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A Generalized Multicriteria Data Fitting Model with
Sparsity and Entropy

Abstract

We present a general data-fitting model which involves different and conflicting

criteria. Our model integrates an abstract data fitting term with the entropy and

the sparsity of the set of unknown parameters. This model can be analyzed by

means of Multiple Criteria Decision Making techniques. We then propose four

computational examples to validate the model in practical contexts. In the first

one, we apply this algorithm to the obtain a forecasting of the US GDP by means

of fractal operators. In the second and in the forth one, we use this approach to

the problem of handwritten digit recognition via logistic regression and neural

network. Finally in the fourth example we employ this methodology to forecast

the US GDP by means of a modified neural network-based model.
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1 Introduction

Multiple Criteria Decision Making (briefly MCDM) is a branch of Operations Re-

search and Decision Making which considers decision making models involving

multiple and, in general, conflicting criteria such as cost, satisfaction, profit, ac-

curacy, quality and many others. Decision making problems with multiple criteria

are more complex to be analyzed but, however, they lead to more informed and

better decisions. Since the early 1960s, the number of authors who have provided

advances in this field has been growingly and a variety of approaches and meth-

ods have been developed for their application in an array of disciplines, ranging

from economics to engineering, from finance to management, and many others.

In this paper we propose a general data-fitting model which involves three differ-

ent criteria, namely the data fitting term, the entropy, and the sparsity. The model

can be analyzed using different MCDM techniques: however, in this paper, for

our computational studies we focus on the scalarization approach which allows

to reduce the model complexity by taking into account a weighted combination

of the different criteria. The paper is organized as follows: Section 2 recalls the

basic formulation of an MCDM model. Sections 3.1 3.2 3.3 present the three cri-

teria involved in our model formulation, while 3 is devoded to the MCDM model

presentation. shows several numerical applications to different areas including

fractal image compression using IFSM, handwritten digit recognition via logistic

regression and neural network.
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2 Basics on Multiple Criteria Decision Making

The aim of this section is to recall some basic facts in Multiple Criteria Decision

Making (MCDM). Given a vector-valued map J : X ⊂ Rn → Rp, any finite-

dimensional MCDM problem can be written:

max
x∈X

J(x). (1)

As usual, here we suppose that Rp is ordered by the Pareto cone Rp
+. A point x ∈ X

is said to be Pareto optimal or efficient if J(x) is one of the maximal elements of

the set of achievable values in J(X). Thus a point x is Pareto optimal if it is feasible

and, for any possible x′ ∈ X, J(x) ≤Rp
+

J(x′) implies x = x′. In a more synthetic

way, a point x ∈ X is said to be Pareto optimal if (J(x) + Rp
+) ∩ J(X) = {J(x)}.

Among the different techniques to reduce an MCDM problem to a single cri-

terion model there is, for sure, the scalarization technique. Using a scalarization

technique, a multiple objective model can be reduced to a single criterion problem

by summing up all criteria with different weights. The weights in front of each

criterion express the relative importance of that criterion for the Decision Maker.

By using this approach, more precisely, by scalarization, an MOP model boils

down to:

max
x∈X

p∑
i=1

ηiJi(x), (2)

where β is a vector taking values in the interior of Rp
+, namely β ∈ int(Rp

+). The

equivalence between the scalarized problem and the original MOP problem is

complete if the Ji are linear and, by varying ηi, it is possible to obtain different
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Pareto optimal points. In the other cases linear scalarization provides only partial

results. Other scalarization methods can be found in the literature that can also be

used for non-convex problems. Scalarization can also be applied to problems in

which the ordering cone is different than the Pareto one. In this case, one has to

rely on the elements of the dual cone to scalarize the multicriteria problem.

3 The MCDM Model

The model we are interested in involves the following criteria:

• the Data Fitting Error DFE which describes the accuracy of the approxima-

tion;

• the Entropy ENT which models the amount of information carried by the

parameters’ model;

• the Sparsity S P which describes the complexity of the solution in terms of

number of elements in the basis to be utilized to approximate the target.

