure 7.27: Left: the PGM of the variational autoencoder. Right: The PGM of the multimodal
variational autoencoder introduced in the simulation; a graphical plate notation is used for
compacting the i : 1, . . . , N observables Oi

In what follows we briefly expose the workings of the VRNN model, extend it
to include several modalities, and apply it the problem of jointly modelling the facial
expression, prosody and affective state of a speaker through time. We introduce the
VRNN through its three parts: the generative model, the inference model and the loss
function.

The generative model of the VRNN is defined as:

ht = dh(ϕO(Ot−1), ϕZ(Zt−1),ht−1), (7.34)
[µθO

(Zt,ht),σθO(Zt,ht)] = dO(ϕZ(Zt),ht), (7.35)

PθO(Ot|Zt,ht) = N
(
Ot;µθO

(Zt,ht), diag{σ2
θO

(Zt,ht)}
)
. (7.36)

where ϕO and ϕZ are feature extractors (implemented as neural networks) of the inputs
O and the sample from the latent space Z , respectively. Eq. 7.34 is the recurrence
equation and effectively defines how the VRNN updates its hidden state ht. In other
words, it’s the transition function of the RNN. Equations 7.35 and 7.36 define the gen-
erative networks, i.e. the decoders that generate the observed variable x from the latent
space sample Zt and the hidden space of the RNN ht. The VRNN also has a prior
distribution over the latent space Zt:

[µθZ
(ht),σθZ (ht)] = dZ(ht), (7.37)

PθZ (Zt|ht) = N
(
Zt;µθZ

(ht), diag{σ2
θZ

(ht)}
)
. (7.38)

The inference model (the approximate posterior) is instead defined as follows:

[µφ(Ot,ht),σφ(Ot,ht)] = eZ
(
ϕO(Ot),ht

)
, (7.39)

Qφ(Zt|Ot,ht) = N
(
Zt;µφ(Ot,ht), diag{σ2

φ(Ot,ht)}
)
, (7.40)

with eZ being the encoding network. The inference model is inspired by the mean field
factorization (Eq. C.9, Appendix C), which here writes:

Q(Z1:T | O1:T ) =
T∏
t=1

Q(Zt | O1:t,Z1:t−1). (7.41)
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Zt−1 Zt Zt+1

ht−1 ht ht+1

Ot−1 Ot Ot+1

Zt−1 Zt Zt+1

ht−1 ht ht+1

Ot−1 Ot Ot+1

Figure 7.28: VRNN’s graphical model during generation (left) and inference (right).

The points of contact between the VAE and RNN components of the model are mani-
fold. To more easily understand the model the PGMs of the generative and inference
model are presented in fig. 7.28 (adapted from Girin et al. (2021)).

The optimization objective of the VRNN is a modified ELBO loss, which can be
obtained by Eq. 6.52 by omitting the controls U (but see the supplemental materials of
Chung et al. (2015) for a motivated derivation):

F (θ, φ;O1:T ) =
T∑
t=1

EQφ(Z1:t|O1:T )

[
lnPθO(Ot|O1:t−1,Z1:t)

]
−

T∑
t=1

EQφ(Z1:t−1|O1:T ) [KL (Qφ(Zt|Z1:t−1,O1:t) ‖ PθZ (Zt|O1:t−1,Z1:t−1))] .

(7.42)

For the purposes of our modelling problem, the VRNN lack a crucial component,
which is multimodality. We seek to model the joint distribution over time for N ob-
served modalities, P (O1

1:T , . . . ,ON1:T ,Z1T ), with the i-th modality being represented as
Oi (cfr. Fig. 7.27, right PGM). While different variations to the VRNN model abound,
there are only a few that are multimodal, such as Baruah and Banerjee (2020); Brito
et al. (2020); Ong et al. (2019a). As we were not aware of their work we independently
extended the VRNN to allow modelling of multimodal phenomena. We therefore in
what follows introduce these modifications, that in spirit somewhat resemble the work
of Brito et al. (2020), that allow it to be applied to the problem at hand.

Generally speaking, at a certain point in the model the modalities have to be fused
together. There’s more than one way to do that, but we took the naive approach of
not interfering with the terms relating to the latent space of the VRNN nor the hidden
space of its RNN as in the case of Baruah and Banerjee (2020) and Ong et al. (2019a).
Instead, we instantiate an encoder and a decoder for each of the modalities and perform
feature fusion before inference reaches the latent and hidden space. More specifically,
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the generative model is altered with respect to eq. 7.34 - 7.36 as follows:

ht = dh(ϕO(ψ1
τ (O1

t−1), . . . , ψNτ (ONt−1)), ϕZ(Zt−1),ht−1),

(7.43)
[µθO1

(Zt,ht),σθO1 (Zt,ht)] = dO1(ϕZ(Zt),ht), (7.44)
...

[µθON
(Zt,ht),σθON

(Zt,ht)] = dON (ϕZ(Zt),ht), (7.45)

PθO1 (O1
t |Zt,ht) = N

(
O1
t ;µθO1

(Zt,ht), diag{σ2
θO1

(Zt,ht)}
)
, (7.46)

...

PθON (ONt |Zt, ht) = N
(
ONt ;µθON

(Zt,ht), diag{σ2
θON

(Zt,ht)}
)
. (7.47)

The prior distribution remains unchanged, while an additional network ψiτ with param-
eters τ is instantiated for the i-th modality. This network serves as a feature extractor
for each of the inputs effectively reducing their dimensionality. The features of each of
the inputs concatenated together are then served to the encoder of the VRNN, changing
equations 7.36 - 7.38 as follows:

[µφ(O1:N
t ,ht),σφ(O1:N

t ,ht)] = eZ
(
ϕO(ψ1

τ (O1
t ), . . . , ψ

N
τ (ONt )),ht

)
, (7.48)

Qφ(Zt|O1:N
t ,ht) = N

(
Zt;µφ(O1:N

t ,ht), diag{σ2
φ(O1:N

t ,ht)}
)
. (7.49)

We assume the following factorization of the joint distribution:

P (O1:N
1:T ,Z1:T ) =

T∏
t=1

N∏
i=1

P (Oit | Z1:t,O1:t−1)P (Zt | O1:t−1,Z1:t−1). (7.50)

meaning that at time step t the observed modalities are conditionally independent given
Z1:t−1 and O1:t−1. The variational lower bound from eq. 7.51 then accordingly be-
comes:

F
(
θ, φ;O1:N

1:T

)
=

T∑
t=1

EQφ(Z1:t|O1:T )

[ N∑
i=1

lnPθOi (O
i
t|O1:t−1,Z1:t)

]
−

T∑
t=1

EQφ(Z1:t−1|O1:T ) [DKL (Qφ(Zt|Z1:t−1,O1:t) ‖ PθZ (Zt|O1:t−1,Z1:t−1))] .

(7.51)

A model such as the above modelling the joint distribution of all the modalities
has the advantage of being able to arbitrarily condition it upon any observed subset
of its inputs. To tackle the issue of missing modalities that is necessary for arbitrary
conditioning (regardless of the availability of data), a predetermined value is assigned
to the feature vector of that modality for that time step. Indeed, we actually condition
the model in many of the possible ways during training in order to force the model
to learn the meaning of a missing modality that we represent as an array of zeros of
appropriate size.
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Chapter 7. Simulations

We train the multimodal VRNN on the RECOLA dataset (Ringeval et al., 2013)
and we are interested in jointly modelling the facial expression, voice prosody and
the core affect of speakers. We first extract AUs from the video recordings using the
OpenFace software package (Baltrušaitis et al., 2016), and keep only the 17 AUs whose
activation intensity is measured, the scale being from 0 as the minimal activation, to 1
as the maximum. To represent prosodic features we extract the following audio features
with the librosa package (McFee et al., 2015): spectral centroid, chromagram, MFCC,
spectral rolloff and RMS with a window size of 0.5 seconds. Valence and arousal are
instead taken from the dataset as is. They are represented on a continuous scale of −1
to 1, respectively, with −1 being the lowest, 1 the highest value, and 0 representing
neutral. All the features are then resampled at a frequency of 3 Hz, synchronized, and
sequences of 6 second duration are created as inputs to the model. The sequence length
used, which was empirically determined, is intended to represent the mean life cycle
of an emotional episode. Instead, the data frequency was adjusted empirically to be
sufficiently low not to have overly slow training, and sufficiently large to not miss large
variations in the data. Finally, the model was trained for 100 epochs, with a batch size of
32, and a KL-annealing factor of 10−3. The dataset is composed of 24 sessions of which
4 were set aside as the test set, while the rest were used for training, which constitutes a
train/test split of approximately 83% : 17%. We also tried splitting the dataset in favour
of having a larger test set, but RECOLA as a whole being of rather modest size, and
deep neural networks being data hungry, the training performance was underwhelming
under such a split. Separating by sessions instead of randomly selecting sequences from
the whole dataset ensures that during testing any person specific information captured
during training won’t influence the testing results. All feature extractors of the VRNN
were implemented as multilayer perceptrons with a hidden size of 256. The number of
RNN cells were 20 with a hidden dimension of 32. The dimensionality of the feature
space is 64 for both the input data features and the hidden space features, while the
VAE latent space dimension is 256. The implementation was developed in the Python
programming language using the PyTorch deep learning library.

7.5 Discussion

Data from the test set sessions is split in sequences of same length as used for training,
and is then run through the model in three ways:

• reconstructing the valence and arousal given the AUs and audio features: P (xV At |
xF≤t, x

A
≤t), for all t in the sequence,

• reconstructing the valence and arousal given only AUs: P (xV At | xF≤t), for all t in
the sequence,

• reconstructing the valence and arousal given only audio features: P (xV At | xA≤t),
for all t in the sequence.

To measure the general performance of our model in reconstructing the core affect
sequences conditioning on both exteroceptive modalities, and to gauge the predictive
capabilities of each individual modality we reconstruct the sequences conditioning as
above, and calculate Pearson’s correlation coefficient (PCC) and root mean square error
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7.5. Discussion

bimodal face audio
PCC valence mean 0.61 0.60 0.50
PCC arousal mean 0.72 0.50 0.69
RMSE valence mean 0.09 0.10 0.14
RMSE arousal mean 0.15 0.23 0.14

Table 7.1: The PCC and RMSE between the original and reconstructed sequences of the test
dataset. Columns represent the conditioning used for reconstruction: both facial expression
and audio features (bimodal), only facial expression (face) and only audio features (audio),
respectively.

(RMSE) between the original and reconstructed sequences. The means of the PCC and
RMSE over all the sequences in the test dataset are presented in table 7.1 and visualized
in figures 7.29 and 7.30 for the bimodal case. A value of PCC closer to 1 is desirable
indicating that there is a strong linear relationship between the two sequences, while
the RMSE will ideally be close to 0.

In figures 7.31 and 7.32 are visualized the reconstruction and the original sequence
for a single sequence from the test set for valence and arousal, respectively, condition-
ing on both modalities. The same is plotted for both the affective dimensions in 3D in
fig. 7.33. Meanwhile, figures 7.34 and 7.35 are reconstructions conditioning only on
the facial expression, and similarly for figures 7.36 and 7.37 that are conditioned only
on the audio. For the first half of the sequence the model was conditioned on all the
three modalities (including affective), while for the remaining part only on on the ones
indicated.

The results indicate that as expected, bimodal conditioning confers more informa-
tion to the model for reconstructing valence and arousal well. The PCC and RMSE are
higher and lower, respectively, for the bimodal case. The PCC that theoretically ranges
from−1 to 1 lies between 0.5 and 0.75 in all conditioning cases indicating that a strong
linear relationship exists between ground truth and the reconstructed sequences, slightly
more so, however, for arousal than valence in the bimodal case. Similarly, the RMSE
is mostly lower for the bimodal case for both the affective dimensions, and in fig. 7.30
one can identify that most values lie below 0.2 for both valence and arousal, many
also nearing 0, and thus indicating good performance on that metric. Unsurprisingly, it
would appear from the two metrics that the facial expression is a much better predictor
of valence than prosody, while prosodic features are much better predictors for arousal.
We find that this is consistent with literature and is a further testament that the model
has successfully learned the joint distribution of the three modalities.

Turning to a more qualitative analysis of model performance, the above conclusions
are fortified by the graphs of the reconstructed and original sequences. The recon-
structed sequences appear to follow the general trend of the original sequence closely,
and also capture sudden changes in value. This justifies the PCC values in table 7.1
and effectively means that sudden facial and/or prosodic changes are reflected in the
model’s reconstruction of affective state (e.g. a sudden smile or smirk will cause a
jump in the value of valence). Similarly, fig. 7.35, depicting arousal reconstruction
from facial expression, and fig. 7.36, depicting valence reconstruction from prosodic
features, show a much lower correspondence to the original sequence in the latter half
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Figure 7.29: Pearson’s correlation coefficient of the reconstructed and original sequences of
valence and arousal
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Figure 7.30: RMSE of the reconstructed and original sequences of valence and arousal

of the sequence, justifying further the results in table 7.1 and the conclusion that facial
expressions are more relevant for inference of valence, and vice versa.
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Figure 7.31: Valence reconstructed and the original sequence for a segment of approximately
6 seconds. For the first half of the sequence the reconstructions were formed from all three
modalities, and the rest with facial and audio modalities.

In figures 7.38 and 7.39 are represented two plots of the original and reconstructed
trajectories of valence and arousal for two segments of two different test set sessions.
The reconstructions were conditioned on both facial expressions and prosodic features.
One can notice that the trajectories correspond closely and largely overlap in their
placement in the valence/arousal state space, and are furthermore similar in shape. Af-
fective dynamics can be successfully modelled by the Ornstein-Uhlenbeck stochastic
process (Oravecz et al., 2011). It can be argued that the observed similarity of the tra-
jectory placement and shape between the original and reconstructed sequences would
afford a similar fit of the parameters of the Ornstein-Uhlenbeck process, that is of the
home base (i.e. average position) and covariance matrix. This experiment is however
left as a future development of this work.

To further qualitatively examine what the model has learned, we condition on the
affective state and generate the corresponding facial expression. We then visualise the
expression through the generated AUs using the openFACS software package (Cuculo
and D’Amelio, 2019). The neutral expression of the openFACS avatar with all the AU
activations at zero is shown in fig. 7.41. In figures 7.42, 7.43 and 7.44 are presented
the generated expressions for a high value of valence, high value of arousal and a low
value of valence, respectively, while keeping the other affective dimension neutral. The
expression of high valence is clearly a smile and upon random generation shows consis-
tently high values of the cheek raiser (AU 6), lid tightener (AU 7), upper lip raiser (AU
10), lip corner puller (AU 12), dimpler (AU 14) and lips part (AU 25), a result consis-
tent with the literature definition of a smile. The expression of high arousal resembles a
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Figure 7.32: Arousal reconstructed and the original sequence for a segment of approximately
6 seconds. For the first half of the sequence the reconstructions were formed from all three
modalities, and the rest with facial and audio modalities.

contemptful expression with a tightening of the eyelids and puckering of lips. Indeed,
upon generation the brow lowerer (AU 4), lid tightener (AU 7) and lip suck (AU 28) are
consistently strongly activated. Finally, the expression for low valence has similar acti-
vations for the eye area, but the lip area is substantially more relaxed. The expression of
low arousal with valence remaining neutral doesn’t visually differ from the neutral ex-
pression which could partly be because the RECOLA dataset affective annotations are
scarce in that area, leading the model to not receive enough information during training
for proper generation. We find these results roughly conform to what one might expect,
and furthermore find the clear-cut smile an intriguing result.

Finally, fig. 7.40 depicts the training losses of the model for different conditionings
of the joint distribution used during training. All losses decline in an asymptotic manner
which is indicative of convergence, particularly in the case of single modalities. From
epoch 50 until the end of training is present a stronger decline in the loss for bimodal
and trimodal conditioning than for unimodal. We interpret this as the network first
learning to reconstruct the single modalities and later in training focuses on learning
the dependencies between them.

It is worth remarking that, in spite of the promising results obtained through the
core affect dynamics simulation presented in Section 7.4, these should be taken with
caution. In the RECOLA dataset, much like other datasets exploited in the practice of
machine-learning oriented affective computing, valence/arousal continuous labelling is
provided as produced by external human “labellers”. This is not an innocent step from
a conceptual point of view. On the one hand, even in the case the labellers are pro-
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Figure 7.33: Both valence and arousal reconstructed and the original sequence for a segment of
approximately 6 seconds. For the first half of the sequence the reconstructions were formed
from all three modalities, and the rest with facial and audio modalities.

fessionally trained (e.g., psychologists), nothing grants that a reliable “ground truth” is
eventually produced. Measuring general affective and more specific emotional changes
is complex and fraught with difficulties (Quigley et al., 2013). This is a caveat that
should always be taken seriously, as scrutinized in-depth, in terms of validity, by Bar-
rett et al. (2019). Unfortunately, in the case of affective behaviour, we are far from the
standard conditions that we encounter, for instance in computer vision, where classes of
objects and events (e.g., actions) of interest can be objectively categorized; to the point
that labelling activity, in that case, can be performed via crowdsourcing. Obviously,
this is an intrinsic limitation to the effort of scaling to large datasets.

On the other hand, it might be argued that third person labelling could be replaced
by participant self-labelling or self-evaluation, but even in this case results, based on
the perceived affect state, can be flawed if experimental conditions are not appropriately
controlled. In emotion research, experiential sampling has been proposed (Hoemann
et al., 2020a; Christensen et al., 2003). The term “experience-sampling” refers to a set
of empirical methods that are designed to allow respondents to document their thoughts,
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Figure 7.34: Valence reconstructed and the original sequence for a segment of approximately
6 seconds. For the first half of the sequence the reconstructions were formed from all three
modalities, and the rest with only the facial modality.

feelings, and actions outside the walls of a laboratory and within the context of everyday
life (the experiment by Kuppens et al., 2010 could be taken as a simplified example).
However, experience-sampling is time and resource-intense participants, and provides
a challenge to even the most seasoned researcher in the psychology field (Quigley et al.,
2013). Clearly, this poses a real problem, probably unsolvable, if the goal is to deliver
a large multimodal dataset for experimental purposes

In brief, we have here a critical and cogent issue that the affective computing field
will have to confront with in the future to claim the validity of results. In parallel, as
previously mentioned, an effort should be put on developing machine learning tech-
niques capable of facing “small” sample datasets.

A final comment is worth concerning the fourth simulation (core affect). In that
case, the choice of an implementation model based on the VAE architecture might
prima facie be at variance with a possible choice of an implementation model relying
on a predictive coding scheme. However, this is not the case. As it has been recently
shown by Marino (2021), the computation graph for standard predictive coding and that
of the VAE relying on direct amortized inference share striking commonalities. These
are even more pronounced when VAE parameter learning is performed via iterative
amortized inference (Marino et al., 2018).
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Figure 7.35: Arousal reconstructed and the original sequence for a segment of approximately
6 seconds. For the first half of the sequence the reconstructions were formed from all three
modalities, and the rest with only the facial modality.
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Figure 7.36: Valence reconstructed and the original sequence for a segment of approximately
6 seconds. For the first half of the sequence the reconstructions were formed from all three
modalities, and the rest with only the audio modality.
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Figure 7.37: Arousal reconstructed and the original sequence for a segment of approximately
6 seconds. For the first half of the sequence the reconstructions were formed from all three
modalities, and the rest with only the audio modality.
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Figure 7.38: The original and the reconstruction of the valence/arousal trajectories for a por-
tion of a session from the test set (session P30). Both valence and arousal take values in
[−1, 1], with 0 being neutral and −1 and 1 the lowest and highest values, respectively.

