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Abstract: We prove a C∞ version of the Nekhoroshev’s estimate on the stability times of the actions in
close to integrable Hamiltonian systems. The proof we give is a variant of the original Nekhoroshev’s
proof and it consists in first conjugating, globally in the phase space, and up to a small remainder, the
system to a normal form. Then we perform the geometric part of the proof in the normalized variables.
As a result, we obtain a proof which is simpler than the usual ones.
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1. Introduction

In this paper we prove a C∞ version of Nekhoroshev’s Theorem for the stability times in a close to
integrable Hamiltonian system. The main point is that our proof relies on an analytic and a geometrical
construction which, although on the same line as the original Nekhoroshev’s ones, are much simpler.
We also obtain an intermediate result that we think could have some interest in itself (see Theorem
1.2).

To be definite and in order to avoid as much as possible technical complications, we study here a
system of the form

H(p, q) = H0(p) + εV(p, q) ,

H0(p) =

d∑
j=1

p2
j

2
,

(1.1)
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with V ∈ C∞(Td × Rd). However, our technique is applicable also to the general case of perturbations
of steep integrable systems, and with a perturbation which is not globally bounded in the momenta p.

The result we get is the following version of Nekhoroshev’s Theorem.

Theorem 1.1. Assume that V ∈ C∞(Td × Rd) is globally bounded and fix a positive b < 1
2 . Then, for

any positive M, there exists CM, εM such that, if 0 < ε < εM then, corresponding to any initial datum,
one has

|p(t) − p(0)| ≤ CMε
b , (1.2)

|t| ≤
CM

εM . (1.3)

We recall that in the analytic (or Gevrey) case the time of stability, cf. Eq (1.3), is known to be
exponentially long.

Theorem 1.1 is not new, for example it is a direct consequence of Theorem 2.1 of [9]∗. However, as
far as we know our proof is new and the value of the exponent b that we get is better than those present
in literature†.

Essentially two methods of proof of Nekhoroshev’s theorem are known: the original one [3, 5,
12, 14, 19, 20, 23], and Lochak’s one [15, 16] (see also [17, 18] and [1, 4] for infinite dimensional
generalizations). We emphasize that Lochak’s proof is much simpler than Nekhoroshev’s one, but,
at least in its original form, applies only to perturbations of quasiconvex integrable systems. The
paper [9] is a generalization of Lochak’s proof to the case of finite smoothness. Lochak’s method was
also extended to the steep case by using also ideas from the original proof by Nekhoroshev [21], see
also [8, 10, 22].

Our proof is a variant of Nekhoroshev’s original one which consists of two steps: the analytic part
and the geometric part. Classically, in the analytic part one shows that in a region of the phase space
where only some resonances are present one can conjugate, up to a small remainder, the system to a
system in resonant normal form. In the geometrical part one collects all the information and shows
that, if the regions are suitably constructed, then for any initial datum there exists a region in which it
remains for the considered times, and this leads to Nekhoroshev’s estimate.

In the classical approach the analysis of the geometrical part is slightly complicated by the fact that
it has to be performed in the original coordinates, so that one has to take into account the effects of
the coordinate transformation used to conjugate the system to normal form. The novelty of the present
paper is that we use a canonical transformation which is globally defined and globally conjugates
the system to a normal form which is different in each region of the phase space, depending on the
resonances which are present in each region (a similar technique has been used for the first time in
a probabilistic context in [7, 11]). This is obtained by splitting each Fourier coefficient of V , namely
V̂k(p), into a part localized in the region |ω(p) · k| < εδ (with a suitable δ) and a part localized in
the nonresonant region. The part localized in the nonresonant region is then removed through the
normalizing canonical transformation. Technically the localization is obtained simply by multiplying
by a smooth cutoff function.

Then the geometrical part consists in making a decomposition of the phase space in regions which
are invariant for the dynamics of the normalized system. This leads in particular to the conclusion that,

∗Actually such a theorem is also stated in [18], where reference is made to a slightly different statement present in [17]
†In the analytic case any b < 1/2 is allowed at the price of worsening the estimate on the times, see for example [23]
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in the dynamics of the normalized system, estimate (1.2) is valid for all times. This is the content of
the following theorem, which, as far as we know, is new.

Theorem 1.2. Fix a positive b < 1
2 , then, for any positive M, there exists CM, εM such that, if

0 < ε < εM, then there exists a canonical transformation (p, q) = T ( p̃, q̃) and a (normal form)
Hamiltonian HZ, with the following properties

1). |p − p̃| ≤ CMε
b

2). ‖H ◦ T − HZ‖C2(Rd×Td) ≤ CMε
M,

3). Along the solutions of the Hamilton equations of HZ, one has

| p̃(t) − p̃(0)| ≤ CMε
b , ∀t ∈ R .

