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Abstract

Nuclear density functional theory (DFT) and ab initio theory are complementary approaches to nuclear
structure. DFT can be applied to the whole nuclear chart, but relies on empirical energy density functionals
(EDFs). As a consequence, predictions in regions where experimental data are lacking, e.g. in neutron-rich
nuclei close to the driplines, are subject to significant uncertainties. In contrast, ab initio theory allows to draw
predictions with controlled uncertainties, but there are difficulties in extending these methods to heavy nuclei
or e.g. far from magic numbers. The purpose of this thesis is to combine DFT and ab initio by grounding the
nuclear EDFs into ab initio theoretical predictions, specifically on infinite nuclear matter calculations.

The ab initio Quantum Monte Carlo (QMC) and Self-consistent Green’s functions (SCGF) methods are em-
ployed to study nuclear matter. An extension of SCGF based on the algebraic diagrammatic construction
(ADC-SCGF) is developed to include Gorkov pairing correlations. The ab initio equations of state (EOS) are
used to construct EDFs based on the local density approximation and gradient approximation, which are ap-
plied to magic nuclei. Then, the static response of nuclear matter is tackled with both DFT and QMC, and a
study of the constraints that can be set on the EDF surface terms from ab initio is reported.

This thesis outlines a new strategy to ground nuclear EDFs into ab initio and implements some of its pil-
lars. A critical discussion of the difficulties encountered is given. Future developments include the study of
nuclear matter from a microscopic perspective, e.g. extending ADC-SCGF to tackle the dynamic response and
superfluid matter.
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Introduction

The study of the structure of atomic nuclei poses formidable challenges. The nucleus is an interacting quan-
tum many-particle system, and sophisticated methods are required for its understanding. An additional diffi-
culty is that the interaction between nucleons is rather complex and known only approximately. No ’standard
model’ exists that allows to study all nuclear phenomena, but different approaches and models are applicable
at different scales [1, 2]. These include macroscopic approaches, such as the liquid drop model [3], and micro-
scopic methods such as the interacting shell model [4], density functional theory (DFT) [5, 6] and the family of
ab initio methods [7, 8].

The ab initio program aims at solving the many-nucleon Schrödinger equation with an exact or systemati-
cally improvable quantum many-body method, using as input a realistic model of the nuclear Hamiltonian in
the vacuum [7–9]. A central goal of ab initio is to provide predictions of nuclear observables with controlled
theoretical uncertainties [10, 11]. Examples of ab initio methods include the no-core shell model [12], coupled-
cluster theory (CC) [13, 14], in-medium similarity renormalization group [15], many-body perturbation theory
(MBPT) [16], Quantum Monte Carlo (QMC) [17, 18] and Self-consistent Green’s functions (SCGF) [19, 20]. The
task of ab initio is very complex and requires very large computational resources, that have limited for a long
time its range of applicability to light nuclei. Nevertheless, simultaneous developments in many-body theory
and nuclear force models have made it possible to achieve important results in recent years, that have allowed
extending ab initio theory to medium- [21–23] and even heavy-mass nuclides [24, 25], as well as to open-shell
nuclei [16, 26, 27]. A few milestones include the calculation of nuclear densities in the Sn and Xe chains [28],
predictions for the neutron driplines [22], and a detailed analysis of 208Pb [25]. Other notable applications are
infinite nuclear matter (see e.g. Refs. [20, 29]) and lepton-nucleus scattering processes [30, 31].

While these advances are impressive, it must be noted that such calculations remain rather demanding and
are by no means routine. Also, ab initio theory still has limitations in dealing with nuclei far from magicity,
where strong static correlations are important [7, 16, 19]. That is the case, for instance, of doubly open-shell
nuclei that show significant deformation [19]. The only microscopic method that can be applied to the whole
nuclear chart with good accuracy, with the partial exception of very light nuclei, is the DFT approach [5, 6, 32,
33]. DFT translates the problem of interacting nucleons to a single-particle (s.p.) self-consistent (s.c.) problem
that is based on the concept of an energy density functional (EDF). The EDF represents a map between the total
energy of a given fermion system and its (generalized) densities, and minimizing it allows to determine the
exact ground state (g.s.) of the interacting system. The existence of the EDF is guaranteed by the Hohenberg-
Kohn theorems [34], which prove that DFT is formally an exact theory for the g.s. Additionally, DFT has been
extended to allow to treat also excited states and dynamical phenomena [5, 35]. Its countless applications in
nuclear physics include giant resonances [36, 37], infinite nuclear matter [38], clustered matter in neutron stars
[39] and fission processes [40, 41].

DFT allows to handle the complexity of the many-nucleon problem. However, the form of the EDF is not
known exactly, and thus DFT turns out to be an approximate, albeit very powerful, method. In particular,
most relativistic [6, 42] and non-relativistic [5, 6, 32, 33] nuclear EDFs are designed in an empirical manner.
A reasonable ansatz for the functional form is chosen and its actual parameters are fitted on experimental
observables such as radii and masses of finite nuclei, or pseudo-observables such as the saturation density
of symmetric nuclear matter [6, 43]. The available EDFs are overall successful [5, 44], e.g. the experimental
binding energies are reproduced on average within 1-2 MeV and charge radii within 0.02-0.03 fm.

However, limitations affect the current EDFs. While the agreement of the existing EDFs with the experiment
is generally satisfactory close to the stability valley, where they have been fitted, uncontrolled extrapolations
affect the EDF predictions in the region of unstable nuclei. A strong model dependence, for example, has
been observed in the prediction of proton and especially neutron driplines [45–47]; also, discrepancies tend to
increase with the mass number [5]. Thus, current EDFs have limited reliability close to the limits of the nuclear
chart, which are at the center of experimental research and still are, to a large extent, out of reach of ab initio
theory. For instance, in Ref. [22] neutron driplines could be computed only up to Z = 28.

xi



xii Thesis overview

In addition, it turns out that empirical EDFs are difficult to further improve. The somewhat pessimistic
conclusion of the UNEDF [48] project was that enriching the dataset and improving the fitting method may
be insufficient to obtain substantial improvements, and new directions beyond the traditional EDFs should be
pursued. A careful analysis of the limitations of current nuclear EDFs is also advocated e.g. in Ref. [49], in
light of the tension between theoretical calculations and experimental measurements of the parity-violating
asymmetry and the dipole polarizabilities even in two stable and very much studied nuclei, 48Ca and 208Pb
(see [49–51] and references therein).

Thus, the current status of nuclear DFT, as well as the strong experimental interest in exotic and neutron-
rich nuclei, has motivated studies into alternative directions, and the simultaneous developments in ab initio
theory have made research on grounding DFT on more fundamental theories one of the timely subjects in the
field [5, 52–55]. Several approaches have been put forward, and some of them are briefly mentioned here.
In Refs. [56–58], the density matrix expansion has been used to incorporate the contributions of the pion
exchanges, which determine the long-range physics in chiral forces, into the EDF. In Ref. [59], the EDF method
is linked to the ab initio projected generator coordinate method (PGCM). Non-empirical EDFs inspired by the
unitary Fermi gas have been proposed in Refs. [60, 61], and a power counting for nuclear EDFs has been
discussed in e.g. Ref. [62–64]. In Refs. [53, 65], the possibility of determining the coupling constants of the
EDF on the ab initio metadata obtained by perturbing finite nuclei has been investigated.

The idea of developing non-empirical EDFs has a long tradition in electronic DFT, where it has been advo-
cated and developed to a large extent by Perdew and collaborators [34, 66, 67]. The so-called ’Jacob’s ladder’
program consists of constructing a hierarchy of EDFs of increasing complexity, where at each rung of the lad-
der one tries to impose as many exact conditions as possible, while using a limited amount of empirical input
[66]. Essential is the theory of the homogeneous electron gas to guide the development of the EDF.

In this thesis, a new research program for grounding nuclear EDFs into ab initio is pursued. The proposed
strategy is inspired by the Jacob’s ladder in two respects [68]. First, it is aimed at constructing a series of
increasingly more refined EDFs. Second, the main constraints to the EDFs are to come from ab initio calculations
of model systems, and in particular infinite nuclear matter. The first rung of the ladder is well established and
is the so-called Local Density Approximation (LDA). LDA maps the equation of state (EOS) of homogeneous
nuclear matter into an EDF that is function of the number densities, and in the context of nuclear physics it has
been explored e.g. in Refs. [69–71].

LDA is not sufficient, though, and it is known that surface terms, such as gradients of the density and
spin-orbit contributions, are essential to describe finite nuclei. The following rung of the DFT ladder is called
Gradient Approximation (GA) in this work. There is no obvious way on how to implement the GA. The gener-
alized gradient approximation (GGA) of electronic DFT, which includes e.g. the extremely popular PBE func-
tional [72], is based on analytical properties specific to Coulomb systems, which cannot be straightforwardly
migrated to nuclear physics. Also, since surface terms simply vanish in uniform matter, a different inhomoge-
neous system must be found to provide information on the terms beyond LDA. Confined nuclear matter, such
as neutron and neutron-proton drops, has been suggested as a means to gain additional information on the
EDF [73].

A different possibility is considered in this work, which consists of studying nuclear matter subject to an
external static potential. This so-called static response problem has been tackled from an ab initio perspective
by Gezerlis and collaborators in neutron matter [74–76], thus paving the way to the study of this property in
nuclear physics. The study of infinite nuclear matter, both in its homogeneous state and under the effect of an
external perturbation, is thus one of the pillars of this work. The other pillar is to find a way to exploit the ab
initio nuclear matter information for constructing the EDF.

QMC has been extensively used to tackle the static response problem (see e.g. [75, 77, 78]), and provides
a quite natural way to introduce external potentials. In particular, the Auxiliary field Diffusion Monte Carlo
(AFDMC) [17] technique is employed here to study perturbed nuclear matter. Since AFDMC (as well as several
other ab initio methods) simulate the infinite system using a finite number of nucleons, with the purpose of
matching the ab initio predictions with the EDF ones in a consistent way, following Refs. [76, 79], a finite-A
DFT approach for both homogeneous and perturbed matter has been developed [80], and it has been applied
to infer the parameters of the EDF from the ab initio data.

However, limitations of AFDMC, such as its computational complexity and difficulties in using fully re-
alistic interactions, have led us to consider other methods. A significant portion of this thesis is devoted to
the development and extension of SCGF, and in particular the variant based on the algebraic diagrammatic
construction (ADC) scheme [26, 81, 82], for nuclear matter. ADC-SCGF is a state-of-the-art approach for finite
nuclei (see [19] and references therein), and it has been adapted to infinite matter in Refs. [82, 83], where ADC
at third order in Dyson-SCGF, i.e. based on a Hartree-Fock reference state (in short, Dyson-ADC(3)), has been
proposed. In this work, the first full implementation of Dyson-ADC(3) with chiral interactions is presented.
Moreover, the method has been extended by including Gorkov pairing correlations [84].

This thesis is structured as follows. In Ch. 1, a general introduction to the key concepts of the work
is provided, concerning the simulations of infinite nuclear matter, the theory of the static response, and the
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essential notions of the nuclear interaction. The following three chapters delve into the different theoretical
methods employed in this work. Ch. 2 is devoted to DFT. After a general introduction to this approach,
original developments are presented, namely the construction of ab initio-constrained LDA and GA EDFs and
the solution of the perturbed matter problem. Ch. 3 reviews the ab initio QMC method and details how it
has been applied to both homogeneous and perturbed nuclear matter. The subject of Ch. 4 is Self-consistent
Green’s functions for infinite nuclear matter. In particular, the implementation of the Dyson-ADC(3) approach
and its extension to incorporate Gorkov correlations are discussed. In the second part of the thesis, results
are shown. In Ch. 5, the nuclear matter EOS obtained with the ab initio methods are presented, and Dyson-
ADC is accurately discussed. In Ch. 6, the LDA EDFs based on the ab initio EOS are constructed and applied
to magic nuclei. Also, a preliminary study of the gradient terms is performed. In Ch. 7, perturbed nuclear
matter calculations are performed with the DFT approach. Then, Ch. 8 is devoted to developing ab initio-
based GA EDFs. In particular, the static response is computed with AFDMC, and a protocol to constrain
the gradient terms by matching the DFT and AFDMC predictions for perturbed nuclear matter is discussed.
Finally, conclusions and perspectives to this work are given in Ch. 9. Further details are provided in the
Appendixes. App. A gives an overview of chiral interactions and their applications in infinite matter studies.
App. B complements the discussion on the static response theory. App. C provides details on DFT calculations.
Finally, in App. D technical aspects of SCGF are discussed.





CHAPTER 1

Theoretical background and motivation

In this chapter, we aim to provide a general introduction to the key concepts of this thesis. The general moti-
vation and an outline of this work are given in Sec. 1.1. Then, a brief introduction to the nuclear interactions
and their use in ab initio theory is given in Sec. 1.2. Additional details on chiral forces are presented in App. A.
In Sec. 1.3 we define infinite nuclear matter and detail how it can be simulated using a finite number of par-
ticles. These concepts are the essential background for the nuclear matter studies we conduct with AFMDC,
SCGF and DFT. Finally, in Sec. 1.4 we discuss the theory of the response of infinite matter to an external static
perturbation and explain how it can be computed; this section is complemented by App. B.

1.1 Purpose of this work

This Section is meant to explain the purpose of this work and give an overview of its main themes. Our essen-
tial motivation is to lay the first steps for the construction of fully ab initio-constrained EDFs. This is a highly
timely subject in nuclear theory [5, 53, 55], that stems from the necessity to extend the accuracy of nuclear
DFT towards the regions of neutron-rich nuclei, that are at the edge of current experimental research, and
the parallel recognition that it is difficult to find breakthroughs within the framework of traditional empirical
EDFs [48]. In this respect, the rapid developments of ab initio theory suggest that the latter may help surpass
the limitations that affect the phenomenological EDFs. Ab initio can provide information to understand the
impact of the different terms of the EDFs, suggest new functional forms, and allow to set constraints on the
EDF parameters, such as the isovector or spin terms [73, 85].

Our strategy takes inspiration from condensed matter DFT, and in particular from the non-empirical ”Ja-
cob’s ladder” approach [34, 66], from which we adopt two general principles. First, we aim to construct a
hierarchy of EDFs of increasing complexity and accuracy, starting from simple approximations and then intro-
ducing more complex ones. Second, at each ”rung” of the construction we favor the use of ab initio calculations,
instead of experimental data, to fix the parameters and the structure of the EDF. More specifically, the theory
of infinite nuclear matter (the analog of the homogeneous electron gas) is our pillar. Fig. 1.1 shows a schematic
representation of our approach. The simplest approximation is the local density approximation (LDA), which
maps the EOS of homogeneous nuclear matter into an EDF that is a function of the number densities only. LDA
assumes that the energy density of finite nuclei can be approximated at each point by that of infinite matter,
that is, in LDA finite systems are assimilated to the homogeneous system, and surface effects are not explicitly
considered in the EDF. However, while the LDA is well-known in both condensed matter [34, 66] and nuclear
physics [71], there is not a clear way to improve upon it. Surface terms, such as density-gradient terms and
spin-orbit contributions, are essential to properly describe nuclei (and in general finite systems). However,
they trivially vanish in uniform systems, and thus homogeneous matter cannot provide any information on
them. To go beyond LDA, it is thus necessary to study inhomogeneous systems. The simplest way to induce
a density fluctuation in nuclear matter is to introduce an external potential. While in the past harmonically
confined droplets have been suggested to tune the EDF parameters [73, 86], in this thesis we explore nuclear
matter perturbed by a weak monochromatic potential, the so-called static response problem. The work by
Gezerlis and collaborators [74–76] has opened the way to an ab initio approach to perturbed matter, which, at
variance with droplets, offers a clear connection to uniform matter.

To carry out our program, we must be able to study both uniform and perturbed nuclear matter within the
frameworks of both DFT and ab initio. Few ab initio methods have been used to study the response of infinite
matter. Quantum Monte Carlo, employed in Refs. [75, 76] as well as in condensed matter [77, 78] for the static
response, offers a somewhat natural way to incorporate external potentials. Thus, AFDMC is extended and
then applied extensively in this work to generate ab initio pseudodata. Since AFDMC (as several other ab initio
techniques) employs a finite number of nucleons to simulate the infinite system, in order to be able to properly
match the ab initio and DFT descriptions of perturbed matter we have developed, extending Refs. [76, 79], a
finite-A DFT method specific for this problem [80].

Unfortunately, AFDMC suffers from some limitations. Large computational resources and care are needed
to properly treat the tensor and spin-orbit operators of the nuclear interaction: while in PNM it is a leading

1



2 1.2 Nuclear interactions

Figure 1.1: Schematic representation of our ”ladder” of ab initio-based nuclear EDFs. The first two rungs are shown, while
the dots denote future developments. The local density approximation requires as ab initio input the equation of state
of homogeneous nuclear matter. The gradient approximation involves studying nuclear matter perturbed by an external
weak potential, both in the ab initio and DFT frameworks.

technique, AFDMC has found relatively few applications in SNM [87, 88]. Since both PNM and SNM are
essential for our program, in this exploratory study we have considered a simplified model of the nuclear
interaction, namely the Argonne 4 force [89]. This is suited for development purposes, as some of the technical
difficulties above are avoided. Another limit to be mentioned is that so far, except for a few exploratory studies
[90, 91], AFDMC has been limited only to some specific chiral interactions (the so-called local forces) [92].
Many of the most accurate chiral forces, therefore, are inaccessible to AFDMC.

Thus, it has proved important to consider different ab initio approaches, and in particular we have focused
on the Self-consistent Green’s function (SCGF) method [19, 20]. SCGF allows to study both SNM and PNM
and can employ all chiral interactions naturally. Initially, existing EOS calculations performed with the estab-
lished finite-temperature SCGF formalism based on the ladder approximation for the self-energy [20] (Finite-T
SCGF from now on) have been used. A significant portion of this thesis is devoted to the development of a dif-
ferent variant of Green’s function method. Indeed, the so-called algebraic diagrammatic construction (ADC) is
a leading approach in the ab initio theory of finite nuclei [19]. Its applications to infinite matter have been ini-
tiated in Refs. [82, 83], and full-fledged ADC-SCGF calculations for homogeneous are presented in this work.
Green’s functions theory is well suited, in principle, for studying the (both dynamical and static) response.
However, this is a challenging project on its own and is left for future studies.

To summarize, homogeneous nuclear matter is studied in this work with the ab initio AFDMC and SCGF
approaches, and LDA EDFs are constructed and tested based on the resulting EOS. A thorough presentation of
the ADC-SCGF method is one of the novelties presented in this work. The static response of perturbed matter
is tackled both within DFT and AFDMC. Finally, a preliminary study of GA EDFs constrained by the ab initio
response is presented.

1.2 Nuclear interactions

In this Section, we give an overview of the nuclear interactions used in ab initio nuclear theory. The subject is
discussed in detail e.g. in Refs. [1, 17, 92–94]

At low energies, nuclear systems can be described assuming the nucleons as degrees of freedom and mod-
eling their interactions through a non-relativistic Hamiltonian, which includes two- (NN) and three-nucleon
(3N) (and possibly many-nucleon) potential terms:

Ĥ = T̂ + V̂ + Ŵ + ..., (1.1)

where V̂ and Ŵ denote the NN and 3N interactions, respectively. The qualitative properties of the NN inter-
action are well-known [1, 17, 92, 95]. As the binding energy per nucleon of finite nuclei is roughly constant,
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one deduces that the interaction between nucleons must be short-ranged. An attractive component at ∼ 1 fm
coexists with a repulsive core at a very short distance, which makes nuclear systems relatively dilute. Also, the
fact that the deuteron is the only two-nucleon system that admits a (shallow) bound state implies that the nu-
clear force must depend on spin and isospin. In particular, it is stronger in the isoscalar channel, with proton
and neutron coupled to total isospin T = 0 and total spin S = 1. Moreover, since the deuteron has a non-
vanishing quadrupole moment, the NN force must contain non-central terms. The basic model by Yukawa,
which describes the nuclear interaction in terms of the exchange of a pion, is successful in explaining its long-
range properties. Additional two-pion-exchange contributions explain the intermediate-range attraction. The
NN force alone, however, overbinds the triton, and 3N interactions are then needed to provide the missing
repulsive contribution.

Despite our understanding of its general properties, finding nuclear interactions that are quantitatively ac-
curate is still an active area of research, see e.g. [96], but realistic models of the nuclear force, that are fitted
to reproduce accurately two- or few-body observables (e.g. NN scattering phase shift or the binding energy
of the deuteron) do exist. Interactions are constructed in a phenomenological way [17, 89, 94], or by making
use of chiral EFTs [93, 96–99]. Potentials extracted directly from lattice Quantum Chromodynamics (QCD)
calculations are still in their infancy [10, 100, 101] and will not be discussed. Chiral forces are derived in an
order-by-order, low-momentum expansion consistent with the QCD symmetries. They are defined in momen-
tum space, although coordinate-space versions of the so-called local forces have been put forward [92, 102,
103]. Since they are naturally cut off at high momenta by regulators [104], they elude the problem of han-
dling the hard core, i.e. the strongly repulsive short-range behavior of the phenomenological potentials [19].
In this sense, chiral forces are considered ”soft” interactions, in contrast with the ”hard” phenomenological
forces. Phenomenological interactions postulate the form of the interactions combining symmetry arguments
and elements of meson-exchange theory [17, 89]. The calculations performed in this work make use of the
chiral NNLOsat [105] and ∆NNLOgo [106] and the phenomenological AV4′+UIXc interactions [89]. App. A
is devoted to chiral forces, and details several aspects of their form and their use in infinite matter calculations.
The remainder of this section is dedicated to phenomenological forces.

The most general structure of the phenomenological interactions that are commonly used comprises 18 op-
erators [17]. Of those, 14 are charge independent, while of the remaining four, three are charge dependent and
one is a charge symmetry breaking term [17]. Argonne interactions are widely employed phenomenological
potentials [17, 89, 94]. The highly accurate Argonne 18 (AV18) model [94] includes all the terms in full. The
dominant contributions are the first eight operators, that enter the widely used Argonne 8 (AV8′) [89] and
chiral interactions at NNLO. Sticking to the notation used for coordinate space potential, V̂ reads

V̂ =
∑
i ̸=j

vij =
∑
i ̸=j

18∑
p=1

vp(rij)O
p
ij , (1.2)

where

Op=1,8
ij = [1, σi · σj , Sij ,Lij · Sij ]⊗ [1, τi · τj ], (1.3)

Op=9,14
ij = [L2

ij ,L
2
ijσi · σj , (Lij · Sij)2]⊗ [1, τi · τj ]. (1.4)

In the previous equation, σi and τi are spin and isospin Pauli matrices, respectively, Sij = 1
2 (σi + σj) is the

total spin of the nucleon pair, Lij is the relative angular momentum operator,

Lij = −
i

2
(ri − rj)× (∇i −∇j). (1.5)

and Sij is the tensor operator,

Sij = 3σi · rijσj · rij − σi · σj . (1.6)

AV18 is very complex and computationally demanding, and some terms cannot be included in all ab initio
methods. Simplified versions, more amenable to many-body calculations, have been devised [89]. Denoted
as AVn′, these interactions contain a subset of n operators and are refitted in order to reproduce as many
two-nucleon properties as possible. Together with the NN interaction, a three-nucleon force (3NF) has to be
introduced to reproduce the spectrum of light nuclei and saturation properties of infinite nucleonic matter
[107]. In Refs. [108, 109] it was found that the simple AV4′, which comprises only four operators:

Op=1,..,4
ij = [1, σi · σj ]⊗ [1, τi · τj ] , (1.7)

complemented with the central term of the Urbana IX 3N interaction (UIXc), yields reasonable ground-state
energies of light and medium-mass nuclei — the binding energies deviate by about 10% from the experiment.
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AV4′+UIXc is therefore interesting for this exploratory work since it allows to carry out accurate Monte Carlo
studies of nuclear matter (both PNM and SNM) and of nuclei as large as 90Zr. Moreover, the fact that AV4′
does not contain tensor or spin-orbit operators greatly simplifies the solution of the many-body problem with
the AFDMC method.

The NNLOsat [105] force, as well as the more recent ∆NNLOgo model [106], are widespread chiral forces
that are successful in reproducing the bulk properties of nuclei (binding energies, radii, and densities [28]) in a
wide mass range and at the same time yielding a SNM saturation point compatible with empirical constraints.
This is a non-trivial achievement that has been made possible by including in the fitting protocol of the inter-
action information on light nuclei and constraints on infinite nuclear matter [105, 106, 110]. Some drawbacks
persist, e.g. the symmetry energy around and above saturation is underestimated in NNLOsat [111], spectro-
scopic properties are not so accurately described, and the quality in the reproduction of scattering observables
deteriorates [112], especially in ∆-full models. Still, these potentials remain among the most used and (for
bulk properties) successful chiral Hamiltonians, see e.g. Refs. [113, 114].

1.3 Infinite nuclear matter

In this Section, an introduction to infinite nuclear matter is given. We present the essential notions about
nuclear matter and outline the approach to simulate homogeneous matter with a finite number of particles.

Nuclear matter is an infinite system of nucleons that interact through the strong interaction only [38, 115].
While it is an idealized system, it bears connections to the nuclear physics of finite nuclei [38, 116, 117], the
astrophysics of neutron stars and gravitational waves [39, 118–120], and the physics of cold Fermi gases [29,
121]. For this reason, nuclear matter is an active subject of research from multiple perspectives. In this work, we
focus on the microscopic description of nuclear matter from a many-body theory perspective and do not aim
at a study of neutron stars. We do not consider other degrees of freedom, such as hyperons, that are expected
to appear in the neutron star core [39], and focus instead on the purely nucleonic EOS. The modeling of the
(inhomogeneous) neutron star crust is reviewed e.g. in Refs. [118, 122]. We concentrate on zero-temperature
and spin-unpolarized matter, that is characterized by the proton and neutron densities ρn, ρp, or equivalently
by the total density

ρ0 = ρn + ρp (1.8)

and the isospin asymmetry

β =
ρn − ρp
ρ0

. (1.9)

We anticipate that we will focus, to a large extent, on the limiting cases of SNM (ρn = ρp = ρ0/2) and PNM
(ρp=0, ρn = ρ0), although extensions are straightforward. The fundamental property of homogeneous matter
is the EOS

e(ρ, β) = E(ρ, β)/A, (1.10)

where E is the total energy of the system and e is the energy per nucleon. A typical example of EOS is shown
in Fig. 1.2, where the energy is plotted as a function of the density for several values of the asymmetry. PNM
and SNM are shown as thick lines, while intermediate β’s are represented with dashed lines. The essential
property of SNM is that it saturates, i.e. the EOS admits an empirical minimum at density ρsat ≈ 0.16 fm−3

and energy per particle Esat ≈ −16 MeV [38]. The PNM EOS, instead, is a monotonically increasing function
of ρ, since the the kinetic energy is dominant compared to the potential energy. Indeed, the nuclear interaction
is rather weak among neutrons, but strong between protons and neutrons in the T = 0 isospin channel. In
between, asymmetric nuclear matter (ANM) saturates or not according to the value of the asymmetry and the
specific model used to compute the EOS. Works on ANM include Refs. [38, 87, 123].

Some theoretical approaches attack nuclear matter directly in the thermodynamic limit (TL). These include
nuclear DFT [38, 124] and ab initio methods such as e.g. Brückner-Hartree-Fock [39], Finite-T SCGF (Sec. 4.5)
[20] and frameworks based on many-body perturbation theory (MBPT) [123, 125]. Most ab initio techniques,
though, simulate infinite matter by using a finite number of particles (see e.g. Refs. [14, 126, 127]). Among
them is AFDMC [17, 128], see Chapter 3, that has been used extensively not only for the nuclear matter EOS,
but also for inhomogeneous matter, namely neutron drops [73, 129], as well as for the neutron matter response
[74–76]. The coupled-cluster method [13] has been applied to nuclear matter [126, 130] using a finite number
of particles, and it has become an important tool in fitting nuclear forces (see e.g. Refs. [105, 106]). A variant of
SCGF that exploits the state-of-the-art ADC approximation scheme is also based on a finite model space, and
Chapter 4 is devoted to it. DFT, too, can be formulated with a finite nucleon number, as proposed in Ref. [79]
and further developed in [80] and in this work (Sec. 2.3).
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Figure 1.2: Equation of state at various isospin asymmetries. The energy per particle is shown as a function of the density
for several values of β. The limiting cases of PNM (β = 1) and SNM (β = 0) are represented by thick lines. Results have
been obtained with the Sly4 EDF [43] in the thermodynamic limit.

The standard technique adopted in most studies [14, 128] involves considering A fermions enclosed in
a cubic box of size L and volume Ω = L3 and imposing periodic boundary conditions (PBCs) on the wave
function. (See below for a different choice.) The cell size is chosen such as the density of the system is a fixed
and constant ρ0 = A/Ω. In this framework, the TL corresponds to the limit in which bothA and L go to infinity
while keeping ρ0 fixed [115]. The use of PBCs is suggested by the fact that, in a uniform infinite medium, all
physical properties must be invariant under translation [115]. Intuitively, PBCs allow us to simulate the
homogeneous system by reducing it to a single ”unit cell” that repeats itself in space (Fig. 1.3). The free
gas (FG), that is the starting point for studying the interacting matter, is described in terms of momentum
eigenstates |k, s, t⟩, where k is the wave number, s the spin projection and t the isospin projection of the
nucleon. In coordinate space, the |k⟩ states are represented by plane waves,

ψk(x) = ⟨x|k⟩ =
eik·x√

Ω
. (1.11)

The wave number is quantized as a consequence of PBCs, ψk(x) = ψk(x+ Ln), i.e.

k =
2π

L
n, (1.12)

where n is a three-component vector of integer numbers. The kinetic energy of these states is given by

ϵk =
ℏ2k2

2m
=

ℏ2

2m

(
2π

L

)2

n2. (1.13)

Since the energy depends on k2 and thus on n2, a ”momentum space” shell structure emerges, with different
energy levels being labeled by n2 and being degenerate. The g.s. of the FG is obtained by occupying the first
A lowest-energy states. Momentum space ”magic numbers” correspond to completely filling a given number
of shells. The first few of them are given by A/g =1, 7, 19, 27, 33 etc. [14], where g is spin/isospin degeneracy
(2 for spin-saturated PNM, 4 for spin-saturated SNM). In Tab. 1.1 the lowest momentum space shells and
magic numbers are shown. Typically, the number of fermions in a calculation is selected to correspond to a
shell closure of the FG. This choice simplifies calculations in finite-A methods since it allows to use a single,
uniquely defined Slater determinant as a starting point. In contrast, in open-shell configurations only a subset
of degenerate orbitals is occupied, and the choice of this subset is not unique [131].
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Figure 1.3: A pictorial (two-dimensional) example of periodic boundary conditions. A repeated lattice of cells is used to
model the homogeneous system (e.g. a solid or nuclear matter). Particles in the main cells are allowed to interact with
the adjacent cells, and thus the extended system can be better simulated. Taken from https://pythoninchemistry.org/
sim and scat/important considerations/pbc.html.

n2 N. states States Tot.
0 1 (0,0,0) 1
1 6 (±1, 0, 0), (0,±1, 0), (0, 0,±1) 7
2 12 (±1,±1, 0), (±1, 0,±1), (0,±1,±1) 19
3 8 (±1,±1,±1) 27
4 6 (±2, 0, 0), (0,±2, 0), (0, 0,±2) 33
5 24 (±2,±1, 0), (0,±2,±1), (±2, 0,±1) 57

(±1,±2, 0), (0,±1,±2), (±1, 0,±2)

Table 1.1: Momentum space states of the FG are listed. The states are organized in momentum shells labeled by n2 =
n2
x + n2

y + n2
z , where ni are three integer numbers. The states in the shell and their number are shown in the second and

third columns, respectively. Lastly, the total number of particles needed to fill the shells up to a given n2 (included) is
reported.

Simulating a finite system is different from studying a homogeneous system in the TL. These discrepancies
are called finite-size (FS) effects. It is well-known that simulations with 33g fermions are usually a good choice
for minimizing the FS effects on the EOS [126], as the kinetic energy of the finite systems is, for this specific
particle number, rather close to the TL value (Fig. 1, Ref. [75]). In nuclear physics, N = 66 neutrons are
routinely used in PNM; in SNM, A = 132 nucleons are used when feasible, e.g. in coupled-cluster [126], but
sometimes, e.g. in AFDMC with fully realistic interaction [88], this may be too demanding computationally.

FS effects on the static response function (Sec. 1.4), instead, are rather strong, as it has been discussed
in the context of the electron gas [77, 132, 133] and in PNM [75, 76]. The free FG response itself fluctuates
significantly as the particle number changes (see Fig. 7.3), as a consequence of the discrete momentum shell
structure of the finite system [80, 133], see also Ch. 7. As only discrete momenta are allowed in the finite
system, the finite-A response looks rather different from the continuous TL response and exhibits a peculiar
non-monotonic behavior at low q. The convergence to the TL is slow, as seen in cases where the TL response
is available analytically, such as the free FG [80] and Skyrme-like EDFs [79, 80]. These considerations have
motivated proposals to extrapolate the finite-A calculations of the interacting system to the TL. Recipes have
been proposed in the context of Monte Carlo simulations of the static response, see e.g. Refs. [76, 77, 133].
For our program of matching DFT and ab initio, it is fundamental to be able to perform the calculations in the
two frameworks as consistently as possible. As explained above, the EOS poses no substantial problems, but
the situation concerning the static response, which is related to the gradient terms of the EDFs, is challenging.
Thus, we are faced with a choice. A possibility is to work in the TL. However, the accuracy of the formulas
to extrapolate from the ab initio calculations for the finite systems to the TL is uncertain. The other route, first
explored by Gezerlis and collaborators [76, 79], consists in developing a finite-A DFT approach for perturbed
matter (Sec. 2.3) that can be compared more directly to the outcomes of ab initio methods that adopt the same
basic scheme and particle numbers [80]. In our work, we choose the second approach.

A way to improve the convergence of many-body calculations towards the TL has been proposed in replac-
ing PBCs with more general boundary conditions, named twist-averaged boundary conditions (TABC) [83,
126, 134, 135]. The idea of TABC is that of breaking the multiplicity that characterizes the PBC momentum

https://pythoninchemistry.org/sim_and_scat/important_considerations/pbc.html
https://pythoninchemistry.org/sim_and_scat/important_considerations/pbc.html
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Figure 1.4: Two-dimensional example of momentum eigenstates with PBC and TABC. PBC states (circles) have coordinates
Lk = 2π(nx, ny), while TABC states are located at Lk = 2π(nx, ny)+(θx, θy), with twist angles θx and θy between 0 and π.
Dashed circles denote the sets of k points that satisfy |k|2 = (2π)2

L2 |n|2 with |n|2 = n2
x + n2

y . Note that several PBC k points
lie on each of the circles, i.e. they are degenerate in energy. By contrast, TABC momenta have all different magnitudes, i.e.
they are non-degenerate. See also text.

states (1.12). A larger set of k points is thus obtained, and a closer approximation to the continuum limit can be
found for quantities such as the momentum distribution, the kinetic energy, and the total energy. The formal
motivation behind TABC is that, in general, a periodic wave function need not be invariant under translation,
but can acquire a constant phase factor, i.e. ψk(x) = eiθiψk(x + Lêi), where êi are the unit vector and θi three
arbitrary angles. Under this condition, the momentum eigenstates are given by

k =
1

L
(2πn+ θ) . (1.14)

In general, −π ≤ θi < π, but for time-reversal-invariant systems, 0 ≤ θi < π [126]. Momentum states under
PBCs and TABCs are shown for simplicity in the two-dimensional case in Fig. 1.4. The momentum states
(1.14) are in general non-degenerate if the three angles are different. This allows to treat in principle a different
number of particles for each spin-isospin species in the system, and it has been exploited e.g. to study the
spin susceptibility in PNM for arbitrary spin polarizations [135]. Importantly, by averaging over the twist
angles shell effects are much reduced for both the free FG [133] and interacting fermion systems [126], and a
smoother convergence to the TL is achieved ([135], Fig. 1). Moreover, a smaller number of particles is necessary
to simulate the infinite system. In QMC methods, there is a distinct advantage, since sampling the twist angles
is a relatively cheap operation [135]. In basis expansion methods such as coupled-cluster [126] or SCGF [83],
TABCs are costly because many separate calculations must be performed and averaged. A possibility is to
run a single TABC calculation with a specific choice of twist angles. This procedure is called special point
TABC (sp-TABC). The optimal angle is determined e.g. minimizing the discrepancy between the HF energy
computed in the TL and the HF energy of the finite-A system as a function of θ [83, 126], and has proved
effective in approaching the TL when compared to full TABC averages [126]. TABCs will be further discussed
in Chapter 4 for SCGF.
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Figure 1.5: Pictorial representation of perturbed nuclear matter simulated with a finite box. The external potential (red) and
the density profile (blue) are shown in normalized units (v(z)/vq and ρ(z)/ρ0, respectively) as a function of the position
(in units of the box size, z/L). The wave number is given by q = 2π/L, i.e. both the potential and the density complete one
period inside the box. The density of the homogeneous system is represented by the dashed horizontal line. Peaks in the
external potential are associated with depletions in the density and vice versa. See text for details.

1.4 Static response of infinite matter

In this Section, the theory of the response of homogeneous matter to an external static perturbation is intro-
duced. References on the subject include Refs. [34, 75, 77, 78, 136] and our paper [80]. App. B complements
this discussion.

The physical picture of the static response problem is to understand how a many-particle system reacts
when an external perturbing potential is applied [77–79]. In particular, we consider a sinusoidal (monochro-
matic) potential coupled to the density that acts on a homogeneous system. As a consequence, a density
fluctuation is induced, as shown in a pictorial representation in Fig. 1.5. Perturbed matter is realized exper-
imentally in cold atomic systems [137, 138]. Perturbed nuclear matter is a theoretical model, that however
potentially contains information on inhomogeneous phases of nucleonic matter such as those found in the
inner crust of neutron stars [29, 75, 120]. Besides its intrinsic interest as a many-body system, information on
the static response can be used as an ingredient to construct EDFs that include gradient corrections based on
ab initio theory, as we discuss in Sec. 2.2.

A more formal description of the response problem is now given. Let us consider a system with uniform
g.s. density ρ0, described either by a Hamiltonian Ĥ or an EDF. We denote the g.s. by |Ψ0⟩. A static potential
v(x) coupled to the total density is then turned on. In order to satisfy the PBCs, v(x) is taken periodic. The
density and energy of the g.s. of the perturbed system are called ρv(x) and E[v], respectively. We highlight
the functional dependence of both the total energy and the density on the external potential. If the potential
is weak enough, its effect can be treated perturbatively [34]. The density fluctuation induced by v(x), in
particular, is linear in the external potential and is written as follows:

δρ(x) = ρv(x)− ρ0 =

∫
dx′χ(x,x′)v(x′). (1.15)

The static response function χ(x,x′) has been introduced. This can also be found as the zero-frequency limit
of the density-density retarded correlation function or dynamical response function χ(x,x′, ω), that is defined
as the Fourier transform of the real-time response function χ(x,x′, t− t′) [34, 115], namely

χ(x,x′, ω) =

∫
dte+iωtχ(x,x′, t), (1.16)

where

χ(x,x′, t− t′) = − i
ℏ
θ(t− t′) ⟨Ψ0|[ρ̂(x, t), ρ̂(x′, t′)]|Ψ0⟩ . (1.17)
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In the previous relation, ρ̂ is the density operator, |Ψ0⟩ is the wave function of the unperturbed system, θ is the
step function [θ(t) = 1 if t > 0 and zero otherwise] and [,] denotes the commutator of two operators. We stress
that χ depends exclusively on the properties of the unperturbed system. In homogeneous matter, the response
is a function only of x− x′, i.e. χ(x,x′) = χ(x− x′). Standard second-order perturbation theory implies that χ
is a negative quantity.

While a generic periodic function v(x) is a superposition of plane waves, in the following, we consider
without loss of generality a monochromatic potential oscillating at a given wave number q, namely

v(x) = vqe
iq·x + c.c. = 2vq cos (q · x) . (1.18)

Thus the density fluctuation induced by the perturbation (1.18) is monochromatic too and is given by

δρ(x) = 2ρq cos (q · x) , (1.19)

where the amplitude ρq is linear in vq , i.e.

ρq = χ(q)vq, (1.20)

and χ(q) is the Fourier transform of χ(x,x′), see Eq. (B.8). As an effect of applying the external potential of
the type (1.18), the density of the system assumes a sinusoidal profile with the same periodicity as that of the
static perturbation. Due to Eq. (1.20) and χ(q) < 0, maxima in the potential correspond to depletions in the
density profile, and vice versa, as shown also in Fig. 1.5. The energy of the perturbed system is quadratic in
the external potential. In App. B, we derive that the energy per particle is given by [77]

δev = ev − e0 =
χ(q)

ρ0
v2q . (1.21)

The question is now how to compute the response function in practice. For generalized Skyrme EDFs [124]
and Gogny and Nakada EDFs [139], for example, the response in the TL can be determined analytically (App.
C.3). An alternative for studying χ(q) is provided by exploiting Eqs. (1.20) or (1.21). The strategy to determine
χ(q) for a uniform system at a given density ρ0, and with a given particle number, is the following. For a given
(quantized) momentum q, multiple calculations of the g.s. of the perturbed system are performed for different
values of the strength vq of the external potential (1.18). Then χ(q) can be extracted from the amplitude of
the density fluctuations [Eq. (1.20)] or from the energies [Eq. (1.21)] as a function of vq , for sufficiently small
vq . This strategy has been applied in several contexts, e.g. Refs. [75, 77, 78, 140], and provides a relatively
straightforward way to determine the static response function numerically.

In the following, we will extract χ(q) by interpolating energies with the more general formula [75, 133]

δev = ev − e0 =
χ(q)

ρ0
v2q + C4v

4
q (1.22)

which takes into account higher-order contributions. In App. B.5, we discuss the extraction of χ(q) from fits
of the density fluctuations via Eq. (1.20). Therein, we also show and explain why very close results are found
using the two techniques.

Second-order perturbation theory, or equivalently the spectral representation of the dynamical density re-
sponse χ(q, ω), can be employed to derive a formula that relates χ(q) to the excited states of the homogeneous
system [34, 115]. For the case of the spin- and isospin-saturated A-fermion FG, the response χ0,A at zero
temperature is given by [34, 133]

χ0,A(q) = −
4mg

ℏ2Ω
∑
k occ

k+q unocc

1

(k+ q)
2 − k2

, (1.23)

where the sum extends over the occupied momentum states k, and one must include only terms for which
k + q is unoccupied. Consistently with the assumptions of Sec. 1.3, we write k = 2π

L n and take q quantized
and parallel to the z direction, i.e. q = qẑ = 2π

L p ẑ, with p integer. Then Eq. (1.23) is expressed as

χ0,A(q) = −
mg

Lπ2ℏ2
∑
n occ

1

p2 + 2pnz
. (1.24)

This formula is straightforward to evaluate: we determine the occupied states of the A-particle FG g.s. once
and then, for each value of q, we simply perform a sum over these states. In the TL, nk = θ(qF − k), 1

Ω

∑
k −→
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∫
dk

(2π)3 [115] and the static response becomes the well-known Lindhard function at zero-frequency [141]

χ0(q) = −g
mqF
2(ℏπ)2

f

(
q

2qF

)
, (1.25)

f(k) =
1

2

(
1 +

1− k2

2k
log

∣∣∣∣1 + k

1− k

∣∣∣∣) . (1.26)

The f(k) function (1.26) has the following notable limits:

f(k −→ 0) = 1, f(k −→ 1) = 1/2, f(k −→ +∞) = 0. (1.27)



CHAPTER 2

Density functional theory

Density functional theory (DFT) is one of the leading approaches in nuclear structure, that stands out for its
versatility and for being applicable to the whole nuclear chart [5, 6, 32]. In the Kohn-Sham (KS) scheme, DFT
maps the many-particle problem to a single-particle (s.p.) self-consistent (s.c.) problem that is based on the
concept of an Energy Density Functional (EDF), i.e. on expressing the total energy of a generic system as a
functional of its (generalized) densities [5, 6, 142]. DFT is rather efficient from a computational point of view
and allows to study large systems that would be out of reach of ab initio techniques. Originally introduced
for electronic systems and targeted to the g.s. [34, 142, 143], it has found countless application in quantum
chemistry [144–146], cold atoms [137] and nuclear physics [5, 6, 32, 35, 44, 69]. In the latter case, it represents
the only microscopic approach that allows to cover almost the whole nuclear chart [5, 6, 44], with the partial
exception of very light nuclei, and to study both the g.s. and excited states. Giant resonances, for example,
can be studied with the random phase approximation (RPA) method and its extensions built on top of a DFT
description, see Refs. [36, 37] and references therein. Time-dependent DFT is presented in Refs. [35, 147].
Nuclear fission studies conducted with DFT are reviewed in Refs. [40, 41], and the impact of DFT predictions
on r-process nucleosynthesis is discussed in e.g. Refs. [148, 149]. DFT is also applied to infinite nuclear matter
[38] and is the only microscopic approach that can be used to study clustered matter in neutron stars [39, 122].