196



i
i

“output” — 2022/6/29 — 15:28 — page 197 — #205 i
i

i
i

i
i

7.5. Discussion

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Valence

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ar
ou

sa
l

Original
Reconstructed

Figure 7.39: The original and the reconstruction of the valence/arousal trajectories for a por-
tion of a session from the test set (session P56). Both valence and arousal take values in
[−1, 1], with 0 being neutral and −1 and 1 the lowest and highest values, respectively.
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Figure 7.40: A plot of the training loss as defined in eq. 7.51 over the various conditionings
of joint distribution during training. Epoch loss is the mean loss over all conditionings in
an epoch. Bimodal loss is the mean of all conditionings with two modalities. The remaining
three losses are respectively over the single modalities.

Figure 7.41: The neutral expression of the openFACS 3D face animation system.
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Figure 7.42: The facial expression generated by the model using a high value of valence and
visualised with the openFACS 3D face animation system.

Figure 7.43: The facial expression generated by the model using a high value of arousal and
visualised with the openFACS 3D face animation system.
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Figure 7.44: The facial expression generated by the model using a low value of valence and
visualised with the openFACS 3D face animation system.
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CHAPTER8
Conclusions: What next?

IN the present dissertation we aimed at devising a theoretical model addressing our
initial research question of how language and emotions intertwine with one an-
other.

Indeed, the main contribution achieved is that of a Bayesian model spelling in the
language of probability a viable bridge that connects the Conceptual Act Theory con-
structivist approach to emotions and the Rational Speech Act framework for pragmatic
inference based on contextual social reasoning, beyond the literal meanings of words.

To such end, we have carefully scrutinized and drawn from a broad spectrum of
studies concerning most recent results achieved in the neurobiology and psychology of
emotion and language. In order to take stock of such results in a principled way, our
methodological stance was soundly grounded in the tradition of the rational analysis of
behaviour.

To the best of our knowledge, this is the first effort in such direction.
In our view, the model offers a radical departure from the vast majority of cur-

rent approaches in the affective computing field, where the deep learning wave often
boils down to foster an end-to-end perspective that is likely to widen the gap with
respect to the exciting results achieved in Affective Science, which require a truly in-
terdisciplinary lens that blends questions and tools from far-ranging fields. Indeed, we
have shown how a sound theoretical approach might offer a different perspective, both
conceptual and practical, for exploiting most recent advances in the machine learning
arena.

The work presented here, obviously, suffers from many limitations. The prominent
one, at least in our view, is the lack of a unified implementation model mapping au pair
the theoretical model so far devised. This state of affairs has at least a twofold justifica-
tion. The first relates to the well known underdeterminacy of the theoretical level of ex-
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planation with respect to the implementation or realization level. On the one hand, this
issue can be seen as a drawback of the rational analysis approach to modelling in gen-
eral, and it has often raised criticisms in theoretical neuroscience and psychology, from
an epistemological standpoint, concerning the generality of the Bayesian approach in
particular. On the other hand, it is an opportunity to shed light on current controversies,
markedly those concerning the very nature of the “computational brain”. For instance,
we have seen how the predictive coding emerges and performs a useful function in the
service of Bayesian inference. This suggests that predictive coding and free energy
approaches should be understood not as a computational level of explanation, but as
a Marrian implementation motif; in neurobiology, a common pattern that can emerge
in neural circuits subserving fundamentally different computations. In turn, predictive
coding might be subject to different representational schemes. Representational borders
blur when resorting to advanced machine learning tools. An implementation pluralism
could even be a strategic choice for addressing different application fields. For in-
stance, while we were completing the writing of this thesis, a work has been published
by Sennesh et al. (2022), concerning interoception and allostasis in the framework of
optimal control theory. This model re-conceptualizes approximate posterior belief as
handled by active inference and free energy-based approaches as a feedback controller,
according to the interpretation coming from the path-integral control literature. Though
aimed to the interoception problem (a sub-component of our model), this could be suit-
ably extended to our purposes. This view could be important for coping with robotics
application, where the real body, hardware constraints pose severe restrictions to allow-
able implementation modelling. Similar concerns can rise for other applications where
our model might play a role, e.g., the “hot” fields of empathic image captioning and
dialogue models.

The second, more practical, is a current lack of a suitable dataset where different
implementation models might be learned and be put into competition with one another.
We have largely commented on this tricky issue already, but it is a cogent one for the
affective computing realm. Gathering data is costly, and labeling data more so. La-
beling the affective dimensions for a large dataset requires an exorbitant investment of
time and resources. The alternative, as mentioned before, is to adapt the modelling
approach to small sample datasets. Efforts should be invested into developing machine
learning techniques capable of learning and generalizing well over datasets of mod-
est size. Finally, current research work we are pursuing is considering these issues,
and in particular the labeling/ground truth problem. Words and phrases carry affective
connotations, as do nonverbal cues. Labeling the two separately, and then additionally
labeling them together may provide insight into how humans convey affect, when these
different modes of communication tell the same story, when they diverge, and what are
the implications thereof.

Overall, we hope that this humble contribution will pave the way for novel insights
and findings in the fascinating conundrum of the entanglement between language and
emotions.
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APPENDIXA
Probabilistic Graphical Models

PROBABILISTIC graphical models (PGM) allow to enormously simplify complex
joint distributions using conditional independence property in order to achieve
factorizations directly by inspection of the graph, and without having to perform

any analytical manipulations.
First of all, let recall that conditional independence properties play an important role

in using probabilistic models for pattern recognition by simplifying both the structure
of a model and the computations needed to perform inference and learning under that
model. Furthermore, it is more frequent the case in which two events are independent
given an additional event with respect to the case where events are independent tout
court.

Focusing on random variables, let X , Y and Z be three variables such that the
conditional distribution of X given Y and Z does not depend on the values of Y . We
say that X is conditionally independent of Y given Z if

P (X|Y, Z) = P (X|Z).

The same can be expressed by considering the joint distribution ofX and Y conditioned
on Z, i.e.

P (X, Y |Z) = P (X|Y, Z)P (Y |Z) = P (X|Z)P (Y |Z).

The definition of conditional independence requires that the above factorization holds
for all possible values of Z; to denote this property, we use the shorthand notation

(X⊥Y | Z).

Note that this property can be easily extended to sets of random variables X,Y and Z,
in this case we say that X is conditionally independent of Y given Z in a distribution
P if the latter satisfies (X⊥Y | Z).

203



i
i

“output” — 2022/6/29 — 15:28 — page 204 — #212 i
i

i
i

i
i

Appendix A. Probabilistic Graphical Models

A probabilistic graphical models is a pair G = 〈V , E〉 of sets called nodes and
edges, respectively. The nodes denote random variables V = {X1, . . . , Xn}, while the
edge set collects directed edgeXi → Xj between pair of nodesXi, Xj ∈ V . We denote
by Xpa(i) the parents of node Xi in the graph, and by Xpred(i) the variables in the graph
that are not descendants of Xi. We say that X1, . . . , Xk form a path if Xi → Xi+1,
for all i = 1, . . . , k − 1. A cycle in G is a directed path X1, . . . , Xk where X1 = Xk.
A graph is acyclic if it contains no cycles. Naturally, to avoid cycles in our graph we
cannot have both Xi → Xj and Xj → Xi.

A directed acyclic graph (DAG) is a key concept to define a coherent probabilistic
model, as DAGs are the basic graphical representation that underlies Bayesian net-
works. A formal definition of the semantics of a Bayesian network structure is given in
the following.

Definition A.1. A Bayesian network (BN) structure G = 〈V , E〉 is a DAG encoding for
each node Xi the conditional independence assumptions of its nondescendants given
its parents:

∀Xi ∈ V : (Xi⊥{Xpred(i)\pa(i)} | Xpa(i)).

In other words, G encodes a set of conditional independence assumptions, called
the local independence, and denoted by Il(G).

However, a BN graph could be defined also in terms of a joint distribution P rep-
resentable as a set of conditional probability distributions (CPDs) associated with the
graph G. Specifically,

Definition A.2. Let P be a distribution over X . We define I(P ) to be the set of inde-
pendence assertions of the form (X⊥Y | Z) that holds in P .

Given this definition, we can derive that Il(G) ⊆ I(P ), and we say that G is a I-map
(independency map) for P . More broadly:

Definition A.3. Let K be any graph object associated with a set of independencies
I(K). We say that K is an I-map for a set of independencies I if I(K) ⊆ I.

We can now say that G is an I-map for P if G is an I-map for I(P ). Let note that,
the direction of the inclusion requires that any independence that G asserts must also
holds in P , but not the vice versa, that is P could have independencies not reflected in
G.

These key concepts allow the compact factorized representation, fundamental for
the BN manipulation. Precisely,

Definition A.4. Let G be a BN graph over the variables X1, . . . , Xn. We say that a
distribution P over the same space factorises according to G if P can be expressed as a
product:

P (X1, . . . , Xn) =
n∏
i=1

P (Xi | Xpa(i)). (A.1)

The individual factors P (Xi | Xpa(i)) are the CPDs or local probabilistic models,
and the whole equation is called the chain rule for BNs.
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Definition A.5. A BN is a pair B = (G, P ) where P factorizes over G, and where P
is specified as a set of CPDs associated with G’s nodes. The distribution P is often
annotated as PB.

The conditional independence assumptions implied by a BN structure G allow us
to factorize a distribution P for which G is an I-map into small CPDs as stated in the
following theorem (see Koller and Friedman (2009) for the demonstration).

Theorem A.1. Let G be a BN structure over a set of RVs X , and let P be a joint
distribution over the same space. If G is an I-map for P , then P factorizes according
to G.

Theorem A.1 proves the factorization of P according to G, but also the converse
holds: factorization according to G implies the associated conditional independencies.

Theorem A.2. Let G be a BN structure over a set of random variables X and let P be
a joint distribution over the same space. If P factorizes according to G, then G is an
I-map for P .

We now move to understand when we can guarantee that an independence (X⊥Y |
Z) holds in a distribution associated with a BN structure G.

Definition A.6. Let G be a BN structure, and X1 � · · · � Xn a trail in G. Let Z be a
subset of observed variables. The trail X1 � · · ·� Xn is active given Z if

• Whenever we have a v-structure Xi−1 → Xi ← Xi+1, then Xi or one of its
descendants are in Z;

• no other node along the trail is in Z.

Graphs where there are more than one trail between two nodes, give rise to the no-
tion of d-separation, standing for directed separation, which provides us with a notion
of separation between nodes in a directed graph:

Definition A.7. Let X,Y,Z be three sets of nodes in G. We say that X and Y are
d-separated given Z, denoted d-sepG(X; Y | Z), if there is no active trail between any
node X ∈ X and Y ∈ Y given Z. We use I(G) to denote the set of independencies
that correspond to d-separation: I(G) = {(X⊥Y | Z) : d-sepG(X; Y | Z)}.

This set is also called the set of global Markov independencies.
A first property we want to ensure for d-separation as a method for determining

independence is soundness: if we find that two nodes X and Y are d-separated given
some Z, then we are guaranteed that they are, in fact, conditionally independent given
Z. To prove this it holds

Theorem A.3. If a distribution P factorizes according to G, then I(G) ⊆ I(P ).

In other words, any independence reported by d-separation is satisfied by the un-
derlying distribution. Also the complementary property, the completeness, is desirable.
This holds if d-separation detects all possible independencies, that is, given two vari-
ables X and Y independents given Z, then they are d-separated. To formalize this
property, we first introduce the notion of faithful distribution:
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Appendix A. Probabilistic Graphical Models

Definition A.8. A distribution P is faithful to G if, whenever (X⊥Y | Z) ∈ I(P ), then
d-sepG(X; Y | Z).

In other words, any independence in P is reflected in the d-separation properties of
the graph. We can now introduce this result:

Theorem A.4. For almost all distributions P that factorize over G, that is, for all
distributions except for a set of measure zero in the space of CPD parameterizations,
we have that I(P ) = I(G).

This shows that there exists a single distribution that is faithful to the graph, that is,
where all of the dependencies in the graph hold simultaneously. Second, not only does
this property hold for a single distribution, but it also holds for almost all distributions
that factorize over G.

These results state that for almost all parameterizations P of the graph G (that is, for
almost all possible choices of CPDs for the variables), the d-separation test precisely
characterizes the independencies that hold for P .

Aiming at finding a graph G that precisely captures the independencies in a given
distribution P , we define the perfect map:

Definition A.9. We say that a graphK is a perfect map (P-map) for a set of independen-
cies I if we have that I(K) = I. We say thatK is a perfect map for P if I(K) = I(P ).

In many domains, we wish to represent distributions over systems whose state
changes over time. In these cases, we wish to construct a single, compact model that
captures the properties of the system dynamics, and produces distributions over differ-
ent trajectories.

Our focus is on modeling dynamic settings, where we reason about how the state
of the world evolves over time. We can model such settings in terms of a system state
whose value at time t is a snapshot of the relevant attributes (hidden or observed) of
the system at that time. We assume that the system state is represented, as usual, as
an assignment of values to some set of random variables X . We use X(t)

i to represent
the instantiation of the variable Xi at time t. For a set of variables X ⊆ X , we use
X(t1:t2), (t1 < t2) to denote the set of variables X(t) : t ∈ [t1, t2]. An assignment
of values to each variable X(t)

i for each relevant time t correspond to a trajectory in
our probability space. Our goal therefore is to represent a joint distribution over such
trajectories. Clearly, the space of possible trajectories is a very complex probability
space, so representing such a distribution can be very difficult. We therefore make a
series of simplifying assumptions that help make this representational problem more
tractable.

The first simplification concerns the discretization of the timeline into a set of time
slices: measurements of the system state taken at intervals that are regularly spaced
with a predetermined time granularity ∆. Thus, we can now restrict our set of random
variables to X (0),X (1), ..., where X (t) are the ground random variables that represent
the system state at time t ·∆. This assumption simplifies our problem from representing
distributions over a continuum of random variables to representing distributions over
countably many random variables, sampled at discrete intervals.
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Let consider a distribution over trajectories sampled over a prefix of time t =
1, ..., T , P (X (0),X (1), ...X (T )), abbreviated as P (X (0:T )). We can reparameterize the
distribution using the chain rule for probabilities, in a direction consistent with time:

P (X (0:T )) = P (X (0))
T−1∏
t=0

P (X (t+1) | X (0:t)). (A.2)

A considerably simplification of this formulation is obtained adopting the Markov as-
sumption, that is that the future is conditionally independent of the past given the
present:

Definition A.10. We say that a dynamic system over the template variables X satisfies
the Markov assumption if, for t ≥ 0,

(X (t+1)⊥X 0:(t−1) | X (t)).

Such system is called Markovian.

The Markov assumption allows to simplify the distribution in eq. A.2 as:

P (X (0:T )) = P (X (0))
T−1∏
t=0

P (X (t+1) | X t).

A last simplification assumption concerns the system stationarity:

Definition A.11. We say that a Markovian dynamic system is stationary (also called
time invariant or homogeneous) if P (X (t+1) | P (X t)) is the same at all t. In this case
we can represent the process using a transition model P (X ′ | X ), so that, for any t ≥ 0,

P (X (t+1) = ξ′ | X t = ξ) = P (X ′ = ξ′ | X = ξ).

Definition A.12. A 2-time-slice Bayesian network (2-TBN) for a process over X is a
conditional Bayesian network over X ′ given XI , where XI ⊆ X is a set of interface
variables.

Remembering that, in a conditional Bayesian network, only the variables X ′ have
parents or CPDs. The interface variables XI are those variables whose values at time t
have a direct effect on the variables at time t+ 1. Thus, only the variables in XI can be
parents of variables in X ′. Overall, the 2-TBN represents the conditional distribution:

P (X ′ | X ) = P (X ′ | XI) =
n∏
i=1

P (X ′i | X ′pa(i)).

Definition A.13. A dynamic Bayesian network (DBN) is a pair 〈B0,B→〉, where B0 is a
Bayesian network over X (0), representing the initial distribution over states, and B→ is
a 2-TBN for the process. For any desired time span T ≥ 0, the distribution over X (0:T )

is defined as a unrolled Bayesian network, where, for any i = 1, ..., n:

• the structure and CPDs of X (0)
i are the same as those for Xi in B0,

207



i
i

“output” — 2022/6/29 — 15:28 — page 208 — #216 i
i

i
i

i
i

Appendix A. Probabilistic Graphical Models

• the structure and CPD of X (t)
i for t > 0 are the same as those for X ′i B→.

Thus, we can view a DBN as a compact representation from which we can generate
an infinite set of Bayesian networks (one for every T > 0).
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APPENDIXB
Bayesian Inference and Predictive coding

The idea of the brain as a predictive machine (the Bayesian brain) has gained currency
in cognitive and theoretical neuroscience in contrast to traditional stimulus-response
“feedforward” frameworks (see, Vilares and Kording, 2011; De Ridder et al., 2014;
Aitchison and Lengyel, 2017; Chater et al., 2020; Colombo and Seriès, 2020; Yon and
Frith, 2021; Marino, 2020; ?, for general reviews and problems). According to these
theories, the Bayesian brain can be conceptualized as a probability machine that con-
stantly makes predictions about the world and then updates them based on what it
receives from the senses (De Ridder et al., 2014). This idea has a longstanding history,
taking roots in early cybernetics, and has fostered a variety of approaches up to most
recent generative models in deep learning (Marino, 2020); its conceptual development
is summarized in Figure B.1

The predictive coding model of Rao and Ballard (1999) assumes that the areas com-
prising the cortical hierarchy implement a hierarchical generative model of the sensory
world. The neural activities at each level of the hierarchy represent the brain’s internal
belief of the hidden causes of the stimuli at a particular abstraction level. Furthermore,
the model assumes that the top-down feedback connections from higher to lower order
cortical areas convey predictions of lower-level activities. The bottom-up feedforward
connections in turn convey prediction errors, calculated as the difference between the
top-down predictions and actual activities. The neural activities at each level represent
the beliefs about the hidden causes. These are jointly influenced by both the top-down
predictions and the bottom-up error signals. Overall, the model assumes the goal of
the cortex is to minimize prediction errors across all levels. The above neural opera-
tions can be interpreted within a Bayesian framework: the top-down predictions convey
prior beliefs based on learned expectations while the bottom-up prediction errors carry
evidence from the current input. Predictive coding combines these two sources of in-

209



i
i

“output” — 2022/6/29 — 15:28 — page 210 — #218 i
i

i
i

i
i

Appendix B. Bayesian Inference and Predictive coding

Figure B.1: Conceptual evolution of the brain as a predictive machine from early cybernetics
(top left) to the predictive coding and Bayesian Brain hypothesis in theoretical neuroscience
and deep generative models in machine learning (e.g. Restricted Boltzmann Machines, vari-
ational autoencoders, etc.) Adapted from ?
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Figure B.2: The general architecture of the hierarchical predictive coding model. Feedforward
connections carry bottom-up prediction errors from the lower level. Feedback connections
deliver top-down predictions to the lower level. Adapted from ?

formation, weighted according to their reliability (inverse variances or precisions), to
compute the posterior beliefs over hidden causes at each level. The objective of mini-
mizing prediction errors across all levels can thus be shown to be equivalent to finding
the maximum a posteriori (MAP) estimates of the hidden causes. Rao and Ballard
(1997, 1999); ?.

In its bare essential, a given system (such as the human brain) harbours an internal
model of the causes of its sensory input. These are hidden causes in the sense that
the system does not have direct access to them but must infer them on the basis of its
sensory input and prior knowledge. The model specifies hypotheses about how hidden
causes generate input, used to predict what the sensory input to the system will be.
Predictions are messages that descend in the internal structure of the system, to be tested
against the incoming, ascending sensory signal. Any discrepancy between prediction
and sensory signal O gives rise to prediction error messages that then ascend from the
sensors and upward in the system:

e = O − prediction (B.1)

This basic notion of predictive coding provides an efficient message passing scheme
because prediction errors carry information about the quality of the prediction and are
used to update the model, leading to new predictions:

new prediction = old prediction + e (B.2)

The architecture of the PC model is shown in Fig. B.2 generalized to a hierarchical
arrangement.

