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Abstract

In this paper, we study the curves C in P n, of degree d and genus g, with extremal Rao
function in positive degrees, and non degenerate general hyperplane section. We describe their
total ideal and various properties of the generators of the ideal. Moreover, we characterize these
curves as intersection of two aCM curves of maximal genus whose union in aCM of maximal
genus, and we completely describe the Rao function of these curves in negative degrees, too.
c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 14H; 14H50

In [7], Martin-Deschamps and Perrin established an optimal upper bound for the Rao
function of curves (i.e. for closed locally CM subschemes of pure dimension 1) of P3.
The non-aCM curves which achieve equality for the bound are called extremal curves.
In [3], Ellia geometrically characterized the extremal projective curves of degree

d as curves which contain a plane curve of degree d − 1, and whose residual with
respect to that plane is a line. Moreover, in [8], Martin-Deschamps and Perrin proved
that the Hartshorne–Rao module of an extremal curve is Koszul, i.e., it is isomor-
phic to k[x0; : : : ; x3]=(l1; : : : ; l4), where (l1; : : : ; l4) is a regular sequence of length 4 of
homogeneous polynomials.
The extremal curves are minimal in their class of biliaison and for this reason they

are important for the study of the other curves of their class and for the study of
the corresponding Hilbert schemes. For example, in [8] Martin-Deschamps and Perrin
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proved that these curves form an irreducible component of the Hilbert scheme Hd;g

which is non-reduced, under some assumptions on d and g.
A �rst generalization of these results for curves in any projective n-space is the

sharp bound on the Rao function of curves with non-degenerate general hyperplane
section, obtained by Chiarli et al. [1, Theorem 2.1].
In this paper, we study a larger family of curves C ⊂Pn than the extremal ones.

In fact we describe the curves, with non-degenerate general hyperplane section, that
achieve equality for the bound on h1(IC(j)) only for j ≥ 0. We call these curves “quasi
extremal” curves and we give their generic initial ideal, that is to say a Gr�obner basis
of their ideal, their minimal free resolution and we characterize them as intersection of
two aCM curves of maximal genus whose union is an aCM curve of maximal genus,
too. We observe also that for n= 3 a curve C is quasi extremal if, and only if, C is
extremal. Moreover, we completely determine the admissible “tails” for the Hartshorne–
Rao module of quasi-extremal curves, i.e. the possible functions h1(IC(j)) for j¡ 0.
Let us describe the content of this paper in some more detail.
In Section 1, we de�ne a quasi-extremal curve C ⊂Pn, of degree d and genus g,

and we prove that its ideal is of the form IC = IZ +(G1; G2) where G1 and G2 are two
polynomials of degree d+ n− 3 and d+ n− 2 + a, respectively, with

a=
(
d− n+ 1

2

)
− g;

and IZ is generated by (n+ 1) (n− 2)=2 quadrics.
We also prove that the scheme Z , described by the ideal IZ , contains a plane �.

Moreover, the scheme-theoretical union of C and � is Z and the scheme-theoretical
intersection of C and � contains a plane curve of degree d − n + 2. Finally, we
give conditions to “glue” a plane curve C′ and a scheme Z as above to obtain a
quasi-extremal curve.
In Section 2, we prove that if C is a quasi-extremal curve given by the ideal IC as

above, then Ii = IZ + (Gi), for i = 1; 2; describes an aCM curve Di of maximal genus,
and D1∩D2=C, scheme-theoretically. Moreover, we obtain that the scheme-theoretical
union D of D1 and D2 is an aCM curve of maximal genus, too. We also prove that if
D1 and D2 are two aCM curves of maximal genus such that D1 ∪D2 is an aCM curve
of maximal genus and suitable degree then D1 ∩ D2 is a quasi-extremal curve.
The aim of Section 3 is twofold. The �rst one is to relate the module H 1

∗(IC) to
H 1

∗(ID1=D) and H 1
∗(ID2=D), while the second and more signi�cant one is to describe

the possible “tails” of the Rao functions of quasi-extremal curves. In this direction,
we prove that if C is quasi-extremal, then h1(IC(j)) ≥ (n − 2)j + a, for j¡ 0, and
we deduce that, in P3, a curve C is quasi-extremal if, and only if, it is extremal.
The main result of this section is the following:

Theorem 3.2. A numerical function is the Rao function of a quasi-extremal curve
if; and only if; its graph is a polygonal whose edges have an increasing slope; not
exceeding n− 2 and passing through (0; a).
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The proof is based on the observation that no other Rao function is possible and on
the construction of quasi-extremal curves with every described Rao function, whatever
considered Pn.
Moreover, in Section 0, for the convenience of the reader, we recall the de�nition

of generic initial ideal and some well-known results about it, because it is one of the
main tools of the paper. See [2, Chapter 15; 4] for a wider look at this topic.

0. Preliminaries and notation

Let be R= k[x0; : : : ; xn], and Pn = Proj(R), where k is an algebraically closed �eld
of any characteristic p ≥ 0, but p 6= 2.
We order the terms xA with respect to the reverse lexicographical order (rlex). For

any F ∈ R, homogeneous of degree deg(F), we denote in(F) the largest monomial
with non-zero coe�cient in its expression, and F = in(F) + res(F). Furthermore, for
a homogeneous ideal I , the initial ideal in(I) of I is the monomial ideal generated by
in(F), for every F ∈ I .
One of the main feature of the initial ideal is the following well-known result.

Proposition 0.1. Let I ⊆R be a homogeneous ideal. Then; for every j

dim(I)j = dim(in(I))j:

Now, we recall the de�nition of generic initial ideal.

Theorem 0.2 (Green [4, Theorem 1.27]). For any homogeneous ideal I and any mul-
tiplicative monomial order �; there exists a non-empty Zariski open subset U⊆GL
(n; k) such that the initial ideal in�(g(I)) is constant and Borel-�xed; for each g ∈ U.

De�nition 0.3. The monomial ideal in�(g(I)); with g ∈ U is called the generic initial
ideal gin�(I) of I , and we say that I is in generic coordinates.

Now, we recall some properties of generic initial ideals we use in the following.