When adding the remainder, one gets the limitation (1.3) on the times.
Finally we remark that Lochak’s proof applies to system (2.5), but we think that our approach

to the geometric part of the proof is the main interest of the present paper, since it is suitable for
generalizations to the steep case.

This paper originates from our research on the spectrum of Sturm Liouville operators in general
tori [6], which lead to a quantum version of Nekhoroshev’s theorem. When we were still lost on how to
construct a quantum analogue of the geometric part, we had several very enlightening discussions with
Antonio Giorgilli on the classical Nekhoroshev’s theorem. At the end we realized that the quantum
method we constructed had a classical counterpart which is the content of the present paper. It is a
pleasure to dedicate this paper to Antonio Giorgilli in the occasion of his 70th birthday.

One of us, Dario Bambusi, would like to thank Antonio who introduced him to science and in
particular to the study of Hamiltonian dynamics: His presence has always been fundamental and I
would be a different person if I had not met him. Thank you!

2. Analytical part

2.1. Preliminaries and statement

In this subsection we present the tools we will use in order to deal with the C∞ context.
Having fixed a parameter 0 < δ < 1

2 and an intervalU = [0, ε0) with some positive ε0, we give the
following definition.

Definition 2.1. A family of functions { fε}ε∈U, fε ∈ C∞(Rd × Td) will be said to be a symbol of order m
if for all α, β ∈ Nd there exists a positive constant Cα,β such that

sup
ε∈U

sup
p∈Rd ,q∈Td

∣∣∣∣∣∣∣∂
α
p∂

β
q fε(p, q)

εm ε|α|δ

∣∣∣∣∣∣∣ ≤ Cα,β . (2.1)

In this case we will denote fε ∈ Pm,δ. We will often omit the index ε.

Remark 2.2. The constants Cα,β encode the smoothness properties of f . This is particularly clear for
ε independent functions. Indeed in this case the function is of class Gevrey s if and only if there exist
constants R,C s.t.

Cα,β ≤ C
(α!β!)s

R|α|+|β|
.
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We think that keeping track of the dependence of Cα,β on α and β should allow to obtain
exponentially long stability times for the Gevrey case. Similar ideas have been developed in [2].

Remark 2.3. It is immediate to see that f ∈ Pm,δ if and only if for all integers N1 and N2 there exists a
positive constant Cm

N1,N2
such that

sup
ε∈U

sup
p∈Rd , k∈Zd ,

α∈Nd , |α|=N1

∣∣∣∂αp f̂k(ε, p)
∣∣∣ |k|N2ε−(m−|α|δ) ≤ Cm

N1,N2
, (2.2)

where

f̂k(ε, p) =
1

(2π)d

∫
Td

fε(p, q)e−ik·q, ε ∈ U, p ∈ Rd

are the Fourier coefficients of f .

Remark 2.4. The space Pm,δ endowed by the family of seminorms given by the constants
Cm

N1,N2
= Cm

N1,N2
( f ) of equation (2.2) is a Fréchet space.

Remark 2.5. A direct computation shows that, if f ∈ Pm1,δ and g ∈ Pm2,δ, then

1). f + g ∈ Pmin{m1,m2},δ

2). f g ∈ Pm1+m2,δ

3). the Poisson bracket, { f , g} ∈ Pm1+m2−δ,δ .

In the following, given a C∞ function g, we will denote by Xg its Hamiltonian vector field and by
Φt

g the flow it generates (which in our framework will always be globally defined).
In order to state the analytic Lemma, we start by defining what we mean by normal form of order

N. From now of we fix the number N controlling the number of steps in the normal form procedure.
Furthermore, we will denote

a := 1 − 2δ ;

we fix a positive (small) 0 < β < 1 and we define

K = K(ε) :=
[

1
εβ

]
+ 1 (2.3)

with the square bracket denoting the integer part. Eventually we will link β, δ, b, M and N.

Definition 2.6. A family of functions Zε : Rd × Td → R will be said to be in normal form if

Zε(p, q) =
∑
|k|≤K

Ẑk(ε, p)eik·q

with
Ẑk(ε, p) , 0⇒ |p · k| ≤ εδ , ∀k ∈ Zd\{0} , (2.4)

Namely the k-th Fourier coefficient is supported in the resonant region |p · k| ≤ εδ.
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Lemma 2.7. (Normal Form Lemma) Consider the system

Hε := H0(p) + Pε(p, q) (2.5)

with H0 as in (1.1) and Pε ∈ P
1,δ, then there exists a canonical transformation T such that

Hε ◦ T = H0 +

N∑
j=1

Z j + R(N) , (2.6)

with Z j ∈ P
1+a( j−1),δ in normal form and R(N) s.t.

sup
ε∈U

sup
p∈Rd ,q∈Td

∣∣∣∣∣∣∣∂
α
p∂

β
qR

(N)(p, q)