The PC framework can include temporal predictions. Specifically, the network dy-
namics implements a nonlinear and hierarchical form of Bayesian inference that can be
related to the classic technique of Kalman filtering ?.
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Appendix B. Bayesian Inference and Predictive coding

More precisely, given the joint distribution P (O1:T ,Z1:L
1:T | U1:L

1:T ), consider the spe-
cific case of a linear-Gaussian state space model

P (Zt | Zt−1,Ut) = N (Zt | AtZt−1 + BtUt,Qt) (B.3)

P (Ot | Zt,Ut) = N (Ot | CtZt,Rt) (B.4)

The Gaussian structure of the process makes it computationally tractable, and one
known example of exact Bayesian filtering for the model is Kalman filtering. In that
case the hidden state prediction (one-step-ahead posterior predictive distribution) and
the update step can be written in closed form:

• predict:

µt|t−1 = Atµt−1 + Bt−1Ut−1 (B.5)

Σt|t−1 = AtΣt−1A
>
t + Qt (B.6)

• update:

et = Ot −Ctµt|t−1 (B.7)

St = CtΣt|t−1C
>
t + Rt (B.8)

Kt = Σt|t−1C
>
t S−1

t (B.9)
µt = µt|t−1Ktet (B.10)

Σt = Σt|t−1 −KtCtΣt|t−1 = Σt|t−1 −KtStK
>
t (B.11)

where, to simplify the notation, we have dropped the conditioning on the inputs Ut,
and we have assumed the control provided by the upper layer is observed (known).

The Kalman filtering Eqs. B.6 andeq:Kalmobs can be directly derived from Bayes’
rule by using a Maximum A Posteriori (MAP) estimate

arg max
Zt

P (Zt | Zt−1,Ot) = (B.12)

arg max
Zt
N (Ot | CtZt,Rt)N (Zt | AtZt−1 + BtUt,Qt). (B.13)

There are two important facts to be noted here that formally express the informal
definition of PC discussed above.

1. The first step of Eq. B.11, et = Ot − Ctµt|t−1 accounts for the error signal,
namely the difference between the predicted observation Ot|t−1 = Ctµt|t−1 and
the actual observation Ot; in stochastic processes theory, this is known as the
innovation.

2. The update for the mean µt = µt|t−1Ktet is calculated as is the predicted new
mean, µt|t−1 plus a correction factor, which is the error et weighted by the cor-
rection factor Kt, precisely, the Kalman gain matrix computed via Σt|t−1C

>
t S−1

t .
An intuition of the role of the Kalman correction can be gained by setting Ct = I.
Then, Kt = Σt|t−1S

−1
t . This is the ratio between the covariance of the prior

Σt|t−1 from the dynamic model, and the covariance of the measurement, St at
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time t. This basically means that if the agent has a strong prior and/or very noisy
sensors, |Kt| will be small, and he will place little weight on the correction term.
Conversely, if we the agent has a weak prior and/or high precision sensors, then
|Kt| will be large, and the agent will place a lot of weight on the correction term.

Note that the spatiotemporal predictive coding model allows for the possibility that
the organism or agent might want to perform internal simulations of the dynamics of
the external world (e.g., for planning) by predicting how future states evolve given a
starting state (and possibly actions).

PC and the principle of prediction error minimization are closely related to vari-
ational inference and learning, which for instance form the basis for variational au-
toencoders (VAEs) in machine learning research as well as the free energy principle
(FEP) in neuroscience as proposed by Friston and colleagues (but see Marino, 2020
for an in-depth overview). FEP is a unified theory of sensory-based cortical function
based on predictive coding which estimated the mean and variance of predicted states
(Friston and Stephan, 2007; Friston, 2008; Daunizeau et al., 2009). This more general
framework was based on the ideas of hierarchical expectation maximization (EM) and
empirical Bayes (a method to estimate priors from data). The concept of free energy
is treated in detail in Appendix C This model is also biologically motivated along lines
similar to those developed by Rao and Ballard, but is intended to address a broader
range of empirical evidence.The Friston model differs from the model discussed above,
but still obtains the Rao-Ballard protocol.
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APPENDIXC
Free energy and variational approximations

FREE energy is a fundamental concept in statistical physics and Bayesian inference,
which has gained currency in both theoretical neuroscience and modern machine
learning. As to the former, it is at the core of the predicting processing view

of the brain; as to the latter, all recent generative deep neural network architectures
(e.g., VAE, GAN, etc) rely their learning procedure on the optimization with respect to
some form/variation of the free energy, named in the literature ELBO (evidence lower
bound).

Use

• O = {O1, . . . , Oj−1, Oj, Oj+1, . . . , Om}, a collection of observable random vari-
ables;

• Z = {Z1, . . . , Zj−1, Zj, Zj+1, . . . , Zn}, a collection of hidden or latent random
variables

Let PO,Z(o, z) be the joint distribution of {O,Z} andQZ(z) an arbitrary probability
distribution or density with respect to the Lebesgue measure.

Definition C.1 (Variational free energy).

F (QZ) :=

∫
Z

QZ(z) log
PO,Z(o, z)

QZ(z)
dz

:= EQZ

[
log

PO,Z(O,Z)

QZ(Z)

]
= EQZ

[logPO,Z(O,Z)]− EQZ
[logQZ(Z)]

:= U(O) +H(Z)
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Appendix C. Free energy and variational approximations

where U(Z) is the internal energy and H(Z) the Shannon or canonical entropy of the
collection of r.v. Z.

The following fundamental relation concerning the log evidence of observations,
namely, logPO(o) and F (QZ) holds:

Prop. C.1.
logPO(o) = F (QZ) + KL

(
QZ‖PZ|O

)
, (C.1)

where KL
(
QZ‖PZ|O

)
=
∫
Z
QZ(z) log QZ(z)

PZ|O(z|o)
dz is the relative entropy or Kullback-

Leibler divergence (Cover and Thomas, 1991) between QZ and the posterior distribu-
tion PZ|O.

Proof. Using the conditional probability definition and taking logs,

logPO,Z(o, z) = logPZ|O(z|o) + logPO(o) (C.2)

which rearranges to

logPO(o) = logPO,Z(o, z)− logPZ|O(z|o). (C.3)

Then Equation C.3 grants that

logPO(o) = log
PO,Z(o, z)

QZ(z)
− log

PZ|O(z|o)

QZ(z)
, (C.4)

and multiplying both sides by QZ(z) we obtain

QZ(z) logPO(o) = QZ(z) log
PO,Z(o, z)

QZ(z)
−QZ(z) log

PZ|O(z|o)

QZ(z)
. (C.5)

By integrating with respect to z:∫
Z

QZ(z) logPO(o) dz =

∫
Z

QZ(z) log
PO,Z(o, z)

QZ(z)
dz−

∫
Z

QZ(z) log
PZ|O(z|o)

QZ(z)
dz.

(C.6)
QZ(z) is an arbitrary, but normalised distribution, i.e.,

∫
z
QZ(z)dz = 1, and using

Def.C.1, we obtain (C.1)

Recall that the basic property of the relative entropy is stated by the following
(Cover and Thomas, 1991, Theorem 8.6.1)

Theorem C.2 (Cover and Thomas, 1991, Theorem 8.6.1).

KL(Q‖P ) ≥ 0 (C.7)

with equality iff Q = P almost everywhere (a.e.)

Then, the free energy F (QZ) is a lower bound on the log evidence of observations
logPO(o):

Prop. C.3.
logPO(o) ≥ F (QZ) (C.8)
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Proof. Follows directly from Eqs C.1 and C.7.

Definition C.2 (Mean field approximation). Let QZi(zi) be the probability distribution
of Zi, the ith element of Z. Then

Q :=

{
QZ(z) : QZ(z) =

m∏
i=1

QZi(zi)

}
, (C.9)

is called the mean-field approximation of distribution Q.

Remark. Clearly, the following trivially holds:

EQZ
[Z] =

m∏
i=1

EQZi [Zi] . (C.10)

Lemma C.4. Under the assumption that Q is factorised according to the mean-field
approximation Q (Def. C.2), then

F (QZ) = −KL
(
QZj‖ exp

{
E∏m

i=1
i 6=j

QZi
[logPO,Z(O,Z)]

})
−

m∑
k=1
k 6=j

EQZk [logQZk(Zk)]

(C.11)

Proof.

F (QZ) = EQZ

[
log

PO,Z(O,Z)

QZ(Z)

]
= EQZ

[logPO,Z(O,Z)− logQZ(Z)]

= EQZ

[
logPO,Z(O,Z)− log

m∏
k=1

QZk(Zk)

]

= EQZ
[logPO,Z(O,Z)]−

m∑
k=1

EQZ
[logQZk(Zk)]

= EQZj

[
E∏m

i=1
i6=j

QZi
[logPO,Z(O,Z)]

]
−

m∑
k=1

EQZk [logQZk(Zk)]

= EQZj

[
E∏m

i=1
i6=j

QZi
[logPO,Z(O,Z)]

]
− EQZj

[
logQZj(Zj)

]
−

m∑
k=1
k 6=j

EQZk [logQZk(Zk)] .
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Appendix C. Free energy and variational approximations

Using the log-exp transformation:

= EQZj

[
log

(
exp

{
E∏m

i=1
i 6=j

QZi
[logPO,Z(O,Z)]

})]
− EQZj

[
logQZj(Zj)

]
−

m∑
k=1
k 6=j

EQZk [logQZk(Zk)]

= EQZj

[
log

(
exp

{
E∏m

i=1
i 6=j

QZi
[logPO,Z(O,Z)]

})
− logQZj(Zj)

]
−

m∑
k=1
k 6=j

EQZk [logQZk(Zk)]

= EQZj

log

exp

{
E∏m

i=1
i6=j

QZi
[logPO,Z(O,Z)]

}
QZj(Zj)

− m∑
k=1
k 6=j

EQZk [logQZk(Zk)]

= −EQZj

log
QZj(Zj)

exp

{
E∏m

i=1
i 6=j

QZi
[logPO,Z(O,Z)]

}
− m∑

k=1
k 6=j

EQZk [logQZk(Zk)]

= −KL
(
QZj‖ exp

{
E∏m

i=1
i 6=j

QZi
[logPO,Z(O,Z)]

})
−

m∑
k=1
k 6=j

EQZk [logQZk(Zk)] .

Definition C.3.
Uj(Zj) = E∏m

i=1
i 6=j

QZi
[logPO,Z(O,Z)] (C.12)

is the expected internal energy of r.v. Zj

Theorem C.5 (Free energy theorem). The free-energy is maximised with respect to
Q∗Zj(zj) when

Q∗Zj(zj) ∝ exp {Uj(Zj)} (C.13)

Proof. We want to find the optimal approximating distribution

Q∗Zj(zj) = arg max
QZj∈Q

F (QZ)

Use Eq. C.11 to write:

max
QZj∈Q

F (QZ) = max
QZj∈Q

−KL
(
QZj‖ exp {Uj(Zj)}

)
−

m∑
k=1
k 6=j

EQZk [logQZk(Zk)]


(C.14)

The term −
∑m

k=1
k 6=j

EQZk [logQZk(Zk)] does not depend on QZj , further, Eq. C.7 grants

that KL
(
QZj‖ exp {Uj(Zj)}

)
≥ 0.
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C.1. Variational inference

Thus, to maximizeF (QZ) we need to minimize the KL term. Up to constant terms:

max
QZj∈Q

F (QZ) ∝ min
QZj∈Q

{
KL
(
QZj‖ exp {Uj(Zj)}

)}
(C.15)

The KL term in the last equation is minimised precisely when the two terms are
equivalent a.e., thus the optimal distribution for whichQ∗Zj(zj) = arg maxQZj∈QF (QZ)

is
Q∗Zj(zj) = exp {Uj(Zj)}+ const = arg max

QZj∈Q
F (QZ) (C.16)

C.1 Variational inference

The goal of variational inference is to approximate a conditional density of latent vari-
ables given observed variables. The key idea is to solve this problem with optimization.
To such end, a family of densities over the latent variables is used, parameterized by
free variational parameters. The optimization finds the member of this family, that is,
the setting of the parameters, which is closest in KL divergence to the conditional of
interest. The fitted variational density then serves as a proxy for the exact conditional
density.

From a Bayesian standpoint, the inference problem is to compute the conditional
density of the latent variables given the observations, P (Z | O). This conditional can
be used to produce point or interval estimates of the latent variables, form predictive
densities of new data, and more. Using Bayes rule:

P (Z | O) =
P (O | Z)P (O)

P (O)
(C.17)

Here, for notational simplicity, we have dropped the distribution/density indexes over
distribution RVs. The term P (O is the marginal density of the observations, also called
the evidence. Assuming continuous RVs, for generality, the evidence can be obtained
through marginalization.

P (O) =

∫
P (O | Z)P (OdZ (C.18)

For many models, this evidence integral is unavailable in closed form or requires
exponential time to compute. This is why inference in such models is hard. It is also
the reason for which it is often called, in analogy with statistical physics, the partition
function

Note that all unknown quantities of interest are represented as latent random vari-
ables. This includes both distribution parameters, as found in Bayesian models, and
latent variables that are “local” to individual data points.

In variational inference, one specifies a family Q of densities over the latent vari-
ables. Each Q ∈ Q (e.g, as done in Eq.C.9 above) is a candidate approximation to
the exact conditional. The goal is to find the best candidate, the one closest in KL
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Appendix C. Free energy and variational approximations

divergence to the exact conditional. Inference the amounts to solving the following
optimization problem,

Q∗(Z) = arg min
Q∈Q

KL(Q(Z)‖P (Z | O)) (C.19)

The Q∗(Z) is the best approximation of the posterior, within the family Q. However,
this objective is not computable since requiring the logarithm of the evidence, logP (O
in Eq. C.17. In fact writing explicitly the KL divergence

KL(Q(Z)‖P (Z | O) = E [logQ(Z)]− E [logP (Z | O)] , (C.20)

and expanding the conditional

KL(Q(Z)‖P (Z | O) = E [logQ(Z)]− E [logP (Z,O)] + logP (O) (C.21)

.
Thus, one optimizes an alternative objective that is equivalent to the KL up to an

added constant

ELBO(Q) = E [logP (Z,O)] + logP (O)− E [logQ(Z)] , (C.22)

namely, the evidence lower bound (ELBO). By inspecting Eqs. C.28 and C.22,

ELBO(Q) = −KL(Q(Z)‖P (Z | O) + logP (O), (C.23)

which shows that maximizing the ELBO is equivalent to minimizing the KL divergence.
Further manipulation gives the following expression for the ELBO and provides

more insight

ELBO(Q) =E [logP (Z)] + E [logP (Z | O)]− E [logQ(Z)] (C.24)
E [logP (O | Z)]−KL(Q(Z)‖P (Z). (C.25)

The first term is an expected likelihood: it encourages densities that place their mass on
configurations of the latent variables that explain the observed data. The second term
is the negative divergence between the variational density and the prior: it encourages
densities close to the prior. Thus, the variational objective mirrors the usual balance
between likelihood and prior. Importantly, ELBO is lower-bounds the (log) evidence.
Using Eqs. C.28 and C.22

logP (O) = KL(Q(Z)‖P (Z | O) + ELBO(Q), (C.26)

and from Theorem C.7 (positivity of the KL), then

logP (O) ≥ ELBO(Q), (C.27)

i.e. ELBO is a lower-bound of the (log) evidence. By comparing the property previ-
ously stated through Eq. C.1, which we rewrite here for easiness of inspection

logPO(o) = KL
(
QZ‖PZ|O

)
+ F (QZ) ,
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C.2. Relations to the physical free energy

and Eq. C.28, it is readily seen that

F (QZ) = ELBO(Q), (C.28)

i.e., ELBO is nothing but the variational free energy.
Using the ELBO and the mean-field family, we have cast approximate comnditional

inference as an optimization problem. One of the most commonly used algorithms for
solving this optimization problem is coordinate ascent variational inference (CAVI).
CAVI iteratively optimizes each factor of the mean-field variational density, while hold-
ing the others fixed. It climbs the ELBO to a local optimum.

C.2 Relations to the physical free energy

Due to similarity with the free energy concept in statistical physics, in many papers the
term is often used in a confusing way. We thus turn to an explanation of the notion of the
physical free energy. Suppose that one has a system of N particles, each of which can
be in one of a discrete number of states, where the states of the i-th particle are labeled
by xi. As an example, one might make a variety of simplifications and characterize
the states of the atoms in a magnetic crystal by whether a given electron in each atom
has an “up” spin or a “down” spin. The overall state of the system will be denoted by
the vector x = {x1, x2, ..xN}. Each state of the system has a corresponding energy
E(x). A fundamental result of statistical mechanics is that, in thermal equilibrium, the
probability of a state will be given by Boltzmann’s law

P (E(x)) =
e−βE(x)

Z(T )
(C.29)

Here, T is the temperature, and Z(T ) is simply a normalization constant, known as the
partition function

Z =
∑
x∈S

e−
E(x)
T , (C.30)

where S is the space of all possible states of the system. A substantial part of statistical
mechanics theory is devoted to the justification of Boltzmann’s law. On the other hand,
if one begins with a joint probability distribution P (x) for some nonphysical system,
one can view Boltzmann’s law as a postulate that serves to define an energy for the
system, where the temperature can be set arbitrarily, as it simply sets a scale for the
units in which one measures energy. We shall take this point of view and set T = 1
throughout the rest of this chapter. The Helmholtz free energy FH of a system is

FH = −k logZ ∝ − logZ (C.31)

This free energy is a fundamentally important quantity in statistical mechanics, because
if one can calculate the functional dependence of FH on quantities like a macroscopic
magnetic field H or temperature T , then it is easy to compute experimentally measur-
able quantities like the response of the system to a change in H or T . Physicists have
therefore devoted consider- able energy to developing techniques which give good ap-
proximations to FH . One important technique is based on a variational approach. Sup-
pose again that P (x) is the true probability distribution of the system, and obeys Boltz-
mann’s law (Eq. C.29). It may be that even if we know P (x) exactly, it is of a form
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Appendix C. Free energy and variational approximations

that makes the computation of FH difficult. We therefore introduce a “trial” probability
distribution Q(x), which should, of course, be normalized and obey 0 ≤ Q(x) ≤ 1 for
all x , and a corresponding variational free energy, which is also sometimes called the
Gibbs free energy defined by

FG(Q) = U(Q)−H(Q), (C.32)

where U(Q) is the variational average energy

U(Q) =
∑
x∈S

Q(x)E(x) (C.33)

and H(Q) is the variational entropy

H(Q) = −
∑
x∈S

Q(x) lnQ(x) (C.34)

We measure entropy using the natural logarithm instead of the base-2 logarithm in order
to be consistent with the physics literature. It follows directly from our definitions that

FG(Q) = FH +KL(Q‖P ), (C.35)

and that
FG(Q) ≥ FH (C.36)

with equality precisely when Q(x) = P (x). Thus, minimizing the variational Gibbs’
free energy FG(Q) with respect to trial probability functions Q(x) is therefore an exact
procedure for computing FH and recovering P (x). It can be seen from Eqs C.36 and
C.22 that

F (QZ) = (C.37)
ELBO(Q) = −E [logQ(Z)] + E [logP (Z,O)] + logP (O) (C.38)

= −KL(Q‖P ) + logP (O) (C.39)
= −KL(Q‖P )−FH (C.40)
= −FG(Q) (C.41)

This result tells us that our variational inference F (QZ) or ELBO is equivalent to
the negative Gibbs’ free energy. Thus the maximization of F (QZ) corresponds to the
minimization of the Gibbs’ free energy FG(Q) in statistical physics systems.

