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Abstract

We introduce and study some backward Kolmogorov equations associated to filtering problems. In the
tochastic filtering framework, SDEs for measure-valued processes arise naturally (Zakai and Kushner–
tratonovich equation). The associated Kolmogorov equations have been intensively studies, assuming

hat the measure-valued processes admit a density and then by exploiting stochastic calculus in Hilbert
paces.

Our approach differs from this since we do not assume the existence of a density and we work directly
n the context of measures. We first formulate two Kolmogorov equations on spaces of measures, and
hen we prove existence and uniqueness of classical solutions.

2023 Elsevier B.V. All rights reserved.
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1. Introduction

The main aim of this paper is to study the backward Kolmogorov equations of parabolic
ype associated to measure-valued processes arising in the context of stochastic filtering.
he principal result is about existence and uniqueness of classical solutions to these partial
ifferential equations, although other intermediate results are of independent interest.

The study of measure-valued stochastic processes is a classical topic that has attracted
n enormous interest. For instance, there is a large literature related to the superprocesses
ramework (see e.g. [18]), but more recently it has been related to the topic of mean field
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games and McKean–Vlasov equations (see [12,24] or [15,16]), where probability measure-
valued processes are used in problems with common noise to describe the evolution of the
conditional laws of some finite dimensional stochastic processes. Thanks to this recent interest,
many new results are now available, such as Itô formulas [15,16] and tools for differential
alculus on spaces of measures [12,15,24]. Moreover, a topic of great interest are the partial
ifferential equations on spaces of probability measures associated to these problems, such
s, for instance, the so-called master equation in the context of mean field games (see for
nstance [14,16]), the backward Kolmogorov equation associated to McKean–Vlasov type
quation (see for instance [10]), or certain Hamilton–Jacobi equations [21].

Our work gives a contribution in this direction. Differently from the previous contexts, our
im is to study partial differential equations on space of measures associated to measure-valued
rocesses arising in stochastic filtering problems. In particular, given a measure-valued process,
e first introduce the so called backward Kolmogorov equation associated to it, which is a
artial differential equation on a space of measures. Then, we study existence and uniqueness
f its classical solutions.

Stochastic filtering has been intensively studied, see for instance [3,30] and the references
herein for a systematic exposition of the topic. Two basic notions of the theory are the
o-called normalized and unnormalized filtering processes, which are a probability measure-
alued process and a positive measure-valued process respectively, and are proved to be the
olutions, in a sense that will be clarified later, to stochastic differential equations, called the
ushner–Stratonovich and the Zakai equation respectively.
A classical way to deal with these equations (see, for instance, [26,28]) is to show that

he solutions admit a density with respect to the Lebesgue measure, which possibly belongs
o a suitable Hilbert space of functions. Thus, one can study the density processes instead
f the measure-valued processes and rely on tools of stochastic calculus on Hilbert spaces to
urther explore their properties. The price to pay is the introduction of unnecessary assumptions
ntailing that the filtering processes have a density. In this paper we avoid these conditions
nd rather follow the approach of [3,8,23,25,29], where the filtering processes are studied as
enuine measure-valued processes.

In this framework, the Zakai equation reads as

d⟨ρt , ψ⟩ = ⟨ρt , Aψ⟩ dt + ⟨ρt , hψ + Bψ⟩ · dYt ,

here the solution ρ = {ρt , t ∈ [0, T ]} is a positive measure-valued process, A, B are
differential operators defined by the formulae

Aψ(x) :=

d∑
i=1

f (x)∂iψ(x) +
1
2

d∑
i, j=1

(σσ⊤)i j (x)∂i jψ(x) + (σ̄ σ̄⊤)i j (x)∂i jψ(x), x ∈ Rd ,

Bkψ(x) :=

d∑
i=1

σ̄ik(x)∂iψ(x), x ∈ Rd , k = 1, . . . d,

nd f, σ, σ̄ , h are functions that have to satisfy some hypotheses we will formulate later. The
ushner–Stratonovich equation reads as

d⟨Πt , ψ⟩ = ⟨Πt , Aψ⟩ dt + (⟨Πt , hψ + Bψ⟩ − ⟨Πt , ψ⟩⟨Πt , h⟩) · dIt ,

here Π = {Πt , [0, T ]} is probability measure-valued. In the previous equations the processes
Y and I are Brownian motions (with respect to appropriate probability measures) and we use∫

he notation ⟨µ,ψ⟩ = ψ(x)µ( dx). The equalities are understood to hold for every ψ in a
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certain class of test functions. In the following we also denote with M+(Rd ) and P(Rd ) the
paces of positive and probability measures on Rd respectively.

Our main results are two theorems on existence and uniqueness of classical solutions to
he backward Kolmogorov equations, associated to the Zakai and the Kushner–Stratonovich
quations, introduced here for the first time. The solutions are functions u : [0, T ]×M+(Rd ) →

or u : [0, T ] × P(Rd ) → R respectively. We note that finding solutions to Kolmogorov
quations on infinite dimensional spaces is a challenging problem and it has been studied
ntensively, see for instance [17], and the search of classical solutions is often addressed,
s in [19]. Most results are only concerned with the Hilbert space case, namely when
: [0, T ] × H → R, where H is a Hilbert space. The extension to spaces of measure requires

ntirely different methods and in particular new tools from differential calculus, as we will
xplain later.

The first result, given in Theorem 6.5, concerns the backward Kolmogorov equation
ssociated to the Zakai equation, that reads as{

∂su(µ, s) + Lu(µ, s) = 0, (µ, s) ∈ M+(Rd ) × [0, T ],
u(µ, T ) = Φ(µ), µ ∈ M+(Rd ),

(1.1)

here

Lu(µ) = µ
(
Dµu(µ) · f

)
+

1
2
µ
(
tr
{
Dx Dµu(µ)σσ⊤

})
+

1
2
µ
(
tr
{
Dx Dµu(µ)σ̄ σ̄⊤

})
+

1
2
µ⊗ µ

(
δ2
µu(µ)h · h

)
+ µ⊗ µ

(
h · σ̄⊤δµDµu(µ)

)
+

1
2
µ⊗ µ

(
tr
{
D2
µu(µ)σ̄ σ̄⊤

})
,

nd δµu, δ2
µu,Dµu,D2

µu are notions of first and second-order derivatives on M+(Rd ) we will
iscuss later, whilst Dx denotes the gradient on Rd . In Theorem 6.5 we show that if the terminal

condition Φ is regular enough then there exists a unique classical solution to (1.1) (defined for
µ in an appropriate subset of M+(Rd )). Analogously, in Theorem 7.7 we prove existence and
uniqueness for classical solutions to the backward Kolmogorov equation on P(Rd ) associated
to the Kushner–Stratonovich equation, that is{

∂su(π, s) + LK Su(π, s) = 0, (π, s) ∈ P(Rd ) × [0, T ],
u(π, T ) = Φ(π ), π ∈ P(Rd ),

(1.2)

where
LK Su(π ) = π (Dπu(π ) · f )

+
1
2
π
(
tr
{
Dx Dπu(π )σσ⊤

})
+

1
2
π
(
tr
{
Dx Dπu(π )σ̄ σ̄⊤

})
+

1
2
π ⊗ π

(
δ2
µu(π )h · h

)
+ π ⊗ π

(
h · σ̄⊤δµDπu(π )

)
+

1
2
π ⊗ π

(
tr
{
D2
πu(π )σ̄ σ̄⊤

})
+

1
2

[π (h) · π (π )]π ⊗ π
(
δ2
µu(π )

)
− π ⊗ π

(
δ2
µu(π )h

)
· π (h) − π ⊗ π

(
σ̄⊤δµDπu(π )

)
· π (h).

In both cases, the solution is given by a probabilistic representation formula related to the
filtering processes solutions to the Zakai and Kushner–Stratonovich equations.

In the study of (1.1) we have to face a specific difficulty: since we deal with functions
over M+(Rd ) we cannot rely on the various notions in differential calculus that have been
387
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developed in the last years with reference to the space of probability measures (see [2,15,21,24]
for different notions of derivative and a comparison among them). For instance, the technique
introduced by P.-L. Lions in [24] where the problem is lifted on a space of random variables is
no longer available. However, it turns out that the notion of linear functional derivative, given
in [15], can be extended to our framework. More precisely, we say δµu :M+(Rd )×Rd

→ R is
he derivative of u :M+(Rd ) → R in linear functional sense if u and δµu have some regularity
roperties and if for every µ,µ′

∈ M+(Rd ) it holds

u(µ′) − u(µ) =

∫ 1

0

∫
Rd
δµu

(
tµ′

+ (1 − t)µ, x
)

[µ′
− µ]( dx) dt.

nce δµu has been introduced, one can set Dµu(µ, x) := Dxδµu(µ, x), (µ, x) ∈ M+(Rd )×Rd .
f we restrict ourselves to the space of probability measures with finite second moment, under
ertain hypotheses this last definition coincides with the notion of derivative introduced by
ions, which we will call L-derivative. Most of the Itô formulas available in the literature

nvolve only L-derivatives, whilst in our case both linear functional and L-derivatives are
eeded. We point out that in the literature other notions of derivative for functionals over sets
f positive measures have been introduced. For instance, a derivative over M+(Rd ) has been
ntroduced in the framework of measure-valued processes related to particle systems (see for
nstance [18,22]) and it has been intensively used in the context of Fleming–Viot processes.
t turns out that, under certain conditions, this notion coincides with the one adopted in this
aper (see [27]). Another example is [1], where the authors give a definition of derivative for
unctionals over Poisson spaces.

As expected, in order to show the uniqueness property in (1.1) and (1.2) one needs to
rove a suitable Itô formula, in our case for the composition of a real-valued function and
measure-valued process. In the recent literature formulas of this kind have been proved when

he process takes values in a space of probability measures, see for instance [10,14,16] and
t is constructed as the time evolution of the one-point marginal law (in certain situations the
ne-point conditional marginal law) of a given finite dimensional process. For our purposes we
eed very different results. In Proposition 5.1 we provide an Itô formula for the composition
f a real-valued function over M+(Rd ) and the M+(Rd )-valued process solution to the Zakai
quation. Similarly, in Proposition 7.1 we prove an Itô formula related to the P(Rd )-valued
rocess solution to the Kushner–Stratonovich equation. Both results are new, but the latter can
e viewed as a generalization of the one obtained in the context of mean field games with
ommon noise ([16, Section 4.3]), as explained in greater detail in Remark 7.3. One major
echnical difference from existing cases is the fact that the Zakai and Kushner–Stratonovich
quations are understood to hold in a weak form, namely for arbitrary choice of the occurring
est function. In our proof we first show the formula for a smaller class of functions with
ood properties by exploiting the classical Itô formula, then we obtain the general result by an
pproximation argument. In order to pass to the limit in the Itô formula one needs convergence
f the approximating functions as well as their first and second derivatives (linear functional
nd L-derivatives). The required constructions have some interest in themselves and can be
sed again in similar contexts.

Concerning the existence of classical solutions to (1.1) and (1.2), the most difficult part of
he proof is the investigation of the regularity of the solutions to the Zakai and the Kushner–
tratonovich equations with respect to the initial datum. Dependence of the filtering processes
n the initial condition has been the object of intense study, since it is related to the problem
f assessing the effect of a misspecification of the initial distribution of the signal process in
388
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the filtering problem. However, the study of the differentiability properties of the solution with
respect to the initial conditions seems to be addressed here for the first time. As this relates to
differentiability of measure-valued processes with respect to a measure (the starting point of
the process itself) we need to introduce novel notions of differentiability for mappings from
M+(Rd ) (or P(Rd )) to M+(Rd )(or P(Rd )).

This work lays foundations for the study of partial differential equations on spaces of
measures associated to stochastic filtering problems. Object of further research will be the
existence and uniqueness in viscosity sense of solutions to the Kolmogorov equations in-
troduced in this work, under less restrictive conditions. Later, non-linear partial differential
equations will be considered, in particular the Hamilton–Jacobi–Bellman equation arising from
the optimal control problem with partial observation problem will be investigated, see for
instance the book [6] for a systematic introduction to the problem or the recent paper [7] for a
modern approach in the density case, based on mean field techniques. This problem has been
already tackled for the Zakai equation in [4,5] exploiting the randomization method and BSDEs
techniques, but in the more restrictive case where the function h is identically equal to zero. A
look at (1.1) shows that this assumption allows the authors to rely only on L-derivatives and
exploit previous results on well-posedness of related partial differential equations, an approach
which is not possible in our situation.

To conclude, we describe the plan of the paper. In Section 2 we introduce and discuss the
notions of derivatives needed later. In Section 3 we provide the approximation results for real
valued functions over M+(Rd ), which play a key role in the proofs of the Itô formulas. In
Section 4 we briefly recall the filtering problem, we introduce the Zakai and the Kushner–
Stratonovich equations and we state the hypotheses we will adopt for the rest of the paper.
In Section 5 we state and prove results on the solution to the Zakai equation, such as the
Itô formula and the regularity of the solution with respect to the initial datum. Finally, in
Section 6 we state and prove the existence and uniqueness theorem for the classical solutions
to the backward Kolmogorov equation associated to the Zakai equation, whilst in Section 7 we
do the same for the Kushner–Stratonovich equation.

1.1. Notation and preliminaries

We collect here some recurrent notations we will use during all our discussion. Regarding
the space of continuous functions, we denote with Ck(Rd ), k ∈ N, the space of real-valued
functions over Rd which are k-times continuously differentiable (k = 0 is omitted and denotes
the space of continuous functions) and with Ck

b(Rd ) the functions in Ck(Rd ) bounded and with
bounded derivatives up to order k. We endow the space of continuous functions with the infinity
norm, namely ∥u∥∞ := supx∈Rd |u(x)| if u ∈ C(Rd ). If u depends on several argument, ∥u∥∞

denotes the infinity norm where the supremum is taken over all the arguments. Analogously, if
u ∈ Ck(Rd ) we call Ck norm the quantity given by ∥u∥Ck := ∥u∥∞ +

∑k
i=1 ∥Di

x u∥∞ We also
denote with Bb(Rd ) the space of Borel measurable and bounded functions over Rd .

Let K be a Borel subset of Rd . We denote with M(K ) the set of signed measures over K
with finite total variation, with M+(K ) the set of positive finite measures over K and with P(K )
the set of probability measures over K , that is the subset of M+(K ) made by the measures
with unitary total mass. For p ∈ [1,+∞), we denote the spaces of measures with finite pth
moment by Mp(K ), M+

p (K ), Pp(K ). More precisely,

Mp(K ) := {µ ∈ M(K ) :
∫

|x |
pµ( dx) < ∞},
K
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and the same for M+
p (K ) and Pp(K ). Regarding the integration of functions, we will denote

y µ(ψ) or by ⟨µ,ψ⟩ the quantity
∫
ψ(x)µ( dx), for a measure µ and an integrable function

. We denote the total mass given to K by µ with µ(K ) or ⟨µ, 1⟩, where 1(x) = 1 for every
x ∈ K . We say that a sequence {µn}n≥1 converges weakly to a measure µ if µn(ψ) → µ(ψ)
for any ψ ∈ Cb(K ). We can notice that in order to have weak convergence, it is enough to
check that µn(ψ) → µ(ψ) for any ψ ∈ C2

b(K ).
For the results in Section 3, it will be useful to introduce a distance over Pp(K ). We define

the Wasserstein distance of order p ≥ 1 between π, π ′
∈ Pp(K ) as

Wp(π, π ′) = inf

{(∫
K×K

|x − x ′
|
p
γ ( dx, dx ′)

) 1
p
:γ ∈ Pp(K × K ) with marginals π, π ′

}
.

o conclude, we point out that (Pp(K ),Wp) is a complete and separable metric space and that
he convergence in Wp implies the weak convergence stated before. A very detailed discussion
n these topics can be found for instance in [2] or from a more probabilistic point of view
n [15].