ε1+Na

∣∣∣∣∣∣∣ ε|α|δ ≤ Cα,β , (2.7)

∀α, β ∈ Nd × Nd with |α| + |β| ≤ 1 . (2.8)

Furthermore, given a symbol f ∈ Pm,δ, define R f := f ◦ T − f , then one has

sup
p∈Rd ,q∈Td

∣∣∣R f (ε, p, q)
∣∣∣ ≤ Cεm+1−2δ . (2.9)

In the case f = p j, j = 1, ..., d, one has

sup
p∈Rd ,q∈Td

∣∣∣Rp j(ε, p, q)
∣∣∣ ≤ Cε1−δ . (2.10)

Definition 2.8. A function fulfilling Eqs (2.7) and (2.8) will be said to be a remainder of order N, or
simply a remainder.

The proof of Lemma 2.7 consists of a few steps: first we give a decomposition of an arbitrary symbol
in a normal form part, a nonresonant part and a remainder, then we remove the nonresonant part of the
perturbation and then we iterate. The canonical transformation used to remove the nonresonant part
will be constructed using the Lie transform method, namely by using the time one flow of an auxiliary
Hamiltonian. This requires the study of the Lie transform in our C∞ context. We will also have to solve
the cohomological equation in order to construct the auxiliary Hamiltonian. Finally we state and prove
the iterative Lemma which is the last step of the proof of the Normal Form Lemma.

2.2. Cutoffs and splittings

Let us consider an even C∞ function η : R→ R+ such that η(t) ≡ 1 if |t| ≤
1
2

and η(t) ≡ 0 if |t| ≥ 1 .

For all k ∈ Zd such that 0 , |k| ≤ K, we define the cut-off function

χk(p) = η

(
p · k
εδ

)
, p ∈ Rd , (2.11)

which is thus supported in |p · k| ≤ εδ. Consider a smooth family of functions fε ∈ Pm,δ,
fε(p, q) =

∑
k∈Zd f̂k(ε, p)eik·q, we perform for fε the following decomposition:

f (p, q) = f (res)(p, q) + f (nr)(p, q) + fK(p, q) , (2.12)
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where
f (res)(p, q) =

∑
0<|k|≤K

f̂k(ε, p)χk(p)eik·q + f̂0(ε, p),

f (nr)(p, q) =
∑

0<|k|≤K

f̂k(ε, p) (1 − χk(p)) eik·q ,

fK(p, q) =
∑
|k|>K

f̂k(ε, p)eik·q .

(2.13)

Remark 2.9. If f ∈ Pm,δ then f (res), f (nr) ∈ Pm,δ. Furthermore f (res) is in normal form.

Remark 2.10. Since compactly supported analytic functions do not exist, this step would be impossible
in an analytic context. On the contrary a Gevrey cutoff would be possible, so in principle this method
is suitable also to deal with the Gevrey case.

Lemma 2.11. Let f ∈ P1,δ, then fK ∈ P
1+Na,δ, so in particular it is a remainder in the sense that it

fulfills Eqs (2.7) and (2.8).

Proof. This is related to the fact that the Fourier coefficients of a C∞ function decrease faster than any
power of |k|−1. Formally we have to bound the following seminorms

C1+Na
N1,N2

( fK) = sup
ε

sup
p,|k|>K,|α|=N1

∣∣∣∣∣∣∣∂
α
p f̂k(ε, p)|k|N2ε|α|δ

ε1+Na

∣∣∣∣∣∣∣
≤ sup

ε

sup
p,|k|>K,|α|=N1

∣∣∣∣∣∣∣∂
α
p f̂k(ε, p)|k|N2+N3ε|α|δ

ε1+NaKN3

∣∣∣∣∣∣∣ (2.14)

and, choosing N3 > Na/β, one has KN3εNa > 1 and thus

|(2.14)| ≤ sup
ε

sup
p,|k|>K,|α|=N1

∣∣∣∣∣∣∣∂
α
p f̂k(ε, p)|k|N2+N3ε|α|δ

ε

∣∣∣∣∣∣∣ = C1
N1,N2+N3

( f )

which is the thesis. �

2.3. Lie transform and cohomological equation

Definition 2.12. Given a function g ∈ Pm,δ, with m ≥ 0, the time one flow Φ1
g ≡ Φt

g

∣∣∣
t=1

will be called
Lie transform generated by g.

Given a function f ∈ Pm1,δ, we study f ◦ Φ1
g. To this end define the sequence f(l), by

f(0) := f , f(l) :=
{
f(l−1); g

}
≡

dl

dtl

∣∣∣∣∣∣
t=0

f ◦ Φt
g , l ≥ 1 , (2.15)

and remark that f(l) ∈ P
m1+l(m−δ),δ if g ∈ Pm,δ. We have the following lemma.