Proposition 0.4. Let I be a homogeneous ideal; and let � be rlex. Then;
(1) a Borel-�xed monomial ideal is saturated if; and only if; xn divides no generator

of the ideal;
(2) I is saturated if; and only if; gin(I) is saturated.

Proof. [4, Corollary 2.10, Theorem 2.24].

Let X ⊆Pn be a closed subscheme. Then, Ix is the saturated ideal of X , while IX

is the sheaf of X .
A curve C ⊂Pn is a locally Cohen–Macaulay (loc. CM) closed subscheme of pure

dimension 1. The genus g of C is the arithmetical genus pa(C). Moreover, we suppose
that C is not arithmetically Cohen–Macaulay (aCM).
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1. First properties of quasi-extremal curves

Let C ⊆Pn be a curve of degree d and genus g, and let

a=
(
d− n+ 1

2

)
− g

be the upper bound for the dimension of H 1(IC(j)), according to Chiarli et al. [1,
Theorem 2.1].
Now, we can state the main de�nition of the paper.

De�nition 1.1. Let C ⊂Pn be a curve of degree d ≥ n+1 and genus g. The curve C
is quasi-extremal if the general hyperplane section of C is non-degenerate, and

h1(IC(j)) =




(
d−n+1
2

)
− g if 0 ≤ j ≤ d− n+ 1;(

d−n+2
2

)
− j − g+ 1 if d− n+ 1 ≤ j ≤

(
d−n+2
2

)
− g;

0 if j ≥
(

d−n+2
2

)
− g:

Moreover, C is extremal if C is quasi-extremal and

h1(IC(j)) =



0 if j ≤ g−

(
d−n+1
2

)
;(

d−n+1
2

)
+ j − g if g−

(
d−n+1
2

)
≤ j ≤ 0:

We observe that if C is quasi-extremal, then h1(IC(j)) is as large as possible
for j ≥ 0, as shown in [1], and we have no hypothesis on h1(IC(j)) for j¡ 0.
If C is extremal, then its Hartshorne–Rao module is as large as possible in every
degree.

Remark 1.2. If C is quasi-extremal, then, from the proof of Chiarli et al. [1, Theorem
2.1], and from the cohomological sequence associated to the general hyperplane section
sequence, 0→ IC(−1)→ IC → IC∩H=H → 0, we have
(i) the general hyperplane section of C has the following cohomology:

h1(IC∩H |H (j)) =




d if j ≤ −1;
d− 1 if j = 0;

d− n− j + 1 if 1 ≤ j ≤ d− n+ 1;

0 if j ≥ d− n+ 1;

(ii) ker(H 2(IC(j − 1))→ H 2(IC(j))) ' H 1(IC∩H=H (j)) ∀j ≥ 1;
(iii) coker(H 0(IC(j − 1))→ H 0(IC(j))) ' H 0(IC∩H=H (j)) ∀j ≤ d− n+ 1;
(iv) the curve C is non-degenerate, and so H 0(IC(1)) = 0. Then, H 0(IC(2)) '

H 0(IC∩H=H (2)), by (iii);
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(v) the function h0(IC(j)) is equal to

h0(IC(j)) =




0 if j ≤ 1;
( j+n

n

)− j2 + (2n− 1)j + 2
2

if 1 ≤ j ≤ d− n+ 1;

( j+n
n

)− (d+ 1)j − 1 + (d−n+2
n

)
if d−n+1 ≤ j ≤

(
d−n+2
2

)
−g;

( j+n
n

)− dj − 1 + g if j ≥
(

d−n+2
2

)
− g+ 1:

Now, we want to describe the total ideal of a quasi-extremal curve (see [8, Propo-
sitions 0.5, 0.6] for the case n= 3).

Proposition 1.3. Let C be a quasi-extremal curve; then the generic initial ideal gin(IC)
of C is generated by xixj; for 0 ≤ i ≤ n − 3; 0 ≤ j ≤ n − 2; i ≤ j; and by
xd−n+3
n−2 ; xd−n+2

n−2 xan−1.

Proof. We suppose that the ideal IC is in generic coordinates. Then, H = V (xn) is a
general hyperplane with respect to C (see Proposition 0.4).
Set �=(C∩H) as a subscheme of H . Moreover, we identify H=Proj(k[x0; : : : ; xn−1]).
Now, we want to compute the generic initial ideal gin(I�).
At �rst, let us suppose that d ≥ n+ 2.
By Remark 1.2(i), we have

h0(I�(j)) =
(
j + n− 1
n− 1

)
− d+max(d− n− j + 1; 0)

for j ≥ 1.
In particular,

h0(I�(2)) =
(
n+ 1
2

)
− (n+ 1):

But xn−1 divides no generator of gin(I�), because I� is a saturated ideal (see Propo-
sition 0.4). Then, (gin(I�))2 is spanned by all the degree 2 terms larger than x2n−2 in
rlex ordering, because gin(I�) is Borel-�xed. In fact, if x2n−2 ∈ (gin(I�))2, every term
xixj, 0 ≤ i ≤ j ≤ n−2, is in (gin(I�))2, because they can be obtained with a sequence
of elementary moves 1 [4, De�nition 1:24], and so dim(gin(I�))2¿h0(I�(2)), which
is not possible.
By Chiarli et al. [1, Proposition 3.3] I� has a new minimal generator F of degree

d− n+ 2. I� being a saturated ideal, the initial term of F is xd−n+2
n−2 .

Then, gin(I�) = (x20 ; x0x1; x
2
1 ; : : : ; xn−3xn−2; xd−n+2

n−2 ). In fact, it is not possible to have
other elements in a Gr�obner basis of I�, because I� is saturated.
Now, let us suppose that d= n+ 1.

1 Here, we need char(k) 6= 2 (see [2, Theorem 15:23]).
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The scheme � is a non-degenerate subscheme of H , and so h0(I�(1)) = 0, i.e.
h1(I�(1)) = 1.
Then, for j ≥ 2; h1(I�(j)) = 0, and

h0(I�(j)) =

(
j + n− 1
n− 1

)
− (n+ 1):

Also in this case,

h0(I�(2)) =

(
n+ 1

2

)
− (n+ 1);

and so (gin(I�))2 is spanned by all the terms larger than x2n−2, in relax ordering.
If we compute dim(gin(I�))3, we have

dim(gin(I�))3 =

(
n+ 1

2

)
− (n− 1)− 1 6= h0(I�(3))

and so we have that a Gr�obner basis of I� contains a new generator of degree 3 =
d− n+ 2. As in the previous case, the initial term of this generator is x3n−2. It is not
possible to have other elements in a Gr�obner basis of I�, because I� is saturated. Then,
gin(I�) = (x20 ; x0x1; x

2
1 ; : : : ; xn−3xn−2; x3n−2).