. Differential calculus on spaces of positive measures

Since our final goal is to discuss some Kolmogorov equations on suitable spaces of mea-
ures, we need to introduce notions of derivatives for real-valued or measure-valued functions
ver spaces of measures. Regarding the real-valued functions, we take inspirations from the
iterature recently developed for real-valued function over the space of probability measures. We
ive a little extension of the notion of linear functional derivative (or flat derivative) discussed
or instance in [13–15]. Another definition we need mimics the derivative introduced in the
ontext of mean field games and discussed for instance in [12,15]. Following [14], we define it
s the spatial gradient of the linear functional derivative. For probability measures, under proper
ypotheses, this definition coincides with the original one given by Lions in [24] through the
ifting on a Hilbert space. A discussion on the relations among these definitions can be found
n [15] in the case of probability measures or in [27] in a more general case. The last definition
e introduce is a notion of derivative of functions from M+(Rd ) to M+(Rd ). This is a new
efinition, strongly inspired by the previous ones.

efinition 2.1 (Linear Functional Derivative). A function u :M+(Rd ) → R is said to have
inear functional derivative if it is continuous, bounded and if there exists a function

δµu :M+(Rd ) × Rd
∋ (µ, x) ↦→ δµu(µ, x) ∈ R,

hat is bounded, continuous for the product topology, M+(Rd ) equipped with the weak
opology, and such that for all µ and µ′ in M+(Rd ), it holds:

u(µ′) − u(µ) =

∫ 1

0

∫
Rd
δµu

(
tµ′

+ (1 − t)µ, x
)

[µ′
− µ]( dx) dt. (2.1)

e call C1(M+(Rd )) the class of functions from M+(Rd ) to R that are differentiable in linear
unctional sense.

emark 2.2. If u ∈ C1(M+(Rd )), we can introduce a notion of second-order derivative by
sking that the mapping µ ↦→ δµu(µ, x) is differentiable in linear functional sense for every

x and that (µ, x, y) ↦→ δ2 u(µ, x, y) is bounded and continuous. In general one can define
µ
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f

derivatives of order k ∈ N and introduce the space Ck(M+(Rd )) of functions that are k times
ifferentiable in linear functional sense. Notice that every time we differentiate, the derivative
epends on a new spatial variable.

We introduce now the second notion of derivative, namely the L-derivative, for real-valued
unctions over M(Rd ). We follow the definition given in [14], since for positive measure we

cannot rely on the lifting procedure of [24].

Definition 2.3 (L-Derivative). A function u in C1(M+(Rd )) is said to be L-differentiable if,
for every µ ∈ M+(Rd ), the mapping Rd

∋ x ↦→ δµu(µ, x) ∈ R is everywhere differentiable,
with M+(Rd ) × Rd

∋ (µ, x) ↦→ Dxδµu(µ, x) ∈ Rd continuous and bounded. We set:

Dµu(µ, x) := Dxδµu(µ, x) ∈ Rd , (2.2)

and we denote this class of functions with C1
L(M+(Rd )).

Remark 2.4. If we consider functions over P2(Rd ) (see Remark 2.7), Definition 2.3 turns
out to coincide with the definition of L-derivative introduced by Lions in [24] and discussed
for instance in [12,15]. More relations with other notions of derivative in the case of signed
measures have been also investigated in [27].

Regarding the second-order L-derivative, again in view of [14], we give the following
definition:

Definition 2.5. A function u :M+(Rd ) → R is said to be in C2
L(M+(Rd )) if the following

conditions hold:

a. u is in C2(M+(Rd ));
b. the mapping Rd

∋ x ↦→ δµu(µ, x) ∈ R is everywhere twice differentiable, with
continuous and bounded derivatives on M+(Rd ) × Rd ;

c. the mapping Rd
× Rd

∋ (x, y) ↦→ δ2
µu(µ, x, y) is twice differentiable, with continuous

and bounded derivatives on M+(Rd ) × Rd
× Rd .

We define the second-order L-derivative of u ∈ C2
L(M+(Rd )) as follows:

D2
µu(µ, x, y) := Dx D⊤

y δ
2
µu(µ, x, y) ∈ Rd×d ,

where D⊤
y = [∂y1 , . . . , ∂yd ] is the gradient operator y seen as a row.

Remark 2.6. In order to define the second-order L-derivative D2
µu, it is enough to ask for

less regularity of the mappings x ↦→ δµu(µ, x) and (x, y) ↦→ δ2
µu(µ, x, y) (for instance

x ↦→ δµu(µ, x) can be once continuously differentiable). However, for our scopes, it is
necessary to require further regularity of these mappings and so we included it in the definition
to keep the exposition clearer.

Remark 2.7. If we consider u : P(Rd ) → R, then we ask that the condition (2.1) in
Definition 2.1 holds for every µ,µ′

∈ P(Rd ). In this case we will denote with C1(P(Rd )) the
space of all the functions differentiable in this sense. Of course, we can proceed in the same
way for the derivatives of higher-order or for the L-derivatives. Moreover, this also works for
subsets like M+(Rd ) and P (Rd ), p ∈ [1,+∞).
p p
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Remark 2.8. If we consider functions defined over the space of probability measures P(Rd ),
e have that the linear functional derivative is defined up to an additive constant (see for

nstance [15, Remark 5.46]). A way to guarantee uniqueness (see for instance [14, Section
.2.1]) is to adopt the convention∫

Rd
δµu(µ, x)µ( dx) = 0, µ ∈ P(Rd ). (2.3)

emark 2.9. We can also give the definitions of linear functional and L-derivative in the
ase of measures with compact support M+(K ), K ⊂ Rd compact with sufficiently regular
oundary. In this case the additional variable generated by the differentiation belongs to K and
he spatial differentiability required for the L-derivative has to be meant only in the proper
irection at the boundary of K .

emark 2.10. Let (B, ∥·∥B) be a Banach space and let us consider u :M+(Rd ) → B. Then, all
he previous definitions can be trivially extended to this framework. We will use the notations

k(M+(Rd ); B), C1
L(M+(Rd ); B) and C2

L(M+(Rd ); B). In this case δµu :M+(Rd ) × Rd
→ B

nd Dµu :M+(Rd ) × Rd
→ Bd , and the same holds for higher-order derivatives.

We conclude this first part of the section by presenting an example of computations of linear
unctional and L-derivatives.

xample 2.11. Let g :Rn
→ R be in C2

b(Rn) and let {ψ}
n
i=1 ⊂ Cb(Rd ). We define

u :M+(Rd ) ∋ µ ↦→ g (⟨µ,ψ1⟩, . . . , ⟨µ,ψn⟩) ∈ R.

hen u ∈ C2(M+(Rd )) and it holds:

δµu(µ, x) =

n∑
k=1

∂k g (⟨µ,ψ1⟩, . . . , ⟨µ,ψn⟩) ψk(x),

δ2
µu(µ, x, y) =

n∑
k,l=1

∂l∂k g (⟨µ,ψ1⟩, . . . , ⟨µ,ψn⟩) ψk(x)ψl(y).

Moreover, if {ψi }
n
i=1 ⊂ C2

b(Rd ), then u is in C2
L(M+(Rd )) and it holds:

Dµu(µ, x) =

n∑
k=1

∂k g (⟨µ,ψ1⟩, . . . , ⟨µ,ψn⟩)Dxψk(x),

D2
µu(µ, x, y) =

n∑
k,l=1

∂l∂k g (⟨µ,ψ1⟩, . . . , ⟨µ,ψn⟩)Dxψk(x)D⊤

y ψl(y).

These functions, which we call cylindrical, play a key role in the proof of the Itô formula in
Section 5. We will discuss in Section 3 some approximation properties of this class.

The last definition we give concerns the differentiability for functions from M+(Rd ) to
M+(Rd ). The idea is to ask for a relation similar to (2.1) for the measure-valued function
tested against regular functions.

Definition 2.12 (Linear Functional Derivative for Measure-Valued Functions). We say that
+ d + d
a function m :M (R ) → M (R ) is differentiable in linear functional sense if there exists
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a mapping

δ̃µm :M+(Rd ) × Rd
∋ (µ, x) ↦→ δ̃µm(µ, x) ∈ M+(Rd ),

ounded in total variation, continuous for the product topology, M+(Rd ) equipped with the
eak topology, and such that for all µ and µ′ in M+(Rd ), it holds:

⟨m(µ′) − m(µ), ψ⟩ =

∫ 1

0

∫
Rd

⟨δ̃µm
(
tµ′

+ (1 − t)µ, x
)
, ψ⟩[µ′

− µ]( dx) dt, (2.4)

or every ψ ∈ Cb(Rd ). We call C̃1(M+(Rd )) the class of functions from M+(Rd ) to M+(Rd )
hat are differentiable in linear functional sense and, analogously, we denote by C̃k(M+(Rd ))
he space of functions that are k times differentiable.

emark 2.13. The joint continuity required in Definition 2.12 implies that, for every fixed
∈ M+(Rd ), the mapping x ↦→ δ̃µm(µ, x) is measurable and so δ̃µu is a transition

ernel.

emark 2.14. It easy to see that if m : M+(Rd ) → M+(Rd ) is in C̃1(M+(Rd )) then
he mapping µ ↦→ ⟨m(µ), ψ⟩ is in C1(M+(Rd )) for every ψ ∈ Cb(Rd ). In particular,
δ̃µm(µ, x), ψ⟩ = δµ(⟨m(·), ψ⟩)(µ, x) for every ψ ∈ Cb(Rd ), µ ∈ M+(Rd ) and x ∈ Rd .
he converse is also true if we assume that the regularity of the mapping µ ↦→ ⟨m(µ), ψ⟩ is
niform with respect to ψ .

xample 2.15. Let us consider ρ ∈ Cb(Rd
; [0,+∞)), and let us define mρ : M+(Rd ) →

+(Rd ) as

⟨mρ(µ), ψ⟩ = ⟨ρµ,ψ⟩ =

∫
Rd
ψ(x)ρ(x)µ( dx), ψ ∈ Cb(Rd ).

rom Definition 2.12 it holds that δ̃µm(µ, x) = ρ(x)δx , where δx is the Dirac measure in
x ∈ Rd . Moreover, for any µ ∈ M+(Rd ), x, y ∈ Rd , we have δ̃2

µ m(µ, x, y) = 0.

xample 2.16. Let us consider f ∈ Cb(Rd
;Rd ) and let us define the mapping m = m(µ) as

he push-forward measure through f , namely M+(Rd ) ∋ µ ↦→ m(µ) = f#µ. We recall that
or every ψ ∈ Cb(Rd ) it holds∫

Rd
ψ(y) f#µ( dy) =

∫
Rd
ψ( f (x))µ( dx).

hus, we have δ̃µm(µ, x) = δ f (x), where δ f (x) is the Dirac measure centred in
f (x), x ∈ Rd .

.1. Some properties

We list here some properties which will be required in the next section and that help us
o understand how these derivatives can be combined. A first property we need concerns the
ymmetry of the second-order derivatives.
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Proposition 2.17. Let u :M+(Rd ) → R be of class C2
L(M+(Rd )). The following facts hold:

i. the second-order linear functional derivative is symmetric in the spatial arguments, that
is δ2

µu(µ, x, y) = δ2
µu(µ, y, x) for every x, y ∈ Rd and µ ∈ M+(Rd );

ii. Dx (δ2
µu(µ, x, y)) = δµ

(
Dµu(·, x)

)
(µ, y);

iii. Dµ(Dµu(·, x))(µ, y) = D2
µu(µ, x, y).

roof. The proof follows the one of [14, Lemma 2.2.4], without relevant modifications in the
rgument. □

emark 2.18. Proposition 2.17 allows us to characterize the second-order L-derivative as the
L-derivative of the mapping µ ↦→ Dµu(µ, x), for every fixed x ∈ Rd , as we do for the linear
unctional case. We also notice that the first property in Proposition 2.17 holds more generally
hen u ∈ C2(M+(Rd )).

emark 2.19. If we consider functions over P(Rd ), it is necessary to add an additional
orrection to the Schwarz-type identity i . in Proposition 2.17 (see [14, Lemma 2.2.4]). In
articular it holds that

δµu2(µ, x, y) = δ2
µu(µ, y, x) + δµu(µ, x) − δµu(µ, y), µ ∈ P(Rd ), x, y ∈ Rd .

e can notice that the correction terms disappear if we integrate with respect to µ⊗ µ.

The next proposition shows how a to compute the linear functional derivative of the
omposition of a function from R to R and a function from M+(Rd ) to R, by a chain rule
imilar to the classical one.

roposition 2.20. Let h ∈ C1
b(R) and g ∈ C1(M+(Rd )). Then the composition

M+(Rd ) ∋ µ ↦→ h(g(µ)) ∈ R

s in C1(M+(Rd )) and the following chain rule holds:

δµh(g(·))(µ, x) = h′(g(µ))δµg(µ, x), x ∈ Rd , µ ∈ M+(Rd ).

roof. For every µ,µ′
∈ M+(Rd ) we have

h(g(µ′)) − h(g(µ)) =

∫ 1

0

∂

∂t
h(g(µt )) dt =

∫ 1

0
h′ (g(µt ))

∂

∂t
g(µt ) dt,

here µt = tµ′
+ (1 − t)µ. If we show that

∂

∂t
g(µt ) =

∫
Rd
δµg(µt , x)[µ′

− µ]( dx),

then we are done. For h fixed, since g ∈ C1(M+(Rd )) we can compute the increment

1
h
(g(µt+h) − g(µt )) =

1
h

∫ 1

0
δµg(τhµ′

− τhµ+ µt , x)h[µ′
− µ]( dx) dτ.

hen by taking h → 0 we get ∂
∂t g(µt ) =

∫
Rd δµg(µt , x)[µ′

− µ]( dx), where we used the
ominated convergence theorem and the joint continuity and boundedness of δ g. □
µ
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Remark 2.21. An easy generalization holds for h(g1(µ), . . . , gn(µ)), where n ∈ N, h ∈ C1
b(Rn)

nd {gi }
n
i=1 ⊂ C1(M+(Rd )). Then h ∈ C1(M+(Rd )) and it holds:

δµh(g1(·), . . . , gn(·))(µ, x) =

n∑
i=1

∂i h(g1(µ), . . . , gn(µ))δµgi (µ, x),

x ∈ Rd , µ ∈ M+(Rd ).

Another natural result we would like to have is the chain rules for the composition between
functions from M+(Rd ) to R and from M+(Rd ) to M+(Rd ).