Lemma 2.13. Let g ∈ Pm2,δ and f ∈ Pm1,δ, with m2 ≥ 1 − δ and m1 ≥ 1 then one has

f ◦ Φ1
g =

N∑
l=0

f(l)

l!
+ R

(N)
Lie , (2.16)

with R(N)
Lie a remainder, in the sense that it fulfills Eqs (2.7) and (2.8).
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Proof. Use the formula for the remainder of the Taylor series (in time); this gives

f ◦ Φ1
g =

N∑
l=0

f(l)

l!
+

1
N!

∫ 1

0
(1 + s)N f(N+1) ◦ Φs

gds .

Of course the integral term is R(N)
Lie . To estimate its supremum it is immediate. To estimate its first

differential remark that
d( f(N+1) ◦ Φs

g) = d f(N+1)(Φs
g) ◦ dΦs

g .

Then, from the very definition of the flow one has that its differential fulfills

d
dt

dΦt
g = dXg(Φt

g)dΦt
g ,

which is estimated by

‖
d
dt

dΦt
g‖ ≤ ε

m2−δ‖dΦt
g‖ ,

where we used the fact that g is a symbol. From this it follows that, provided ε is small enough one
has ‖dΦt

g‖ ≤ 2 for |t| ≤ 1.
From this and from the fact that f(l+1) is a symbol the thesis immediately follows. �
Concerning the cohomological equation we have the following simple lemma

Lemma 2.14. Let f ∈ Pm,δ and consider the cohomological equation

{H0; g} + f (nr) = 0 . (2.17)

It admits a solution g ∈ Pm−δ,δ.

Proof. Expanding in Fourier series, the cohomological equation takes the form∑
j

i
∂H0

∂p j

∑
0<|k|≤K

ik jĝk(p, ε)eik·q = −
∑

0<|k|≤K

f̂k(p, ε)(1 − χk(p, ε))eik·q ,

whose solution is

ĝk(p, ε) =
f̂k(p, ε)(1 − χk(p, ε))

−ip · k
.

Since 1 − χk is supported in the region |p · k| ≥ εδ/2, the result follows. �

2.4. Iterative Lemma

In this subsection we prove the following lemma.

Lemma 2.15. Let ` < N be an integer, and let H(`) be of the form

H(`) = H0 + Z(`) + f` + R
(N)
` , (2.18)

with Z(`) ∈ P1,δ in normal form, f` ∈ Pm`,δ with

m` := 1 + `a

and R(N)
` a remainder.

Then there exists a symbol g`+1 ∈ P
m`−δ,δ which generates a Lie transform Φ1

g`+1
with the property

that H(`+1) := H(`) ◦ Φ1
g`+1

fulfills the assumption of the lemma with ` + 1 in place of `.
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Proof. Decompose f` as in (2.12) and let g`+1 be the solution of the cohomological Eq (2.17) with f (nr)
`

in place of f (nr) and compute

H(`) ◦ Φ1
g`+1

= H0 + {H0; g`+1} (2.19)

+ H0 ◦ Φ1
g`+1
− (H0 + {H0; g`+1}) (2.20)

+ f (nr)
` + f (res)

` + f`,K (2.21)
+ f` ◦ Φ1

g`+1
− f` (2.22)

+ Z(`) ◦ Φ1
g`+1
− Z(`) (2.23)

+ Z(`) + R
(N)
` ◦ Φ1

g`+1
. (2.24)

Exploiting Lemma 2.13, one can decompose the different lines as

(2.22) =

N∑
l=1

f`,(l) + R̃
(N)
1 =: f 1

`+1 + R̃
(N)
1

(2.23) =

N∑
l=1

Z(`)
(l) + R̃

(N)
2 =: f 2

`+1 + R̃
(N)
2

with f 1
`+1 ∈ P

2m`−2δ,δ, f 2
`+1 ∈ P

m`+1−2δ,δ and R̃(N)
j remainders (actually of order higher than εNa+1).

Concerning (2.20), just remark that the sequence H0,(l) defining the Lie transform of H0 (cf.
(2.15)), can be generated computing H0,(1) from the cohomological equation, giving
H0,(1) = {H0; g`+1} = − f (nr)

` ∈ Pm`,δ. In this way one gets H0,(l) ∈ P
2(m`−δ),δ and also

(2.20) =

N∑
l=2

H0,(l) + R̃
(N)
3 =: f 3

`+1 + R̃
(N)
3 .