222



i
i

“output” — 2022/6/29 — 15:28 — page 223 — #231 i
i

i
i

i
i

APPENDIXD
A quick tour of intrinsic networks

The brain can be thought of as one large structural network showing continuous, in-
trinsic activity. Empirically, an intrinsic network is defined as those areas whose low
frequency blood oxygen level-dependent (BOLD) signal correlates over time when a
person is “at rest” (i.e., not being probed with an external stimulus).

As a large network the brain can be further subdivided in a set of large-scale sub-
networks as shown in Figure E.6.

Each such large-scale network is a collection of interconnected brain areas, or
nodes, that are linked together to perform circumscribed functions. The nodes of a
network share dense interconnections among its constituent nodes when compared to
connections with nodes that form other brain networks.

For instance, when coming to what is traditionally defined as cognitive control -
the coordination of mental processes and action in accordance with current goals and
future plans -, one might consider the six fundamental large-scale networks anchored
in the prefrontal cortex (PFC, Menon and D’Esposito (2022)). These are presented in
Figure D.1with their core nodes.

The main networks of interest here are the default mode network, (DMN, some-
times called the mentalizing network, the construction network, or semantic knowledge
network), the salience network (SN, which bears a strong resemblance to the “ventral
attention” and “multimodal” networks ) and its “fraternal twin”, the fronto-parietal or
central executive-control network (CEN) that in their bare essential are presented in
Figure D.2.

The SN and DMN contain a large proportion of the “rich club hubs” of the brain.
Rich club hubs are the most highly connected brain areas and have been identified using
diffusion tensor imaging of white matter tracts in humans and reviewing tract tracing
studies in monkeys. Different intrinsic networks such as sensory networks overlap
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Appendix D. A quick tour of intrinsic networks

Figure D.1: Large scale functional networks anchored in the prefrontal cortex (PFC) with key
nodes. a Fronto-parietal network (FPN), with key nodes in dorsolateral PFC (dlPFC) and
posterior parietal cortex (PPC). b Salience network (SN), with key nodes in anterior insula
(AI) and dorsal anterior cingulate cortex (ACC). c Cingulo-opercular network (CON, black)
with key nodes in anterior insula/frontal operculum (aI/fO), dorsal ACC and medial superior
frontal cortex (dACC/msFC), anterior PFC (aPFC) and thalamus, as distinguished from the
FPN (yellow). d Ventral attention network (VAN), with key nodes in insula (Ins), inferior
frontal junction (IFJ), supramarginal gyrus (SMG), and superior temporal gyrus (STG). e
Dorsal attention network (DAN), with key nodes in frontal eye fields (FEF), inferior frontal
junction (IFJ), intra-parietal sulcus and superior parietal lobule (IPS/SPL), angular gyrus
(AG), visual area 3A (V3A), and middle temporal visual area (MT). f Default mode network
(DMN), with key nodes in ventromedial PFC (vmPFC) and posterior cingulate cortex (PCC).
From Menon and D’Esposito (2022)
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Figure D.2: The three intrinsic networks that are of particular interest in relation to this thesis
identified through their core regions (seeds). (1) The default mode network (DMN), com-
prised of the posterior cingulate cortex (PCC), the ventromedial prefrontal cortex (vmPFC)
and the angular gyri; DMN is involved in introspective processing, social cognition (e.g.,
theory of mind, moral cognition), and affective cognition. (2) The salience network (SN),
including the anterior insula (AI) and the dorsal anterior cingulate cortex (dACC); the SN is
involved in the detection of salient stimuli and the initiation of cognitive control by influenc-
ing activation of the central executive network and the DMN. In both adults and children,
these three networks work simultaneously during executive tasks, social tasks, and cogni-
tive control tasks. (3) The frontal-parietal central executive network (CEN), anchored in the
dorsolateral prefrontal cortex (dlPFC) and posterior parietal cortex (PPC), plays an impor-
tant role in executive functions. Abbreviations: AI, anterior insula; dACC, dorsal anterior
cingulate cortex; dlPFC, dorsolateral prefrontal cortex; PCC, posterior cingulate cortex;
PPC, posterior parietal cortex; vmPFC, ventromedial prefrontal cortex. * These seeds are
medial.
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Appendix D. A quick tour of intrinsic networks

in these hubs, communicating with each other through them. Indeed, structural and
functional imaging in humans indicates that rich club hubs are connector nodes for
intrinsic networks.

As a matter of fact, intrinsic networks cooperate with one another to build up mental
functions and no one-to-one mapping between any of former and any of the latter can
be plausibly defined (Barrett and Satpute, 2013).

This observation is on pair with the very fact that mental categories studied in neu-
roscience as rendered by the terms like “attention”, “memory”, “decision making”,
“emotion” are of limited usefulness for studying and describing the relationship be-
tween brain and behavior. In particular, the functions supported by the neuroarchitec-
ture do not align themselves well with the standard decomposition. In other words, the
standard “faculty” decomposition would require an organization that is relatively mod-
ular. Instead, that fundamental principles of the neuroarchitecture indicate that it is not.
In particular, the neuroarchitecture is not additive in the sense that new components are
added atop an ancestral organization. Which exactly is the point of the SM.

Figure D.3: Fundamental intrinsic network cooperation for “building” mental functions. Each
pie chart depicts the relative frequency with which various mental functions are discussed
in the context of increased activation within the DMN (top), the SN (bottom left) and the
CEN network (bottom right), obtained using the Neurosynth database including over 6000
publications from over 50 journals. Adapted from Barrett and Satpute (2013)
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D.1 Default Mode Network

Early brain imagining studies have discovered that during periods when participants
are not engaged in cognitive or other external tasks, certain brain areas tend to become
more activated. This network of areas was labelled the Default Mode Network (Raichle
et al., 2001; Buckner et al., 2008).

Two of the main aspects of the DMN are assumed to be self-referential process-
ing and autobiographic memory. It is particularly active when one is thinking about
oneself, in past, current or future situations (e.g. anticipating outcomes, planning). As
such, the DMN has also been connected to mind-wandering. Such mind-wandering or
ruminations should be considered as specific instances of the general function of the
DMN to cognitively simulate future scenarios.

Prima facie, decreased activation of the DMN during task engagement may be a
sign of reduced mind-wandering. In light of the foregoing, findings of increased acti-
vation of the DMN during social activities also make sense because in those situations,
thinking about oneself and possible outcomes of one’s behaviour are relevant for ade-
quate social performance (e.g. what is the potential impact of the things I am saying?).

The largest brain areas associated with the DMN are the posterior cingulate cortex,
the medial prefrontal cortex, the angular gyrus.

More extensively regions included are: ventral medial prefrontal cortex (vmPFC,
Broadman areas 24, 10 m/10 r/10 p, 32ac), posterior cingulate/retrosplenial cortex
(PCC / Rsp, 29/30, 23/31), inferior parietal lobule / angular gyrus (IPL/AG, 39, 40)
lateral temporal cortex (LTC, 21) dorsal medial prefrontal cortex ( dmPFC, 24, 32ac,
10p, 9) hippocampal formation (HF+, Hippocampus proper plus entorhinal cortex, EC,
and surrounding cortex, e.g., parahippocampal cortex, PH).

Probing the functional anatomy of the network in detail reveals that it is best under-
stood as multiple interacting subsystems. The medial temporal lobe subsystem provides
information from prior experiences in the form of memories and associations that are
the building blocks of mental simulation. The medial prefrontal subsystem facilitates
the flexible use of this information during the construction of self-relevant mental sim-
ulations. These two sub-systems converge on important nodes of integration including
the PCC.

It is worth remarking that although this network has always been seen as unitary
and associated with the resting state, a new deconstructive line of research is pointing
out that the DMN could be divided into multiple subsystems supporting different func-
tions. By now, it is well known that the DMN is not only deactivated by tasks, but
also involved in affective, mnestic, and social paradigms, among others. Nonetheless,
it is starting to become clear that the array of activities in which it is involved, might
also be extended to more extrinsic functions. Indeed, the most recent developments in
the research of the DMN are indicating that such network, far from being a monolithic
entity, consists of multiple systems with intersecting functions and anatomies. It has
been observed that the DMN is not deactivated by any task, as self-referential and emo-
tional paradigms activated it. Since those observations, many further functions were
shown to be associated to this network. Other than self- referential and emotional pro-
cesses, the DMN turned out to be related to memory and mental time-travel, mental
simulation and scene construction, theory of mind (ToM) and social cognition, moral
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Appendix D. A quick tour of intrinsic networks

Figure D.4: The Default Mode Network. a) Medial and lateral surface of the DMN as originally
identified in a meta-analysis that mapped brain regions more active in passive as compared
to active tasks; blue represents regions most active in passive task setting. b) Hubs and sub-
systems within the DMN mapped using functional connectivity analysis. c) The regions of the
DMN are graphically represented with lines depicting correlation strengths; the structure of
the default network has a core set of regions (red) that are all correlated with each other;
LTC is distant because of its weaker correlation with the other structures. d) A recent graph
representation of the partial correlations between regions of interest in the functional space
(connections with partial correlation above 0.2 are depicted; darker grey tones represent
stronger connections); statistically significant partial correlations have a dashed borderline;
subcortical structures are also included. e) Graph theory analysis of structural connectiv-
ity: the node size represents node degree and the node colour illustrates node betweenness
centrality; the edges denote presence of structural connection. DPFC dorsal prefrontal cor-
tex, PPC posterior parietal cortex, VLPFC ventrolateral prefrontal cortex, Rsp retrosplenial
cortex, MTG middle temporal gyrus, PCC posterior cingulate cortex, C caudate, DPFC
dorsal prefrontal cortex, AMPFC antero-median prefrontal cortex, VMPFC ventro-median
prefrontal cortex, TP temporal pole, BF basal forebrain, T thalamus, PH parahippocampal
region, CbH cerebellar hemisphere, CbT cerebellar tonsil, Amy amygdala, MidB midbrain.
Adapted from Buckner et al. (2008); Alves et al. (2019).
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judgment, semantic processing and reward mechanisms (but see Mancuso et al., 2021
for a discussion)

D.2 Central Executive Network

The key brain areas associated with the CEN are the dorsolateral prefrontal cortex
(DLPFC) and the posterior parietal cortex (PPC).

More in detail, The CEN is comprised of the dorsolateral (dlPFC, BA 9/46) and
dorsomedial PFC (dmPFC,BA 6), the supramarginal gyrus (BA 40) in posterior parietal
cortex and subcortical regions including the dorsal caudate and anterior thalamus.

It is worth noting that, somehow confusingly, in the literature analogous labelling
is often adopted to describe topographically or functionally similar neural networks:
central executive network (CEN), cognitive control network (CCN), executive control
network (ECN), executive network (EN), frontoparietal network (FPN), working mem-
ory network (WMN), task positive network (TPN).

The CEN consists of an array of strongly interconnected brain areas that are mainly
active when engaging in external cognitive processing. That is, when one is engaged in
tasks that require the active maintenance of information (or task) in working memory,
a switching between task requirements and the inhibition of irrelevant information. In
other words, the CEN becomes activated in situations that require focus or concentra-
tion. Notably, the CEN and the DMN often show contrasting patterns of activation. If
the CEN becomes more active, the DMN decreases in activation, and vice versa.

A tight link between lateral PFC and PPC is supported by the demonstration of
strong bidirectional anatomical connections with each other, as well as similar profiles
of neuronal responses (Menon and D’Esposito, 2022).

Based on a vast amount of empirical evidence, the DLPFC has been referred to as
the seat of working memory. Furthermore, the strength of the pathways between the
DLPFC and PPC has been associated with intelligence—the ability to effectively deal
with complex or novel problems and situations.

D.3 Salience Network

The main brain regions of this network are the anterior insula cortex (AIC) and the
anterior cingulate cortex (ACC). Prominent subcortical nodes include the amygdala,
substantia nigra, ventral tegmental area, dorsomedial thalamus, hypothalamus, and pe-
riaqueductal gray

Several accounts posit the SN role as that of switching between other brain net-
works, particularly between the DMN and the CEN (Menon, 2015). Figure D.7 presents
the basic Network Switching Model hypothesis.

Accordingly, the SN is involved in the continuous shifting between task-related ver-
sus non-task-related and self-referential processing. This switching may be related, but
is not restricted, to the switching between task concentration and mind-wandering. The
network received its name due to its presumed core function, which is detecting the
salience of stimuli/events. Salience, in this context, is every stimulus, internal or ex-
ternal, that the system signals as worthy of further attention and processing. The SN
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Appendix D. A quick tour of intrinsic networks

Figure D.5: Surface mapping of 9 Activation Likelihood Estimation maps showing a nuanced
involvement of the DMN in several tasks. Few maps match the prototypical representation
of the DMN. Some of them show either weak activation or no activation at all in the midline
core, and a strong expression of lateral areas of the network such as AG, IFG, and middle
temporal gyrus. In addition, the insula and SMA/dorsal ACC, hubs of the salience network
(SN) are often present. Rather than considering these as spurious findings, these an indi-
cation that, when the brain is engaged by external demands, multiple networks including
DMN nodes would emerge. Although relying on intrinsic brain topology, such recruitment
would be not strictly constrained by it and it might involve a flexible shift in brain hubness
and a remodulation of cooperative and competitive long-range connectivity patterns. When
analyzed through, MDS, PCA, and ICA, it can be seen that the activations of DMN regions
are arranged along a continuum that spans from the most internal to a more external en-
gagement. In addition, they suggest that semantic, reward, and emotional functions may
be relevant elements of such outward-leaning default-mode of cognition. Lastly, and im-
portantly, they indicate that the modulations of the DMN activations do not converge into
a representative mid-point, but rather that they somewhat gravitate around it while shifting
between internal, semantic, affective or motivational modes of cognition. From Mancuso
et al. (2021).
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Figure D.6: Structural core of the executive control network. Right and left dorsolateral PFC
(R-dlPFC, L-dlPFC), Right and left PPC, superior frontal gyrus (SFG), right caudate and
left anterior thalamus

Figure D.7: The basic Network Switching Model in which the SN is hypothesized to initiate
dynamic switching between the FPN and DMN and regulate attention to endogenous and
exogenous events. Sensory and limbic inputs are processed by the anterior insula (AI), which
detects salient events and initiates appropriate control signals for (i) access to resources for
working memory in FPN and (ii) action selection via the anterior cingulate cortex. From
Menon (2015); Menon and D’Esposito (2022).
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determines the salience of a stimulus, based on input from various other systems, in-
cluding the dopaminergic reward system (Menon, 2015; Menon and D’Esposito, 2022).

AIC and ACC regions are also mentioned as the ones that are consistently active
in almost all cognitive demands or tasks (Menon, 2015). Thus, they likely serve very
broad functions.

The AIC, in general, presumably plays an important role in integrating information
from one’s internal environment, such as energy level, pain, emotions and sympathetic
versus parasympathetic activation (i.e. whether one is stressed or not). The ACC has
traditionally been linked to performance monitoring, which implies that it compares
ongoing actions and outcomes with the direction of one’s goals. In cooperation with
other brain structures, such as the nucleus accumbens (NACC, part of the dopaminergic
reward system), the ACC supports decisions on whether one is willing to spend effort
in order to obtain a specific goal.

The central, canonical concept of the SN, according to Seeley (2019) is that the AIC
is a major afferent cortical hub for perceiving viscero-autonomic feedback, whereas the
ACC is the efferent hub responsible for generating relevant visceral, autonomic, behav-
ioral, and cognitive responses. Through interactions with each other, these regions are
likely to form a sort of information processing loop for representing and responding
to homeostatically relevant internal or external stimuli and imbuing these stimuli with
emotional weight.

Summing up, with the AI as its dynamic hub, the SN contributes to a variety of
complex brain functions through the integration of sensory, emotional, and cognitive
information. The mechanisms by which the SN contributes to cognitive and affective
function can be recapped as follows (Menon, 2015):

1. Detection of salient events by the AI via differential sensory input and links with
subcortical nodes involved in signaling reward, motivation, and affective saliency

2. Functional coupling of the AI with the dACC to facilitate rapid access to the
motor system

3. Interaction of the AI with other insula subdivisions to mediate physiological re-
activity to, and interoceptive awareness of, salient stimuli

4. Control signals to other large-scale networks that facilitate access to working
memory resources

5. Switching between the lateral frontoparietal CEN and the medial frontoparietal
DMN to keep attention focused on task-relevant goals.

A summary of the SN organization in relation to its major afferents and efferents,
also including sub cortical areas, is provided in Figure D.8.

D.4 Network cooperation

The Network Switching Model presented in Figure D.7 is one but simple facet of the
cooperation between intrinsic networks. Indeed, constructing and acting on mental
models necessitates a brain substrate that integrates and flexibly updates many different
cognitive, affective and physiological processes.
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Figure D.8: SN organization at a glance. The AI receives convergent multisensory inputs, af-
fective and motivational signals, and visceral afferents, reflecting biological saliency and
cognitive demands. In contrast, the dACC plays a more dominant role in response selection,
guiding overt behavior and modulating autonomic reactivity. AI, anterior insula; dACC,
dorsal anterior cingulate cortex; HT, hypothalamus; PAG, periaqueductal gray; pI, poste-
rior insula; VStr, ventral striatum; VTA, ventral tegmental area. From (Menon, 2015)

Consider for instance the the ventro-medial PFC (vmPFC). The vmPFC is a cortical
zone that spans multiple cytoarchitectonic regions and that is anatomically and func-
tionally positioned to integrate conceptual thought with peripheral physiology Koban
et al. (2021).

The vmPFC participates in multiple cortical networks that have been identified in
resting-state functional MRI studies. The ventral vmPFC (or medial OFC) is part of
the limbic network and is functionally coupled with the medial and anterior temporal
lobes. The dorsal vmPFC is a core part of the DMN, and is coupled with the posterior
cingulate cortex, precuneus and temporoparietal junction. Both the dorsal vmPFC and
the ventral vmPFC are connected to the lateral OFC which is part of the limbic system
(Figure D.9).

The vmPFC receives few direct sensory inputs. However, it has strong bidirec-
tional links with sensory-integration regions in the lateral orbitofrontal cortex (OFC)
and mediodorsal thalamus; interoceptive regions in the insula; motivational and reward-
processing circuits, including the amygdala, hypothalamus and ventral striatum (includ-
ing the nucleus accumbens), and circuits involved in memory and context, including the
perirhinal cortex and hippocampus (Figure D.10). Strong descending projections from
the vmPFC to autonomic and neuroendocrine control regions in the hypothalamus and
brainstem, including the periaqueductal grey (PAG) and dorsal raphe enable the vmPFC
to regulate visceromotor output.

More generally, the vmPFC in connection with other DMN regions and other brain
networks enables the emergent process that concerns with the construction of mental
models that integrate self and environment. Connectomics studies identify the DMN
as an integrative hub network that sits at the top of a hierarchy combining multiple
sensorimotor, unimodal processing and internal, multimodal processing. The vmPFC
in particular is crucial for regulating physiology and behaviour, putting it in a special
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Appendix D. A quick tour of intrinsic networks

Figure D.9: Anatomy of the vmPFC. Top panel: Limbic and DNM intrinsic networks. Bottom
panel: the vmPFC includes the ventral anterior cingulate cortex and the subgenual cin-
gulate cortex, the gyrus rectus, the medial parts of the rostral gyrus and frontal pole, and
inferior parts of the superior or medial frontal gyrus; most of the vmPFC is part of the DMN,
especially the default A network or core DMN, which serves as a hub between the medial
temporal and dorsal subnetworks of the DMN; the most ventral part of the vmPFC (that is,
the rostral gyrus and parts of the subgenual anterior cingulate cortex) is part of the limbic
network. Adapted from (Koban et al., 2021)
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D.4. Network cooperation

Figure D.10: Functions of the vmPFC. Top: Brain areas associated with autonomic regula-
tion include the vmPFC and its connections with limbic and brainstem areas (simplified
overview); red denotes ascending tracts and blue denotes descending tracts; autonomic reg-
ulation involves connections from areas of different large-scale networks, including limbic,
DMN, SN and somatomotor areas. Center: Via its close connections to the hypothalamus,
the vmPFC can also influence the neuroendocrine system. Bottom: Together with the ven-
tral striatum–nucleus accumbens (NAcc) and the ventral tegmental area (VTA), the vmPFC
is part of the mesolimbic reward circuit (simplified here). Adapted from (Koban et al., 2021)
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Appendix D. A quick tour of intrinsic networks

position at the interface between conceptual thought, decision-making and bodily reg-
ulation (Figure D.11).