Proposition 2.22. Let m ∈ C̃1(M+(Rd )) and let g ∈ C1(M+(Rd )). Then the composition
mapping M+(Rd ) ∋ µ ↦→ g(m(µ)) ∈ R is in C1(M+(Rd )) and it holds:

δµg(m(·))(µ, x) = ⟨δ̃µm(µ, x), δµg(·)(m(µ))⟩.

oreover, if m ∈ C̃2(M+(Rd )) and g ∈ C2(M+(Rd )), then g(m(·)) ∈ C2(M+(Rd )) with

δ2
µg(m(·))(µ, x, y) = ⟨δ̃2

µ m(µ, x, y), δµg(·)(m(µ))⟩

+ ⟨δ̃µm(µ, x) ⊗ δ̃µm(µ, y), δ2
µg(·)(m(µ))⟩.

roof. For every µ,µ′
∈ M+(Rd ) we have

g(m(µ′)) − g(m(µ)) =

∫ 1

0

∂

∂t
g(m(µt )) dt,

here µt = tµ′
+ (1 − t)µ. Then, by the regularity of g and m follows that

∂

∂t
g(m(µt )) =

∫
Rd

⟨δ̃µm(µt , x), δµg(·)(m(µt ))⟩[µ′
− µ]( dx), (2.5)

nd so the thesis. In the same way, one can deduce the result for the second-order derivative. □

Finally, we state a proposition regarding the differentiation of products. We omit the proof
ince it is analogue to the two above.

roposition 2.23. Let f, g ∈ C1(M+(Rd )). Then the product map

M+(Rd ) ∋ µ ↦→ f (µ)g(µ) ∈ R

s in C1(M+(Rd )) and the following product rule holds:

(δµ[ f g])(µ, x) = f (µ)δµg(µ, x) + g(µ)δµ f (µ, x).

oreover, if m ∈ C̃1(M+(Rd )) and if ψ :Rd
×M+(Rd ) → R is bounded, of class C1(M+(Rd ))

n the measure argument and continuous in the spatial argument, then the mapping

µ ∋ M+(Rd ) ↦→ h(µ) := ⟨m(µ), ψ(·, µ)⟩ ∈ R

s in C1(M+(Rd )) and it holds

δµh(µ, x) = ⟨δ̃µm(µ, x), ψ(·, µ)⟩ + ⟨m(µ), δµψ(·, µ, x)⟩.

. Approximation of real-valued functions over the space of positive measures

Here we discuss how to approximate real-valued functions over M+(Rd ) with a class of
impler functions, which allows easier and explicit computations. Our technique is based on a
395



M. Martini Stochastic Processes and their Applications 161 (2023) 385–423

e

w
a
t
i
r

w

i

a

R
t
µ

ψ

construction which is well known for function over space of probability measures, in particular
on P2(Rd ) endowed with the Wasserstein metric. Given µ ∈ P2(Rd ), we can introduce its
mpirical approximation

µn =
1
n

n∑
i=1

δXi , n ≥ 1, (3.1)

here {X i }
n
i=1 are independent identically distributed (i.i.d.) random variables with law µ (over

n arbitrary probability space (Ω ,F,P)). It can be shown, see for instance [15, Section 5.1.2],
hat W2(µ,µn) → 0 almost surely and in L2(Ω ) as n → +∞. If u :P2(Rd ) → R, we can
ntroduce its empirical projection un(µ) := u(µn) and if u is bounded and continuous with
espect to W2 one can conclude that, for every µ ∈ P2(Rd ),

E
[
un(µ)

]
= E [u(µn)] = ⟨µ×n, u

(
1
n

n∑
i=1

δ·i

)
⟩ → u(µ), n → +∞, (3.2)

here we used the notation

⟨µ×n, u

(
1
n

n∑
i=1

δ·i

)
⟩ =

∫
Rdn

u

(
1
n

n∑
i=1

δxi

)
µ( dx1) . . . µ( dxn).

We can set φn(µ) = ⟨µ×n, u
( 1

n

∑n
i=1 δ·i

)
⟩ and thus the family {φn

}n≥1 approximates pointwise
u.

The goal of our approximation technique is to find a class of functions with good properties
that allows us to approximate functions over positive measures together with their derivatives,
when they exist. The first step in our procedure is to adapt the previous argument to a space
of finite positive measures. Let us introduce, for k > 1, M+

2,k(Rd ) := {µ ∈ M+

2 (Rd ) :µ(Rd ) ∈[ 1
k , k

]
}. In the end, we will be able to approximate a function u :M+

2,k(Rd ) → R, where k > 1
s fixed, in a way that allows us to approximate also its derivatives, when u ∈ C2

L(M+

2,k(Rd )).
We can define, for every µ ∈ M+

2,k(Rd ),

un(µ) := u

(
µ(Rd )

n

n∑
i=1

δXi

)
, n ≥ 1, (3.3)

where {X i }
n
i=1 are i.i.d. random variables with law µ/µ(Rd ). If we fix µ ∈ M+

2,k(Rd ) and we
ask the mapping P2(Rd ) ∋ π ↦→ u

(
µ(Rd )π

)
∈ R to be bounded and continuous in W2, then

we can conclude, as for (3.2), that

φn(µ) := E
[
un(µ)

]
=

1
µ(Rd )n

⟨µ×n, u

(
µ(Rd )

n

n∑
i=1

δ·i

)
⟩ → u

(
µ(Rd )

µ

µ(Rd )

)
= u(µ),

(3.4)

s n → +∞.

emark 3.1. Notice that if u :M+

2,k(Rd ) → R is continuous with respect to the weak topology,
hen the mapping P2(Rd ) ∋ π ↦→ u

(
µ(Rd )π

)
∈ R is continuous in W2 for every fixed

∈ M+

2,k(Rd ). Indeed if W2(π, π ′) → 0, then ⟨µ(Rd )π,ψ⟩ → ⟨µ(Rd )π ′, ψ⟩ for every
∈ C (Rd ) and then one concludes thanks to the continuity of u.
b
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Remark 3.2. It is easy to show that the mapping

Rd×n
∋ (x1, . . . , xn) ↦→ ũn(x1, . . . , xn) := u

(
µ(Rd )

n

n∑
i=1

δxi

)
s in C2

b(Rd×n) if u ∈ C2
L(M+(Rd )). Indeed, let h > 0 and k ∈ {1, . . . , n}, then

1
h

[
ũn(x1, . . . , xk + h, . . . , xn) − ũn(x1, . . . , xk, . . . , xn)

]
=
µ(Rd )

n

∫ 1

0

δµu
(
mxk
θ,h, xk + h

)
− δµu

(
mxk
θ,h, xk

)
h

dθ,

ith mx1
θ,h :=

µ(Rd )
n

(∑n
i ̸=k δxi + θδxk+h + (1 − θ )δxk

)
. If we let h → 0, we obtain

∂k ũn(x1, . . . , xn) =
µ(Rd )

n
Dµu

(
µ(Rd )

n

n∑
i=1

δxi , xk

)
,

which is continuous and bounded thanks to the regularity of Dµu. We can proceed analogously
for the second order derivatives. Moreover, if we consider k > 1 and u ∈ C2

L(M+

2,k(Rd )), then
the mapping Rd×n

×
[ 1

k , k
]

∋ (x1, . . . , xn, z) ↦→ ūn(x1, . . . , xn, z) := u
( z

n

∑n
i=1 δxi

)
is in

C2
b(Rd×n

×
[ 1

k , k
]
). Indeed, let h be an admissible increment, then

1
h

[
ūn(x1, . . . , xn, z + h) − ūn(x1, . . . , xn, z)

]
=

1
n

d∑
k=1

∫ 1

0
δµu

(
z + θh

n

d∑
i=1

δxi , xk

)
dθ →

1
n

d∑
k=1

δµu

(
z
n

d∑
i=1

δxi , xk

)
,

s h → 0, which is continuous and bounded thanks to the regularity of δµu. As before, we can
roceed analogously for the second order derivatives.

The set M+

2,k(Rd ) is not compact with respect to the weak topology and in the further
computations this will give rise to some problems. So, we want to restrict to the case in which
the measures are in a compact subset of M+

2,k(Rd ). Let us introduce the family of compact
ectangles {KN = [−N , N ]d

}N≥1 ⊂ Rd . Then, for every N ≥ 1, we define

Hk
N :=

{
µ ∈ M+

2,k(Rd ) : suppµ ⊂ KN
}
,

hich is compact in the weak topology. Given µ ∈ M+

2,k(Rd ), we denote with ρNµ the measure
uch that dρNµ

dµ = ρN , with ρN positive and smooth cut-off function equal to 1 in KN and
dentically zero outside KN+1. We notice that ρNµ is always in Hk

N+1. Thus, for every N ≥ 1
e set

ûN (µ) := u(ρNµ), µ ∈ M+

2,k(Rd ). (3.5)

n the following lemma, we show how we can approximate a function u :M+

2,k(Rd ) → R with
ûN

}N≥1.

emma 3.3. Let k > 1, let u be in C2
L(M+

2,k(Rd )) and let the sequence {ûN
}N≥1 be defined by

3.5). Then, for every µ ∈ M+

2,k(Rd ), ûN (µ) → u(µ) as N → +∞ and {δµûN
}N≥1, {δ2

µûN
}N≥1,

{D ûN
} , {D2 ûN

} , {D D ûN
} , {D δ2 ûN

} pointwise converge to the respective
µ N≥1 µ N≥1 x µ N≥1 x µ N≥1
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derivatives of u. Moreover, ∥ûN
∥∞ ≤ ∥u∥∞, and there exists C > 0 independent of u, N , k

uch that

∥δµûN
∥ ≤ ∥δµu∥, ∥δ2

µûN
∥ ≤ ∥δ2

µu∥,

∥DµûN
∥ ≤ C(∥Dµu∥ + ∥δµu∥), ∥∂x DµûN

∥ ≤ C(∥Dµu∥ + ∥δµu∥ + ∥Dx Dµu∥),

∥Dxδ
2
µûN

∥ ≤ C(∥δ2
µu∥ + ∥Dxδ

2
µu∥), ∥D2

µûN
∥ ≤ C(∥δ2

µu∥ + ∥Dxδ
2
µu∥ + ∥D2

µu∥),

where the norms are meant as ∥ · ∥∞, that is the supremum norm over all the arguments of the
function.

Proof. First, we notice that ρNµ → µ weakly as N → +∞. Indeed, for every ϕ ∈ Cb(Rd ),
e have

⟨ρNµ, ϕ⟩ =

∫
Rd
ρN (x)ϕ(x)µ( dx) →

∫
Rd
ϕ(x)µ( dx),

s n → +∞, thanks to dominated convergence. Thus, since u is continuous with respect to the
eak topology, we have that for every µ ∈ M+

2,k(Rd ), ûN (µ) → u(µ) as N → +∞. Moreover,
t is immediate that ∥ûN

∥∞ ≤ ∥u∥∞.
Regarding the linear functional derivatives, from Proposition 2.22 with m(µ) = ρNµ and

g(µ) = u(µ), it follows that for every µ ∈ M+

2,k(Rd ) and x, y ∈ Rd

δµûN (µ, x) = ρN (x)δµu(ρNµ, x) → δµu(µ, x), as N → +∞,

δ2
µûN (µ, x, y) = ρN (x)ρN (y)δ2

µu(ρNµ, x, y) → δ2
µu(µ, x, y), as N → +∞,

hanks to the continuity of δµu and δ2
µu and the fact that ρN (x) → 1 as N → +∞, for every

x ∈ Rd . As before, the estimates on the norms easily follow.
To conclude, it remains to show the convergence of the derivatives in space of δµu and δ2

µu.
or instance, we have that, for every µ ∈ M+

2,k(Rd ) and x ∈ Rd

DµûN (µ, x) = DxδµûN (µ, x)
= Dxρ

N (x)δµu(ρNµ, x) + ρN (x)Dµu(ρNµ, x) → Dµu(µ, x), N → +∞.

ndeed, the first summand tends to 0 since supp Dxρ
N

⊂ [N , N + 1] and δµu is bounded,
hilst the second one tends to Dµu(µ, x) thanks to the continuity of Dµu and the fact that
N (x) → 1 as N → +∞, for every x ∈ Rd . In a similar way, we get

Dx DµûN (µ, x) =D2
xρ

N (x)δµu(ρNµ, x)

+ 2Dxρ
N (x)Dµu(ρNµ, x) + ρN (x)Dx Dµu(ρNµ, x),

Dxδ
2
µûN (µ, x, y) =ρN (y)Dxρ

N (x)δ2
µu(ρNµ, x, y) + ρN (y)ρN (x)Dxδ

2
µu(ρNµ, x, y),

D2
µûN (µ, x, y) =Dxρ

N (x)Dyρ
N (y)⊤δ2

µu(ρNµ, x, y)

+ ρN (y)Dxρ
N (x)Dyδ

2
µu(ρNµ, x, y)⊤

+ ρN (x)Dxδ
2
µu(ρNµ, x, y)Dyρ

N (y)⊤

+ ρN (y)ρN (x)D2
µu(ρNµ, x, y),
nd then we can prove the convergence of the remaining derivatives as before.
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Regarding the estimates on the norm, it follows that

∥DµûN
∥ ≤ C(∥Dµu∥ + ∥δµu∥), ∥∂x DµûN

∥ ≤ C(∥Dµu∥ + ∥δµu∥ + ∥∂x Dµu∥),

∥∂xδ
2
µûN

∥ ≤ C(∥δ2
µu∥ + ∥∂xδ

2
µu∥), ∥D2

µûN
∥ ≤ C(∥δ2

µu∥ + ∥∂xδ
2
µu∥ + ∥D2

µu∥),

where C = max
{
1, 2∥∂xρ

N
∥, ∥∂2

xρ
N
∥, ∥∂xρ

N (∂yρ
N )⊤∥

}
and all the norms are meant as ∥·∥∞.

Notice that C can be chosen independent of N , k and u, thanks to the particular structure of
ρN . □

Thanks to Lemma 3.3, we can approximate functions in C2
L(M+

2,k(Rd )) with functions
in C2

L(Hk
N ). Since we need more regular approximants, our goal now is to show that if

u ∈ C2
L(Hk

N ), with k > 1 and N ≥ 1 fixed, then its derivatives can be approximated by
the corresponding derivatives of the sequence {φn

}n≥1 introduced in (3.4), namely

φn(µ) := E
[
un(µ)

]
=

1
µ(Rd )n

⟨µ×n, u

(
µ(Rd )

n

n∑
i=1

δ·i

)
⟩, µ ∈ Hk

N .

emma 3.4. Let u be in C2
L(Hk

N ), for k > 1 and N ≥ 1 fixed, and let {φn
}n≥1 be

defined by (3.4). Then, for every µ ∈ Hk
N , φn(µ) → u(µ) as n → +∞ and {δµφ

n
}n≥1,

{δ2
µφ

n
}n≥1, {Dµφ

n
}n≥1, {D2

µφ
n
}n≥1, {Dx Dµφ

n
}n≥1, {Dxδ

2
µφ

n
}n≥1 converge pointwise to the

respective derivatives of u. Moreover, ∥φn
∥∞ ≤ ∥u∥∞ and the same holds for the derivatives,

up to a multiplicative constant independent of u, N and k.