Now, we can compute gin(IC) (see [9, Proposition 4.9] for a relation between gin(IC)
and gin(I�)).
By Remark 1.2(iv), we have

H 0(IC(2)) ' H 0(I�(2))

and so H 0(IC(2)) is generated by liftings of the generators of H 0(I�(2)). But H =
V (xn) and then, if F is the lifting of �F , we have that F= �F+xnG. Hence, the initial term
of F is equal to the one of �F . Then, gin(IC)2 is generated by x20 ; x0x1; x

2
1 ; : : : ; xn−3xn−2.

Let J1 be the monomial ideal of k[x0; : : : ; xn] generated by (gin(IC))2. We have

h0(J1(j)) =

(
j + n

n

)
− j2 + (2n− 1)j + 2

2
for j ≥ 1:

Then, h0(J1(j)) = h0(IC(j)) for 1 ≤ j ≤ d − n + 2, and so no other generator of
degree less than d − n + 2 is needed in the Gr�obner basis of IC (see Remark 1.2(v)
and Proposition 0:1).
If we compare h0(J1(d−n+3)) and h0(IC(d−n+3)) we have that h0(IC(d−n+

3))−h0(JC(d−n+3))=1. Then, there is a new element of the Gr�obner basis of degree
d − n + 3. The initial term of this element is xd−n+3

n−2 . In fact, from the cohomology
sequence associated to the general hyperplane section sequence, we deduce that this
element is a lifting of FL, where F is the last generator of I� and L is a general linear
form.
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Let J2 be the monomial ideal of k[x0; : : : ; xn] generated by J1 + (xd−n+3
n−2 ). We have

h0(J2(j)) =

(
j + n

n

)
− (d+ 1)j − 1 +

(
d− n+ 2

2

)
for j ≥ d− n+ 2:

Then, h0(J2(j)) = h0(IC(j)) for

d− n+ 2 ≤ j ≤
(

d− n+ 2

2

)
− g:

Set

h=

(
d− n+ 2

2

)
− g+ 1 = d− n+ 2 + a:

Then, h0(IC(h))− h0(J2(h)) = 1, and so there is a new element in the Gr�obner basis
of IC of degree h. Its initial term is xd−n+2

n−2 xan−1 because this element is a lifting of a
multiple of the last generator of I�.
The monomial ideal generated by J2 + (xd−n+2

n−2 xan−1) has the same Hilbert function
of IC and so we have the claim.

Remark. If C is an arithmetically Cohen–Macaulay curve of degree d ≥ n + 1, then
gin(IC)=(x20 ; : : : ; xn−3xn−2; xd−n+2

n−2 ). In fact, IC is generated by liftings of the generators
of I�.

Notation: From now on, we suppose that IC has a reduced Gr�obner basis of the
form {Q0;0; : : : ; Qn−3; n−2; G1; G2}, where in (Qi;j) = xixj, in (G1) = xd−n+3

n−2 , and in
(G2) = xd−n+2

n−2 xan−1.
Now, we can compute a free resolution of IC .

Corollary 1.4. Let C ⊆Pn be a quasi extremal non aCM curve. Then; a free reso-
lution of IC is

0→ Fn → Fn−1 → · · · → F1 → IC → 0;

where Fi(O(−1 − i))�i ⊕ (O(−d + n − 2 − i))�i ⊕ (O(−d + n − 1 − a − i))i ; and
�i = (

n−1
i )(n− 2)− ( n−2i+1 ); �i = (

n−2
i−1 ); i = (

n−1
i−1 ).

Proof. The terms of a free resolution of IC can be obtained by the ones of gin(IC),
up to cancellation of adjacent terms. The minimal free resolution of gin(IC) is com-
binatorial in its nature and it is given by the Eliahou–Kervaire Theorem [4, Theo-
rem 1:31], and so we have

0→ Fn → Fn−1 → · · · → F1 → gin(IC)→ 0;

where Fi = R�i(−1− i)⊕ R�i(−d+ n− 2− i)⊕ Ri(−d+ n− 1− a− i) and �i; �i; i
are the right ones, and the claim holds.
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Remark. The free modules R�i(−1 − i) of the resolution correspond to the degree 2
generators of IC .

In Section 2, we will show that this resolution is minimal.

Lemma 1.5. Let Z be a scheme whose total ideal admits a minimal free resolution
of the following type:

0→ Fn−1 → Fn−2 → · · · → F1 → IZ → 0;

where Fi = R�i(−1− i) and �i =
(

n−1
i

)
(n− 2)−

(
n−2
i+1

)
. Then;

(1) dim Z = 2 and deg Z = 1. Then; the top dimensional part of Z is a plane �;
(2) H 1

∗(IZ) = 0;H 2(IZ(j)) = 0 for j ≥ 0.

Proof. We can compute the Hilbert polynomial of Z from the resolution, and we have

pZ(z) =
z2 + (2n− 1)z + 2

2
:

Then, Z has dimension 2 and degree 1, and so Z contains a plane �. To obtain the
second part of the claim, we apply Serre’s Duality Theorem [5, Chapter III, Theorem
7:1].

Proposition 1.6. Let C be a quasi-extremal curve of degree d and genus g. Then; C
contains a plane curve of degree d− n+ 2.