Figure D.11: General functional associations of the vmPFC. Together with other regions of
the default-mode network, including the temporoparietal junction (TPJ), the dorsomedial
prefrontal cortex (dmPFC), the hippocampus and the posterior cingulate cortex (PCC), it
is involved in social cognition and self- referential thought. Both the hippocampus and the
vmPFC show evidence for grid-like coding of spatial and conceptual maps, and together
with other temporal and frontal areas are involved in semantic memory and conceptual
processing more broadly. The most ventral part of the vmPFC is connected to the limbic
network, including the orbitofrontal cortex (OFC), the ventral striatum (VS) and other sub-
cortical areas. Together with the VS, the vmPFC is important for reward processing and
decision-making. Therefore, it is amenable to interactions with the frontoparietal network,
especially the dorsolateral prefrontal cortex (dlPFC) and the inferior parietal lobule (IPL),
involved in executive function and self-control. Together with areas of the salience network
(especially the anterior midcingulate cortex (aMCC) and the anterior insula) and subcorti-
cal regions, the vmPFC is involved in interoception and physio- logical regulation. Adapted
from (Koban et al., 2021)

FigureD.11 presents a high-level view of integration (though, markedly, from the
vmPFC perspective) between a subset of available intrinsic networks (limbic, DMN,
SN, frontoparietal CEN) where all networks, in parallel, appear to be equally contribut-
ing to the overall activity of the brain, on the base of each network “specialization”.
Yet, this picture does not make justice of many aspects that have recently emerged in
neuroscience research.

A puzzling problem is posed by the DMN role. In its original definition, as previ-
ously mentioned, the DMN was defined to collect regions of the brain distributed across
the parietal, frontal and temporal cortex that decrease their neural activity during com-
plex attention-demanding tasks. Their behaviour implied a neural baseline from which
specific, more attention-demanding states deviate.

More recently, however, studies established that neural activity within DMN re-
gions, such as the PMC, contain signals that relate to neural functioning in diverse
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D.4. Network cooperation

systems, including those outside the DMN. These observations suggested that, as well
as forming a cohesive network, the DMN can represent brain activity taking place in
other cortical systems, with these representations of activity from within other neural
networks often referred to as “echoes”. Activity in the DMN can also provide informa-
tion about the activity of task-positive systems, a pattern inconsistent with the classical
view of the DMN as being intrinsically isolated from regions that are involved in exter-
nal goal-directed thought.

In particular, the analysis of connectivity gradients1, suggests that characterizing
the intrinsic activity of the DMN as being primarily isolated from, or antagonistic with,
that of task-positive systems does not provide a complete picture. More likely, the in-
trinsic behaviour of the DMN encompasses multiple modes of operation, some which
are related to external tasks, and others that are not. Regions of the DMN are engaged
across multiple, apparently distinct, psychological domains (episodic, linguistic, social
and emotional). Subly, emerging insight into the role of the DMN in cognition comes
from recent studies in which this system’s activity can be related to the specific pe-
riods within a task when prior experience contributes to the broader goal of external
task completion (). Cognitive neuroscience suggests that the goal-oriented control of
cognition (often known as executive control) is partly implemented by regions of mul-
tiple demand cortex, which are often viewed as the apex of a cortical hierarchy that is
important for organizing behaviour in a goal-orientated manner. These regions seem
superficially to be the opposite of the DMN, as they enhance their responses in situa-
tions in which tasks become more difficult. However, there is growing evidence that
the two systems can work together. For example, even when neural activity is reduced
in the DMN because of increased external task demands, some DMN regions (such
as the posteromedial cortex, PMC) show increased connectivity with regions of the
CEN and support task-relevant cognition. This may also occur during autobiographi-
cal planning. and in situations in which decisions combine both prior knowledge and
task goals. These interactions are made possible because the CEN is spatially fraction-
ated into regions specialized for their interactions with the DMN and those linked to
other multiple response regions more closely aligned to the external environment. Fur-
ther, many processes linked to the hippocampus and parahippocampal gyrus, such as
episodic memory and spatial navigation129, are also linked to activation of the DMN.

Smallwood et al. (2021) have suggested that topographical features of the DMN
might account for the fact that its regions are functionally connected yet separated from
sensory inputs and motor outputs. Consistent with the notion of convergence of signals
from unimodal systems (vision, auditory, etc) into the DMN, studies in humans have
shown that large-scale networks are organized along the cortical surface from unimodal
regions to the DMN in an orderly manner, which indicates that the DMN can be under-
stood as being located at the end of processing streams that are anchored at the cortical
periphery. Forms of higher-order cognition may rely on the DMN because its location
allows it to encode information about brain activity from across the cortex. For in-

1Connectivity gradients are computed using patterns of covariance within a data matrix. These gradients are
ranked based on the percentage of variance that each principal component explains within the initial data (known as
the explained variance). Within each gradient, brain regions are organized based on the similarity of their observed
patterns of activity to each other. In these gradients, brain regions grouped at one end have similar fluctuations in
activity over time, and collectively show less similarity to the groups of regions at the other end of a dimension
(which are also similar in their time courses)
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Appendix D. A quick tour of intrinsic networks

stance, processing streams, such as the ventral visual stream, are arranged such that the
regions involved respond to increasingly abstract features of cognition as information
passes along the stream85; if the DMN is located at the end of these streams, then it
may be important for relatively abstract features of cognition and behaviour.

Smallwood et al. (2021) have shown that bbased on the spatial location of the peaks
of connectivity gradient 1, we propose that the DMN divides the brain into mutually
exclusive cortical fields, each defined by the convergence of a specific set of sensory/-
motor streams towards a region of the DMN at the centre of each field.

Also, by representing the intrinsic networks organized along a connectivity gradient,
they have argued that the location of the DMN at the end of processing streams suggests
that it may correspond to the a functional integrative centre of the cortex. The schematic
illustrates how the DMN can be thought of as the end of multiple processing streams
that originate in sensorimotor cortex, and thus the functional core of the brain. The
diagram shown in Figure D.13 provides a topological explanation for how the cortex
balances the need for segregation between different sensory systems with the need for
progressive integration of information from the periphery to the core.

The framework proposed by Smallwood et al. (2021) has many advantages.
DMN regions may represent coarse information about patterns in brain-wide ac-

tivity that could be similar for many different potential configurations at lower levels
of the hierarchy. This could explain why the DMN is involved in many different rep-
resentational states that share broad features but differ in their specific informational
content.

A DMN-based hierarchy can shape the temporal dynamics of complex systems and
help integrate disparate distributed information across time, such as signals in periph-
eral cortical regions.

Hierarchies are also a core premise of accounts of predictive coding. In this case,
DMN activity could be linked to a cycle of monitoring, and correcting for, the emer-
gence of prediction error across the cortex. In this way, neural patterns across the DMN
may provide information regarding the degree to which specific brain contexts are pre-
dictable, a metric that would be useful, for example, in shifting between exploratory
and exploitative modes of foraging behaviour (Smallwood et al., 2021).
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D.4. Network cooperation

Figure D.12: Top panel: The classic DMN (pink) regions identified as being more consis-
tently deactivated by tasks include the posteromedial cortex (PMC), medial prefrontal cortex
(MPFC), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), middle temporal cortex
(MTC), and angular gyrus (AG). Center panel: The DMN presented in the context of other
large-scale brain networks, different colours correspond to different networks; the centroid
of the regions that make up the DMN are marked by dots on this panel. Bottom panel: the
centroids are the most distant from regions of unimodal sensory cortex (primary auditory
A1, motor M1, somatosensory S1 and visual V1); colour gradient represents the spatial dis-
tance along the cortical surface between the peaks of connectivity gradient in the DMN and
other brain regions (grey lines indicate regions of the cortex that are equidistant to two DMN
regions, and arrows indicate which sensory landmarks each DMN region is closest to - e.g.,
PMC is equidistant between M1 and V1). Adapted from Smallwood et al. (2021)
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Appendix D. A quick tour of intrinsic networks

Figure D.13: Segregation vs. integration in brain’s large-scale networks. Left: Graph rep-
resenting the networks from Fig. D.12 organized along the first connectivity gradient; +/–
indicate the two ends of this dimension of brain activity; DAN, dorsal attention network;
FPN, frontoparietal network; LIM, limbic network; SAL, salience network; SMN, somato-
motor network; VIS, visual network. Right: Segregation / integration diagram showing seg-
regation between different sensory systems (indicated by their locations on different points
on the circumference of the semicircle) and progressive integration of information from the
periphery to the core (illustrated by the location of different networks at different points on
the radius of the semicircle). Adapted from Smallwood et al. (2021)
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APPENDIXE
The Structural Model of corticocortical

connections and the organization of the brain

The principle of systematic variation of the cortex provides the framework for parcel-
lating the cortex from a theoretical perspective.

The SM captures the overall laminar structure of areas by dividing the cortical ar-
chitectonic continuum into discrete categories or cortical types (García-Cabezas et al.,
2019; Barbas and García-Cabezas, 2016). A cortical type describes a category of cor-
tical areas with comparable laminar differentiation, regardless of placement within a
cortical sensory, high-order association or motor system.

Figure E.1: Cortical types agranular, dysgranular, eulaminate I, and eulaminate II represented
in four sketches. Adapted from (García-Cabezas et al., 2019; Barbas and García-Cabezas,
2016)

Several structural features combine to define a cortical type: the presence or absence
of layer IV; the thickness or density of layer IV, when present; the distinction between
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adjacent layers; the relative population of neurons in the upper compared to the deep
layers.

Some neocortical areas in the human cortex do not have six layers from the get-go,
and remain that way during the life span. Areas lacking an inner layer IV belong to the
agranular cortical type.

Nearby areas have an incipient layer IV and belong to the dysgranular type. These
have a poorly developed layer IV, which is both thin and less dense than layer IV of
eulaminate areas.

Eulaminate areas, instead, have a clearly identifiable layer IV. Among eulaminate
areas, lamination is least differentiated in areas that are near dysgranular areas, and
most distinct in areas that are the most distant from the limbic areas (eulaminate II).

A first key concept here is that each cortical system, regardless of its placement on
the cortical mantle, is composed of areas that at one extreme have fewer than six layers
(limbic areas), leading to adjacent areas that have six layers (eulaminate) and finally
to eulaminate areas with the best delineated layers. Changes in laminar structure are
exemplified by a higher density of spines and dendritic branching in pyramidal neurons
in limbic than in eulaminate areas, a lower myelin density in limbic than in eulaminate
areas, and other structural features.

A second key concept concerns connections. Feedforward connections originate
in neurons in the upper layers (mostly layer III) and their axons terminate in the mid-
dle layers, which include layer IV. Feedback connections originate in the deep layers
(V and VI) and their axons terminate in the upper layers, and especially layer I, to a
lesser extent layer VI, but avoid the middle layers.Thus, for any pair of linked cortices
— whether they are neighbors or not — their interconnections reflect their structural
relationship. The term “feedforward” describes connections from an area with more
elaborate laminar structure, which terminate in an area with less elaborate structure;
“feedback” describes connections that have the opposite relationship.

From a development standpoint, since limbic areas have a lower density of neurons
than eulaminate areas, especially in the upper layers the SM hypothesizes that they
must have a shorter developmental period than eulaminate areas. This hypothesis is
consistent with available developmental data in primates: limbic areas complete their
development first, whereas the best laminated areas (which also has the highest density
of neurons in the primate cortex), has the longest period of development.

According to the SM, based on laminar structure on may distinguish between:

• Allocortex: ancestral part of the cerebral cortex, which includes the hippocampal
formation (archicortex) and the primary olfactory cortex (paleocortex); allocortex
is agranular

• Periallocortex: neocortical areas neighboring the allocortex (agranular)

• Neocortex: part of the cerebral cortex with three or more layers and columnar
organization. Sometimes referred to as isocortex. It can be further partitioned in

– Limbic cortex: neocortical areas found on the edge (limit) of the hemi-
sphere; they form the base or stem of the cortex. Limbic areas are either
agranular (lack inner layer IV) or dysgranular (have an incipient layer IV).

– Eulaminate cortex: neocortical areas with well-developed layer IV.
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– Koniocortex: the eulaminate cortices with the most well-developed layer
IV.

The overall schematic of the primate cerebral cortex according to the SM is outlined
in Figure E.2

Figure E.2: Schematic of the primate cerebral cortex shows the arrangement of cortical types
in rings. Laminar differentiation progresses from the outer or basal (black and dark gray)
to the inner rings (lighter shades of gray). The edge of the cortex (black and dark gray)
is actually thin compared to the greatly expanded eulaminate areas in the center. Cortical
areas have stronger connections with other areas in the same ring and display columnar
patterns of connections (orange arrows). Connections between areas in different rings (i.e.,
of different cortical type) are less strong than connections within the same ring and display
feedback (blue arrows) and feedforward (green arrows) laminar patterns of connections.
The laminar pattern of connections is related to the cortical type difference of the connected
areas. Pathways from dysgranular to eulaminate areas are feedback (blue arrow); pathways
from eulaminate to dysgranular are feedforward (green arrow); pathways between areas
of comparable cortical type are columnar (orange arrow). Adapted from (García-Cabezas
et al., 2019; Barbas and García-Cabezas, 2016)

E.1 Predictive processing view of the SM

Chanes and Barrett (2016) have proposed that the SM is suitable to implement pre-
dictive coding in the brain. The direction of predictions (feedback connections) and
prediction errors (feedforward connections) is determined by the relative degree of lam-
inar differentiation of the cortical areas involved. Predictions originate primarily in the
deep layers of cortical areas with less laminar differentiation and terminate primarily in
the superficial layers of more differentiated areas. In the opposite direction, prediction
errors originate primarily in the superficial layers of cortical areas with more laminar
differentiation and terminate in the deep layers of less differentiated areas.

When two areas have a comparable laminar structure, their projections originate and
terminate both in superficial and deep layers (they are defined as lateral connections).

As a consequence, cortical areas, such as limbic cortices (which have the least dif-
ferentiated laminar structure in the entire neocortex) primarily send predictions to better
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Figure E.3: The flow of prediction and prediction-error signals between cortical columns based
on cortical lamination gradients. The relative difference in laminar structure between two
communicating cortical columns predicts whether the information flow is a feedback (pre-
diction) or a feedforward (prediction-error) signal. Prediction signals (black) originate in
the deep layers (Layers V and VI) of less differentiated cortical areas (such as agranular
cortex with undifferentiated Layers II and III and without a Layer IV, as depicted in the
black column) and terminate in superficial layers of areas with a more developed laminar
structure (such as dysgranular cortices with differentiated Layers II and III and a rudimen-
tary Layer IV or granular cortices with differentiated Layers II and III and a well-defined
Layer IV, depicted in the grey column). Prediction-error signals (in grey) flow in the other
direction, originating in the superficial layers (II and III) with more laminar differentiation
and terminating in middle deep layers (V and VI) of areas with less differentiated laminar
architecture. Adapted from (Hutchinson and Barrett, 2019)
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laminated cortical areas and primarily receive prediction error.

Figure E.4: Limbic Cortices in the Human Brain. Cortical limbic areas (blue) form a ring
around the corpus callosum on the medial wall of each hemisphere, continuing along the
temporal cortex and the base of the brain. They are neocortical areas that either lack or have
a rudimentary layer IV (i.e., are agranular or dysgranular, respectively). They are located
between the simpler allocortex and the better laminated eulaminate cortex. Limbic cor-
tices include the cingulate cortex (subgenual anterior cingulate cortex, sgACC; pregenual
anterior cingulate cortex, pgACC; dorsal anterior cingulate cortex, dACC; mid-cingulate
cortex, MCC; posterior cingulate cortex, PCC), the ventral anterior insula, vAI, the poste-
rior orbitofrontal cortex,POFC, the para-hippocampal gyrus PHG, and the temporal pole,
TP. From Chanes and Barrett (2016)

Moreover, primary sensory cortices (with the most differentiated laminar structure)
receive predictions from less laminated cortical areas and send prediction error. Other
cortical areas (with intermediate degrees of laminar differentiation) send both predic-
tions and prediction error depending on the relative laminar differentiation of the re-
ceiving cortices.

Based on this hypothesis, the overall organization of the predictive brain can be
schematized as in Figure E.5.

As it can be seen from Figure E.5, this organization involves all cortical sensory
systems. Indeed, limbic cortices can be identified in visual, auditory, somatosensory
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Figure E.5: The predictive brain according to Chanes and Barrett (2016). Each ring represents
a different type of cortex, from greater (exterior circles) to less (interior circles) laminar dif-
ferentiation. Primary sensory cortices (lower level of each sensory system) are indicated:
A1, primary auditory cortex; G1, primary gustatory cortex; I1, primary interoceptive cor-
tex; O1, primary olfactory cortex; S1, primary somatosensory cortex; V1, primary visual
cortex. Unimodal association areas include extrastriate areas (V2, V3, V4, MT/V5) for
the visual system, superior temporal areas surrounding A1 for the auditory system, and
the superior parietal lobule (SPL) for the somatosensory system. Multimodal association
areas include the dorsolateral prefrontal cortex (DLPC), lateral temporal cortex (LTC),
and posterior parietal cortex (PPC). Predictions flow from cortical areas with less laminar
differentiation to areas with greater laminar differentiation. Prediction error flows in op-
posite direction. The number of cortical steps (hierarchical levels) is less in interoceptive,
gustatory, and olfactory systems than in exteroceptive visual, auditory, and somatosensory
systems.
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and interoceptive systems
For instance, the interoceptive system in charge of the perception and integration

of autonomic, hormonal, visceral, and immunological homeostatic signals that col-
lectively describe the physiological state of the body. In this case, as proposed by
Barrett and Simmons (2015), visceromotor limbic cortices - notably the anterior and
mid-cingulate cortices, (ACC, MCC) and the ventral anterior insula, vAI - send pre-
dictions to the primary interoceptive cortex in the mid-to-posterior insula (I1), which
is eulaminate in structure. Visceromotor cortical limbic areas also send predictions to
subcortical structures that control the autonomic, hormonal, metabolic, and immuno-
logical systems (e.g., the amygdala and the hypothalamus).

Clearly, there are differences across systems in the amount of cortical processing.
Compared with interoception, information from visual, auditory, and somatosensory
modalities is processed more extensively in the cerebral cortex. Predictions and predic-
tion errors are computed across several levels of cortical processing. More precisely,
there are several synaptic connections between primary sensory cortices in which rep-
resentations are more specialized and cortical limbic areas in which they are more inte-
grated. The interoception system entails fewer steps.

Primary interoceptive cortices in mid- and posterior insula (I1) are eulaminate in
structure: they have a less developed layer IV than koniocortices of primary visual,
auditory, and somatosensory cortices. This difference in degree of laminar differen-
tiation along which predictive signals are coded - smaller in the interoceptive system
(eulaminate to limbic) versus larger in the visual, auditory, and somatosensory systems
(koniocortex to limbic) - may be one reason why interoceptive perception is less differ-
entiated and lower in dimensionality when compared with exteroceptive perception.