Remark 3.5. Thanks to Lemma 3.4, we can approximate functions in C2
L(Hk

N ) with functions
φn

:Hk
N → R of the form φn(µ) = ⟨

µ×n

µ(Rd )n , ϕn(·, . . . , ·, µ(Rd ))⟩, where ϕn ∈ C2
b(K n

N ×
[ 1

k , k
]
)

s symmetric in the first n arguments and KN = [−N , N ]d .

roof. First, u :Hk
N → R is absolutely continuous with respect to the weak topology and so

t is also for the mapping P2(KN ) ∋ π ↦→ u(µ(Rd )π ), with µ ∈ Hk
N . Moreover, since we are

onsidering measures over a compact subset of Rd , the absolute continuity of this last mapping
lso holds in W2. The same consideration is true also for δµu, Dµu and Dx Dµu (resp. δ2

µu,
xδ

2
µu and D2

µu) when restricted to Hk
N × KN (resp. Hk

N × KN × KN ).
We already showed the convergence of φn(µ) to u(µ) for every µ ∈ Hk

N . Let us discuss the
onvergence of the linear functional derivatives of φn . First, we notice that φn(µ) = f (µ)g(µ)
ith

g(µ) :=
1

µ(Rd )n
, f (µ) := ⟨µ×n, u

(
µ(Rd )

n

n∑
i=1

δ·i

)
⟩, µ ∈ Hk

N .

rom Proposition 2.20 it follows that δµg(µ, x) = −
n

µ(Rd )n+1 , whilst from Proposition 2.23
ombined with 2.22 we get

δµ f (µ, x) = n⟨µ×(n−1), u

(
µ(Rd )

n

n−1∑
i=1

δ·i +
µ(Rd )

n
δx

)
⟩

+
1
n

n∑
j=1

⟨µ×n, δµu

(
µ(Rd )

n

n∑
i=1

δ·i , · j

)
⟩.
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Thus, from Proposition 2.23, we have that for (µ, x) ∈ Hk
N × KN ,

δµφ
n(µ, x)

=
n

µ(Rd )n
⟨µ×(n−1), u

(
µ(Rd )

n

n−1∑
i=1

δ·i +
µ(Rd )

n
δx

)
⟩

−
n

µ(Rd )n+1 ⟨µ×n, u

(
µ(Rd )

n

n∑
i=1

δ·i

)
⟩

+
1
n

n∑
j=1

⟨

(
µ

µ(Rd )

)×n

, δµu

(
µ(Rd )

n

n∑
i=1

δ·i , · j

)
⟩,

hich can be written by using the random variables {X i }
n
i=1 as

δµφ
n(µ, x) =

n
µ(Rd )

{
E

[
u

(
µ(Rd )

n

n−1∑
i=1

δXi +
µ(Rd )

n
δx

)]

−E

[
u

(
µ(Rd )

n

n∑
i=1

δXi

)]}

+
1
n

n∑
j=1

E

[
δµu

(
µ(Rd )

n

n∑
i=1

δXi , X j

)]
. (3.6)

Regarding the first two terms of (3.6), since u is differentiable in linear functional sense, we
get that their difference is equal to

E

[∫ 1

0
δµu

(
µ(Rd )

n

n−1∑
i=1

δXi + θ
µ(Rd )

n
δx + (1 − θ )

µ(Rd )
n

δXn , x

)
dθ

]

−E

[∫ 1

0
δµu

(
µ(Rd )

n

n−1∑
i=1

δXi + θ
µ(Rd )

n
δx + (1 − θ )

µ(Rd )
n

δXn , Xn

)
dθ

]
,

hich tends to δµu(µ, x) − ⟨
µ

µ(Rd )
, δµu(µ, ·)⟩, thanks to dominated convergence and the

egularity of the linear functional derivative. On the other hand, the last term in (3.6) converges
o ⟨

µ

µ(Rd )
, δµu(µ, ·)⟩ (which coincides, for instance, with E

[
δµu(µ, X1)

]
). Indeed,⏐⏐⏐⏐⏐⏐1n

n∑
j=1

E

[
δµu

(
µ(Rd )

n

n∑
i=1

δXi , X j

)]
− E

[
δµu(µ, X1)

]⏐⏐⏐⏐⏐⏐ ≤⏐⏐⏐⏐⏐⏐1n
n∑

j=1

E

[
δµu

(
µ(Rd )

n

n∑
i=1

δXi , X j

)]
−

1
n
E

⎡⎣ n∑
j=1

δµu(µ, X j )

⎤⎦⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐1nE
⎡⎣ n∑

j=1

δµu(µ, X j )

⎤⎦− E
[
δµu(µ, X1)

]⏐⏐⏐⏐⏐⏐ ,
hen the first term tends to zero thanks to the uniform continuity of δµu and the second one
ends to zero due to the law of large numbers. From (3.6) it also follows that ∥δ φn

∥ ≤
µ ∞
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3∥δµu∥∞. Similarly we are able to show the pointwise convergence of δ2
µφ

n and the estimate
for ∥δ2

µφ
n
∥∞.

Now we study the convergence of the L-derivatives of φn , by differentiating (3.6) with
respect to x . The second and the third term do not depend on x , whilst for the first one we can
compute the increment:

1
h

[
δµφ

n(µ, x + hek) − δµφ
n(µ, x)

]
= E

[∫ 1

0

δµu
(
mx
θ,h, x + hek

)
− δµu

(
mx
θ,h, x

)
h

dθ

]
,

where h ∈ R, k ∈ {1, . . . , d}, ek is the kth vector of the canonical basis of Rd and

mx
θ,h :=

µ(Rd )
n

(
n−1∑
i=1

δXi + θδx+hek + (1 − θ )δx

)
.

hen we can pass to the limit as h → 0 and thanks to the uniform continuity and the
ifferentiability of δµu we get

Dµφ
n(µ, x) = Dxδµφ

n(µ, x) = E

[
Dxδµu

(
µ(Rd )

n

n−1∑
i=1

δXi +
µ(Rd )

n
δx , x

)]
,

hich tends to Dµu(µ, x) as n → +∞ and from which we can also deduce ∥Dmuφn
∥∞ ≤

Dµu∥∞. Again, with similar computations one can show the pointwise convergence and the
orms estimates for {Dxδ

2
µφ

n
}n≥1, {Dx Dµφ

n
}n≥1, {D2

µφ
n
}n≥1. □

A further approximation can be achieved by substituting ϕ in Remark 3.5 with a certain
amily of symmetric polynomials. The obtained function has a more regular structure and is
asier to study. We call functions of this type cylindrical and they represent the last step in our
pproximation.

efinition 3.6 (Cylindrical Functions). We say that u : M+(Rd ) → R is a cylindrical function
f order k ∈ N if there exist n ∈ N, g ∈ Ck

b(Rn) and {ψi }
n
i=1 ⊂ Ck

b(Rd ) such that

u(µ) = g (⟨µ,ψ1⟩, . . . , ⟨µ,ψn⟩) , ∀µ ∈ M+(Rd ).

e denote with Ck(M+(Rd )) the set of cylindrical functions of order k.

In order to study the convergence in the next Lemma, we consider the following norm: let
N ≥ 1, k > 1 and let u ∈ C2

L(Hk
N ), then

∥u∥C2
L(Hk

N ) := sup
µ∈Hk

N ,
x,y∈KN

(
|u(µ)| + |δµu(µ, x)| + |δ2

µu(µ, x, y)| + |Dxδ
2
µu(µ, x, y)|

+|Dµu(µ, x)| + |Dx Dµu(µ, x)| + |D2
µu(µ, x, y)|

)
, (3.7)

here we recall that KN = [−N , N ]d .

emma 3.7. Let N ≥ 1 and k > 1 be fixed. Let f :Hk
N → R be defined, for r ∈ N, as

f (µ) := ⟨
µ×r

µ(Rd )r
, ϕ(·, . . . , ·, µ(Rd ))⟩, where ϕ ∈ C2

b

(
K r

N ×
[ 1

k , k
])

is symmetric in the first r
arguments. Then, there exists a sequence { f n

}n≥1 ⊂ C2(M+(Rd )) such that ∥ f − f n
∥C2

L(Hk
N) →

0 as n → +∞.
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Proof. Since K r
N ×

[ 1
k , k

]
⊂ Rdr+1 is compact, we can find a family of symmetrical

polynomials {ϕn}n≥1 which approximates ϕ in C2 norm (we can choose a symmetric version
f Bernstein approximants, see for instance [11, Section 3.2]). More precisely,

ϕn(x1, . . . , xr , z) =

ℓ(n)∑
i=1

hi (z)
r∏

j=1

gi, j (x j ),

here ℓ(n) ∈ N, gi, j : KN → R and hi :
[ 1

k , k
]

→ R are monomials, for every i = 1, . . . , ℓ(n)
nd j = 1, . . . , r . Let us introduce f n(µ) := ⟨

µ×r

µ(Rd )r
, ϕn(·, . . . , ·, µ(Rd ))⟩, for every n ≥ 1.

his sequence is in C2(M+(Rd )), indeed, for every n ≥ 1,

f n(µ) = gn(⟨µ, g1,1⟩, . . . , ⟨µ, gℓ(n),r ⟩, µ(Rd )),

here gn is defined over Rdrℓ(n)
× R as

gn(ξ1,1, . . . , ξℓ(n),r , ζ ) =

ℓ(n)∑
i=1

ζ e(i)−1
r∏

j=1

ξi, j ,

where we denoted with e(i) the exponents in the monomials hi . This function gn is symmetric,
wice continuously differentiable but not bounded. However, we can consider the product with

smooth symmetric (in the first r variables) cut-off function, equal to 1 in the rectangle
−R − 1, R + 1]drℓ(n)

×
[ 1

k , k
]
, where R := max{|⟨µ, g1,1⟩|, . . . , |⟨µ, gℓ(n),r ⟩|}, and vanishing

moothly outside. This function, that we denote again with gn for simplicity, is symmetric and
n C2

b(Rdrℓ(n)
× R). We can notice that at this point we needed the fact that µ(Rd ) ≥ 1/k,

hich was included in the definition of Hk
N , and not only µ(Rd ) > 0. Indeed, we need

∈ C2
b

(
K r

N ×
[ 1

k , k
])

in order to introduce the sequence {ϕn}n≥1 and consequently { f n
}n≥1.

Let us study the convergence of { f n
}n≥1 in norm ∥·∥C2

L(Hk
N ). First, supµ∈Hk

N
| f n(µ) − f (µ)|

ends to 0 as n → +∞, thanks to the uniform convergence of {ϕn
}n≥1 and the bound on

(Rd ). Regarding the first-order linear functional derivative, we have that for every µ ∈ Hk
N

nd x ∈ KN ,

δµ f n(µ, x) = r⟨
µ×(r−1)

µ(Rd )r
, ϕn(·1, . . . , ·r−1, x, µ(Rd ))⟩ + ⟨

µ×r

µ(Rd )r
, ∂zϕ

n(·, . . . , ·, µ(Rd ))⟩

−r⟨
µ×r

µ(Rd )r+1 , ϕ
n(·, . . . , ·, µ(Rd ))⟩. (3.8)

Due to dominated convergence, expression (3.8) converges as n → +∞ to the same one with
instead of ϕn , which is δµ f . Analogously, δ2

µ f n(µ, x, y) → δµ f n(µ, x, y) as n → +∞ for
very µ ∈ Hk

N and x, y ∈ KN . Moreover, since ϕn and its derivatives up to order two converge
niformly to ϕ and its derivatives, we have that

sup
µ∈Hk

N ,
x∈KN

⏐⏐δµ f n(µ, x) − δµ f (µ, x)
⏐⏐ → 0, sup

µ∈Hk
N ,

x,y∈KN

⏐⏐δ2
µ f n(µ, x, y) − δ2

µ f (µ, x, y)
⏐⏐ → 0,

s n → +∞. To conclude the discussion on the convergence, we are able to bring the spatial
erivative inside the integral in the first row of (3.8) and so for every µ ∈ Hk

N and x ∈ Rd

Dµ f n(µ, x) = r⟨
µ×(r−1)

µ(Rd )r
,Dxϕn(·1, . . . , ·r−1, x, µ(Rd ))⟩

→ r⟨
µ×(r−1)

,Dxϕ(·1, . . . , ·r−1, x, µ(Rd ))⟩ = Dµ f (µ, x),

µ(Rd )r
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as n → +∞. As before, the convergence takes place also uniformly since the first-order
derivative of ϕn converges uniformly to the one of ϕ. In the same way we can show the uniform
onvergence over Hk

N × KN (or Hk
N × KN × KN ) of {D2

µ f n
}n≥1, {Dx Dµ f n

}n≥1, {Dxδ
2
µ f n

}n≥1

o D2
µ f , Dx Dµ f , Dxδ

2
µ f respectively. □

emark 3.8. We can notice that both the results of Lemmas 3.4 and 3.7 work for functions
ver P2 (KN ), and the approximants remain well defined over P2 (KN ). Regarding Lemma 3.3,
e cannot simply cut the measure support, since the mass must be kept normalized. In this case,
e can approximate µ ∈ P2(Rd ) with the family of probabilities obtained by concentrating all

he mass outside the compact KN in the origin, namely {λN
1 µ+ λN

2 δ0}N≥1, where λN
1 and λN

2
re smooth positive cut-off functions, λN

1 = 0 in KN+1, λN
2 = 0 in K c

N and λN
1 +λN

2 = 1. This
equence converges weakly to µ ∈ P2(Rd ) and the approximation properties in Lemma 3.3
till hold for {ûN

}N≥1 := {u(λN
1 µ+ λN

2 δ0)}N≥1.

emark 3.9. From the proofs of Lemma 3.3, we can see that if we ask for u ∈ C2(M+

2,k(Rd )),
hen the approximation for u and its first- and second-order linear functional derivatives still
olds. The same applies also for Lemma 3.4.

emark 3.10. At the beginning of this section we used the fact that a function u on M+(Rd )
an be regarded as a function defined on R+ × P(Rd ) through the formula

v(λ, π) = u(λπ ), λ > 0, π ∈ P(Rd ),

nd conversely

u(µ) = v(µ(Rd ),
µ

µ(Rd )
), µ ∈ M+(Rd ).

robably this fact could be used to deduce some of the results we proved for functions over
+(Rd ) (see for instance Section 2.1) directly from earlier results for functions over P(Rd ).

owever, we decided to give the proofs directly in the context of M+(Rd ) since in this case
he computations are more straightforward and since this is the natural framework to study the
akai equation.

. Two equations related to nonlinear filtering

In this section we introduce the filtering equations. Our main results in later sections concern
heir associated Kolmogorov equations. Here we introduce notation and basic assumptions and
e recall well-posedness results and first properties, as well as the connection with the filtering
roblem. The nonlinear filtering equations, namely the Zakai equation and the Kushner–
tratonovich equation, arise naturally when the problem of nonlinear filtering is studied. We
ill use the approach adopted by Szpirglas in [29] and later by Heunis and Lucic in [25], where

xistence, uniqueness and regularity properties of the equations are proved under appropriate
ssumptions, without direct reference to the filtering problem.

Let us consider a finite time interval [0, T ], a complete probability space (Ω ,F,P) with
filtration {Ft }t∈[0,T ] which satisfies the usual conditions. Let W = {Wt , t ∈ [0, T ]} and

B = {Bt , t ∈ [0, T ]} be two independent d-dimensional {Ft }-Brownian motions (we take
hem with the same dimension for simplicity) and let us consider the d-dimensional process
X = {X t , t ∈ [0, T ]}, called signal process, defined by

dX = f (X ) ds + σ (X ) dW + σ̄ (X ) dB , X ∈ L2(Ω ,F ), (4.1)
t t t t t t 0 0
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where the Borel measurable mappings f :Rd
→ Rd , σ :Rd

→ Rd×d and σ̄ :Rd
→ Rd×d

ill be chosen later in order to have existence of a strong solutions, uniqueness (up to
ndistinguishability), continuity and Markovianity of X . The idea behind the stochastic filtering
s that we cannot observe directly the signal, but we can only observe a process Y = {Yt , t ∈

[0, T ]}, called observation process, defined by

Yt =

∫ t

0
h(Xs) ds + Bt , (4.2)

where h :Rd
→ Rd is a Borel measurable mapping such that E

[∫ T
0 |h(Xs)|2 ds

]
< ∞. If we

ntroduce the observation filtration {FY
t }t∈[0,T ], where FY

t is the completion with respect to the
P-null sets of the σ -algebra generated by Y up to the time t , we can say that the filtering
problem is to find a P(Rd )-valued process Π = {Πt , t ∈ [0, T ]}, called filter, such that

Πt (ϕ) = E
[
ϕ(X t )|FY

t

]
, (4.3)

almost surely, for every t ∈ [0, T ] and ϕ ∈ Bb(Rd ). Due to the presence of the observation
noise also in the signal equation (4.1), we will refer to this problem as stochastic filtering with
correlated noise, in contrast with the problem in which σ̄ is null, called without correlated noise.
Now, let us state the assumptions on the coefficients necessary for our discussion. They are not
always necessary together (see Remark 4.13), but we group them for simplify the exposition.