Proof. Let Z be the scheme whose total ideal is generated by (IC)2. We have that the
degree 2 forms which generate (IC)2 are a Gr�obner basis because their S-polynomials
reduce to zero modulo themselves. In fact, their S-polynomials have degree 3, while
the other elements of the Gr�obner basis have degree larger than d − n + 3 ≥ 4.
Moreover, Z is in generic coordinates, and so it is saturated because no generator can
be divided by xn (see Proposition 0:4). We can compute a minimal free resolution of
Z as in Corollary 1.4, and so we have that Z satis�es the hypotheses of Lemma 1.5.
In particular, Z contains a plane �. Let us suppose that the total ideal I� is generated
by n− 2 linear forms L0; : : : ; Ln−3 such that the initial term of Li is xi, for each i.
Now, we want to to prove that IC ∩ I� = IZ .
IZ ⊆ I� because � is the top dimensional part of Z , Then, IZ ⊆ IC = I�.
Conversely, let F be a form in IC ∩ I�. Then, F reduces to zero modulo the chosen

Gr�obner basis of IC , that is to say

F =
∑

�i; jQi; j + �G1 + G2;

where � and  satisfy the following conditions:
• the initial terms in(�) and in() cannot be divided by x0; : : : ; xn−3;
• in(�)xd−n+3

n−2 ¿ in()xd−n+2
n−2 xan−1.

But F ∈ I� and so �G1 + G2 ∈ I�. Then � = = 0 by reduction argument, and so
we have that F ∈ IZ .
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To prove that C contains a plane curve of degree d−n+2, it is enough to consider
the exact sequence of saturated ideals.

0→ IZ → IC ⊕ I� → I�∩C → 0

which comes from the exact sequence of sheaves 0→ IZ → IC ⊕I� → I�∩C → 0,
because H 1

∗(IZ) = 0 (see Lemma 1.5).
In fact, using the additvity of their Hilbert polynomials, and recalling that pZ(z) was

computed in the proof of Lemma 1.5, we get

p�∩C(z) = dz + 1− g+

(
z + 2

2

)
− z2 + (2n− 1)z + 2

2
= (d− n+ 2)z + 1− g

and hence we have the claim.

Remark 1.7. IC∩� is minimally generated by {L0; : : : ; Ln−3; G̃1; G̃2}, where G̃1 and G̃2
are the normal forms of G1 and G2 modulo I�. Proposition 1.6 shows that G̃1 and
G̃2 have a non-trivial greatest common divisor F̃ of degree d − n + 2. Then, we set
G̃1 =H1F̃ and G̃2 =H2F̃ , where H1 is linear and in(H1) = xn−2, while H2 is a degree
a form and in(H2) = xan−1.

Now, we describe another property of the last two generators of IC .

Proposition 1.8. Let C be a quasi-extremal curve and let Z be the scheme whose
total ideal is generated by (IC)2. Then
(1) LGi ∈ IZ for every L ∈ I� and for i = 1; 2;
(2) H2G1 − H1G2 ∈ IZ .

Proof. At �rst, we want to compute a projective presentation of IC∩� of the form
0→ K → P → IC∩� → 0.
We recall that IC∩�=(L0; : : : ; Ln−3; G̃1; G̃2), and so P=Rn−2(−1)⊕R(−d+n−3)⊕

R(−d+ n− 2− a) and K is the �rst syzygy module.
Using notation as in the proof of Green [4, Theorem 1:31], the R-module K is

generated by the following n-tuples:

exij =−Ljexi + Liexj ; 0 ≤ j ≤ i ≤ n− 3;

e
xd−n+3
n−2

j =−Lje
xd−n+3
n−2 + G̃1exj ; 0 ≤ j ≤ n− 3;

e
xd−n+2
n−2 xan−1

j =−Lje
xd−n+2
n−2 xan−1 + G̃2exj ; 0 ≤ j ≤ n− 3;

e
xd−n+2
n−2 xan−1

n−2 =−H1e
xd−n+2
n−2 xan−1 + H2e

xd−n+3
n−2 ;

where exj ; ex
d−n+3
n−2 and ex

d−n+3
n−2 xan−1 are the generators of P corresponding to Lj; G̃1, and

G̃2, respectively.
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The sequence 0→ IZ → IC ⊕ I� → IC∩� → 0 is an extension of IC∩� by IZ , and we
want to explicitly compute a representative of this extension in HomR(K; IZ), (see [6]
for more details). To this aim, we consider the commutative diagram

0 −−→ K
�−−→ P

�−−→ IC∩� −−→ 0

 

y ’

y ∥∥∥
0 −−→ IZ

�−−→ IC ⊕ I�
�−−→ IC∩� −−→ 0

;

where �(f) = (f;f); �(f; g) = f − g and ’;  to be computed.
By the commutativity of the right square, we have that �(exi) = Li = �(’(exi)), for

i=0; : : : ; n−3. But H 0(IC(1))=0; � is a degree 0 morphism and so ’(exi)=(0;−Li).
Analogously, we have that ’(ex

d−n+3
n−2 )=(G1; G1−G̃1) and ’(ex

d−n+2
n−2 xan−1 )=(G2; G2−G̃2).

Now looking, at the left square, we have that  (exij ) = 0;  (e
xd−n−3
n−2

i ) = −LiG1;

 (e
xd−n−3
n−2 xan−1

i ) = −LiG2;  (e
xd−n+2
n−2 xan−1

n−2 ) = H2G1 − H1G2, and so we have the claim.

At this point, we give a partial inversion of the previous description.

Proposition 1.9. Let I1 be an ideal satisfying the hypotheses of Lemma 1:5. Let I2 be
an ideal generated by L0; : : : ; Ln−3; G̃1; G̃2; where the Li’s generate the plane contained
in the scheme de�ned by I1; G̃i = HiF̃; and deg(H1) = 1; deg(F̃) ≥ 3.
If there exist polynomials P1; j of degree deg(G̃1)−1 and P2; j of degree deg(G̃2)−

1; j = 0; : : : ; n − 3; such that the two polynomials Gi = G̃i +
∑

j LjPi; j with i = 1; 2;
satisfy conditions (1); (2) of Proposition 1:8; then the ideal I = I1 + (G1; G2) de�nes
a closed subscheme C with Hilbert polynomial

pC(z) = (deg(G1) + n− 3)z + 1−
((

deg(G1)− 2
2

)
− deg(H2)

)
;

and the cohomology of a quasi extremal curve.