It follows that, defining f`+1 := f 1
`+1 + f 2

`+1 + f 3
`+1,

R
(N)
`+1 := f`,K + R̃

(N)
1 + R̃

(N)
2 + R̃

(N)
3 + R

(N)
` ◦ Φ1

g`+1
, Z(`+1) := Z(`) + f (res)

`

one has the thesis. �

3. Geometric part

3.1. Dynamics of a normal form Hamiltonian

In this section we define a partition of the action space Rd into blocks which are left invariant by the
flow of a Hamiltonian which is in normal form, namely

HZ(p, q) := H0(p) + Z(p, q) , (3.1)

with Z in normal form. As usual this partition will be labeled by the sub moduli of Zd identifying the
resonances present in each region.
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Definition 3.1. (Module and related notations.) A subgroup M ⊆ Zd will be called a module if
Zd ∩ spanRM = M. Given a module M, we will denote MR the linear subspace of Rd generated by M.
Furthermore, given a vector p ∈ Rd we will denote by pM its orthogonal projection on MR.

Remark 3.2. From the Definition 2.6 of normal form it immediately follows that, if a point p ∈ Rd is
such that

|p · k| ≥ εδ ∀k ∈ Zd\{0} s.t. |k| ≤ K ,

then
{p,HZ} = 0 , (3.2)

hence, in this region the action p is conserved along the motion of HZ.

The first block we define is

E0 =
{
p ∈ Zd

∣∣∣ |p · k| ≥ εδ−2β ∀k s.t. 0 < |k| ≤ K
}
, (3.3)

where the correction 2β to the exponent has been inserted in order to separate E0 from the regions
where some resonances are present.

In order to define the other blocks, we introduce the following parameters:

δ1 = δ − 2β, (3.4)
δs+1 = δs − βs ∀s = 1, . . . d − 1 , (3.5)

C1 = 1 , (3.6)
Cs+1 = 3s2sCs + 1 ∀s = 1, . . . d − 1 . (3.7)

The next definition we give is meant to identify the points p which are in resonance with vectors of a
given module M ⊆ Zd :

Definition 3.3 (Resonant zones). For any module M ⊆ Zd of dimension s ≥ 1 and for any (ordered)
set {k1, . . . , ks} of linearly independent vectors in M such that |k j| ≤ K for all j = 1, . . . , s, we define

Zk1,...,ks =
{
p ∈ Zd

∣∣∣ |p · k j| < C jε
δ j ∀ j = 1, . . . , d

}
and

Z(s)
M =

⋃
{k1,...,ks}

lin. ind. in M

Zk1,...,ks .

Remark that the definition of Zk1,...,ks depends on the order in which the vectors k j are chosen. Thus
the definition of resonant zone slightly differs from the analogous definition of resonant zone given
in [13]. This is due to the fact that in the present construction we are interested in exhibiting a partition,
and not only a covering, of the action space Rd. In particular we have the following remark.

Remark 3.4. The resonant regions Z(s)
M are not reciprocally disjoint; on the contrary, given an arbitrary

module M of dimension s ≥ 2, for any s′ < s, the following inclusion holds

Z(s)
M ⊆

⋃
M′ : dimM′=s′

Z(s′)
M′ .
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We now define the set composed by the points which are resonant with the vectors in a module M,
but are non-resonant with the vectors k < M.

Definition 3.5 (Resonant blocks). Let M be a module of dimension s, we define the resonant block

B(s)
M = Z(s)

M \


⋃
s′>s

dim M′=s′

Z(s′)
M′

 .
We prove below that the resonant blocks {B(s)

M }M,s are reciprocally disjoint; nevertheless, they are not
suitable for the geometric part, since they are not left invariant by the dynamics associated to a normal
form Hamiltonian. For such a reason, we need the following definition:

Definition 3.6 (Extended blocks and fast drift blocks). For any module M of dimension s, we define

Ẽ(s)
M =

{
B(s)

M + MR
}
∩ Z(s)

M

and the extended blocks

E(s)
M = Ẽ(s)

M \


⋃
s′<s

dim M′=s′

E(s′)
M′

 ,
where A + B is the Minkowski sum between sets, namely A + B = {a + b | a ∈ A, b ∈ B} . Moreover, for
all p ∈ E(s)

M we define the fast drift blocks

Π
(s)
M (p) = {p + MR} ∩ Z(s)

M .

With the above definitions, the following result holds true:

Theorem 3.7. 1). The blocks E0 ∪ {E
(s)
M }s,M are a partition of Rd .

2). Each block is invariant for the dynamics of a system in normal form.
3). Along such a dynamics, for any initial datum one has

|p(t) − p(0)| ≤ 3d2d−1Cdε
δ−((d−1)(d+1)+2)β . (3.8)

Corollary 3.8. Theorem 1.2 holds.

Proof. Choosing δ = 1
4 + b

2 , β =
(

1
2 − b

)
1

2(d2+1) and N =
[

M−1
a

]
+ 1 one immediately gets the result. �

The proof of Theorem 3.7 will occupy the rest of this subsection. We start by stating a few geometric
results.