It is worth noticing that these three criteria are, in general, conflicting. It is

clear that a reduction of the sparsity criterion S P, i.e. a reduction of the number

of non-zero parameters involved in the model, will negatively affect the DFE as

fewer elements in the basis are available to construct the solution. To observe that

the Entropy ENT and the Sparsity S P criteria are also conflicting, let us take a

simple example where X is a random variable with only two possible outcomes x1

and x2 with probabilities p and 1 − p, respectively. It is clear that if p increases,

and then 1 − p decreases, x1 gets more and more likely to happen. This would
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produce a decrement in ENT (X) while the sparsity of the vector (x1, x2) would

increase (see also [15] for a nice discussion on the importance of the concepts of

entropy and sparsity). The following subsections describe the three criteria with

more details.

3.1 The Data Fitting Term

Given two normed spaces X and Y and a compact set of parameters Λ ⊂ Rp, and

a set of input vectors xi and labels yi, i = 1...N, consider a black box function

f : X × Λ→ Y consider the following data fitting/minimization problem:

min
λ∈Λ

DFE(λ) :=
n∑

i=1

d( f (xi, λ), yi) (3)

As we can see from this formulation the problem is reduced to the minimization

of the function DFE(λ) over the parameters’ space Λ. Depending on the specific

function form of f , the function DFE can show different mathematical properties.

3.2 The Entropy Term

The concept of entropy, as it is now used in information theory, was developed

by C.E. Shannon [17]. Over the years it has been used in different areas and ap-

plications in various scientific disciplines. In his article, Shannon introduces the

concept of information of a discrete random variable with no memory as a func-

tional that quantifies the uncertainty of a random variable. The concept of entropy

describes the level of information associated with an event. More precisely, the

definition of Shannon’s entropy [17, 7] satisfies the following properties:
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• The measure is continuous and by changing the value of one of the proba-

bilities by a very small amount should only produce a small change of the

entropy;

• If all the outcomes are equally likely, then entropy should be maximal.

• If a certain outcome is a certainty, then the entropy should be zero.

• The amount of entropy should be the same independently of how the process

is regarded as being divided into parts.

According to these desiderata, Shannon defines the entropy in terms of a dis-

crete random variable X, with possible outcomes x1, ..., xn as:

ENT (X) = −

n∑
i=1

p(xi) ln(p(xi)) (4)

For our purposes, this definition needs to be adapted to deal with a set of param-

eters, that can take both positive and negative values. For a set of parameters

λ = {λ1, λ2, ..., λn} the notion of entropy is:

ENT (λ) = −

n∑
1

|λi|

λT
ln
|λi|

λT
(5)

where λT =
∑

i |λi|. In the sequel, rather than maximizing the entropy term - that

represents the total amount of information associated with that particular combi-

nation of parameters’ values - we will consider the minimization of its opposite,

also known as neg-entropy. This criterion will be included in the multiple criteria

model illustrated in the following Section 3.
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3.3 The Sparsity Term

In literature the notion of sparsity has been widely used to reduce the complexity

of a model by taking into in consideration only those parameters whose values

have major impact on the solution. In other words, by adding this term we wish

to determine solutions that are “simple”, or more precisely sparse. We say that a

real vector x in Rn is sparse, when most of the entries of x vanish. We also say that

a vector x is s-sparse if it has at most s nonzero entries. This is equivalent to say

that the `0 pseudonorm, or counting ‘norm’, defined as

‖λ‖0 = #{i : λi , 0} (6)

is at most s. The `0-pseudonorm is a strict sparsity measure, and most optimization

problems based on it are combinatorial in nature, and hence in general NP-hard.