Proof. With the above assumptions, the ideal I has a Gr�obner basis F = {Q0;0; : : : ;
Qn−3; n−2; G1; G2} where Qi;j are the degree 2 generators of I1 (they are a Gr�obner
basis of I1). As in the proof of Proposition 1.6, we have that I1 = I ∩ (L0; : : : ; Ln−3).
Then, the short sequence

0→ I1 → I ⊕ (L0; : : : ; Ln−3)→ I2 → 0

is exact, and so we have that pC(z)=dz+1− g, where C is the scheme de�ned by I ,
and

d= deg(G1) + n− 3; g=
(
deg(G1)− 2

2

)
− deg(H2):

Moreover, if we consider the associated cohomology sequence, we have H 1(I(j)) '
H 1(I2(j)) for j ≥ 0, by Lemma 1.5(2), and so we have the claim by the following
Lemma 1.10.
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Lemma 1.10. Let P⊂P2 be a closed subscheme of dimension 1 whose total ideal is
generated by H1F and H2F; with deg(H1) = 1; and deg(H2) = a. Then;

h1(IP(j)) =




a if j ≤ deg(P)− 1;
deg(P)− 1 + a− j if deg(P)− 1 ≤ j ≤ deg(P)− 1 + a;

0 if j ≥ deg(P)− 1 + a:

Proof. Let ICM = (F) be the total ideal of the largest locally CM curve contained in
P.
Then we have an exact sequence of sheaves

0→ IP → ICM
P → G → 0:

The Hilbert polynomial of G has degree 0, and so G is supported on a zero-dimensional
scheme. Moreover, h0(G(j)) = a for all j.
From the exact long cohomological sequence, we obtain that

h1(IP(j)) = h0(G(j))− h0(ICM
P (j)) + h0(IP(j)):

But

h0(ICM
P (j)) =

(
j − deg(P) + 2

2

)
;

while

h0(IP(j)) =
(
j − deg(P) + 1

2

)
+
(
j − deg(P) + 1− a

2

)
as one can easily compute using a free resolution of IP . Then the claim follows.

Examples of curves with di�erent Rao modules will be given in Section 3.

Remark 1.11 (Computation of the polynomials Pi;j). Without loss of generality, we
can suppose that Li = xi, for i = 0; : : : ; n− 3; H1 = xn−2 and H2 ∈ k[xn−1; xn]. In this
situation, we can suppose Pi;j ∈ k[xn−1; xn].
Conditions (1) and (2) of Proposition 1.8 can be written in the following form:


H2
∑
j

xjP1; j +
∑
j

P2; j res(Qj;n−2) = 0;

H2(xiF̃)−
∑
j

P2; j res(Qi;j) = 0; i = 0; : : : ; n− 3;

(xiG̃1)−
∑
j

P1; j res(Qi;j) = 0;

where (xiF̃) and (xiG̃1) are the normal forms of the corresponding polynomials modulo
I1.

We can observe that the �rst equation allows to compute P1; i using the polynomials
P2; j’s for every i.
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Remark 1.12. The hypotheses of Proposition 1.9 on the ideal I2 can be modi�ed sup-
posing to know the polynomial F̃ , only. Then, the choice of H1 and H2 has to be done
according to the system of Remark 1.11.

In the reduced case, the ideal generated by H1; H2 de�nes, in the plane �, the
intersection points of the dimension 1 part of Z with �, out of the curve de�ned by F̃ .

2. A geometrical description of quasi-extremal curves

In this section, we characterize the quasi-extremal curves of degree d as scheme-
theoretical intersection of two aCM curves of degree d + 1 and d + a, respectively,
both of maximal genus, whose union is an aCM curve of maximal genus and degree
d+ a+ 1.

Theorem 2.1. Let C ⊆Pn be a closed subscheme of dimension 1; of degree d and
genus g. Then:

C is a quasi-extremal curve if; and only if; there exist two aCM curves D1 and
D2 of maximal genus and of degrees d + 1 and d + a respectively; such that their
scheme-theoretical union D = D1 ∪ D2 is an aCM curve of maximal genus and of
degree d+ a+ 1; and their scheme-theoretical intersection is a curve C.

Theorem 2.1 follows from Propositions 2.2 and 2.5, below.

Proposition 2.2. Let C be a quasi-extremal curve of degree d and genus g. Then; C
is naturally contained in two aCM curves D1 and D2; of maximal genus; and degrees
d+ 1 and d+ a; respectively. Moreover; C = D1 ∩ D2 and D1 ∪ D2 = D; where D is
an aCM curve of maximal genus and of degree d+ a+ 1.

Proof. For the convenience of the reader, we divide the proof in two steps.

Step 1: The curves D1 and D2. The two ideals I1 = (Q0;0; : : : ; Qn−3; n−2; G1) and
I2 = (Q0;0; : : : ; Qn−3; n−2; G2) describe the two required curves, as we shall prove. Of
course IC = I1 + I2.
In the proof of Proposition 1.6, we proved that IC ∩ I� = IZ , where Z is the scheme

whose total ideal is generated by (IC)2. Then, we have that Ii ∩ I� = IZ , and it is easy
to prove that Ii + I� = (L0; : : : ; Ln−3; G̃i), for i = 1; 2.
Then, using the exact sequences

(∗) 0→ IZ → Ii ⊕ I� → Ii + I� → 0;

we can compute the Hilbert polynomial of the scheme Di and we obtain

pD1 (z) = (d+ 1)z + 1−
(
(d+ 1)− n+ 1

2

)
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and

pD2 (z) = (d+ a)z + 1−
(
(d+ a)− n+ 1

2

)
:

Moreover, if we consider the long exact cohomological sequence associated to (∗)
we easily deduce that H 1

∗(I1) = H 1
∗(I2) = H 1

∗(IZ) = 0 by Lemma 1.5(2).
The general hyperplane section of the curve Di contains the one of C because Di ⊃C

and so it is non-degenerate.
Step 2: The curve D. First of all, we prove that ID1∪D2 = I1∩ I2 =(Q0;0; : : : ; Qn−3; n−2;

H2G1) = (Q0;0; : : : ; Qn−3; n−2; H1G2). In fact, we observe that both the last equalities
hold and I1 ∩ I2⊇(Q0;0; : : : ; Qn−3; n−2; H2G1), by Proposition 1.8(2).
Conversely, if P ∈ I1 ∩ I2, then there exist G′; G′′ ∈ R such that P−G′G1 ∈ IZ and

P−G′′G2 ∈ IZ . But IZ ⊂ I� and so, if we consider the class of their di�erence modulo
I�, we have that H1F̃G̃

′ − H2F̃G̃
′′
= 0 (mod I�) and then H1G̃

′ − H2G̃
′′
= 0 (mod I�).