Lemma 3.9. (Lemma 5.7 of [13]) Let 1 ≤ s ≤ d, and let k1, ..., ks be linearly independent vectors in Rd

satisfying |k j| ≤ K for some positive K and for 1 ≤ j ≤ s. Denote by Vol(k1, ..., ks) the s-dimensional
volume of the parallelepiped with sides k1, ..., ks; let moreover w ∈ Span(k1, ..., ks) be any vector, and
let

α := max
j

∣∣∣w · k j

∣∣∣ ,
then one has

‖w‖ ≤
sK s−1α

Vol(k1, ..., ks)
. (3.9)
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For the proof see [13].

Lemma 3.10. (Extended blocks are close to blocks.) For all p ∈ Ẽ(s)
M there exists a point p′ ∈ B(s)

M such
that

|p − p′| ≤ 2sCsK s−1εδs . (3.10)

Proof. By the very definition of Ẽ(s)
M , if p ∈ Ẽ(s)

M then there exists a point p′ ∈ B(s)
M such that p − p′ ∈ M .

In particular one has that
p − p′ = pM − p′M . (3.11)

Moreover, since p ∈ Ẽ(s)
M ⊆ Z(s)

M , there exist k1, . . . , ks linearly independent vectors in M, with |k j| ≤ K,
such that

|pM · k j| = |p · k j| ≤ C jε
δ j , ∀ j = 1, . . . , s .

Hence, remarking that for s independent vectors with integer components Vol(k1, ..., ks) ≥ 1, Lemma
3.9 implies

|pM | ≤ sK s−1Csε
δs .

Analogously, since p′ ∈ B(s)
M ⊆ Z(s)

M ,

|p′M | ≤ sK s−1Csε
δs .

Thus (3.11) gives
|p − p′| ≤ |pM | + |p′M | ≤ 2sK s−1Csε

δs .

�

Lemma 3.10 enables us to deduce the following result.

Lemma 3.11. (Non overlapping of resonances) Consider two arbitrary resonance moduli M and M′

respectively of dimensions s and s′. If s′ ≤ s and M′ * M , then for all p ∈ E(s)
M one has that

dist
(
Π

(s)
M (p), Z(s′)

M′

)
> sCsK s−1εδs , (3.12)

where dist(A, B) = inf{|a − b| | a ∈ A, b ∈ B} denotes the distance between two sets.

Proof. By contradiction, assume that (3.12) is not true. Then, by Lemma 3.10, one also has

dist
(
B(s)

M , Z(s′)
M′

)
≤ 3sCsK s−1εδs ,

It follows that there exist p′′ ∈ B(s)
M (p) and p′ ∈ Z(s′)

M′ such that

|p′′ − p′| ≤ 3sCsK s−1εδs .

Since p′ ∈ Z(s′)
M′ and M′ * M , there exists h < M such that |h| ≤ K and |p′ · h| ≤ Csε

δs . Compute now

|p′′ · h| ≤ |p′′ − p′||h| + |p′ · h|

≤ 3sK s−1Csε
δs K + Csε

δs ,

thus, recalling that K = [ε−β] + 1 , one has that

|p′′ · h| < (3s2s + 1) Csε
δs−βs .
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Due to definitions (3.4), it follows that

|p′′ · h| < Cs+1ε
δs+1 .

Hence p′′ ∈ Z(s+1)
Mh

, where Mh is the resonance module generated by M∪{h}, which is impossible, since
p′′ ∈ B(s)

M implies that it is not in any higher dimensional resonance zones. �

Lemma 3.12. Fix an arbitrary module M of dimension s, for all p ∈ E(s)
M ,

diam
(
Π

(s)
M (p)

)
≤ 2sK s−1Csε

δs .

Proof. Arguing as in the proof of Lemma 3.10, if p′ and p′′ are two points in Π
(s)
M (p), then

|p′M |, |p
′′
M | ≤ sCsK s−1εδs .

Hence, recalling that p′ − p′′ ∈ M, we deduce that

|p′ − p′′| ≤ 2sCsK s−1εδs

�

Remark 3.13. Recall that K = [ε−β] + 1; then Lemma 3.12 implies that for any module M and for all
p ∈ E(s)

M

diam
(
Π

(s)
M (p)

)
≤ 3d2d−1Cdε

δ−((d−1)(d+1)+2)β .

We are now in position to prove Theorem 3.7. Remark that its proof has also as a consequence the
fact that, for any resonance modulus M,

∂E(s)
M ⊆


⋃
s′<s

M′⊂M

∂E(s′)
M′

 ∪ Z(s)
M ,

which shows that it is possible to move from the extended block E(s)
M only losing resonances (that is,

entering a block E(s′)
M′ with M′ ⊂ M), or remaining inside the same resonant zone Z(s)

M . The latter option
will be excluded by the dynamics, which ensures that the motion entirely evolves along planes parallel
to M.