According to this model, limbic cortices, at the top of the predictive hierarchy, cre-
ate a highly connected, dynamic functional ensemble for information integration and
accessibility in the brain (the limbic global workspace). Because of their anatomi-
cal position at the top of sensory and motor processing hierarchies, limbic cortices
are strongly interconnected, and have strong bidirectional connections with subcortical
structures such as the amygdala, the ventral striatum, and the hypothalamus. There-
fore, highly integrated neural representations in limbic cortices are easily accessible by
virtually the whole brain. In every conscious moment, all modalities are represented in
the global workspace, but the type of content that is prioritized may determine whether
we categorize the experience as “emotion”, “perception”, or “cognition”. By virtue of
their structural and functional properties, they are likely to contribute to create a unified
conscious experience.

The model provides novel insights, at the network level, about the flow of informa-
tion within intrinsic brain networks (Figure E.6).

A brief recap of fundamental large-scale networks is provided in Appendix D

E.2 The SM and intrinsic networks

Each intrinsic network, such as the SN and the DMN (Figure E.7) includes areas with
varying degrees of laminar differentiation (including limbic cortices, Paquola et al.
(2021)).

Indeed, the functional role of networks such as the DMN may be understood with

247



i
i

“output” — 2022/6/29 — 15:28 — page 248 — #256 i
i

i
i

i
i

Appendix E. The Structural Model of corticocortical connections and the
organization of the brain

Figure
E

.6:
Intrinsic

netw
orks

in
the

brain.
E

ach
netw

ork
is

a
population

ofneurons
thatfire

synchronously
so

thattheir
firing

is
strongly

related
over

tim
e.

The
neurons

thatm
ake

up
an

intrinsic
netw

ork
coordinate

their
spontaneous

activity
via

their
anatom

icalconnections.
The

structural
connections

betw
een

neurons
do

notdeterm
ine

an
intrinsic

netw
ork,butplace

boundaries
on

or
constrains

those
netw

orks
(w

hose
connectivity

is
functional).W

ithin
these

constraints,the
intrinsic

netw
orks

are
m

ore
variable

and
have

a
dynam

ic,functionalrepertoire.These
netw

orks
develop

in
the

firstfew
years

oflife.
Som

e
ofthem

are
unique

to
hum

ans,w
hereas

others
can

be
seen

in
the

brains
ofother

apes,and
m

onkeys,and
even

in
rats,although

they
m

ay
notperform

the
sam

e
function

in
hum

ans
and

non-hum
an

anim
als.From

h
t
t
p
s
:
/
/
h
o
w
-
e
m
o
t
i
o
n
s
-
a
r
e
-
m
a
d
e
.

c
o
m
/
n
o
t
e
s
/
I
n
t
r
i
n
s
i
c
_
n
e
t
w
o
r
k
s

.

248

https://how-emotions-are-made.com/notes/Intrinsic_networks
https://how-emotions-are-made.com/notes/Intrinsic_networks


i
i

“output” — 2022/6/29 — 15:28 — page 249 — #257 i
i

i
i

i
i

E.2. The SM and intrinsic networks

Figure E.7: Cortical types within the DMN. Left: the canonical DMN. Center: the histogram
of cortical types. Right:Cortical types are shown on the surface. The schematic highlights
prominent features that vary across cortical types, including the location/size of largest
pyramidal neurons (triangles), thickness of layer IV, existence of sublayers in V-VI (grey
dashed lines), regularity of layer I/II boundary (straightness of line). Kon=koniocortical.
Eul=eulaminate. Dys=dysgranular. Ag=agranular. Adapted from Paquola et al. (2021)

respect to their neuronal architecture. The clarity of cortical layers as well as the promi-
nence of a granular layer IV (the granularity), decreases with synaptic distance from
primary sensory areas. Cytoarchitectural changes present as a gradient running across
the cortical surface, which is commonly termed the “sensory-fugal” axis, as it mirrors a
shift in receptiveness from the external world to the internal milieu consistent with the
architecture discussed in the previous section.

A first dimension of cytoarchitectural changes can be gauged by measuring intra-
cortical variations in cell body staining of the human brain, depth-wise variations in
cell density and soma size. This can be can be quantified via diffusion map embedding,
a nonlinear manifold learning technique. The first eigenvector (E1) accounts for the
principle axis of variation in cytoarchitecture and is distinct to the gradient of laminar
elaboration that is captured by the cortical types (Figure E.8). E1 captures changes
in the intracortical staining intensity profiles, which capture depth-wise variations in
the density and size of cell bodies. Areas with lower E1 values exhibit higher over-
all staining intensity, with a noticeable peak at mid-depths, whereas areas with higher
E1 values show overall lower staining intensity with a flatter profile and more limited
differentiation across depths.

A second useful dimension for characterizing the cytoarchitectural gradient is navi-
gation efficiency (Enav), which relates to distance travelled between a seed and a target
along the structural connectome.

The same analyses can be performed for all intrinsic networks. From Figure E.10 it
can be easily appreciated the uniqueness of the DMN relative to other functional net-
works. While each functional network harbours multiple cortical types, the distribution
of types differs significantly between the DMN and other functional networks, indicat-
ing a unique cytoarchitectural makeup of the DMN. The DMN has the most balanced
navigation efficiency across cortical types, which is partly attributable to its size and
spread.

Together, this shows that structural connectivity of the DMN to other brain regions
is organised along E1, particularly for more granular types that have higher navigation
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Figure E.8: Cytoarchitectural gradient and heterogeneity of the DMN. Left: approximate vari-
ance explained of affinity matrix by each eigenvector, which reflects variation in cytoarchi-
tecture and the probability density plot shows a bimodal distribution of E1 values. Center:
E1 projected onto a 3D rendering of the human brain. Right: Raincloud plot shows the
distribution of E1 within circumscribed subregions of the canonical DMN: Para, parahip-
pocampus; IPL, inferior parietal lobule; MTG, middle temporal gyrus; IFG, inferior frontal
gyrus; Prec, precuneus; PFC, prefrontal cortex. Adapted from Paquola et al. (2021)

Figure E.9: Navigation efficiency of the DMN within the structural connectome. Left: Naviga-
tion efficiency (Enav) calculated from step-wise progression along the tractography-based
connectome, where each step is determined by spatial proximity to the target node. Cen-
ter: Graph representation of the Enav connectome within the left hemisphere. The matched
representations depict E1 (within DMN). Right: the same representation computed for func-
tional networks, and cortical types. Adapted from Paquola et al. (2021)

250



i
i

“output” — 2022/6/29 — 15:28 — page 251 — #259 i
i

i
i

i
i

E.2. The SM and intrinsic networks

Figure E.10: Cytoarchitectural heterogenity and navigation efficiency of intrinsic networks.
Top: Crosstabulation of functional network by cortical type; frequency is provided rela-
tive to total vertices in each type; VIS=visual; SOM=somatomotor; DAN=dorsal attention
network; VAN=ventral attention network; LIM=limbic; FP=frontoparietal; DMN=default
mode network. Bottom: Boxplots show median connectivity of each parcel to each cortical
type stratified by functional network. Adapted from Paquola et al. (2021)
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efficiency to DMN areas with lower E1 positions. The skewed aspect of E1 is thus
structurally poised to integrate signals from a large cortical territory.

Extant theories place the DMN as the apex of the sensory-fugal hierarchy or as a
parallel network. However, the analyses by Paquola et al. (2021) provide a more nu-
anced landscape and demonstrate that connectivity is organised along the most promi-
nent cytoarchitectural axis of the DMN, which is not nested within or parallel to the
sensory-fugal hierarchy. Instead, the DMN seems to protrude from the sensory-fugal
hierarchy, with strong afferent connectivity on one end and insulation on the other.
This architecture aligns with a rich club organisation of brain connectivity, in which
activation of a single rich club node through feeder connections can ignite meta-stable
network dynamics. The areas with convergent afferents, as well as connections within
the DMN, may enable recombinations that would not occur within sensory-fugal pro-
cessing streams. Such topological complexity is thought to be an important trade-off
in development and evolution of biological neural networks and illustrates a distinctive
role of the DMN in information integration.

By and large, these results seem to provide strong support to the limbic workspace
model proposed by Chanes and Barrett (2016) (cfr. Figure E.5) where intrinsic net-
works are understood as hierarchical systems, with the flow of prediction signals within
each network dictated by the structure of the cortical areas involved. In these networks,
limbic cortices (e.g., the ventral anterior insula and dorsal anterior cingulate cortex for
the salience network and the posterior cingulate cortex and sub/pregenual cingulate cor-
tex for the DMN) issue predictions to better laminated areas in the network. This way,
a single network may contain a diverse population of representations across multiple
levels of cortical processing.

The limbic cortices that guide allostasis fall within the traditional territory of three
intrinsic networks within the brain (Figure E.11).

In a predictive coding perspective, Barrett et al. (2016) argue for the following gen-
eral functions.

• DMN: generatively uses prior experiences to construct the brain’s internal model.
If a simulation is an embodied brain state, then the default mode network initiates
simulations and represents part of their pattern; its multimodal sensorimotor sum-
maries become more detailed and particularized as they cascade out to primary
sensory and motor regions.

• SN: sends predictions that adjust the internal model to the conditions of the sen-
sory periphery, again in the service of allostasis. The SN tunes the internal model
by anticipating which prediction errors are likely to be allostatically relevant and
therefore worth the metabolic cost of encoding and consolidation, and then mod-
ulating the gain on those errors accordingly. These predictions are called preci-
sion signals. Precision signals optimize the sampling of the sensory periphery
for allostasis. Via their core position in the brain’s rich club, and their role in
multisensory integration, the SN’s precision signals apply attention to every sen-
sory system in the brain (this is sometimes called affective attention). Precision
signals directly alter the gain on neurons as they compute prediction error from
incoming sensory input. Unexpected sensory inputs that are anticipated to have
allostatic implications (because they are likely to impact survival, offering reward
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Figure E.11: Mapping of limbic areas considered in Figure E.4 and E.5 to functional net-
works: DMN, SN, CEN and motor Network. sgACC, subgenual anterior cingulate cor-
tex; vmPFC, ventromedial prefrontal cortex; pgACC, pregenual anterior cingulate cortex;
dmPFC, dorsomedial prefrontal cortex; MCC, midcingulate cortex, is ventral to dmPFC
and SMA; vaIns, ventral anterior insula; daIns, dorsal anterior insula; vlPFC, ventrolateral
prefrontal cortex; SMA, supplementary motor area; PMC, premotor cortex; m/pIns, mid/
posterior insula ( primary interoceptive cortex); SSC, somatosensory cortex; V1, primary
visual cortex; and MC, motor cortexAdapted from Barrett et al. (2016)
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or threat, or are of uncertain value) will be treated as signal and learned to better
predict energy needs in the future. Importantly, the SN helps accomplish multi-
modal integration (its spatial topography strongly overlaps with the multimodal
integration network). Moreover, primary interoceptive cortex (in the dorsal mid
to posterior insula) is a component of the SN, ensuring that every mental event
(not just emotions) is infused with interoception, which is made available to con-
sciousness as affect. This state of affairs provides the recipe for affective realism,
where people experience supposed facts about the world that are created in part
by interoception and the associated affective feelings.

• CEN: neurons within the frontoparietal control network sculpt and maintain sim-
ulations for longer than the several hundred milliseconds it takes to process immi-
nent prediction errors. They apply attention to adjust the degree of confidence in
sensory predictions (i.e., adjusting priors) and they may also help to suppress or
inhibit simulations whose priors are very low. It thus support the need to learn on
a single trial, without recurring to statistical regularities in the world, in a quickly
changing environment or when the prediction error was large. Indeed, as a predic-
tion generator, the brain is constructing simulations across many different time-
scales (i.e. it is integrating information across the few moments that constitute
an event, but also across longer time frames at various scales). The CEN (which
contains key limbic rich-club hubs in the mid cingulate cortex and anterior insula)
also may have a role to play in managing sensory prediction errors, by applying
attention to select those body movements that will generate the expected sensory
input. inputs, presumably with help from cerebellar and striatal prediction errors.
These movements then generate the sensory inputs that reduce prediction error
and confirm an existing prediction.

In its bare essentials, the prediction process dynamics triggered by limbic regions, as
generally outlined in Figure E.5 is summarised in Figure E.12. Note that for simplicity
sake, gustatory olfactory and intermediate multimodal areas are not included in the
scheme.

The primary task of a brain is to implement allostasis in the service of efficient
metabolism and energy regulation. For example, allostasis describes the brain’s ca-
pacity both to predict that to start running requires more oxygen in the body’s striate
muscles, as well as to mobilize the needed resources by increasing cardiac output, re-
distributing blood flow from organs that can spare oxygen. These predictions cause
changes in the body’s internal systems ( the immune, endocrine and autonomic nervous
systems) and the sensations that arise from those changes are called interoception. The
interoceptive prediction signals are represented as a change in affect (i.e. the expected
sensory consequences within the body). The skeletomotor prediction signals prepare
the body for movement and the extrapersonal sensory prediction signals prepare up-
coming perceptions, that is exteroception.

To such purpose, the brain hosts an internal model of the world from the perspec-
tive of its body’s physiological needs, following the well-known cybernetics principle
that anything which regulates a system must contain an internal model of that system.
Limbic cortices initiate allostatic predictions to the hypothalamus and brainstem nu-
clei (e.g. periaqueductal grey, para-brachial nucleus, nucleus of the solitary tract) to
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regulate the autonomic, neuroendocrine and immune systems. The incoming sensory
inputs from the internal milieu of the body are carried along the vagus nerve and small
diameter C and Ad fibres to limbic regions (dotted lines). Comparisons between pre-
diction signals and ascending sensory input results in prediction error that is available
to update the brain’s internal model. In this way, prediction errors are learning sig-
nals and can adjust subsequent predictions. Efferent copies of allostatic predictions are
sent to motor cortex as motor predictions (solid lines) and prediction errors are sent
from motor cortex to limbic cortices (dotted lines). Sensory cortices receive sensory
predictions from several sources. They receive efferent copies of allostatic predictions
and efferent copies of motor predictions. Sensory cortices with less well-developed
lamination (e.g. primary interoceptive cortex) also send sensory predictions to sensory
cortices that are more well developed (e.g. somatosensory and primary visual cortices).
The cerebellum models sensory prediction errors from the periphery and relays them
to cortex to rapidly modify motor predictions (i.e. it is hypothesized to predict the
sensory consequences of a motor command much faster than actual sensory prediction
errors can be received, and helps the cortex reduce the sensory consequences caused
by one’s own movements); it may have the same role to play for allostatic predictions
given the connectivity between the cerebellum and cingulate cortices, hypothalamus
and the amygdala. It is worth noting that, different from traditional “faculty”-based

Figure E.12: Predictive coding in the human brain. Key limbic cortices (in blue) provide cor-
tical control of the body’s internal milieu and peripheral systems. Downward arrows rep-
resent predictions; upwards dashed arrows, prediction errors. sgACC, subgenual anterior
cingulate cortex; vmPFC, ventromedial prefrontal cortex; pgACC, pregenual anterior cin-
gulate cortex; dmPFC, dorsomedial prefrontal cortex; MCC, midcingulate cortex, is ventral
to dmPFC and SMA; vaIns, ventral anterior insula; daIns, dorsal anterior insula; vlPFC,
ventrolateral prefrontal cortex; SMA, supplementary motor area; PMC, premotor cortex;
m/pIns, mid/ posterior insula ( primary interoceptive cortex); SSC, somatosensory cortex;
V1, primary visual cortex; and MC, motor cortex. Adapted from Barrett et al. (2016)
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views, information flowing from the amygdala to the cortex is not emotional per se, but
signals uncertainty about the predicted sensory input (via the basolateral complex) and
helps to adjust physiological functions in support of allostasis (via the central nucleus).
The arousal signals that are associated with increases in amygdala activity can be con-
sidered as learning signals. Similarly, prediction errors from the ventral striatum to the
cortex (referred to as reward prediction errors) convey information about sensory inputs
that impact allostasis more than expected (i.e. indicating that this information should
be encoded and consolidated in the cortex, and acted upon immediately). Dopamine
is hypothesized to support vigorous action and learning that is necessary to secure the
rewards that maintain efficient allostasis (or restore it in the event of disruption), rather
than playing a necessary or sufficient role in rewards themselves. Other neuromodula-
tors, such as opioids, may be more intrinsically rewarding.

Figure E.13 outlines an expanded view of the predictive dynamics shown in Figure
E.12

Figure E.13: Predictive coding in the human brain: expanded from Figure E.12 Downward
arrows represent predictions; upwards dashed arrows, prediction errors.

Figure E.14 summarizes Figure E.12 and maps at the different processing levels -
conceptual, perceptual and corporeal - the main intrinsinc networks accounting for the
computations at the conceptual level relying on the multimodal integration of lower
level sensory predictions (perceptual level).

In the above schemes, the sub-cortical level, which is at the interface between cor-
tical processing and peripheral/body physiology has been blurred. Albeit being a level
of extraordinary complexity, overall it can still be characterised in terms of predictive
activity Smith et al. (2017). Figure E.15 shows more detailed characterization of the
multi-level control architecture that allows for adaptively coordinated cognitive, affec-
tive, autonomic, and behavioral responses that also takes into account, to some detail,
the subcortical level, with specific reference to heart-rate (HR) control (Smith et al.,
2017)
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Figure E.14: Predictive coding in the human brain. The different processing levels - concep-
tual, perceptual and corporeal - are higlighted. An indicative mapping on the key intrinsic
network is provided. DMN, default mode network; CEN, central executive network; SN,
saliency network; LN, limbic network; SMN, somatomotor network; ANs, attention networks
(dorsal and ventral). Motor control is not shown for simplicity

Figure E.15: The scheme details the coordination of the processing levels from the highest
conceptual level (cortical), accounted for by fundamental intrinsic networks down to the
lowest (subcortical and peripheral) intra-cardiac and cardiovascular control levels. Dou-
ble arrows summarise both forward (bottom-up, from periphery to cortex) and backward
(top-down, feedback) signals. The right-most side of the scheme highlights the main compu-
tational goals at the different levels. DMN, default mode network; CEN, central executive
network; SN, saliency network; LN limbic network; ANs, attention networks; SMN, somato-
motor network; VN, AuN, visual and auditory networks; PAG, periaqueductal grey; HPA
hypothalamic- adrenal-pituitary axis; CVOs, circumventricular organs. Adapted from Smith
et al. (2017); Zhang et al. (2019); Chanes and Barrett (2016)
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APPENDIXF
The neurobiology of language

Language is a quintessentially human ability. Research has long probed the functional
architecture of language in the mind and brain using diverse neuroimaging, behavioral,
and computational modeling approaches. However, adequate neurally-mechanistic ac-
counts of how meaning might be extracted from language are sorely lacking. In partic-
ular, the debate spins around a fundamental question (Fedorenko and Thompson-Schill,
2014): are some computations unique to human language or can language be solved by
more general-purpose mental operations? On one side it has been argued that there is a
high degree of functional specificity in the brain regions that support language. On the
other, hypotheses have been advanced about putative language regions that are, instead,
grounded in domain-general terms. Here, we summarise some results so far achieved.

F.1 The classical view

For more than a century the neurobiological model that has dominated the field was the
Wernicke–Lichtheim–Geschwind (WLG) model (Hagoort, 2014, for an introduction) .
In this model, the human language faculty was situated in the left perisylvian cortex,
with a strict division of labor between the frontal and temporal regions. Wernicke’s area
in left temporal cortex was assumed to subserve the comprehension of speech, whereas
Broca’s area in left inferior frontal cortex was claimed to subserve language production.
The arcuate fasciculus connected these two areas.