Hence, we have that G′′=H1 �G
′′
+�′′, and G′=H2 �G

′
+�′, where �′; �′′ ∈ I�. By

Proposition 1.8(1), we have that P −G1H2 �G
′ ∈ IZ , and P −G2H1 �G

′′ ∈ IZ , and so the
�rst claim follows.
Now, we prove that D is an aCM curve of maximal genus and degree d + a + 1,

considering the exact sequence of sheaves

0→ ID1∪D2 → I1 ⊕I2 → I1 +I2 =IC → 0:

It is trivial to prove that the morphism H 0
∗(I1) ⊕ H 0

∗(I2) → H 0
∗(IC) is surjective,

and the exact sequence 0 → H 1
∗(ID1∪D2 ) → H 1

∗(I1) ⊕ H 1
∗(I2) = 0 shows that D is

aCM.
The additivity of the Hilbert polynomials shows that D1 ∪ D2 has maximal genus

and degree d+ a+ 1.

Remark 2.3 (Geometrical description of reduced quasi extremal curves). Using [1,
Theorem 3.10] we can say that a reduced quasi-extremal curve C of degree d ≥ n+2
is the union of a plane curve C′ of degree d − n + 2 and a “residual” part which is
a disjoint union of curves D1; : : : ; Dh described in [1, Lemma 3.8] such that Di ∩ � is
one reduced point lying on C′ for i = 1; : : : ; s, and Di ∩ � is a reduced point lying on
a �xed line, for i = s+ 1; : : : ; h, where s ∈ {0; : : : ; h} is a suitable integer.

As a consequence of Proposition 2.2, we obtain

Corollary 2.4. The free resolution of IC given in Corollary 1:4 is minimal.

Proof. The resolution of ID1 [1, Proposition 3.4] injects in the one of IC and so no
cancellation occurs in the given resolution (as follows by the Cancellation Principle [4,
Corollary 1.21]).

Proposition 2.5. Let D1; D2⊆Pn be two aCM curves of maximal genus and of
degrees d + 1 and d + a; respectively. Suppose that their scheme-theoretical union
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is an aCM curve D = D1 ∪ D2; of maximal genus and of degree d + a + 1. Then
the scheme-theoretical intersection C = D1 ∩ D2 is a closed subscheme with Hilbert
polynomial pC(z) = dz + 1− g; where

g=
(
d− n+ 1

2

)
− a;

and h1(IC(j)) is the Rao function of a quasi-extremal curve of degree d and
genus g.

Proof. We can always suppose IDi = IZi + (Gi) where Gi is a polynomial of degree
d−n+3 for i=1, and d−n+2+a for i=2, and ID=IZ+(G), with deg(G)=d−n+3+a
(see [1, Proposition 3.4] for a description of the ideal of an aCM curve of maximal
genus). Moreover, the ideals IZi and IZ are generated by (n+ 1)(n− 2)=2 quadrics.
Using the equality ID = ID1 ∩ ID2 , we have that IZ = IZ1 = IZ2 . Moreover, if � is the

top dimensional part of Z; D1 ∩ �; D2 ∩ �, and D ∩ � are plane curves of degrees
d− n+ 3; d− n+ 2+ a, and d− n+ 3+ a, respectively. Then, the ideal (G̃1)∩ (G̃2)
is a principal ideal generated by G̃, where P̃ is the reduction of P modulo I�. In
fact, (G̃1) ∩ (G̃2)⊇(G̃), and G̃1 cannot divide G̃2 (otherwise, ID1 ⊇ ID2 and this is
not so because deg(D) 6= deg(D2)). Then, (G̃1) ∩ (G̃2) = (G̃) by degree argument.
Hence, the forms G̃i; i=1; 2, have a common factor, i.e. G̃1 =H1F̃ ; G̃2 =H2F̃ , where
deg(H1) = 1; deg(H2) = a. We have also that G − HjGi ∈ IDi ∩ I� = IZ ; i 6= j, and so
H2G1 − H1G2 ∈ IZ . But LGi ∈ IZ for each L ∈ I�. Then, the quadrics which generate
IZ plus G1; G2 are a Gr�obner basis of IC , and so IC ∩ I� = IZ .
Then, from the exact sequence

0→ IZ → IC ⊕ I� → IC∩� → 0;

we deduce that the Hilbert polynomial of C is pC(z) = dz + 1− g where

g=
(
d− n+ 1

2

)
− a:

Moreover, considering the long cohomological sequence, we have that H 1(IC(j))=
H 1(IC∩�(j)) for j ≥ 0, by Lemma 1.5(2).
But C ∩ � is a closed subscheme of dimension 1 which satis�es the hypotheses of

Lemma 1.10 and then the cohomology of C satis�es the claim.

Remark 2.6. If the scheme-theoretical intersection C of D1 and D2 is a curve then C
is a quasi-extremal curve.

3. Rao functions of quasi-extremal curves

In Section 2, we naturally associated three aCM curves D1; D2 and D = D1 ∪ D2,
to each quasi-extremal curve C. Now, we want to study the relation among the Rao
module of C and the Rao modules of the sheaves IDi=D and IDi∩�=D∩�.
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Proposition 3.1. With the same notation as above; we have the following isomorphims:

H 1
∗(IC)'H 1

∗(ID1=D) ∩ H 1
∗(ID2=D)

'H 1
∗(ID1∩�=D∩�) ∩ H 1

∗(ID2∩�=D∩�);

where we look at the �rst three vector spaces as subvector spaces of H 2
∗(ID) and

the last two as subvector spaces of H 2
∗(ID∩�).

Proof. We consider the exact sequences

0 −→ ID
’=(’1 ;’2)−→ ID1 ⊕ID2 → IC → 0;

0 −→ ID
’i−→IDi −→ IDi=D −→ 0

for i = 1; 2.
From the �rst sequence we deduce the cohomological sequence

0 −→ H 1
∗(IC) −→ H 2

∗(ID)
’=(’1 ;’2)−→ H 2

∗(ID1 )⊕ H 2
∗(ID2 ) −→ · · ·

which shows that H 1
∗(IC) ' ker(’) ' ker(’1) ∩ ker(’2).