In principle, DFT provides an exact formulation of the many-body problem based on the Hohenberg-Kohn
theorems [44, 144, 150], which state that all observables, starting from the total energy, can be expressed in
a unique way as a functional of the one-body density. (Actually, in practice the EDF is written in terms of a
few generalized densities, such as spin densities and kinetic densities [151].) However, these theorems give
no hints about the actual form of the EDF. Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [42] and non-relativistic [5, 6, 32] nuclear EDFs are
designed empirically. A reasonable ansatz for the functional form is chosen and its actual parameters are
fitted on experimental observables such as radii and masses of finite nuclei, or pseudo-observables such as the
saturation density of symmetric nuclear matter [6, 43]. The available EDFs are overall successful [5, 44], e.g.
the experimental binding energies are reproduced on average within 1-2 MeV and charge radii within 0.01-0.02
fm. However, it is unclear how to further improve the performance of traditional EDFs [48, 55]. Existing EDFs
are affected by uncontrolled extrapolation errors when applied to systems for which scarce data are available,
like neutron-rich nuclei or superheavy nuclei [5, 45, 54]. The motivation of this work is to try to overcome these
limitations by exploring a new strategy for constructing nuclear EDFs constrained by ab initio theory (Sec. 1.1).

This Chapter is structured as follows. In Sec. 2.1, we present the general framework of nuclear DFT. Origi-
nal developments are presented in the next two sections. In Sec. 2.2, we describe our research on constructing
ab initio-based EDFs. Sec. 2.2.1 describes local density approximation (LDA) EDFs. Gradient terms constrained
ab initio are introduced in Sec. 2.2.2, and the gradient approximation (GA) EDFs are discussed. Then, in Sec.
2.3, the solution of the DFT equations for perturbed nuclear matter simulated in a finite box is presented.
Further details and derivations are given in App. C.

2.1 Overview of nuclear DFT

In this section, we give an overview of nuclear DFT [5, 6, 32]. DFT is a powerful method for tackling the
quantum many-particle problem, as in this framework an interacting system is described not in terms of its full
many-body wave function, but in in terms of the density or, in nuclear physics, a few generalized densities.
These are functions of the three spatial coordinates and are thus much simpler objects. Specifically, DFT is
based on the Hohenberg-Kohn theorems, which state that the total energy of a generic system can be expressed
as a functional of the density, and the exact g.s. is determined by minimizing the energy functional. In the
Kohn-Sham (KS) scheme [5, 142], DFT boils down to solving a set of s.c. s.p. Schrödinger equations. This
is a significant advance both from a computational perspective, as solving s.p. equations is greatly faster
than dealing with many-particle equations, and from a physical point of view, as a picture of independent
particles moving in a (s.c.) mean field is retrieved. The complexity of the many-body problem, however,
cannot disappear, and indeed it emerges in the fact that the EDF, i.e. the functional map between the densities

11
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and the total energy, is not known exactly, and it has to be approximated somehow. This is a difficult task
in Coulomb systems, and even more so in nuclear physics, as the complexity of the nuclear force and of the
solution of the nuclear many-body problem give little analytical constraints on the form of the EDF.

The nuclear EDF approach, nonetheless, has been rather successful for decades, since the pioneering work
of Vautherin and Brink [152]. The perspective introduced in [152] is to describe nuclear problems at the mean-
field level, i.e. Hartree-Fock (HF) or Hartree-Fock-Bogoliubov (HFB), using an effective interaction, that is
tailored for this kind of methods and is meant to describe the interactions between nucleons in the medium.
The connection with the bare force is somewhat left out; in particular, it turns out that introducing a density
dependence in the interaction is essential to obtain a good description of nuclei. The interaction then is es-
sentially a tool for generating the HF(B) energy expectation value, which is then identified with the EDF E[ρ].
Several phenomenological forces have been invented over the years, such as the Skyrme zero-range interaction
and the Gogny and Nakada finite-range potentials, as well as covariant models [153], that describe nuclear sys-
tems in terms of nucleons, effective mesons and their interactions, see e.g. Refs. [5, 6, 32]. In fact, in a modern
perspective these mean-field approaches are formulated in the DFT framework, and the focus has shifted to
the construction of the EDF, rather than on the construction of the effective two-body interaction [43, 48]. Such
models are phenomenological and must be fitted on observables, such as radii and masses of stable nuclei [5,
6].

From now on, we consider the specific case of non-relativistic EDFs and, in particular, we study quasi-local
(or Skyrme-like) EDF models [6], i.e. EDFs that can be written as the integral of an energy density E(x) which
is a function of the local densities and their gradients. This is equivalent to adopting zero-range, density-
dependent NN interactions. Moreover, we specialize to time-reversal-invariant systems, such as even-even
nuclei and spin-saturated nuclear matter, and neglect pairing. Thus, applications shall be limited to magic
nuclei and some closed-subshell ones. Under these assumptions, the total energy of a generic system is written
as a functional of number density ρt(x), kinetic density τt(x) and spin-orbit density Jt(x) [6, 32] with t = 0, 1
labeling isoscalar (ρ0 = ρn + ρp) and isovector (ρ1 = ρn − ρp) quantities, and has the following structure:

E =

∫
dx E(x) = Ekin + Epot + ECoul + Eext, (2.1)

which comprises the kinetic energy, a nuclear potential energy term, a Coulomb energy term, and possibly an
external potential contribution,

Ekin =

∫
dx Ekin(x) =

∫
dx

ℏ2

2m
τ0(x), (2.2)

Epot =

∫
dx Epot(x), (2.3)

Eext =
∑
t=0,1

∫
dx ρt(x)vt(x). (2.4)

The Coulomb contributionECoul is treated in the standard local Slater approximation [154]. (ECoul is neglected
in nuclear matter calculations.) The most general form of the potential term is reported in Eqs. (48-49) of Ref.
[32]. Throughout this work Epot has the form [68]

Epot(x) =
∑
γ

(
cγ,0 + cγ,1β

2
)
ργ+1
0 (2.5)

+
∑
t=0,1

(
Cτt ρtτt + C∆ρ

t ρt∆ρt + CJt J
2
t + C∇J

t ρt∇ · Jt
)

with β = ρ1/ρ0. This structure has been introduced in Ref. [68] and represents a generalization of the typical
Skyrme-like functionals, that includes a richer density dependence. We will discuss more on this in Sec. 2.2.1.
The coefficients of the different terms are all, in principle, functions of the density, but they are set to constant
values in Eq. 2.5, as commonly done [6]. We adopt the KS scheme [5, 142], in which a description in terms of
independent particles is adopted. In practice, a set of s.p. orbitals ψj(x) is introduced, the kinetic energy term
is equal to that of a non-interacting Fermi system, and the densities are expressed as functions of the orbitals
(see App. C.2.3). The variational principle for the EDF δE = 0, is translated into a variation w.r.t. the orbitals
and the KS-DFT equations are found by minimizing the EDF w.r.t ψ∗

j (x) with the constraint of orthonormality
between the wave functions [6, 155]. The KS equations read for protons and neutrons (q = n, p) [6][

−∇ · ℏ2

2m∗
q(x)
∇+ Uq(x) + UCoul(x)δq,p + vq(x)+ (2.6)

Wq(x) · (−i) (∇× σ)

]
ψj(x) = ϵjψj(x)
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where the fields entering the equations are defined as

Uq =
δEpot
δρq

ℏ2

2m∗
q

=
δE

δτq
Wq =

δE

δJq
. (2.7)

m∗
q(x), Uq(x), and Wq(x) are called effective mass, mean field and spin-orbit potential, respectively. vq = δEext

δρq

is the external potential. These are in essence s.p. Schrödinger equations. Because the fields are functions of
the densities, the KS equation must be solved iteratively. The solution of the KS-DFT equations in finite nuclei
is well-known [6], and is performed with the skyrme rpa code [154]. Note that the KS orbitals and eigenvalues
do not have, strictly speaking, a physical meaning, and must be thought of as auxiliary quantities [142].

In infinite nuclear matter (Sec. 1.3), uniformity leads to important simplifications of Eq. (2.1). The s.p.
orbitals are simple plane waves, and the number and kinetic densities are uniform and related by [156]

τq =
3

5
k2F,q ρq =

3

5

(
3π2
)2/3

ρ5/3q . (2.8)

Moreover, the spin-orbit densities Jq , as well the derivatives of the density (∇ρq = ∆ρq = 0), vanish. Thus
only the ρ and ρτ terms contribute to the nuclear matter energy, while the gradient (ρ∆ρ), spin-orbit (ρ∇ · J)
and tensor (J2) terms are non-vanishing in non-uniform systems only, such as nuclei, neutron drops or semi-
infinite matter.

These considerations suggest the following regrouping of the potential density Epot for a generic nuclear
system [68]

Epot = Ebulk + Esurf , (2.9)

where
Ebulk =

∑
γ

(
cγ,0 + cγ,1β

2
)
ργ+1
0 +

∑
t=0,1

Cτt ρtτt (2.10)

and
Esurf =

∑
t=0,1

(
C∆ρ
t ρt∆ρt + CJt J

2
t + C∇J

t ρt∇ · Jt
)
. (2.11)

These terms are called here bulk and surface contributions, respectively. Infinite matter probes only the bulk
contributions, while surface terms are active in non-uniform systems.

2.2 Construction of the EDFs

In this Section, the construction of ab initio-based EDFs is detailed. Sec. 2.2.1 describes our LDA EDFs; attention
is devoted to the parametrization of the ab initio EOS. In Sec. 2.2.2, surface terms are added on top of LDA. The
key equations of the resulting GA EDFs are presented, and our strategy for constraining the gradient terms
using perturbed nuclear matter is discussed.

2.2.1 Parametrization of the EOS and local density approximation

The simplest way to define an EDF based on the infinite matter EOS is the Local Density Approximation (LDA)
[68, 69, 71, 142]. In LDA, one assumes that the same expression of the potential energy density valid in infinite
matter holds for non-uniform densities ρq(x) too. The only input to LDA is the EOS of homogeneous matter,
and thus information on infinite matter is directly mapped to finite systems. This approximation is well-suited
in particular for slowly varying density distributions, so that each small region of a generic (finite or infinite)
system can be treated as a piece of bulk matter [142].

As a preliminary step, a suitable parametrization for the EOS as a function of the densities must be de-
termined. First of all, it is convenient to represent the energy per particle e(ρ, β) as the sum of the kinetic
energy per particle of the Fermi gas t(ρ, β) and of a potential term v(ρ, β) [157, 158], consistently with the EDF
structure (2.1):

e(ρ, β) = t(ρ, β) + v(ρ, β). (2.12)

The kinetic energy per particle is given in the TL by [43],

t(ρ, β) =
ℏ2

2mρ

∑
q=p,n

τq =
3ℏ2

10m

(
3π2

2

)2/3
1

2

[
(1 + β)

5
3 + (1− β)

5
3

]
ρ2/3. (2.13)

In the finite-A system, instead, it is given

tA =
1

A

ℏ2

2m

∑
k occ

k2, (2.14)
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where the sum is extended over the occupied states of the finite-A Fermi gas. The kinetic energy density τq is
given in Eq. (2.8), and we have used

ρn =
1 + β

2
ρ0, ρp =

1− β
2

ρ0. (2.15)

We anticipate that in Ref. [68] we used the TL kinetic energy (2.13), while in the new fits presented in Chs. 5
and 8 we use the prescription (2.14).

Next, an ansatz for the expression of the potential energy per particle v(ρ, β) as a function of both ρ and β
must be chosen. We follow here our previous work, Ref. [68]. Due to the isospin invariance of the nuclear force,
odd powers of β vanish. Moreover, neglecting terms in β4 is deemed accurate for densities close to saturation
even for large asymmetries [38]. This quadratic dependence is adopted here, too. Presently, ab initio methods
are mostly applied to PNM (β = 1) and SNM (β = 0). Hence, the dependence on β must be extrapolated from
the limiting cases β = 0 and β = 1.

As far as the ρ-dependence is concerned, one can reasonably expect that a limited number of powers of ρ
should suffice for reproducing the theoretical EoS, see e.g. Refs. [88, 157]. While a Taylor expansion in powers
of the density is simple and useful [71, 157], we argue that a better option is to postulate that the potential
term be a polynomial of the Fermi momentum kF , or equivalently of ρ1/3 [158, 159]. Heuristic motivations
are the following: from a practical perspective, it grants greater flexibility than a ρ-expansion, to which it may
eventually reduce as a special case. Also, it is known on an empirical basis that local EDFs need fractional
powers of the density to get satisfactory predictions of the nuclear incompressibility [32, 160], thus using kF
instead of ρ as an expansion variable is also in keeping with this latter necessity. Lastly, if the EOS is thought as
arising from a diagrammatic expansion, then powers of the Fermi momentum should appear naturally [158,
161].

Combining the above assumptions, one can then write

v(ρ, β) =
∑

γ=1/3...6/3

cγ(β)ρ
γ =

∑
γ=1/3...6/3

[
cγ,0 + cγ,1β

2
]
ργ (2.16)

where cγ,0 ≡ cγ(β = 0) and cγ,1 ≡ cγ(β = 1)− cγ(β = 0). Up to this point, the model is still quite general. The
only condition is that γ’s have to be of the form integer/3. Now, we do not choose the potential a priori [158],
but, in order to determine how many terms and which powers should enter the potential, we perform a model
selection procedure. In practice, we consider all possible polynomials with at most six terms and γ not larger
than 6 (Eq. (2.16)), fit each model to the data, and finally select the function that best reproduces the ab initio
data. The following convention is employed: each model is identified by the exponents of the powers of kF or
ρ

1
3 it contains. For example, we refer to the polynomial c 2

3
ρ

2
3 + c 5

3
ρ

5
3 + c2ρ

2 by (2, 5, 6). Each model is fitted on
the SNM and PNM data points and the optimal parameters are determined by minimizing the mean squared
error (MSE) [162, 163]

σ2 (cγ,0, cγ,1) =
1

Ndata

Ndata∑
i=1

[
e(ρi, βi)− ei

]2
. (2.17)

Cross-validation is used to evaluate the out-of-sample error [163, 164], which we use to rank the different
models. This is a more robust measure of goodness than the fit MSE or χ2 [162]. The statistical analysis has
been performed with the scikit-learn [165] and Minuit [166, 167] libraries.

Once we have interpolated the nuclear EOS, LDA provides the following expression for the bulk energy
density Ebulk(x):

Ebulk [ρ(x), β(x)] = ρ(x)v [ρ(x), β(x)] . (2.18)

The LDA EDFs read
ELDA = Ekin + Ebulk + ECoul (2.19)

and Eq. (2.6) simplifies, as m∗ = m, W(x) = 0 and Uq(x) = U bulkq (x), where

U bulkq (x) =
δEbulk
δρq(x)

= (2.20)∑
γ

[
(γ + 1) cγ,0 +

(
(γ − 1)β(x) + 2τz

)
β(x) cγ,1

]
ργ(x),

for the potential term (2.16) and τz = +1 for neutron and τz = −1 for protons. See App. C.1.1 for the derivation.
App. C.1.3 is devoted to the concept of rearrangement energy of the EDF.

We anticipate that it is known that LDA is not sufficient to accurately describe nuclear systems [69]. Even
for electronic DFT, where LDA is a solid starting point, it is understood that gradient terms are necessary
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for quantitatively accurate predictions [144]. As shown in Ref. [68] and Sec. 6.1, the LDA EDFs based on
our chosen Hamiltonians give rather different outcomes. Hence, to better gauge the LDA, we also perform a
preliminary analysis of a set of EDFs that include surface terms. These so-called gradient approximation (GA)
functionals are the subject of the next section.

2.2.2 Gradient approximation

In the previous section, we discussed how to use the LDA scheme to define an EDF based on ab initio calcula-
tions of the EOS of homogeneous nuclear matter. The LDA EDF is only dependent on the number densities,
but for a realistic description of nuclei it is essential to include surface terms that are a function of the gradients
of the density, as well as spin-orbit contributions. However, in uniform matter∇ρ and J vanish, and only con-
tribute to inhomogeneous systems. Empirical EDFs directly use experimental data of stable nuclei as data set
to constrain the surface term. In this work we explore an alternative path, in which perturbed nuclear matter
is studied ab initio and employed as a source of information to fix the GA EDFs (see Sec. 1.1). First, the key
expression for the GA functionals is shown; then, we further motivate our approach to constrain the GA EDFs
ab initio.

Our GA EDFs have the following form:

EGA = ELDA + Esurf , (2.21)

where

Esurf =

∫
dx

[ ∑
t=0,1

(
C∆ρ
t ρt∆ρt + C∇J

t ρt∇ · Jt
)]
. (2.22)

The parameters C∆
0 , C∆

1 , C∇J
0 and C∇J

1 are introduced and are all assumed to be density-independent con-
stants. These parameters are measured in MeV fm5; from now on, for simplicity, the dimension is omitted.
Note that in [68] we used a one-parameter spin-orbit contribution and a slightly different notation. The ex-
pressions of Ref. [68] are easily recovered by setting C∆ρ

0 = − 3
4W0 and C∆ρ

1 = − 1
4W0. We have decided not to

include effective mass (ρτ ) terms. Indeed, in homogeneous matter they cannot be distinguished from powers
of the density, see Eq. (2.8). The mean field equations (2.6) hold, withm∗ = m andUq(x) = U bulkq (x)+Usurfq (x),
where

Wq(x) =
δEsurf
δJ(x)

= −
(
C∇J

0 ∇ρ0 + C∇J
1 ∇ρ1τz

)
, (2.23)

Usurfq (x) =
δEsurf
δρq

=

= (2C∆ρ
0 ∆ρ0 + 2C∆ρ

1 ∆ρ1τz) + (C∇J
0 ∇ · J0 + C∇J

1 ∇ · J1τz) (2.24)

and Usurfq is derived in App. C.1.2.
Surface terms are essential to achieve a realistic description of nuclei improving upon LDA. In Ref. [68],

we have performed a preliminary analysis of the GA EDFs. To tune the surface terms, a grid search on the
three parameters C∆

0 , C∆
1 and W0 is carried out, although full-fledged fits will be necessary in later works. To

benchmark the quality of the EDF predictions, the root mean square (rms) errors of the binding energies and
the charge radii for the GA EDFs,

σE(C
∆
0 , C

∆
1 ,W0) =

√∑nE

k=1

(
Ethk − E

exp
k

)2
nE

, (2.25a)

σrch(C
∆
0 , C

∆
1 ,W0) =

√∑nr

k=1

(
rthk − r

exp
k

)2
nr

. (2.25b)

are evaluated with respect to the experimental radii of 40Ca, 48Ca, 132Sn and 208Pb and the binding energies of
40Ca, 48Ca, 90Zr, 132Sn and 208Pb [168].

We now motivate our strategy for constraining the GA EDF ab initio. The simplest inhomogeneous model
system one can study is obtained by perturbing a reference homogeneous system by an external perturbation.
Neutron drops, i.e. systems of neutrons confined by a harmonic or Woods-Saxon trap, have been studied with
QMC in e.g. Refs. [73, 129, 138]. It has been suggested that the energies of these systems may provide con-
straints on the isovector gradient terms of the nuclear EDF [73]. We remember that, in general, inhomogeneous
nuclear matter is relevant for understanding the inner crust of neutron stars, where a lattice of neutron-rich
nuclei coexists with a superfluid neutron gas [29, 138]. However, droplets strongly break the translational in-
variance of homogeneous matter. Plane waves are no longer a good starting point for describing the system,
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and the reference Slater determinant must be built out of spherically symmetric orbitals. Instead, applying a
small sinusoidal perturbation to homogeneous matter induces a density fluctuation, but at the same time, it
involves a minimal breaking of translational invariance and is the model system that offers the closest con-
nection to uniform matter. App. B.2 presents a formal argument, which was contained in essence already in
the original paper by Hohenberg and Kohn [150], that relates the gradient expansion of the EDF to the static
response function of uniform matter.

Also, there are several examples in the literature that show the relevance of the static response to connect
a first-principle description of many-body systems to an EDF description, or more generally to find reliable
EDFs. In Ref. [137], for example, an EDF for the bosonic 4He liquid is introduced, and it is constrained to
reproduce not only the EOS, but also the static response at low momentum, that for this system could be
accessed experimentally. A significant improvement in the description of inhomogeneous systems, such as
helium droplets or surfaces, is thus achieved. In Ref. [169], a QMC study of the unitary Fermi gas subject to
a periodic perturbation has been performed. General arguments essentially fix the expression of the EDF for
this system [170, 171]. Then, the free parameters are constrained using the QMC calculations, and the resulting
EDF is applied to predict the energies of systems of trapped unitary fermions. Again, the importance of the
static response in fixing the long-wavelength properties of the EDF is highlighted. The electron gas at finite
temperature in the regime of warm dense matter (WDM) has been studied extensively with both Monte Carlo
techniques and DFT in recent years, see e.g. Refs. [78, 133, 172–174]. The static and dynamic response of the
homogeneous gas has been computed, and parametrizations of the local field factor in a range of conditions
have been determined and employed as input to DFT models [78, 172]. These works extend the seminal results
at zero temperature by Moroni et al. [77, 132]. In nuclear physics, the study of the static response of PNM has
been pioneered using the AFDMC and DFT methods by Gezerlis et al. [74–76, 79]. While it was suggested to
use the ab initio response to modify the isovector gradient terms of the EDF [75], more in-depth studies were
not pursued.

To motivate the interest in using the information coming from the ab initio static response to constrain the
surface terms of the EDF, and thus build ab initio-based EDFs beyond LDA. An important point to tackle is
that the available ab initio calculations of the response have been performed with AFDMC and use a finite
number of particles. To constrain the nuclear EDF, two alternatives are possible. One choice is to extrapolate
the response to the thermodynamic limit. The other possibility is to match DFT calculations in the finite-A
system with the ab initio pseudodata. (We remind, as already mentioned, that an implicit assumption is that
gradient terms are relatively insensitive to the FS effects, and thus they can be reliably extracted in this way.)

The first choice would allow easing the fit procedure significantly, as analytical formulas for the TL response
of Skyrme-like functionals are known [124] (App. C.3). However, despite the efforts in developing extrapo-
lation formulas [75, 76] and their overall success in electron gas calculations [77, 78] (see also App. B.3), the
accuracy of a given approximation scheme remains difficult to gauge in the nuclear matter case. For example,
one could perform calculations at different particle numbers and check whether the extrapolated results are
indeed roughly independent on A, as it has been shown e.g. for WDM [78, 133]. However, the computational
cost of AFDMC and the small maximum number of nucleons that are accessible make such benchmarks rather
demanding, and so far they have not been performed. Also, the nuclear interaction is much more compli-
cated than the Coulomb force, and it is not obvious that considerations that hold for electronic systems may
be directly translated to nuclear systems. Therefore, we have decided to stick to the second choice, and a DFT
approach for simulating infinite matter in a finite box is detailed in Sec. 2.3.

In short, there exist physically motivated recipes for extrapolating the static response to the TL [75, 76], but
their reliability is not known at the moment. Therefore, we deem that a more robust strategy is to calculate per-
turbed nuclear matter with ab initio and with DFT using consistent schemes, i.e. using the same discretization
of the continuum based on using a finite number of particles in a box and PBCs.

We mention in passing that another possibility to control FS effects would be to employ TABC. This has
been done for example in Refs. [135] to study the spin susceptibility of PNM. While technically involved and
even more demanding computationally, it would provide possibly the most elegant solution to the problem.
We consider this as an interesting project for the future.

2.3 Solution of DFT in a periodic box

In this Section, we discuss in detail the solution of the DFT problem for a finite number of nucleons enclosed
in a cubic box subject to PBCs (see Sec. 1.3). This presentation is largely based on our paper Ref. [80]. Further
details can be found in App. C.2.

We focus on spin-saturated PNM and SNM, which are the most important cases for nuclei and neutron
stars [38]. Moreover, SNM and PNM can be treated as two-component (spin up/down) fermionic systems in
a unified way. The case of asymmetric matter (ρn ̸= ρp, N ̸= Z) would require some limited extensions of the
formalism and is left for future studies. From now on, for the sake of simplicity in the notation the isospin
labels (q or t) are suppressed. Our method extends the one introduced in Ref. [79], which was limited to PNM
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and neglected spin-orbit terms.
We consider an external potential v(z) that is a function of the z coordinate only. Thus, translational invari-

ance is broken in the z direction but still holds in the xy plane. To respect PBCs, v(z) must be periodic as well.
Moreover, we adopt the spin- and isospin-independent sinusoidal potential

v(z) = 2vq cos (qz) , (2.26)

with q being an integer multiple of qmin = 2π/L. The s.p. wave functions (in 2-spinor notation), then, have the
following structure:

ψn,λ(x) =
eikxx√
L

eikyy√
L

(
ϕn,λ(z, ↑)
ϕn,λ(z, ↓).

)
(2.27)

PBCs imply that kx and ky are quantized in units of 2π/L, i.e. kx = 2π
L nx and ky = 2π

L ny , and ϕn,λ(z) is
periodic, i.e. ϕn,λ(z+L) = ϕn,λ(z). The states are labeled by the three integer numbers n, plus a spin quantum
number λ = ±1 whose precise meaning will be discussed below.

The general DFT equations (2.6) are now specialized to our case. We first note that the fields are functions
of the z coordinate only: m∗ = m∗(z), U = U(z) and W = W (z)ẑ. (The detailed expressions of the EDF and
the fields are reported in App. C.2.1.) For later convenience, we define the transverse momentum as

knxny = kxx̂+ kyŷ =
2π

L
(nxx̂+ nyŷ) , (2.28)

whose magnitude is given by

knxny
=
√
k2x + k2y =

2π

L

√
n2x + n2y. (2.29)

Now, we discuss the spin-orbit term of Eq. (2.6) with the help of ∂ψn,λ

∂x = ikxψn,λ and ∂ψn,λ

∂y = ikyψn,λ:

W(x) · (−i) (∇× σ)ψn,λ(x) = (2.30)
W (z) (−i) (∂xσy − ∂yσx)ψn,λ(x) =

W (z) (kxσy − kyσx)ψn,λ(x) =

W (z)Knx,ny
ψn,λ(x).

In the last equality, we have introduced the spin matrix Knx,ny = kxσy − kyσx, which reads explicitly as

Knx,ny
=

(
0 −i(kx + iky)

i(kx − iky) 0

)
. (2.31)

Since Knx,ny is not diagonal, it is clear that the states ψn,λ cannot be eigenstates of σz . While one possibility
would be to solve the coupled DFT equation for the spin-up and -down components, a better choice is to take
the ψ’s to be eigenstates of Knx,ny , as suggested in Ref. [175]. It is easy to verify that Knx,ny has eigenvalues
±knxny

. Thus we impose

Knx,ny
ψn,λ(x) = λknxny

ψn,λ(x), (2.32)

where λ = ±1. Importantly, since Knx,ny
is independent of the position, Eq. (2.32) implies that the orbitals

(2.27) can be decomposed into the product of a single spatial orbital, function of the position z, and a constant
spinor, namely

ψn,λ(x) =
eikxx√
L

eikyy√
L
ϕn,λ(z)χnx,ny,λ. (2.33)

The spinors χnx,ny,λ satisfy
Knx,ny

χnx,ny,λ = λknxny
χnx,ny,λ, (2.34)

where

χnx,ny,λ =
1√
2

(
1

λeiϕ

)
. (2.35)

In the last expression, the angle ϕ is given by ϕ = arctan (ny/nx).
Physically, the states ψn,λ have a definite spin projection in the direction of the transverse momentum (2.28),

which is not fixed but depends on the numbers nx, ny . The label λ thus can be interpreted as a spin projection
or helicity quantum number.
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The kinetic term can be manipulated along the same lines and is discussed in App. C.2.2. Finally, applying
Eqs. (C.23), (2.30) and (2.32) to Eq. (2.6), we find the following one-dimensional equations for the spatial orbital
ϕn,λ(z):

− d

dz

(
ℏ2

2m∗(z)
ϕ′n,λ(z)

)
+ (2.36)(

U(z) + v(z) + λknxny
W (z) +

ℏ2

2m∗(z)
k2nxny

)
ϕn,λ(z) =

ϵn,λϕn,λ(z).

These are s.p. state-dependent Schrödinger equations that must be solved self-consistently due to the density-
dependence of the fields. For a given set of quantum numbers nx,ny and λ, nz labels the eigensolutions ordered
by increasing s.p. energies ϵ. The z coordinate is restricted to the symmetric interval

[
−L2 ,

L
2

]
.

We note that due to time-reversal invariance, that holds if we consider the spin-independent potential
(2.26), the eigenvalues ϵn,+1 and ϵn,−1 are degenerate, while the λ = ±1 spatial orbitals are different. In the
special case of homogeneous matter (v = 0 and ρ(z) = ρ0), though, the spin-orbit field W (z) vanishes [see Eq.
(C.20)], and thus the equations for the spin-orbit partners λ = ±1 are identical and so are the orbitals, namely
ϕn,+1 = ϕn,−1. As a consequence, the spin-orbit density vanishes too [Eq. (C.26)] and thus uniform matter
is insensitive to spin-orbit. In passing, we also observe that the energy of a spin-saturated and closed-shell
system is invariant when the sign of the spin-orbit coefficient is flipped, C∇J −→ −C∇J . Indeed, the effect of
this transformation is that of swapping the λ = 1 and λ = −1 states in Eq. (2.36) and, if an equal number of
spin states is occupied, all the densities, including J(z), remain unchanged, and so does the total energy.

We now describe how the Schrödinger equation (2.36) is solved, how the many-particle g.s. of the system
is constructed, and how the s.c. the loop is dealt with. Due to the intrinsic periodicity of the systems under
study, expanding Eq. (2.36) in the plane waves basis (see e.g. Refs. [142, 176]) allows solving the problem
very efficiently. Few tens of plane waves are typically enough to find converged results even for moderately
strong perturbations (see Fig. 7.6); by contrast, the finite-difference approach used in Ref. [79] requires a mesh
of several hundred points at least and a much more time-consuming diagonalization. The orbitals are Fourier-
expanded as ϕ(z) = 1√

L

∑
k cke

ikz where again k = 2π
L n and the Schrödinger equation is recast into matrix

form, namely ∑
k′

(
h̃n,λ

)
k,k′

ck′ = ϵn,λck, (2.37)

where
(
h̃n,λ

)
k,k′

is the Hamiltonian matrix in the plane waves basis and is derived in App. C.2.4.

Nuclear DFT is based on an independent-particle picture and the many-particle g.s. configuration is found
by occupying the lowest A energy levels of the system. To determine them, Eqs. (2.36) are solved for several
different combinations (nx, ny), and separately for the two spin states λ [79]. Then, the solutions are collated
and the lowest-energy states are filled up with A/2 spin-up and A/2 spin-down particles. (We remind that the
discussion is limited to spin-saturated systems.) Energy levels are degenerate, since nx and ny only enter Eq.
(2.36) in the combination knxny ∝ n2x + n2y , so that inverting the sign of nx, ny or both, or exchanging the two
numbers, leaves the equation invariant. Such degeneracy gnx,ny

can be exploited to reduce the computational
load of the method, since we can restrict ourselves to the pairs (nx, ny) with 0 ≤ nx ≤ ny ≤ nmax. It is good
practice to choose at first a large value for nmax, though the following argument, which generalizes that of Ref.
[79], allows to stop the search over the (nx, ny) pairs sooner. Indeed, we observe that knxny enters Eq. (2.36) in
the combination λknxny

W (z) + ℏ2

2m∗(z)k
2
nxny

. This contribution is positive when knxny satisfies the inequality

knxny > k̄nxny = max
z

(
−λ2m

∗(z)W (z)

ℏ2

)
. (2.38)

Then, provided that knxny
> k̄nxny

, the lowest eigenvalue of Eqs. (2.36) increases as knxny
increases. Now,

while one is iterating over the combinations (nx, ny) (which must have been sorted according to increasing
values of n2x + n2y), and separately for λ = +1 and -1, one checks whether the lowest eigenvalue ϵnx,ny,0,λ is
greater than the energy of the firstA/2 lowest-energy states found so far. In that case, the cycle can be stopped,
since we are guaranteed by Eq. (2.38) that the many-nucleon g.s does not receive contributions from higher
n2x + n2y .

Once the occupied orbitals and the corresponding s.p. energies have been found, the total energy and the
densities (App. C.2.3) of the system are computed. The total energy is evaluated in two ways, i.e. as an integral
of the energy density,

E = L2

∫ L/2

−L/2
dzE(z), (2.39)
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and using

E =
1

2

T +
∑
j

ϵj

+ Erea. (2.40)

The rearrangement energy Erea and the energy density E(z) are given in App. C.2.1. The expressions (2.39)
and (2.40) must match when they are evaluated on the g.s. and this provides a strong check on the correctness
of the method and its convergence.

A crucial aspect of DFT is that the potential is itself a functional of the densities. Therefore, a s.c. solution
to the problem must be looked for [6]. At each iteration i of the s.c. loop, the densities are determined for the
current values of the fields, as described above. Then new fields are generated by linearly mixing the old fields
with the ones evaluated on the newly obtained densities ρ(i) [154], namely

U (i+i) = αU (i) + (1− α)U
[
ρ(i)
]

(2.41)

and similar relations forW and ℏ/(2m∗). α is a mixing parameter; to achieve convergence, it is safe to be rather
conservative, e.g. we choose α = 0.8− 0.9 at the beginning and then gradually decrease it as iterations go by.
At the beginning (i = 0), the densities are initialized at the uniform matter values ρ(z) = ρ0, τ(z) = 3

5ρ0q
2
F and

J(z) = 0 and the fields are determined accordingly.
The s.c. procedure is stopped if two conditions are met: the energies between iterations i and i− 1 and, at

the same time, the two formulas (2.40) and (2.39) for the energy at iteration i, agree within a chosen tolerance.
Thresholds of the order of 0.1-1 keV per nucleon can be obtained usually in a few tens of iterations. Combining
linear mixing and two convergence conditions makes our approach rather robust.





CHAPTER 3

Quantum Monte Carlo methods

Quantum Monte Carlo (QMC) methods are a prominent class of ab initio many-body approaches [17, 18, 177–
180]. The common ground of all QMC variants is that they are stochastic methods, which employ Monte
Carlo sampling techniques to reduce the computational cost needed to solve the many-particle Schrödinger
equation. All Monte Carlo observables are characterized by statistical error bars, and the possibility of drawing
theoretical predictions with controlled uncertainties is provided.

QMC is rather general and has been widely employed to study a variety of many-body systems. A few
representative systems that have been studied with QMC include the homogeneous electron gas at zero- [77,
181] and finite-temperature [78], atoms and molecules [182], the unitary Fermi gas [138, 169] and, in nuclear
physics, both finite nuclei and infinite nuclear matter [17, 18, 179]. Many other examples are reported e.g. in
Refs. [8, 17, 77, 180, 183, 184]. Among the variety of QMC algorithms, we concentrate on the coordinate-space
Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC) for fermions in real space and outline their
use in nuclear theory. In VMC, an ansatz for the ground state (g.s.) wave function is chosen and its parameters
are optimized by minimizing the expectation value of the Hamiltonian; Monte Carlo quadrature techniques
are used to evaluate the multidimensional integrals. The variational principle ensures that an upper bound to
the g.s. energy is found. On the other hand, DMC is an exact method that allows in principle to find the true
g.s. of the system, which is obtained starting from a trial state using a stochastic imaginary-time evolution [17,
177]. Crucial aspects of DMC are implementing a propagation scheme that makes it possible to converge to the
g.s. efficiently, as well as determining suitable initial wave functions for the problem at hand, which are often
optimized in preliminary VMC calculations. Also, it is important to understand that, while DMC for bosons is
indeed exact, DMC for fermionic systems is affected by the ”sign problem” [177, 180], that would lead, if left
uncured, to a diverging variance on the energy. Techniques to mitigate this issue do exist, but are approximate
and introduce a dependence on the trial wave function. Thus, DMC can be considered in practice as a rather
effective variational technique [180]. In recent years, VMC has attracted a renewed interest in nuclear physics
in conjunction with neural network wave functions, see e.g. Refs. [185–187]. While this approach is very
promising, the well-established DMC techniques are still the state of the art in nuclear QMC.

In general, the complexity of the nuclear Hamiltonian and its dependence on the spin and isospin degrees
of freedom make nuclear DMC methods rather complex and more computationally demanding than the cor-
responding approaches for e.g. Coulomb systems. Two DMC variants have been devised that differ in the
way they treat the spin-isospin degrees of freedom, namely the Green’s function Monte Carlo (GFMC) and the
auxiliary field diffusion Monte Carlo (AFDMC) methods [17, 18]. In GFMC, explicit sums over the spin and
isospin components of the wave function are performed. GFMC is very accurate, but limited by its rather high
computational cost to light nuclei up to A ≈ 12. Indeed, the number of spin-isospin states increases exponen-
tially as a function of the number of nucleons. AFDMC has been developed to mitigate this issue, in that a
clever technique based on the Hubbard-Stratonovich transformation is exploited to allow to sample not only
the spatial coordinates of the particles, but also their spin-isospin components. At the price of using some-
what less sophisticated trial wave functions, AFDMC achieves a polynomial scaling of the computational cost
(∼ A3) and thus allows to study larger nuclei and nuclear matter. AFDMC, in particular, is one of the state-
of-the-art ab initio methods for nuclei [18, 29, 179] and pure neutron matter. The status of AFDMC for PNM is
summarized in Refs. [29, 127, 128, 188]. Somewhat fewer studies have been conducted in symmetric nuclear
matter [87, 88, 108, 189, 190].

Coordinate space QMC techniques, which are the subject of this chapter, can deal with hard interactions
without difficulty. In fact, several phenomenological potentials, such as the Argonne forces [89, 94], have been
devised for use with QMC. However, there are difficulties in treating the propagation of derivative operators,
and most calculations have been performed with local chiral interactions, which, after the Fourier transfor-
mation to real space, depend only on the relative distance between nucleons, but not on their gradients [128].
Efforts have been taken in this direction, and local chiral forces have been developed [18, 92, 191] and applied
to nuclei [102, 103, 192, 193] and nuclear matter [88]. The use of non-local chiral interactions in GFMC has
been investigated in Refs. [90, 91]. Also, non-local interactions are accessible to a different variant of DMC, the
so-called configuration interaction Monte Carlo (CIMC) [23, 194, 195]. This is a diffusion method where the
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propagation takes place in configuration space and so far has been applied only to PNM. In the following, we
will touch only briefly on CIMC and focus on AFDMC.

In this work, AFDMC will be used for both nuclei and infinite matter. The relatively simple Argonne
4 (AV4′) interaction [89] is used (Sec. 1.2), which allows to bypass some of the difficulties that affect QMC
calculations with fully realistic nuclear forces. Interestingly, we have been able to study closed-shell nuclei
up to 90Zr [68], which is an unusually large mass number. As far as nuclear matter is concerned, it is very
important for our work that AFDMC allows to study both homogeneous and perturbed nuclear matter. The
equation of state and the static response function [75] are thus the main targets for our AFDMC calculations.

This Chapter is structured as follows. In Sec. 3.1, coordinate-space QMC methods are introduced, and their
application to nuclear systems is detailed. In Sec. 3.2, the AFDMC approach for nuclear physics is presented.
Finally, Sec. 3.3 is devoted to the trial wave functions that are used in AFDMC calculations of nuclei and
nuclear matter.

3.1 Quantum Monte Carlo methods in nuclear physics

In this Section, an overview of QMC methods in the context of nuclear physics is provided. The essential
aspects of QMC are summarized, while we refer to the in-depth discussion on this subject contained in Refs.
[17, 18, 177, 179] for details. An introductory section on the general features of QMC is followed by Sec. 3.1.1,
where the basic steps of the DMC algorithm are listed, and Sec. 3.1.2, on the fermion sign problem and the
importance sampling techniques. Finally, in Sec. 3.1.3 we briefly describe how densities are evaluated.

The principle of DMC methods [17, 177] is to determine the ground state |Ψ0⟩ of a many-body system by
evolving a starting trial state |ΨT ⟩ in imaginary time:

|Ψ0⟩ ∝ lim
τ→+∞

|Ψ(τ)⟩ = lim
τ→+∞

e−(H−ET )τ |ΨT ⟩ , (3.1)

where Ĥ is the Hamiltonian, τ is the imaginary time and ET is a parameter that controls the normalization
[103]. Provided |ΨT ⟩ has a non-zero overlap with |Ψ0⟩, the operator e−(H−ET )τ projects the initial state into
the exact g.s. This is easily understood decomposing |ΨT ⟩ on the basis of the eigenstates of Ĥ , |Ψn⟩. Then, the
action of the evolution operator is given by

e−(H−ET )τ |ΨT ⟩ = e−(H−ET )τ
+∞∑
n=0

⟨Ψn|ΨT ⟩ |Ψn⟩ =
+∞∑
n=0

e−(En−ET ) ⟨Ψn|ΨT ⟩ |Ψn⟩ = (3.2)

e−(E0−ET )

⟨Ψ0|ΨT ⟩ |Ψ0⟩+
∑
n≥1

e−(En−E0) ⟨Ψn|ΨT ⟩ |Ψn⟩

 .
Excited states are thus damped faster than the g.s. component, and in the long-time limit only the g.s. com-
ponent survives. As e−(H−ET )τ is not unitary, the wave function is not normalized. Generally, ET should be
an estimate of the true g.s. energy E0. |ΨT ⟩ and ET are typically optimized in a preliminary VMC calculation,
before being used in DMC [177]. Note that Eq. (3.1) has the form of a diffusion equation, hence the name
of these approaches. The pillars of DMC are the choice of the trial wave function, the implementation of the
diffusion process, and the evaluation of observables. A discussion of trial states is postponed to Sec. 3.3. In
this section, the other two key aspects are analyzed in the context of coordinate-space DMC. In the following,
we will denote the generalized coordinates of the nucleons as X = (R,S), where R = {r1, r2...rA} are the
positions and S = {s1, t1; s2, t2...sA, tA} the spin-isospin projections of the A nucleons.

The time evolution cannot be performed directly for large finite times, as we do not know how to eval-
uate the action of e−(H−ET )τ on a state vector. However, the solution comes in breaking down the diffusion
into a series of many small time steps δτ , according to the path integral perspective. Indeed, by inserting a
completeness relation in Eq. (3.1), we can write

Ψ(X, τ + δτ) =

∫
dX ′G(X,X ′, δτ)Ψ(X ′, τ) (3.3)

where

Ψ(X, τ) = ⟨X|Ψ(τ)⟩ , (3.4)

G(X,X ′, δτ) = ⟨X|e−(H−ET )δτ |X ′⟩ (3.5)

are the wave function and the short-time propagator, respectively. Ψ(X, τ) can be seen as a function of the
position and a vector in the spin-isospin space. Similarly, G(X,X ′, δτ) acts as a matrix on the spin-isospin
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components. The integral in Eq. (3.3) must be understood as an integration over R′ and a sum over the
spin-isospin states S′. For vanishing δτ , the propagator (3.5) can be indeed evaluated as follows. Using the
Trotter-Suzuki formula 1, G is conveniently broken down into the product of the free propagator (G0) and a
term that depends on the potential (GV ), namely

G(X,X ′, δτ) ≈ G0(X,X
′, δτ)GV (X,X

′, δτ), (3.7)

where

G0(X,X
′, δτ) = ⟨X|e−Tδτ |X ′⟩ =

( m

2πℏ2δτ

) 3A
2

e−
m(R−R′)2

2ℏ2δτ δ(S − S′), (3.8)

GV (X,X
′, δτ) = ⟨X|e−(V−ET )δτ |X ′⟩ . (3.9)

The free propagator is exact and amounts to a multidimensional Gaussian distribution in the spatial coordi-
nates with standard deviation σ2 = ℏ2δτ/m. For spin-isospin dependent interactions, GV is further decom-
posed as follows [103]:

GV (X,X
′, δτ) = ⟨S|e−(V (R)−ET )δτ |S′⟩ δ(R−R′) (3.10)

≈
∏
i<j

⟨S|e−(V (rij)−ET )δτ |S′⟩ δ(R−R′).

Note that so far we have considered only NN forces, but later on we will comment on how 3N forces are taken
care of. From Eqs. (3.8) and (3.10), it is apparent that GV is a matrix in spin-isospin space, while G0 is function
only of the coordinates.

The number of coordinates grows quickly with the number of particles A, and an accurate evaluation of
this integral in such a high-dimensional space quickly becomes infeasible with standard quadrature methods.
Thus, the essential idea of DMC is to use Monte Carlo techniques to evaluate the diffusion integral stochas-
tically. It is well-known that the numerical error that affects an integral evaluated using Monte Carlo is a
statistical error that scales like 1/

√
Nsamples, where Nsamples is the number of samples used to approximate

the integral. Crucially, the error is independent of the dimensionality of the integral [177]. The spatial coordi-
nates R are sampled in the integral of Eq. (3.3) in all DMC variants, while two choices are possible in nuclear
physics to treat the spin-isospin degrees of freedom. In GFMC [17], full sums over the spin-isospin coordinates
are performed. As the number of spin-isospin components grows exponentially ∼ 2A

(
A
Z

)
with the number of

nucleons, GFMC, while very accurate, is limited to light nuclei up to A ≈ 12. The alternative is to sample
also the spin-isospin coordinates, as is done in the AFDMC approach [18]. In this way, a polynomial scaling
of the computational cost with the number of particles is achieved, and AFDMC is the leading method for
medium-mass nuclei and infinite nuclear matter [17, 18]. In Sec. 3.2 we discuss the main technical aspects of
AFDMC.