Proof of Theorem 3.7. Since each point p ∈ Rd belongs either to E0 or to Z(s)
M for some M and s, it

immediately follows from the definition of the extended blocks that E0 ∪ {E
(s)
M }M,s is a covering of Rd .

If E(s)
M and E(s′)

M′ are such that s , s′, then the two blocks are disjoint by their very definition; if s = s′

and M′ , M, then their intersection is empty by Lemma 3.11, recalling that for all M′ and s′ one has
E(s′)

M′ ⊆ Z(s′)
M′ . This proves Item 1.

We now prove the invariance of the extended blocks {E(s)
M }s,M along the flow Φt

HZ
, arguing by

induction on their dimension s.
Inductive base: s = 0. As already observed in Remark 3.2, if p(0) ∈ E0, then p(t) ≡ p(0) ∀t ∈ R ,

hence the invariance of the block E0 immediately follows.
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Inductive step: Fix M of dimension s ≥ 1 and a point p ∈ E(s)
M . We are now going to prove that

p(t) ∈ Π
(s)
M (p) , ∀t ∈ R . (3.13)

Suppose by contradiction that there exists a finite time t̄ > 0 such that

p(t) ∈ Π
(s)
M (p) ∀t < t̄ , and p(t̄) < Π

(s)
M (p) .

Then for such t̄ one has that
p(t̄) ∈ {p + MR} . (3.14)

Indeed, for any normalized vector λ ∈ Rd such that λ⊥M , consider the quantity I(t) = p(t) · λ . For all
t such that 0 ≤ t < t̄ one has

İ(t) = {I(t), HZ(p(t), q(t))}

=
∑

0<|k|≤K

iẐk(ε, p(t))(k · λ)eik·q(t) = 0 ,

due to the fact that Ẑk(ε, p(t)) = 0 if k < M, but k · λ = 0 if k ∈ M . Hence

p(t̄) · λ = lim
t→t̄

p(t) · λ = p · λ ,

from which (3.14) follows, given the arbitrariety of the vector λ ∈ M⊥ .

Recall now the definition of Π
(s)
M (p) ≡ {p + MR} ∩ Z(s)

M ; since by eq. (3.14) p(t̄) ∈ {p + MR} , it must be
that

p(t̄) ∈ ∂Z(s)
M . (3.15)

Since E0∪{E
(s)
M }s,M is a partition of Rd , there exists M′ such that p(t) ∈ E(s′)

M′ with s′ = dimM′ (possibly
with s′ = 0, if p(t̄) ∈ E0). We analyze all the possible configurations.

1). p(t̄) ∈ E(s′)
M′ with s′ = s : then, since by its definition p(t̄) < Z(s)

M , it must be M′ , M . Thus

p(t̄) ∈ ∂Z(s)
M ∩ Z(s)

M′ ,

which is empty by Lemma 3.11. Hence this case is contradictory.
2). p(t̄) ∈ E(s′)

M′ with s′ > s. This leads again to a contradiction, since due to Remark 3.4 one would
have

p(t̄) ∈ E(s′)
M′ ⊆ Z(s′)

M′ ⊆


⋃

M′′ of dim. s
M′′,M

Z(s)
M′′

 ∪ Z(s)
M ,

but p(t̄) ∈ ∂Z(s)
M implies that neither p(t̄) ∈ Z(s)

M , nor p(t̄) ∈ Z(s)
M′′ for any M′′ of dimension s, with

M′′ , M, due to Lemma 3.11.
3). p(t̄) ∈ E(s′)

M′ , with s′ < s. Due to the induction assumption, the blocks E(s′)
M′ of dimension s′ < s

are invariant under the dynamics of HZ, thus no orbit can enter or exit from it
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Hence none of the above situations is possible, contradicting the assumption that t̄ < ∞. Since the
same occurs for negative times, we can conclude that

p(t) ∈ Π
(s)
M (p) ∀t ∈ R .

Estimate (3.8) then follows from Remark 3.13. Moreover, since p(t) ∈ Π
(s)
M (p) ⊆ Ẽ(s)

M and by inductive
hypothesis each block E(s′)

M′ with s′ < s has been proven to be invariant under the flow of HZ for all real
times, it must be

p(t) ∈ Ẽ(s)
M \


⋃
s′≤s

dim M′=s′

E(s′)
M′

 = E(s)
M , ∀t ∈ R .

�

3.2. Adding the perturbation

Here we come to study the dynamics of the Hamiltonian H ◦ T .
In the following, we will denote (p(t), q(t)) = Φt

H◦T (p, q) ,with H◦T as in Lemma 2.7. Furthermore,
in order to be able to study the dynamics of a point starting in an extended block, say E(s)

M , we consider
the following sets: (

Π
(s)
M (p)

)
εδ

=
{
p′ ∈ Rd | dist(p′,Π(s)

M (p)) < εδ
}
.