Hypoteses 4.1. All the mappings f, σ, σ̄ , h are taken Borel-measurable. Moreover we assume:

a. the mappings f : Rd
→ Rd , σ : Rd

→ Rd×d and σ̄ : Rd
→ Rd×d are Lipschitz

continuous;
b. the mapping a := σσ⊤

:Rd
→ Rd×d is uniformly elliptic, that is there exists λ > 0 such

that
∑d

i, j=1 ai jξiξ j ≥ λ|ξ |2 for every x, ξ ∈ Rd ;
b. the mapping σ :Rd

→ Rd×d is such that σ (x)σ (x)⊤ is a positive definite matrix for
every x ∈ Rd ;

c. the mappings f, σ, σ̄ , h are bounded.

Under these conditions, the signal is a uniquely characterized Markov process and moreover
there exists a P(Rd )-valued {FY

t }-optional process which satisfies (4.3).
Let us introduce two differential operator, that are defined for every ψ ∈ C2

b(Rd ) by

Aψ(x) :=

d∑
i=1

fi (x)∂iψ(x) +
1
2

d∑
i, j=1

{(
σσ⊤

)
i j (x)∂i jψ(x) +

(
σ̄ σ̄⊤

)
i j (x)∂i jψ(x)

}
,

x ∈ Rd ,

Bkψ(x) :=

d∑
i=1

σ̄ik(x)∂iψ(x), x ∈ Rd , k = 1, . . . d.

(4.4)

t has been proved (see for instance [3, Chapter 3]) that the process Π satisfies the
ollowing stochastic differential equation, called Kushner–Stratonovich equation (or Fujisaki–
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Kallianpur–Kunita):

Πt (ψ) = π (ψ)+
∫ t

0
Πs(Aψ) ds+

∫ t

0
(Πs(hψ + Bψ) − Πs(ψ)Πs(h))· dIs, π = L(X0),

(4.5)

or every ψ ∈ C2
b(Rd ), where It := Yt −

∫ t
0 Πs(h) ds, t ∈ [0, T ] is called innovation process

nd it is a d-dimensional {FY
t }-Brownian motion. Another essential result in this framework

s that Eq. (4.5) can be rephrased into a linear equation for the evolution of the unnormalized
aw of the filter, namely the M+(Rd )-valued process ρ = {ρt , t ∈ [0, T ]}. In particular, one
an prove that the process ρ satisfies the so-called Zakai equation:

ρt (ψ) = π (ψ) +

∫ t

0
ρs(Aψ) ds +

∫ t

0
ρs(hψ + Bψ) · dYs, ψ ∈ C2

b(Rd ), (4.6)

ith ρt (Rd ) > 0 for every t ∈ [0, T ] almost surely and Πt (ψ) = ρt (ψ)/ρt (Rd ) for every
∈ [0, T ] and ψ ∈ C2

b(Rd ). Moreover, one can introduce the martingale

Z t = exp
{
−

∫ t

0
h(Xs) · dBs −

1
2

∫ t

0
|h(Xs)|2 ds

}
, t ∈ [0, T ],

nd set dQ = ZT dP. Then, it can be shown that the observation process Y , which drives the
tochastic integral in (4.6), is a Brownian motion under Q.

emark 4.2. These results hold with hypotheses less restrictive than Hypotheses 4.1. For more
recise conditions and detailed proofs of the previous results, see for instance [3, Chapters 2,3]
nd the references therein.

.1. Equations of nonlinear filtering in weak form

We present now the framework for the filtering equations introduced in [29] and extended
ore recently by [25] to our setting. The main idea is to study the measure-valued stochastic

ifferential equations of nonlinear filtering without relying on the original filtering problem,
ntroducing proper notions of weak solution, pathwise uniqueness and uniqueness in law. We
ill now present all these definitions, following the exposition in [25].

efinition 4.3. The pair {(Ω̃ , F̃, {F̃t }, P̃), (Π̃t , Ĩt )} is a weak solution to the Kushner–
tratonovich equation starting at π ∈ P(Rd ) if:

i. (Ω̃ , F̃, {F̃t }, P̃) is a complete filtered probability space.
ii. Ĩ = { Ĩt , t ∈ [0, T ]} is an Rd -valued {F̃t }-Brownian motion on (Ω̃ , F̃, P̃).

iii. Π̃ = {Π̃t , t ∈ [0, T ]} is a P(Rd )-valued continuous {F̃t }-adapted process such that

P̃

(∫ T

0

d∑
i=1

Π̃s(|hi |)2 ds < ∞

)
= 1,

and for every ψ ∈ C2
b(Rd ) it holds

Π̃t (ψ) = π (ψ)+
∫ t

0
Π̃s(Aψ) ds +

∫ t

0

(
Π̃s(hψ + Bψ) − Π̃s(ψ)Π̃s(h)

)
· d Ĩs, (4.7)

for every t ∈ [0, T ], almost surely.
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Analogously, we can define the Zakai equation’s weak solutions:

efinition 4.4. The pair {(Ω̃ , F̃, {F̃t }, Q̃), (ρ̃t , Ỹt )} is a weak solution to the Zakai equation
tarting at µ ∈ M+(Rd ) if:

i. (Ω̃ , F̃, {F̃t }, Q̃) is a complete filtered probability space.
ii. Ỹ = {Ỹt , t ∈ [0, T ]} is an Rd -valued {F̃t }-Brownian motion on (Ω̃ , F̃, Q̃).

iii. ρ̃ = {ρ̃t , t ∈ [0, T ]} is a M+(Rd )-valued continuous {F̃t }-adapted process such that

Q̃

(∫ T

0

d∑
i=1

ρ̃s(|hiψ + Biψ |)2 ds < ∞

)
= 1,

and for every ψ ∈ C2
b(Rd ) it holds

ρ̃t (ψ) = µ(ψ) +

∫ t

0
ρ̃s(Aψ) ds +

∫ t

0
ρ̃s(hψ + Bψ) · dỸs, (4.8)

for every t ∈ [0, T ], almost surely.

emark 4.5. A useful result, proved in [25] (see Fact 3.2), is the fact that the trajectories
f weak solutions to the Zakai equation have total mass that does not touch zero and with
niformly bounded moments. More precisely, if {(Ω̃ , F̃, {F̃t }, Q̃), (ρ̃t , Ỹt )} is a weak solution
o the Zakai equation starting at µ ∈ M+(Rd ), then ρ̃t (Rd ) > 0 for every t ∈ [0, T ], Q̃ almost
urely. Moreover for every α ∈ (1,+∞) there exists a positive constant γ (α,µ) such that

EQ̃

[
sup

t∈[0,T ]
|ρ̃t (Rd )|

α

]
≤ γ (α,µ).

emark 4.6. In [25,29], the Zakai equation is always taken with initial condition in the space
f probability measures. However, it easy to consider the case in which the initial condition
s a positive measure, different from the null measure. Indeed one can always reconduct the
roblem to the one starting from a probability by performing a standardization, thanks to the
inearity of the Zakai equation.

In the following lemma we show that if a weak solution to a filtering equation starts from a
easure with finite second moment, then its trajectories will take value in a space of measures
ith finite second moment. We postpone the proof of Lemma 4.7 to the Appendix to avoid

echnicalities in this expository chapter on nonlinear filtering.

emma 4.7. Let {(Ω̃ , F̃, {F̃t }, Q̃), (ρ̃t , Ỹt )} be a weak solution to the Zakai equation starting
t µ ∈ M2

+
(Rd ). Then ρ̃t ∈ M+

2 (Rd ) for every t ∈ [0, T ], Q̃-almost surely. Similarly, if
(Ω̃ , F̃, {F̃t }, P̃), (Π̃t , Ĩt )} is a weak solution to the Kushner–Stratonovich equation starting at
∈ P2(Rd ), then Π̃t ∈ P2(Rd ) for every t ∈ [0, T ], P̃-almost surely.

Regarding the uniqueness, we have the following two definitions, which follow the classical
amada–Watanabe formalism.

efinition 4.8. The Kushner–Stratonovich equation has the pathwise uniqueness property
f: given two weak solutions {(Ω̃ , F̃, {F̃ }, P̃), (Π̃ 1, Ĩ )} and {(Ω̃ , F̃, {F̃ }, P̃), (Π̃ 2, Ĩ )} of the
t t t t t t
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D
i
e

equation starting at π ∈ P(Rd ), it holds that

P̃
(
Π̃ 1

t = Π̃ 2
t ,∀t ∈ [0, T ]

)
= 1.

n the same way we state the pathwise uniqueness property for the Zakai equation.

efinition 4.9. The Kushner–Stratonovich equation has the uniqueness in joint law property
f: given two weak solutions {(Ω̃ , F̃, {F̃t }, P̃), (Π̃t , Ĩt )} and {(Ω̂ , F̂, {F̂t }, P̂), (Π̂t , Ît )} of the
quation starting at π ∈ P(Rd ), it holds that the processes (Π̃ , Ĩ ) = {(Π̃t , Ĩt ), t ∈ [0, T ]}

and (Π̂ , Î ) = {(Π̂t , Ît ), t ∈ [0, T ]} have the same finite dimensional distributions, where we
endowed P(Rd ) with the Borel σ -algebra induced by the weak convergence topology. In the
same way we define the uniqueness in joint law property for the Zakai equation.

The main result in [25] is the following theorem regarding the uniqueness for the two
equations of nonlinear filtering:

Theorem 4.10 ([25]). Assume that Hypotheses 4.1 hold. Then:

i. the Zakai equation has the pathwise uniqueness and the uniqueness in joint law
properties;

ii. the Kushner–Stratonovich equation has the uniqueness in joint law property.

Remark 4.11. In the case without correlated noise, studied in [29], it is possible to
prove pathwise uniqueness also for the weak solutions of the Kushner–Stratonovich equation.
Moreover, in [29] (Théorème V.6) it is shown how the classical Yamada–Watanabe result also
apply to this situation, namely pathwise uniqueness and existence of a weak solution implies
existence of a strong solution. The technique is not affected by the addition of a correlated
noise, so at least for the Zakai equation we also have existence of a strong solution. This allows
us to fix a probability space (Ω̃ , F̃, {F̃t }, Q̃), equipped with a {F̃t }-Brownian motion Ỹ , and to
solve the Zakai equation with respect to different initial conditions on the same probabilistic
setup.

Remark 4.12. Since the uniqueness in law property holds, the Markov property follows for
both the weak solution of the Kushner–Stratonovich and the Zakai equation.

Remark 4.13. The fact that a := σσ⊤ must be uniformly elliptic (Hypotheses 4.1 - b.)
is necessary only for the proof of Proposition 5.7 (in particular, it is required to ensure the
existence of a smooth solution to (5.9)). For all the previous results, one can just assume a
non-degeneracy condition on a, that is a(x) positive definite for every x ∈ Rd . Moreover, the
non-degeneracy of σ is required only for Theorem 4.10. Thus, if one assume the conclusions of
Theorem 4.10 and the Markov property for the solutions, as well as the existence of a smooth
solution to (5.9), then all the following results still hold without Hypotheses 4.1-b.

We conclude this section by stating how to obtain a weak solution to the Kushner–
Stratonovich equation from a weak solution to the Zakai equation and viceversa. First, let us
assume that Hypotheses 4.1 hold and let {(Ω̃ , F̃, {F̃t }, P̃), (Π̃t , Ĩt )} be a weak solution to the
Kushner–Stratonovich equation. Then, we can define two processes Ỹ = {Ỹ , t ∈ [0, T ]} and
t
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χ := {χt , t ∈ [0, T ]} by

Ỹt = Ĩt +

∫ t

0
Π̃s(h) ds, χt = exp

{
−

∫ t

0
Π̃s(h) d Ĩs +

1
2

∫ t

0
|Π̃s(h)|

2
ds
}
, (4.9)

here it easy to see that χ in a P̃-martingale. Thus, if we introduce the probability measure
Q̃ = χT dP̃ and ρ̃ = {ρ̃t = µ(Rd )χ−1

t Π̃t , t ∈ [0, T ]}, we have that {(Ω̃ , F̃, {F̃t }, Q̃), (ρ̃t , Ỹt )}
s a weak solution to the Zakai equation starting at µ ∈ M+

2 (Rd ). We remark that the presence
f µ(Rd ) in the definition of ρ̃ is necessary to keep track that the initial condition µ is not a
robability measure (see also Remark 4.6). On the other hand, if {(Ω̃ , F̃, {F̃t }, Q̃), (ρ̃t , Ỹt )} is
weak solution to the Zakai equation, we can set

Ĩt = Ỹt −

∫ t

0

ρ̃s(h)
ρ̃s(Rd )

ds, ξt = exp

{∫ t

0

ρ̃s(h)
ρ̃s(Rd )

dỸs −
1
2

∫ t

0

⏐⏐⏐⏐ ρ̃s(h)
ρ̃s(Rd )

⏐⏐⏐⏐2 ds

}
, (4.10)

nd, since ξ is a martingale, introduce dP̃ = ξT dQ̃ and Π̃ = {Π̃t = ρ̃s/ρ̃s(Rd ), t ∈ [0, T ]}.
Thus, the couple {(Ω̃ , F̃, {F̃t }, P̃), (Π̃t , Ĩt )} is a weak solution to the Kushner–Stratonovich
equation.

The proofs of these results in the context of weak solutions to the nonlinear filtering
equations can be found in [29] for the case without correlated noise. However, the case with
correlated noise has no extra difficulties. The technique used to prove these relations is based
on Girsanov’s theorem and on the classical Itô formula, and it follows the way to link the filter
Π and the unnormalized filter ρ. A discussion of this change of probability method in the
context of the filtering problem can be found for instance in [3] or in [30].

5. Itô formula and regularity with respect to the initial condition for the Zakai equation

In this section we discuss some properties of the solution to the Zakai equation. Our first
aim is to show a chain rule of Itô type for the composition with a function in C2

L(M+

2 (Rd )).
Then, we investigate the differentiability of a solution with respect to the initial condition. In
this section, we will consider a complete filtered probability space (Ω ,F, {Ft },Q) endowed
with a {Ft }-Brownian motion Y , and a solution to the Zakai equation ρ on that probabilistic
setup (see also Remark 4.11). In particular

ρt (ψ) = µ(ψ) +

∫ t

0
ρs(Aψ) ds +

∫ t

0
ρs(hψ + Bψ) · dYs, ψ ∈ C2

b(Rd ), (5.1)

here the coefficients are related to the filtering problem (4.1)–(4.2) and the operators A and
B are defined by (4.4). We will also assume that Hypotheses 4.1 hold, so from Theorem 4.10

e have the pathwise uniqueness property. Finally, we will consider only initial conditions µ
n M+

2 (Rd ), so ρ is a M+

2 (Rd )-valued process.

5.1. Itô formula for the Zakai equation

The purpose of this section is to identify an Itô formula for the composition of a regular
unction and a process that solves (5.1). This is a key step for our final purpose, that is write
nd study the backward Kolmogorov equation associated to the Zakai equation.

Before stating the main result of this section, we need to introduce a notation for the
ntegral with respect to the product measure µ ⊗ µ, with µ ∈ M+(Rd ). Let f, g ∈ Cb(Rd ),

h ∈ C (Rd
× Rd ). We adopt the following notations:
b
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T

P
µ

T

a

P
f
f
fi
ρ

b

F
⟨

• Every time µ( dx) ⊗µ( dy) integrates a product of functions over Rd , it is meant that the
first one is integrated with respect to µ( dx) and the second one with respect to µ( dy),
that is

µ⊗ µ( f g) :=

∫∫
f (x)g(y)µ( dx)µ( dy).