3.1.1 DMC algorithm

We now describe how the diffusion integral (3.3) is solved using the Monte Carlo technique. A crucial point
to understand is that in DMC the wave function is represented by a discrete set of sampling configurations
{X}, called walkers. We never have direct access to the wave function, but we possess a set of walkers that are
distributed approximately according to the wave function itself (not its modulus squared!) [178]. The walkers
are evolved in imaginary time and are used to evaluate the expectation values of in principle any observable.
The essential steps of the general DMC algorithm are listed below, while some of the modifications needed by
AFDMC will be detailed in Sec. 3.2 [18, 109]:

1. An initial population of walkers is sampled from the trial state ΨT (X) = ⟨X|ΨT ⟩, and a trial energy
ET is chosen. Typically, this may come from a variational calculation, and then could be readjusted as
iterations go by. ET should be reasonably close to the true g.s. energy E0, so to avoid large fluctuations
in the normalization of the wave function, i.e. the number of walkers in the population.

2. At each time step, the walkers are evolved. As dictated by the free propagator G0, Eq. (3.8), the spatial
coordinates are updated by drawing random displacements ξ from a 3A-dimensional Gaussian distribu-
tion with variance σ2 = ℏ2δτ/m and zero average,

R = R′ + ξ. (3.11)

1For simplicity, in our presentation of DMC we use the lowest-order version of the formula,

e(Â+B̂)δτ = eÂδτ eB̂δτ +O(δτ2). (3.6)

The Trotter formula at order O(δτ3) is often employed in actual implementations of the method, see e.g. Ref. [103].
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This corresponds to a Brownian motion, i.e. a free diffusion of classical particles. In AFDMC, spin-isospin
components are also sampled similarly, see Sec. 3.2, while in GFMC the matrix-vector product between
the propagator and the wave function [Eq. (3.3)] is performed, i.e.

Ψα(R, τ + δτ) =
∑
β

Gαβ(R,R
′, δτ)Ψβ(R

′, τ), (3.12)

where α and β label the spin-isospin components.

3. The effect of the interactions is encoded in the GV factor and is implemented in the diffusion algorithm
by assigning a weight W to each configuration. In the basic DMC procedure,

W = GV (X,X
′, δτ). (3.13)

These factors are employed in two ways: they are used to weight the contribution of each configuration
to the expectation values, and they are in used in the branching or birth/death algorithm, in which w
determines the number of copies of the walker that survive to the next time step [109, 177]. The statistical
population for the following iteration is made up of an integer number of copies of each configuration
X ′ in the current population, which is determined by the formula

Nnew = INT (η +W) , (3.14)

where η is a random number uniformly distributed between 0 and 1 and INT denotes the integer part
of a real number. If w < 1, i.e. the potential energy of the configuration is higher than the trial energy,
the walker can either survive or die. If w ≥ 1, instead, the walker is guaranteed to survive and possibly
multiply.

4. After a large enough number of iterations, the configurations X shall be distributed according to a prob-
ability density Ψ(X, τ), which should be close to the desired g.s. wave function Ψ0(X), and expectation
values can be estimated. If an operator Ô commutes with the Hamiltonian, then its expectation value
⟨O(τ)⟩ is evaluated as the mixed matrix element [17]

⟨O(τ)⟩ = ⟨ΨT |Ô|Ψ(τ)⟩
⟨ΨT |Ψ(τ)⟩

. (3.15)

Indeed, as Ô commutes with exp
{
−(Ĥ − ET )τ

}
, Eq. (3.15) is equal to

⟨O(τ)⟩ = ⟨Ψ(τ/2)|Ô|Ψ(τ/2)⟩
⟨Ψ(τ/2)|Ψ(τ/2)⟩

, (3.16)

which in the long-time limit yields the g.s. expectation value

⟨O⟩ = ⟨Ψ0|Ô|Ψ0⟩
⟨Ψ0|Ψ0⟩

. (3.17)

The action of Ô on the trial wave function can be directly evaluated, and Eq. (3.15) is easily implemented
as

⟨O(τ)⟩ =
∑
i(OΨ∗

T )(Xi)wi∑
iΨ

∗
T (Xi)wi

, (3.18)

where the sum is extended over the walkers in the population and wi is the weight associated with each
configuration. To evaluate other quantities that do not commute with the time evolution, e.g. the density,
linear extrapolations are used [17]. In particular, the following formula is employed:

O(τ) = 2
⟨ΨT |Ô|Ψ(τ)⟩
⟨ΨT |Ψ(τ)⟩

− ⟨ΨT |Ô|ΨT ⟩
⟨ΨT |ΨT ⟩

. (3.19)

The second term is the VMC expectation value. If the trial wave function is accurate, the extrapolation
error is small. That is the case in our work. However, we mention that in general extra care has to be
taken when evaluating quantities other than the energy, e.g. the radii in open-shell nuclei [103].
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3.1.2 Sign problem and importance sampling

This is the most basic version of the DMC algorithm. So far, however, two aspects have been neglected. First,
the infamous ”sign problem” that plagues projection methods for fermions has to be discussed. Second, the
efficiency of the elementary DMC algorithm is rather poor, and importance sampling techniques [177] are used
to drastically improve it.

Importance sampling consists in sampling in the diffusion process, instead of Ψ(X, τ), the product ΨI(X)Ψ(X, τ)
between the wave function and a suitably chosen positive-definite importance function ΨI(X). Typically,
ΨI = ΨT . Eq. (3.3) is easily rearranged in terms of ΨIΨ as

ΨI(X)Ψ(X, τ + δτ) =

∫
dX ′ ΨI(X)

ΨI(X ′)
G(X,X ′, δτ)ΨI(X

′)Ψ(X ′, τ)

=

∫
dX ′GI(X,X

′, δτ)ΨI(X
′)Ψ(X ′, τ), (3.20)

and the walkers are sampled using the modified propagator

GI(X,X
′, δτ) =

ΨI(X)

ΨI(X ′)
G(X,X ′, δτ). (3.21)

The formula (3.18) must be modified as well, and reads

⟨O(τ)⟩ =
∑
iOL(Xi)Wi∑

iWi
, (3.22)

where the so-called local observable OL(X) has been defined as

OL(X) =
⟨ΨT |Ô|X⟩
⟨ΨT |X⟩

. (3.23)

The additional factor ΨI(X)
ΨI(X′) in Eq. (3.21) penalizes moves that lead to configurations X where the importance

wave function is small. By contrast, compared to the free propagator (3.5), moves that increase the probability
ΨI are accepted with a higher rate. In this sense, the imaginary-time evolution is guided by the importance
function [177]. If a reasonable approximation of the g.s. wave function can be found, a much faster convergence
of the algorithm to the g.s. can be achieved. Moreover, the local energy

EL(X) =
⟨ΨT |Ĥ|X⟩
⟨ΨT |X⟩

(3.24)

would be equal to E0 if ΨT = Ψ0. Thus, for a good trial function EL remains close to the g.s. energy and
fluctuates mildly [177]. Therefore, estimates of the g.s. energy are affected by a smaller uncertainty thanks to
importance sampling.

An issue intrinsically inherent to all DMC methods for fermionic systems is the sign problem [177, 180].
DMC makes sense only if Ψ(X, τ) can be interpreted as a probability distribution for the walkers, and in par-
ticular Ψ(X, τ) must be positive. However, many-fermion wave functions must be antisymmetric in order
to comply with the Pauli principle, and thus must necessarily change sign. The mathematical ground state,
towards which the imaginary time evolution leads, is a symmetric (bosonic) state, and the fermionic g.s. is,
in a sense, an excited state of the Hamiltonian [177]. The expectation values [Eq. (3.15)] involve overlaps be-
tween Ψ(X, τ) and the fermionic trial state, and so the desired fermionic component of Ψ(X, τ) is projected
out. Indeed, if we decompose Ψ as Ψ(S) + Ψ(A) and use

〈
Ψ(S)

∣∣ΨT 〉 = 0 that holds for symmetry reasons, we
immediately see that ⟨ΨT |Ô|Ψ(τ)⟩ =

〈
ΨT
∣∣Ô∣∣Ψ(A)(τ)

〉
and only the fermionic part Ψ(A) survives. However,

this cancellation property does not hold for the variance, and the statistical error grows exponentially with τ ,
as well as with the particle number [18]. If left uncured, therefore, the sign problem would quickly lead to di-
verging uncertainties. A solution would come in limiting the walker propagation to regions where Ψ(X, τ) is
positive. As the true wave function is unknown, one must resort to using an approximate guiding wave func-
tion to control the diffusion process [177]. For real Hamiltonians, the fixed-node approximation is a popular
choice, in which moves that lead to a change in the sign of the trial state ΨT are rejected and the corresponding
walkers killed [177, 180]. In AFDMC, the constrained path technique is employed [18, 127], see Sec. 3.2. In
any case, all approaches to face the sign problem are approximate and introduce some kind of bias. While
DMC is exact (affected only by statistical uncertainties) for bosonic systems, in fact systematic uncertainties
are unavoidable in fermionic DMC [180].
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3.1.3 Calculation of the number densities

We now describe how number densities are computed with QMC, see e.g. [17, 18]. We concentrate on the case
of spherical nuclei, where the density ρq(r) (q = p, n) is a function of the radial distance r from the center of
mass of the system. The strategy to evaluate ρq(r) is to first subdivide a sufficiently large interval 0 < r < rmax

in a certain number of bins centered at r̄i and having width δr. Then, the density is related to the number of
walkers lying in the radial shell r̄i < r < r̄i + δr, namely

⟨ρq(r̄i)⟩ =
1

Ωi

∑
j:r̄i<rj<r̄i+δr

Wj , (3.25)

where we sum over walkers j (with weight Wj) that lie in the shell centered around r̄i and Ωi is the volume

Ωi =
4π

3

(
(r̄i + δr)3 − r̄3i

)
≈ 4πr̄2i δr. (3.26)

The procedure is essentially the same for both VMC and DMC. Since the density does not commute with
the Hamiltonian, its expectation value is estimated by combining the VMC and DMC expectation values as
[103]

⟨ρq(r)⟩ = 2 ⟨ρq(r)⟩DMC − ⟨ρq(r)⟩VMC , (3.27)

where the DMC (VMC) subscript refers to the first (second) term in Eq. (3.19).
We now turn to the case of infinite nuclear matter, and in particular to the case of perturbed matter under

the effect of an external perturbation which is a function of z only (Sec. 1.4), that will be studied thoroughly in
Ch. 8. As the translational symmetry is preserved on the xy plane, the relevant density is ρq(z). In this case,
we bin the z direction of the simulation box, with −L/2 ≤ z < L/2. Then,

⟨ρq(z̄i)⟩ =
1

Ωi

∑
j:z̄i<zj<z̄i+δz

Wj , (3.28)

where the volume is given by Ωi = L2δz and z̄i and δz denote the centers and the width of the bins, respec-
tively.

3.2 Auxiliary field diffusion Monte Carlo

A thorough introduction to DMC methods has been presented in Sec. 3.1. The present Section is meant to
discuss in particular the AFDMC method for nuclear physics. Essential references on this subject are Refs. [17,
18, 103, 179].

Nuclear physics is made complicated by the need to treat the spin and isospin degrees of freedom. In
GFMC, the spatial coordinates are diffused, while full summations over the spin-isospin components are per-
formed [17]. This is rather demanding computationally due to the exponential growth of the number of spin-
isospin states as a function of the number of particles. As a simple example, the spin part of three-particle
systems is described by an 8-component spinor [109]:

|ψ⟩A=3 =



a↑↑↑
a↑↑↓
a↑↓↑
a↑↓↓
a↓↑↑
a↓↓↑
a↓↑↓
a↓↓↓


a↑↑↓ = ⟨↑↑↓|ψ⟩A=3 . (3.29)

Symmetries reduce the number of states only mildly. AFDMC mitigates the computational burden of GFMC
by representing the spin-isospin states as tensor products of single-particle spinors [18],

|S⟩ = |s1⟩ ⊗ |s2⟩ ⊗ ...⊗ |sA⟩ , (3.30)

where |si⟩ denotes the four-component vectors

|si⟩ = ai,↑,p |↑, p⟩+ ai,↓,p |↓, p⟩+ ai,↑,n |↑, n⟩+ ai,↓,n |↓, n⟩ . (3.31)
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The states ⟨S|Ψ⟩ are fully represented by 4A complex amplitudes, instead of the factorial number of coefficients
of the GFMC states. To keep the computational advantage, it is crucial to maintain the product representation
throughout the calculation. However, the basis (3.30) is not closed under the action of spin-isospin quadratic
operators. For example,

σ1 · σ2[|s1⟩ ⊗ |s2⟩ ⊗ |s3⟩] = (2P12 − 1)[|s1⟩ ⊗ |s2⟩ ⊗ |s3⟩] = (3.32)
2 |s2⟩ ⊗ |s1⟩ ⊗ |s3⟩ − |s1⟩ ⊗ |s2⟩ ⊗ |s3⟩ ,

where P12 is the operator that flips the spin-isospin states 1 and 2. It is clear from Eq. (3.32) that quadratic
operators mix up different states of the basis (3.30). As a consequence, the single-particle representation is
broken by the nuclear potential, and the number of components of the wave function tends to grow quickly
as iterations go by, with a loss of any advantage over GFMC. By contrast, operators acting on a single particle
leave the product structure intact. The action of exponential operators of the type e−iOjλ, in particular, simply
amounts to rotating one of the spinors:

e−iOjλ |S⟩ = e−iOjλ[|s1⟩ ⊗ ... |sj⟩ ⊗ ...⊗ |sA⟩] = |s1⟩ ⊗ ...e−iOjλ |sj⟩ ...⊗ |sA⟩ =
|s1⟩ ⊗ ... |s̃j⟩ ⊗ ...⊗ |sA⟩ , (3.33)

where |s̃j⟩ = e−iOjλ |sj⟩. The key intuition of AFDMC is therefore to linearize the action of the quadratic
operators using the Hubbard-Stratonovich transformation

e−
1
2O

2λ =

∫
dx√
2π
e−

x2

2 +
√
−λxO. (3.34)

At the cost of introducing an auxiliary variable x for each quadratic operator, one can obtain expressions in
which exponentials of linear operators enter the propagator. The action of the original quadratic operator is
recovered on average by sampling these auxiliary fields from the Gaussian distributions in Eq. (3.34), as we
now detail.

We discuss how these concepts are applied to a nuclear Hamiltonian of the form of Eq. (1.2). Its first six
terms, that we label V 6

NN for short, are conveniently decomposed in the sum of spin-isospin-independent (VSI )
and spin-isospin-dependent terms (VSD). We shall comment on how spin-orbit and 3N interactions are treated
later on. Our goal is to rewrite the propagator so that Eq. (3.34) can be applied. For a given position R, the
potential VSD(R) can be written in terms of matrices in the spin-isospin space [103],

VSD(R) =
1

2

∑
i̸=j

A
(τ)
ij τ i · τ j +

1

2

∑
i̸=j

∑
αβ

A
(σ)
iαjβσ

α
i σ

β
j +

1

2

∑
i ̸=j

∑
αβ

A
(στ)
iαjβτ i · τ jσ

α
i σ

β
j . (3.35)

The indexes i and j are used for the particles in the system, while Greek indeces denote the Cartesian com-
ponents. A(τ)

ij , A(σ)
iαjβ and A

(στ)
iαjβ are real and symmetric matrices of dimensions A × A, 3A × 3A and 3A × 3A,

respectively. Their expressions are given e.g. in Refs. [103, 109]. If these matrices are diagonalized, a new set
of operators defined in terms of the eigenvectors ψ(τ)

n , ψ(σ)
n , ψ(στ)

n and eigenvalues λ(τ)n , λ(σ)n , λ(στ)n of the A
matrices can be introduced, such that VSD(R) can be recast as a sum of quadratic operators:

VSD(R) =
1

2

3∑
α=1

A∑
n=1

λ(τ)n (O(τ)
nα )

2 +
1

2

A∑
n=1

λ(σ)n (O(σ)
n )2 +

1

2

3∑
α=1

A∑
n=1

λ(στ)n (O(στ)
nα )2, (3.36)

where

O(σ)
n = ψ(σ)

n σ =
∑
iα

ψ
(σ)
n,iασiα (3.37)

and similarly for the (τ) and (στ) operators. A diagonalization of the potential matrices has to be performed
for each new configuration R. This is the driving factor in the computational cost of AFDMC and it scales as
∼ A3. It is now possible to apply the transformation (3.34) to the propagator of the V 6

NN interaction. We use
an index n to label the 15A operators and corresponding eigenvalues that appear in Eq. (3.36). Following Ref.
[103], we write

e−V
6
NNδτ |RS⟩ = e−VSI(R)δτe−VSD(R)δτ |S⟩ =

e−VSI(R)δτ
15A∏
n=1

∫
dxn√
2π

e−
x2
n
2 e+xn

√
−λnδτOn |S⟩ = |RS′⟩ . (3.38)
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In the previous expression, On stands for the 15A operators O(τ)
n , O(σ)

n and O(στ)
n , and exponentials of sums

of operators have been approximated as products of exponentials. The tensor-product basis is closed under
the action of the propagator in Eq. (3.38), although this is not apparent yet. But, this can be understood by
noting that the On operators are linear superpositions of σ, τ and στ matrices acting on single particles j, see
Eq. (3.37). Therefore, the action of e+xn

√
−λnδτOn consists in a product of independent rotations, each one

acting on a single spin-isospin state j. For the case of the O(σ)
n operators, for example, one finds the following

expression:

exn

√
−λnδτO(σ)

n |S⟩ =
A∏
j=1

exn

√
−λnδτ

∑
α ψ

(σ)
n,jασjα |s1⟩ ⊗ ...⊗ |sA⟩

=

A∏
j=1

[
exn

√
−λnδτ

∑
α ψ

(σ)
n,jασjα |sj⟩

]
= |s̃1⟩ ⊗ ...⊗ |s̃A⟩ , (3.39)

where

|s̃j⟩ = exn

√
−λnδτ

∑
α ψ

(σ)
n,jασjα |sj⟩ . (3.40)

Again, the sum over j in the exponent has been translated into a product of exponential, each function of a
single j index. The product representation is thus conserved, as proved by Eq. (3.39). The new spin-isospin
state |S′⟩ is now a function of the auxiliary fields {xn} = X , S′ = S′(X ). Thus, the imaginary-time propa-
gation of the spin-isospin state can now be performed by sampling the auxiliary fields from the Gaussian to
approximate the integral in Eq. (3.34). The updated spinors are determined with

|S′⟩ =
15A∏
n=1

ex̄n

√
−λnδτOn |S⟩ , (3.41)

where x̄n are the sampled values of the auxiliary fields. Therefore, in AFDMC the spin-isospin coordinates are
evolved stochastically through the auxiliary fields.

Some modifications must be made to the basic DMC method described in Sec. 3.1. In particular, the
branching process is slightly different, and a specialized technique is used to deal with the sign problem. In
the recent implementation of AFDMC [18, 127], the ”plus and minus” procedure introduced in Ref. [87] is
used in the propagation. Besides the 3A displacements of Eq. (3.11), in each diffusion step 15A field χ are
sampled from normalized Gaussians. Eq. (3.41) is then used to obtain the new spin-isospin vector rotating the
initial components. Then, four weights, corresponding to separately flipping the sign of the spatial moves and
spin-isospin rotations, are evaluated:

wi =
ΨT (±R,S(±X )

ΨT (R′, S′)
. (3.42)

Only one of the four new configurations is kept, sampling it with the normalized weights wi/W where W =

1/4
∑4
i=1 wi is the cumulative weight. Then, a global weight is assigned to the selected walker, and used for

branching and evaluating observables as in standard DMC 2 :

W =

(
1

4

4∑
i=1

wi

)
e−(VSI(R)−ET )δτ . (3.43)

It has been shown that in this way the dependence of the results on the time step δτ is reduced, as linear terms
in the exponentials (3.38) cancel out [18].

The constrained path (CP) method is used to control the sign problem. The weights (3.42) are evaluated
with

ΨT (X)

ΨT (X ′)
−→ Re

(
ΨT (X)

ΨT (X ′)

)
, (3.44)

and if the ratio is negative, the weight is set to zero [18]. Unlike the fixed-node approximation [177], the
CP approximation, which is adapted to complex wave functions, is not variational, i.e. it is not guaranteed
to provide an upper bound to the true g.s. energy. Moreover, the use of an approximate state to guide the

2To understand the logic, remind how the importance-sampling propagator is defined, Eq. (3.21), and that both the kinetic energy and
the spin-isospin dependent terms of V are used in the propagation. Thus, only the spin-independent potential VSI is left out to weight
the configurations.
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evolution causes a bias in the results, so that the exact g.s. may not be approached. While the induced bias is
mild for simple Hamiltonians, the most sophisticated AFDMC calculations need to be corrected by performing,
after the CP, an unconstrained propagation (UC) [18, 196], where the constraint above is released and the
diffusion is performed using the positive-definite importance function

ΨG(X) = |ReΨT (X)|+ α|ImΨT (X)|, (3.45)

where typically 0.1 < α < 0.5. While the variance on the energy increases quickly with τ , the data can be
fitted with an exponential function and extrapolated to τ −→ +∞ to find E0 [18]. The importance of UC to
properly treat interactions that include spin-orbit terms has been highlighted e.g. in Refs. [103, 127]. For the
Hamiltonians used in this work, CP is a good approximation [127].

The discussion of the AFDMC propagator has been limited so far to NN forces that comprise the first six
operators of Eq. (1.3). The propagation of the spin-orbit potential L · S is not trivial due to the presence of
gradient terms, and a solution is described in Refs. [103, 197]. The inclusion of 3N forces is discussed in Refs.
[103, 109]. Terms that involve only quadratic spin and isospin operators can be readily included in AFDMC.
The remaining terms are approximated as two-body operators, and the difference is not propagated, but only
evaluated in perturbation theory.

We stress again that AFDMC is significantly cheaper than GFMC: while in GFMC one has to sum over all
spin-isospin components of the system, in AFDMC the propagation of the spin-isospin degrees of freedom is
achieved at the cost of diagonalizing the potential matrices and performing several rotations of the 4A spin-
isospin vector. Of course, AFDMC has also some limitations. The additional samplings make it somewhat
less accurate than GFMC. Also, AFDMC trial functions must have a single-particle representation, so that they
can not be as complex as those employed in VMC or GFMC (Sec. 3.3). Moreover, some terms of the nuclear
interaction, such as the cubic spin-isospin operators entering 3N forces [103], or isospin-dependent spin-orbit
contributions [68], can not be treated with the Hubbard-Stratonovich transformation, yet.

3.3 Trial wave functions

The subject of this Section is to describe the trial wave functions that we employ in our AFDMC calculations
of infinite nuclear matter and finite nuclei. Finding a good ansatz |ΨT ⟩ requires a careful understanding of
the properties of the system under study. The trial wave function is crucial for DMC for several reasons. The
most obvious one is that if the initial state is already a reasonable approximation to the true g.s., then the
diffusion process converges much more quickly to Ψ0. Also, ΨT is used to guide the time evolution in DMC
with importance sampling. A more subtle reason is that the trial function is essential in controlling the sign
problem. In the standard DMC with some form of constrained propagation, the results of calculations are
biased by the choice of the guiding function [180]. Thus, a bad choice for |ΨT ⟩ can negatively affect the final
results.

We now come to discuss the AFDMC wave functions. The trial state is commonly expressed as the prod-
uct of a reference state |Φ⟩ that encodes the long-range properties of the system and of two- and three-body
correlations. For this work, we will use trial wave functions with the following Jastrow-like structure [87, 103]:

|ΨT ⟩ =
∏
i<j

f cij
∏

i<j<k

f cijk

(
1 +

∑
i<j

Fij +
∑
i<j<k

Fijk

)
|Φ⟩ , (3.46)

where

Fij =

6∑
p=2

fpijO
p
ij . (3.47)

f cij and f cijk are scalar correlation functions, while Fij and Fijk are linear spin-isospin-dependent correlations.
The Opij operators are those entering the nuclear interaction, see Eq. (1.3). The ansatz (3.46) contains a set of
parameters that are determined minimizing the expectation value of the Hamiltonian on |ΨT ⟩,

ET =
⟨ΨT |Ĥ|ΨT ⟩
⟨ΨT |ΨT ⟩

≥ E0. (3.48)

Dedicated algorithms, such as the stochastic reconfiguration or the linear method, are used to efficiently opti-
mize the energy [127, 178, 184].

The spinor-product structure forces AFDMC trial wave functions to be somewhat simpler than those em-
ployed in VMC or GFMC. The typical AFDMC ansatz (3.46) only includes linearized spin-isospin two-body
correlations, where only one pair of nucleons is correlated at a time. More refined wave functions with
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quadratic correlations, that are still compatible with the Hubbard-Stratonovich transformation, have been ex-
plored in some studies, e.g. Refs. [88, 103]. These are cheaper to evaluate, but less accurate than the GFMC and
VMC trial functions that include correlations between all pairs of nucleons. Also, linear two-body correlations
violate the cluster property [18, 127], which makes them somewhat inaccurate for large nuclei. Actually, for the
calculations performed with the simple AV4′ interaction, that does not include tensor or spin-orbit operators,
satisfying results can be obtained using just the scalar correlations, as done in our work [68] consistently with
Refs. [108, 198]. Linear correlations, however, are extremely important for interactions that include the tensor
potential [127]. Indeed, the tensor term is rather weak in the T = 1 channel, but strong in proton-neutron pairs
coupled to isospin T = 0. However, its expectation value vanishes when only scalar correlations are included
in the wave function. As a consequence, it is mandatory to include operator correlations in systems other than
PNM [87, 88].

In finite nuclei, the reference state |Φ⟩ is made of a superposition of Slater determinants, each built from
single-particle orbitals |nljmj⟩, coupled together to reproduce the quantum numbers (total angular momen-
tum, total isospin, and parity) of the nuclear state of interest [17, 18]. The s.p. orbitals read in general

ϕα(xi) = Rnl(ri)Ylml
(r̂i)χ 1

2 s
(σi)χ 1

2 t
(τi) (3.49)

where Rnl(r) is the radial function, Ylml
(r̂) is the spherical harmonic, and χ 1

2 s
(σ) and χ 1

2 t
(τ) are the complex

spinors describing the spin and isospin of the s.p. state [18]. Typical choices consist in using the eigenfunctions
of Woods-Saxon potential or mean-field orbitals obtained from DFT calculations.

In QMC, infinite matter is simulated using a finite number of particles with PBC, as described in Sec. 1.3.
The particle number is chosen to correspond to a shell closure of the FG, whose eigenstates are plane waves
with quantized wave numbers k = 2π/Ln. In homogeneous matter, the natural choice for |Φ⟩ is to use the
Slater determinant made of the first A occupied momentum eigenstates. When perturbed matter is studied,
a better ansatz consists in employing a mean field state that is aware of the translational symmetry breaking
induced by the external potential. Solutions of the one-body Schrödinger equation for the potential (2.26), i.e.

− ℏ2

2m
ψ′′(z) + 2vq cos (qz)ψ(z) = ϵψ(z), (3.50)

the so-called Mathieu orbitals, have been employed as a starting point for both the electron gas [77, 132] and
PNM [75, 76]. We have implemented the Mathieu wave functions in our QMC code and verified that this
ansatz allows to to lower the variational energy of the inhomogeneous interacting system.



CHAPTER 4

Self-consistent Green’s functions

Green’s functions provide a unifying language to tackle the quantum many-body problem [115, 199]. The
approach known as the Self-consistent Green’s functions (SCGF) method plays a prominent role in ab initio nu-
clear theory, with wide-ranging applications to finite nuclei and infinite nuclear matter [19, 20, 82, 200]. SCGF
can be applied to both closed-shell and open-shell nuclei using the Dyson and Gorkov formulations, respec-
tively. The state-of-the-art SCGF method used to study finite nuclei is the so-called algebraic diagrammatic
construction (ADC) at order n [ADC(n)], which provides a class of systematically improvable approximation
to the self-energy [19, 82]. ADC has been developed up to third order [ADC(3)] in Dyson- [81, 82] and, recently,
Gorkov-SCGF [201]. Infinite matter calculations have been performed so far with a different variant of SCGF,
which is based on a finite-temperature (Finite-T) formalism and approximates the self-energy at the level of
ladder diagrams [20]. ADC(3) has been applied to nuclear matter for the first time in Ref. [82] using a simpli-
fied interaction and further developed in Ref. [83]. One of the purposes of this work is to present the first full
implementation of the ADC(3) method for nuclear matter with chiral interactions.

The Chapter is structured as follows. Sec. 4.1 presents an overview of the general Green’s function formal-
ism. In Sec. 4.2, the ADC method is presented in the context of the Dyson formalism. Then, in Sec. 4.3 we
describe how the method has been extended to incorporate Gorkov pairing correction at first order on top of
Dyson-ADC(3). In Sec. 4.4, we detail how ADC-SCGF is applied to infinite nuclear matter. Finally, in Sec. 4.5
a summary of the Finite-T SCGF approach for nuclear matter is reported. Further technical aspects and details
on SCGF can be found in App. D.

4.1 SCGF formalism

This Section is devoted to introducing the SCGF method. For the general theory of Green’s functions we will
refer to the standard books Refs. [115, 199, 202]. SCGF is described in detail in Refs. [19, 26, 82, 84, 200, 201].

SCGF is based on the second quantization formulation of quantum theory. Greek letters shall be used to
denote the states of a generic single-particle (s.p.) basis, that could include either a discrete or continuous spec-
trum. cα and c†β will denote the annihilation and creation operators, respectively, and a nuclear Hamiltonian
H comprising two-body (2B) (V̂ ) and three-body (3B) interactions (Ŵ ) is assumed,

H = T̂ + V̂ + Ŵ . (4.1)

We also anticipate a partitioning of H into the sum of a reference uncorrelated Hamiltonian H0 = T̂ + Û and
the residual interaction H1 = −Û + V̂ + Ŵ , where we have introduced a mean field one-body (1B) potential
Û . In terms of the antisymmetrized 2B (3B) matrix elements v̄αβ,γδ (w̄αβγ,δϵζ), these read

H0 =
∑
αβ

h
(0)
αβc

†
αcβ =

∑
αβ

(tαβ + uαβ)c
†
αcβ , (4.2)

H1 = −
∑
αβ

uαβc
†
αcβ +

1

4

∑
αβγδ

v̄αβ,γδc
†
αc

†
βcδcγ +

1

36

∑
αβγδϵζ

w̄αβγ,δϵζc
†
αc

†
βc

†
γcζcϵcδ. (4.3)

The concept of Green’s functions (GF) or propagators lies at the heart of the SCGF method. The 1B propa-
gator, in particular, is defined as

gαβ(ω) =

∫
dt eiωtgαβ(t) = (4.4)

− i

ℏ

∫
dt eiωt

〈
ΨA0
∣∣T [cα(t)c†β(0)] ∣∣ΨA0 〉 ,

31
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where cα and c†β are evolved in the Heisenberg representation (i.e. with respect to H), and T [. . .] is the time-
ordering operator. We introduce also a specific 2B propagator gII as [203]

gIIαβ,γδ(t− t′) = −
i

ℏ
〈
ΨA0
∣∣T [cβ(t)cα(t+)c†γ(t′)c†δ(t′+)]∣∣ΨA0 〉 . (4.5)

The eigenstates of the Hamiltonian are denoted in general as the solutions to

H
∣∣ΨAn 〉 = EAn

∣∣ΨAn 〉 . (4.6)

In particular,
∣∣ΨA0 〉 is the exact ground state of the A-particle system. The physical content of the propagator is

manifest in its Lehmann or spectral representation [202]. In short, this is obtained unfolding the T -product,

T [cα(t)c
†
β(0)] = θ(t)cα(t)c

†
β(0)− θ(−t)c

†
β(0)cα(t), (4.7)

then inserting the completeness relation for the A + 1 and A − 1 Hilbert spaces in the first and second term,
respectively, and finally performing the Fourier transform to the frequency space in Eq. (4.4). Then, one finds
the following expression [82]:

gαβ(ω) =
∑
n

(Xnα )
∗ Xnβ

ℏω − ϵ+n + iη
+
∑
k

Ykα(Ykβ )∗

ℏω − ϵ−k − iη
(4.8)

where the (experimentally observable) one-nucleon addition and removal energies ϵ+n and ϵ−k and the spectro-
scopic amplitudes Xnα and Ykα have been defined as

ϵ+n = EA+1
n − EA0 , (4.9)

ϵ−k = EA0 − EA−1
k , (4.10)

(Xnα )
∗
=
〈
ΨA0
∣∣cα∣∣ΨA+1

n

〉
, (4.11)

Ykα =
〈
ΨA−1
k

∣∣cα∣∣ΨA0 〉 , (4.12)

respectively. The GF has (first-order) poles at the exact excitation energies of the interacting system, and the
amplitudes are related to the residues at such poles.

In the standard (Dyson) formulation, the one-body propagator (4.4) is completely determined by solving
the Dyson equation,

gαβ(ω) = g
(0)
αβ (ω) +

∑
γδ

g(0)αγ (ω)Σ
(⋆)
γδ (ω)gδβ(ω), (4.13)

where g(0)αβ (ω) and gαβ(ω) denote the initial reference propagator, associated with H0, and the full correlated
propagator, respectively. Unless stated otherwise, for the present discussion a Hartree-Fock (HF) reference
state is adopted (Dyson-SCGF). Extensions to Hartree-Fock-Bogoliubov (HFB) reference states have been de-
veloped in the so-called Gorkov-SCGF formalism, which allows to tackle open-shell superfluid systems, see
e.g. Refs. [26, 84, 201]. In Sec. 4.3, we discuss a procedure to include partial Gorkov-ADC(3) corrections to
Dyson-SCGF.

States occupied (unoccupied) in the HF reference state are denoted as hole (particle) s.p. states in the
following. The non-linear equation (4.13) defines the irreducible self-energy Σ(⋆)(ω), in which medium effects
on the propagation of the fermions are included [81]. The physical meaning of the self-energy is that of a non-
local, frequency-dependent 1B potential that is felt by the particles in the system due to the interactions with
the many-body environment [82]. Although Eq. (4.13) is exact, in practice Σ(⋆)(ω) must be approximated by
keeping selected classes of Feynman diagrams, as will be discussed below. The specific approximation scheme
we adopt is presented in Sec. 4.2.

The power of Green’s function method lies in the wealth of quantities that can be accessed in a single
calculation. Besides the quasiparticle (addition/removal) energies and the spectroscopic factors [200], the 1B
GF allows to determine all the 1B observables and (with some caveats) the ground state energy. We first define
the particle and hole spectral functions by taking the imaginary part of Eq. (4.8):

Spαβ(ω) =
∑
n

(Xnα )
∗ Xnβ δ

(
ℏω − ϵ+n

)
, (4.14)

Shαβ(ω) =
∑
k

Ykα
(
Ykβ
)∗
δ
(
ℏω − ϵ−k

)
. (4.15)
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Then, the 1B density matrix can be related to the hole spectral function as [82]

ραβ =
〈
ΨA0
∣∣c†βcα∣∣ΨA0 〉

=

∫ ϵ−0

−∞
Shαβ(ω)d(ℏω) =

∑
k

Ykα
(
Ykβ
)∗
. (4.16)

From the density matrix, the expectation value of any 1B operator on the correlated ground state
∣∣ΨA0 〉 can be

computed in terms of the Y amplitudes:〈
O1B

〉
=
∑
αβ

O1B
αβ

〈
c†αcβ

〉
=
∑
αβ

O1B
αβρβα

=
∑
k

∑
αβ

(
Ykα
)∗
O1B
αβYkβ . (4.17)

Importantly, while in general finding the expectation value of a n-body observable requires knowing the
n-body propagator, the total energy can also be determined with the 1B GF - exactly, when there are only 2B
interactions; approximately, when the Hamiltonian contains also 3B interactions. This is achieved using the
so-called generalized Koltun sum rule [203]

EA0 =
1

2

∑
αβ

∫ ϵ−0

−∞
d(ℏω) [tαβ + ωδαβ ]S

h
βα −

1

2
⟨W ⟩ , (4.18)

where ⟨W ⟩ denotes the expectation value of the 3B interaction. In most cases, ⟨W ⟩ is a perturbative correction,
much smaller than the other contributions to the energy. Thus, it can be approximated with good accuracy at
lowest-order using the Hartree-Fock formula in terms of three correlated 1B density matrices [82, 203]:

⟨W ⟩ ≈ 1

6

∑
αβγλµν

Wαβγ,λµνρλαρµβρνγ . (4.19)

Many-body interactions can be treated by means of a perturbative expansion as a power series in H1. We
refer the reader to textbooks [115, 202] or reviews [82, 200] for the theory of propagators and Feynman dia-
grams, and summarize only some key notions relevant for the discussion. For the 1B propagator, the expansion
reads

gαβ(tα, tβ) = −
i

ℏ

+∞∑
n=0

(
− i
ℏ

)n
1

n!

∫
dt1...

∫
dtn× (4.20)

〈
ΦA0
∣∣T [H1(t1)...HA(tA)c

I
α(tα)c

I†
β (tβ)

]∣∣ΦA0 〉conn , (4.21)

where operators are now evolved in the interaction picture with respect to the unperturbed Hamiltonian H0,∣∣ΦA0 〉 is the A-particle g.s. of H0, and only connected diagrams have to be considered when using the Wick
theorem.

The Dyson equation (4.13) leads to a first reorganization of the diagrammatic expansion. Indeed, the self-
energy in practice collects only the one-particle irreducible (1PI) diagrams, i.e. those graphs that cannot be
disconnected by cutting a single fermion line. A further simplification is achieved by expressing the self-
energy as a functional of the dressed GFs. This reduces the set of diagrams to the so-called skeleton ones, and
gives rise to a self-consistent formulation of the Green’s functions approach. Skeletons are defined as those
diagrams that do not contain any portion that can be disconnected by cutting a fermion line twice in two
different points, i.e. they do not contain any self-energy insertion [203]. Any reference to unperturbed states is
dropped at the skeleton level, and the Dyson equation is written only in terms of the full GF g(ω). This is the
essence of the SCGF method. Such reorganization is convenient for several reasons, see [203]. For example, the
number of diagrams to evaluate is significantly reduced. Also, artificial dependencies on the reference state
and auxiliary potential Û are absent.

When 3B interactions are included, the number of diagrams in the perturbative expansion of the self-energy
grows (factorially) in an uncontrolled way. In order to reduce this complexity, a strategy has been proposed
in Ref. [203], which is based on the concepts of effective 1B and 2B interaction and interaction-irreducible
diagrams. The interaction Hamiltonian is recast as

H̃1 = Ũ + Ṽ + Ŵ (4.22)
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Figure 4.1: Diagrammatic representation of the effective one-body interaction, Eq. (4.23). The 1B interaction receives con-
tributions from the original 1B external potential, from the 2B force contracted with one 1B GF and from the 3B interaction
contracted with the 2B GF. Taken from Ref. [203].

Figure 4.2: Diagrammatic representation of the effective two-body interaction, Eq. (4.24). The contributions from the bare
2B interaction and from the 3B interaction contracted with a 1B GF are shown. Taken from Ref. [203].

where the explicit expressions of the matrix elements of the effective operators are given by

ũαβ = −uαβ +
∑
γδ

v̄αγ,βδρδγ +
1

4

∑
γδϵζ

w̄αγδ,βϵζΓϵζ,γδ, (4.23)

ṽαβ,γδ = v̄αβ,γδ +
∑
ϵζ

w̄αβϵ,γδζρζϵ, (4.24)

and the 2B density matrix can be computed exactly from the 2B propagator,

Γϵζ,γδ =
〈
ΨA0
∣∣c†γc†δcζcϵ∣∣ΨA0 〉 = +iℏ lim

t→0−
gIIϵζ,γδ(t). (4.25)

The diagrammatic representations of Ũ and Ṽ are shown in Figs. 4.1 and 4.2. In evaluating the contribution to
the 1B effective potential stemming from the 3B forces, gII is in practice treated in the approximation of two
dressed, but non-interacting nucleons [82], namely

gIIϵζ,γδ(t) ≈ iℏgϵγ(t)gζδ(t)− iℏgϵδ(t)gζγ(t), (4.26)

that implies approximating Γ as the product of two correlated 1B densities,

Γϵζ,γδ ≈ ρϵγρζδ − ρϵδρζγ . (4.27)

Thus, in practical calculations Ũ (4.23) is computed as

ũαβ = −uαβ +
∑
γδ

v̄αγ,βδρδγ +
1

2

∑
γδϵζ

w̄αγδ,βϵζρϵγρζδ. (4.28)

These effective interactions, in essence, are obtained by averaging the bare forces over the correlated 1B
density matrices. In this way, part of the many-body correlations is already included at the level of the Hamil-
tonian [82]. In particular, the effects of the 3B interactions are incorporated to some extent into Ũ and Ṽ . This
scheme is similar in spirit to normal-ordering techniques [14, 126]. However, it improves upon it, since the
correlated density matrices of the system are used, while normal-ordering is based on the HF density matrices.
It has been shown in Ref. [203] that the perturbation expansion in terms of H1 and irreducible diagrams is
equivalent to performing an expansion in terms of H̃1 provided that only the subclass of interaction-irreducible
diagrams is resummed. An interaction vertex is said to be reducible if the whole diagram can be disconnected
in two parts by cutting the vertex itself. Equivalently, a diagram is interaction-reducible if there exists a group
of isolated fermion lines (either interacting among themselves or not) that leaves one interaction vertex and
eventually all return to it. In the following, 1PI, skeleton, and interaction-irreducible diagrams will be consid-
ered in the expansion of the self-energy. Diagrams are expressed as function of the correlated GF, and effective
interactions are used.
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The self-energy can be decomposed as the sum of static and frequency-dependent contributions as follows:

Σ(⋆) = −U +Σ(∞) + Σ̃(ω), (4.29)

where Σ(∞) is the frequency-independent part of the self-energy, while Σ̃(ω) collects the dynamical contribu-
tions that appear starting from the second order in the diagrammatic expansion. When only skeletons are con-
sidered, Σ(∞) stems from first-order diagrams. Without self-consistency, higher-order terms must be included,
see Ref. [81]. Σ(∞) plays the role of a static mean field and generalizes the HF potential to correlated densities,
in the same way as the effective interactions (4.23) and (4.24) generalize the standard normal-ordering approx-
imation. Since it does not propagate any intermediate excitation, it receives contributions only from diagrams
where incoming and outgoing lines are attached to the same interaction vertex [82], and satisfies

Σ(∞) = Ũ + U =
∑
γδ

v̄αγ,βδρδγ +
1

4

∑
γδϵζ

w̄αγδ,βϵζΓϵζ,γδ (4.30)

≈
∑
γδ

v̄αγ,βδρδγ +
1

2

∑
γδϵζ

w̄αγδ,βϵζρϵγρζδ.

Note that bare 2B and 3B matrix elements are being used in Eq. (4.30). The expression of the dynamical
self-energy, instead, depends on the specific approximation scheme that one adopts, as will be discussed in
connection to the algebraic diagrammatic construction in Sec. 4.2.

4.2 Algebraic diagrammatic construction

The algebraic diagrammatic construction (ADC) is a Green’s function method that has found widespread ap-
plication in quantum chemistry [204, 205] and nuclear physics [81, 201]. In this section, we discuss ADC in the
framework of Dyson-SCGF; an effective way to include pairing correlations on top of a Dyson description is
the subject of Sec. 4.3.

ADC defines a hierarchy of approximations of the irreducible self-energy at different orders n [ADC(n)],
and is systematically improvable, in the sense that in the limit n −→ +∞ the exact self-energy would be
recovered. The key principle of ADC is to construct a class of approximate self-energies that have the same
analytical structure as the exact Σ(⋆). Indeed, similarly to the one-body propagator, the self-energy admits a
Lehmann representation that dictates that only first-order poles should appear. Moreover, causality implies
that the poles should be shifted from the real axis by imaginary factor ±iη, with η −→ 0+. Without loss of
generality, the exact and ADC self-energies have the following non-diagonal matrix structure

Σ(⋆)(ω) = −U +Σ(∞) + Σ̃(ω) (4.31)

= −U +Σ(∞) +M† 1

ℏω1− (E> + C) + iη
M +N

1

ℏω1− (E< +D)− iη
N†.

The self-energy carries two s.p. states indexes, i.e. Σ(⋆) = (Σ
(⋆)
αβ). M and N are called coupling matrices and

connect s.p. states to intermediate state configurations (ISCs) consisting of 2-particle-1-hole (2p1h), 3p2h...
(forward configurations, labeled by r) and 2h1p, 3h2p... s.p. states (backward configurations, s), respectively.
Thus, M and N are matrices of the type (Mrα) and (Nαs), respectively. E> (E<) represent the energies of the
unperturbed ISCs and are diagonal matrices of dimensionNfw×Nfw (Nbk×Nbk), with Nfw and Nbk counting
the number of forward and backward ISCs in the model space, respectively. 1 is the identity matrix in the space
of either forward or backward configurations. Lastly, C = (Crr′) [D = (Dss′)] are called interaction matrices
and connect two different ISCs. They appear starting from ADC(3) and their effect is to shift the position of the
self-energy poles. As we discuss below, non-vanishing C and D matrices imply a resummation of an infinite
number of diagrams [82]. Both coupling and interaction matrices are made antisymmetric with respect to the
permutation of any two particle or two hole indexes [81].