To overcome these difficulties, it is common to replace the function with relaxed

variants or smooth approximations that measure and induce sparsity. One possible

variant is to use the `1 norm instead, which is a convex surrogate for the `0, defined

as

‖λ‖1 =

n∑
i=1

|λi|. (7)

It is also the best surrogate in the sense that the 1 ball is the smallest convex body

containing all 1-sparse objects of the form ±ei (see [5]). Another possibility is to

replace the `0 pseudonorm with some approximation, as for instance

‖λ‖∗ =

n∑
i=1

max{1 − e−αλi , 1 − eαλi}, (8)

8



‖λ‖∗∗ =

n∑
i=1

[max{1 − e−αλi , 1 − eαλi}]2, (9)

or

‖λ‖∗∗∗ =

n∑
i=1

(
1 − e−αλ

2
i

)
(10)

for a given α > 0. It is worth noticing that ‖λ‖∗∗ is a C1,1 or LC1 function (contin-

uous with Lipschitz gradient).

4 Model Implementation and Numerical Experiments

More in details, the MCDM model we are considering includes the following

criteria to be optimized simultaneously:

• DFE(λ), the Data Fitting Term to be minimized over λ ∈ Λ;

• ENT (λ) is the Entropy, to be maximized over λ ∈ Λ;

• S P(λ) is the Sparsity, to be minimized over λ ∈ Λ.

By introduction the neg-entropy −ENT , the multiple criteria model can be

formulated as a minimization program (now all criteria have to be minimized) as

follows:

min
λ∈Λ

(DFE(λ),−ENT (λ), S P(λ)). (11)

As discussed in the previous section, this MCDM model can be transformed into

a single criterion one by means, for instance, of scalarization techniques. More

practically, one can construct the following single-criterion model: We scalarize
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the model by introducing three different positive weights, namely η1, η2, η3. The

scalarized model boils down to:

min
λ∈Λ

η1DFE(λ) − η2ENT (λ) + η3S P(λ). (12)

By varying the parameters’ combinations, one can determine different Pareto op-

timal solutions. In the following sections we discuss four relevant applications of

this model to different contexts.

4.1 Fractal Image Compression with IFSM

In fractal image coding based on Generalized Fractal Transforms (GFT), one

seeks to approximate a target image or signal by the fixed point of a contractive

fractal transform operator ([1],[2],[3],[8],[11]).

The usual formulation involves a fixed set of geometric contraction maps along

with a corresponding set of greyscale maps. The inverse problem, which involves

the determination of the best greyscale map parameters for a given target image,

is based on the so-called “Collage Theorem,” a simple consequence of Banach’s

fixed point theorem. Another consequence of Banach’s fixed point result is that

the approximation of the target image or signal can be generated by iteration of

the fractal transform.

In [9] and [10], the authors showed that one can find an iterated function sys-

tem with greyscale maps (IFSM) to approximate any target signal or image with

arbitrary precision, and they provided a suboptimal but systematic approach for

doing so.

In this numerical example we focus on the method of iterated function systems
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with greyscale maps (IFSM) ([9]) which can be used to approximate a given ele-

ment u of L2([0, 1]). We extend the approach developed in [9] and [14] by adding

the entropy and the sparsity criteria to the collage error minimization.

We consider the case in which u : [0, 1]→ [0, 1] and the space

X =
{
u : [0, 1]→ [0, 1], u ∈ L2[0, 1]

}
. (13)

The recall that the main ingredients of an N-map IFSM on X are

1. a set of N contractive mappings w = {w1,w2, . . . ,wN}, wi(x) : [0, 1] →

[0, 1], most often affine in form:

wi(x) = six + ai, 0 ≤ si < 1, i = 1, 2, . . . ,N; (14)

2. a set of associated functions—the greyscale maps—φ = {φ1, φ2, . . . , φN},

φi : R→ R. Affine maps are usually employed:

φi(t) = αit + βi, (15)

with the conditions

αi, βi ∈ [0, 1] (16)

and

0 ≤
N∑

i=1

αi + βi < 1. (17)

Associated with the N-map IFSM (w, φ) is the fractal transform operator T , the
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action of which on a function u ∈ X is given by

(Tu)(x) =

N∑
i=1

′φi(u(w−1
i (x))), (18)

where the prime means that the sum operates on all those terms for which w−1
i is

defined. It is easy to prove ([9]) that T : X → X and for any u, v ∈ X we have

d2(Tu,Tv) ≤ Cd2(u, v) (19)

where

C =

N∑
i=1

s
1
2
i αi. (20)

When C < 1, then T is contractive on X, implying the existence of a unique fixed

point ū ∈ X such that ū = Tū.