In particular, µ⊗ µ( f f ) =
∫∫

f (x) f (y)µ( dx)µ( dy);
• Every time µ( dx) ⊗µ( dy) integrates a product of functions over Rd and a function over
Rd

×Rd , it is meant that the first one is integrated with respect to µ( dx), the second one
with respect to µ( dy) and the third with respect to both, that is

µ⊗ µ( f gh) :=

∫∫
f (x)g(y)h(x, y)µ( dx)µ( dy).

he extension to vector-valued and matrix-valued functions is straightforward.

roposition 5.1. Let ρ = {ρt , t ∈ [0, T ]} be a solution to the Zakai equation starting at
∈ M+

2 (Rd ) and let u be in C2
L(M+

2 (Rd )). Let us also assume that Hypotheses 4.1 are satisfied.
hen the following Itô formula holds:

u(ρt ) = u(µ) +

∫ t

0
ρs
(
Dµu(ρs) · f

)
ds

+

∫ t

0

1
2
ρs
(
tr
{
Dx Dµu(ρs)σσ⊤

})
ds +

∫ t

0

1
2
ρt
(
tr
{
Dx Dµu(ρs)σ̄ σ̄⊤

})
ds

+

∫ t

0
ρs
(
hδµu(ρs)

)
· dYs +

∫ t

0
ρs
(
σ̄⊤Dµu(ρs)

)
· dYs

+

∫ t

0

1
2
ρs ⊗ ρs

(
δ2
µu(ρs)h · h

)
ds +

∫ t

0
ρs ⊗ ρs

(
h · σ̄⊤δµDµu(ρs)

)
ds

+

∫ t

0

1
2
ρs ⊗ ρs

(
tr
{
D2
µu(ρs)σ̄ σ̄⊤

})
ds, t ∈ [0, T ],

(5.2)

lmost surely in Ω .

roof. The proof in divided into five steps: the idea is to show the formula for cylindrical
unction over a compact subset of M+

2 (Rd ), which is a direct consequence of the classical Itô
ormula, and then achieve the result by approximation and localization. In particular, for the
rst four steps we assume that, for a fixed k > 1, ρt ∈ M+

2,k(Rd ) for every t ∈ [0, T ], that is
t (Rd ) ∈ [ 1

k , k] for every t ∈ [0, T ], almost surely. In the last step we get rid of this condition
y a localization argument.

irst step. We prove the formula for u ∈ C2(M+(Rd )). More precisely, u(µ) = g(⟨µ,ψ1⟩, . . . ,

µ,ψn⟩), n ∈ N, g ∈ C2
b(Rn), {ψi }

n
i=1 ⊂ C2

b(Rd ). Without loss of generality, we discuss the case
n = 1, that is u(µ) = g(⟨µ,ψ⟩). The result with n ≥ 1 is obtained with the same procedure.
By the classical Itô formula and (5.1), we get that

du(ρt ) = dg(⟨ρt , ψ⟩) = g′(⟨ρt , ψ⟩)ρt (Aψ) dt + g′(⟨ρt , ψ⟩)ρt (hψ + Bψ) · dYt

+
1
2

g′′(⟨ρt , ψ⟩)ρt (hψ + Bψ) · ρt (hψ + Bψ) dt

= g′(⟨ρt , ψ⟩)ρt (Dxψ · f ) dt +
1

g′(⟨ρt , ψ⟩)ρt
(
tr
{
D2ψσσ⊤

})
dt
2 x
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s

+
1
2

g′(⟨ρt , ψ⟩)ρt
(
tr
{
D2

xψσ̄ σ̄
⊤
})

dt + g′(⟨ρt , ψ⟩)ρt (hψ + σ̄⊤Dxψ) · dYt

+
1
2

g′′(⟨ρt , ψ⟩)ρt (hψ + σ̄⊤Dxψ) · ρt (hψ + σ̄⊤Dxψ) dt.

hen, recalling Example 2.11, we get that

du(ρt ) = ρt (Dµu(ρt ) · f ) dt +
1
2
ρt
(
tr
{
Dx Dµu(ρt )σσ⊤

})
dt

+
1
2
ρt
(
tr
{
Dx Dµu(ρt )σ̄ σ̄⊤

})
dt

+ρt (hδµu(ρt )) · dYt + ρt (σ̄⊤Dµu(ρt )) · dYt +
1
2
ρt ⊗ ρt (δ2

µu(ρt )h · h) dt

+ρt ⊗ ρt (h · σ̄⊤δµDµu(ρt )) dt +
1
2
ρt ⊗ ρt

(
tr
{
D2
µu(ρt )σ̄ σ̄⊤

})
dt, (5.3)

or every t ∈ [0, T ], almost surely in Ω .

econd step. Let us fix N ≥ 1 and k > 1. Now we show the formula for functions of the
orm u(µ) = ⟨

µr

µ(Rd )r
, ϕ(·, . . . , . . . , µ(Rd ))⟩, with µ ∈ Hk

N , r ∈ N, ϕ ∈ C2
b(K r

N ×
[ 1

k , k
]
) and ϕ

ymmetrical in the first r arguments. Thanks to Lemma 3.7, there exists {un
}n≥1 ⊂ C2(M+(Rd ))

uch that ∥u − un
∥C2

L(Hk
N ) → 0 as n → +∞, where the norm has been introduced in (3.7).

hus, thanks to the first step, we get the formula (5.3) with un in place of u.
We study now the convergence of the terms in the expression we obtained. Since un

onverges to u for every µ ∈ Hk
N , we have that un(ρt ) → u(ρt ) and un(µ) → u(µ) almost

urely in Ω , as n → +∞.
For the integrals in time, we can proceed by dominated convergence thanks to the conver-

ence in ∥ · ∥C2
L,H

k
N

norm of {un
}n≥1 and the boundedness of the coefficients b, σ, σ̄ , h. Here

e discuss the convergence of
∫ t

0
1
2ρs ⊗ ρs

(
tr
{
D2
µun(ρs)σ̄ σ̄⊤

})
ds, but the other terms can be

tudied analogously. Thanks to Lemma 3.7, we have⏐⏐tr {D2
µun(ρs)σ̄ σ̄⊤

}
− tr

{
D2
µu(ρs)σ̄ σ̄⊤

}⏐⏐ ≤ 3∥σ∥
2
∞

∥D2
µu∥∞, (5.4)

o by dominated convergence⏐⏐ρs ⊗ ρs
(
tr
{

D2
µun(ρs)σ̄ σ̄⊤

}
− tr

{
D2
µu(ρs)σ̄ σ̄⊤

})⏐⏐ → 0,

s n → +∞. Moreover, we have that for every t ∈ [0, T ]⏐⏐ρs ⊗ ρs
(
tr
{

D2
µun(ρs)σ̄ σ̄⊤

}
− tr

{
D2
µu(ρs)σ̄ σ̄⊤

})⏐⏐ ≤ 3k∥σ∥
2
∞

∥D2
µu∥∞ ∈ L∞([0, t]),

ince ρt (Rd ) ∈
[ 1

k , k
]
. Thus, again by dominated convergence we can conclude that for any

t ∈ [0, T ]⏐⏐⏐⏐∫ t

0

1
2

tr
{

D2
µun(ρs)σ̄ σ̄⊤

}
ds −

1
2

∫ t

0
tr
{

D2
µu(ρs)σ̄ σ̄⊤

}
ds
⏐⏐⏐⏐ → 0,

lmost surely in Ω , as n → +∞.
For the stochastic integrals, we prove the convergence in L2(Ω ). Since the technique is the

ame for both the terms, let us focus on
∫ t
ρ
(
hδ un(ρ )

)
· dY . By Itô isometry, we have that
0 s µ s s
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for any t ∈ [0, T ] it holds

E

[(∫ t

0

{
ρs
(
h(δµun(ρs))

)
− ρs

(
hδµu(ρs)

)}
· dYs

)2
]

= E
[∫ t

0

⏐⏐{ρs
(
h(δµun(ρs))

)
− ρs

(
hδµu(ρs)

)}⏐⏐2 ds
]

→ 0,

here the convergence is obtained thanks to the uniform convergence over Hk
N × KN of

δµun
}n≥1 and the boundedness of h, combined with the dominated convergence argument we

sed for the deterministic integral.
Every convergence we proved implies the convergence in probability, so the relation (5.2)

olds almost everywhere in Ω , for every t ∈ [0, T ]. Since both the right hand side and the left
and side of (5.2) are continuous , the relation holds for every t ∈ [0, T ] almost everywhere
n Ω .

hird step. Let u be in C2
L(Hk

N ). Then by Lemma 3.4, there exists a sequence {φn
}m≥1 which

onverges pointwise to u, and the same holds for the derivatives needed in the Itô formula.
oreover, as we pointed out in Remark 3.5, φn(µ) = ⟨

µ×n

µ(Rd )n , ϕn(·, . . . , ·, µ(Rd ))⟩, with
ϕn ∈ C2

b(K n
N ×

[ 1
k , k

]
), n ≥ 1. Thus, by step two, (5.2) holds for every φn . To conclude,

we can pass to the limit with the same argument we used in step two, exploiting the bounds
on the norms given by Lemma 3.4, the boundedness of b, σ, σ̄ , h, the fact that ρt (Rd ) ∈

[ 1
k , k

]
or every t ∈ [0, T ] and the dominated convergence theorem.

ourth step. Let u be in C2
L(M+

2,k(Rd )). Thanks to Lemma 3.3, we can conclude that (5.2) holds
lso for this class of functions, by the same argument we use in the previous steps.

ifth step. Let us introduce the sequence of random times τk :Ω → [0,+∞],

τk =
{
t ≥ 0 : ρt (Rd ) ∈ [1/k, k]c} , k > 1.

irst, {τk}k>1 are stopping times since they are exit time from a Borel set and moreover, thanks
o Remark 4.5, τk → +∞, P almost surely as k → +∞. Then, we can consider the stopped
rocess ρk

t := ρt∧τk for which, thanks to the previous steps, (5.2) holds. Indeed it still satisfies
he Zakai equation (5.1) and ρk

t (Rd ) ∈ [1/k, k], for every t ∈ [0, T ] and k > 1. To conclude,
e can let k → +∞ in the Itô formula for ρk

t , recovering (5.2) for ρt and u ∈ C2
L(M+

2 (Rd )),
hanks to the continuity in time of all the terms involved in the equation. □

emark 5.2. We can rewrite the formula (5.2) in the following way

du(ρt ) = ρt
(

Aδµu(ρt )
)

dt + ρt
(
(h + B)δµu(ρt )

)
· dYt

+
1
2
ρt ⊗ ρt

(
(h + B) · (h + B)δ2

µu(ρt )
)

dt,

here

ρt ⊗ ρt
(
(h + B) · (h + B)δ2

µu(ρt )
)

=

∫∫
(h(x) + σ̄⊤(x)Dx ) · (h(y) + σ̄⊤(y)Dy)δ2

µu(ρt , x, y)ρt ( dx)ρt ( dy).

orollary 5.3. Assume that Hypotheses 4.1 hold, let ρ = {ρt , t ∈ [0, T ]} be a solution to the
akai equation and let u : [0, T ] ×M(Rd ) → R be in C2 (M+(Rd )) for the measure argument,
L s
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t
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in C1([0, T ]) for the time argument and let u and all its derivatives be bounded in all their
rguments. Then it holds

u(t, ρt ) = u(0, µ)

+

∫ t

0
∂su(s, ρs) ds +

∫ t

0
ρs
(

Aδµu(s, ρs)
)

ds +

∫ t

0
ρs
(
(h + B)δµu(s, ρs)

)
· dYs

+
1
2

∫ t

0
ρs ⊗ ρs

(
(h + B) · (h + B)δ2

µu(s, ρs)
)

ds, t ∈ [0, T ],

lmost surely.

roof. The proof is basically the same of Proposition 5.1, with a standard modification in
order to deal with the time dependence. □

.2. Differentiability properties

Given a complete filtered probability space (Ω ,F, {Ft },Q) endowed with a {Ft }-Brownian
motion Y , let ρs,µ be a solution to the Zakai equation. We use the superscript s, µ to highlight
he initial value µ ∈ M+

2 (Rd ) and the initial time s ∈ [0, T ]. The aim of this subsection is
to investigate its differentiability with respect to the initial condition. By computing formally
the linear functional derivative of Eq. (5.1), for every x ∈ Rd we get the following equation,
defined over (Ω ,F, {Ft },Q, {Y }), for an M(Rd )-valued process Z s(x) = {Z s

t (x), t ∈ [s, T ]}:

⟨Z s
t (x), ψ⟩ = ⟨δx , ψ⟩ +

∫ t

s
⟨Z s

τ (x), Aψ⟩ dτ +

∫ t

s
⟨Z s

τ (x), Bψ + hψ⟩ · dYτ . (5.5)

e can look for solutions to (5.5) that are in M+

2 (Rd ) for every fixed x ∈ Rd and since it is
a Zakai equation with initial condition in P2(Rd ) and with the same coefficients of (5.1), we
have that there exists a unique M+

2 (Rd )-valued solution Z t (x) for every x .

Remark 5.4. The solution of (5.5) will play the role of linear functional derivative of the
mapping M+

2 (Rd ) ∋ µ ↦→ ρ
s,µ
t , t ∈ [s, T ], see also Remark 5.8. We can notice that Z s(x) does

not depend on µ, as expected since the Zakai equation is linear.

Before presenting the main results regarding the properties of the process Z s(x) introduced
above, we provide an explicit estimate for the mass of a solution of the Zakai equation. We
report the proof for completeness, even if the result is well known (see for instance Fact 3.2
in [25]).

Lemma 5.5. Let ρs,µ be a solution of the Zakai equation (5.1) and let Hypotheses 4.1 be
satisfied. Then it holds

E
[⏐⏐⟨ρs,µ

t , 1⟩
⏐⏐2] ≤ 2⟨µ, 1⟩

2e2T ∥h∥
2
∞ ,

where 1 is the function equal to 1 for every x ∈ Rd and µ ∈ M+

2 (Rd ).

Proof. Since ρµ solves (5.1), we can write the Zakai equation for ψ ≡ 1 and then take the
expected value. Thus, for every t ∈ [0, T ], we get

E
[⏐⏐⟨ρs,µ

t , 1⟩
⏐⏐2] ≤ 2⟨µ, 1⟩

2
+ 2∥h∥

2
∞

∫ t

E
[⏐⏐⟨ρs,µ

τ , 1⟩
⏐⏐2] dτ,
s
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and the thesis follows by Gronwall’s lemma. □

roposition 5.6. Let s ∈ [0, T ). Let ρs,µ be the solution of (5.1) starting at µ ∈ M+

2 (Rd )
nd let Z s

t (x), x ∈ Rd , be the solution of (5.5). Then

i. for every m,m ′
∈ M+

2 (Rd ) it holds

⟨ρs,m′

t , ψ⟩ − ⟨ρs,m
t , ψ⟩ =

∫ 1

0

∫
Rd

⟨Z s
t (x), ψ⟩

[
m ′

− m
]

( dx) dθ, ∀t ∈ [s, T ],

almost surely;
ii. for every t ∈ [s, T ] and x ∈ Rd , there exists a constant C = C(T, h) > 0 such that

E
[
|⟨Z s

t (x), 1⟩|
2
]

≤ C(T, h).

roof. In this proof we hide the dependence on s in ρs,µ
t and Z s

t (x). Let us define, for every
∈ [s, T ] and every m,m ′

∈ M+

2 (Rd ), the mapping

Z̃m,m′

t : C2
b(Rd ) ∋ ψ ↦→ ⟨Z̃m,m′

t , ψ⟩ :=

∫
Rd

⟨Z t (x), ψ⟩[m ′
− m]( dx).

t is easy to check that Z̃m,m′

t ∈ M(Rd ) and then we can define the measure-valued process
m,m′

= {∆m,m′

t := ρm′

t − ρm
t − Z̃m,m′

t , t ∈ [s, T ]}. Recalling that ρm′

and ρm solve (5.1) and
Z (x) solves (5.5), by linearity we obtain that, for every m,m ′

∈ M+

2 (Rd ), ∆m,m′

solves a Zakai
quation with null initial condition and same coefficients as (5.1). Then, it holds that ∆m,m′

is
he process equal to the null measure for every t ∈ [s, T ]. Thus, since Z t (x) does not depend
n µ, we can say that for every t ∈ [s, T ]

⟨ρm′

t , ψ⟩ − ⟨ρm
t , ψ⟩ =

∫ 1

0

∫
Rd

⟨Z t (x), ψ⟩
[
m ′

− m
]

( dx) dθ,

lmost surely. Regarding ii, it follows directly from Lemma 5.5 □

We also need to study the differentiability of the mapping Rd
∋ x ↦→ E

[
⟨Z s

t (x), ψ⟩
]

∈ R,
or every fixed ψ ∈ C2

b(Rd ) and t ∈ [s, T ].

roposition 5.7. Let Z s(x) be the solution of Eq. (5.5) and let Hypotheses 4.1 hold. Then,
or every ψ ∈ C2

b(Rd ) and t ∈ [s, T ], the mapping Rd
∋ x ↦→ E

[
⟨Z s

t (x), ψ⟩
]

∈ R is twice
ontinuously differentiable, with bounded derivatives.