We give the general idea of how the ADC matrices are determined, as the details can be found elsewhere,
e.g. in Refs. [81, 82, 201, 205]. The key step to define the ADC(n) self-energy is to expand all the matrices in Eq.
(4.31) in power series of the interaction Hamiltonian and keep terms up to order n in the resulting self-energy.
The coupling matrices M and N can contain terms of any order in H1 or, equivalently, H̃1, i.e.

M =M (1) +M (2) + ..., N = N (1) +N (2) + ... (4.32)

The coupling matrices C and D, instead, can only be of first order [81]. To expand the energy denominators,
the formula

1

A−B
=

1

A
+

1

A
B

1

A−B
=

1

A
+

1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ ... (4.33)
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Figure 4.3: Feynman diagrams contributing to the ADC(3) working equation for the self-energy. From left to right:
second-order contribution, third-order ring diagram, third-order ladder diagram. One-particle irreducible, skeleton, and
interaction-irreducible diagrams that propagate only 2p1h or 2h1p ISCs are shown. The wiggly lines denote the effective
2B interaction. Dressed propagators are used.

is exploited. We now use these relations and retain terms up to order n. Performing such expansion up to
n = 3, for example, gives [82]

Σ(⋆) =− U +Σ(∞) (4.34)

+M (1)† 1

ℏω1− E> + iη
M (1) +N (1) 1

ℏω1− E< − iη
N (1)†

+M (2)† 1

ℏω1− E> + iη
M (1) +N (2) 1

ℏω1− E< − iη
N (1)†

+M (1)† 1

ℏω1− E> + iη
M (2) +N (1) 1

ℏω1− E< − iη
N (2)†

+M (1)† 1

ℏω1− E> + iη
C

1

ℏω1− E> + iη
M (1)

+N (1) 1

ℏω1− E< − iη
D

1

ℏω1− E< − iη
N (1)†

In order to determine the unknown matrices, ADC asks to evaluate all possible self-energy diagrams up to
order n explicitly and compare them to the previous formal expansion to identify the minimal expression of the
different matrices. ADC(n), then, contains all the n-th order self-energy diagrams, but also incorporates some
higher-order diagrams, and automatically implies an all-orders resummation of specific classes of diagrams,
such as rings and ladders [81]. This can be understood by Eq. (4.33), which generates an infinite number
of intermediate contributions from the energy denominators. ADC is thus a non-perturbative approach, that
allows to construct an approximate self-energy operator that includes selected classes of relevant diagrams
and is consistent with the essential analytic structure of the exact Σ(⋆).

The full theory of ADC(3) with 3B interaction has been developed in the framework of Dyson-SCGF in
Ref. [81]. However, this work (as most nuclear physics calculations so far) treats the 3B forces at the level
of the 2B effective interaction (4.24). In ADC(2) and ADC(3) with only two-body forces, only 2p1h and 2h1p
configurations appear. When 3N interactions are included, a coupling to 3p2h and 3h2p states is induced
as well [81]. The numerical cost of including 3p2h ISCs, though, is very large, and these contributions are
expected to be small. As a consequence, numerical calculations have been performed with 2p1h and 2h1p
configurations [113]. Under these assumptions, forward and backward ISCs are given by the triplets of s.p.
states r = (n1 < n2, k3) and s = (k1 < k2, n3), with n and k referring to particle and hole states, respectively.
The Feynman diagrams that define the ADC(3) scheme with 2B effective interactions are shown in Fig. 4.3.
From left to right, these are the second-order self-energy diagram, that defines ADC(2), the third-order ring
diagram, and the third-order ladder diagram. The second-order term generates only coupling matrices that
are of order 1 in the interaction, M (1) and N (1). The ladder and ring diagrams contribute to both second-order
coupling matrices and to the interaction matrices. The different contributions are labelled as M (2,pp), N (2,hh),
C(pp) and D(hh), for the ladder term, and M (2,ph), N (2,ph), C(ph) and D(ph), for the ring term. Indeed, the ring
term propagates particle-hole excitations, while the ladder diagram involves particle-particle and hole-hole
excitations.

Below we list all the contributions to the ADC(3) matrices, following Refs. [81, 82]. We first define the
following 2p2h amplitudes tn1n2,k1k2 :

tn1n2,k1k2 =
∑
αβ
γδ

Xn1
α X

n2

β ṽαβ,γδYk1γ Y
k2
δ

ϵ−k1 + ϵ−k2 − ϵ
+
n1 − ϵ+n2

. (4.35)
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tn1n2,k1k2 are functions of the amplitudes and poles of the propagator (4.4). If an unperturbed reference state
is used in Eq. (4.35), they reduce to the t(0) amplitudes used in the coupled-cluster method [14, 126] and in
MBPT (App. D.3). In the following equations, a sum over the repeated Greek indices is implicit. ṽαβ,γδ refers
to the matrix elements of either the effective 2B interaction (4.24) (if 3N forces are included), or the bare NN
interaction (if 3N forces are neglected).

The ADC(3) forward-in-time matrices are now given:

M (1)
rα = Xn1

µ Xn2
ν Y

k3
λ ṽµν,αλ, (4.36)

M (2,pp)
rα =

∑
k4<k5

tn1n2,k4k5 ṽµν,αλ
(
Yk4µ Yk5ν

)∗ Yk3λ , (4.37)

M (2,ph)
rα =

∑
k5n6

(
tn2n6,k3k5 ṽµν,αλXn1

µ

(
Yk5ν X

n6

λ

)∗
(4.38)

− tn1n6,k3k5 ṽµν,αλXn2
µ

(
Yk5ν X

n6

λ

)∗)
,

C
(pp)
rr′ = Xn1

α X
n2

β ṽαβ,γδ

(
Xn

′
1

γ Xn
′
2

δ

)∗
δk3k′3 , (4.39)

C
(ph)
rr′ = Xn1

α Y
k3
β ṽαδ,βγ

(
Xn

′
1

γ Yk
′
3

δ

)∗
δn2n′

2
−Xn2

α Y
k3
β ṽαδ,βγ

(
Xn

′
1

γ Yk
′
3

δ

)∗
δn1n′

2
(4.40)

−Xn1
α Y

k3
β ṽαδ,βγ

(
Xn

′
2

γ Yk
′
3

δ

)∗
δn′

1n2
+ Xn2

α Y
k3
β ṽαδ,βγ

(
Xn

′
2

γ Yk
′
3

δ

)∗
δn1n′

1
,

E>rr′ = diag
(
ϵ+n1

+ ϵ+n2
− ϵ−k3

)
. (4.41)

The ADC(3) backward-in-time matrices read:

N (1)
α,s = ṽαλ,µνYk1µ Yk2ν X

n3

λ , (4.42)

N (2,hh)
α,s =

∑
n4<n5

ṽαλ,µνXn3

λ

(
Xn4
µ Xn5

ν

)∗
tn4n5,k1k2 , (4.43)

N (2,ph)
α,s =

∑
n4k5

(
tn4n3,k5k2 ṽαβ,γδYk1µ (Xn4

ν X
n5

λ )
∗
)

(4.44)

− tn4n3,k5k1 ṽαβ,γδYk2µ (Xn4
ν X

n5

λ )
∗
)
,

D
(hh)
ss′ = −

(
Yk1α Y

k2
β

)∗
ṽαβ,γδY

k′1
γ Yk

′
2

δ δn3n′
3
, (4.45)

D
(ph)
ss′ = −

(
Yk1α X

n3

β

)∗
ṽαδ,βγY

k′1
γ Xn

′
3

δ δk2k′2 +
(
Yk2α X

n3

β

)∗
ṽαδ,βγY

k′1
γ Xn

′
3

δ δk1k′2 (4.46)

+
(
Yk1α X

n3

β

)∗
ṽαδ,βγY

k′2
γ Xn

′
3

δ δk2k′1 −
(
Yk2α X

n3

β

)∗
ṽαδ,βγY

k′2
γ Xn

′
3

δ δk1k′1 ,

E<ss′ = diag
(
ϵ−k1

+ ϵ−k2
− ϵ+n3

)
. (4.47)

A series of approximations of intermediate complexity between ADC(2) and ADC(3) can be introduced. As
interaction matrices are relatively inexpensive computationally, it has been suggested to extend ADC(2) using
the ADC(3) C and D matrices, while keeping the ADC(2) coupling matrices. We use the notation ADC(i,c) to
name these approximations, where the first term in brackets refers to the interaction matrices and the second
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one to the coupling matrices, and we consider the ADC(2) ladder [ADC(ld,2)] approximation, in which we in-
clude the ladder C and D matrices, and the 2p1h Tamm-Dancoff approximation (TDA) [ADC(3,2)] [82], where
both ring and ladder contributions toC andD are included. A further scheme we test is called ADC(ld,pp-hh),
and consists in using only the pp (hh) terms in both the C and M (D and N ) matrices, while ph contributions
are neglected. In Tab. 4.1 the terms entering the different ADC approximations are listed. The ADC(ld,2)
scheme, in particular, is strictly related to the coupled-cluster hole-hole and particle-particle ladder approxi-
mations [126, 130], as we discuss in App. D.4.3; this provides a useful test on several aspects of the implemen-
tation of ADC(3). We also mention extensions that add further correlations beyond the minimal prescription.
An example is the Faddeev random phase approximation [82, 206, 207] which includes RPA correlations in
the pp/hh and ph interaction channels. Another possibility is to replace the amplitudes that enter the ADC(3)
coupling matrices with the corresponding coupled-cluster amplitudes obtained with the CCD method [82,
208]. This is a more complex method, as it requires to first solving the coupled-cluster equations and then the
ADC(3) problem, which looks promising in early applications [82, 208].

Approximation M C N D

ADC(2) M (1) 0 N (1) 0
ADC(ld,2) M (1) C(pp) N (1) D(hh)

ADC(3,2) M (1) C(pp) + C(ph) N (1) D(hh) +D(ph)

ADC(ld,pp-hh) M (1) +M (2,pp) C(pp) N (1) +N (2,hh) D(hh)

ADC(3) M (1)+ C(pp) + C(ph) N (1)+ D(hh) +D(ph)

M (2,pp) +M (2,ph) N (2,hh) +N (2,ph)

Table 4.1: Approximations of the self-energy in Dyson-SCGF. The contributions to the coupling (M ,N ) and interaction
matrices (C,D) are listed. Besides ADC(2) and ADC(3), three schemes of intermediate complexity are defined, that extend
ADC(2) including (parts of) the ADC(3) interaction matrices. These are called ADC(ld,2), which includes the contributions
to C and D from the ladder diagram (Fig. 4.3), ADC(3,2) (Tamm-Dancoff approximation), which also includes the ring
diagrams, and ADC(ld,pp-hh), that includes pp and hh terms in both coupling and interaction matrices, but neglects ring
contributions. See text for details.

Once an approximation for the self-energy has been determined, the Dyson equation (4.13) has to be solved
in order to determine the dressed propagator. In the ADC method, it is convenient to cast the latter into an
eigenvalue problem. The derivation can be found in Refs. [81, 82] and is also reported in App. D.1. The
essential steps are summarized here. First, the propagator is written in terms of a general index i,

gαβ(ω) =
∑
i

Ziα(Ziβ)∗

ℏω − ϵi
, (4.48)

where for i = n (particle), Ziα = (Xnα )∗ and ϵi = ϵ+n , and for i = k (hole), Ziα = Ykα and ϵi = ϵ−k . Then, auxiliary
vectorsWi and Vi in the space of ISCs are introduced as

Wi =
(
ω − E> − C

)−1
MZi, (4.49)

Vi =
(
ω − E< −D

)−1
N†Zi. (4.50)

Finally, it can be shown that in this way the Dyson equation can be turned into the following energy-independent
eigenvalue problem: T +Σ(∞) M† N

M E> + C
N† E< +D

ZiWi

Vi

 = ϵi

ZiWi

Vi

 . (4.51)

A clear advantage of such an approach is that all poles and amplitudes are found in a single diagonalization
of a Hermitian matrix and, despite the increased dimension of the matrix problem Eq. (4.51), it has proven to
be much faster and numerically stable than using a root-finding algorithm to search for the poles individually
[82]. A full diagonalization of Eq. (4.51) is a very demanding task from a computational point of view, but
fortunately, it is generally not required to determine the full spectrum. The Lanczos algorithm is exploited
to reduce the dimension of the backward and forward subspaces separately [209]. Then, the resulting much
smaller matrix is fully diagonalized. Few tens or hundreds of Lanczos vectors are typically sufficient to get
an accurate reproduction of the propagator. In particular, the Lanczos method is accurate in preserving the
extremal (smallest or largest) eigenvalues of a matrix [176]. This is a rather important feature, since we are
mostly interested in the poles that are closest to the Fermi surface, either from below (2h1p configurations) or
from above (2p1h), as the strength of the propagator mostly concentrates there. Details are given in App. D.2.

The eigenvalue problem (4.51) is the key equation of the ADC method. The nature of SCGF requires to
search for an iterative solution to the problem, since the self-energy at the same time is determined by and
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determines the 1B GF. In principle, a fully self-consistent solution would work as follows: one should build
the self-energy using an uncorrelated reference propagator, solve the equations to obtain a dressed Green’s
function g(ω), construct again the Dyson matrix using the new propagator and then repeat the procedure until
the total energy converges. However, in most cases, this is infeasible from a computational point of view. This
is due to the large cost of evaluating the self-energy matrices, and also to the fact that at each iteration the num-
ber of poles in the propagator would increase, as explained in [26]. Therefore, techniques have been developed
over the years that elude the need for full self-consistency and allow to determine accurate, albeit approximate,
solutions to the Dyson equation in a reasonable amount of time. The first important simplification, which is
employed in most large-scale SCGF studies, consists of building the Dyson matrix out of an uncorrelated, but
properly chosen, HF-like propagator. This allows to sum over a limited number of poles, with a significant
reduction of computing time. The iterations are then carried out at two different levels, which we call ”sc0” (to
be contrasted to the fully self-consistent method, ”sc”) and optimized reference state (OpRS) methods.

The principle of the sc0 technique is that only the static self-energy is iterated in the Dyson equation. That
is, the Dyson matrix is built from g(0), Lanczos-reduced and diagonalized. The resulting propagator is then
used to evaluate the new Σ(∞) [Eq. (4.30)], while the dynamical self-energy matrices are kept unchanged. The
Dyson matrix which is obtained by updating only the upper corner in Eq. (4.51), then, is diagonalized and
the process is repeated until convergence. This approximation, in which Σ̃(ω) is evaluated and stored just
once and kept ”frozen” afterward, is numerically inexpensive and has been shown to allow to recover a large
fraction of the correlation energy [26].

A ”higher level” of self-consistency is realized in the OpRS scheme. The concept of OpRS, originally in-
troduced in Ref. [210], is discussed in detail in Ref. [201] and represents an effective way to include the
correlations of the dressed propagator, while keeping the computational cost manageable. The idea is to deter-
mine an uncorrelated propagator gOpRS of the HF type that allows to approximate the correlated propagator
while using a small number of poles,

gOpRSαβ (ω) =
∑
n

(ψnα)
∗ψnβ

ℏω − ϵOpRSn + iη
+
∑
k

ψkα(ψ
k
β)

∗

ℏω − ϵOpRSk − iη
. (4.52)

Since we are mostly interested in reproducing the features of g(ω) close to the Fermi energy, the moments of
the propagator with respect to the inverse powers of EF − ω are introduced, namely

M
(p)
αβ =

∫
d(ℏω)

Shαβ(ω)

(EF − ℏω)p
= (4.53)

∑
n

(Xnα )
∗ Xnβ(

EF − ϵ+n
)p +

∑
k

Ykα(Ykβ )∗(
EF − ϵ−k

)p =

∑
i

Ziα(Ziβ)∗

(EF − ϵi)p
,

and we ask that the moments of the optimized reference propagator match those of the true propagator re-
sulting from the solution of the Dyson equation. Typically, we require that only the moments with p = 0, 1

be equal, i.e. M (0)
αβ = M

(0,OpRS)
αβ and M

(1)
αβ = M

(1,OpRS)
αβ . This allows to guarantee the reproduction of 1B ob-

servables and the total energy with a good accuracy [211]. In practice, after an sc0 cycle has been completed,
the aforementioned conditions are imposed and exploited to determine the new s.p. energies ϵOpRSi and the
corresponding amplitudes of the reference propagator, and the full Dyson matrix is constructed again using
the new uncorrelated propagator. An sc0 loop can then be started again. The workflow of SCGF calculations
is depicted in Fig. 4.4 and summarized in the caption.

A further aspect that must be discussed concerns the Fermi energy. The chemical potential or Fermi energy
is usually defined in finite systems as the average between the highest removal energy and lowest addition
energy,

EF =
1

2

(
ϵ+0 + ϵ−0

)
. (4.54)

EF separates quasi-particle states from quasi-hole states and enters the evaluation of all the observables, see
formulas (4.18) and (4.17). Therefore, it is very important to determine the Fermi level accurately. An initial
estimate of EF , which is exact for an unperturbed reference state, is given by the average of the HF energies
of the last occupied and first unoccupied levels. However, after each diagonalization of the Dyson equation
the chemical potential has to be readjusted by imposing the auxiliary condition that the particle number be
conserved. Indeed, the SCGF method is formulated in the Fock space and thus the particle number is not a
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Figure 4.4: Schematic workflow of a SCGF calculation. The first step is always to construct the s.p. basis and determine
the corresponding HF reference propagator and 2p1h/2h1p configurations. Then, the Dyson matrix is constructed using
the reference propagator, Lanczos-reduced and stored. Afterward, the Dyson eigenvalue problem (4.51) is solved for the
first time. The dressed propagator g(ω) is thus obtained. Then, the Fermi level is adjusted to conserve the particle number,
and the total energy, the density matrix and the relevant one-body observables are computed. The static self-energy Σ(∞)

is evaluated using g(ω) and inserted in the Dyson matrix (while the dynamical self-energy is kept unchanged). This is the
content of the sc0 loop, which is repeated until the total energy is converged from one iteration to the next within a chosen
tolerance. Typically, about 10-15 iterations are sufficient for the sc0 loop. Once a sc0 cycle has converged, a new reference
state, the so-called OpRS, is determined to approximate the dressed propagator. The OpRS GF in general is characterized
by s.p. energies and amplitudes somewhat different from those of the HF propagator. Then, the whole Dyson matrix is
built again from scratch using the new (uncorrelated) reference state, and the sc0 loop is started again. Convergence is
typically achieved within 10 OpRS cycles (and often 5 iterations are enough).

fixed number, but rather an operator Âi, with i denoting the different fermion species in the system. Thus, the
number of particles Ai can be conserved only on average,

〈
Âi

〉
=
∑
α

ραα =

∫ ϵ−0

−∞

∑
α

Shαα(ω) dω =
∑
α

∑
k

∣∣Ykα∣∣2, (4.55)

by demanding
〈
Âi

〉
= Ai.

In [84], it has been shown (to second order) that ADC(n) is a so-called conserving approximation of the
self-energy. That is, it was shown by Baym and Kadanoff [212, 213] that, if the self-energy can be derived
from a certain functional Φ[g] of the dressed 1B propagator, then all basic conservation laws are satisfied by
the corresponding many-body method [214, 215]. This is an important and non-trivial property that, however,
is rigorously verified only if the observables are evaluated on the exact Green’s function. However, since, as
discussed above, only approximations to the true self-consistent solution of the Dyson equation are attainable
in practical cases, a slight violation of the particle number is to be expected, usually in the range of 2-3%.
In contrast, Gorkov-SCGF [26, 84] does not suffer from this issue, as the particle number is fixed exactly on
average in this framework. This is one of the main motivations for introducing Gorkov corrections, as we
describe in Sec. 4.3.

4.3 First-order Gorkov corrections

In this work, we do not implement a full Gorkov approach for infinite matter. However, we do study an
approximation in which first-order Gorkov corrections are introduced on top of Dyson-ADC (Sec. 4.2).



Self-consistent Green’s functions 41

Gorkov Green’s functions theory has been developed to deal with superfluid systems [202]. The Gorkov-
SCGF approach, in particular, has been developed to treat open-shell nuclei, see e.g. Refs. [19, 26]. From a
physical point of view, as far as infinite nuclear matter is concerned, pairing is important to describe neutron
matter at relatively low densities (kF of the order of 1 fm−1), such as those encountered in the inner crust of
neutron stars [216, 217]. At these large interparticle distances, the neutrons mainly experience the attractive
component of the nuclear interaction [217]. As ρ increases (at saturation density and above), the repulsive core
of the nuclear force comes into play and tends to suppress pairing effects. This is manifest, for example, in the
trends of the superfluid gaps as a function of the density, which have been investigated with effective forces
[218] and microscopic interactions (see e.g. Refs. [104, 216, 219, 220]). These arguments hold for T = 1 pairing
also in symmetric nuclear matter. In this case, however, the features and the impact of pairing in the T = 0
channel are still an open question [104, 221].

A superfluid extension of SCGF to study infinite matter is thus desirable. A complete Gorkov-ADC method
is left for the future. The approach we propose here combines the dynamical Dyson-ADC(3) self-energy, to de-
scribe the fragmentation of s.p. states, and a first-order treatment of the pairing potentials (i.e. the anomalous
self-energies).

From a technical point of view, calculations are made more stable when using the Gorkov framework.
In low-density nuclear matter, zero-temperature calculations with normal propagators may fail to converge
due to pairing instabilities [222]. (In Finite-T SCGF, such instabilities are lifted by using a sufficiently large
temperature [20, 222].) Physically meaningful solutions can be found by introducing pairing corrections. In
addition, in the Gorkov (or HFB) approach the particle number is conserved on average by construction. This is
a very useful property since the small violations of the number of nucleons that affect Dyson Green’s functions
can be removed completely.

Some minimal notions of the Gorkov formalism are summarized following Refs. [26, 84, 201]. In Gorkov-
SCGF, the reference state is chosen to be a symmetry-breaking Bardeen-Cooper-Schrieffer (BCS) state |Ψ0⟩ that
is made out of a superposition of ground states of A, A± 2... -particle systems [84],

|Ψ0⟩ =
∑
A even

cA
∣∣ΨA0 〉 . (4.56)

Together with |Ψ0⟩, the grand-canonical Hamiltonian Ω̂ is introduced,

Ω̂ = Ĥ −
∑
i

µiÂi, (4.57)

where i sums over different particle types (protons and neutrons in our case). |Ψ0⟩ is the state that minimizes
the expectation value of Ω̂,

Ω0 = ⟨Ψ0|Ω̂|Ψ0⟩ , (4.58)

under the constraints

Ai = ⟨Ψ0|Âi|Ψ0⟩ , (4.59)

i.e. |Ψ0⟩ is not an eigenstate of Âi, but has a fixed number of particles on average [84].
The (anti-unitary) time-reversal operator T is introduced. Given a s.p. state |α⟩, its time-reversed partner

is denoted as |α̃⟩. Following the notation of Ref. [84], states |ᾱ⟩ are also introduced, that differ from |α̃⟩ by a
phase factor ηα:

|ᾱ⟩ = T |α⟩ = ηα |α̃⟩ . (4.60)

For our purposes, ηα is in practice chosen such that the time-reversal operator acts on the spin-projection
eigenstates as follows:

T |↑⟩ = |↓⟩ , T |↓⟩ = − |↑⟩ . (4.61)

For each ”barred” state in a matrix element, a factor ηα has to be included. An example is

v̄αβ̄,γδ̄ = ηβηδ v̄αβ̃,γδ̃. (4.62)

The GF (4.4) must be generalized by introducing additional functions that account for the creation and de-
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struction of pairs [84]. Four 1B propagators are defined with respect to the reference state as follows:

g11αβ(t) = −
i

ℏ
⟨Ψ0|T [cα(t)c†β(0)] |Ψ0⟩ , (4.63)

g12αβ(t) = −
i

ℏ
⟨Ψ0|T [cα(t) c̄β(0)] |Ψ0⟩ , (4.64)

g21αβ(t) = −
i

ℏ
⟨Ψ0|T [c̄†α(t) c

†
β(0)] |Ψ0⟩ , (4.65)

g22αβ(t) = −
i

ℏ
⟨Ψ0|T [c̄†α(t)c̄β(0)] |Ψ0⟩ , (4.66)

where field operators are evolved with respect to Ω̂. The four Gorkov propagators admit the following
Lehmann representations [84]:

g11αβ(ω) =
∑
q

Uqα(U
q
β)

∗

ℏω − ℏωq + iη
+

(V̄qα)∗V̄
q
β

ℏω + ℏωq − iη
, (4.67)

g12αβ(ω) =
∑
q

Uqα(V
q
β)

∗

ℏω − ℏωq + iη
+

(V̄qα)∗Ū
q
β

ℏω + ℏωq − iη
, (4.68)

g21αβ(ω) =
∑
q

Vqα(U
q
β)

∗

ℏω − ℏωq + iη
+

(Ūqα)∗V̄
q
β

ℏω + ℏωq − iη
, (4.69)

g22αβ(ω) =
∑
q

Vqα(V
q
β)

∗

ℏω − ℏωq + iη
+

(Ūqα)∗Ū
q
β

ℏω + ℏωq − iη
, (4.70)

where q labels the sum over the excited states of Ω̂, |Ψq⟩, and the spectroscopic amplitudes are defined as

Uqα = ⟨Ψ0|cα|Ψq⟩ , (4.71)(
Uqβ
)∗

= ⟨Ψq|c†β |Ψ0⟩ , (4.72)(
V̄α
)∗

= ⟨Ψq|cα|Ψ0⟩ , (4.73)

V̄β = ⟨Ψ0|c†β |Ψq⟩ . (4.74)

The barred amplitudes satisfy [84]

Ūqα = +Uqᾱ = +ηαUqα̃, (4.75)

V̄qα = −Vqᾱ = −ηαVqα̃ (4.76)

The poles ωq are given by

ℏωq = Ωq − Ω0. (4.77)

Note that solutions to the Gorkov equations come in pairs +ωq,−ωq , as is also visible in the Lehmann repre-
sentation, which features poles at ω = ±ωq . In the sums, we will always consider ωq > 0. We also report a
symmetry property of the anomalous GF for later use: g12βα(ω) = −g12αβ(−ω). In analogy with the GF, four self-
energies are introduced, as discussed in [84]. The Koltun sum rule must be modified from the Dyson theory. If
we define the negative-frequency normal spectral function

S11,−
αβ (ω) =

∑
q

(V̄qα)∗V̄
q
β δ(ℏω + ℏωq), (4.78)

then the total g.s. energy is given by [84]

EA0 =
1

2

∫ 0

−∞
dω (tαβ + ωδαβ + µδαβ)S

11,−
βα (ω) (4.79)

From the propagators, the normal and anomalous density matrices are determined as

ραβ = ⟨Ψ0|c†βcα|Ψ0⟩ =
∑
q

(
V̄qα
)∗ V̄qβ , (4.80)

ρ̃αβ = ⟨Ψ0|c̄βcα|Ψ0⟩ =
∑
q

(
V̄qα
)∗ Ūqβ . (4.81)



Self-consistent Green’s functions 43

In terms of the energy-dependent self-energies, the Gorkov equations for the GF can be cast into matrix
form as the following eigenvalue problem [84]:(

T − µ1 +Σ11(ω) Σ12(ω)
Σ21(ω) −(T − µ1) + Σ22(ω)

) ∣∣∣∣
ω=ωq

(
Uq
Vq
)

= ℏωq
(
Uq
Vq
)
. (4.82)

The unknowns of the problem are the energies ωq and the amplitudes (Uq,Vq). The structure of Eq. (4.82)
implies that eigenvalues come in pairs (+ωq,−ωq) of opposite sign. Only the positive-energy solutions (ωq > 0)
need to be computed, as the ωq < 0 ones are trivially related to the former. If the first-order expressions are
used in all the self-energies, then one retrieves the well-known HFB equations [84]. Also, we mention that
symmetry properties relate Σ22(ω) to Σ11(ω) and the anomalous self-energies at first order Σ12(∞) and Σ21(∞),
namely

Σ22
αβ(ω) = −Σ11

β̄ᾱ(−ω), (4.83)

Σ
22(∞)
αβ = −Σ11(∞)

ᾱβ̄
, (4.84)

Σ12(∞) =
(
Σ21(∞)

)†
. (4.85)

The full Gorkov SCGF theory would use dynamical self-energies in both the normal and anomalous sectors
built out of an HFB reference state. That is the case of e.g. the Gorkov-ADC(2) [84] and Gorkov-ADC(3) [201]
methods. The approach we develop here is a somewhat hybrid technique, in which Σ11 is treated dynamically
at the level of the Dyson-ADC(3) theory, while Σ12 is included at first-order, i.e. the static Σ12(∞) is employed
in the off-diagonal part of the Gorkov matrix (4.82). This solution is an effective way of introducing pairing
correlations, while requiring relatively little extensions to the Dyson ADC(3) method described in Sec. 4.2. The
essential limitation of this hybrid method is that it is still based on an HF reference state, and not a true HFB
state.

The key equations for the Gorkov corrections are now presented. The starting point is Eq. (4.82), where the
off-diagonal anomalous self-energies are set to their static (first-order) expressions, given by

Σ
11(∞)
αβ =

∑
γδ

v̄αγ,βδρδγ (4.86)

+
1

2

∑
γδµν

w̄αγµ,βδνρδγρνµ +
1

4

∑
γδµν

w̄αµ̄ν,βγδ̄ρ̃γδρ̃
∗
µν ,

Σ
12(∞)
αβ =

1

2

∑
γδ

v̄αβ̄,γδ̄ρ̃γδ +
1

2

∑
γδµν

w̄αβ̄µ,γδ̄ν ρ̃γδρνµ. (4.87)

The normal component of the static self-energy, Eq. (4.86), presents, compared to the Dyson Σ(∞) (4.30),
an additional term that depends on the anomalous density and is shown in Fig. 4.5. The anomalous self-
energy consists of two diagrams (Fig. 4.6) that both depend on ρ̃ (and thus it vanishes in a normal system).
Contributions that involve the 3N interaction have been derived here following the rules discussed in Ref. [84].

Figure 4.5: Contribution to the normal self-energy, Eq. (4.86), that depends on the anomalous density. The dashed line
represents the antisymmetrized matrix elements of the 3N potential. The other two contributions to Σ

11(∞)
αβ are depicted in

Fig. 4.1.

Then, the eigenvalue problem (4.82) is cast into an energy-independent form by introducing auxiliary vec-
tors. The procedure can be found in Ref. [84] and is also summarized in App. D.1 for Dyson-ADC. We define
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Figure 4.6: Contributions to the anomalous static self-energy, Eq. (4.87). Dashed lines denote the antisymmetrized matrix
elements of the bare NN and 3N interactions.

the Dyson matrix H following Eq. (4.51), with the only change being that now in the upper corner Σ11(∞)

(4.86) has to be used. The M , N , C, and D matrices, that define the dynamical self-energy, are the same as in
Dyson-ADC(3). Thus,

H =

T +Σ11(∞) M† N
M E> + C
N† E< +D

 . (4.88)

Finally, our Gorkov matrix reads

G(µ) =
(
H− µ1 Σ12(∞)

(Σ12(∞))† −
(
H† − µ1

)) , (4.89)

where we stress that G is a function of the chemical potential for the appropriate particle species. Σ12(∞) acts
only on the upper corner ofH. The Gorkov eigenvalue problem has the form

G(µ)
(
Aq
Bq
)

= ℏωq
(
Aq
Bq
)
, (4.90)

where Aq and Bq are vectors in the extended space of the form

Aq =
(
Uqα Wq

r X qs
)
, (4.91)

Bq =
(
Vqα Yqr Zqs

)
. (4.92)

For each eigensolution q, the normalization condition
∑
α(|Uqα|

2
+ |Vqα|

2
) +

∑
r(|Wq

r |
2
+ |Yqr |

2
) +

∑
s(|X qs |

2
+

|Zqs |
2
) = 1 is set. Our notation differs slightly from that of Ref. [84], and amounts essentially to a reshuffling of

the different blocks within the Gorkov matrix. Note that in this form G resembles the HFB matrix closely, with
the mean-field terms being replaced by Dyson matrices along the main diagonal. Eq. (4.89) has a clear phys-
ical interpretation. The s.p. Hamiltonians that describe the state α and its time-reversed state α̃ are coupled
together by the off-diagonal terms that describe the BCS pairing. Moreover, a numerical implementation is im-
mediately suggested, as it is clear that the termsH can be evaluated just as in Dyson-ADC and then employed
as building blocks for G.

The iterative solution of this Gorkov problem requires modest changes to the scheme presented in Sec.
4.2, and the workflow remains essentially the one depicted in Fig. 4.4. We summarize the main steps. The
Dyson matrix H is constructed and Lanczos-reduced. Then, the resulting small matrices of the dynamical
self-energy are inserted into Eq. (4.89) and kept frozen afterwards. A guess for the 1B propagators is chosen,
and the static normal and anomalous self-energies are evaluated based on this ansatz. Note that we must start
with a particle-number-breaking GF to find non-vanishing off-diagonal pairing terms. If we just start from an
HF propagator, we simply find two identical copies of the Dyson problem (see also App. D.6). G(µ) is then
repeatedly diagonalized for different values of the chemical potentials µi for all the particle species i in the
system. This is a slightly more complex step than for the Dyson method and is detailed in App. D.5. After
the Fermi surface has been determined, a new sc0 step can be performed in analogy with Dyson-ADC. The
normal self-energy is updated inside the Dyson matrix H (4.88), as well as the anomalous term Σ12(∞). Then,
the chemical potential must be fixed again, and so on.

Once a sc0 cycle has finished, an optimized propagator is defined and a new OpRS cycle starts. The dressed
GF is mapped back to an HF-like propagator, in analogy to the Dyson-SCGF case, and is used to build the new
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dynamical self-energy matrices at the Dyson level 1. We define the moments of the normal Gorkov spectral
function S11 as

M
(p)
αβ =

∑
q

(ℏωq)p
(
(V̄qα)∗V̄

q
β − U

q
α(U

q
β)

∗
)
. (4.93)

We have explored two recipes. One uses p = −1 as in Dyson OpRS. However, we have also considered the
possibility p = 1, where the centroid energy of the correlated Gorkov distribution is evaluated. See also Sec.
4.4.

4.4 Applications to infinite matter

We present the application of the Dyson-ADC(3) method (Sec. 4.2) and of the first-order Gorkov corrections
(Sec. 4.3) to infinite nuclear matter. The groundwork has been laid in Refs. [82, 83], to which we refer.

The first great simplification that appears when the general ADC framework (Sec. 4.2) is specialized to
infinite matter is that translational invariance imposes that the Dyson equation is diagonal in momentum
space [82]. As a consequence, it is natural to adopt the momentum eigenstates as s.p. basis. In the following,
states

|α⟩ = |kα, sα, tα⟩ (4.94)

will be used, where sα and tα are the spin and isospin projection quantum numbers, respectively. We remind
that the momenta are quantized, see Sec. 1.3, namely

kα =
2π

L
n (PBC), (4.95)

kα =
1

L
(2πn+ θ) (TABC). (4.96)

The dimension of the s.p. space can be set by imposing a cutoff on the maximum momentum, |k| < kmax, or
requiring |n|2 < N2

max for a certain integer number N2
max. A convergence study on the model space dimen-

sion is usually performed, where the cutoff is gradually increased until results (in particular the total energy)
stabilize. The typical cutoff in our calculations is N2

max = 25.
The states (4.94) are automatically HF states. HF states and energies can thus be characterized by a single

label α, too:

ϵHFα = ϵHF (kα, sα, tα) = tα +
∑
h1

v̄αh1,αh1 +
1

2

∑
h1h2

w̄αh1h2,αh1h2 (4.97)

with tα = ℏ2k2
α/(2m) is the kinetic energy and h1, h2 are hole states. The corresponding HF propagator reads

g(0)α (ω) =
1

ℏω − ϵHFα ± iη
(4.98)

where the imaginary part is +iη (−iη) if α is a particle (hole) state, and is characterized by a single pole for
each α. The amplitudes reduce to delta functions, i.e. Xnα = δαn and Ykα = δαk, and thus also the evaluation of
the dynamical self-energy matrices is drastically simplified when the HF propagator (4.98) is used.

The full propagator in momentum space reads 2

gα(ω) =
∑
j

∣∣Zjα∣∣2
ℏω − ϵα,j

=
∑
n

|Xnα |
2

ℏω − ϵ+α,n + iη
+
∑
k

∣∣Ykα∣∣2
ℏω − ϵ−α,k − iη

, (4.99)

and correspondingly the spectral function is given by

Sα(ω) =
∑
j

∣∣Zjα∣∣2δ(ℏω − ϵα,j) =∑
n

|Xnα |
2
δ(ℏω − ϵ+α,n) +

∑
k

∣∣Ykα∣∣2δ(ℏω − ϵ−α,k). (4.100)

1We stress that in a full Gorkov SCGF approach the OpRS state would have the structure of a HFB propagator. In our scheme, instead,
we search for an uncorrelated HF-like form of the Gorkov propagator.

2From the definition of the 1B GF, it is clear that to satisfy the momentum and charge conservation laws, the states α and β must carry
the same momentum and isospin, otherwise the propagator vanishes. Perhaps, it is less obvious at first sight that g(ω) must be diagonal
also in the spin projection index. We report a simple argument from Ref. [115]: the spin structure of the propagator is made out of the 2×2
identity matrix or by k · σ, as k is the only available vector that can be combined with the Pauli matrices to generate a scalar. However,
this quantity is a pseudoscalar under spatial reflections. Thus, if the system is invariant under parity, this term must vanish. Therefore
sα = sβ , hence α = β.
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In particular, from Eq. (4.98) one finds that the HF spectral function reads

S(0)
α (ω) =

∑
j

δ
(
ℏω − ϵHFα

)
. (4.101)

The Dyson equation decouples in the different momentum states:

gα(ω) = g(0)α (ω) + g(0)α (ω)Σ(⋆)
α (ω)gα(ω). (4.102)

We stress that Eq. (4.102) can be solved in each k channel separately [82]. The notation ϵα,j is used to denote
the different energy poles j that are found solving the Dyson equation for the state α. Moreover, thanks to
homogeneity we know that s.p. properties must be independent on the direction of the wave vector. In the
case of spin-saturated matter, they are also independent of the spin projection. Therefore, s.p. states can be
organized, for each particle species separately, in groups characterized by a given |k|, and the Dyson equation
has to be solved for just one representative state for each group 3.

The density matrix is diagonal too, i.e. ραβ = δαβρα, where ρα represents the momentum distribution
function of the system, and is given by

ρα =
∑
j

∣∣Yjα∣∣2. (4.103)

The static self-energy is evaluated with the formula (4.28)

Σ(∞)
α =

∑
µ

v̄αµ,αµρµ +
1

2

∑
µν

w̄αµν,αµνρµρν , (4.104)

where the 2B and 3B interactions are averaged on the correlated density. The Koltun sum rule is also simpler
in infinite matter and reads

EA0 =
1

2

∑
α

tαρα +
∑
j

ϵα,j
∣∣Yjα∣∣2

− 1

2
⟨W ⟩ , (4.105)

with

⟨W ⟩ ≈ 1

6

∑
αβγ

w̄αβγ,αβγραρβργ . (4.106)

The OpRS propagator has the same structure of g(0), Eq. (4.98) and is thus characterized by a single pole
with amplitude 1 for each α. The condition on the zeroth-order moment (4.53) of the spectral function is
satisfied automatically, while the first-order condition reads

M (1,OpRS)
α =M (1)

α =
1

EF − ϵOpRSα

=
∑
j

∣∣Zjα∣∣2
EF − ϵα,j

, (4.107)

and hence the OpRS energies are given by

ϵOpRSα = EF −
1

M
(1)
α

. (4.108)

As in the case of Dyson SCGF, in the Gorkov approach the propagators and the self-energies are diagonal
in the momentum basis.

We now consider the case of Gorkov-SCGF. As in Dyson’s theory, both the normal and anomalous propa-
gators are diagonal in the momentum basis (α = β). In fact, only pairs of time-reversed states can be created
or destroyed. As a consequence, the density matrices and the self-energies are diagonal, too: ραβ = δαβρα,

3A technical note: in the thermodynamic limit, indeed all s.p. properties are functions of |k|. In a finite model space, when PBCs are
used this is strictly true only for states n that are related by a permutation and/or sign change of the three components ni, e.g. (2, 0, 1)
and (0,−2, 1). However, there also exist states that have the same value of |n|2, but are not related by such symmetry, e.g. the states
(3, 0, 0) and (2, 2, 1). These states must be assigned to different groups, and slightly different results concerning e.g. the spectral function
and the occupation number may be observed. Thus, isotropy is in fact mildly broken in calculations performed with discretized momenta.
By contrast, when TABC are used k vector are non-degenerate (see Fig. 1.4 and related discussion).
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ρ̃αβ = δαβ ρ̃α, Σ11
αβ = δαβΣ

11
α and Σ12

αβ = δαβΣ
12
α . For convenience, we report the expression of the relevant

elements of the propagators, densities and static self-energies:

g11α (ω) =
∑
q

|Uqα|
2

ℏω − ℏωα,q + iη
+

∣∣V̄qα∣∣2
ℏω + ℏωα,q − iη

, (4.109)

ρα =
∑
q

∣∣V̄qα∣∣2, (4.110)

ρ̃α =
∑
q

(V̄qα)∗Ūqα = −
∑
q

(Vqα)∗Uqα, (4.111)

Σ11(∞)
α =

∑
β

v̄αβ,αβρβ +
1

2

∑
βγ

w̄αβγ,αβγρβργ +
1

4

∑
βγ

w̄αβ̄β,αγγ̄ ρ̃
∗
β ρ̃γ , (4.112)

Σ12(∞)
α =

1

2

∑
β

v̄αᾱ,ββ̄ ρ̃β +
1

2

∑
βγ

w̄αᾱβ,γγ̄βρβ ρ̃γ . (4.113)

The Koltun sum rule (4.79) in infinite matter reads

EA0 =
1

2

∑
αq

(tα + µ− ωα,q) |Vqα|
2 − 1

2
⟨W ⟩ , (4.114)

with ⟨W ⟩ given by Eq. (4.106). The OpRS energies are generated from the Gorkov propagator either as cen-
troids of the spectral function,

ϵOpRSα =
∑
q

ℏωα,q
(
|Vqα|

2 − |Uqα|
2
)
, (4.115)

or averaging over the inverse power of the energy poles,

1

ϵOpRSα

=
∑
q

1

ℏωα,q

(
|Vqα|

2 − |Uqα|
2
)
. (4.116)

We will denote as Gorkov-Cen (Gorkov-Inv) the calculations performed with the Gorkov correction with OpRS
energies generated with the recipe Eq. (4.115) [Eq. (4.116)].

To summarize, we describe the essential steps of the actual implementation of the Dyson-ADC method and
the first-order Gorkov method of Sec. 4.3 in infinite nuclear matter as follows:

1. The s.p. basis is determined and organized in groups of states with the same momentum and particle
species.

2. The ADC matrices of Sec. 4.2 are built using an unperturbed propagator (4.98). This boils down to
replacing the X and Y amplitudes by Kronecker’s δ’s and using HF (or OpRS) energies in place of the
excitation energies ϵ+ and ϵ− in Eqs. (4.35)-(4.41).

3. The matrices E> + C and E< + D are reduced with the Lanczos algorithm (App. D.2) separately. It is
also convenient to diagonalize the resulting matrices, to write the self-energy in a simpler form.

4. The sc0 loop is performed. At each iteration, the Dyson (4.51) or Gorkov (4.90) eigenvalue problem is
solved for a representative state in each of the groups in the s.p. basis. The amplitudes are used to
evaluate the occupation numbers and the total energy using Eqs. (4.103) and (4.105) in Dyson-sc0, or
(4.110) and (4.114) in Gorkov-sc0.

5. OpRS energies are generated using formula Eq. (4.108) in Dyson calculations, or with the recipes (4.115)
or (4.116) in Gorkov calculations. The Dyson matrices are evaluated using the new s.p. energies, and the
cycle is repeated.

4.5 Finite-temperature SCGF

Green’s functions methods have been used to study infinite nuclear matter extensively in the past. SCGF
based on the finite-temperature formalism (from now on ”Finite-T SCGF”) has been applied to homogeneous
nuclear matter, as demonstrated by applications to asymmetric matter in a range of temperatures relevant for
astrophysical scenarios [20, 111]. In this Section we limit ourselves to a brief overview of the method, which is
described in detail in Refs. [20, 82, 200, 223].
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Figure 4.7: Diagrammatic representation of the ladder approximation to the self-energy in the Finite-T SCGF formalism.
The self-consistent equation for the T -matrix (top) and the self-energy (bottom) are shown. The wiggly lines represent the
effective 1B and 2B interactions shown in Figs. 4.1 and 4.2, respectively. Adapted from Ref. [20].