But for i = 1; 2, the other short sequences give the long cohomological sequences

0 −→ H 1
∗(IDi=D) −→ H 2

∗(ID)
’i−→H 2

∗(IDi) −→ · · ·
and these show that ker(’i) ' H 1

∗(IDi=D), proving the �rst isomorphism.
For the last isomorphism we need the diagram

0 0 0
↓ ↓ ↓

0 → IZ → ID ⊕I� → ID∩� → 0
↓ ↓ ↓

0 → IZ → IDi ⊕I� → IDi∩� → 0:
↓ ↓ ↓
0 → IDi=D → IDi∩�=D∩� → 0

↓ ↓
0 0

The last line of the diagram gives the isomorphism IDi=D ' IDi∩�=D∩�.
Moreover, from the cohomological diagram

0 0
↓ ↓

0 → H 1
∗(IDi=D) ' H 1

∗(IDi∩�=D∩�) → 0
↓ ↓ ↓

0 → H 2
∗(IZ) → H 2

∗(ID)
�→ H 2

∗(ID∩�);
↓ ↓ ↓

0 → H 2
∗(IZ) → H 2

∗(IDi) → H 2
∗(IDi∩�)

↓ ↓ ↓
0 0 0
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we deduce that the morphism �=IDi=D is injective and then we can read H 1
∗(IDi=D)

and their intersection into the vector space H 2
∗(ID∩�), using their isomorphic images

H 1
∗(IDi∩�=D∩�). This fact proves the second isomorphism.

The last proposition gives the conditions for a quasi-extremal curve to be extremal,
too.
Now, we shall describe all the possible Rao functions of a quasi-extremal curve C,

that is to say, the functions h1(IC(j)), for j ≤ 0.

Theorem 3.2. A numerical function is the Rao function of a quasi-extremal curve
if; and only if; its graph in negative degrees in a polygonal whose edges have an
increasing slope; not exceeding n− 2 and passing through (0; a).

Proof. We have that h1(IC(j)) = dimk (R=Jn)d−n+a−j, where Jn is the ideal generated
by the entries of the last map ’n of a minimal free resolution of IC , by Corollary 1.4
and Serre’s Duality Theorem [5, Chapter III, Theorem 7.1].
The last map of a minimal free resolution of IC is

’n : R(−d− 1− a)→ Rn−1(−d− a)⊕ R(−d− 1)⊕ Rn−2(−n):

To have the right function for j ≥ 0, we have that the n−1 linear forms are independent,
and that the degree a form is independent from the previous ones. Then we can suppose
that Extn−1(IC;OP n) ' (k[xn−1; xn]=(F0; F1; : : : ; Fn−2))(d + a + 1) where deg F0 =
a; in(F0) = xan−1 and deg Fi = d− n+ 1 + a, for i = 1; : : : ; n− 2.
Moreover, one among the n− 2 forms of degree d− n+1+ a, modulo F0, is equal

to xd−n+1+a
n , because h1(IC(j)) = 0 if j.0.
By direct computation,

�(j) = dimk

(
k[xn−1; xn]
(F0; : : : ; Fn−2)

)
d+a−n−j

is one of the described functions.
To end the proof of Theorem 3.2, we prove the following Lemma 3.3, in which we

exhibit examples of curves with every possible Rao function.

Lemma 3.3. Let I be the ideal generated by (x20 ; x0x1; x
2
1 ; : : : ; xn−3xn−2; x2n−2F; xn−2FH2+

x0P0 + x1P1 + · · ·+ xn−3Pn−3); where
(1) F ∈ k[xn−2; xn−1; xn]; in(F) = xdeg(F)n−2 and deg(F) ≥ 2;
(2) H2 ∈ k[xn−1; xn]; in(H2) = xan−1 and deg(H2) = a ≥ 1;
(3) Pi ∈ k[xn−1; xn]; and the normal form of at least one of the Pi’s; modulo H2; is

xa+deg(F)n .
Then I de�nes a quasi-extremal curve C of degree d= n− 1 + deg(F) and genus

g=
(

d− n+ 1
2

)
− a

and h1(IC(j)) = dimk (k[xn−1; xn]=(H2; P0; : : : ; Pn−3))d−n+a−j.
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Proof. Let Z be the scheme de�ned by IZ =(x20 ; x0x1; x
2
1 ; : : : ; xn−3xn−2), and let D1 and

D2 be the schemes de�ned by I1= IZ+(x2n−2F) and I2= IZ+(xn−2FH2+
∑n−3

i=0 xiPi). It
is evident that both I1 and I2 are generated by Gr�obner basis with respect to rlex, and
so in(I1) and in(I2) are saturated. Then, I1 and I2 are saturated by Green [4, Corollary
1.12].
Let D be the scheme de�ned by I3=I1∩I2. At �rst, we show that I3=IZ+(x2n−2FH2).

It is evident that IZ + (x2n−2FH2)⊆ I1 ∩ I2.
Conversely, let G ∈ I1 ∩ I2. Then,

G =
∑

�1ijxixj + �1x2n−2F

and

G =
∑

�2ijxixj + �2
(
xn−2FH2 +

∑
xiPi

)
;

where the initial terms of �1 and �2 cannot be divided by x0; : : : ; xn−3.
Then �2(xn−2FH2 +

∑
xiPi) − �1x2n−2F ∈ IZ . By the choice of the initial terms of

�1 and �2, we have that in(�2xn−2FH2) = in(�1x2n−2F) and so we can divide it by
x2+deg(F)n−2 xan−1. In particular, xn−2 divides in(�2), and so in(�2)

∑
xiPi ∈ IZ .