Although Broca’s area, Wernicke’s area and adjacent cortex are core nodes in the
language network, the distribution of labor between these regions is different than was
claimed in the WLG model. Lesions in Broca’s region are known to impair not only
language production but also language comprehension, whereas lesions in Wernicke’s
region also affect language production. Recently, functional neuroimaging studies pro-
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Figure F.1: The classical Wernicke–Lichtheim–Geschwind model of the neurobiology of lan-
guage. In this model Broca’s area is crucial for language production, Wernicke’s area sub-
serves language comprehension, and the necessary information exchange between these ar-
eas (such as in reading aloud) is done via the arcuate fasciculus, a major fiber bundle con-
necting the language areas in temporal cortex (Wernicke’s area) and frontal cortex (Broca’s
area). The language areas are bordering one of the major fissures in the brain, the so-called
Sylvian fissure. Collectively, this part of the brain is referred to as perisylvian cortex. From
Hagoort (2014)

vided further evidence that the WLG model is no longer tenable. For example, central
aspects of language production and comprehension are subserved by shared neural cir-
cuitry. Moreover, the classical model focused on single word processing, whereas a
neurobiological account of language should go on beyond production and comprehen-
sion of single words

F.2 Departures from the classical view

Sentence processing crucially differentiates three linguistic processing phases after an
initial phase of acoustic-phonological analysis.

1. Sentence-level processing: the local phrase structure is built on the basis of word
category information.

2. Syntactic and semantic processing of relations in the sentence: these involve the
computation of the relations between the verb and its arguments, thereby lead-
ing to the assignment of thematic roles (i.e., the analysis of who is doing what
to whom); once both semantic and syntactic information lead to the compatible
interpretation, comprehension can easily take place.

3. Integration: for sentences in which semantic and syntactic information do not
easily map, a final consideration and integration of the different information types
is achieved, possibly including the context or world knowledge.
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During auditory sentence processing, these three different phases interact with linguis-
tic prosody providing, for example, information about phrase boundaries relevant for
syntactic processes. Linguistic prosody can also signal what is in the thematic focus
of a sentence and whether an utterance is a declarative sentence or a question. This
information is either essential or modulatory to the syntactic and semantic processes in
a given sentence.

Different brain regions in the left and right hemisphere have been identified to sup-
port particular language functions (see Figure F.2). At the most general level:

• networks involving the temporal cortex and the inferior frontal cortex with a clear
left lateralization were shown to support syntactic processes;

• less lateralized temporo-frontal networks subserve semantic processes.

Within dual stream models, the ventral pathway has been taken to support sound-
to-meaning mapping, whereas the dorsal pathway connecting the posterior dorsal-most
aspect of the temporal lobe and the posterior frontal lobe has been suggested to support
auditory-motor integration.

As to the latter, it has been argued (Friederici, 2011) that projections from sensory
to the premotor cortex (via dorsal pathway I) could support bottom-up information
processes, whereas projections from Broca’s area to the temporal context (via dorsal
pathway II) could subserve top-down processes drawing prediction about the incoming
information, thereby easing its integration.

More specifically one might distinguish the following processes and involved areas
(for details, see Friederici, 2011, and for areas refer to Figure F.2.

• Acoustic-phonological analysis. This process is the by the auditory cortex and
adjacent areas such as the Heschls gyrus (HG). A primary step is to differenti-
ate speech from non-speech acoustic signals, This primary auditory analysis is
computed in HG. The planum temporale (PT) has been proposed as the region
for the segregation and matching of spectrotemporal patterns and as serving as a
hub gating the information to higher-order cortical areas. Speech perception of
phonemes (consonants) was found to activate a region anterolateral to HG in the
STG/STS.

• Initial syntactic processes. it has been suggested that the frontal operculum
(FOP) together with the anterior STG supports local structure building. More
generally, this net- work could be viewed as the system that supports rule-based
combinatorics of adjacent elements. However, Studies investigating sentence pro-
cessing under less proficient processing conditions as in language development
and second language learning show that processing phrase structure violations in-
volves the IFG, in particular Broca’s area, and not just the FOP. This suggests that
there may be a shift in the recruitment of necessary parts of the ventral prefrontal
cortex for local syntactic structure building as a function of language proficiency.

• Computation of semantic and syntactic relations. Many of the neuroimaging
studies on language comprehension report activation in the anterior and posterior
temporal lobe. While some studies concluded that the anterior and posterior tem-
poral regions react specifically to semantic or syntactic aspects, others challenged
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Figure F.2: Neurobiology of language. Left panel: Anatomical and cytoarchitectonic details of
the left hemisphere. The different lobes (frontal, temporal, parietal, occipital) are marked by
colored borders. Major language relevant gyri (IFG, STG, MTG) are color coded. Numbers
indicate language-relevant Brodmann Areas (BA). The coordinate labels superior/inferior
indicate the position of the gyrus within a lobe (e.g., superior temporal gyrus) or within a
BA (e.g., superior BA 44; the superior/ inferior dimension is also labeled dorsal/ventral).
The coordinate labels anterior/posterior indicate the position within a gyrus (e.g., anterior
superior temporal gyrus; the anterior/posterior dimension is also labeled rostral/caudal).
Broca’s area consists of the pars opercularis (BA 44) and the pars triangularis (BA 45).
Located anterior to Broca’s area is the pars orbitalis (BA 47). The frontal operculum (FOP)
is located ventrally and more medially to BA 44, BA 45. The premotor cortex is located in BA
6. Wernicke’s area is defined as BA 42 and BA 22. The primary auditory cortex (PAC) and
Heschl’s gyrus (HG) are located in a lateral to medial orientation. Right panel: Structural
connectivities between the language cortices. Schematic view of two dorsal pathways and
two ventral pathways. Dorsal pathway I connects the superior temporal gyrus (STG) to the
premotor cortex via the arcuate fascile (AF) and the superior longitudinal fascicle (SLF).
Dorsal pathway II connects the STG to BA 44 via the AF/SLF. Ventral pathway I connects BA
45 and the temporal cortex via the extreme fiber capsule system (EFCS). Ventral pathway II
connects the frontal operculum (FOP) and the anterior temporal STG/STS via the uncinate
fascile (UF). Adapted from Friederici (2011)
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Figure F.3: The dual-route model of language processing. This model is based on double
anatomo-functional dissociations obtained with cortico-subcortical electrostimulation dur-
ing a naming task (visual input). Adapted from Herbet and Duffau (2020)

this view by arguing either that the anterior temporal lobe or the posterior tem-
poral lobe is not domain specific. The anterior STG is systematically involved
whenever syntactic structure has to be processed (sentences versus word lists).
the posterior temporal cortex (posterior STG/STS) is clearly involved in language
processing, and its function appears to be primarily to integrate different types of
information. For sentence processing, this might mean the integration of seman-
tic and syntactic information. The IFG, in particular Broca’s area, has long been
known to support language production and comprehension processes. Subregions
of Broca’s area have been allocated to different aspects of language processing,
either seeing BA 44 as supporting syntactic structure building, BA 44/45 as sup-
porting thematic role assignment and BA 45/47 supporting semantic processes
(67), or specifying Broca’s area (BA 44/45) as the region supporting the compu-
tation of syntactic movement (96), or defining Broca’s region (BA 44/45/47) as
the space for the unification of different aspects in language. In general, when se-
mantic processing demands increase due to task or stimulus configurations, more
anterior portions of the IFG are recruited. When perceptual processing conditions
induce increased demands during syntactic processes, more posterior/superior re-
gions of the IFG towards the IFS are recruited. The data thus point towards a
language processing system which allocates different subregions in the perisyl-
vian default language network as needed. The role of Broca’s area as a central
region for syntactic processes has also been demonstrated in the context of artifi-
cial grammar learning.

• Integration. This is matter of debate. Some researchers ( assume that the final
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integration of syntactic and semantic information takes place in the left poste-
rior STG, whereas others assume that unification of different language-relevant
information types is located in the left IFG. In general, IFG’s role as a region
of combining semantic and syntactic information may be restricted to its more
anterior parts.

• Prosody. Two types of prosodic information are usually distinguished: emo-
tional prosody and linguistic prosody. As to linguistic prosody, is mainly encoded
in the intonational contour, which signals the separation of constituents (syntac-
tic phrases) in a spoken sentence and the accentuation of (thematically) relevant
words in a speech stream. Studies (e.g., Ref. 200) suggest a relative involvement
of the RH (right emisphere). The less segmental information there is available,
the more dominant the RH. For example, processing of pitch information (into-
national contour) is correlated with an activation increase in the RH (but can be
modulated by task demands)

Speech (and reading) is a temporal process and, beyond the above specific area/-
function characterisation, it is of interest to understand how speech comprehension
evolves over time. Unfortunately, the data available from the fMRI studies on lan-
guage processing do not provide the sufficient time resolution to capture this crucial
aspect. The cognitive description of the comprehension process itself consists of sev-
eral subprocesses that take place in a serial cascading and partly parallel fashion. Three
linguistic processing phases have been assumed, and these correlate with functionally
distinct components identified in the electrophysiological signal.

In the last decades, different language-relevant event-related brain potential (ERP)
components have been identified: an early left anterior negativity (ELAN) between 120
and 200 ms, taken to reflect initial syntactic structure building processes; a centropari-
etal negativity between 300 and 500 ms (N400), reflecting semantic processes; and a
late centroparietal positivity (P600), taken to reflect late syntactic processes. Moreover,
in the time window be- tween 300 and 500 ms, a left anterior negativity (LAN) was ob-
served to syntactic features that mark the grammatical relation between arguments and
verb, and this was taken to reflect the assignment of thematic relations (who did what to
whom) (see Figure F.4). This led to the formulation of the so-called three-phase model
of language comprehension allocating different components in the event-related brain
potential to different processes in the comprehension process. Recently, the process
has been revised, but the different ERP components are still observed during language
processes.

The neurotemporal dynamics of language comprehension can be described as fol-
lows, from a feedforward perspective.

• Phase 1: An initial phrase structure on the basis of word category information
is built. This process is highly automatic, independent of semantic and verb ar-
gument information, and independent of task demands. The process involves a
portion of the left STG immediately anterior to the primary auditory cortex, pos-
sibly connecting to the FOP located ventrally to Broca’s area.

• Phase 2:the relation between the verb and its arguments is computed to assign the
thematic roles in a sentence. Morphosyntactic information (subject-verb agree-
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F.2. Departures from the classical view

Figure F.4: The time course of language comprehension. Top panel shows the different stages
of the events and processes involved: acoustic-phonological processes (N100); initial syn-
tactic Processes (ELAN); computation of syntactic and semantic Relations (LAN/N400);
integration and interpretation (P600). Th bottom panel shows main regions involved in
the left hemisphere (LH, language) and the right hemisphere (RH, prosody). Adapted from
Friederici (2011)
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ment, LAN), case information (LAN or N400, depending on the particular lan-
guage), and lexical selectional restriction in- formation (N400) are taken into con-
sideration to achieve assignment of the relation between the different elements in
a sentence. The on-line assignment of semantic relations mainly appears to in-
volve the mid and posterior portion of the temporal cortex. Processes of subject-
verb agreement have not been clearly localized, but the distribution of the LAN
suggests an involvement of the left frontal cortex.

• Phase 3: the final interpretation takes place, with semantic and syntactic informa-
tion being taken into account and mapped onto world knowledge. At the linguistic
level, the difficulty of integrating syntactic and semantic information and the need
for reanalysis is reflected in a P600. The difficulty of mapping linguistic informa-
tion onto world knowledge also appears to elicit a P600 effect. At the moment it
remains open whether these two P600 effects are members of the same family of
ERP components or not.

F.3 In search of a language network

Prior investigations of functional specialization have focused on the response profiles of
particular brain regions. Beyond the controversial idea of localizing specific functions
within specific areas, a cogent problem, in our perspective, is whether a “language
network” can be defined, in the vein of other functional networks we have discussed so
far.

As pointed out by Fedorenko and Thompson-Schill (2014), one might object that
questions about the language network are ill posed, because language is not a single
thing. Indeed, when talking about whether language relies on domain-specific versus
domain- general machinery (or some combination of the two), researchers are often re-
ferring to different mental processes that language encompasses and there is no agree-
ment on the right ontology of these processes. Such ontologies in human cognitive
neuroscience are typically inspired by theoretical and experimental behavioral work in
psychology and cognitive science, although they often lag behind. At present, based
on differences in functional profiles and some neuropsychological patient evidence,
we can at least distin- guish between: (i) the sensory language regions (in the audi-
tory and visual cortices); (ii) the speech articulation regions; and (iii) the ‘higher-level’
language-processing regions (Figure F.5).

It should be clear that the right criterion (or set of criteria) for the language network
is subject to debate. If we focus on the properties of the individual nodes of the network,
one could argue that either: (i) the language network is not functionally specialized for
language because not all of its nodes are functionally specialized for language; or (ii)
the language network is functionally specialized, if the presence of some specialized
nodes is sufficient. If we focus on the edges, the language network would qualify as
functionally specialized because the specialized regions would be engaged only during
language-processing tasks and thus, by definition, the combination of brain regions (and
presumably the connections among them) engaged during language processing would
be unique. Indeed, researchers have argued that there is a high degree of functional
specificity in the brain regions that support language. Others have advanced hypotheses
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F.3. In search of a language network

Figure F.5: The language network under different definitions. (A) A schematic depiction of five
sets of brain regions that are sometimes included in the language network: red, the classic
high-level language-processing regions; yellow, speech perception regions; green, visual
word-form area; purple, speech articulation regions; and blue, cognitive control regions.
(B) A schematic illustration of possible definitions of the language network, ranging from
very liberal (1) to more conservative (2 and 3). Adapted from Fedorenko and Thompson-
Schill (2014)

about putative language regions that are, instead, grounded in domain-general terms
(Fedorenko and Thompson-Schill, 2014).

To sum up, a language network plausibly includes a functionally specialized “core”
(brain regions that coactivate with each other during language processing) and a domain-
general “periphery”, namely a set of brain regions that may coactivate with the language
core regions at some times but with other specialized systems at other times, depending
on task demands.

Figure F.6) outlines this extended network. The core areas within the temporal
lobe are constrained to the regions 2 (auditory word forms), 3b and 3c (phonologi-
cal processing), 4b (elementary lexical semantics), and 4b (syntax). As the “margins”
of these core functions, three functionally different regions are addressed, referring
to (1) parietal and posterior temporal regions contributing to sensorimotor processing,
processing of language in context, and theory of mind, (2) inferior temporal-occipital
regions that are predominantly linked to visual object representations and their associa-
tion with language processing, and (3) the temporal pole as a language interface toward
the processing of emotions, valence, and social cognition. Such extensions may not be
required for very simple language tasks, but they are largely relevant for natural lan-
guage communication and for understanding sentences in context. They may even be
active at the stage of single-word processing, based on the nature of word and concept
representations (Hertrich et al., 2020).
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Figure F.6: Left-hemisphere schematic display of the auditory cortex (region 1), the core lan-
guage network (2–5, coloured regions as in the legend), and its margins (6, brown regions).
Dashed regions show possible connections to main intrinsic networks. (1) auditory cortex
A1 as the primary input structure for verbal communication, (2) auditory word form area
as a perceptual core region of the language modality, (3) phonological areas linking an
auditory-phonetic to an articulatory language code (4) syntax processing, manipulating and
detecting structures above word level, (5) lexical-semantic core areas linking phonological
codes to lexical meanings, (6a) Sensorimotor cortex, (6b) Supplementary motor area (SMA)
and pre-SMA, (6c) dorsolateral prefrontal cortex, (6d) orbitofrontal cortex, (6e) temporal
pole, (6f) middle and inferior temporal regions, (6g) parietal and temporoparietal regions.
Not shown in this figure, but also relevant for language processing, are right-hemispheric
areas homologues of left-dominant language areas, subcortical regions including the basal
ganglia, cerebellum, and thalamus, and inner regions of the cortex comprising insula and
cingulate cortex. Adapted from Hertrich et al. (2020)
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F.4 Neurobiology of semantics

The extended network shown in Figure F.6 has been proposed as the basis of the brain
semantic network.

While the core language network as defined here is largely restricted to phonolog-
ical and elementary lexical-semantic functions, semantic processing, as a whole, com-
prises a huge network that is deeply embodied in various ways. It includes all kinds of
world knowledge and comprises multiple areas in the brain such as modality-specific
representations, sensorimotor regions, and emotion systems Hertrich et al. (2020). Fur-
thermore, convergence zones toward more generalizing and abstract categories in tem-
poral and inferior parietal regions play an important role for semantic processing as
well as dorsomedial and inferior prefrontal cortices, controlling the goal-directed ac-
tivation and selection of semantic information. Figure F.6 also highlights the possible
connections to main intrinsic networks.

Based on structural connectivity analyses, three major subcomponents of the seman-
tic system have been outlined comprising (1) a large-distance orbitofrontal-temporal-
occipital network assembling object properties, (2) a middle and inferior frontal-subcortical
module serving executive control of semantic processing, and (3) a medial temporal
module as an interface to episodic memory Hertrich et al. (2020). Regarding object
representations, the semantic system is organized in a system of gradients in cortical
features from sensory and sensorimotor to transmodal areas. The medial temporal mod-
ule of the semantic system overlaps with the hippocampal-cortical memory system as a
general interface for memory storage, management, and retrieval. Regarding memory
content, there seems to be a lateral-medial gradient in semantic representations where
lateral regions relate to external knowledge and processes while medial regions relate
to self-processing and autobiographic episodic memory.

Figure F.7: The organization of the intrinsic functional network of semantic processing. Left:
the semantic network showing nodes and edges, with nodes defined as the regions con-
sistently activated during semantic processing (obtained from a meta-analysis), and edges
defined as the resting-state functional connectivity strength; Middle: the components of the
semantic network obtained by applying a graph-theoretic approach to the underlying con-
nection patterns. Right: The connector hubs linking the three modules. Adapted from Xu
et al. (2017)
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A semantic model has been proposed by Xu et al. (2017) grounded in three func-
tional networks as the basis of semantic processing, comprising (cfr., Figure F.8) (1)
the perisylvian “language-supported system” (partially overlapping with the core lan-
guage network), (2) the “multimodal experiential system” also addressed as the DMN,
integrating experience-based knowledge across multiple modalities (see below), and
(3) the left-dominant frontoparietal CEN as a semantic control system.

Figure F.8: The schematic presentation of the tri-network neurocognitive model of semantic
processing proposed by Xu et al. (2017). Left frontoparietal central executive network, CEN;
DMN, default mode network; PSN, perisylvian network; pMTG, posterior middle temporal
gyrus; ATL, anterior temporal lobe; pIPS, posterior intraparietal sulcus; AG, angular gyrus;
SFG/MFG, superior and middle frontal gyrus. Adapted from Xu et al. (2017)

These three networks are linked together in hub regions, comprising the anterior
temporal lobe, posterior middle temporal gyrus, posterior intraparietal sulcus, angular
gyrus, and parts of superior and middle frontal gyrus (Figure F.8). In general, de-
pending on task demands, for semantic processing various memory systems may be re-
cruited and temporarily linked together, or single subsystems can locally get expanded
or diminished.

The distinction between concrete and abstract concepts seems to be of particular
interest, being closely related to the nature of language and its sensory embodiment
or disembodiment. So the embodiment of abstract in comparison to concrete concepts
is more complex, abstract items are more related to emotional processing, they have
a stronger representation in left inferior frontal gyrus and left temporoparietal cortex,
and they are characterized by longer processing time and different electrophysiological
responses in the N400 domain and later potentials Hertrich et al. (2020).