The Finite-T SCGF method is based on the so-called ladder approximation of the self-energy. The key ingre-
dient of this approach is the T -matrix, which represents an in-medium, energy-dependent effective two-body
interaction. The T -matrix satisfies a self-consistent Lippmann-Schwinger-like equation that allows effectively
resum contributions from repeated scatterings of the particles and holes in the medium to all orders. The
diagrams that define the equations for T and the self-energy are shown in Fig. 4.7. Since the formalism is
expressed in the TL with continuous momenta, it allows us to capture the short-range correlations that are
expected to dominate in (dilute) Fermi gases [20, 224]. Also, in Finite-T SCGF fully self-consistent solutions
for the dressed propagator can be found [20]. By contrast, in ADC-SCGF self-consistency is realized approx-
imately using the OpRS technique [210]. A consequence is that Finite-T SCGF is thermodynamically consis-
tent, i.e. thermodynamical properties calculated microscopically coincide with the quantities calculated as
derivatives of the free energy [20, 214]. A notable example is the chemical potential. Moreover, the ladder
approximation is a conserving approximation, so that conservation laws are guaranteed to be satisfied by fully
self-consistent calculations [20]. Studies that report applications of the Finite-T SCGF to calculations of EOS,
momentum distributions and spectral functions include [20, 104, 111, 223, 225].

A comparison between the Finite-T and ADC formalism is in order. The first and most obvious is that ADC
is strictly a zero-temperature method, whereas, in the other approach, calculations are performed at energies of
at least 5 MeV. Temperature is effective in lifting the pairing instabilities that would emerge when at low matter
densities the energy gap tends to vanish. This is a well-understood phenomenon, that nonetheless makes it
difficult to converge calculations at low ρ in many-body methods based on HF reference states, such as Dyson
SCGF and coupled-cluster [126], and is a clear manifestation of the need to use a multi-reference or BCS state,
as e.g. in Gorkov SCGF [84]. The T = 0 limit is accessed using an extrapolation procedure (see e.g. [222]), such
as a Sommerfeld expansion [226]. Such procedure is well understood and precise, and does not introduce any
significant numerical error. Second, in ADC-SCGF calculations are performed in a finite model space, with a
finite number of particles and a finite number of basis states, and the method is cast into a matrix eigenvalue
problem. By contrast, Finite-T SCGF is formulated in the continuum and allows to access the TL directly. The
treatment of the continuum is the most relevant difference with both ADC and coupled-cluster [126], where the
k-space is discretized. Lastly, Finite-T SCGF includes the dominant ladder contributions, while ADC(3) also
resums the ring diagrams. These are important in finite nuclei, where they determine the long-range physics,
but their effect is modest in infinite matter. Moreover, ADC is a systematically improvable scheme. Also, the
significant developments in both theory and algorithms of the Dyson and Gorkov methods that have occurred
in the last years can be quite readily applied to infinite nuclear matter.



CHAPTER 5

Ab initio equations of state

In this Chapter, the ab initio equations of state of infinite nuclear matter are presented. The EOS have been
interpolated with polynomials of the Fermi momentum, see Sec. 2.2.1, as a preliminary step before being
employed to define the local density approximation EDFs (Ch. 6). We remind that a model selection procedure
has been used to choose the set of powers {γi} that allows to best fit the data. We refer to a model EOS listing
the powers of ρ1/3 it is made of. For example, (2,5,6) stands for c 2

3
ρ

2
3 + c 5

3
ρ

5
3 + c2ρ

2.
This chapter is structured as follows. In Sec. 5.1 the EOS obtained with the AV4′+UIXc interaction and the

AFMDC method (Ch. 3) is discussed. In Sec. 5.2, the Finite-T SCGF method, introduced in Sec. 4.5, is used
to determine the EOS with the NNLOsat potential. Since the methods are well consolidated, in these sections
only the final results are shown. Sec. 5.3 is devoted to a study of the newly developed ADC-SCGF method for
infinite matter (Ch. 4), which is thoroughly discussed and validated.

5.1 AFDMC

Calculations performed with the AFDMC method and the AV4′+UIXc interaction are reported in this Section.
We present the results that have been obtained in PNM using N = 66 neutrons and in SNM with A = 76 and
A = 132 nucleons for several densities up to 0.40 fm−3. Part of these calculations have already been presented
in Ref. [68] and are, to the best of our knowledge, the first application of AV4′+UIXc to nuclear matter. We will
also use the short-hand notation ”Argonne 4” to refer to this (NN+3N) interaction, when there is no ambiguity.
The Argonne 4 potential represents a good choice for methodological purposes (Sec. 1.2). On the one hand,
it has a simple operator structure that allows to perform reliable AFDMC calculations not only of PNM, but
also of SNM and medium-mass nuclei [68]. On the other hand, it yields reasonable predictions for the binding
energies of magic nuclei, see [108].

The QMC calculations are obtained using the constrained path approximation. Wave functions that include
linear operator correlations are optimized in VMC and then used in the diffusion process. DMC runs employ
about 2000 walkers. After about 100 blocks (each block consisting of 40 steps), convergence to the g.s. is
typically achieved, and we start computing observables for at least 50 blocks. This blocking technique helps
reduce the correlations between steps in the time evolution [178].

The energies per nucleon as a function of the density are reported with their statistical error bars in Fig.
5.1. As far as SNM is concerned (lower panel), the saturation point is located at an unusually high density
(ρ ≈ 0.24 fm−3) and low (i.e. high in absolute value) energy, and the 3N contribution is instrumental in allow-
ing the SNM EOS to saturate; in fact, AV4′ alone predicts no saturation before 0.50 fm−3 [190]. With A = 76
(diamonds), the saturation energy amounts to about -23.7 MeV, while with A = 132 (circles) it is roughly 2
MeV higher. Thus, Argonne 4 gives a realistic description of finite magic nuclei [68, 108] (Ch. 2.2), but in
infinite matter predictions are farther from the empirical constraints.

The EOS have been fitted with the polynomial functions described in Sec. 2.2.1, using the finite-A kinetic
energy (2.14) in Eq. (2.12). The model that best reproduces the ab initio EOS is the (2,5,6) polynomial, whose
predictions are shown in Fig. 5.1 as dotted lines. Note that separate fits have been done for the SNM EOS with
the two different nucleon numbers.

For later convenience, we have also considered the results for the AV8′ +UIX interaction (”Argonne 8” for
short) obtained with AFDMC in Ref. [227] for PNM with 66 neutrons. This is the initial step for an analysis of
perturbed neutron matter presented in Sec. 8.2. The optimal interpolation is given by the polynomial model
(3,4,5,6), and is shown in Fig. 5.2 together with the ab initio data points.

5.2 Finite-T SCGF

We report the EOS computed in both SNM and PNM with the Finite-T SCGF method and the NNLOsat in-
teraction. Calculations have been originally performed in Ref. [111]; the zero-temperature EOS shown here is
obtained as a controlled extrapolation of finite-temperature results.

49
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Figure 5.1: Equation of state computed with the AV4′+UIXc interaction and the AFDMC method in PNM with N = 66
neutrons (upper panel) and SNM (lower panel) with A = 76 (diamonds) and A = 132 nucleons (circles). Dashed lines
denote fits performed with the model EOS (2,5,6) (see text for details).

We have considered simulations up to densities ρ = 0.32 fm−3, as these are still compatible with the soft
momentum cutoff of this interaction. The SNM EOS saturates at ρsat = 0.15 fm−3 and Esat = −14.7 MeV. Note
that predicting a saturation point compatible with the empirical constraints is a non-trivial achievement that
has contributed to the popularity of NNLOsat [105]. As in Ref. [68], we performed fits on on a set of points
equally spaced by 0.01 fm−3 following the parametrizations discussed in Sec. 2.2.1. A 5-fold cross-validation
procedure was used to estimate the validation error and select the best model. The optimal choice is the
polynomial (2, 3, 4, 5, 6). This model is shown by the curves in Fig. 5.3 along with the complete ab initio
dataset used in the fit.

In summary, representing the nuclear EOS as a polynomial of the Fermi momentum has proved an effective
ansatz in all cases that we have examined. Such parametrizations are used in Ch. 6 as the building block of the
ab initio-based EDFs.
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Figure 5.2: Equation of state computed with the AV8′+UIX interaction and the AFDMC method in PNM with N = 66
neutrons. Dashed lines denote fits performed with the model EOS (3,4,5,6). Data are taken from Ref. [227].

5.3 ADC-SCGF

In this Section, a study of the ADC-SCGF method for infinite nuclear matter (Sec. 4.2) is reported. When not
stated otherwise, N = 66 neutrons and A = 132 nucleons are used in PNM and SNM, respectively, and PBCs
are imposed. The NNLOsat (450) [105] and ∆NNLOgo (394) [106] chiral interactions are employed (Sec. 1.2).
These potentials use non-local regulators in both the NN and 3N sectors; the number in parenthesis refers
to their cutoff in MeV/c (see App. A). We perform calculations up to ρ = 0.32 fm−3. For finite nuclei, the
region around the saturation density is most relevant. Also, as the chiral interactions are defined in a low-
momentum expansion, we are aware that physically meaningful results can be expected only for densities
such that ℏkF ≲ Λ, with Λ being the cutoff of the potential. Fermi momenta for both PNM and SNM are
reported in Tab. 5.1 for some representative densities. The reliability of the interactions at ρ = 0.32 fm−3 is
questionable, especially for PNM, as ℏkF becomes comparable with the cutoff. Yet, it is interesting to examine
how the method behaves in the strongly-correlated high-density regime.

ρ (fm−3) kF (fm−1) ℏkF (MeV/c)
0.08 1.333 263.041

PNM 0.16 1.680 331.411
0.24 1.923 379.371
0.32 2.116 417.552
0.08 1.058 208.776

SNM 0.16 1.333 263.041
0.24 1.526 301.107
0.32 1.680 331.411

Table 5.1: Fermi momentum (in fm−1 and in MeV/c) as a function of the number density in PNM and SNM.

As discussed in Secs. 4.2 and 4.3, in ADC-SCGF the particle number is conserved only on average. While in
Gorkov-SCGF ⟨A⟩ = A is imposed by construction, a violation of the nucleon number is sometimes observed
in Dyson-SCGF, especially in high-density SNM, where correlations are strong. In the following, the EOS are
shown using the expectation value ⟨A⟩, and not the ’nominal’ particle number A. That is, the EOS is to be
understood as the energy per particle E/ ⟨A⟩ versus the density ⟨A⟩ /Ω, with Ω being the quantization volume.

In basis expansion methods, it is necessary to study the convergence of the results as a function of the
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Figure 5.3: Equation of state computed with the NNLOsat interaction and the Finite-T SCGF method in PNM (upper panel)
and SNM (lower panel). Results have been extrapolated to the T = 0 limit. Dashed lines denote fits performed with the
model EOS (2,3,4,5,6) (see text for details).

dimension of the s.p. basis. The parameter that controls the model space in infinite matter is N2
max, i.e. the

s.p. basis is made of the momentum eigenstates with |n|2 < N2
max (Sec. 4.4). First, the convergence of the

MBPT(2) energies (see App. D.3) is reported in Fig. 5.4. PNM (SNM) calculations are shown in the upper
(lower) panels at densities ρ = 0.16 fm−3 (left) and 0.32 fm−3 (right) for the two interactions, rewhichented by
squares [NNLOsat (450)] and circles [∆NNLOgo (394)]. The energies per particle are shown for N2

max ranging
between 4 and 30. The insets report the difference between the energy for a given cutoff and the value of the
energy at N2

max = 30, that is well-converged in all cases. As the s.p. basis is enlarged, the energy decreases
monotonically. The trend is not smooth, though, and a few hints of ’plateaus’ are observed. One can appreciate
that PNM is more perturbative than SNM, and in turn the calculations with ∆NNLOgo, that is softer, i.e. has
a lower cutoff, than NNLOsat, converge more quickly. We have observed that at the higher density, ρ = 0.32
fm−3, where the system is more strongly correlated, convergence is faster as a function of N2

max. This behavior
might be explained as follows (see Ref. [83]). For a fixed number of particles, one can expect the calculations
to be converged with respect to the s.p. basis for a maximum momentum, kmax, of the order of the Fermi
momentum plus the cutoff of the potential, ℏkmax ≈ ℏkF + Λ. In turn, kmax is related to N2

max and to the
density as follows:

kmax ∼
1

L

√
N2
max ∼ ρ1/3

√
N2
max. (5.1)

As kmax varies mildly with the density (see Tab. 5.1), the maximum N2
max required is expected to be smaller

for larger densities. In PNM, already with N2
max = 20 differences in energy from the largest model space

considered amount to little more than 1 keV at most. In SNM, a similar convergence pattern is reached only
for N2

max ≈ 25 in the NNLOsat case. Interactions are indeed stronger in SNM than in PNM.
A convergence study of ADC is then performed for the case that manifests the slowest convergence pattern

in MBPT(2), i.e. SNM at ρ = 0.16 fm−3 with NNLOsat. The ADC(3) approximation with Gorkov first-order
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Figure 5.4: MBPT(2) energies per nucleon as a function of the cutoff N2
max of the s.p. basis. Calculations are performed

with the NNLOsat (450) (squares) and ∆NNLOgo (394) (circles) interactions in both PNM (upper panels) and SNM (lower
panels), at densities ρ = 0.16 fm−3 (left) and 0.32 fm−3 (right). Insets: differences ∆E/A between the energy for a given
cutoff and the converged energies (obtained for N2

max = 30). Lines are a guide to the eye.

corrections is adopted, and OpRS energies are determined as centroids of the spectral function using Eq. (4.115)
(Gorkov-Cen for short). A convergence criterion of 10 keV/A is set for the energies of both the sc0 and OpRS
cycles (see App. D.7). Calculations are reported for cutoffs up to N2

max = 28 in Fig. 5.5. While the computing
time is always manageable, the memory required to store the potential matrix elements and the Dyson matrix
increases quickly and at present makes it difficult to access larger model spaces. In any case, the trend is
clear, and in fact energies for N2

max = 24 are within ≈ 20 keV/A from N2
max = 28, as shown in the inset. All

subsequent calculations will be done with a cutoff of N2
max = 25, that we expect to be converged with respect

to the model space truncation within the accuracy of the method.
A comparison of the different ADC approximations is then presented. We study the representative case

of the NNLOsat (450) potential, which is less perturbative and thus allows to emphasize beyond-mean-field
effects. Also, the Gorkov-Cen method is used, as this has proved to be the most stable SCGF variant (see
below). Besides ADC(2) and ADC(3), the ADC(ld,2) approximation, of intermediate complexity, is considered
as well (Sec. 4.2). The results for the PNM and SNM EOS are shown in the upper and lower panel of Fig.
5.6, respectively, for densities between 0.04 and 0.32 fm−3. In the insets, correlation energies per particle,
Ecorr = E − EHF , are reported for the three ADC approximations and also for MBPT(2) (triangles). First,
one can appreciate that correlation energies are much larger in SNM than in PNM, as expected. In neutron
matter, most of Ecorr is captured already at the MBPT(2) level, and the non-perturbative ADC calculations
provide a small repulsive correction, that amounts at most to about 300 keV/A, for ADC(3) at ρ = 0.16 fm−3.
A hierarchy is observed, since ADC(2), ADC(ld,2), and ADC(3) tend to give increasingly larger contributions
to the correlation energy. It is interesting to note that discrepancies between the different schemes are most
evident at intermediate densities around ρ = 0.16 fm−3, while they shrink in the low- and high-density limits.
Again, we suggest that at high momenta close to the cutoff the strength of the interaction may be quenched. At
variance with PNM, SNM is a strongly correlated system, and MBPT(2) energies range between approximately
-5 and -15 MeV/A. The additional effect that ADC brings to MBPT(2) is of the order of 0.5-1 MeV/A and
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Figure 5.5: Convergence of the energy per nucleon as a function of N2
max for SNM, A = 132, at density ρ = 0.16 fm−3.

Calculations are performed at the level of ADC(3) with Gorkov corrections. OpRS energies are determined as centroids of
the spectral function, see Eq. (4.115) (Gorkov-Cen). Inset: difference between the energy per particle at a given cutoff and
the one for N2

max = 28. The NNLOsat (450) interaction is employed.

is positive. In this case, ADC(2) typically provides more repulsion than ADC(3), with ADC(ld,2) lying in
between.

The SNM and PNM EOS computed with ADC(3) are now discussed in detail. In Fig. 5.7, results obtained
with NNLOsat (450) (left) and ∆NNLOgo (394) (right) interactions are shown for PNM (top) and SNM (bot-
tom). We compare in each panel Dyson-ADC(3) (triangles) with the calculations in which Gorkov corrections
have been included. Two recipes for generating the OpRS energies are employed, Gorkov-Cen (diamonds)
and Gorkov-Inv (stars), which are defined by Eqs. (4.115) and (4.116), respectively. In PNM, all three vari-
ants are essentially indistinguishable on this scale. This is not surprising, since neutron matter is relatively
weakly correlated. Note that ∆NNLOgo (394) predicts larger energies than NNLOsat. Indeed, the latter is
known to predict an extremely soft PNM EOS and to underestimate the symmetry energy [111], while the
issue is mitigated by the other interaction [106]. In SNM, differences between various calculation schemes
are more evident. Gorkov corrections bring in small repulsive contributions to the Dyson-ADC(3) energies.
The Gorkov-Inv approach suffers from some uncontrolled fluctuations. Near the Fermi surface, i.e for small
|ωq|, the delicate interplay in Eq. (4.116) of a small numerator, resulting from the cancellation between pos-
itive and negative terms, and a small denominator, indeed, is prone to numerical instabilities. Importantly,
though, the Gorkov-Cen technique is rather stable and produces a regular EOS. This method converges eas-
ily at all densities up to ρ = 0.36 fm−3, even when Dyson-ADC(3) fails, and allows to conserve the nucleon
number on average in virtue of the Gorkov ansatz, while some violations can be seen in the Dyson case for
both interactions. (Points for Dyson results can be located at slightly different densities than the corresponding
Gorkov ones.) At the densities where converged results are available for both Dyson and Gorkov, a substantial
agreement is observed, that hints at the fact that pairing effects are indeed small and the first-order treatment
of Gorkov correlations is justified. We note in passing that Dyson and Gorkov-Inv energies are quite similar
to each other, while Gorkov-Cen is typically somewhat more repulsive. To summarize, the Gorkov formal-
ism (especially in the Gorkov-Cen OpRS variant) has proved to be rather effective in stabilizing ADC-SCGF
calculations of infinite matter.

SCGF is not limited to the total energy, but can access much information, including the momentum dis-
tribution ρ(k). Interactions induce a change in the occupation numbers, that is modified with respect to the
Fermi-Dirac distribution of the free Fermi gas. At the HF level, states are either fully occupied or completely
empty. In beyond-mean-field, a depletion is observed in the occupation of hole states, and correspondingly a
high-momentum tail appears, which gives a small but finite occupation to states outside the Fermi sphere. In
the TL, if an HF reference state is adopted, ρ(k) is discontinuous at the Fermi momentum. In BCS theory and
in methods built on top of a BCS state, the distributions are continuous across the Fermi surface [202]. In the
finite-A system, only a finite number of k points is available, so that a discrete sample of the occupation func-
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first-order Gorkov corrections with the Gorkov-Cen scheme. Insets: correlation energy per particle. Triangles denote
MBPT(2) energies.

tions is provided. Results for ρ(k) as a function of the wave number in units of the Fermi momentum, k/kF , are
shown in Fig. 5.8 for four densities ranging between 0.08 and 0.32 fm−3 in PNM for the NNLOsat (450) (left)
and ∆NNLOgo (394) (right) potentials. The Gorkov-Cen variant of ADC(3) is employed. NNLOsat (450) pre-
dicts an appreciable depletion that amounts to about 0.1 for the last occupied momentum state of the HF g.s.
The occupation for the lowest-momentum particle state is smaller, 0.05 at most. As the density increases, the
gap at the Fermi surface reduces, as it is expected due to the stronger correlations induced by the interactions
at large ρ. The effect has been attributed predominantly to 3N forces [23]. For ∆NNLOgo (394), changes to the
uncorrelated momentum distribution are more modest, and amount to roughly one-half of those observed for
NNLOsat. While this is consistent with the softness of the potential, we are unable at present to explain why
the depletion is smaller above saturation density than below. In any case, these are very detailed effects that
concern variations of less than 0.02 on ρ(k).

The neutron occupation number in SNM is plotted in Fig. 5.9. Correlations strongly modify the HF picture.
Momentum tails above kF are more pronounced, and depletions at small k are larger than in PNM. However,
the more interesting features of the SNM distributions appear near the Fermi momentum, where the occupa-
tion number of the outermost hole state is greatly altered. With the ∆NNLOgo (394) potential, it is about 0.7
at or above saturation density, i.e. a 30% depletion is observed, and as low as 0.5 at ρ = 0.08 fm−3. Deviations
are even larger when NNLOsat (450) is employed, however the trend of ρ(k) is less regular in this case. These
effects are induced by the pairing correlations. Tentatively, we suggest that a BCS-like distribution may emerge
as a consequence of the Gorkov corrections. The closure of the discontinuity at the Fermi surface would be
one of the distinctive signs of pairing, but, due to the quantization of momenta, it is difficult to verify in PBC
calculations.

To further investigate the behavior of nuclear matter in the vicinity of the Fermi surface, we study the
spectrum of the dressed propagator. Spectral functions are the heart of SCGF, and, although they are not
observables, they encode the information on how the interactions in the many-body system affect the single-
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Figure 5.7: Equations of state in SNM (bottom panels) and PNM (top panels) with the NNLOsat (450) (left) and
∆NNLOgo (394) (right) interactions. Triangles denote calculations performed with Dyson-ADC(3). Diamonds (stars) refer
to the results obtained including the Gorkov corrections, with the OpRS energies defined as centroid energies (Gorkov-
Cen), see Eq. (4.115) [averaging the inverse of the frequency poles (Gorkov-Inv), see (4.116)]. Lines are a guide to the eye.

particle states. We start with an illustrative example, before moving on to a more detailed analysis of SNM. In
Fig. 5.10 we plot the spectral functions resulting from Dyson-ADC(3) calculations 1 in PNM at ρ = 0.16 fm−3

(left) and ρ = 0.32 fm−3 (right). Peaks are folded with a Lorentzian distribution for display purposes,

Sk(ω) =
Γ

π

∑
j

∣∣Zjα∣∣2
Γ2 + (ℏω − ϵα,j)2

, (5.2)

where we use a width of Γ=1.5 MeV. A 3D representation of the spectral function, previously discussed in
Ref. [82], is adopted. Due to PBCs, momenta are quantized, while Sk(ω) is continuous as a function of the
frequency ω. Each section of the curve is the strength function for a given k. The Fermi energy is shown as
a dashed red line at a fixed frequency, and separates quasihole states (continuous lines) from quasiparticle
states (dashed lines). In a weakly correlated system such as PNM, quasihole, and quasiparticle are in a one-
to-one correspondence to the hole and particle states in the HF g.s., respectively. The HF spectral function
(not shown) is characterized by an isolated peak of height 1 for each momentum, see Eq. (4.101). Interactions
induce a fragmentation in the spectrum. The effect is largest for deeply bound neutrons and high-momentum
states. In contrast, the distribution for states close to the Fermi momentum is dominated by a single peak (a
Landau quasiparticle) and closely resembles the uncorrelated one. Indeed, on general grounds (see e.g. [199])
states close to the Fermi surface are expected to have a quasiparticle character. Qualitative features of the
spectral function are similar at both densities, but the spectrum at ρ = 0.32 fm−3 splits up into a wealth of
small peaks, while at saturation density there appear fewer, but larger, contributions.

1Results for Dyson and Gorkov ADC(3) in PNM are almost indistinguishable. Dyson spectral functions are shown here as they can be
easily visualized with a 3D plot.
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Figure 5.9: Same as Fig. 5.8, but for SNM. The momentum distribution for neutrons is shown.

The (normal) Gorkov spectral function

S11
α (ω) =

∑
q

∣∣V̄qα∣∣2 δ(ℏω + ℏωα,q) + |Uqα|
2
δ(ℏω − ℏωα,q), (5.3)

is conveniently represented as a two-dimensional map. Each panel of Fig. 5.11 shows a different SNM
spectrum. Increasing densities (ρ = 0.08, 0.16, 0.24, 0.32 fm−3) are shown from the top to the bottom for
NNLOsat (450) (left) and ∆NNLOgo (394) (right). On the horizontal (vertical) axis the wave number (energy)
is reported. The Fermi momentum and the chemical potential are denoted by the dash-dotted (vertical) and
dashed (horizontal) lines, respectively. The quasiparticle and quasihole energy poles, that are obtained from
the frequencies as ϵα,q = µ + ℏωα,q (ϵα,q = µ − ℏωα,q), have spectral strengths |Uqα|

2 (
∣∣V̄qα∣∣2). Color scales are

reported next to each plot. Also, the HF energies are shown as crosses. States with momenta to the left of the
Fermi momentum are occupied at the HF level, while states to the right (k > kF ) are empty. The HF Fermi
energy lies between the last occupied and the first unoccupied states.

Self-consistent calculations lower the chemical potential with respect to HF. As a consequence, the last
occupied state acquires a significant |U|2 strength. A robust feature, that can be observed in all plots of Fig.
5.11, is indeed the presence of a pair of poles close to chemical potential (ωq ≈ 0) with |U|2 and |V|2 of roughly
comparable magnitude. This is consistent with the BCS phenomenology [202, 217], and confirms the trends
of the momentum distributions of Fig. 5.9. The dependence of the occupation numbers as a function of the
density, instead, remains unclear, since pairing effects look rather strong at densities above saturation for
NNLOsat, e.g. the highest occupied state is predominantly a quasiparticle (|U|2 ≫ |V|2) and the second-
to-highest has a mixed particle-hole character. In contrast, for the ∆NNLOgo (394) interaction the impact of
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Figure 5.10: Three-dimensional representation of the PNM spectral functions at densities ρ = 0.16 fm−3 (left) and
ρ = 0.32 fm−3 (right). Calculations are performed with the NNLOsat (450) interaction using Dyson-ADC(3). Peaks are
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of the spectral function for given momentum k and energy ℏω. The vertical sections identify the groups of momentum k.
Quasihole and quasiparticle states are shown with continuous and dashed lines, respectively, and they are separated by
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comparison. Momentum and energy axes, instead, are different.

Gorkov corrections is strongest at ρ = 0.08 fm−3, and is less evident at larger densities. A detailed microscopic
study of pairing in zero-temperature nuclear matter (momentum distributions, spectral functions, as well as
pairing gaps) is outside the scope of this thesis, but is an interesting application of the SCGF formalism here
developed, see e.g. [220, 228].

Finally, we compare our calculations with those performed with the coupled-cluster method at the level of
the double (CCD) [126] 2. The CCD method is a basis expansion technique that employs the same discretization
of the continuum and the same model space as our ADC-SCGF (see also App. D.4). In Fig. 5.12, calculations
performed with ADC(3) with Gorkov corrections (Gorkov-Cen) and CCD are shown for both NNLOsat (450)
(left) and ∆NNLOgo (394) (right) in PNM (top) and SNM (bottom). As in Fig. 5.6, correlation energies per
particle are reported in the insets, where also MBPT(2) energies are plotted. A very close agreement between
the two methods is found in PNM, while discrepancies are larger in SNM, of the order of 500 keV/A. In general,
CCD provides a more repulsive correction to MBPT(2) than ADC(3). The latter occasionally lowers MBPT(2),
as e.g. in SNM at and above saturation with ∆NNLOgo (394). In passing, it can be appreciated that correlation
energies are much smaller for the ∆NNLOgo interactions and the convergence of many-body calculations is
thus faster. Note that ADC(3) includes more correlations than CCD, and a more rightful comparison should
be done with coupled-cluster including triples [CCD(T)] [126]. However, as these calculations are presently
unavailable to us 3, this is left for future studies.

2We thank Weiguang Jiang for helping us in implementing the interactions and in checking our method, as well as providing us with
the CCD results.

3We have written our own implementation of CCD following Refs. [14, 126] and benchmarked it successfully with the results by the
Göteborg-Oak Ridge collaboration [106, 126]. However, a similar test for CCD(T) is still to be done.
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Figure 5.11: Gorkov spectral functions in SNM. The eight panels report a two-dimensional representation of the spectral
functions from Gorkov-Cen ADC(3) calculations performed with the NNLOsat (450) (left) and ∆NNLOgo (394) (right)
potentials at four densities (from top to bottom: ρ = 0.08, 0.16, 0.24, 0.32 fm−3). The momentum (energy) is reported on
the horizontal (vertical) axis. The Fermi momentum kF and the chemical potential µ are also shown as vertical (dash-
dotted) and horizontal (dotted) lines, respectively. The squared amplitudes |U|2 and |V|2 are shown for the poles (ϵα,q)
above and below the Fermi level, respectively. The color scale is found next to each plot. HF s.p. energies are represented
by crosses.
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Figure 5.12: EOS in PNM (top) and SNM (bottom) with the NNLOsat (450) (left) and ∆NNLOgo (394) (right) interactions.
Results obtained with ADC(3) with Gorkov corrections (Gorkov-Cen) and with CCD are reported. Insets: correlation
energy per particle. MBPT(2) energies are shown as black triangles. Lines are a guide to the eye.



CHAPTER 6

Results for ab initio-based EDFs

In this Chapter, we present the ab initio-constrained EDFs that are based on the nuclear matter EOS of Ch. 5
1. In particular, in Sec. 6.1 we discuss the LDA EDFs derived from the (2,3,4,5,6) and (2,5,6) parametrizations
of the NNLOsat- and the AV4′+UIXc-based EOS presented in Sec. 5.2 and 5.1, obtained respectively with the
Finite-T SCGF method and AFDMC with N = 66 neutrons in PNM and A = 76 or A = 132 nucleons in SNM.
Then, in Sec. 6.2 empirical gradient terms are introduced on top of LDA.

The energy functionals are applied to closed-subshell nuclei and compared to experimental values, taken
from Refs. [229, 230], and to ab initio results. Full ab initio calculations were performed with AFDMC for a set
of nuclei up to 90Zr in the case of the AV4′+UIXc interaction, while in the case of NNLOsat the SCGF method
was used up to 54Ca. Additionally, the densities for 90Zr are available.

6.1 LDA EDFs

The discrepancy between theoretical predictions and experimental values for the energies per nucleon (top)
and the charge radii (bottom) are shown in Fig. 6.1 for NNLOsat and the (2,3,4,5,6) EDF, as well as the GA-E and
GA-r EDFs introduced later on (Sec. 6.2). On the one hand, we can appreciate that the NNLOsat predictions
obtained with SCGF are very close to the experiment. On the other hand, the LDA EDF, although less precise,
exhibits interesting trends, since it enables to reproduce heavier nuclei, especially from 90Zr on, in a realistic
way, with deviations smaller than 1 MeV/nucleon and 0.05 fm for the energies and radii, respectively. This is
quite remarkable, as the LDA EDF incorporates only information on uniform matter. Also, it is unsurprising
that light systems are less amenable to a local density treatment since surface effects are known to play a larger
role at small A’s.

For the case of the AV4′+UIXc interaction, we report two sets of EDFs that have been obtained using the
SNM EOS computed with A = 76 (Fig. 6.2) and A = 132 nucleons (Fig. 6.3), respectively. In both cases,
the outcome is somewhat puzzling, since, while the ab initio results are overall decent, the LDA EDF (2,5,6) is
rather far from the experiment. In comparison to Ref. [68], the new fitting protocol allows us to find a better
quantitative description, but qualitative considerations are unchanged. As a general trend, LDA overbinds
nuclei with respect to both experiment and AFDMC. At the same time, it predicts too small radii, that differ by
about 0.5 fm from the experimental values. In addition, we do not observe a significant improvement in the
quality of the results as the mass number increases. This is at variance with the case of the NNLOsat potential.
The general features of the ab initio-based EDFs are the same whether they are based on either A = 76 or
A = 132 calculations for the SNM EOS. A comparison between the two sets of models is reported in Fig. 6.4.
At the scale of this plot, we can note that results based on theA = 132 EOS are slightly closer to the experiment.
In particular, binding energies in nuclei with the A = 132-based EDF are higher, which is consistent with the
SNM EOS, where energies obtained with A = 132 are higher than with A = 76 (see Fig. 5.1).

Number densities are then shown for the representative nuclei 40Ca (Fig. 6.5), 48Ca (Fig. 6.6) and 90Zr (Fig.
6.7). In the top left panel, the NNLOsat case is considered. One can appreciate that the (2,3,4,5,6) EDF density
profile closely resembles the one obtained from ab initio, although it features slightly wider oscillation. The
case of the AV4′+UIXc interaction (top right) is more problematic. (We are showing the EDFs based on the
A = 76 SNM EOS.) In all three cases, LDA predicts too large densities in the interior of the nucleus compared
to AFDMC. This is compensated by a sharp decrease of ρ(r) at the surface, with the net effect of producing
too small radii, as discussed above. Note also that AFDMC densities are numerically unstable at very short
radial distances. As described in Sec. 3.1.3, ρ(r) is estimated by counting the number of walkers that lie within
a thin spherical shell around r. As the shell volume grows approximately as r2, relatively few configurations
are to be found at a small distance. Thus, large statistical fluctuations are expected to affect the density close
to r = 0. In the bottom panels, the ab initio densities weighted by the squared radius, r2ρ(r), are compared.
The r2 factor emphasizes that AV4′+UIXc and NNLOsat predict rather different density surfaces for 40Ca and

1This chapter is partially based on our paper [68], that has been extended in two respects. AFDMC calculations with A = 132 nucleons
in SNM have been added. Also, the EOS parametrization has been slightly changed, as the finite-A kinetic energy (2.13) is used when
fitting the AFDMC EOS. This is somewhat more accurate than using the TL kinetic energy, as has been done in [68].
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Figure 6.1: Discrepancy between the predicted energies per nucleon (top) and charge radii (bottom) and the corresponding
experimental values for a set of closed subshell nuclei. Results obtained with the NNLOsat interaction and with the LDA,
GA-E and GA-r EDFs are shown. The LDA EDF is derived from the (2,3,4,5,6) model EOS. See text.

90Zr, and in particular radii are smaller for the Argonne 4 interaction. Results are instead surprisingly similar
for the case of 48Ca. However, this is likely fortuitous, and in general, the radii predicted by Argonne 4 are
smaller than the experimental ones.

6.2 GA EDFs

In this Section, we discuss the predictions that are obtained using the GA EDFs introduced in Sec. 2.2.2. These
are defined complementing LDA with density-gradient and spin-orbit terms. Three parameters are introduces:
two for the isoscalar (C∆ρ

0 ) and isovector (C∆ρ
1 ) gradient terms, and one (W0) for the spin-orbit. The coefficients

are tuned by grid-searching over physically reasonable intervals and the results for the four EDFs that yield
the smallest rms errors on binding energies or charge radii, called GA-E and GA-r for short, are shown. The
three parameters are measured in MeV fm5; from now on, for simplicity the dimension is omitted.

In the case of the NNLOsat-based EDF (2,3,4,5,6), we have considered C∆
0 and C∆

1 in the intervals [−45, 0]
and [0, 50] in steps of 5, while we have variedW0 between 0 and 150 in steps of 10. The smallest rms error on the
energy is obtained for (C∆

0 = −35, C∆
1 = 10, W0 = 140), while charge radii are best reproduced for (C∆

0 = −30,
C∆

1 = 25, W0 = 140). The remarkable improvement over the LDA EDF can be appreciated by looking at
energies and radii (Fig. 6.1). In Fig. 6.5, 6.6 and 6.7, the effect of the gradient terms on the number densities
is made clear by the despite the oscillations which instead characterize the LDA densities. All considered,
these GA EDFs are quite accurate, despite containing only three adjustable parameters, one of which (C∆

1 ) is
of minor importance for the g.s. properties. The non-local part of the EDF is dominated by a single parameter,
i.e. C∆

0 , the isoscalar gradient term having a very strong impact on the orbitals and thus on all observables.
Vice versa, C∆

1 has a small impact on magic nuclei, whereas the choice of W0 affects the binding energy in an
almost perturbative way. A full-fledged optimization would be necessary to be truly competitive against the
most sophisticated existing EDFs. However, the outcomes shown here are already encouraging.

In the case of AV4′+UIXc-based EDFs, C∆
0 , C∆

1 and W0 have been varied in the intervals [−200,−60], [0, 50]
and [0, 150]. The best combination of parameters, which is optimal for both energies and radii, is the same for
bothA = 132 andA = 76, and is given byC∆

0 = −150, C∆
1 = −50,W0 = 0. The corresponding PNM parameter

is equal to C∆
PNM = −200. We note that highly repulsive gradient contributions are favored. The GA EDFs

perform significantly better than the LDA (2,5,6) EDFs. Surface terms are effective in improving the binding
energies, which are brought less than 1 MeV/A from the experiment and quite close to AFDMC predictions
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Figure 6.2: Same as Fig. 6.1, but for the AV4′+UIXc interactions. Ab initio calculations are performed with AFDMC, and
the EOS on which the EDFs are based is obtained using N = 66 neutrons in PNM and A = 76 nucleons in SNM.

(top panel of Fig. 6.2). Note, however, that the scale is different from that of Fig. 6.1, and that NNLOsat-based
EDF are nonetheless more accurate. Some problems persist, though, in particular concerning radii (bottom
panel of Figs. 6.2 and 6.3), which are still inaccurate for the nuclear DFT standards. Also, peaks and minima
in the number density cannot be reproduced by the EDFs, which are unable to describe the detailed shell
structure of these nuclei. Finally, small differences are observed for the two different numbers of nucleons
used to simulate SNM (Fig. 6.4). This is encouraging in perspective, as it implies that the finite-size effects on
the EOS affect our methodology for ab initio-based EDFs mildly.
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Figure 6.3: Same as Fig. 6.2, but in this case the SNM EOS has been obtained using A = 132 nucleons.
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Figure 6.4: Same as Fig. 6.1, but in this case predictions by the LDA and GA-E EDFs based on the AV4′+UIXc EOS obtained
in SNM with A = 76 or A = 132 are compared.



Results for ab initio-based EDFs 65

0 2 4 6
r (fm)

0.0

0.1

0.2
 (f

m
3 )

NNLOsat
LDA
GA-E
GA-r

0 2 4 6
r (fm)

0.0

0.1

0.2

0.3

 (f
m

3 )

AV4′ + UIXc
LDA
GA-E
GA-r

0 1 2 3 4 5 6 7
r (fm)

0.0

0.5

1.0

1.5

r2
(r)

 (f
m

1 )

NNLOsat
AV4′ + UIXc

Figure 6.5: Ab initio and EDF (LDA, GA-E and GA-r) number densities, ρ(r), for 40Ca computed using the NNLOsat (top
left) and AV4′+UIXc (top right) Hamiltonians. See text for details. Note that for the AV4′+UIXc case the GA-E and GA-r
curves overlap closely. Bottom: ab initio number densities times the squared radius, r2ρ(r), obtained with NNLOsat (full
line) and AV4′+UIXc (dotted). Taken from Ref. [68].
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Figure 6.6: Same as Fig. 6.5, but for the 48Ca nucleus. The EOS for the AV4′+UIXc interaction has been obtained using
A = 76 nucleons in SNM.
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Figure 6.7: Same as Fig. 6.5, but for the 90Zr nucleus.



CHAPTER 7

Results for perturbed nuclear matter within DFT

In this Chapter, the DFT method described in Sec. 2.3 is applied to calculate the EOS and the static response of
infinite nuclear matter. The material presented is largely based on our paper Ref. [80].

The popular SLy4 EDF [43] is used when not stated otherwise, and examples of perturbed matter calcu-
lations are typically performed at a reference density of ρ0 = 0.16 fm−3. DFT energies are converged within
a tolerance of 1 keV per nucleon. Perturbation strengths are measured in units of the Fermi energy of the
corresponding system (vq/EF ). We plot the static response function in the form −χ(q)/ρ0 (in MeV−1), which
is everywhere positive. Momenta are reported either in units of the Fermi momentum (q/qF ) or as integer
multiples of the minimum allowed momenta (qmin = 2π/L).

The chapter is structured as follows. In Sec. 7.1, the nuclear matter EOS is studied. In Sec. 7.2, the static
response of the free Fermi gas is considered. Finally, in Sec. 7.3 our method is applied to the study of the DFT
response.

7.1 EOS

As a first application, the EOS is studied in both SNM (Fig. 7.1) and PNM (Fig. 7.2). The TL EOS is shown
as a solid line, while calculations with A = 132, 16676 nucleons and N =66, 8338 neutrons, respectively,
are reported as symbols. Multiples of 33 particles are commonly used in infinite matter studies, because the
kinetic energy per particle of FG made of 33g particles is rather close to TL FG energy (see Ref. [75], Fig. 1). As
a prototypical large-A system, we use a number of nucleons equal to 4169 times the spin/isospin degeneracy
g, which corresponds to filling up all the momentum shells of the FG up to n2 = n2x+n

2
y+n

2
z = 100. Moreover,

the insets in Figs. 7.1 and 7.2 show the relative difference (in percentage) between the finite-A and TL EOS as a
function of the density (∆e/|e| = (eA − eTL)/|eTL|). Indeed, the results of the large-A calculations turn out to
be practically indistinguishable from the TL curve and provide a strong check on the correctness of numerical
calculations. It can also be appreciated that the N = 66 and A = 132 EOS give energies rather close to the TL
EOS. Discrepancies amount to no more than 2 % in PNM over the considered range of densities. In SNM they
remain within 2% up to ρ = 0.26 fm−3, then they display a tendency to grow as the density further increases.
At twice the saturation density, the difference has increased to roughly 6%. We suggest that the larger FS
effects in SNM compared to PNM are a consequence of the stronger interactions in SNM. That is, choosing
A = 33g allows to approximate the TL kinetic energy effectively at all densities, but some FS effects on the
potential energy persist and manifest themselves mostly in the highly correlated SNM in the high-density
region. Nonetheless, the special usefulness of the ”magic numbers” N = 66 and A = 132 is overall confirmed
for DFT calculations.

7.2 Free response

A second study concentrates on the static response of the FG. The exact formula for χ0,N [Eq. (1.23)] is applied
in Fig. 7.3 for different numbers of neutrons and compared to the TL response (1.25). FS effects are rather strong
at small or moderate momenta and manifest themselves as a non-monotonic behavior of χ0,N (q) at finite N ,
while the TL response function is strictly decreasing in magnitude. For q > 2qF , instead, the oscillations tend
to disappear and the curves match rather well for all particle numbers. This qualitative change of behavior is
due to geometric reasons, see e.g. the calculation of χ0(q) in Ref. [115]: essentially, for q > 2qF any occupied
momentum state can be scattered from the g.s. (the Fermi sphere) to an empty state and thus shell effects, that
strongly affect the results at small q, are ineffective. The special role of q = 2qF is also signaled by the fact that
the TL Lindhard function (1.25) is non-analytical at that point. Moreover, we note that the convergence to the
TL as N is increased is relatively slow, and mild oscillations continue to persist up to very large N .

Then, the free response is computed numerically and compared to the analytical results. In particular,
the FG response is determined by solving the Mathieu problem [75], i.e. the independent-particle problem
of fermions subject to the external potential (2.26) (with the EDF potential terms turned off), for different
momenta q and strengths vq/EF between 0.01 and 0.1 (with a step of 0.01). Then the energy differences δev

67
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Figure 7.1: SNM EOS computed with the SLy4 EDF in the TL
(line) and with a finite number of particles (symbols). Inset:
relative difference (in percentage) between the finite-A and
TL EOS as a function of the density.
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Figure 7.2: Same as Fig. 7.1, but for PNM.

are interpolated with the quartic formula (1.22) at each q. In Fig. 7.4, a comparison is drawn in the case of
PNM with N = 66 neutrons between the exact response (filled squares) and the values obtained through the
fitting procedure (empty diamonds). An almost perfect agreement is obtained, with a modest discrepancy
only at the lowest momentum (q/qF ≈ 0.5). To better understand this deviation, in Fig. 7.5 we consider the
ratio between the energy variation δev and the square of the perturbation strength vq as a function of vq/EF .
The exact response is shown as a hollow symbol at vq = 0. If linear response theory were exact, at least in a
certain range of small vq , the ratio δev/v2q would be constant. This is indeed verified for q/qmin > 1 over the
whole interval considered, but at q/qmin = 1. a slight underestimation of the response is observed at all finite
perturbations. This highlights that modest non-linear (fourth-order) contributions are present in the behavior
of the system. Importantly, though, the ratio correctly converges to the exact response [ δev/v2q −→ χ0,N (q)/ρ0]
as vq −→ 0.

7.3 Perturbed nuclear matter

Perturbed matter is now studied with the SLy4 EDF. First, a preliminary analysis of the convergence of the
calculations with respect to the number of plane waves included in the basis is presented. Fig. 7.6, which
reports calculations performed with N = 66 neutrons (density ρ0 = 0.16 fm−3) at q/qmin = 1 for a small
(vq/EF = 0.1) and a moderate (vq/EF = 0.25) perturbation strengths, shows that in this case as few as 8 plane
waves are sufficient to find energies converged within 0.1 keV or less. As a general rule, though, the number of
plane waves required increases as a function of the momentum q of the perturbation and in practice we have
found that a basis of 40 waves always yields converged results for 66 or 132 nucleons. When thousands of
particles are considered, we raise the cutoff to 60 plane waves. Calculations remain very fast (a few seconds)
even on a single processor. Then, the densities ρ(z) as well as their Fourier components of PNM are shown in
Figs. 7.7 and 7.8, respectively, for three perturbations that differ in strength and periodicity (q/qmin = 1 with
strengths vq/EF = 0.1, 0.25 and q/qmin = 2 with vq/EF = 0.1). From the real space representation, one can
appreciate that densities closely resemble cosine functions that oscillate around the unperturbed density with
the same periodicity as that of the external perturbation [see Eq. (1.19)]. The Fourier analysis confirms that the
response is essentially harmonic, as in all cases a single component at momentum q is clearly dominant with
rather modest contributions beyond the linear regime. For completeness, the real-space densities (Fig. 7.9) and
their Fourier components (Fig. 7.10) at reference density ρ0 = 0.16 fm−3 are reported for SNM (A = 132) too.
From a qualitative point of view, the behavior of SNM is the same as that of PNM, and the magnitude of the
density fluctuation is very similar.