The result we obtain is the following:

Proposition 3.14. For all N there exists a positive threshold εN such that, if ε ≤ εN , then ∀p ∈ Rd

|p(t) − p| ≤ εδ−((d−1)(d+1)+2)β ∀t s. t. |t| ≤ ε−Na . (3.16)

Proof. Fix p ∈ Rd , then, for any time t such that |t| ≤ ε−Na , one has that either p(t) ∈ E0 , or
p(t) ∈ Π

(st)
Mt

(pt), for some fast drift block identified by a suitable Mt ⊆ Z
d of dimension st ≥ 1 and

some (not unique) pt ∈ E(st)
Mt

. Let t0 ∈ [−ε−Na, ε−Na] be such that Mt0 is of minimal dimension, namely
such that

st0 = dim Mt0 = min
|t|≤ε−Na

dim Mt .

Of course, if there exists a time t0 such that p(t0) ∈ E0, then Mt0 = {0} and Π
(st0 )
Mt0

(pt0) =
{
pt0

}
and(

Π
(st0 )
Mt0

(pt0)
)
εδ
≡ Bεδ(pt0), namely the ball of center pt0 and radius εδ.

We are going to prove that

p(t) ∈
(
Π

(st0 )
Mt0

(pt0)
)
εδ
∀|t| ≤ ε−Na (3.17)

This is obtained arguing essentially as in the proof of Theorem 3.7.

Let t̄ > 0 be the exit time of p(t) from
(
Π

(st0 )
Mt0

(pt0)
)
εδ

, namely the time s.t. ∀t with 0 ≤ t < t̄

p(t + t0) ∈
(
Π

(st0 )
Mt0

(pt0)
)
εδ
, and p(t̄ + t0) <

(
Π

(st0 )
Mt0

(pt0)
)
εδ
.

Mathematics in Engineering Volume 3, Issue 2, 1–17.



15

We prove that |t̄ + t0| > ε−Na, from which (3.17) follows. Indeed, suppose by contradiction that
|t̄ + t0| ≤ ε

−Na . Then for any normalized vector λ ∈ Rd with λ⊥Mt0 , we consider the quantity

I(t) = p(t + t0) · λ

due to Lemma 3.11, for 0 ≤ t < t̄,∣∣∣İ(t)
∣∣∣ = |{I(t), H ◦ T }| = |{I(t), R(t)}| ≤ KNε

1+Na−δ (3.18)

where KN is a constant bounding the r.h.s. of (2.7). Since |t + t0| < ε
−Na , |I(t) − I(0)| ≤ 2KNε

1−δ , thus,
passing to the limit t → t̄, we obtain

|I(t̄) − I(0)| ≤ 2KNε
1−δ ,

which is strictly less than εδ

2 if ε is small enough.
If Mt0 = {0}, this enables us to conclude that

dist
(
p(t̄ + t0), pt0

)
<
εδ

2
,

which contradicts the definition of t̄ as the time of exit from B(pt0 , ε
δ) .

Assume now st0 ≥ 1, then (3.18) implies

dist
(
p(t̄ + t0),Π

st0
Mt0

(pt0)
)
<
εδ

2
. (3.19)

Since
Π

(st0 )
Mt0

(pt0) = {pt0 + MR} ∩ Z
(st0 )
Mt0

;

now, by the definition of t̄, p(t̄ + t0) <
(
Π

(st0 )
Mt0

(pt0)
)
εδ

, equation (3.19) implies that in particular

p(t̄ + t0) < Z
(st0 )
Mt0

. Then one argues as in the proof of Theorem 3.7 to deduce that, by Lemma 3.11, the

point p(t̄ + t0) cannot belong to any block E(s)
M with s ≥ st0 . Thus it must be

p(t̄ + t0) ∈ E(s)
M for some s < st0 ,

which contradicts the minimality hypothesis on st0 . Hence, arguing analogously for negative times, we
can deduce that (3.17) holds. Finally, recall that by Remark 3.13 this implies that

|p(t) − p| ≤ 3d2d−1Cdε
δ−((d−1)(d+1)+2)β .

�

Combining the estimate in Proposition 3.14 and estimate (2.10) on the size of the deformation
induced on the action variables by the canonical transformation T , we are finally able to deduce that
for all N ∈ N and ∀t ∈ R such that |t| ≤ ε−Na there exists a positive constant K′N such

|p(t) − p(0)| ≤ |p(t) − p(t)| + |p(t) − p(0)| + |p(0) − p(0)|
≤ K′Nε

1−δ + 3d2d−1Cdε
δ−((d−1)(d+1)+2)β + K′Nε

1−δ

≤
(
2K′N + 3d2d−1Cd

)
εδ−((d−1)(d+1)+2)β ,

which concludes the proof of Theorem 1.1.
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