A related tri-model, L ∪ M (standing for Language/union/Memory) has been re-
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cently proposed by Roger et al. (2022). This tripartite model is organized around
three latent variables/dimensions. The Receiver-Transmitter (RT System) – dimension
mainly encompasses aspects related to speech perception, phonology, articulation, and
syntax. In addition, and even if to a lesser extent, working memory and comprehension
saturate this dimension. This suggests that RT comprises processes related to the ex-
ternalization of verbalizable outputs, implying spell-out and sensory inputs influencing
all cognitive processes and the outputs. RT may involve perceptuo-motor information
processing operations.

The second dimension, labeled Controller-Manager (CM System) is represented
primarily by verbal working memory and comprehension. This component is also more
broadly related to articulation, phonology, syntax, associative memory, and lexical ac-
cess/retrieval. Thus, it could refer to the controlled assembly of elementary operations
allowing to transform a verbal input actively into an elaborated and appropriate verbal
output (i.e., the accurate mapping between meaning and sounds or, conversely, between
sounds and meaning; between word and signification or between sentences/ discourse
and meaning, depending on the level of processing). Concretely, incremental binding,
monitoring, evaluation, or (error-) prediction operations can be engaged as active in-
ference algorithms (i.e., predicting future states according to the trajectory defined by
a given policy). Thus, CM would engage operations common to language production
and comprehension.

The third dimension covers neurocognitive aspects related to language comprehen-
sion, associative memory, lexical access/retrieval, verbal semantic, episodic, and work-
ing memories. In a simplistic way, it can be described as a "Transformer-Associative"
computational component (TA System) as it includes computations to build and main-
tain mental, conceptual, and multimodal representations. The op- erations underlying
TA encompass, for instance, abstraction/dimension- ality reduction, multimodal/rela-
tional binding, pattern separation/ completion, and replay.

All together, the three dimensions support semantic encoding (Language→ Mem-
ory) and decoding (Memory→ Language).

Neurally, the SN presents the functional properties to support the (RT System),
accompanied by information from the sensory-motor network (SMN, including mainly
motor and auditory-perceptive networks).

The Controller-Manager dimension primary function is the organization, develop-
ment, and maintenance of verbal representations; as such it would be underpinned by
a top-down controlled network, the CEN. More precisely, the fronto-parietal control
network (FPN), especially lateralized in the left hemisphere.

Processes related to the Transformer-Associative dimension mainly involve the highly
integrative DMN.

Continuous interactions between the three networks, performed in parallel and exe-
cuted in a more or less controlled manner, support the global L ∪M workspace. The a
“networks ballet” (Roger et al., 2022), happening through SN- CEN-DMN transitions
and dynamical synchronizations, can actively and synergistically support the L ∪ M
cognitive states and the “common ground” (individuals communicate by relying on the
shared set of beliefs, ideas, and knowledge while also making assumptions about the
interlocutors’ perspectives).

At the same time, sites, located at the crossroads of the leading networks, present
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Figure F.9: The L ∪M model. Top panel: the neurocognitive overlap between language and
memory according to the main latent dimensions in the form of a Venn diagram. The dia-
gram is composed of three subsets that are both distinct and interrelated . The encapsulation
of these modules forms the union of language-memory behaviors, while the overlaps form
the language-memory intersection. The three dimensions have been labeled: “Receiver-
Transmitter (RT System) - Controller-Manager (CM) - Transformer-Associative (TA)”. Bot-
tom panel: Latent dimensions (RT-CM-TA) are individually associated with specific brain
networks (SN-CEN-DMN, respectively). In terms of behavior, internal encoding implied in
verbal comprehension, for example, consists of encoding declarative inputs (engaging the
TA System) via more or less attentive listening of verbal indications (involving the RT and
CM dimensions). Here, language feeds memory (M(L(x))). Decoding or externalization,
leads to the production of language involving a mapping of internal verbal representations
and thoughts (TA System) with the corresponding ordered output forms (thus involving ma-
nipulation of Systems CM and RT up to verbal evocation). Here, memory feeds language
(L(M(x))). Adapted from Roger et al. (2022)
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essential properties to act as connector hubs that are core regions able to integrate in-
formation from the different networks locally. Among these convergence areas, the
inferior frontal gyrus (IFG complex) follows a SN-FPN-DMN gradient during the tran-
sition from pars opercularis to pars orbitalis (Figure F.10. The IFG complex could
functionally and gradually integrate phonological, syntactic, and semantic representa-
tions (Figure F.10). Similar local gradients exist in the insula, the supramarginal and
angular gyrus, the posterior upper/mid temporal gyrus, the supplementary motor area,
the dorso-lateral prefrontal cortex, the cerebellum, and the basal ganglia. These local
integrators could serve as interfaces to interconnect the different L ∪ M dimensions
by manipulating external information and internal mental representations. Their role
could be particularly crucial when the demand for inter-network connection is rein-
forced, e.g., during online activity

Finally, the role of peripheral hubs that strengthen intra-network connections is also
central. One of these peripheral hubs is the hippocampus linking information from the
anterior-posterior DMN regions at rest.

To sum up, the model posits clearly that the spectrum of observable behaviors de-
pends on an embedding of local (regional) and global (states) brain dynamics that sup-
port specialized operations (in this case language)

Figure F.10: Neural workspace of the L ∪M model. Left panel: global functional topography
of the links between brain regions belonging to different networks and projected in a reduced
space (n = 48 healthy controls, at rest). This global topology corroborates the dimensions
and interactions proposed in the L ∪M framework . Right panel: example of functional
local SN-FPN-DMN continuums (connector hubs). These functional convergence zones cor-
respond to structural convergence zones where the terminations of traditionally described
language and/or memory bundles are intertwined (Arcuate fascicle: AF; and branches II
and III of the superior longitudinal fascicle: SLF II-III). Adapted from Roger et al. (2022)

As a general conclusion, we can say that many current proposals of the neural archi-
tecture of language continue to endorse a view whereby certain brain regions selectively
support syntactic/combinatorial processing, although the locus of such “syntactic hub”,
and its nature, vary across proposals. Linguistic theorizing, empirical evidence from
language acquisition and processing, and computational modeling have jointly painted
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a picture whereby lexico-semantic and syntactic processing are deeply inter-connected
and perhaps not separable.

In a recent work, Fedorenko et al. (2020) searched for selectivity for syntactic over
lexico-semantic processing using a powerful individual-subjects fMRI approach across
three sentence comprehension paradigms that have been used in prior work to argue for
such selectivity: responses to lexico-semantic vs. morpho-syntactic violations; recov-
ery from neural suppression across pairs of sentences differing in only lexical items vs.
only syntactic structure; and same/different meaning judgments on such sentence pairs.
Across experiments, both lexico-semantic and syntactic conditions elicited robust re-
sponses throughout the left fronto-temporal language network. Critically, however, no
regions were more strongly engaged by syntactic than lexico-semantic processing, al-
though some regions showed the opposite pattern. Thus, contra many current proposals
of the neural architecture of language, syntactic/combinatorial processing is not sep-
arable from lexico-semantic processing at the level of brain regions—or even voxel
subsets—within the language network, in line with strong integration between these
two processes that has been consistently observed in behavioral and computational
language research. These results further suggest that the language network may be
generally more strongly concerned with meaning than syntactic form, in line with the
primary function of language: to share meanings across minds (Fedorenko et al., 2020).

F.5 Neurobiology of pragmatics

Neurobiological models of language not only need to address the circuitry that is crucial
for encoding/decoding the content of an utterance, but they also need to specify the
neural infrastructure for inferring what the speaker intended to communicate by uttering
a sentence. This is what is broadly referred to as neuropragmatics.

How do brains represent (and share) beliefs, knowledge and components of context
in order to infer speaker’s meanings and to engage in successful communication? What
cognitive functions do pragmatic abilities rely upon? How do they express themselves
over time? And what is the cognitive architecture of pragmatics as a system (if a single
system can be assumed)?

Language use is an instance of social interaction. Human interactions predomi-
nantly involve the dissemination of true or false knowledge for good or for ill (Frith
and Frith, 2005). In everyday speech we frequently explain behavior in terms of men-
tal states. The ability to acquire knowledge about other peoples’ beliefs and desires is
called “mentalizing” or “mind reading”. Thus, having a theory of mind enables many
important human interactions (Frith and Frith, 2005).

Theory of Mind (ToM) refers to the ability to understand the minds of others, com-
prising cognitive and affective components.

Through having a ToM we can recognize that another person’s knowledge is dif-
ferent from our own. I know what’s behind the rock, but he doesn’t, because, from
where he is, he cannot see that there is a scorpion. Having a theory of mind allows us
to manipulate other people’s behavior by manipulating their beliefs. If he is my friend I
can warn him about the scorpion. If he is my enemy I can tell him it is safe. This latter
is called tactical deception or Machiavellianism (Frith and Frith, 2005).

There is currently much interest in identifying a social brain, a circumscribed net-
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work of brain regions specialized for the social domain. Mentalizing is one of a number
of problems confronting this social brain.

When brain activity is measured during the performance of a wide range of tasks en-
gaging ToM, two regions have been consistently identified: a medial prefrontal region
(paracingulate cortex) and the temporo-parietal junction (TPJ) in the superior temporal
sulcus (see, Figure F.11).

Specifically, it’s a largely bilateral network embedding the TPJ, medial parts of the
temporal lobe, the temporal pole, parts of medial frontal cortex, and the precuneus. The
medial frontal region is also engaged when subjects reflect upon their own mental states,
as well as those of others with the more inferior orbital region responding especially
to emotional states. The TPJ seems to have a special role in using perceptual cues to
recognize the actions and intentions of biological agents.

Furthermore, various cerebro-cerebellar circuits seem to play a major role for ToM
processing, representing a cerebro-cerebellar mentalizing network.

Regarding language functions, the ToM system is primarily engaged in pragmatic
processing when individual- or situation-specific meanings must be derived, or when
inferences have to be made such as required for understanding indirect requests (Xu
et al., 2017). Although the ToM and the language network can be considered as distinct
networks, they can get synchronized during language comprehension. ToM processing
is also related to the DMN (Xu et al., 2017).

Figure F.11: The ToM network. Left: major functional brain areas, pathways, and their inter-
actions. Right: a simplified indicative mapping of major functions that can be related to the
components of the network. Adapted from Zeng et al. (2020)

Among others, an important hub for different network connections for social sig-
nalling processes is the TPJ. The TPJ is a variably defined region located roughly where
the IPL meets the superior temporal lobe, and is not associated with any objective land-
marks. Most investigators would probably define the TPJ as a small region that overlaps
only the most ventral part of the IPL at the true intersection of the AG, SMG and poste-
rior superior temporal lobe. However, many other labels are used to describe activations
around this region (e.g. IPL, ventral parietal cortex, lateral parietal cortex, AG, SMG,
and posterior STS). The ubiquitous use of the term TPJ likely includes the often co-
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activated posterior superior temporal regions; thus, the compound term “IPL/TPJ” is in
many case preferred; even though the IPL and TPJ overlap, even with the most conser-
vative definition of the TPJ, they are not synonymous with each other. As such, three
cognitive networks at least overlap the IPL/TPJ: the frontoparietal CEN, the DMN and
the cingulo-opercular network (CON). In particular, it appears that the DMN has two
distinct network nodes in the IPL/TPJ, one located at the intersection between the AG,
SMG and STG, and one located posterior to the previous in the AG. IPL/TPJ nodes have
been reported to activate in self-perception, introspection and memory, social cognition
and its dorsal component may play a general role across a broad range of task domains.

The tight connection between the ToM and the DMN networks speaks to the general
role of the latter. The DMN is, by its very seminal characterisation, sensitive to intrinsic
information (long-term memories, conditional responses, beliefs, emotions and so on).
But more recently it has been shown that it is an active and dynamic “sense-making”
network that integrates incoming extrinsic information with prior intrinsic information
over long timescales to form rich, context-dependent, idiosyncratic models of the situ-
ation as it unfolds over time.

As the activity in the DMN is shaped by our unique history, it is by nature idiosyn-
cratic. However, at the same time, our knowledge, memories and beliefs are shaped by
the people we are connected to and the world in which we are immersed.

It has been argued that the DMN provides a space for social “others” (the extrinsic
people we interact with, thus relying on the ToM) to shape the self (our set of intrinsic
memories and beliefs), which in turn can enable us to shape the memories and beliefs
of others. This unique interplay between the extrinsic and intrinsic forces provides a
mechanism for negotiating a shared neural code to facilitate learning and communi-
cation via shared common ground. This view is informed by numerous studies using
naturalistic stimuli and inter-subject analyses that map shared neural responses across
participants. These studies speak for an extensive overlap between the DMN and the
“social brain” - the brain regions involved in social cognition (e.g. ToM).

Most intriguing findings across these studies is the discovery of neural patterns in
the DMN that are shared across participants and aligned to the abstract structure and
interpretation of the external events (Yeshurun et al., 2021). The results suggest that
participants who understand the situation in the same way will have similar neural
patterns in nodes of the DMN, irrespective of considerable differences in the low-level
stimulus properties of the sensory input. At the same time, subtle differences in DMN
neural response patterns across participants seem to correlate with subtle differences
in their interpretation. Together, these studies suggest that, through the interaction
between the intrinsic self and the extrinsic world, the DMN develops a shared neural
code (Yeshurun et al., 2021).

Most important here, brain–brain coupling between speakers and listeners has been
clearly shown. The responses in the speaker’s brain recorded while telling a personal
story in the fMRI scanner are clearly correlated with the listeners’ brain responses while
listening to the story. The speaker’s neural responses were coupled (that is, correlated,
with or without a short time lag; see Figure F.12) to the listeners’ neural responses
in brain regions at various levels of the timescale processing hierarchy. Speaker– lis-
tener coupling in early auditory regions reflected shared processing of low-level acous-
tic properties of the stimulus, such as the audio amplitude envelope. By contrast, in
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language areas and the DMN, the responses in the listeners’ brains lagged behind
the responses in the speaker’s brain, suggesting that responses in the speaker’s brain
causally shaped the responses in the listeners’ brains. Furthermore, speaker–listener
neural coupling in higher-order areas, including the DMN, reflected communication
and shared understanding of the narrative. The same situation can be described using
spoken words, written text or abstract animated shapes (Yeshurun et al., 2021).

Overall, the communication cycle along a dyadic social interaction can be sum-
marised as in Figure F.13.

Shared neural activity at the sensory level naturally arises from the tendency of these
areas to align with the low-level perceptual properties of the external stimuli. Shared
neural activity at the top of the processing hierarchy, in the DMN, naturally arises from
the tendency of social brains to align thoughts and actions.

As Yeshurun et al. (2021) put it, the DMN is “default’ not because it is engaged
when we are looking inward, nor because it is shaped by others. The DMN is “de-
fault” because it is central for integrating external and internal information, allowing
for shared communication and alignment tools, shared meanings, shared narratives and,
above all, shared communities and social networks Yeshurun et al. (2021).

F.6 Glossary

• Language: classically defined as a natural, intrinsic, and universal ability of hu-
man beings to construct communication systems using codes (speech sounds or
written symbols) and to use these codes. Language cognitively involves a seman-
tic system (vocabulary and lexical access), specialized sensory-motor capacities
of perception and production (phonology), as well as capacities for decoding, ma-
nipulating (grammar/ syntax), and understanding these codes (shared symbolism;
comprehension).

• Language production: the physical signal used to transmit language and share
thoughts. Speech production would require, among other capacities, syntactic
and articulation processes.

• Syntax: rules for organizing elements - word segments, words, sentences into a
grammatical discourse - to generate combinatorial and hierarchical structures.

• Verbal comprehension: encompasses various processes helping to construct un-
derstandable and meaningful speech productions (expressive language skills up
to the pragmatics of language, for instance) and to understand verbal productions
(receptive language skills echoing vocabulary or semantics).

• Memory: the ability to maintain information or representations of past experience
or knowledge, arguing to be based on mental processes of encoding, retention and
retrieval, or reactivation. Several forms of memory have been proposed depend-
ing, for example, on the degree of consciousness or attention given to the process
(implicit versus explicit memorization) and/or the duration of retention (short-
term versus long-term memorization).

• Working memory: positioned between short and long-term memory and concerns
the ability to explicitly maintain and manipulate (re-) instantiated information to
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Figure F.12: Functional correlation within and between subjects at rest or when processing
words or listening to a story. Top: Regions of the DMN defined by functional connectivity
analysis. These regions include the posterior cingulate cortex (PCC) and precuneus (Prec),
the ventromedial prefrontal cortex (vmPFC) and dorsomedial prefrontal cortex (dmPFC),
and the bilateral temporoparietal junction (TPJ). IPL, inferior parietal lobule; LH, left
hemisphere; RH, right hemisphere; MFG, middle frontal gyrus; MTG, middle temporal
gyrus. Center: Within-participant functional correlation maps between the posterior cingu-
late cortex (PCC) seed (yellow voxel in the schematic; dashed circles in the brain maps) and
the whole-brain neural activity. The functional correlation analysis delineates nodes of the
default mode network (DMN) in which the activity fluctuates together (co-varies) in a given
participant, owing to the direct or indirect anatomical connections during rest (left panel),
processing of single words (middle panel) and listening to a coherent story (right panel).
Bottom: Inter-subject functional correlation maps between the PCC seed and the whole-
brain neural activity observed in other participants. This analysis can filter out spontaneous
intrinsic neural facilitation, and as such reveals no substantial stimulus-locked correlations
in the DMN during rest (left panel) or during the processing of single words (middle panel).
By contrast, however, inter-subject functional correlation exposed stimulus-locked shared
responses across participants in the DMN as subjects listen to and process a spoken story
minutes long (right panel). LH, left hemisphere; RH, right hemisphere. Adapted from Yeshu-
run et al. (2021)
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F.6. Glossary

Figure F.13: Speaker and listener coupled through their default mode network (DMN) activity.
Top panel: the interaction unfolding in time; our thoughts, feelings and actions are con-
stantly being shaped by the actions, memories and stories of others. Bottom panel: Activity
in the DMN is modulated by incoming external information (top arrow), which is actively
accumulated (grey expanding triangle) and integrated (red circle) over hundreds of seconds
(horizontal arrow) with our intrinsic information (long-term memories (LTMs), conditional
responses, beliefs and so on, represented by the bottom arrow) to form a rich, context-
dependent, dynamic model of the unfolding situation. At the same time, our LTMs shape the
way we process the external input. This unique interplay between the extrinsic and intrin-
sic forces provides a space for negotiating a shared neural code necessary for establishing
shared meanings, shared communication tools, shared narratives and, importantly, shared
communities and social networks. Adapted from Yeshurun et al. (2021)
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perform complex cognitive tasks of learning, reasoning or comprehension. Work-
ing memory is generally considered to be part of executive functioning (or cen-
tral executive system), covering concepts such as planning, inhibition, and mental
flexibility.

• Verbal working memory: involves a system for programming the utterance, schedul-
ing verbal items at several levels (words, phonemes and articulatory gestures),
and maintaining what needs to be produced (phonological loop and rehearsal);
and appears conceptually close to the definition of syntax.

• Declarative memory: involved in maintaining information about facts/knowledge
or events for a significant period of time (long-term memory) and consciously re-
calling information. Declarative memory is classically divided into two subtypes:
semantic memory and episodic memory.

• Semantic memory: general and factual knowledge about the world and abstract
concepts (noetic consciousness). It allows individuals to make sense of informa-
tion and/or to engage in cognitive processes such as object recognition or appro-
priate language use.

• Episodic memory: evokes the memory of personally experienced events associ-
ated with a particular time and place (spatiotemporal context), involving a sense
of self-awareness (or autonoetic consciousness). In addition to the conscious re-
call of past events, episodic memory implies a "mental journey through time"
(mental time travel, i.e., a projection into the past and/or future).

• Associative memory: retrieval or activation of memories (stimulus, behaviors,
facts, events...) conceptually or contextually associated.

Note: Definitions are extracted primarily from the dictionary of the American Psy-
chological Association https://dictionary.apa.org.
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