So far, we have always used particle numbers that correspond to a shell closure of the free Fermi gas and
implicitly assumed that they are magic numbers for the perturbed system as well. This hypothesis proves true
in general for weak potentials. Actually, its violation is a sign that the picture itself of a small perturbation
of the homogeneous system is breaking down. In Fig. 7.11 the neutron level scheme of N = 66 PNM (same
case as Fig. 7.7) is shown at two different perturbation strengths (both with momentum q/qmin = 1). We
remind that the λ = ±1 energy eigenvalues are degenerate and we plot the s.p. energies only for λ = +1.
The quantum numbers n = (nx, ny, nz) (0 ≤ nx ≤ ny), and the number of nucleons corresponding to shell
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closures, are reported next to each level. Among the latter, the magic numbers of the FG are circled. In the case
of the weaker potential, the effect of the perturbation is to partially lift the degeneracy of the free gas levels
(as well as to lower the s.p. energies), as can be seen from the triplets or doublets of neighboring levels. The
overall structure of the homogeneous system, though, is preserved and indeed all the FG magic numbers up to
33 are found in the perturbed system too. A markedly different picture appears for the stronger perturbation,
where the level ordering of the FG is severely altered. One consequence is that a shell closure is found not
for 33 nucleons but for 35. We suggest that the sudden changes in the slope of the energy as a function of the
perturbation mentioned in Ref. [79] may be a side-effect of such ’shell-opening’ effects. The key message is that
care must be taken when studying perturbed finite-A matter and not only global properties (energy, density),
but also the shell structure must be looked at. This was already noted in Ref. [74] concerning the AFDMC
static response. For example, we warn that, if DFT or Mathieu orbitals are used to construct a reference state
for Quantum Monte Carlo [75, 179], it is crucial to check that it be a closed-shell state, before embarking on
expensive calculations.

Next, the static response function is discussed. The TL response of nuclear EDFs is known exactly [124]
(App. C.3) and is now compared to the finite-A calculations in both SNM (Fig. 7.12) and PNM (Fig. 7.13).
The numerical response functions for the large-A system are in very good agreement with the analytical pre-
dictions. The convergence to the TL is thus verified and we can appreciate by comparing to Fig. 7.3 that it is
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Figure 7.9: Same as Fig. 7.7, but for SNM with A = 132.
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shell magic numbers of the FG are circled.
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Figure 7.12: Static response of SNM at ρ0 = 0.16 fm−3

obtained with the SLy4 EDF. The solid line represents
the TL response, while symbols denote calculations for
a finite number of particles (A = 132 and 16676).
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Figure 7.13: Same as Fig. 7.12, but for PNM. Calcula-
tions are performed with N = 66 and 8338 neutrons
(symbols) and in the TL.

EDF C∇J
0 C∇J

1 C∇J
PNM

SLy4 -92.25 -30.75 -123
SkM* -97.50 -32.5 -130
SkI3 -94.13 0 -94.13

Table 7.1: Spin-orbit coefficients for the SLy4, SkM* and SkI3 EDFs. All the parameters are measured in MeV fm5.

definitely faster (as a function of the number of nucleons) in the interacting (DFT) system than for the FG. The
small-A response, instead, is characterized by a non-monotonic behavior that is reminiscent of that of the free
response, with marked fluctuations with respect to the TL function for q < 2qF .

Lastly, we would like to understand the impact of the spin-orbit terms on the static response. Spin-orbit
was neglected in Ref. [79] and its inclusion is one of the novelties of our work. The response computed with the
full SLy4 EDF and for SLy4 with spin-orbit neglected, i.e. with C∇J set to zero, is reported for SNM (Fig. 7.14)
and PNM (Fig. 7.15) both in the TL and for the usual A = 132 and N = 66 numbers of particles, respectively.
One can appreciate that for the SLy4 EDF spin-orbit has the main effect of lowering the magnitude of χ(q) at all
momenta, both in the TL and in the finite systems and, while in SNM it constitutes a small correction, in PNM
it is a significant effect. While the qualitative picture of Ref. [79] is not altered fundamentally, quantitative
results may change noticeably. In particular, it is important to incorporate spin-orbit terms if one aims at
constraining the EDF parameters using ab initio information. It must be noted, however, that the importance of
the spin-orbit terms on the response is dependent on the adopted EDF, as it is apparent in the TL. A systematic
analysis is outside the scope of this work, and to demonstrate our previous assertion we show the TL response
in SNM (Fig. 7.16) and PNM (Fig. 7.17) for three representative Skyrme models (SLy4 [43], SkM* [231], SkI3
[232]). While SLy4 and SkM* predict qualitatively similar response functions, SkI3 is markedly different in
two respects. First, the PNM response is smaller by a factor of 2 compared to the other EDFs. The SNM
response is comparable in all cases, as the isoscalar coefficients that determine the SNM response are more
tightly constrained than the isovector ones that enter the PNM response [5] (App. C.2.1 and C.3). PNM
properties can differ significantly according to the EDF, as we comment also in App. B.4. Second, in SLy4
and SkM* the spin-orbit term has a qualitative impact on the PNM response. In the SkI3, instead, it represents
only a small quantitative correction in both PNM and SNM. To understand this, in Tab. 7.1 we have reported
the isoscalar and isovector spin-orbit coefficients, as well as the PNM coefficient C∇J

PNM = C∇J
0 + C∇J

1 (App.
C.2.1), for the three EDFs. Also, we note that the spin-orbit parameter enters the TL response quadratically
in the denominator of Eq. (C.42), where Xso ∝ C∇J . Then, we observe that all three EDFs considered have
roughly equal isoscalar spin-orbit coefficients. However, in SLy4 and SkM*

∣∣C∇J
PNM

∣∣ > ∣∣C∇J
0

∣∣, while in SkI3
C∇J
PNM = C∇J

0 . This may help explain why spin-orbit impacts PNM more strongly than SNM for the first two
models.
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Figure 7.14: SNM static response obtained in the TL
and for A = 132 nucleons with the full SLy4 EDF and
SLy4 with spin-orbit terms neglected (’no spin-orbit’ in
the legend).
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Figure 7.15: Same as Fig. 7.14, but for PNM with N =
66 neutrons.
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Figure 7.16: TL static response in SNM at density
ρ0 = 0.16 fm−3 obtained with three different EDFs,
both with (solid line) and without (dashed line) spin-
orbit terms.
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Figure 7.17: Same as Fig. 7.16, but for PNM.





CHAPTER 8

Results for perturbed nuclear matter within QMC

Perturbed nuclear matter studied with the ab initio AFDMC method is the subject of this Chapter. Calculations
are presented, and their use as pseudo-data to tune the gradient terms of the nuclear EDF is discussed.

We summarize the strategy outlined in Sec. 2.2.2. First, the ab initio infinite matter EOS is used as input
to construct a LDA EDF, see Ch. 5. Then, perturbed nuclear matter calculations are employed as the data to
constrain the parameters of the GA EDFs built on top of LDA. SNM and PNM are essentially decoupled and
can be studied separately. The isoscalar parameters of the GA EDF, i.e. C∆ρ

0 and C∇J
0 , enter in SNM. PNM,

instead, is sensitive to the sum of isoscalar and isovector coefficients, C∆ρ
PNM = C∆ρ

0 + C∆ρ
1 and C∇J

PNM =
C∇J

0 + C∇J
1 . The shorthand notation C∆ρ, C∇J will be used in the following. Both C∆ρ and C∇J have units

of MeV fm5; in the following, the dimension is omitted for simplicity. We expect the density-gradient terms to
provide a repulsive contribution to the energy (see e.g. App. B.2), thus we require C∆ρ < 0.

To determine the optimal parameters of the GA EDF, then, we minimize a least-squares cost function that
accounts for the difference between the AFDMC results and the DFT calculations of inhomogeneous matter
(see Ch. 7). As the response properties are related to differences between the energies of perturbed and unper-
turbed matter (δev = e(v) − e(v = 0)), we should aim at reproducing the ab initio energy variations (and not
absolute energies) with our EDF models as best as possible.

This physical argument leads us to define the following cost function:

χ2 (C) =
∑
i

(
δe(xi,C)− δei

σi

)2

. (8.1)

Here, δei denotes the energy differences in our ab initio data set; xi is a shorthand, vector-like notation for the
parameters that characterize the system [xi = (Ni, Zi, ρ0,i, qi, vq,i)], where Ni, Zi are the neutron and proton
numbers, ρ0,i the unperturbed densities, and qi, vq,i the momenta and strengths of the external potential, re-
spectively; C =

(
C∆ρ, C∇J); and δe(xi,C) refers to the prediction of the EDF with parameters C. We would

like to stress that, while in general we could mix up results for different densities and/or nucleon numbers,
in this work each fit is performed at a fixed reference density ρ0 and number of fermions. σi represents the
adopted error on the data points; we anticipate that we typically choose a uniform error σi = σ = 100 keV
(independent of the strength and momentum of the external field). This value is somewhat larger than the
typical AFDMC statistical error bars and is meant to take into account systematic uncertainties. We check that
the results of the fit are unaffected by the precise values of σ.

As the optimization problem is highly non-linear, a scan of the parameter space is performed to identify
reasonable initial parameters. Then, the fit is executed using the MINUIT library [166, 167]. In particular, a
Nelder-Mead derivative-free algorithm (Simplex) is used in the first stage, and then the Migrad method is
employed to refine the results. (A similar tactic was used e.g. in Ref. [233].) We expect C∆ρ to be the dominant
parameter with respect to C∇J . Moreover, while searching the parameter space we may find some unphysical
combinations C for which the DFT solver struggles or fails to converge (see e.g. Ref. [234]). We have decided
to simply drop not only non-convergent calculations, but also those cases where open-shell configurations are
found (see Ref. [80]), as they typically lie well beyond the regime of linear response.

We first present original calculations for the static response of PNM with the AV4′+UIXc interaction (Sec.
8.1) and apply our method to this dataset. Then, a similar analysis is performed for the case of the PNM results
obtained with the AV8′ + UIX interaction in Ref. [75] (Sec. 8.2). Finally, in Sec. 8.3 SNM is studied with
the AV4′+UIXc potential; to our knowledge, these are the first ab initio calculations of the static response in
symmetric matter.

8.1 Pure neutron matter with the Argonne 4 interaction

We have performed AFDMC calculations of perturbed PNM with the AV4′+UIXc interaction at the reference
densities ρ0 = 0.16 fm−3 and 0.10 fm−3. In both cases, we have considered the first four allowed momenta of

75
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the potential. The following strengths have been used in the ρ0 = 0.16 fm−3 case: vq/EF = 0.05, 0.1, 0.125, 0.15.
For ρ0 = 0.10 fm−3, we have considered vq/EF = 0.1, 0.15, 0.2 to ease the comparison with Argonne 8 calcu-
lations at the same density (Sec. 8.2). For each combination of q and vq a full DMC computation has been
performed. We have used the constrained propagation technique to mitigate the sign problem; this is deemed
accurate for the Argonne 4 interaction, which does not include tensor or spin-orbit operators [127]. The trial
wave function is made of a Slater determinant of Mathieu orbitals, on top of which central correlations, as well
as linear correlations for the operators σ ·σ, τ · τ and (σ ·σ)(τ · τ ), are included (see Sec. 3.3). In a typical run,
about 2000 walkers are employed and 100 blocks of 50 steps each are sampled.

Our variational ansatz has been accurately tested. Mathieu orbitals have been generated with the DFT
method detailed in Ch. 7, in the special case in which only the external potential (2.26) (but no mean field)
is included, and extensively validated. Then, we verified that using Mathieu orbitals instead of plane waves
allows to lower the VMC and DMC energies of the interacting system. In Fig. 8.1, a comparison between
results obtained either using plane waves or Mathieu orbitals at the level of both VMC and DMC is reported.
We can appreciate that the Mathieu ansatz improves the estimates of the energy significantly. The effect is
evident also in DMC and tends to increase as the perturbation gets stronger.

A second interesting observable is the density ρ(z) of perturbed matter (see Sec. 3.1.3). In Fig. 8.2, we
compare in a representative case (q/qmin = 1, vq/EF = 0.1) the densities obtained at the VMC and DMC level
of the Monte Carlo calculation, respectively. The trial wave function can capture the non-uniform behavior of
the density already at the VMC level (empty circles). In particular, we can clearly recognize that ρ(z) has the
same periodicity as the external potential. This is the correct behavior when the perturbation is weak. The
qualitative picture is consistent with the final DMC calculation (diamonds). The main effect of the diffusion
process is to help reduce the statistical fluctuations that affect the density at different points, as it should be the
case when a more accurate wave function is obtained. In light of these considerations, we are thus confident
that our ansatz is adequate to properly treat perturbed matter.
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Figure 8.1: VMC (empty symbols) and DMC (full symbols) energies per particle, obtained starting from a reference Slater
determinant of plane waves (circles) or Mathieu orbitals (diamonds), are shown as a function of the perturbation strength
vq/EF . Calculations are performed in PNM at a reference density ρ0 = 0.16 fm−3. The external potential has momentum
q/qmin = 1, and the AV4′+UIXc potential is used.

The fitting protocol has been described above. For each q and vq , a DFT calculation has to be performed
as described in Ch. 7. As mentioned before, we have assigned a uniform error σ =100 keV on the energies,
independent of the strength and momentum of the external potential. Note that, in any case, the best-fit
parameters are unaffected by the absolute value of the error.

We now present our results. AFDMC calculations and the predictions of the best GA EDF are reported for
unperturbed densities of ρ0 = 0.16 fm−3 and ρ0 = 0.10 fm−3 in the left panels of Figs. 8.3 and 8.4, respectively.
Solid (dashed) lines represent the predictions of the fits to the AFDMC (EDF) energies performed with Eq.
(1.22) at each different q, which allows extracting of the static response χ(q) for q ≥ qmin. The response
functions −χ(q)/ρ0 thus obtained are shown in the right panels as a function of q/qF . In that panel, error bars
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Figure 8.2: Density ρ(z) as a function of the position z/L, where L is the box size, for PNM perturbed by a potential with
momentum q/qmin = 1 and strength vq/EF = 0.1. The VMC (empty circles) and DMC (diamonds) results are shown. The
unperturbed density is also reported as a dashed line. The AV4′+UIXc potential has been used.

represent the uncertainty on the fit parameters (note that in the EDF case they are smaller than the marker
size). The response at zero momentum, instead, is derived from the parametrization of the EOS using the
compressibility sum rule (CSR), see Eq. (B.54).

The results are unexpected, and the EDFs we obtain have unrealistic values of the coefficients. At ρ0 = 0.16
fm−3, we find for the best-fit model C∆ρ = −0.1±3, C∇J = 30±40. At ρ0 = 0.10 fm−3, we get C∆ρ = −45±5,
C∇J = 0±30. Uncertainties, as provided by MINUIT tools, are rather large for the spin-orbit coefficient, which
appears to be poorly constrained. This may be related either to the relatively small effect of the spin-orbit
term on the perturbed matter energies or to the fact that the external perturbation couples to the density and
does not probe the spin directly. However, issues mainly concern the C∆ρ coefficient. At ρ0 = 0.16 fm−3, it is
compatible with zero. This is unacceptable on physical grounds, as it would mean that gradient corrections are
not needed, and LDA is already the ”best” EDF model, whereas this cannot be the case, as demonstrated by the
results of Ch. 6. Rather, this fact shows that the information content of our perturbed matter data is insufficient
to improve the LDA EDF. Note also that we have tried estimating the EDF parameters with different choices of
the dataset (i.e. including only some periods of the perturbation or adding some higher-strength points), but
with no impact on the conclusions. The value of the density-gradient parameter at ρ0 = 0.10 fm−3 is larger,
but still too small in relation to the study of empirical GA EDFs presented in Sec. 6.2. Also, the agreement with
the ab initio response is not qualitatively better at ρ0 = 0.10 fm−3, as it is evident from Fig. 8.4. Furthermore,
it is surprising to observe such a large difference for the C∆ρ parameters at the two different densities, since
C∆ρ is usually taken constant in Skyrme EDFs.

The difficulties we have found call for some reflection. First, the unsatisfactory outcomes require to further
investigate the QMC trial wave function, to rule out or confirm the possibility that the ansatz is not sufficiently
rich. For this purpose, it is useful to compare our results with those obtained with other methods or wave
functions. In particular, the trial states introduced by Lovato et al. in Ref. [188] 1 are among the most accurate
available in AFDMC for PNM. The ansatz of [188] makes use of central Jastrow correlations parametrized by
cubic splines, and the plane-wave Slater determinant is improved by including spin-dependent backflow cor-
relations [197]. This is a rather sophisticated and flexible state that has proved very accurate in homogeneous
matter. It does not contain information on the external potential, though. Thus, comparing the DMC results
that are found starting from either ”backflow” or ”Mathieu” wave functions is useful to get an overall idea of
the pros and limitations of the two models. This is done in Fig. 8.5, where the difference between perturbed
and unperturbed energies, δe, is shown as a function of the perturbation strength vq/EF in the case of PNM at
ρ0= 0.16 fm−3.

In light of Ref. [127], for the Argonne 4 interaction the constrained propagation is accurate, and thus no
unconstrained propagation is performed. Note that we compare energy differences, since these determine the

1We thank Alessandro Lovato for sharing his calculations for the AV4′+UIXc interaction.
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Figure 8.3: Left: AFDMC energies for the AV4′+UIXc interactions (solid markers) and predictions by the best-fit GA EDF
(hollow markers) in PNM at a density ρ0 = 0.16 fm−3 as a function of the strength of the external perturbation vq/EF for
different values of the momentum q/qmin. The parameters C∆ρ and C∇J are reported in the legend. Solid (dashed) lines
represent the predictions of fits to the AFDMC (EDF) perturbed energies, see Eq. (1.22).
Right: static response −χ(q)/ρ0 as a function of the momentum extracted from the AFDMC (filled markers) and EDF
(empty markers) calculations. The momentum is expressed both in units of qF (q/qF , bottom) and in units of qmin (q/qmin,
top). For q/qmin ≥ 1, the response has been obtained by fitting the perturbed energies with Eq. (1.22). Error bars represent
the uncertainty of the fit parameters. The response at zero momentum has been obtained using the CSR [Eq. (B.54)]. Lines
are a guide to the eye.
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Figure 8.4: Same as Fig. 8.4, but for PNM at the unperturbed density ρ0 = 0.10 fm−3.

response properties; in the homogeneous system, the spline-based wave function yields a lower unperturbed
energy. Also, a cancellation of errors is expected to make energy differences less sensitive to the details of
the trial states. We appreciate that for modest intensities of the perturbation the two sets of calculations are
compatible within the statistical error bars. At the highest strength shown (vq/EF = 0.15), instead, using
Mathieu orbitals enhances the effects of the perturbation compared to the backflow wave function. Thus, our
ansatz compares well with the recently introduced wave functions of Ref. [188] in the regime of almost uniform
matter, where the latter are expected to be accurate, and, by incorporating the effect of the perturbation in its
reference state, it improves upon it for stronger external potentials. We also comment that the ansatz used by
Gezerlis et al. [75, 235] is slightly simpler than ours, as it lacks operator correlations. However, while these
are rather important for SNM, they are expected to be of little impact in PNM in the case of the Argonne 4
potential [127].

This analysis suggests that our QMC ansatz is adequate for our problem. However, the static response
is a delicate quantity, related to small energy differences, and we cannot exclude that deficiencies or missing
correlations in the currently used trial states may affect the outcomes noticeably. Incorporating backflow cor-
relation not only in plane waves, but also in Mathieu (or generic) orbitals could pave the way for more refined
calculations of perturbed matter, and would be an interesting development for the future.

In principle, we could consider the possibility that the ansatz for the GA EDF is too simple. However, addi-
tional terms, such as e.g. fourth-order density gradients, are expected to be small corrections to the dominant
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Figure 8.5: Difference between the energy of the perturbed system and the unperturbed energy, δe = e(v) − e(v = 0), as
a function of the perturbation strength vq/EF in PNM, ρ0= 0.16 fm−3, with the AV4′+UIXc potential. Results are shown
for the first two momenta of the external potential. The DMC results obtained using two different trial wave functions
are compared. ”Mathieu” (full symbols) refers to the ansatz presented in Sec. 3.3. ”Backflow” (empty symbols) is the
spline-based ansatz with spin-dependent backflow correlations described in the text and in Ref. [188]. Lines are a guide to
the eye.

∆ρ terms. Also, ρτ terms have been neglected in this work, and thus the effective mass has been assumed to
be equal to the bare mass. However, their effect on the EOS is mimicked by a richer density dependence in
our EDFs than in the typical Skyrme models. Moreover, in light of Refs. [235, 236], the effective mass ratio, as
deduced from the s.p. excitation spectrum, should be close to 1 in PNM.

We are thus led to conclude that our ab initio calculations are still too noisy to allow to constrain a DFT
description. In Fig. 8.3 (right panel), error bars are rather large, so that uncertainties on the AFDMC data
points are almost comparable to the variations of the response functions at low q. It is clear, then, that little
information can be gained from the static response data at our disposal. From a different perspective, we can
state that, while AFDMC calculations of the EOS may be under control, the same level of accuracy has not
been achieved yet for perturbed matter computations. Energy differences are small quantities that may be
sensitive to little inaccuracies or limitations of the ab initio method. We think that the Monte Carlo statistical
errors, although they typically get somewhat underestimated, are not the major source of uncertainty. Rather,
systematic biases of AFDMC, such as the approximate technique to control the sign problem or the propagation
algorithm, which have been carefully investigated in homogeneous PNM [127, 188], should be characterized
in detail also in the case of inhomogeneous matter.

For comparison, we would like to highlight that in Ref. [65] a similar conclusion about the currently avail-
able ab initio calculation was reached. In that work, finite nuclei perturbed by external 1B and 2B operators
were studied with ADC(3)-SCGF, and their energies formed the ab initio data set to constrain the EDF coupling
constants. Similar difficulties were faced, as theoretical errors, that can be estimated quite safely in the ground
state, impact energy variations severely. In the case of [65], for instance, expectation values of 2B operators
were evaluated using the 1B propagator in a rather approximate way. Therefore, we could state that ab initio
techniques, while getting more and more powerful for g.s. properties, may still be somewhat immature as far
as excited or perturbed nuclear states are concerned.

8.2 Pure neutron matter with the Argonne 8 interaction

In this Section, we apply our strategy to the case of PNM studied with the AV8′ + UIX interaction [89]. The
calculations have been performed with the AFDMC method; the EOS is taken from Ref. [227] and the energies
of perturbed nuclear matter are from Refs. [75, 76] 2. In these works, a trial wave function made of a Slater
determinant of Mathieu orbitals multiplied by Jastrow central correlations has been employed. The analysis

2We thank A. Gezerlis from providing us the perturbed matter results.
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shall focus in particular on the case of PNM at an unperturbed density ρ0 =0.10 fm−3. As a caveat, we must
mention, though, that Argonne 8 calculations should be checked in light of the findings of Refs. [127, 188],
where it has been suggested that an unconstrained propagation would be required to get accurate AFDMC
energies for potentials that include spin-orbit operators. The EOS of Ref. [227], in particular, may need to be
revised. Energy differences should be less sensitive to specific details of the wave function than the energy
itself (see also Sec. 8.1 above). Nevertheless, it would be interesting to perform unconstrained propagations in
perturbed matter as well and compare with the outcomes of Refs. [75, 76].

The data for perturbed matter are obtained for the following momenta of the external potential: q/qmin =
1, 2, 3, 4, 6, 8, 10. For each q, calculations were done at the following strengths: vq/EF =0.125, 0.15, 0.175, 0.25.
In light of Ch. 7, we exclude vq/EF = 0.25 as it already lies beyond the regime of linearity. Also, we have
checked that the energies at q/qmin = 8 and 10 have essentially no effect on the parameters of the EDF, and we
neglect them in the subsequent study. We stress that we are using here raw data for the N = 66 systems. We
are not applying any of the finite-size corrections of Refs. [75, 76] to extrapolate to the TL.

The results of the fit are presented in Fig. 8.6. The energies of the perturbed system for several momenta
q/qmin are shown as a function of the perturbation strength vq/EF . AFDMC results (solid symbols) are com-
pared to the predictions of the best-fit GA EDF (empty smarkers). A small value of the C∆ρ
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Figure 8.6: AFDMC energies for the AV8′+UIX interactions (solid markers) and predictions by the best-fit GA EDF (hollow
markes) in PNM at a density ρ0 =0.10 fm−3 as a function of the strength of the external perturbation vq/EF for different
values of the momentum q/qmin. Solid (dashed) lines represent fits to the AFDMC (EDF) perturbed energies. The param-
eters C∆ρ and C∇J of the GA EDF are reported in the legend.

found (C∆ρ = −10.2 ± 2, C∇J = 0 ± 35), although the discrepancies with ab initio are smaller that for the
Argonne 4 potential. The static response functions for the Argonne 8 interactions (triangles) and the GA EDF
that best reproduces the AV8′+UIX data (empty diamonds), as well as the Argonne 4 response (circles), are
then shown in Fig. 8.7. The response function has been determined at each momentum fitting the perturbed
energies as in Ch. 7. For both Argonne potentials, we have decided not to apply any finite-size correction on
the perturbed energies, and thus our predictions for the AV8′+UIX differ from the published results [76], that
instead were extrapolated to the TL. The q = 0 values have been obtained using the CSR (B.51) on Argonne 4
EOS, while for Argonne 8 we have taken the CSR value from Ref. [76], Fig. 3.

Comparing the two Argonne models, we observe that the AV8′+UIX potential predicts a response stronger
by about 50% than AV4′+UIXc, although at q = 0 the difference is much smaller. This means that the curvature
of the EOS, which determines the CSR, is similar for the two interactions, but the behavior in perturbed matter
differs considerably. The agreement between AV8′+UIX and the GA EDF is somewhat better than what we
have found in Sec. 8.1. Some discrepancies are evident, though, for example, a peculiar fact is that the GA EDF
predicts almost degenerate responses for q/qmin = 2 and 3, while AFDMC does not. In addition, the density-
gradient coefficient is too small to be accurate in finite nuclei (see below). This is clarified by comparing the
values of C∆ρ in different EDFs. In Ref. [75], a study was performed, in which the ab initio pseudo-data were
compared to the results of the Sly4 EDF, and the C∆ρ

1 parameter of the latter was then tuned to reproduce the
energy differences predicted by AFDMC for the AV8′ + UIX force. The method used in [75] is much simpler
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Figure 8.7: Static response function −χ(q)/ρ0 as a function of q/qF computed with the AV4′+UIXc (circles) and AV8′+UIX
(triangles) interactions in PNM at density ρ0 =0.10 fm−3, and with the EDF that best fits the Argonne 8 data (empty
diamonds). The AV8′+UIX response has been derived from the raw energies of Ref. [75] to which no finite-size corrections
have been applied. The q = 0 points have been obtained with the CSR. Lines are a guide to the eye. See text for details.

than ours, as in that case a single parameter of an empirical EDF was adjusted. In our case, the bulk terms
of the EDF are already constrained to be consistent with the ab initio EOS. In addition, we take into account
perturbations of several different wavelengths in our protocol, while in [75] parameters are estimated using
data for q/qmin = 2 only. In Tab. 8.1 the C∆ρ coefficients are reported for the standard Sly4 EDF, the modified
SLy4 model, adjusted to the AFDMC data for ρ0 = 0.10 fm−3, and our GA EDF fitted on perturbed matter at
ρ0 = 0.10 fm−3, as well as on the EOS. The gradient coefficient is density-independent in Sly4, while in the two

EDF C∆ρ
0 C∆ρ

1 C∆ρ
PNM

Sly4 -76.996 15.657 -61.339
Sly4 (mod.) -77 -29 -106

GA -10.2

Table 8.1: Coefficients of the EDF density-gradient terms for the standard Sly4 EDF [43] and two EDFs constrained on the
ab initio PNM response obtained with the AV8′ + UIX interaction at ρ0 = 0.10 fm−3. ”Sly4 (mod.)” refers to the modified
Sly4 EDF discussed in [75], in which the C∆ρ

1 was adjusted, while the other parameters are the same as in Sly4. ”GA” is
our GA EDF model, in which both the bulk and gradient terms are constrained on the ab initio data. All coefficients are
measured in MeV fm5. See also text for details.

other models it is fitted on a specific ρ0. (No SNM results are available with this interaction, thus only C∆ρ
PNM is

shown for the GA EDF.) At this density, AFMDC is more repulsive than Sly4, and correspondingly a stronger
(more negative) C∆ρ

PNM must be used in the modified Sly4 EDF. By contrast, our fit predicts a much smaller (in
magnitude) coefficient, as well as a vanishing spin-orbit parameter.

The conclusions we draw are essentially the same as in the case of AV4′+UIXc.

8.3 Symmetric nuclear matter with the Argonne 4 interaction

Calculations of SNM with the AV4′+UIXc at the reference density ρ0 = 0.16 fm−3 are presented in this Section.
We mention that these are, to our knowledge, the first ab initio calculations of the SNM static response. A = 132
nucleons have been used. The relative simplicity of the Argonne 4 interaction is instrumental in this respect.
Indeed, the tensor component of the NN force, which is absent from AV4′, is rather strong in the T = 0
channel between neutrons and protons and makes SNM calculations delicate and computationally demanding
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Figure 8.8: Same as Fig. 8.3, but for the AV4′+UIXc interaction in SNM at density ρ0 =0.16 fm−3.

for AFDMC [18, 87, 127]. For this reason, it is valuable to look at perturbed SNM results, even with a simple
interaction.

In Fig. 8.8, the energies of the perturbed system (left panel) and the static response function (right panel)
are shown. Unfortunately, the agreement of the GA EDF with AFDMC is unsatisfactory. Large discrepancies
are observed for most data points, and qualitative features can not be reproduced by the DFT calculations. In
particular, the curvature of the energies as a function of the perturbation strength for the AV4′+UIXc interaction
is larger at q/qmin = 3 than at q/qmin = 2. The non-monotonic behavior of χ(q) is a peculiar FS effect that we
had already pointed out in Ch. 7, see e.g. Figs. 7.3 and 7.13. However, the GA EDF is unable to catch this
trend. We conclude that the same difficulties that we have in PNM are evident in SNM, too.



CHAPTER 9

Conclusions and perspectives

The overarching motivation of this work has been to develop the initial steps of a research program devoted to
the construction of ab initio-constrained nuclear EDFs. Inspired by the ”Jacob’s ladder” program of electronic
DFT, a hierarchy of EDFs of increasing complexity has been proposed, with the microscopic description of
nuclear matter and its response playing a pivotal role in connecting ab initio calculations to the DFT description
of nuclear systems.

The nuclear matter EOS has been studied with the Finite-T SCGF method applied in connection to the
popular NNLOsat chiral interaction and with AFDMC using the simplified AV4′+UIXc force. The EOS has
been parametrized with a polynomial of the Fermi momentum, and a model selection procedure has been
applied to select the best description of the ab initio data. Then, the fits to the EOS were employed as input
for the LDA EDFs, which we used to predict binding energies and radii of magic nuclei. The results show
that LDA is a reasonable approximation for heavy nuclei, where surface effects are subleading, when it is
based on NNLOsat, while the models based on the Argonne 4 EOS overbind nuclei considerably. The different
behaviors of NNLOsat and Argonne 4 are likely because NNLOsat predicts a saturation point in symmetric
nuclear matter that is consistent with the empirical constraints, while Argonne 4 predicts saturation at a very
high density and rather low energy.

This analysis has been complemented by an exploratory study of GA EDFs built on top of LDA, with the
parameters of the surface terms tuned on selected empirical data. The NNLOsat-based GA EDFs are accurate
and close to the quality of ab initio predictions. This gives us confidence that our approach is viable. The results
for AV4′+UIXc are less satisfactory. Although gradient terms significantly improve the EDF predictions, some
deficiencies, particularly in the charge radii, persist.

Subsequently, a strategy to determine the surface contributions of the EDF from ab initio has been devised.
The cornerstone of our approach is to perturb nuclear matter through a static external potential to probe in-
homogeneous matter. Then, the parameters of the GA EDF can be estimated by matching the energies of
the perturbed system computed ab initio and in DFT. For this purpose, a DFT approach for perturbed matter
has been developed, which simulates infinite matter by using a finite number of nucleons subject to periodic
boundary conditions. Our method extends previous works by allowing to treat the spin-orbit term of the EDF
and to study both PNM and SNM. The finite-A DFT code makes it possible to compare consistently the DFT
predictions to those of ab initio methods that employ the same scheme, such as AFDMC and ADC-SCGF. Then,
a fitting protocol that is based on minimizing a least-squares cost function has been implemented to find the
optimal EDF parameters.

Accordingly, AFDMC has been extended to include the external potential, and calculations of the static
response have been performed, including the first study of the SNM response in this context. The first full
study of the GA EDFs constrained by the AV4′+UIXc energies has highlighted some inconsistencies, since
the coefficients obtained with this procedure are incompatible with the empirical estimates. The source of
these problems mainly resides in the significant systematic uncertainties of the AFDMC response, which limits
the possibility of extracting information useful for fixing the nuclear EDFs. We believe that the difficulties
encountered in the AFDMC static response might be remedied by further developments of the method, such as
combining backflow correlations with generic (e.g. Mathieu or DFT) orbitals or using twist-averaged boundary
conditions.

The need to overcome the limitations of AFDMC, related to the accuracy of the method and to the fact that
the most sophisticated chiral interactions cannot be employed with it, has led us to develop the ADC-SCGF
method for infinite nuclear matter. In particular, an effective way to include Gorkov pairing correlations on top
of Dyson-ADC(3) has been introduced, and successful calculations of the EOS and momentum distributions
of homogeneous matter have been reported. Importantly, this method is well-suited to treat the static and
dynamic response, and studying the response with ADC-SCGF will be pursued as a natural development of
this thesis.

In conclusion, in this work, a robust LDA scheme has been developed to ground the nuclear EDF into ab
initio EOS. A methodology for the GA EDFs, that consists in constraining the surface terms on the ab initio
nuclear matter response, has been proposed. Some of the pillars to carry on this approach have been realized,
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namely a DFT framework for studying nuclear matter with a finite nucleon number, AFDMC calculations of
the static response, and ADC-SCGF calculations of the EOS. Although some difficulties have been encountered,
we deem that these could motivate further developments in ab initio theory.

This work will be extended in several directions. ADC-SCGF can be applied to many physical cases, includ-
ing more detailed studies of the occupation numbers and the onset of superfluidity (pairing gaps, anomalous
densities) in nuclear matter from a microscopic perspective. Further efforts are needed to make it possible for
ab initio response calculations to reach the quality already achieved for the EOS, for which computations are
at present quite well under control. Finally, combining DFT and ab initio can benefit from the use of advanced
statistical and machine learning techniques, such as Bayesian analysis, which have greatly progressed in the
last few years.



APPENDIX A

Overview of chiral interactions

This Appendix is devoted to the description of chiral NN and 3N forces [95, 97]. The purpose of this section
is both to provide a general overview of the subject and to discuss some of the aspects that are involved in the
implementation of the chiral forces for infinite nuclear matter calculations.

Sec. A.1 serves as a general introduction to chiral forces and discusses specifically NN forces, giving an
overview of their structure with references to the literature. Sec. A.2 is devoted to chiral 3N interactions.
The main expressions and the applications of regulators to the matrix elements are discussed. While the two
previous sections cover essentially interactions derived in the framework of a chiral effective field theory (EFT)
in terms of nucleons and pions (delta-less EFT), in Sec. A.3 we describe briefly delta-full forces [92], which are
derived from an EFT that includes the ∆ isobar degrees of freedom explicitly, and discuss the differences with
delta-less forces.

In infinite matter, in particular, the plane wave basis is employed. Since chiral forces are formulated in
momentum space, writing the matrix elements directly on this basis is relatively straightforward and compu-
tationally cheap, when an operator definition of the potential is available. This is the choice adopted in this
work and used for all the SCGF calculations presented. For completeness, though, a section details, for the case
of NN forces, the transformation that relates the momentum space matrix elements to the angular-momentum-
coupled ones (Sec. A.4).

A.1 Chiral nucleon-nucleon interactions

In this Section, we briefly describe chiral NN interactions and outline their implementation. The subject is
covered in great detail in e.g. Refs. [92, 93, 97–99].

Chiral forces provide a link between the underlying theory of the strong interaction, QCD, and the emer-
gent nuclear interactions between nucleons. In short, chiral EFT allows to construct a low-energy Lagrangian
that is formulated in terms of the low-energy degrees of freedom relevant for nuclear physics, i.e. nucleons and
pions (and possibly ∆ isobars), and that satisfies the same symmetries as QCD [99]. Besides the obvious sym-
metries, a key property of QCD in the approximation of massless quarks is the so-called chiral symmetry. The
spontaneous breaking of this symmetry leads to the emergence of a triplet of light bosons, the pions. The EFT
approach is based on constructing an order-by-order expansion of the chiral Lagrangian in terms of a small
parameter. In the so-called Weinberg power counting, this is given by the ratio Q = p/Λχ between a typical
momentum scale (p), of the order of the pion mass, and the breakdown scale (Λχ), that denotes a momentum
at which the short-distance structure becomes important. Λχ is of the order of the mass of the ρ and ω mesons,
about 700-800 MeV. Discussions about alternative power countings can be found in Refs. [93, 99, 237].

The NN potential is derived from the EFT Lagrangian as the sum of a finite number of Feynman diagrams
that give irreducible contributions to the scattering amplitude for processes that involve two nucleons in the
initial and final states [93]. (More generally, the A-body interaction is given by the amplitude for scattering
processes involving A incoming and outgoing nucleons [99].) Power counting provides a way to organize the
graphs according to their importance as powers of Q so that the potential at any given chiral order contains
just a finite number of terms. Following a suggestion by Weinberg, the non-relativistic potential thus obtained
perturbatively is then used in the Schrödinger or Lippmann-Schwinger equations, or their many-body equiv-
alents, to determine the scattering amplitude or other observables [98, 99]. Long-range contributions to the
interaction, mediated by the exchange of mesons, emerge naturally in this approach. In particular, the ex-
change of one pion determines the long-range attraction of the nuclear force, while the intermediate-range
behavior of the nuclear interaction is governed by two-pion-exchange contributions. The short-range (high-
energy) physics, instead, is encoded in the so-called contact terms, that need to be introduced to renormalize
the theory and depend on a set of parameters, called low-energy constants (LECs). The LECs need to be con-
strained on experimental data, such as scattering phase shifts and the binding energy of the deuteron and
possibly other light nuclei, or lattice QCD calculations [96].

Chiral potentials are expressed in momentum space. In the following, V has to be understood as a function
of the momenta but as an operator in spin and isospin space [93]. We note that all c, ℏ and volume factors
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Figure A.1: Schematic representation of the diagrams that enter delta-less chiral interactions up to N3LO. Contribution to
NN and 3N forces are shown. Dotted lines denote the exchange of pions. Adapted from Ref. [98], Fig. 1.

will be omitted in this section, and momenta and masses are all understood to have dimensions of energy.
When the matrix elements of the interaction in the momentum basis are evaluated, the spin and isospin Pauli
matrices need to be replaced by their corresponding elements. Also, one has to multiply the expression of the
interaction by a constant factor (ℏc)3/Ω, where Ω = L3 is the volume and L the size of the box (see e.g. [83,
130]).

NN interactions involve two incoming and two outgoing particles, whose momenta are labeled by k1,k2,
k′
1 and k′

2. The total momentum must be conserved, i.e. K = k′
1 + k′

2 = k1 + k2, and the potential must be
independent from K. Indeed, the potential is a function only of the initial and final relative momenta

p =
1

2
(k1 − k2), p′ =

1

2
(k′

1 − k′
2). (A.1)

Thus V = V (p,p′). The momentum transfer q = p′ − p and the average momentum (or momentum scale)
k = 1

2 (p+ p′) are also introduced.
The structure of the chiral potential involves pion-exchange contributions and contact (zero-range) terms.

The diagrams contributing to the chiral expansion at different orders in the parameter Q (in Weinberg power
counting) are shown in Fig. A.1. The emergence of 3N forces is also depicted. For this section, our focus is on
delta-less NN forces, that are structured as [14, 93]

VLO = V
(0)
1π + V

(0)
ct , (A.2)

VNLO = VLO + V
(2)
1π + V

(2)
2π + V

(2)
ct , (A.3)

VNNLO = VNLO + V
(3)
1π + V

(3)
2π , (A.4)

where the superscript denotes the chiral order ν. LO stands for the leading order (ν = 0), NLO for next-
to-leading-order (ν = 2) and NNLO for next-to-next-to-leading-order (ν = 3). All the contributions with
ν = 1 vanish due to parity and time-reversal invariance [95]. Higher-order contributions are described e.g. in
Refs. [93, 97, 112]. 1π denotes the one-pion-exchange (OPE) contributions, 2π the two-pion-exchange (TPE)
contributions and ct the contact terms. The axial-vector coupling constant gA = 1.29, the pion decay constant
fπ = 92.4 MeV and the pion mass mπ are universal constants entering the chiral forces 1

At LO, the nuclear force is made of the well-known OPE potential, plus two momentum-independent
contact terms. The OPE reads

V
(0)
1π = − g2A

4f2π

σ1 · qσ2 · q
q2 +m2

π

τ1 · τ2, (A.5)

1Note that different interactions may use slightly different values. This is the case e.g. of the delta-less NNLOsat [105] and delta-full
∆NNLOgo [106] forces.
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and it is evaluated at the average pion mass. The potential is thus charge-independent at LO. From NLO on,
V1π is charge-dependent, i.e. the potential depends on the type of nucleons involved. The masses of the π±

particles are equal, but are different from the mass of the neutral pion: mπ± = 139.5702 MeV and mπ0 =
134.9766 MeV [105]. Following [98], the OPE for proton-proton (pp) and neutron-neutron (nn) scattering are
given by

V
(pp)
1π = V

(nn)
1π = V1π(mπ0), (A.6)

while for the proton-neutron (pn) part one has

V
(pn)
1π = −V1π(mπ0) + (−1)T+1 2V1π(mπ±), (A.7)

where T is the total isospin of the two-nucleon system, and

V1π(mπ) = −
g2A
4f2π

σ1 · qσ2 · q
q2 +m2

π

(A.8)

as a function of the pion mass. The NLO and NNLO orders do not introduce additional terms to the OPE, but
renormalize the mass and the coupling constant. These effects are taken care of by working with the physical
values, see [98].

The exchange of two or more pions always involves loop diagrams and consequently LECs appear [93]. In
particular, the NNLO TPE term depends on three LECs, c1, c3 and c4 [93]. The general operator structure of
the two-pion-exchange sector of the interaction is written as

V2π(p, p
′) = VC + τ1 · τ2WC + [VS + τ1 · τ2WS ]σ1 · σ2 + [VLS + τ1 · τ2WLS ](−i)S · (q× k)

+ [VT + τ1 · τ2WT ]σ1 · qσ2 · q+ [VσL + τ1 · τ2WσL]σ1 · (q× k)σ2 · (q× k). (A.9)

S is the total spin, S = 1
2 (σ1 + σ2). At NLO, the TPE terms contribute to WC , VT e VS . At NNLO, contributions

to the eight operators (VC ,WC , VS ,WS , VT ,WT , VLS ,WLS) appear. At N3LO, two further operators (VσL,WσL)
are involved. The TPE NNLO potential, and in particular the isoscalar central potential VC , is crucial as it
provides an attractive contribution at intermediate range [93].

Finally, the contact terms are in general polynomials of the momenta k and q. At LO, two LECs are required.
Seven more contact LECs enter at NLO, while there are no new contacts at NNLO. The LECs are often provided
in terms of partial waves: 1S0 and 3S1 at LO; 1S0, 3P0, 1P1, 3P1, 3S1, 3S1 − 3D1, 3D1 − 3S1 and 3P2 at NLO. A
linear combination of them generates the constants CS and CT at LO and Ci, i = 1, 7 at NNLO which enter the
definition of the contact terms (Ref. [93], Eqs. 4.38-4.42). We report below the structure of the contact terms at
LO and NLO:

V
(0)
ct = CS + CTσ1 · σ2, (A.10)

V
(2)
ct = C1q

2 + C2k
2 + (C3q

2 + C4k
2)σ1 · σ2 + C5(−i)S · (q× k)

+ C6σ1 · qσ2 · q+ C7σ1 · kσ2 · k. (A.11)

The expressions of all terms of the chiral potentials up to NNLO (and beyond) can be found in Refs. [93, 97,
98, 112, 238]. We summarize the contributions that appear in the different orders in Tab. A.1, where references
to the relevant equations of the review [93] are also provided. Note that Ref. [93] on the one hand, and e.g.
Refs. [98, 112, 238] on the other hand adopt different power countings, and expressions of the NNLO terms
are different. Among the interactions from the Göteborg-Oak Ridge collaboration, for example, NNLOsat [105]
and NNLOopt [239] follow the ”Machleidt” power counting [93], while the delta-full ∆NNLOgo [106] force is
based on the ”Epelbaum” power counting of Ref. [238].