Before proving Proposition 5.7, let us introduce some auxiliary tools. Let us denote by
I s(x) the intensity measure associated to Z s(x), that is the measure such that E

[
⟨Z s

t (x), ψ⟩
]

=

I s
t (x), ψ⟩. From (5.5) we have that

E
[
⟨Z s

t (x), ψ⟩
]

= ⟨δx , ψ⟩ +

∫ t

s
E
[
⟨Z s

τ (x), Aψ⟩
]

dτ, t ∈ [s, T ], ψ ∈ C2
b(Rd ), (5.6)

nd so I s(x) solves the following Fokker–Planck equation:

⟨I s
t (x), ψ⟩ = ⟨δx , ψ⟩ +

∫ t

⟨I s
τ (x), Aψ⟩ dτ, t ∈ [s, T ], ψ ∈ C2

b(Rd ). (5.7)

s
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Following the argument used for instance to prove Proposition 6.1.2 in [9] or Lemma 4.8 in [3],
from (5.7) one can deduce that for every ϕ ∈ C1,2

b (Rd
× [s, t]) it holds that

⟨I s
t (x), ϕt ⟩ = ⟨δx , ϕs⟩ +

∫ t

s
⟨I s
τ (x), (∂τ + A)ϕτ ⟩ dτ. (5.8)

tarting from (5.8), we can prove Proposition 5.7. The argument exploits the regularity of the
olution of a suitable auxiliary backward partial differential equation.

roof of Proposition 5.7. Let us fix t ∈ [s, T ], ψ ∈ C2
b(Rd ) and let us introduce the backward

quation{
∂τv(y, τ ) + Av(y, τ ) = 0, (y, τ ) ∈ Rd

× [s, t],
v(y, t) = ψ(y), y ∈ Rd .

(5.9)

hanks to Hypotheses 4.1 (see for instance Theorem 4.6 in [20] and more precisely the
iscussion after Theorem 5.1, page 147), we have that there exists a unique classical solution
∈ C2,1

b (Rd
× [s, t]) to (5.9). Then, if we choose v as a test function in (5.8), we obtain

⟨I s
t (x), vt ⟩ = ⟨δx , vs⟩ +

∫ t

s
⟨I s
τ (x), (∂τ + A)vτ ⟩ dτ = v(x, s), (5.10)

here the last equality follows from the fact that v solves (5.9). Thus, recalling that v(x, t) =

(x) and the definition of I s(x), we obtain that

E
[
⟨Z s

t (x), ψ⟩
]

= ⟨I s
t (x), ψ⟩ = v(x, s), x ∈ Rd ,

nd so the mapping Rd
∋ x ↦→ E

[
⟨Z s

t (x), ψ⟩
]

is in C2
b(Rd ) thanks to the regularity of v. □

emark 5.8. In Proposition 5.6, we showed that for t ∈ [s, T ] and ψ ∈ C2
b(Rd ) fixed,

he mapping µ ↦→ ⟨ρ
s,µ
t , ψ⟩ ∈ L1(Ω ) is in C1(M2

2(Rd ); L1(Ω )), with derivative given by
Z s

t (x), ψ⟩ and independent of µ. Note that this does not imply that, almost surely, Z s
t is the

inear functional derivative of µ ↦→ ρ
s,µ
t , since the continuity of x ↦→ ⟨Z s

t (x), ψ⟩ holds only
nder expectation.

With the same procedure used for Proposition 5.6 we can find a process, that we denote
ith U s(x, y), x, y ∈ Rd , which is symmetrical with respect to x and y and which satisfies
roperties analogue to i, ii, in Proposition 5.6 where ρs,µ is substituted with Z s(x) and Z s(x)
ith U s(x, y). Moreover, it turns out that U s(x, y) coincides with the null measure for every
∈ [s, T ] and x, y ∈ Rd .

To conclude, we summarize in a proposition all the properties we showed in this section
nd which will be useful in the following discussions.

roposition 5.9. Let s ∈ [0, T ), let (Ω ,F, {Ft },Q, {Yt }) be fixed and let Hypotheses 4.1 hold.
f ρs,µ is the solution of the Zakai equation (5.1), then, for every ψ ∈ C2

b(Rd ) and t ∈ [s, T ], the
apping µ ↦→ ⟨ρ

s,µ
t , ψ⟩ is in C2(M+

2 (Rd ); L1(Ω )). Moreover, the mapping µ ↦→ E
[
⟨ρ

s,µ
t , ψ⟩

]
s in C2

L(M+

2 (Rd )).

. The backward Kolmogorov equation associated to the Zakai equation

In this section we write and study the backward Kolmogorov equation associated to the
akai equation, that is a parabolic partial differential equation on a space of positive measures.
414
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T
m

Let us denote with L the infinitesimal generator of the Zakai process, namely the operator
L : C2

L(M+

2 (Rd )) → Cb(M+

2 (Rd )) defined by

Lu(µ) = µ
(

Aδµu(µ)
)
+

1
2
µ⊗ µ

(
(h + B)⊤(h + B)δ2

µu(µ)
)
,

where A and B are defined by (4.4) and h :Rd
→ Rd is Borel measurable and bounded. The

backward Kolmogorov equation we want to study is:{
∂su(µ, s) + Lu(µ, s) = 0 (µ, s) ∈ M+

2 (Rd ) × [0, T ],
u(µ, T ) = Φ(µ) µ ∈ M+

2 (Rd ),
(6.1)

where Φ is in C2
L(M+

2 (Rd )). Our aim is to study existence and uniqueness of classical solutions,
in the sense given by the following definition:

Definition 6.1. We say that u :M+

2 (Rd ) × [0, T ] → R is a classical solution to the backward
Kolmogorov equation associated to the Zakai equation if it is of class C2

L(M+

2 (Rd )) in the
measure argument and C1([0, T ]) in the time argument (where in t = 0 and t = T the
derivatives are understood in unilateral sense), if it and all its derivatives are bounded in all
their arguments and if it satisfies the backward equation (6.1).

6.1. Existence and uniqueness of a classical solution

In order to show existence and uniqueness, we follow the classical approach to these kind of
problems. First, we assume that a solution exists and we prove a representation formula which
guarantees the uniqueness. In the following, when we refer to a solution ρs,µ to the Zakai
equation, it is understood as the solution defined over a fixed complete filtered probability space
(Ω ,F, {Ft },Q) endowed with a {Ft }-Brownian motion Y (see Remark 4.11), which solves the
equation starting from µ ∈ M+

2 (Rd ) at s ∈ [0, T ).

Proposition 6.2. Let u = u(µ, s) be a classical solution to (6.1) and let ρs,µ be a solution to
the Zakai equation (5.1). Then the following representation formula holds

u(µ, s) = EQ [Φ (ρs,µ
T

)]
, (µ, s) ∈ M+

2 (Rd ) × [0, T ], (6.2)

and so the solution u is uniquely characterized.

Proof. Let us consider the composition u(ρs,µ
T , T ), where ρs,µ

T is the solution to (5.1) starting
at time s with value µ. Then, by the Itô formula we get

u(ρs,µ
T , T ) − u(ρs,µ

s , s) =

∫ T

s
{∂su(ρs,µ

τ , τ ) + Lu(ρs,µ
τ , τ )} dτ +

∫ T

s
Gu(ρs,µ

τ , τ ) · dYτ ,

where Gu(µ, t) = µ(hδµu(µ, t) + σ̄⊤Dµu(µ, t)). First, we notice that since u is a solution of
(6.1), the time integral is zero, and by taking the expectation we get

EQ [Φ (ρs,µ
T

)]
− u(µ, s) = EQ

[∫ T

s
Gu(ρs,µ

τ , τ ) · dYτ

]
.

he right hand side is equal to zero since the stochastic integral in the expected value is a
artingale. Then the thesis follows, since for every (µ, s) ∈ M+

2 (Rd ) × [0, T ],
Q [ ( s,µ)]
E Φ ρT = u(µ, s). □
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In order to prove the existence of a solution, we will show that a function u defined by (6.2)
is regular enough and satisfies (6.1). In order to do that, we need some auxiliary results on the
differentiability of u with respect to the measure argument that we collect in the following
proposition:

Proposition 6.3. Let u(µ, s) = EQ [Φ(ρs,µ
T )

]
, where ρs,µ

T is the solution to the Zakai equation
starting at time s from µ ∈ M+

2 (Rd ) and Φ ∈ C2
L(M+

2 (Rd )). Then, for every s ∈ [0, T ], u is in
C2

L(M+

2 (Rd )).

Proof. Let us first deal with the differentiability in linear functional sense. Proceeding as in
Proposition 2.22, by a simple chain rule argument we conclude that u(µ, s) is in C2(M+

2 (Rd )),
hanks to the fact Φ ∈ C2

L(M+

2 (Rd )) combined with Proposition 5.9. In particular we get the
ollowing formulas:

δµu(µ, x, s) = EQ [
⟨Z s

T (x), δµΦ(ρs,µ
T )⟩

]
,

δ2
µu(µ, x, y, s) = EQ [

⟨Z s
T (x) ⊗ Z s

t (y), δ2
µΦ(ρs,µ

T )⟩
]
,

here δµΦ(ρs,µ
T , x) means δµΦ(µ, x) evaluated in ρs,µ

T , and Z s is the process introduced in
5.5).

Regarding the differentiability of the first-order linear functional derivative with respect
o the additional space variable, we have that the mapping x ↦→ δµu(µ, x, s) is twice
ontinuously differentiable with bounded derivatives thanks to Proposition 5.9 and to the
act that δµΦ(ρs,µ

T ) ∈ C2
b(Rd ) for µ fixed. In a similar way we can show that the mapping

x, y) ↦→ δ2
µu(µ, x, y) is twice continuously differentiable with bounded derivatives. Indeed, if

e take a symmetrical function ψ ∈ C2
b(Rd

×Rd ), we can obtain a version of Proposition 5.9
or the mapping (x, y) ↦→ EQ [

⟨Z s
T (x) ⊗ Z s

t (y), ψ⟩
]
, by combining the technique used in the

roof of Proposition 5.9 and the ideas in the proof of Theorem 4.26 in [3]. □

Now that the object Lu is well defined, we need to investigate its regularity with respect to
he time.

emma 6.4. Let u be defined by (6.2). Then, for every µ ∈ M+

2 (Rd ), the mappings
0, T ] ∋ s ↦→ Lu(µ, s) and [s, T ] × [0, T ] ∋ (τ, σ ) ↦→ Lu(ρs,µ

τ , σ ) ∈ L2(Ω ) are continuous.

roof. Let us fix t ∈ [s, T ]. Then, by classical estimates on (5.1), it follows that for every
∈ C2

b(Rd ) the mapping [0, T ] ∋ s ↦→ ⟨ρ
s,µ
t , ψ⟩ ∈ L2(Ω ) is continuous. Thus, combining

his with the expression for the derivatives of u in Proposition 6.3 and the boundedness
f Φ with its derivatives, we get that [0, T ] ∋ s ↦→ Lu(µ, s) is continuous. Regarding
s, T ]× [0, T ] ∋ (τ, σ ) ↦→ Lu(ρs,µ

τ , σ ), again we can conclude recalling that Φ ∈ C2
L(M+

2 (Rd ))
ombined with Proposition 6.3 and the continuity of ρs,µ. □

Finally we can show the main result, that is the existence of a solution to (6.1) via
epresentation formula:

heorem 6.5. Let u(µ, s) = EQ [Φ(ρs,µ
T )

]
, where ρs,µ

T is the solution to the Zakai equation
starting at time s from µ ∈ M+

2 (Rd ), Φ ∈ C2
L(M+

2 (Rd )) and let Hypotheses 4.1 hold. Then it

s the unique classical solution to the backward Kolmogorov equation (6.1).
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Proof. Let us fix h small and positive. We want to show that

lim
h→0

1
h

[u(µ, s + h) − u(µ, s)] = −Lu(µ, s). (6.3)

If this is true, the mapping g : s ↦→ g(s) := u(µ, s) has right derivative in [0, T ). Moreover,
by Lemma 6.4 the right-hand term in (6.3) is continuous, so g ∈ C1([0, T )) and by a standard
rgument it can be shown that it is continuously differentiable in [0, T ].

Let us show (6.3). First, thanks to the Markov property of the process ρs,µ it holds that
(µ, s) = EQ [u (ρs,µ

s+h, s + h
)]

. Then, we can proceed by applying Itô formula and taking the
xpectation:

u(µ, s + h) − u(µ, s) = EQ [u(µ, s + h) − u
(
ρ

s,µ
s+h, s + h

)]
= −EQ

[∫ s+h

s
Lu(ρs,µ

τ , s + h) dτ
]
.

To conclude, it remains to show that

lim
h→0

1
h
EQ

[∫ s+h

s
Lu(ρs,µ

τ , s + h) dτ
]

= Lu(µ, s),

ut this follows from Lemma 6.4 and mean-value theorem. □

emark 6.6. All the previous results can be extended to the time inhomogeneous case, that is
hen the coefficients b, σ, σ̄ depend also on time, by assuming that Hypotheses 4.1 hold with
niform in time constants.

. The backward Kolmogorov equation associated to the Kushner–Stratonovich
quation

Our goal in this last section is to prove existence and uniqueness for the backward
olmogorov equation associated to the Kushner–Stratonovich equation. We will proceed by

xploiting the relation with the Zakai equation, pointed out at the end of Section 4. Let us fix
Ω ,F, {Ft },Q, {Yt }) and let ρs,π be a solution to (5.1) starting at π ∈ P2(Rd ). Let us define
he couple

I πt = Yt −

∫ t

s

ρs,π
τ (h)

ρ
s,π
τ (Rd )

dτ, ξπt = exp

{∫ t

s

ρs,π
τ (h)

ρ
s,π
τ (Rd )

dYτ −
1
2

∫ t

s

⏐⏐⏐⏐ ρs,π
τ (h)

ρ
s,π
τ (Rd )

⏐⏐⏐⏐2 dτ

}
,

(7.1)

and set

dPπ = ξπT dQ, Π s,π
= ρs,π/ρs,π (Rd ). (7.2)

As remarked in Section 4, if we assume Hypotheses 4.1, then the couple {(Ω ,F, {Ft },Pπ ),
(Π s,π

t , I πt )} is the unique in law weak solution to the Kushner–Stratonovich equation starting
at π ∈ P2(Rd ). In particular, for every t ∈ [s, T ] and ψ ∈ C2

b(Rd ) it holds

Π s,π
t (ψ) = π (ψ) +

∫ t

s
Π s,π
τ (Aψ) dτ +

∫ t

s

(
Π s,π
τ (hψ + Bψ) − Π s,π

τ (ψ)Π s,π
τ (h)

)
· dI s,π

τ .
(7.3)
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7.1. Itô formula for the non-linear filtering equation

As for the Zakai equation, is interesting to study the Itô formula for the composition of
the process Π s,π with a function u ∈ C2

L(P2(Rd )). The following result is stated for simplicity
in the case s = 0 and hiding the dependence on the initial condition π . Moreover it holds
for a generic weak solution to the Kushner–Stratonovich equation, and not only for the ones
obtained from the solutions to the Zakai equation.