But, �i = in(�i) + res(�i); i = 1; 2, and so

res(�2)
(
xn−2FH2 +

∑
xiPi

)
− res(�1)x2n−2F ∈ IZ :

By iterating the argument, we have that xn−2 divides �2, and so G ∈ IZ+(x2n−2FH2).
I3 is generated by a Gr�obner basis. Then, I3 is saturated because in(I3) is.
Now, we want to compute the Hilbert polynomials of Lemma 1.5. In fact, the

resolution of IZ was implicitly computed in Corollary 1.4. In particular, the plane
contained in Z is �= V (x0; : : : ; xn−3).
Using arguments like in the proof of Proposition 1.6, we have that Ii ∩ I� = IZ ; i =

1; 2; 3. Then, the sequences

0→ IZ → Ii ⊕ I� → (Ii + I�)→ 0; i = 1; 2; 3

are exact, and from them we obtain the Hilbert polynomials of D1; D2, and D:

pD1 (z) = (deg(F) + n)z + 1−
(
deg(F) + 1

2

)
;

pD2 (z) = (deg(F) + n+ a− 1)z + 1−
(
deg(F) + a

2

)
;

pD(z) = (deg(F) + n+ a)z + 1−
(
deg(F) + a+ 1

2

)
:

Now, we compute the minimal free resolutions of I1; I2, and I3. To this aim we use
the same formalism as in [4, Theorem 1.31].
We observe that the three ideals di�er with respect to the last generator, and so their

free resolutions have a common part, which is the one corresponding to the scheme Z
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(see Lemma 1.5). Now, we can describe a basis for the pth syzygy module of each
ideal.
• Common generators (basis of the pth syzygy module of IZ):

exhxkip:::i1 =
p−1∑
j=0

(−1) j+1xip−j e
xhxk
::: îp−j :::

+(−1)p+1xk
{

e
xhxi1
:::i2 î1

if h ≤ i1;∑p+1
j=1 (−1) j+1e

xi1 xk
::: îj :::

if h¿ i1;

where 0 ≤ ip ¡ ip−1¡ · · ·¡I1¡k.
• Generators of the basis of I1; only:

s
x2+deg F
n−2

ip:::i1 =
p−1∑
j=0

(−1) j+1sx
2+deg F
n−2

::: îp−j :::
+ (−1)pxn−2F

p∑
j=1

(−1) jexij x n−2

::: îj :::
:

• Generators of the basis of I2; only:

y
x1+deg F
n−2 xan−1

ip:::i1 =
p−1∑
j=0

(−1) j+1yx1+deg F
n−2 xan−1

::: îp−j :::
+ (−1)pFH2

p∑
j=1

(−1) jexij x n−2

::: îj :::

+(−1)p+1
{∑n−3

j=0 Pje
xjxi1
:::i2 î1

if n− 3 ≤ i1;∑i1
j=0 Pje

xjxi1
:::i2 î1

∑n−3
j=i1+1 Pj

∑p
�=1 (−1)�+1e

xi� xj
::: î� :::

if n− 3 ≤ i1:

• Generators of the basis of I3; only:

z
x2+deg F
n−2 xan−1

ip:::i1 =
p−1∑
j=0

(−1) j+1zx
2+deg F
n−2 xan−1

::: îp−j :::
+ (−1)pxn−2FH2

p∑
j=1

(−1) jexij x n−2

::: îj :::
:

The correctness of the previous expressions can be proved by induction on p, without
di�culty, but with a very large amount of computations.
In particular, the last free module of each resolution occurs at the (n − 1)th level.

Then, D1; D2, and D are aCM curves of maximal genus, and degrees deg(F)
+ n; deg(F) + n+ a− 1, and deg(F) + n+ a, respectively.
By Proposition 2.5, I is the total ideal of a closed subscheme C of dimension 1, and

h1(I(j)) is the Rao function of a quasi-extremal curve of degree d=deg(F) + n− 1,
and genus

g=
(

d− n+ 1
2

)
− a:

To end the proof, we compute the minimal free resolution of I , and h1(I(j)) for
j ≤ 0, from this resolution.
The resolution of I can be computed by mapping cone from

0→ I3 → I1 ⊕ I2 → I → 0:
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In particular, we are interested in the last map ’n of the resolution. The map ’n is
the following:

’n : R(−d− 1− a)→ R(−d− 1)⊕ R(−d− a)⊕ Rn−2(−n)⊕ Rn−2(−d− a)

and ’n = �(1)n−1;1 ⊕ �(2)n−1 ⊕ �D
n−1;1, where

(1) �(1)n−1 : F
D
n−1 → FD1

n−1 is the identity on the part corresponding to Z and the product

by H2 on the other part, as can be easily obtained by �(1)0 : ID → ID1 , and so
�(1)n−1;1 : R(−d− 1− a)→ R(−d− 1) is the multiplication by H2;

(2) �(2)n−1 : F
D
n−1 → FD2

n−1 is the identity on the part corresponding to Z , but, restricted
to R(−d− 1− a), it is equal to

�(2)n−1(1) = xn−2y
x1+deg F
n−2 xan−1

0; :::; n−3 −
n−3∑
j=0

Pje
xjxn−2

0; :::n−3

and extended as homomorphism of R-modules, because of the map �(2)0 : ID → ID2 ;

(3) �D
n−1 : F

D
n−1 → FD

n−2 is given by the expression of z
x2+deg F
n−2 xan−1

0; :::; n−3 , and so, considered
from R(−d− 1− a) to Rn−2(−d− a), we have that

�D
n−1;1(1) =

n−3∑
j=0

(−1) j+1xjzx
2+deg F
n−2 xan−1

:::ĵ:::

and extended as homomorphism of R-modules.
Then, the entries of ’n, up to their signs, are

x0; x1; : : : ; xn−3; xn−2; H2; P0; : : : ; Pn−3:

Using the hypothesis on the normal form of at least one of the Pi’s, we have that
h1(I(j)) = 0 for j.0. Then, C is a curve and we have the claim.

Remark. (1) The slope of the polygonal in Theorem 3.2 changes when the spans of
two forms Fi; Fj have non-empty intersection in k[xn−1; xn].
(2) In Lemma 3.3, without the assumption on the normal form on one of the Pi’s,

we can only say that C is a closed subscheme of dimension 1 with the expected degree,
genus and cohomology in positive degrees.

Theorem 3.2 gives, in particular, a lower bound for the dimension of the graded
pieces of Rao module of a quasi-extremal curve, in negative degrees.

Corollary 3.4. If C is quasi-extremal then h1(IC(j)) ≥ (n− 2)j + a; for j ≤ 0.

Corollary 3.5. For n= 3; a curve C is quasi-extremal if and only if it is extremal.

In this case, the previous description completes the one given in [3].
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