The interaction should also be multiplied by a relativistic correction ( [95], p. 28), that reads (in the minimal
relativity scheme)

MN√
E(p)E(p′)

, E(p) =
√
p2 +M2

N , (A.12)

where MN is the nucleon mass and E(p) its relativistic kinetic energy.
Nuclear interactions suffer from ultraviolet (UV) divergences that must be cured by the application of

regularization and renormalization techniques [92, 99]. UV divergences in the loop integrals are treated by
dimensional regularization (DR) or spectral function regularization (SFR). The two schemes differ from each
other by an infinite series of higher-order contact interactions [238], and might be seen as two different con-
ventions to define the high-energy, low-distance behavior of the interaction ( [238], Fig. 6). SFR depends on an
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Chiral order Type Eq. Terms N. terms LECs [GeV]n

LO (ν = 0) 1π 4.5 Eq. (A.5) 1
ct 4.38-4.39 see Eq. (A.10) 2 CS , CT -2
1π 4.77-4.79 see Eq. (A.5)-(A.8) 1

NLO (ν = 2) 2π 4.9-4.10 WC , VS , VT 3
ct 4.40-4-42 see Eq. (A.11) 7 Ci, i = 1, 7 -4
1π 4.77-4.79 see Eq. (A.5)-(A.8) 1

NNLO (ν = 3) 2π 4.13-4.18, VC ,WC ,VS ,WS , 8 c1, c3, c4 -1
4.21-4.24 VT ,WT , VLS , WLS

Table A.1: The contributions to the delta-less chiral NN potential are summarized. OPE (1π), TPE (2π) and contact (ct)
terms at LO, NLO and NNLO are reported. References are given to the equations of the review [95] where the expression
of the different terms are contained. With reference to the general expression Eq. (A.9), the operators to which two-pion-
exchange terms contribute, as well as the number of terms of each of the three types of contributions that appear at a given
chiral order, are listed. The OPE terms are given in Eqs. (A.5)-(A.8). For the contact terms, we refer to Eqs. (A.10) and
(A.11) above. Finally, in the two last columns, the LECs that appear in a given term and their dimension as powers of
GeV are reported. Note in Ref. [93] dimensional regularization is used. Also, relativistic corrections ∼ 1/MN are already
included in the terms of the interactions cited in the table. In other works, such as e.g. Refs. [98, 238], a different power
counting is used, and these corrections are considered separately. See also the text for details.

additional cutoff ΛSFR of the order of Λχ. Refs. [95, 240] use DR, while SFR is employed in e.g. Refs. [98, 112,
238].

Divergences manifest themselves also when the interaction is employed in the Schrödinger or Lippmann-
Schwinger equations. To avoid this issue, the nuclear potential is multiplied by regulator functions that sup-
press the high-momentum components above a chosen cutoff scale [92, 93, 97]. A common choice for the NN
regulator is the following non-local function:

f(p) = exp
(
−
(
p2/Λ2

)n)
, (A.13)

where Λ is the interaction cutoff, typically of the order of 500 MeV. A typical value for the exponent is n = 3
at NNLO [110], although in some cases n = 4 is used [106]. Local chiral interactions, such as those used in
QMC, differ in the choice of the regulator, as well as the contact terms, but are not discussed here; we refer
the reader to e.g. Refs. [92, 102]. The regularized potential is obtained multiplying V (p, p′) by the regulators
evaluated at the incoming and outgoing relative momenta, namely

V reg(p, p′) = f(p)V (p, p′)f(p′). (A.14)

If n is large enough, then the low-p expansion of the regulator generates corrections that are of a higher order
than the order of the chiral expansion. Thus, the effect of the regularization is to dampen the pathological high
momentum terms, while the low-momentum matrix elements are barely changed.

Regularization introduces a dependence of the interaction matrix elements on the choice of the regulariza-
tion scheme and the cutoff. The purpose of the renormalization procedure is to remove such dependencies
[98]. This is realized in essence by properly tuning the LECs order by order. In principle, once the LECs are
fixed the predictions of the EFT should be independent on the details of the theory [99].

A.2 Chiral three-nucleon forces

In this Section, an overview of chiral three-nucleon interactions is given. This topic is reviewed e.g. in Refs.
[92, 241, 242]. Here we focus mostly on delta-less interactions, while in Sec. A.3 we will comment on delta-full
forces.

3N forces appear naturally in the chiral expansion. In the delta-less EFT approach, 3N interactions give non-
vanishing contributions starting from NNLO. At this order, three topologies appear (Fig. A.2): a long-range
two-pion exchange term WC , a one-pion exchange interaction WD and a contact term WE . WC depends on the
pion-nucleon LECs c1, c3 and c4 that already enter the NN force at that order. WD and WE , instead, depend
on two new LECs cD and cE , that describe the 3N physics and must be adjusted to properties of systems with
A ≥ 3. cD and cE are dimensionless constants. Also, for later convenience we define the constants E = cE

f4
πΛχ

and D = cD
f2
πΛχ

, where Λχ=700 MeV is the chiral symmetry breaking scale. The following expressions hold in
momentum space [241, 242]:

WC =
1

2

(
gA
2fπ

)2 ∑
π(ijk)

(σi ·Qi) (σj ·Qj)

(Q2
i +m2

π)
(
Q2
j +m2

π

)Fαβijkταi τβj , (A.15)
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Figure A.2: 3N interactions at NNLO in the chiral expansion. The three topologies (from left to right: two-pion exchange,
one-pion exchange and contact term) entering the 3N force and the LECs they depend on are shown. Adapted from Ref.
[241].

WD = − g2A
8π2

D
∑
π(ijk)

σj ·Qj

Q2
j +m2

π

(τi · τj) (σi ·Qj) , (A.16)

WE =
E

2

∑
π(ijk)

τi · τj , (A.17)

and the tensor Fαβijk is defined as

Fαβijk = δαβ
[
−4c1m

2
π

f2π
+

2c3
f2π

Qi ·Qj

]
+
c4
f2π

∑
γ

ϵαβγτγk σk · (Qi ×Qj) . (A.18)

π(ijk) denotes the six permutations of the indexes i, j, k, Greek letters denote the Cartesian components of the
vectors σi and τi, and Qi = k′

i − ki are the momentum transfers.
To ease the notation, the index 1,2,3 are used now in place of i, j, k to refer to the three particles involved

in the interaction. Next, we partition WC as the sum of three expressions, WC = W
(1)
C +W

(2)
C +W

(3)
C , where

W
(1)
C collects the contributions coming from the permutations (231) and (321) in the sum,W (2)

C those from (132)
and (312), and finally W (3)

C those from (123) and (213). In this way, a more clear structure appears behind the
3NF, and both the numerical implementation and the application of local regulators are made simpler. It is
straightforward to show that

W
(1)
D = − g2A

8π2
D τ2 · τ3

[
σ2 ·Q2

Q2
2 +m2

π

(σ3 ·Q2) +
σ3 ·Q3

Q2
3 +m2

π

(σ2 ·Q3)

]
, (A.19)

W
(1)
E = E τ2 · τ3. (A.20)

To deal with the TPE term, we first write it in vector form, namely

WC =
g2A
8f4π

∑
π(ijk)

(σi ·Qi) (σj ·Qj)(
Q2
j +m2

π

)
(Q2

i +m2
π)

(A.21)

[ (
−4c1m2

π + 2c3Qi ·Qj

)
τi · τj + c4 ((Qi ×Qj) · σk) ((τi × τj) · τk)

]
.

Then, we observe that the expression is invariant under the exchange of i and j, so that the (231) and (321)
contributions are equal. Therefore,

W
(1)
C =

g2A
4f4π

(σ2 ·Q2) (σ3 ·Q3)

(Q2
2 +m2

π) (Q
2
3 +m2

π)
(A.22)[ (

−4c1m2
π + 2c3Q2 ·Q3

)
τ2 · τ3 + c4 σ1 · (Q2 ×Q3) τ1 · (τ2 × τ3)

]
.

The (2) and (3) contributions are obtained by cycling the indexes. The total 3N potential can then be written as

W =

3∑
i=1

W (i) =

3∑
i=1

(
W

(i)
C +W

(i)
D +W

(i)
E

)
. (A.23)
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The 3N matrix elements can be readily evaluated in the momentum space basis used in infinite matter calcu-
lations, and such strategy is followed in this work. The partial-wave formalism for the 3N interaction is an
alternative approach, for which we refer the reader to e.g. Refs. [223, 241, 243].

To check the correct implementation of part of the 3N interaction, we have found useful the following
formula [225, 244]:

E
(HF )
cE

A
= − 3

16
Eρ2, (A.24)

that holds in SNM and gives analytically the HF energy per particle due to the contact term WE . This relation
is valid when no regularization is applied to the 3N term. We also mention that cE is typically the dominant
LEC [245]. Another check is that, when non-local regulators or no regulators at all are used, the PNM results
depend only on the c1 and c3 constants, as the terms proportional to c4, cD and cE vanish, as explained in Ref.
[245].

As a final remark, when one evaluates the momentum basis matrix elements, a factor of (ℏc)6/Ω2 must be
inserted to get the proper dimensions of energy.

A.2.1 Local regulators

A thorough discussion of the regularization of both NN and 3N interactions can be found e.g. in Refs. [93,
241, 246]. We summarize here only the main equations for treating 3N forces in the case of local regulators
and, in the following section, non-local regulators.

A typical choice of local 3N regulator function is that of Ref. [247],

fΛ(Q) = exp
(
−
(
Q2/Λ2

)2)
(A.25)

where Q is a momentum transfer. Local regulators must be applied to the individual components of the 3N
force, see Eq. (A.23). The regularized 3N matrix elements are given by [241]

W reg =W (1)fΛ(Q2)fΛ(Q3) +W (2)fΛ(Q1)fΛ(Q3) +W (3)fΛ(Q1)fΛ(Q2). (A.26)

We are following the convention of Eq. (24.a) of Ref. [246], for which we multiply W (1), that is function of Q2

and Q3, by regulators evaluated at the same momenta.
The advantage of local regulators is that, since they are functions of the individual momentum transfers and

do not depend on the momentum scale, when the locally-regulated matrix elements are Fourier-transformed
they give rise to interactions that are function of the relative distance between nucleons only, and do not
depend on the gradient with respect to the coordinates [92]. This makes local NN+3N chiral forces suitable to
coordinate-space methods such as QMC [18, 92, 103]. It must be mentioned, however, that locally regulated
forces are not symmetric under individual nucleon permutations [246]. As a consequence, the so-called Fierz
rearrangement freedom is violated and ambiguities arise as far as the operator structure of the contact terms
is concerned [92]. In the 3N sector, this means in particular that choosing the operators 1 or τi · τj in the cE
contact term, while in principle should make no difference, in practice affects the results significantly, as seen
e.g. in Ref. [246] and in the QMC studies of Refs. [88, 248]. An example is the cE contact term, which should
be vanishing in PNM, but acquires a finite expectation value when local regulators are employed [244].

A.2.2 Non-local regulator

Non-local momentum-space regulators have been found successful in helping the convergence of nuclear mat-
ter calculations [126]. The idea of this class of regulators is to cutoff the matrix elements according to the value
of the kinetic energy of the three-nucleon system [241], which is conveniently expressed in terms of the Jacobi
momenta

p =
k1 − k2

2
,q =

2k3 − (k1 + k2)

3
. (A.27)

The non-local regulator function is then defined as [110]

f(p, q) = exp

[
−
(
4p2 + 3q2

4Λ2

)n]
(A.28)

and represents a generalization of the standard regulator of the NN force Eq. (A.13), to which it reduces when
q = 0. Typically, the same exponents n and cutoff Λ are used in the NN and 3N regulators (Eqs. (A.13),(A.28)),
although this is not strictly required [246].

The regularized matrix elements are finally obtained by multiplying by the function (A.28) evaluated on
the incoming and outgoing Jacobi momenta:

W reg = f(p, q)Wf(p′, q′). (A.29)
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A.3 Delta-full chiral interactions

Delta-full chiral interactions are based on including explicitly in their construction the delta isobar degrees
of freedom ∆(1232) (Fig. A.3). Delta-full potentials have attracted interest because they have been shown to
improve the description of nuclei and nuclear matter simultaneously [106, 110]. Also, when delta excitations
are included explicitly, the convergence of the chiral expansion improves considerably compared to delta-less
interactions [92]. This is because in delta-less models the strength of some of the LECs ci is ”unnaturally”
large, as the contributions of the delta resonance to the nuclear interaction are accounted for implicitly in this
way (this is known as ”resonance saturation”). By contrast, in delta-full theories a significant portion of these
constants is removed and dealt with by diagrams that involve the explicit delta resonance. As a consequence,
the ci’s are much smaller. Moreover, when introducing the new degree of freedom the power counting must be
adjusted [241]. New contributions appear and some contributions of the delta-less chiral EFT are promoted to
a lower order (see Ref. [127], Fig. 1). Namely, the central (VC ,WC), spin (VS ,WS) and tensor (VT ,WT ) operators
already appear at NLO (see Tab. A.2 below).

In this Section, we comment on the modifications that have to be applied to the delta-less NN (App. A.1)
and 3N (App. A.2) interactions. Recent reviews that cover this topic are Refs. [92, 241]. Original papers on
this subject include Refs. [110, 249, 250].

When delta isobars are included, two new constants enter the nuclear interaction. One is the difference
between the mass of the delta excitation and the nucleon mass, δ = M∆ −MN ≈ 293 MeV, that acts as an
additional small scale. The other is the πN∆ axial coupling hA = 1.40. The introduction of the ∆ isobars also
leads to the appearance of additional terms in both the NN and 3N sectors. The leading contributions of the
delta degrees of freedom to the NN force appear at NLO; subleading terms have to be included at NNLO.
All the relevant expressions are reported in Ref. [249], which we here summarize. Following Ref. [110]
and references therein, the subleading πN∆ contributions proportional to the additional LEC b3 + b8 can be
neglected, provided that hA and the subleading πN couplings c2,3,4 are renormalized. Tab. A.2 reports the
relevant terms that must be added to the delta-less potential of App. A.1, with references to Sec. 2.2 of [249].
Ref. [112] also discusses these expressions in the Appendix. In total, 16 terms have to be included.

As far as the 3N forces are concerned, in delta-full interactions a contribution appears already at NLO, the
Fujita-Miyazawa term [92, 250]. This has the same topology as the delta-less TPE interaction WC (A.15), but
with different LECs. Indeed, the constants

c∆3 = −2c∆4 = −4h2A
9δ
≈ −2.97GeV−1 (A.30)

and c1 = 0 have to be used in the expression of Eq. (A.15) for this term. At NNLO, no additional 3N terms
appear. In practice, incorporating delta-full 3N interactions up to NNLO amounts simply to using in the 3N
operators the LECs

c3NF1 = c1, c
3NF
3 = c3 + c∆3 , c

3NF
4 = c4 + c∆4 (A.31)

where ci denote the NN LECs [251] 2.

Graph Eq. Terms N. terms
NLO ∆ in triangle graph 2.5 WC 1
NLO single ∆ in box graph 2.6 VC ,WC ,VS ,WS ,VT ,WT 6
NLO double ∆ in box graph 2.7 VC ,WC ,VS ,WS ,VT ,WT 6

NNLO ∆ in triangle graph 2.9 VC , WT , WS 3

Table A.2: Additional contribution to the NN interaction in delta-full chiral EDF. We summarize here Sec. 2.2 of Ref. [249]
and show schematically the terms that have to be added to the delta-less interactions of App. A.1. Leading (NLO) and
subleading (NNLO) TPE contributions for different types of Feynman graphs are reported, together with the number of
the equation in Ref. [249] that contains their expression. The terms of the potential (A.9) that receive contributions and the
number of terms are also reported. Subleading terms proportional to b3 + b8 have been neglected, see Ref. [110]. In total,
16 extra terms need to be implemented.

A.4 Partial wave expansion of the NN matrix elements

The purpose of this Section is to determine the transformation that allows to express the antisymmetrized
matrix elements of the NN interaction as a function of the relative angular-momentum-coupled matrix ele-
ments. Similar calculations can be found e.g. in Refs. [14, 83, 125, 252]. We follow Ref. [253] for the angular
momentum theory and conventions.

2Sometimes, as e.g. in Ref. [251], a different convention is used in which hA ≈ 2.8 and c∆3 = −h2
A/(9δ).
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Figure A.3: Schematic representation of the diagrams that enter delta-full chiral interactions up to NNLO. Contribution to
NN and 3N forces are shown. Dotted lines denote the exchange of pion. Double lines refer to the delta isobars. The LECs
entering each term are reported. Taken from Ref. [110].

Chiral forces are naturally formulated in momentum space. Thus, it is efficient and relatively simple to
evaluate the NN matrix elements in the momentum basis, implementing the operators directly in the s.p.
basis, provided that an operator definition of the potential is available [125, 126]. Sometimes, however, this
is inconvenient or even impossible. For example, it is common that the angular-momentum-coupled matrix
elements are made available by groups specialized in the developments of nuclear interaction, and thus it
is easier to simply transform them back to the s.p. basis of interest, as it often happens in finite nuclei (see
e.g. Ref. [9]). Another example is the case of renormalization-group-evolved interactions [254, 255], where
the matrix elements are defined only numerically and are provided already in partial waves. Therefore, it is
strategic to have at our disposal the tools for performing the transformation of the NN angular-momentum-
coupled matrix elements to the momentum basis. In passing, comparing the NN elements in the s.p. basis and
those obtained using the partial wave expansion provides a useful check on the implementation of the former.

We use as s.p. states the momentum eigenstates

|α⟩ = |kα, sα, tα⟩ (A.32)

and aim at relating the antisymmetrized matrix elements

v̄αβ,γ,δ = ⟨α, β|V |γδ⟩A , (A.33)

with |γδ⟩A = |γδ⟩ − |δγ⟩, to the partial-wave matrix elements

⟨p|V JSTMT

LL′ |p′⟩ ≡ ⟨pJ(LS)TMT |V |p′J(L′S)TMT ⟩ . (A.34)

p and p′ are the magnitudes of the relative momenta of the incoming and outgoing pairs of nucleons (see Eq.
(A.1)),

p =
1

2
(kα − kβ) , p′ =

1

2
(kγ − kδ) . (A.35)

We also introduce the total momentum of the nucleon pair,

K = kα + kβ = kγ + kδ. (A.36)

We remember that the nuclear interaction conserves the total momentum K, the total angular momentum J ,
the spin S, the isospin T and the isospin projection MT of the nucleon pair. Moreover, it is independent of the
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momentum projectionMJ and of K. However, it does not conserve the orbital angular momentum, as the non-
central tensor interaction couples L to L± 2. Also, before delving into the calculation, we mention, following
Ref. [95], that for a given MT and partial wave J there are up to six matrix elements. These correspond to the
following combinations of the S, L and L′ quantum numbers: S = 0, L = L′ = J (singlet), S = 1, L = L′ = J
(triplet), S = 1, L = L′ = J + 1 (++), S = 1, L = L′ = J − 1 (–), S = 1, L = J + 1, L′ = J − 1 (+-) and S = 1,
L = J − 1, L′ = J +1 (-+). The condition for having non-vanishing antisymmetric matrix elements (see below)
reads

(−1)S+T+L
= −1 (A.37)

and fixes the isospin T for given values of J and L [95].
The first step of the calculations consists of writing |αβ⟩ in terms of the relative momentum p, total spin

and total isospin. To do this, we write

|αβ⟩ = |p,K; sα, tα, sβ , tβ⟩ . (A.38)

Then, we couple the spin and isospin projections using the Clebsch-Gordan coefficients (j1m1; j2,m2|j,mj) ≡
⟨j1,m1; j2,m2|j,mj⟩

|αβ⟩ =
∑
SMS

∑
TMT

(
1

2
sα,

1

2
sβ |S,MS

)(
1

2
tα,

1

2
tβ |T,MT

)
|p,Q;S,MS , T,MT ⟩ (A.39)

The next step consists of performing an expansion of |p⟩ in terms of the eigenstates of the orbital momentum,
labeled by |LML⟩. Hence,

|p⟩ =
∑
LML

⟨pLML|p⟩ |pLML⟩ =
∑
LML

Y ∗
LML

(p̂) |pLML⟩ (A.40)

where YLML
are the spherical harmonics, p = |p| and p̂ is the direction identified by p. Thus

|αβ⟩ =
∑
SMS

∑
TMT

∑
LML

(
1

2
sα,

1

2
sβ |S,MS

)(
1

2
tα,

1

2
tβ |T,MT

)
(A.41)

Y ∗
LML

(p̂) |p, L,ML, S,MS , T,MT ⟩ |K⟩ .

Swapping α and β in Eq. (A.41) gives

|βα⟩ = |−p,K; sβ , tβ , sα, tα⟩ =
∑
SMS

∑
TMT

∑
LML

(−1)S+T+L (A.42)(
1

2
sα,

1

2
sβ |S,MS

)(
1

2
tα,

1

2
tβ |T,MT

)
Y ∗
LML

(p̂) |p, L,ML, S,MS , T,MT ⟩ |K⟩ .

We have used the symmetry properties [253](
1

2
sβ ,

1

2
sα|S,MS

)
= (−1)S−1

(
1

2
sα,

1

2
sβ |S,MS

)
, (A.43)(

1

2
tβ ,

1

2
tα|T,MT

)
= (−1)T−1

(
1

2
tα,

1

2
tβ |T,MT

)
, (A.44)

YLML
(−p̂) = (−1)L YLML

(p̂). (A.45)

Therefore, the antisymmetrized state |αβ⟩A reads

|αβ⟩A =
∑
JMJ

∑
SMS

∑
TMT

∑
LML

[
1− (−1)S+T+L

](1

2
sα,

1

2
sβ |S,MS

)(
1

2
tα,

1

2
tβ |T,MT

)
(A.46)

(LML, SMS |JMJ)Y
∗
LML

(p̂) |p, L,ML, S,MS , T,MT ⟩ |K⟩ ,

where the equalities MS = sα + sβ , MT = tα + tβ and MJ =MS +ML have to be satisfied.
Now, v̄αβ,γ,δ is conveniently expressed in terms of the doubly antisymmetric matrix elements as v̄αβ,γ,δ =

1/2A ⟨αβ|V |γδ⟩A, which can be evaluated using the kets Eq. (A.46). Finally, we obtain the following formula
[14, 83]:
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⟨αβ|V |γδ⟩A =
1

2

∑
JMJ

∑
S

∑
T

∑
LML

∑
L′M ′

L

[
1− (−1)S+T+L

] [
1− (−1)S+T+L′]

(A.47)

(
1

2
sα,

1

2
sβ |S,MS

)(
1

2
tα,

1

2
tβ |T,MT

)
(LML, SMS |JMJ)(

1

2
sγ ,

1

2
sδ|S,M ′

S

)(
1

2
tγ ,

1

2
tδ|T,M ′

T

)
(L′M ′

L, SM
′
S |JMJ)

YLML
(p̂)Y ∗

L′M ′
L
(p̂′) ⟨p|V JSTMT

LL′ |p′⟩

where it is understood that the total momentum and the isospin projection must be conserved, i.e.

kα + kβ = kγ + kδ, (A.48)
MT = tα + tβ = tγ + tδ, (A.49)

and the angular momentum projections are understood as

MS = sα + sβ ,M
′
S = sγ + sδ, (A.50)

ML =MJ −MS ,ML′ =MJ −M ′
S . (A.51)



APPENDIX B

Details on the static response theory

The purpose of this Appendix is to complement and extend the discussion on the theory of the static response
presented in Sec. 1.4. In Sec. B.1, we derive the equation (1.21), that relates the energy of a perturbed system to
the static response function. In Sec. B.2, we present a formalism for defining the static response function within
a DFT approach and show how the static response enters the gradient expansion of the EDF. This approach is
applied in Sec. B.3.1 to derive RPA-like equations for the static response, and explicit expressions for χ(q) are
obtained in the cases of LDA EDFs (Sec. B.3.1) and functionals with density-gradient terms (Sec. B.3.2). Then,
in Sec. B.4 the compressibility sum rule, which relates χ(q = 0) to the EOS, is discussed. Finally, in Sec. B.5
we show that, in the case of the DFT calculations of Ch. 7, the static response can be extracted fitting either the
energy or the density of perturbed matter.

B.1 Perturbed energies and static response function

In this Section, we derive the key equation (1.21) that connects the energy of the perturbed system to the
static response function. Starting from Eq. (1.15), the static response function can be defined in terms of the
perturbed density as [60]

χ(x,x′) =
δρ(x)

δv(x′)

∣∣∣∣
v=0

. (B.1)

We now want to prove that the energy is quadratic with respect to the external perturbation. To show this,
another useful identity is

δE

δv(x)
= ρ(x), (B.2)

that can be easily understood noting that the potential can enter the total energy only with the term
∫
dxv(x)ρ(x).

Differentiating Eq. (B.2) again,

δρ(x)

δv(x′)
=

δ2E

δv(x) δv(x′)
. (B.3)

Evaluating Eqs. (B.2) and (B.3) at v = 0, we thus find

ρ0 =
δE

δv(x)

∣∣∣∣
v=0

, χ(x,x′) =
δ2E

δv(x) δv(x′)

∣∣∣∣
v=0

. (B.4)

Now, we perform a functional Taylor expansion of E[v] around the unperturbed state [77] up to second
order:

E[v]− E[0] =

∫
dx

δE

δv(x)

∣∣∣∣
v=0

v(x)+ (B.5)

1

2

∫
dx

∫
dx′ δ2E

δv(x) δv(x′)

∣∣∣∣
v=0

v(x)v(x′).

Plugging Eq. (B.4) into the previous equation, we obtain

E[v]− E[0] =

∫
dxv(x)ρ0+ (B.6)

1

2

∫
dx

∫
dx′χ(x,x′)v(x)v(x′),

95
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and we immediately see that the first-order term vanishes, v being periodic. A different argument is presented
in Ref. [34], which proves the cancellation of the linear contribution in general terms. Thus, we have verified
that the energy of the perturbed system is quadratic as a function of v. This is consistent with the picture of
a small perturbation around an equilibrium state, i.e. the g.s. of the unperturbed Hamiltonian. Moreover,
we remind that χ must be negative and the homogeneous matter response depends only on x − x′ due to
translational invariance, i.e χ(x,x′) = χ(x− x′).

Then one can transform Eq. (B.6) to momentum space inserting the Fourier expansions

δρ(x) =
∑
k

ρke
ik·x, v(x) =

∑
k

vke
ik·x (B.7)

χ(x− x′) =
1

Ω

∑
k

χ(k)eik·(x−x′). (B.8)

Then

E[v]− E[0] =
Ω

2

∑
k

vkχ(k)v−k. (B.9)

If the monochromatic potential (1.18) is considered in place of a generic perturbation, and if the relations
ρ0 = A/Ω and χ = χ(|q|) that hold for uniform matter are employed, we find that the energy per particle of
the perturbed system is given by [77]

δev = ev − e0 =
χ(q)

ρ0
v2q . (B.10)

Similarly, it follows from Eq. (B.7) that only the k = ±q components of δρ(x) are non-vanishing, and from
the Fourier transform of Eq. (1.15) we find

ρq = χ(q)vq. (B.11)

B.2 Connection between the static response function and the EDF

The static response function in the DFT framework and its connection to the gradient terms of the EDF are
the subjects of this Section. We consider the case of the expansion around an unperturbed uniform state,
and for simplicity neglect the the dependency on kinetic densities and spin-orbit densities. Also, we describe
the system in terms of the total number density. This is sufficient to derive some key relations that allow to
gain insights into the relevance of the static response. The formalism could also be extended easily to include
different one-body densities.

For the sake of presentation, we write the total energy in the presence of the external potential as [155]

E[v] = F [ρ] + Vext

∣∣∣∣
ρ=ρ[v]

, (B.12)

where F [ρ] denotes the internal (kinetic+potential) energy of the system [34],

F [ρ] = Ekin + Epot, (B.13)

and Vext is the contribution due to the external potential,

Vext =

∫
dx v(x)ρ(x). (B.14)

As it will become apparent, it is important to stress that the density, and all terms in Eq. (B.12), must be ulti-
mately considered as functionals of the potential v. F [ρ] is, in essence, the EDF, and, to establish a connection
between F and the energy as a functional of v, it is essential to apply the framework of the Legendre trans-
form [256, 257]. This is similar to what is done to define the thermodynamical potentials. We remind that the
unperturbed state is characterized by v = 0 and, equivalently, ρ(x) = ρ0. Also, we assume that ρ0 is uniform
(homogeneous matter).

Eq. (B.12) can also be written as

F [ρ] = E[v]−
∫
dx v(x)ρ(x)

∣∣∣∣
v=v[ρ]

, (B.15)
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where both F and the r.h.s. are meant as functionals of the density. We evaluate the functional derivatives of
F for later convenience. For the first-order derivative, using the chain rule and Eq. (B.2):

δF

δρ(x)
=

∫
dx′ δE

δv(x′)

δv(x′)

δρ(x)
− v(x)−

∫
dx′ δv(x

′)

δρ(x)
ρ(x′) = −v(x). (B.16)

The second derivative, evaluated on the unperturbed states, then reads

K(x,x′) ≡ δ2F

δρ(x) δρ(x′)

∣∣∣∣
ρ(x)=ρ0

= − δv(x)
δρ(x′)

∣∣∣∣
ρ(x)=ρ0

, (B.17)

where we have introduced the kernel K(x,x′). There is a relation between K and the static response function,
that we are now going to determine. We start from the identity∫

dy
δv(x)

δρ(y)

δρ(y)

δv(x′)
= δ(3)(x− x′), (B.18)

we evaluate at v = 0 and ρ = ρ0, and the we insert Eqs. (B.17) and (B.2). Thus, we find that∫
dyK(x,y)χ(y,x′) = −δ(3)(x− x′). (B.19)

This means that the kernel and the static response are, in a functional sense, the inverse of each other with
opposite signs, and we can write synthetically

K · χ = −1. (B.20)

Note that, while χ is a function, the kernel is in general an operator, as we shall see. Eq. (B.20) does not hold
by chance, but it is actually a general property of Legendre transforms [256], which is exploited e.g. in the
effective action formalism of quantum field theory [55]. The importance of Eq. (B.20) can be understood if
we Taylor-expand F [ρ]. By the same argument as before, the first-order term is null, and we are left with the
second-order contribution,

F [ρ]− F [ρ0] =
1

2

∫
dx

∫
dx′K(x,x′)δρ(x)δρ(x′) = (B.21)

− 1

2

∫
dx

∫
dx′χ−1(x,x′)δρ(x)δρ(x′).

The expansion parameter is δρ = ρ − ρ0. Note that, at an intuitive level, this formula could have been found
using ρ = χv to replace v with ρ in Eq. (B.5). K is a positive function, so that the energy increases as the
reference state is perturbed. This is consistent with the unperturbed state being a stable equilibrium point
[34]. This argument was contained in essence already in the original paper by Hohenberg and Kohn [150],
where a relation between the EDF kernel and the electronic polarizability was sought. This result states that
the universal part of the EDF is intrinsically related to the response of a system to external perturbations, and
it suggests that some information about the EDF may be gained by studying the response of homogeneous
matter subject to a static perturbation. Applying the Fourier transform to Eq. (B.21), we get

F [ρ]− F [ρ0] =
Ω

2

∑
k

ρkK(k)ρ−k. (B.22)

Also, in momentum space Eq. (B.20) reads

K(k) = − 1

χ(k)
. (B.23)

It can be shown that K = K(k) admits an expansion in powers of the wave number for small k, starting from
k2, namely K(k) = K0 + c2k

2 + c4k
4 + .... The coefficients, in principle, can be determined by studying the

low-momentum behavior of the static response function χ(k) and using Eq. (B.23). Transforming back to real
space, we can use the correspondence q2 −→ −∇2, so that at quadratic order the EDF has the form

F [ρ]− F [ρ0] = −
c2
2

∫
dx|∇ρ(x)|2, (B.24)

with c2 < 0. Thus, the standard quadratic gradient corrections to the EDF have been derived, and the low-
momentum static response of the reference system in principle allows us to fix the gradient term. This formal
argument suggests that perturbed matter calculations, as well as the knowledge of the static response of ho-
mogeneous matter, may allow to get information on the EDF applicable to inhomogeneous systems.
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B.3 Response equations in the EDF framework

We apply the formalism outlined in Sec. B.2 and derive the RPA equations for the static response function.
We stress again that this is a somewhat simplified treatment, where only the dependence on a single number
density is considered. Full studies of the response of nuclear matter in DFT can be found e.g. in Ref. [124] and
references therein. A similar approach is also used in solid-state physics, see e.g. Refs. [34, 136].

The EDF F [ρ] is broken down as the sum of kinetic and potential energy terms, Eq. (B.13). The kernel,
and similarly the static response, are broken down as the sum of a free contribution K0, χ0 and a potential
contribution Kpot, χpot. Thus,

K(x,x′) = K0(x,x
′) +Kpot(x,x

′), (B.25)

where

K0(x,x
′) =

δ2Ekin
δρ(x) δρ(x′)

, (B.26)

Kpot(x,x
′) =

δ2Epot
δρ(x) δρ(x′)

. (B.27)

From Eq. (B.20), we have χ = −1/K and χ0 = −1/K0. We can then multiply (in an operator sense) Eq. (B.20)
to the left by χ and to the right by χ0. Simple algebra allows to find the following familiar-looking equation
[136]:

χ = χ0 + χ0Kpotχ. (B.28)

The functional derivative approach has allowed us to determine the RPA equations for the static response. The
kernel Kpot can be interpreted as an effective interaction (or residual particle-hole interaction [124]) stemming
from the EDF. In the case of homogeneous matter, and under our assumption that Kpot only depends on the
number density, these can be immediately solved to give

χ(q) =
χ0(q)

1− χ0(q)Kpot(q)
. (B.29)

In App. B.3.1 we calculate the interaction kernel for LDA EDFs, and in App. B.3.2 we evaluate it for EDFs
including density-gradient terms. The full case where effective mass and spin-orbit terms are included, which
is important for nuclear physics, is more complicated and is discussed in Ref. [124].

The response equations (B.28) hold for both finite and infinite systems. Clearly, the χ0 and χ functions
differ whether we are using a finite particle number or computing them in the TL, but it is important to stress
that the equations remain valid in both scenarios. Kpot can be computed explicitly from Eq. (B.27) when
Epot is a functional of ρ only. Once we have determined the kernel, it is straightforward to find the resulting
response function. The free response χ0 for fermions is not an explicit function of the density, as the kinetic
energy involves the kinetic density τ . However, it can be computed with second-order perturbation theory,
and it amounts for finite-A systems to Eq. (1.23) and in the TL to the Lindhard function (1.25), see Sec. 1.4.
For bosons, instead, it can be computed directly from the definition, and for completeness, we derive it in Sec.
B.3.3.

We mention that formulas for extrapolating from the finite-A response to the TL response have been de-
vised that exploit the fact that FS effects affect mostly the kinetic terms, while they are relatively smaller on
the potential term, see e.g. Refs. [77, 133]. The idea, inspired by the EDF response, is to parametrize a set of
calculations of the static response in the finite-A system, typically coming from ab initio (QMC), in the form
(B.29), i.e.

χA(q) =
χ0,A(q)

1− χ0,A(q)Kpot,A(q)
, (B.30)

where Kpot,A(q) is extracted from χA(q). Similarly, for the TL one writes

χTL(q) =
χ0,TL(q)

1− χ0,TL(q)Kpot,TL(q)
. (B.31)

Now, one makes the hypothesis that FS effects are mild on the kernel. This sounds reasonable, asKpot describes
short-range 2B interactions that should be only weakly affected by the shell structure of the system 1. Thus,

1Nuclear interactions are indeed short-ranged. In electronic systems, slightly different equations are used, in which one focuses on the
so-called local field correction(LFC) [77, 78]. The LFC describes the exchange and correlation effects, which are short-ranged, too.
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we assume Kpot,TL(q) ≈ Kpot,A(q) and insert

Kpot,TL(q) = Kpot,A(q) =
1

χ0,A(q)
− 1

χA(q)
(B.32)

into the TL relation (B.31). Finally, we get the formula [133]

χTL(q) =
χ0,TL(q)

1 + χ0,TL(q)
[

1
χA(q) −

1
χ0,A(q)

] . (B.33)

This recipe has been applied in several studies of the electron gas to infer the TL response from finite-A results
[77, 133, 172]. In nuclear physics, it has never been used, and unfortunately it is somewhat ineffective since it
does not take into account the generalized densities. Other extrapolation recipes have been presented in Refs.
[75, 76].

B.3.1 Response for LDA EDFs

We derive the explicit expression for the static response of LDA EDFs in infinite nuclear matter using the
previously outlined formalism. Since the LDA EDF is a functional of just the number density, simple formulas
that hold for both SNM and PNM can be determined. The LDA EDF (Sec. 2.2.1) contains just the density-
dependent terms and reads, for the cases of SNM or PNM (i.e. single-component systems),

ELDA =

∫
dx
∑
γ

cγρ
γ+1(x). (B.34)

It is straightforward to findKpot following its definition (B.27): we compute the second derivative of the energy
and evaluate it on the constant density ρ(x) = ρ0,

Kpot(x,x
′) =

∑
γ

cγγ(γ + 1)ργ−1
0 δ(3)(x− x′). (B.35)

The Fourier transform is momentum-independent,

Kbulk =
∑
γ

cγγ(γ + 1)ργ−1
0 , (B.36)

and coincides with the Kbulk term of Eq. (C.42). The static response reads

χ(q) =
χ0(q)

1−Kbulkχ0(q)
. (B.37)

It is easy to verify that this formula matches Eq. (C.42) when setting C∇J = C∆ρ = Cτ = 0 and replacing
χ0 with the Lindhard function (1.25). However, Eq. (B.37) is more general as it is valid also in finite-A systems.

B.3.2 Response for EDFs with gradient corrections

We add to the LDA EDF (B.34) the gradient correction

E∆ρ = C∆ρ

∫
dxρ(x)∆ρ(x) = −C∆ρ

∫
dx|∇ρ(x)|2. (B.38)

The corresponding kernel K∆ρ is now evaluated. The first functional derivative reads

δEδρ
δρ(x)

= 2C∆ρ∇2ρ(x). (B.39)

The second derivative is given by

δ2Eδρ
δρ(x) δρ(x′)

= 2C∆ρ∇2
xδ

(3)(x− x′) (B.40)

Note that, correctly, local EDFs produce zero-range kernels. The Fourier transform reads

K∆ρ(q) = −2C∆ρq2 (B.41)
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and play the role of a repulsive momentum-dependent interaction (C∆ρ < 0, as the contribution of Eq. (B.38)
must be repulsive). Finally, the static response is given by

χ(q) =
χ0(q)

1− (Kbulk − 2C∆ρq2)χ0(q)
. (B.42)

Again, it is possible to verify that in the TL this is equal to Eq. (C.42) with C∇J = Cτ = 0. Unfortunately,
with the approach here outlined we are unable to treat the response in the case of EDFs including effective
mass and spin-orbit terms, as τ and J cannot be written as explicit functionals of the density.

B.3.3 Free response for bosons

We derive the free response function for a uniform system of bosons. The result is contained e.g. in Ref. [137],
in the first term of Eq. (6) (with a different normalization). The wave function of non-interacting bosons at
zero temperature is simply given by

ψ(x) =
√
ρ(x)eiθ, (B.43)

where θ is a global phase. Thus, the kinetic energy can be computed as

Ekin[ρ] =
ℏ2

2m

∫
dx
∣∣∣∇√ρ(x)∣∣∣2 =

ℏ2

2m

∫
dx

∣∣∣∣∣ ∇ρ(x)2
√
ρ(x)

∣∣∣∣∣
2

=
ℏ2

8m

∫
dx
|∇ρ(x)|2

ρ(x)
. (B.44)

Ekin is an explicit functional of the density, and we can thus determine the static response by first evaluating
the kernel (B.26) using its definition. The first functional derivative reads

δEkin
δρ(x)

=
∂Ekin
∂ρ

−∇ · ∂Ekin
∂∇ρ

(B.45)

=
ℏ2

8m

(
−|∇ρ|

2

ρ2
−∇ ·

(
2
∇ρ
ρ

))

=
ℏ2

8m

(
|∇ρ|2

ρ2
− 2
∇2ρ

ρ

)
.

(B.46)

where we have used the Euler-Lagrange formula and Ekin is the energy density associated to Ekin

Ekin =
ℏ2

8m

|∇ρ(x)|2

ρ(x)
. (B.47)

We now have to compute the second derivative and evaluate it for ρ(x) = ρ0. Since for ρ0 is uniform, terms
that contain gradients of the density do not contribute to K0. In practice, only one term survives, and we get

K0(x,x
′) = − ℏ2

4m

∇2

ρ0
δ(3)(x− x′). (B.48)

It is convenient to transform to momentum space, so that∇2 −→ −q2. Thus,

K(q) =
ℏ2q2

4mρ0
(B.49)

Finally, we obtain the static response function for uniform matter of free bosons:

χ(q) = − 1

K(q)
= − ρ0

ℏ2q2/(4m)
. (B.50)

B.4 Compressibility sum rule

The compressibility sum rule (CSR), which has been discussed in detail in Refs. [76, 79], relates the static
response at zero momentum to the properties of unperturbed matter:

− 1

χ(0)
=

1

ρ

∂P

∂ρ
=

∂2

∂ρ2
(
ρe
)
. (B.51)
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EDF L K0 Ksym −χ(0)/ρ (SNM) −χ(0)/ρ (PNM)
SLy4 45.94 229.91 −119.73 0.0391 0.0233
SkM* 45.78 216.61 −155.94 0.0415 0.0268
SkI3 100.53 258.19 73.04 0.0348 0.00963

Table B.1: Infinite nuclear matter coefficients L, K0 and Ksym (in MeV) and CSR −χ(0)/ρ (in MeV−1) in SNM and PNM
for three EDFs. The coefficients are taken from Ref. [258].

We comment on how to evaluate the CSR. The r.h.s. of Eq. (B.51) is written as

∂2

∂ρ2
(
ρe
)
=

∂2

∂ρ2
(
ρt
)
+

∂2

∂ρ2
(
ρv
)
. (B.52)

The kinetic energy per particle t is proportional to k2F ∼ ρ2/3, thus

∂2

∂ρ2
(
ρt
)
=

10

9

t

ρ
(B.53)

at fixed β, in both the TL and the finite-A system. Note that in the TL ∂2

∂ρ2

(
ρt
)
= −1/χ0(q = 0), where the limit

for q −→ 0 can be taken directly in the Lindhard function χ0, Eq. (1.25). In the finite systems, instead, as q is
discrete it is impossible to evaluate the response directly at zero momentum, and one must necessarily resort
to the previous formula. As for the potential term, we immediately get, using Eq. (2.16), that ∂2

∂ρ2

(
ρv
)

is equal
to Kbulk, Eq. (C.32). Therefore, in our case the CSR for a given EDF reads

− 1

χ(0)
=

10t

9ρ
+Kbulk. (B.54)

Next, we relate the CSR to the infinite matter parameters of an EDF, namely L, K0 and Ksym (see Refs. [38,
258] and below). First, we write

− 1

χ(0)/ρ
= 2ρ

∂e

∂ρ
+ ρ2

∂2e

∂ρ2
. (B.55)

Then, we use ∂e
∂ρ = 0 and K0 = 9ρ2 ∂

2e
∂ρ2 in SNM, and L = 3ρ ∂e∂ρ and KPNM = K0 +Ksym = 9ρ2 ∂

2e
∂ρ2 in PNM.

Finally,

− 1

χ(0)/ρ
=
K0

9
(SNM), (B.56)

− 1

χ(0)/ρ
=

2

3
L+

K0 +Ksym

9
(PNM). (B.57)

In Tab. B.1 we report the nuclear matter coefficients, taken from Ref. [258], and calculate the corresponding
zero-momentum responses for the three representative EDFs discussed in Sec. 7.3. One can note that SNM
values are consistent, while in SkI3 the PNM response is smaller by a value of 2 from that of the other two
EDFs. This can be traced to SkI3 having a positive Ksym coefficient and a slope L twice as large as that of SLy4
and SkM*.

B.5 Static response from density and energy fits

The static response can be extracted either from the energies or the densities of the perturbed system. In the
results presented in Sec. 7, χ(q) was obtained by energy changes. In this Section, we discuss fits of the density
changes and show evidence that the two techniques give close outcomes.

In the linear response regime, the relation Eq.(1.20) holds and relates the Fourier component of the density
fluctuation of the same momentum q as that of the external potential. If non-linear effects come into play,
also higher-order harmonics are excited [259]. In order to extract χ(q), calculations are performed at a given
momentum q for several strengths vq and the corresponding densities δρ(z) are Fourier-transformed, i.e.

ρk =
1

L

∫
dz δρ(z)e−ikz. (B.58)

Then, the component with k = q is selected. Other harmonics would be related to non-linear contributions
and do not involve the function χ(q), as discussed in Ref. [259]. Finally, a linear fit to the amplitudes ρq as a
function of vq is performed.
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Figure B.1: Density amplitudes ρq as a function of the per-
turbation strength vq/EF in PNM (N=66 neutrons) at a refer-
ence density ρ0 = 0.16 fm−3 for the SLy4 EDF for different
moments q/qmin. Markers: results of the DFT calculations.
Dashed lines: linear fits to the data points.
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Figure B.2: Static response function −χ(q)/ρ0 extracted from
fits to the energies (circles) and densities (triangles) of the per-
turbed system. The TL response is also shown for compar-
ison. Inset: relative difference (in percentage) between the
response function from density fits and energy fits (∆χ/|χ|).
.