Proposition 7.1. Let {(Ω ,F, {Ft },P), (Πt , It )} be a weak solution to the Kushner–Stratonovich
equation starting from π ∈ P2(Rd ) and let u ∈ C2

L(P2(Rd )). Moreover, let us assume
ypotheses 4.1. Then for every t ∈ [0, T ] it holds:

u(Πt ) = u(π ) +

∫ t

0
Πs
(
Dµu(Πs) · f

)
ds

+

∫ t

0

1
2
Πs
(
tr
{
Dx Dµu(Πs)σσ⊤

})
ds +

∫ t

0

1
2
Πt
(
tr
{
Dx Dµu(Πs)σ̄ σ̄⊤

})
ds

+

∫ t

0

1
2
Πs ⊗ Πs

(
δ2
µu(Πs)h · h

)
ds +

∫ t

0

1
2
Πs ⊗ Πs

(
tr
{
D2
µu(Πs)σ̄ σ̄⊤

})
ds

+

∫ t

0

1
2

[Πs(h) · Πs(h)]Πs ⊗ Πs
(
δ2
µu(Πs)

)
ds +

∫ t

0
Πs ⊗ Πs

(
h · σ̄⊤δµDµu(Πs)

)
ds

−

∫ t

0
Πs ⊗ Πs

(
δ2
µu(Πs)h

)
· Πs(h) ds −

∫ t

0
Πs ⊗ Πs

(
σ̄⊤δµDµu(Πs)

)
· Πs(h) ds

+

∫ t

0
Πs
(
hδµu(Πs)

)
· dIs +

∫ t

0
Πs
(
σ̄⊤Dµu(Πs)

)
· dIs −

∫ t

0
Πs
(
δµu(Πs)

)
Πs(h) · dIs,

(7.4)

lmost surely.

roof. The proof use the same approximation technique used in Proposition 5.1 proof. One has
nly to notice that the localization of the mass in the proof of Proposition 5.1 can be avoided,
ince Πt (Rd ) = 1 for every t ∈ [0, T ], and the steps from one to four have to be done keeping
n mind Remark 3.8. □

emark 7.2. We can rewrite (7.4) as

du(Πt ) = Πt (Aδµu(Πt )) dt + Πt ((h − Πt (h) + B)δµu(Πt )) · dIt

+
1
2
Πt ⊗ Πt ((h − Πt (h) + B) · (h − Πt (h) + B)δ2

µu(Πt )) dt.

Remark 7.3. In the literature, in particular in the mean field games context, some Itô formulas
ave been proved for the composition of P2(Rd )-valued processes and real-valued functions
ver P2(Rd ). A remarkable result can be found [16, Section 4.3], in which the P2(Rd )-valued
rocess is the law of a diffusion process of the form

dX t = f (X t ) ds + σ (X t ) dWt + σ̄ (X t ) dBt ,

onditioned to B, where B and W are two independent Brownian motions. The main difference
ith our technique is that we have an explicit equation for the measure-valued process and
418
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we use it to deduce the Itô formula, whilst in the approach of [16] the result is obtained
combining the classical Itô formula, the empirical projection of the function u and the equation
or the process X . In particular, a key tool in that approach are some formulas that relate
he partial derivatives of the empirical projection u(n−1∑n

i δxi ) with the L-derivatives of u.
e can also notice that, heuristically, if we set h equal to zero in the filtering problem, the
ushner–Stratonovich equation describes the law of X given the filtration generated by B up to
certain time. In this case, we can see that (7.4) coincides with the formula in [16]. Moreover,
ur technique also allows to deal with M+

2 (Rd )-valued processes, as we did in Section 5, thanks
o the fact that it is based directly on the equation for the measure-valued process and not on
he fact that the measure-valued process has to be a conditional law of a finite dimensional
rocess.

emark 7.4. As for Corollary 5.3, an Itô formula for u depending also on time easily follows
rom Proposition 7.1.

.2. The backward Kolmogorov equation

As we did for the Zakai equation, we want to discuss the existence and uniqueness of clas-
ical solutions to the backward Kolmogorov equation associated to the Kushner–Stratonovich
quation (7.3). Such partial differential equation reads as{

∂su(π, s) + LK Su(π, s) = 0 (π, s) ∈ P2(Rd ) × [0, T ],
u(π, T ) = Φ(π ) π ∈ P2(Rd ),

(7.5)

here Φ ∈ C2
L(P2(Rd )) and the operator LK S

: C2
L(P2(Rd )) → Cb(P2(Rd )) is defined by

LK Su(π ) = π
(

Aδµu(π )
)
+

1
2
π ⊗ π

(
(h + B − π (h))⊤(h + B − π (h))δ2

µu(π )
)
,

where A and B are defined by (4.4) and h is Borel measurable and bounded.

Definition 7.5. We say that u :P2(Rd ) × [0, T ] → R is a classical solution to (7.5) if it is
of class C2

L(P2(Rd )) in the measure argument and C1([0, T ]) (where in t = 0 and t = T the
derivatives are understood in unilateral sense) in the time argument, if it and all its derivatives
are bounded in all their arguments and if it satisfies the backward equation (7.5).

As we did for the Kolmogorov equation associated to the Zakai equation, we want to show
existence and uniqueness via a representation formula. Let ρs,π be a solution to the Zakai
equation defined over (Ω ,F, {Ft },Q, {Y }). Following (7.1)–(7.2), the couple {(Ω ,F, {Ft },Pπ ),
(Π s,π

t , I πt )} solves weakly the Kushner–Stratonovich equation. We can notice that the proba-
bility space (Ω ,F,Q) is fixed for every π ∈ P2(Rd ), but since I π and ξπ depend on ρs,π , the
probability space (Ω ,F,Pπ ) depends on the initial point π ∈ P2(Rd ). Our claim is that

u(π, s) := EPπ [Φ(Π s,π
T )

]
= EQ [Φ(ρs,π

T /ρ
s,π
T (Rd ))ξπT

]
is the unique weak solution to (7.5). In order to study its regularity, we rely on the relations
(7.2) and the regularity results obtained in Section 5.2 for the Zakai context.

Proposition 7.6. Let u(π, s) := EPπ [Φ(Π s,π
T )

]
= EQ [Φ(Π s,π

T )ξπT
]

be defined as above and let
2 d
Hypotheses 4.1 hold. Then for every s ∈ [0, T ] the mapping u(·, s) ∈ CL(P2(R )). Moreover,
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the mappings [0, T ] ∋ s ↦→ LK Su(π, s) and [s, T ] × [0, T ] ∋ (τ, σ ) ↦→ LK Su(Π s,π
τ , σ ) ∈

L2(Ω ,Pπ ) are continuous.

Proof. First, since dρs,π (Rd ) = ρs,π (Rd )⟨Π s,π
t , h⟩ · dYt , the process 1/ρs,π (Rd ) has uniformly

in time bounded Q moments of any order p ∈ [1,+∞). Then, let us compute the linear
functional derivative of u for a fixed s ∈ [0, T ):

δπu(π, x, s) = EQ
[
ξπT δπ

(
Φ

(
ρ

s,·
T

ρ
s,·
T (Rd )

))
(π, x) + Φ

(
ρ

s,·
T

ρ
s,·
T (Rd )

)
δπξ

·

T (π, x)
]

= EQ
[

ξπT

ρ
s,π
T (Rd )

⟨Z s
T (x), δµΦ

(
ρ

s,π
T

ρ
s,π
T (Rd )

)
⟩

]
−EQ

[
ξπT

ρ
s,π
T (Rd )

⟨
ρ

s,π
T

ρ
s,π
T (Rd )

, δµΦ

(
ρ

s,π
T

ρ
s,π
T (Rd )

)
⟩⟨Z s

T (x), 1⟩

]
+EQ

[
Φ

(
ρ

s,π
T

ρ
s,π
T (Rd )

)
ξπT

∫ T

s

1
ρ

s,π
τ (Rd )

(
⟨Z s

τ (x), h⟩ −
⟨ρs,π
τ , h⟩

ρ
s,π
τ (Rd )

⟨Z s
τ (x), 1⟩

)
· dYτ

]
−EQ

[
Φ

(
ρ

s,·
T

ρ
s,·
T (Rd )

)
ξπT

∫ T

s

⟨ρs,π
τ , h⟩

ρ
s,π
τ (Rd )2 ·

(
⟨Z s

τ (x), h⟩ −
⟨ρs,π
τ , h⟩

ρ
s,π
τ (Rd )

⟨Z s
τ (x), 1⟩

)
dτ
]
,

here we computed δπξ
·

T (π, x) thanks to stochastic and deterministic Fubini’s theorem.
ontinuity and boundedness are guaranteed by the regularity and boundedness of the pro-
esses involved under the Q-expectation. In the same way one can show the second-order
ifferentiability in linear functional sense of u. Regarding the differentiability in space, again
e can bring the derivative in space inside the expectation and exploit the regularity results in
roposition 5.9. To conclude, the continuity of the mappings s ↦→ LK Su(π, s) and (τ, σ ) ↦→
K Su(Π s,π

τ , σ ) ∈ L2(Ω ,Pπ ) follows as in Lemma 6.4. □

Finally, we can state the existence and uniqueness result for the Kolmogorov equation
ssociated to the Kushner–Stratonovich equation (7.3):

heorem 7.7. Let Hypotheses 4.1 hold and let {(Ω ,F, {Ft },Pπ ), (Π s,π
t , I πt )} be the weak

olution to the Kushner–Stratonovich equation obtained through (7.1)–(7.2). There exists a
nique classical solution to the backward Kolmogorov equation (7.5) starting at Φ ∈ C2

L(Rd ),
iven by

u(π, s) = EPπ [Φ(Π s,π
T )

]
, (π, s) ∈ P2(Rd ) × [0, T ].

roof. The proof follows exactly the one we did in Section 6.1 for the backward Kolmogorov
quation associated to the Zakai equation, exploiting the regularity results in Proposition 7.6
nd the Markov property for the existence, and the Itô formula in Proposition 7.1 for the
niqueness. □
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ppendix. Proof of Lemma 4.7

For simplicity, we provide a sketch of the proof for the Zakai equation in the one dimensional
ase (d = 1). The general case with d > 1 and the case of Kushner–Stratonovich equation are
mmediate extensions. In order to keep the notation lighter, we remove the tildes in the notation
or the weak solutions and we will denote the expectation EQ̃ with respect to Q̃ just with E.

First, we show that if µ ∈ M+

1 (R), then ρt ∈ M+

1 (R) for every t ∈ [0, T ], almost surely.
Let us consider a smooth function ψ :R → R which is greater than the mapping x ↦→ |x | in
a neighbourhood of 0 and equal to x ↦→ |x | outside that neighbourhood. In particular, ψ has
bounded first and second-order derivatives. If we show that ⟨ρt , ψ⟩ < ∞ for every t ∈ [0, T ],
almost surely, then this first claim is proved.

Let us consider an increasing family of smooth cut-off functions
{
φN
}

N≥1 which are equal
to one in [−N , N ] and equal to zero outside [−N − 1, N + 1]. These functions can be chosen
to be bounded together with their first and second-order derivatives by a constant C > 0
independent of N . We set ψN (x) = ψ(x)φN (x) for every x ∈ R, thus it holds

Dxψ
N (x) = ψ(x)Dxφ

N (x) + Dxψ(x)φN (x),

D2
xψ

N (x) = ψ(x)D2
xφ

N (x) + 2Dxψ(x)Dxφ
N (x) + D2

xψ(x)φN (x),

and moreover {ψN
}N≥1, {Dxψ

N
}N≥1 and {D2

xψ
N
}N≥1 converge pointwise to ψ,Dxψ and D2

xψ

espectively, where the first convergence takes place monotonically. We also notice that for
very N ≥ 1, ψN

∈ C2
b(R).

Let us fix N ≥ 1. Since ρ is a weak solution to the Zakai equation, it holds for every
t ∈ [0, T ]

⟨ρt , ψ
N
⟩ = ⟨µ,ψN

⟩ +

∫ t

0
⟨ρs, AψN

⟩ ds +

∫ t

0
⟨ρs, (h + B)ψN

⟩ · dYs .

By taking the square, the expectation and then by Itô isometry, we get

E
[
⟨ρt , ψ

N
⟩

2]
≤ 3⟨µ,ψN

⟩
2
+3T

∫ t

0
E
[
⟨ρs, AψN

⟩
2] ds +3

∫ t

0
E
[
⟨ρs, (h + B)ψN

⟩
2] ds.

ow, if we write explicitly the operators A, B and we use the boundedness of b, σ, σ̄ , h
ointly with the boundedness of Dxψ,D2

xψ, φ
N ,Dxφ

N ,D2
xφ

N (recalling that the bound for
N ,Dxφ

N ,D2
xφ

N does not depend on N ), we obtain the inequality

E
[
⟨ρt , ψ

N
⟩

2]
≤ M1

(
⟨µ,ψN

⟩
2
+

∫ t

0
E
[
⟨ρs, ψ

N
⟩

2]
+ E

[
ρs(R)2] ds

)
, (A.1)

here M1 = M1(b, σ, σ̄ , h, T,C, ψ) is a positive constant independent of t and N . Thanks to
he monotone convergence theorem, we can pass to the limit as N → +∞ in (A.1) and get

E
[
⟨ρt , ψ⟩

2]
≤ M1

(
⟨µ,ψ⟩

2
+

∫ t

E
[
⟨ρs, ψ⟩

2]
+ E

[
ρs(R)2] ds

)
.

0
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Thus, in view of Remark 4.5 and by Gronwall’s lemma, there exists a positive constant
M2 = M2(b, σ, σ̄ , h, T,C, ψ,µ) such that for every t ∈ [0, T ] it holds that

E
[
⟨ρt , ψ⟩

2]
≤ M2⟨µ,ψ⟩

2. (A.2)

Since the bound (A.2) does not depend on t , we can proceed similarly to the previous steps
and by Burkholder inequality and monotone convergence we can also deduce that there exists
a positive constant M3 = M3(b, σ, σ̄ , h, T,C, ψ,µ) such that

E
[

sup
0≤t≤T

⟨ρt , ψ⟩
2
]

≤ M3⟨µ,ψ⟩
2, (A.3)

thus if µ ∈ M+

1 (R) then sup0≤t≤T ⟨ρt , ψ⟩ < +∞ almost surely and so ρt ∈ M+

1 (R) for every
t ∈ [0, T ], almost surely.

To conclude, we need to prove that if µ ∈ M+

2 (R) then ρt ∈ M+

2 (R) for every t ∈ [0, T ],
almost surely. To this aim, we can proceed analogously to the above case in which µ ∈ M+

1 (R),
choosing ψ(x) = x2 and noticing that its first and second-order derivatives are linear and
constant respectively. Then, we can still use the approximation technique, combined with
Remark 4.5 and (A.3) and so the lemma is proved.
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