We have studied the case of PNM with N=66 neutrons at a reference density ρ0 = 0.16 fm−3 for the SLy4
EDF. Calculations for vq/EF between 0.01 and 0.1 have been performed. In Fig. B.1 the density amplitudes ρq
are shown as a function of the perturbation strength for different momenta as markers. Dashed lines represent
linear fits to the data. A distinct linear trend of the amplitudes can be noted in all cases, with some fluctuations
appearing only for q/qmin = 1. Indeed, the response is strongest at q/qmin = 1 (about two times stronger than
for q/qmin = 2, see Figs. 7.13 and B.2). As a consequence, non-linear effects are expected to play a relevant role
in this case even for moderate perturbation strengths. In Fig. B.1, in particular, they manifest themselves in
mild deviations of the amplitudes from the linear trend. These deviations are also similar to those observed in
the energies per particle for q/qmin = 1 in the FG case (Fig. 7.5).

In Fig. B.2 we compare the response function extracted from fits to the density (triangles) and the energy
(circles). In the inset, the relative discrepancy between the two fits, i.e.

∆χ

χ
=
−χEnergy + χDensity

(χEnergy + χDensity) /2
, (B.59)

is shown. It can be appreciated that it remains within a modest 5% and, except the first allowed momentum
2π/L, is much smaller for the momenta below 3kF . We conclude that the two ways to extract the response
function essentially agree.



APPENDIX C

Details on Density functional theory

In this Appendix, details on nuclear DFT are provided. In Sec. C.1, the mean field and the rearrangement
energy for the LDA and GA EDFs discussed in Sec. 2.2 are derived. Sec. C.2 complements Sec. 2.3 and gives
details on the application of DFT to infinite nuclear matter(SNM and PNM specifically). Sec. C.3 reports the
static response function of Skyrme-like EDFs in the TL.

C.1 Mean field and rearrangement energy of LDA and GA EDFs

In this Section, we derive the mean field and the rearrangement energy term for the LDA and GA EDFs de-
scribed in Sec. 2.2.1 and 2.2.2.

C.1.1 LDA mean field potential

We derive the mean field potential Uq(x) for the LDA EDF Sec. 2.2.1. By definition:

Uq(x) =
δEbulk
δρq(x)

=
∂Ebulk
∂ρq

=
∂Ebulk
∂ρ

+
∂β

∂ρq

∂Ebulk
∂β

(C.1)

with q=n, p. Using ρ = ρn + ρp and β =
ρn−ρp
ρ , the chain rule leads to the following contributions:

∂β

∂ρq
=

1

ρ

∂

∂ρq
(ρn − ρp)+ (C.2)

(ρn − ρp)
(
− 1

ρ2

)
∂ρ

∂ρq
=
τz − β
ρ

,

∂Eloc
∂ρ

=
∑
γ

(γ + 1) cγ(β)ρ
γ , (C.3)

∂Eloc
∂β

=
∑
γ

∂cγ(β)

∂β
ργ = 2β

∑
γ

cγ,1ρ
γ+1, (C.4)

where τz = +1 for neutrons and τz = −1 for protons. Therefore

Uq =
∑
γ

(γ + 1)cγ(β)ρ
γ + (τz − β) 2β

∑
γ

cγ,1ρ
γ =

∑
γ

[
(γ + 1) cγ(β)ρ

γ + 2β (τz − β) cγ,1
]
ργ ,

and finally
Uq(x) =

∑
γ

[
(γ + 1) cγ,0 + 2β (τz − β) cγ,1 + (γ + 1)cγ,1β

2
]
ργ ,

which proves Eq. (2.20).

C.1.2 GA mean field potential

The mean field Usurfq Eq. (2.24) is derived. By definition, Usurfq (x) =
δEsurf

δρq
, where Esurf is conveniently

written as the volume integral of the density:

Esurf =
∑
t=0,1

(
−C∆ρ

t |∇ρt|
2
+ C∇J

t ρt∇ · Jt
)
. (C.5)
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Then
δEsurf
δρq

=
∂Esurf
∂ρq

−∇ ·
(
∂Esurf
∂ (∇ρq)

)
. (C.6)

The first contribution is due to the spin-orbit part and is equal to

∂Esurf
∂ρq

= C∇J
0 ∇ · J0 + C∇J

1 ∇ · J1τz, (C.7)

having used ∂ρ1
∂ρq

= τz . The second one is due to the gradient terms of the EDF. To compute it, we first insert
ρ0 = ρn + ρp and ρ1 = ρn − ρp into the energy density:

Esurf = −
(
C∆

0 + C∆
1

) (
|∇ρn|2 + |∇ρp|2

)
+

+ 2
(
C∆

1 − C∆
0

)
∇ρn · ∇ρp,

and then take the derivative:

−∇ ·
(
∂Esurf
∂ (∇ρq)

)
= (C.8)

2
(
C∆

0 + C∆
1

)
∆ρq − 2

(
C∆

1 − C∆
0

)
∆ρq̄ =

2C∆
0 (∆ρq +∆ρq̄) + 2C∆

1 (∆ρq −∆ρq̄) =

2C∆
0 ∆ρ0 + 2C∆

1 ∆ρ1τz,

where q̄ = p if q = n and viceversa. Summing Eqs. (C.7) and (C.8) concludes the derivation.

C.1.3 Rearrangement energy

In nuclear DFT, the total energy can be computed in two independent ways:

• As the space integral of the EDF evaluated on the ground state densities that one obtains by solving the
mean field equations:

E =

∫
dx E(x). (C.9)

• With the Hartree-Fock (HF) formula for a density-dependent Hamiltonian [156]:

E =
1

2

(
T +

∑
k

ϵk

)
+ Erea. (C.10)

The extra termErea is called rearrangement energy. The equality of the two expressions for the binding energy
is often used as a non-trivial test of the correctness of the implementation of a DFT or HF code.

Here, the rearrangement energy for the LDA EDF of Sec. 2.2.1 is derived. The following practical definition
is employed:

Erea =

∫
dx Ebulk(x)−

1

2

∑
q

∫
dxUq(x)ρq(x), (C.11)

with the mean field Uq(x) 2.20. Then:∑
q

Uqρq = Unρn + Upρp =

[Un(1 + β) + Up(1− β)]
ρ

2
= [(Un + Up) + (Un − Up)β]

ρ

2
.

We calculate Un + Up and Un − Up separately:

Un + Up = 2
∑
γ

[
(γ + 1) cγ,0 − 2β2cγ,1 + (γ + 1)β2cγ,1

]
ργ =

= 2
∑
γ

[
(γ + 1) cγ,0 + (γ − 1)β2cγ,1

]
ργ
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and
Un − Up = 4β

∑
γ

cγ,1ρ
γ

with τz = 1 for neutrons and τz = −1 for protons. Then:∑
q

Uqρq =
ρ

2
2
∑
γ

[
(γ + 1) cγ,0 + (γ + 1)β2cγ,1

]
ργ+1

Plugging into the definitions of Erea:

Erea =

∫
dx
∑
γ

[ (
cγ,0 + β2cγ,1

)
ργ+1+

−
(
1 + γ

2

)(
cγ,0 + β2cγ,1

)
ργ+1

]
,

and finally:

Erea =

∫
dx
∑
γ

(
1− γ
2

)(
cγ,0 + β2cγ,1

)
ργ+1
0 . (C.12)

C.2 Nuclear EDFs in infinite nuclear matter

This Section complements Sec. 2.3 providing details on the EDF and the mean fields used in the DFT infinite
matter calculations. We focus on PNM and SNM, which can be treated as two-component (spin up/down)
fermionic systems. We adopt the convention for which Cτ stands for Cτ0 in SNM and Cτnm = Cτ0 +Cτ1 in PNM,
and likewise for C∆ρ, C∇J and the cγ coefficients. The material is adapted from Ref. [80].

C.2.1 EDFs

The expression of the EDF E under the assumptions of Sec. 2.1 is the following:

E(z) = Ekin(z) + Ebulk(z) + Cτρ(z)τ(z)+ (C.13)

C∆ρρ(z)ρ′′(z)− C∇Jρ′(z)Jz(z)

with

Ekin(z) =
ℏ2

2m
τ(z), (C.14)

Ebulk(z) =
∑
γ

cγρ
γ+1(z). (C.15)

The rearrangement term was computed in Ref. [68] and is given by

Erea = L2

∫
dz
∑
γ

(
1− γ
2

)
cγρ

γ+1(z). (C.16)

The expressions for the mean field, effective mass and spin-orbit potential are also shown:

ℏ2

2m∗(z)
=

ℏ2

2m
+ Cτρ(z), (C.17)

U(z) = U bulk(z) + Cττ(z) + 2C∆ρρ′′(z) + C∇JJ ′
z(z) (C.18)

with

U bulk =
∑
γ

cγ (γ + 1) ργ(z), (C.19)

and lastly

Wz(z) = −C∇Jρ
′
(z). (C.20)
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C.2.2 Kinetic term

We derive the kinetic term of Eq. (2.36). First, the gradient and the Laplacian of ψn,λ [Eq. 2.33] are reported:

∇ψn,λ(x) = ikxψn,λ(x)x̂+ ikyψn,λ(x)ŷ (C.21)

+
1

L
ei(kxx+kyy)χnx,ny,λϕ

′
n,λ(z)ẑ,

∇2ψn,λ(x) = −
(
k2x + k2y

)
ψn,λ(x) (C.22)

+
1

L
ei(kxx+kyy)χnx,ny,λϕ

′′
n,λ(z).

Using these expressions, we elaborate on −∇ ·
(

ℏ2

2m(z)∇ψn,λ

)
as follows:

−∇ ·
(

ℏ2

2m∗(z)
∇ψn,λ(x)

)
= (C.23)

− ℏ2

2m∗(z)
∇2ψn,λ(x)−

d

dz

(
ℏ2

2m∗(z)

)
∂ψn,λ

∂z
=

1

L
ei(kxx+kyy)χnx,ny,λ[
− d

dz

(
ℏ2

2m∗(z)
ϕ

′

n,λ(z)

)
+

ℏ2

2m∗(z)
k2nxny

ϕn,λ(z)

]
.

The constant spinor χ and the exponential appear in all terms in Eq. (2.6), thus they can be simplified and drop
out of the the final equations (2.36).

C.2.3 Densities as a function of the orbitals

Number density, kinetic density and spin-orbit density may be computed from their definitions as functions
of the occupied orbitals [6] applied to the wave functions (2.33). Eqs. (C.21) and (C.22) are also used to find

ρ(z) =
∑
j

|ψj(x)|2 =
1

L2

∑
n,λ

|ϕn,λ(z)|2 (C.24)

τ(z) =
∑
j

|∇ψj(x)|2 (C.25)

=
1

L2

∑
n,λ

(∣∣ϕ′n,λ∣∣2 + k2nxny
|ϕn,λ|2

)
Jz(z) =

∑
j

ψ∗
j (x) (−i) (∇× σ)3 ψj(x) (C.26)

=
∑
n,λ

ψ∗
n,λ(x)Kψn,λ(x)

=
1

L2

∑
n,λ

λknxny
|ϕn,λ(z)|2

where only the z component of J does not vanish and Eq. (2.34) has been used.

C.2.4 Hamiltonian in the plane waves basis

We derive the Hamiltonian matrix in the plane waves basis
(
h̃n,λ

)
k,k′

(Eq. (2.37)). We start from the real space

DFT equations (2.36) and Fourier-expand the orbitals as ϕ(z) = 1√
L

∑
k′ ck′e

ik′z . Then, we project on the k

plane wave by multiplying by e−ikz/
√
L and integrating over z for −L/2 ≤ z ≤ L/2. The multiplicative terms

are simple to treat and one easily finds the Fourier transform

Ũ(k − k′) = 1

L

∫ L/2

−L/2
dz e−i(k−k

′)z (C.27)(
U(z) + v(z) + λknxny

W (z) +
ℏ2

2m∗(z)
k2nxny

)
.
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The derivative term is slightly more involved and is discussed in detail. We simplify the notation by defining
B(z) = ℏ2

2m∗(z) and dropping the subscripts n, λ and move on to compute

1√
L

∫ L/2

−L/2
dze−ikz

[
− d

dz

(
B(z)ϕ′(z)

)]
. (C.28)

An integration by parts, followed by inserting ϕ′(z) = i√
L

∑
k′ k

′ck′e
ik′z , gives

1√
L

∫
dzB(z)ϕ′(z)

d

dz
e−ikz = (C.29)

− i k√
L

∫
dz B(z)ϕ′(z)e−ikz =

k
∑
k′

k′ck′
1

L

∫
dzB(z)e−i(k−k

′)z =

k
∑
k′

B̃(k − k′)k′ck′

where

B̃(k − k′) = 1

L

∫ L/2

−L/2
dz e−i(k−k

′)z ℏ2

2m∗(z)
. (C.30)

In case effective mass terms are absent, m∗(z) = m, B̃(k − k′) is simply equal to ℏ2

2mδk,k′ and one recovers in
h̃k,k′ the usual kinetic term ℏ2

2mk
2. Summing the B̃ and Ũ terms, one finds the Hamiltonian matrix

h̃k,k′ = kB̃(k − k′)k′ + Ũ(k − k′). (C.31)

C.3 EDF response in the thermodynamic limit

The dynamic response of a large class of generalized Skyrme EDFs has been determined in the thermodynamic
limit analytically in Ref. [124] and references therein. We summarize the main formulas here for the case of
PNM and SNM. A slightly different notation is also introduced.

First, for later convenience we define Kbulk as

Kbulk =
∑
γ

cγγ(γ + 1)ργ−1. (C.32)

Then, the following W functions are defined as in Ref. [124], namely

W1(q)/g = Kbulk −
(
2C∆ρ +

Cτ

2

)
q2 (C.33)

W2/g = Cτ (C.34)

Wso/g = C∇J . (C.35)

W2 is a constant proportional to Cτ , while W1 mixes the Cτ and Cδ coefficients and carries a momentum
dependence through q2. Lastly, Wso is a spin-orbit constant.

Now, we introduce adimensional functions X and insert them into χ(q) (eq. (67), Ref. [124]). With k =
q/2qF , we define ρ̃ as ρ in SNM and 2ρ in PNM. With this trick, the expressions for SNM [260] and PNM [261]
are identical. The X functions are derived from the corresponding W functions using

X1 =
m∗c2

(ℏc)2
ρ̃
W1(q)

q2F
(C.36)

X2 =
m∗c2

(ℏc)2
ρ̃W2 (C.37)

Xso =
m∗c2

(ℏc)2
ρ̃Wso. (C.38)

We further elaborate on X1 by splitting it as the sum or a bulk and a momentum-dependent contributions:

X1(k) = Xbulk +Xsurf (k) (C.39)
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with

Xbulk = g
m∗c2

(ℏc)2
ρ̃

q2F
Kbulk (C.40)

Xsurf (k) = −4g
(
2C∆ρ +

Cτ

2

)
m∗c2

(ℏc)2
ρ̃k2. (C.41)

Finally, by using χ(q) = −ρ 2m−1(q)/A, with m−1 being the inverse energy-weighted sum rule of the strength
function, and collecting some constant factors, one ends up with following formula for the TL response of a
nuclear EDF:

χ(q) = −3m
∗c2

(ℏc)2
ρ

q2F
f(k) (C.42)[(

1 +
3

8
X2

)2

+
3

4

(
X1(k) +X2(1− k2)

)
f(k)

− 3

64
X2

2

(
2 +

26

3
k2 + (1− k2)f(k)

)
f(k)

− 3

8
k2f(k)X2

so

(
1 + 3(1− k2)f(k)

)]−1

.

with f(k) defined in Eq. (1.26).



APPENDIX D

Details on Self-consistent Green’s functions

We complement the exposition of SCGF theory (Sec. 4.1) and provide further details. Sec. D.1 reports the
derivation of the matrix eigenvalue formulation of the Dyson equation. In Sec. D.2 the Lanczos algorithm that
is employed to reduce the complexity of the diagonalization of the Dyson matrix is discussed. In Sec. D.3 the
formulas that define the corrections to the energy in second- and third-order many-body perturbation theory
are described. Sec. D.4 delves into some specific approximations of the ADC method, and highlights how these
are connected to MBPT and coupled-cluster. The strict relation between ADC(2) and MBPT(2) (Sec. D.4.1) is
first discussed. Then, an example is shown of how the ADC interaction matrices are related to MBPT at third
and higher orders (Sec. D.4.2). Finally, we further motivate that the ADC coupling matrices generate an infinite
sum of Feynman diagrams, and discuss how the ladder series for the ground state energy can be found either
in the coupled-cluster approach (using the CC ladder approximation) or using the ADC method. Sec. D.5
provides details on the algorithm employed to determine the Fermi energy. In Sec. D.6, we comment on how
the Gorkov approach generalized the Dyson formalism. Finally, in Sec. D.7 we summarize the parameters that
have to be set to run a SCGF calculation.

D.1 Dyson equation as an eigenvalue problem

In this Section, we derive the formulation of the Dyson equation as an energy-independent matrix eigenvalue
problem, following Refs. [81, 82]. As a first step, we select a pole ϵi of the dressed propagator, multiply the
Dyson equation (4.13) by (ω − ϵi) and take the limit ω −→ ϵi. ϵi is itself an unknown of the problem and will
be determined as an eigenvalue of a Hermitian matrix, together with the eigenvectors Zi. Then, one finds

Ziα
(
Ziβ
)∗

= g(0)αγ (ϵ
i)Σ

(⋆)
γδ (ϵ

i)Ziδ
(
Ziβ
)∗
. (D.1)(

Ziβ
)∗

simplifies from the two sides of the previous equality. The following step consists in reminding that

the unperturbed propagator is the Green’s function (in a mathematical sense) of ω − Ĥ0, i.e. g(0)(ω) = (ℏω1−
Ĥ(0))−1 or, making the matrix indexes explicit,(

ωδαβ − h(0)αβ
)
g
(0)
βγ (ω) = δαγ (D.2)

with h(0)αβ = tαβ + uαβ . Then, we now multiply Eq. (D.1) by ϵi − Ĥ0 and find

ϵiZiα = [h
(0)
αβ +Σ

(⋆)
αβ(ϵ

i)]Ziβ = [tαβ +Σ
(∞)
αβ + Σ̃αβ(ϵ

i)]Ziβ . (D.3)

The auxiliary vectors W and V , defined in Eqs. (4.49) and (4.50), are introduced In Eq. (D.3) with ω = ϵi, so
that we find

ϵiZiα =
(
tαβ +Σ

(∞)
αβ

)
Ziβ +M†

αrWi
r +NαsVis. (D.4)

Eqs. (D.4), (4.50) and (4.49) are now combined:

ϵiZi =
(
t+Σ(∞)

)
Zi +M†Wi +NVi, (D.5)

ϵiWi =MZi +
(
E> + C

)
Wi, (D.6)

ϵiVi = N†Zi +
(
E< +D

)
Vi. (D.7)

The matrix eigenvalue problem (4.51) follows immediately.
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D.2 Lanczos method

A crucial step in the solution of the Dyson problem is the use of the Lanczos method [26, 209, 262]. Due to
the large dimension of the Dyson matrix, a full diagonalization of Eq. (4.51) is extremely demanding, and
techniques for reducing the dimensionality of the problem are needed. The essence of the Lanczos algorithm
consists of performing an orthogonal projection onto the so-called Krylov subspace that maps a Hermitian
matrix H into a tridiagonal matrix T . The projection is realized iteratively and is rather efficient.

The Krylov subspace is defined as the vector space spanned by q1, Hq1, ...,H
nq1 Starting from an initial

vector q1, called pivot, the methods constructs an orthonormal basis {q1, ...,qn} for the Krylov space. The
theorem at the heart of the Lanczos algorithm is the following [262]: There exists a unitary matrix Q that maps
a Hermitian matrix H into a tridiagonal real symmetric matrix T , i.e. Ti,i+1 = Ti+1,i and Tij ̸= 0 only for
j = i− 1, i, i+ 1, such that

HQ = QT. (D.8)

The columns of the matrix Q are the orthonormal basis vectors qi. The Lanczos vectors and matrix elements
of T are obtained by the simple recursive formulas

Tij = q†
iHqj , (D.9)

Ti,i+1qi+1 = (H − Tii)qi − Ti,i−1qi−1. (D.10)

At each iteration, a new vector is constructed. To improve the numerical stability of the algorithm, it is sug-
gested to orthogonalize the basis, e.g. with the Gram-Schmidt procedure, at each iteration [263]. The tridi-
agonal matrix is similar to the original matrix H , thus it shares the same eigenvalues and eigenvectors. As
the number of iterations increases, T is slowly constructed, but crucially we do not need to determine the full
matrix T . Indeed, since the convergence is best for the extreme (smallest and largest) eigenvalues of H , infor-
mation on the spectrum can often be recovered with a limited number of iterations. Therefore, the Lanczos
algorithm effectively projects the initial matrix into a much smaller one, while keeping its essential features.
In methods such as the shell model [4], where the lowest-lying eigenvalues of the Hamiltonian are targeted,
the resulting small tridiagonal matrix is then diagonalized fully at a moderate cost. In Green’s function meth-
ods [26, 209], the interest of the Lanczos technique lies mainly in reducing the size of both the backward and
(mostly) forward energy denominators separately, as we discuss below. A key point is that, as we want to
conserve the structure of the self-energy close to the Fermi energy, the smallest eigenvalues of E> +C and the
largest ones of E< + D have to be reproduced. Luckily, the Lanczos method works well also for the highest
eigenvalues.

Note that a very large number of eigensolutions of the original Dyson matrix is needed to find a good rep-
resentation of the propagator. That is the reason why pole search algorithms are expensive, as all eigenvalues
must be searched one by one. Significant contributions to the sum rules come also from solutions far from the
Fermi surface. In contrast, a small number (of the order of tens or hundreds at most) of Lanczos vectors allows
to evaluate the energy and other observables accurately.

We expose the Lanczos method for the forward matrix E> + C, but identical steps hold for the backward
subspace. Using Eq. (D.8), we write

(E> + C)Q> = Q>T>, (D.11)

where T> is a triangular matrix of dimensionNfw×Nfw andQ> is the matrix of dimensionNfw×Nfw whose
columns are the Lanczos vectors. Consider now the ADC self-energy, Eq. (4.31), and insert the expression
(D.8). Then, for the forward term we find

M† [ω − (E> + C) + iη
]−1

M =M†Q>
[
ω − T> + iη

]−1
Q>,†M = (D.12)

M̃† [ω − T> + iη
]−1

M̃

having defined M̃ = Q>,†M . The matrix elements of M̃ are obtained, one per iteration, as follows:

M̃lα = (Q>,†)lrMrα = (Qrl)
∗Mrα = (ql)

∗
rMrα. (D.13)

This means that, for each state α, the l-th element of M̃ is given by the inner product between the l-th Lanczos
vector and M , namely

M̃α = (ql)
∗ ·Mα. (D.14)
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If we perform similar passages for the backward part and define Ñ = Q<,†N , we can write the self-energy
as

Σ(⋆)(ω) = −Uαβ +Σ(∞) + M̃† 1

ω1− T> + iη
M̃ + Ñ

1

ω1− T< − iη
Ñ† (D.15)

and the Dyson matrix as T +Σ(∞) M̃† Ñ

M̃ T>

Ñ† T<

 . (D.16)

All the steps performed so far are exact. The crucial point is that an excellent approximation of Eq. (D.16)
can be obtained by summing over only the first few Lanczos elements NLan. In most cases, a few hundred
Lanczos vectors at most are sufficient. For example, for the forward term we can write

Nfw∑
r,r′=1

M̃†
αr

( 1

ω1− T> + iη

)
rr′
M̃r′β ≈

NLan∑
l,l′=1

M̃†
αl

( 1

ω1− T> + iη

)
ll′
M̃l′β . (D.17)

Therefore, we can truncate all the matrices in Eq. (D.16), and the resulting Dyson matrix can be now diagonal-
ized fully due to its small dimension. A key property of the Lanczos algorithm is that the extremal (largest and
smallest) eigenvalues of the original matrix are best conserved by the method. This is of crucial importance,
since the physical content of the Green’s function concentrates on the poles close to the Fermi surface. Almost
completely occupied (unoccupied) states at very low (high) energy are of limited interest, while the effects of
the interactions are most prominent on the lowest-energy particle states and highest-energy hole states, i.e. the
largest and smallest eigenvalues of E> + C and E< +D, respectively, that are indeed well-reproduced by the
Lanczos algorithm.

Before concluding, we mention that a full diagonalization of the matrices E>+C and E<+D is not strictly
needed. Yet, the physical content of the ADC(3) self-energy is more transparent in its diagonal form. Also, this
is useful e.g. for plotting Σ(⋆)(ω) [82] or for evaluating the sum rules of App. D.4. Let us call Λ> = λrδrr′
(Λ< = λsδss′ ) the matrix of the eigenvalues of E> + C (E< +D) and U> (U<) the corresponding eigenvector
matrix, i.e.

(E> + C)U> = U>Λ>, (E< +D)U< = U<Λ<. (D.18)

Also, we introduce the unitary-transformed coupling matrices

M̄ = U>,†M, N̄ = U<N (D.19)

Reintroducing the s.p. indexes, the ADC(3) self-energy reads

Σ
(⋆)
αβ(ω) = −Uαβ +Σ

(∞)
αβ +

∑
r

M̄†
αrM̄rβ

ω − λr + iη
+
∑
s

N̄αsN̄
†
sβ

ω − λs − iη
. (D.20)

In this form, the Lehmann representation is easily recognized, and the meaning of the interaction matrices
can be understood. In ADC(2), where C and D vanish, the self-energy eigenvalues are simply the energies
of the three-quasi-particle (3qp) configurations r and s (Eqs. (4.47),(4.41)). In ADC(3), the poles of Σ(⋆) are
instead shifted from their unperturbed value as an effect of the interactions, that induce a mixing of the 3qp
configurations. Note that in numerical calculation, the E> + C and E< +D are always Lanczos-reduced first,
and then diagonalized.

D.3 Many-body perturbation theory at second and third order

In this Section, we discuss the correction to the total energy in many-body perturbation theory (MBPT) at
second and third order. Formulas can be found in Refs. [14, 125, 264].

The effect of 3N force is incorporated by using an effective 2B normal-ordered interaction [126, 265],

ṽαβ,γδ = ṽαβ,γδ +
∑
h

w̄αβh,γδh (D.21)

with h denoting the hole states. This formula can also be derived from Eq. (4.24) using a HF density matrix.
Terms that depend explicitly on the 3N interaction are usually neglected in MBPT, as they are computationally
expensive but expected to be small corrections.
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Figure D.1: MBPT diagram at second-order. The dotted lines represent the effective 2B interaction (D.21). The correspond-
ing expression is given in Eq. (D.23). Adapted from Ref. [14].

Figure D.2: MBPT diagrams at third order. The dotted lines represent the effective 2B interaction (D.21). From left to right,
the three diagrams propagate ph [Eq. (D.25)], pp [Eq. (D.26)] and hh [Eq. (D.27)] excitations. Adapted from Ref. [14].

The unperturbed doublet amplitudes t(0) are defined as [14, 126]

t
(0)
p1p2,h1h2

=
ṽp1p2,h1h2

ϵh1 + ϵh2 − ϵp1 − ϵp2
. (D.22)

Eq. (D.22) is also found specializing Eq. (4.35) to a HF density.
The well-known second-order correction E(2) reads

E(2) =
1

4

∑
p1p2
h1h2

t
(0)
p1p2,h1h2

ṽh1h2,p1p2 . (D.23)

MBPT(2) is typically evaluated at the beginning of SCGF or CC calculations, and t(0) is commonly used as an
initial guess for the CC amplitude. The corresponding diagram is shown in Fig. D.1. For completeness, for
this case only we report also the irreducible second-order contribution due to 3N forces [245]:

E(2,3N) =
1

36

∑
p1p2p3
h1h2h3

|w̃p1p2p3,h1h2h3
|2

ϵh1
+ ϵh2

+ ϵh3
− ϵp1 − ϵp2 − ϵp3

. (D.24)

Three diagrams contribute to the third order (Fig. D.2), which propagate particle-particle (pp), particle-hole
(ph) and hole-hole (hh) excitations, respectively [see Ref. [14], Eqs. (8.24)-(8.26)], and read

E(3,ph) =
∑
p1p2p3
h1h2h3

t
(0)∗
p1p2,h1h2

ṽp2h3,h1p3t
(0)
p1p3,h2h3

, (D.25)

E(3,pp) =
1

8

∑
p1p2p3p4
h1h2

t
(0)∗
p1p2,h1h2

ṽp1p2,p3p4t
(0)
p3p4,h1h2

, (D.26)

E(3,hh) =
1

8

∑
p1p2

h1h2h3h4

t
(0)
p1p2,h1h2

ṽh1h2,h3h4t
(0)∗
p1p2,h3h4

. (D.27)
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Figure D.3: Diagrammatic representation of the self-energy sum rules Eq. (D.30) (left) and (D.31) (right). The forward
(backward) self-energy, represented as a grey circle, is contracted with an unperturbed hole (particle) GF that propagates
backward-in-time (forward-in-time).

D.4 Connections between ADC, MBPT and coupled-cluster

In this Section, we discuss some specific cases of the ADC method and highlight the relations that exist between
the ADC self-energy on the one hand, and MBPT and coupled-cluster on the other hand. This analysis has a
twofold purpose, as it gives some intuition about how ADC-SCGF works and at the same time allows testing
the implementation of the SCGF code.

We consider the forward-in-time and backward-in-time parts of the ADC dynamical self-energy,

Σ> =M† 1

ℏω1− (E> + C) + iη
M, (D.28)

Σ< = N
1

ℏω1− (E< +D)− iη
N†. (D.29)

The following two sum rules are then introduced:

E> =
1

2

∫
dωΣ>αβ [g0](ω)S

h(0)
βα (ω), (D.30)

E< =
1

2

∫
dωΣ<αβ [g0](ω)S

p(0)
βα (ω), (D.31)

where Σ> and Σ< are evaluated as a functional of the unperturbed propagator g0, and Sp(0) and Sh(0) are
the particle and hole HF spectral functions. These formulas resemble the expression for the Kadanoff-Baym
functional Φ[g], see e.g. Refs. [84, 213, 214]. Diagramatically, they can be represented as closing a forward
(backward) self-energy term with an unperturbed hole (particle) GF. In the case of infinite matter, the self-
energy is diagonal and the spectral functions read

S
h(0)
βα (ω) =

∑
k

ϵkδ(ℏω − ϵk)δαβδαk, S
p(0)
βα (ω) =

∑
p

ϵpδ(ℏω − ϵp)δαβδαp, (D.32)

where ϵh and ϵp are the unperturbed s.p. energies. Thus, the sum rules (D.30) and (D.31) can be evaluated as
follows:

E> = +
1

2

∑
h

Σ>h (ϵh), (D.33)

E< = −1

2

∑
p

Σ<p (ϵp). (D.34)

Eqs. (D.31) and (D.30) are very useful as a test for the ADC method. We first choose what terms to in-
clude in the ADC matrices. Then, a direct evaluation of the sum rules or diagrammatic arguments produce
a set of contributions that can be evaluated numerically. Alternatively, they can be obtained from SCGF by
constructing the Dyson matrix from the unperturbed GF, then Lanczos-reducing it. If the value of the sum
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rules as extracted from this procedure matches the expected value, then we can gain confidence in both the
implementation of the ADC matrices and the correctness of the Lanczos algorithm.

Note that is convenient to diagonalize the self-energy, see Eq. (D.20) so that Eqs. (D.31) and (D.30) can be
quickly evaluated as follows:

E> =
1

2

∑
h

∑
r

∣∣∣M̃rh

∣∣∣2
ϵh − λr

, (D.35)

E< =
1

2

∑
p

∑
s

∣∣∣Ñps∣∣∣2
λs − ϵp

. (D.36)

We discuss three examples. First, in Sec. D.4.1 we consider the connection between ADC(2) and MBPT(2).
This is the simplest check on the ADC method. Then, in Sec. D.4.2 we include additional terms in the coupling
matrices and show that third-order and fourth-order MBPT diagrams are obtained. Finally, in Sec. D.4.3
we combine the first-order ADC(2) coupling matrix and include the ladder terms, Eqs. (4.39) and (4.45), in
the interaction matrices. This generates an infinite sum of contributions to the energy. We discuss how an
equivalent all-order resummation is obtained in the ladder approximation of the coupled-cluster method [130].

D.4.1 ADC(2) and MBPT(2)

In ADC(2), the structure of the Dyson matrix is simple, as C = D = 0 and theM andN matrices are just matrix
elements of the effective NN interaction (see Tab. 4.1). It is a simple exercise to show that

E>ADC(2) = E<ADC(2) = E(2), (D.37)

where E(2) is the MBPT(2) energy correction.
We show the steps for E>ADC(2). We start from Eq. (D.35), where λr = E>r are the energies of the un-

perturbed 2p1h states. As r = (n1 < n2, h1) and E>r = ϵn1
+ ϵn2

− ϵh1
, with ϵ being the HF energies, we

get

E>ADC(2) =
1

2

∑
h2r

∣∣∣M (1)
rh2

∣∣∣2
ϵh2
− E>r

=
1

4

∑
n1n2
h1h2

|ṽn1n2,h1h2
|2

ϵh1
+ ϵh2

− ϵn1
− ϵn2

, (D.38)

and, exploiting the antisymmetry of the matrix elements, we have made the replacement∑
n1<n2

−→ 1

2

∑
n1n2

. (D.39)

D.4.2 Connection with MBPT(3)

We consider now another limiting case. First of all, we set the coupling matrices to zero, C = D = 0. This
implies that the self-energy contains a finite number of diagrams, as we shall explicitly show. To further
simplify the study, we neglect the ring contribution to the coupling matrices and set M = M (1) +M (2,pp) and
N = N (1) +N (2,hh). For the forward-in-time part of the self-energy, we get

Σ>(ω) =M (1),† 1

ℏω1− E>
M (1) +M (1),† 1

ℏω1− E>
M (2,pp) (D.40)

+M (2,pp),† 1

ℏω1− E>
M (1) +M (2,pp),† 1

ℏω1− E>
M (2,pp).

We recognize the second-order term that already appears in ADC(2), two third-order contributions, and an
additional fourth-order term. The corresponding energy contribution is obtained from the self-energy with Eq.
(D.35). By directly plugging the expression of the interaction matrices (4.36) and (4.37), we find the following
identity:

E> = E(2) + 2E(3,hh) + E(4,pp−6h). (D.41)

E(2) is the MBPT(2) contribution. The second and third terms in Eq. (D.40) produce two identical contributions
to the energy, and it can shown that each of them coincides with the MBPT(3) diagram involving hh excitations,
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Eq. (D.27). Finally, one specific MBPT(4) term appears [see Ref. [125], Eq. (33)], namely a diagram that
propagates two particle and six hole intermediate states, that reads

E(4,pp−6h) =
1

16

∑
n1n2

h1h2h3h4h5h6

tn1,n2;h1,h2
ṽh1h2;h3,h4

1

Dh3,h4;n1,n2

ṽh3,h4;h5,h6
th5,h6;n1,n2

. (D.42)

We have introduced the notation th5,h6;n1,n2
= t∗n1,n2;h5,h6

and Dh1h2;n1n2
= ϵh1

+ ϵh2
− ϵn1

− ϵn2
. Thus, we

can evaluate the three terms in the r.h.s. directly, and compare to the result that we obtain computing the ADC
self-energy matrices. Note that Eq. (D.42) can be evaluated efficiently by breaking down the sums as follows:

E(4,pp−6h) =
1

16

∑
n1n2
h3h4

∑
h1,h2

tn1,n2;h1,h2
ṽh1h2;h3,h4

 1

Dh3,h4;n1,n2

∑
h5,h6

ṽh3,h4;h5,h6
th5,h6;n1,n2

 . (D.43)

Also, restricted sums (h1 < h2, n1 < n2 etc.) can be used thanks to the matrix elements being antisymmetrized.
With the same steps, an identity can be obtained also for the backward-in-time part of the self-energy. We

find

E< = E(2) + 2E(3,pp) + E(4,hh−6p), (D.44)

where E(3,pp) is the MBPT(3) pp ladder diagram, Eq. (D.26), and E(4,hh−6p) is the following MBPT(4) diagram
involving sums over two hole and six particle states:

E(4,hh−6p) =
1

16

∑
n1n2
h3h4

1

Dh1h2,n1n2

(∑
n3n4

ṽn1n2,n3n4
tn3n4,h1h2

)(∑
n5n6

th1h2,n5n6
ṽn5n6,n1n2

)
. (D.45)

Such identities allow to check that the M (2,pp) and N (2,hh) are implemented correctly.

D.4.3 Ladder approximations in coupled-cluster and ADC

There exists an interesting connection between the ADC(ld,2) method (Sec. 4.2) and the coupled-cluster lad-
der approximation (CC-Ladd) [14, 130]. Both schemes give rise to an infinite sum of ladder diagrams that
contribute to the ground-state energy.

The CC-Ladd scheme is defined by the following equations:

0 = ṽab,ij + (ϵa + ϵb − ϵi − ϵj)tab,ij +
1

2

∑
cd

ṽab,cdtcd,ij +
1

2

∑
kl

tab,klṽkl,ij , (D.46)

where a, b... and i, j... denote particle and hole states, respectively. ϵα are the s.p. HF energies and the ampli-
tude tab,ij is the unknown. We also introduce the short-hand notation Dab,ij = ϵi + ϵj − ϵa − ϵb. Rearranging
Eq. (D.46) as

tab,ij =
1

Dab,ij

(
ṽab,ij +

1

2

∑
cd

ṽab,cdtcd,ij +
1

2

∑
kl

tab,klṽkl,ij

)
(D.47)

immediately suggests an iterative method to solve these non-linear equations. Indeed, we start using the
unperturbed amplitude t(0), Eq. (D.22), in the r.h.s. of (D.47), which provides on the l.h.s. a new estimate for
the amplitude t. Then, we evaluate the CC energy correction contracting t with the 2N interaction [126],

E(CC) =
1

4

∑
ab,ij

tab,ij ṽij,ab, (D.48)

use the new t in Eq. (D.47), and so on, until the energy converges within a given tolerance.
The CC-Ladd approximation involves sums over intermediate pp and hh states. Two further simplifica-

tions are obtained including only either the hh or pp sums. These schemes are named CC hhLadd and CC
ppLadd, respectively. The ppLadd approximation is similar to the well-known equations for the G-matrix
[14]. From e.g. a diagrammatic analysis, it can be shown that these approximations generate for the energy
the infinite series of the ladder diagrams propagating either only forward or backward excitations [199]. See
also Fig. D.4, where the CC equations for the amplitude in the ppLadd approximations are represented in
diagrammatic form.
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Figure D.4: Diagrammatic representation of the coupled-cluster equations for the amplitude (double line) in the particle-
particle ladder approximation, see Eq. (D.46). Single straight lines denote the unperturbed amplitude t(0).

The ADC(ld,2) scheme, on the other hand, consists in using the ADC(2) coupling matrices M (1) and N (1),
which simply amount to the interaction matrix elements, see Eq. (4.36) and (4.42), and the ladder interaction
matrices C(pp) and D(hh). If we concentrate on the forward-in-time part of the self-energy and expand the
energy denominator, we find

Σ>(ω) = V † 1

ℏω1− E>
V + V † 1

ℏω1− E>
C

1

ℏω1− E>
V + ..., (D.49)

where V is a compact notation for the interaction matrix elements ṽn1n2,αk3 . Diagramatically, this is represented
by Fig. D.5. Again, a ladder expansion can be recognized, with an infinite sum of terms with an increasing
number of C insertions. If we close the forward self-energy diagram with an unperturbed fermion line, we
find exactly the ladder expansion of the energy that was generated by CC in the ppLadd approximation. A
similar argument holds for the hh case.

We conclude that the following identities must hold:

E>ADC(ld,2) = E
(CC)
ppLadd, (D.50)

E<ADC(ld,2) = E
(CC)
hhLadd. (D.51)

We have indeed verified that the previous equalities are satisfied to numerical accuracy.

Figure D.5: Diagrams contributing to the ADC(ld,2) forward-in-time self-energy, Eq. (D.49).

D.5 Determination of the chemical potential

In this Section, we describe the algorithm to determine the chemical potential in the Gorkov formalism (see
also Ref. [26]). The expectation value of the particle number, for each particle species i, is expressed as a
function of the chemical potential, Ai(µi) = ⟨Ψ0|Âi|Ψ0⟩, by

Ai(µi) =
∑
α

ραα =
∑
αq

∣∣V̄qα∣∣2, (D.52)

where Eq. (4.80) has been used. The amplitudes V̄qα are determined by solving the Gorkov equations (4.90) for
that value of the chemical potentials. The Fermi energy is determined by fulfilling the condition on the particle
number,

Ai(µi) = Ai, (D.53)
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with Ai being the number of fermions of species i.
To solve the constraint (D.53), we exploit the fact thatAi(µi) is an increasing function of the chemical poten-

tial. Thus, the iterative bisection algorithm is well-suited to the root-finding problem (D.53). The monotonicity
of A(µ), moreover, guarantees that a solution µ to the problem exists and is unique. For each particle species
separately, a lower and an upper limit for the chemical potential are chosen that bracket the target particle num-
ber, i.e. Ai(µ1) ≤ Ai ≤ Ai(µ2). Then, the number of particles is evaluated at the midpoint µm = (µ1 + µ2)/2.
If Ai(µm) > Ai, then we perform the update µ2 ←− µm; otherwise, µ1 ←− µm. A new iteration is then started
and so on until |Ai(µm)−Ai| ≤ ϵA for a given threshold ϵA. A few tens of iterations at most allow to repro-
duce the target particle number accurately. In infinite nuclear matter calculations, the procedure is relatively
inexpensive from a computational point of view, since it essentially involves only several diagonalizations of
the small Lanczos-reduced Gorkov matrix.

D.6 Relation between the Dyson and Gorkov propagators

In this Section, we further comment on the relation between the Dyson 1B GF and the normal propagator of
Gorkov theory. A Dyson GF can always be mapped to a Gorkov propagator. Given a Dyson GF with Nbk
and Nfw poles in the forward and backward parts, respectively, the corresponding Gorkov GF has Npoles =
Nbk +Nfw poles. The poles ωq in the Gorkov representation are found as

ℏωq = ϵ+n − µ (q = n), (D.54)

ℏωq = µ− ϵ−k (q = k), (D.55)

where µ is the chemical potential and n (k) label the quasi-particle (quasi-hole) Dyson states with excitation
energies ϵ+n (ϵ−k ). The amplitudes are related as follows:

Uqα = (Xnα )
∗
, V̄qα = 0 (q = n), (D.56)

Uqα = 0, V̄qα =
(
Ykα
)∗

(q = k). (D.57)

This implies, correctly, that the anomalous density (4.81) and the anomalous self-energy (4.87) vanish when a
Dyson propagator, built on top of an HF state, is used.

In this case, the Gorkov matrix (4.89) reduces to(
H− µ1 0

0 −
(
H† − µ1

))(Aq
B̄q
)

= ℏωq
(
Aq
B̄q
)
, (D.58)

that decouples into

HAq = (µ+ ℏωq)Aq, (D.59)
HBq = (µ− ℏωq)Bq. (D.60)

These are two copies of the Dyson eigenvalue problem (D.1) that contain the solution with energies above
(below) the Fermi surface. No coupling is induced, and we find again the Dyson solution. Therefore, if we
want to find a superfluid solution, it is essential to start with a propagator that generates a non-vanishing
anomalous part, i.e. there must exist values of q for each both Uqα and V̄qα are non-vanishing. A simple choice
is to start a sc0 cycle with a propagator with uniform amplitudes

Uqα = V̄qα =
1√

2Npoles
. (D.61)

D.7 Parameters of a SCGF calculation

This Section summarizes the main parameters that are set in SCGF calculations.
The model space is determined by the cutoff N2

max. We have found that N2
max = 25 is sufficient to obtain

well-converged results in all cases considered, see Sec. 5.3.
The following tolerances are set for the convergence of the energies per particle. The overall convergence of

a SCGF calculation is determined by the tolerance on OpRS energies, which we set to ϵOpRS = 10 keV. For the
sc0 iterations, we use ϵsc0,Gorkov = 10 keV in Gorkov-sc0. The Dyson-sc0 cycle is much faster and we typically
ask for convergence within ϵsc0,Gorkov = 1 keV. In most cases, 10 OpRS iterations or less are sufficient. We limit
the number of sc0 iterations to 20, although often about 10 are enough.

The number of Lanczos vectors is another parameter. We use 100 Lanczos iterations in both the forward
and backward self-energies, that are sufficient to approximate the solution at excellent accuracy.
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70M. Baldo, P. Schuck, and X. Viñas, Physics Letters B 663, 390–394 (2008).
71M. Baldo, L. M. Robledo, P. Schuck, and X. Viñas, Phys. Rev. C 87, 064305 (2013).
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2. A. Liardi, F. Marino, G. Colò, X. Roca-Maza, and E. Vigezzi, Phys. Rev. C 105, 034309 (2022)
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