The inverse problem associated with IFSM can, in principle, be solved to arbi-

trary accuracy, using a procedure defined in Forte and Vrscay (1995). The squared

collage distance function associated with an N-map IFSM may be written as a

quadratic form,

∆2
N(z) = zT Az + bT z + c, (21)

where z = (α1, . . . , αN , β1, . . . , βN). The maps wk are chosen from an infinite set W

of fixed affine contraction maps on [0, 1] which satisfy the following assumptions.

We say that a set of maps w1,w2, ...,wN generates a dense and nonoverlapping

family A of subsets of I (with respect to the Lebesgue measure m) if for every

ε > 0 andevery B ⊂ I there exists a finite set of integers ik, ik ≥ 1, 1 ≤ k ≤ N, such
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that

1. A = ∪N
k=1wik(I) ⊂ B,

2. m(B\A) < ε, and

3. m(wik(I) ∩ wil(I)) = 0 if k , l,

where m denotes Lebesgue measure. If we define by WN the set

WN = {w1, . . .wN} (22)

be the N truncations of w. Let ΦN = {φ1, . . . , φN} be the N-vector of affine grey

level maps. Let Ω be a compact subset of set R2N which describes the set of all

possible constraints and let zN be the solution of the previous quadratic optimiza-

tion problem over Ω. Let ∆2
N,min = ∆2

N(zN). In [9] it was proved that ∆2
N,min → 0

when N → ∞. Using the Collage Theorem, the inverse problem may be solved to

arbitrary accuracy. A practical choice for the contraction maps w on X = [0, 1] is

wi j(x) = 2−i(x + j − 1), i = 1, 2, . . . ,M, j = 1, 2, . . . , 2i,

where

N =

M∑
i=1

2i.

The following examples illustrate that adding small-weighted entropy and sparsity

constraints can lead to a better fixed point approximation.
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For j = 1, . . . ,N, we introduce the family of IFS maps


w j

i (x) = 1
2i x + ( j − 1) 1

2i

φ
j
i (t) = α

j
i t + β

j
i

, i = 1, . . . , 2 j,

which for each j defines an associated IFSM map

(T ju)(x) =

2 j∑
i=1

′φ
j
i (u((w j

i )
−1(x))).

The map T j assembles 2 j shrunken and adjusted copies of u(x), each supported

on an interval of width 1
2 j , of the function u. For fixed j, the domains of the maps

w j
i only overlap at the endpoints of their domains. On the other hand, any point

x ∈ [0, 1] that is not a multiple of 1
2m for some m appears in the domain of exactly

N of the maps in the family, once per member of the family, offering a sort of map

redundancy. We define the combined (contractive) map

(Tu)(x) =

N∑
j=1

(T ju)(x),

and consider the associated squared collage distance DFE(z), where z is the vector

of parameters α j
i and β j

i . In this example, we explore the scalarized optimization

problem (12).

We use the quarterly GDP data for the United States, freely available online at

https://datahub.io/core/gdp-usdata. The dataset runs from July 1, 1947,

through to April 4, 2017, for a total of 282 data values. Following the construction

presented in the previous discussion, it is convenient to work with 256 data values,

so we work with most recent 256 data values, the interpolation of which is pre-
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(a) (b)

Figure 1: (a) Quarterly GDP data for the United States, (b) rescaled to the function
u on [0, 1]2.

sented graphically as the function u(t) in Figure 1(a). The theoretical formulation

requires that u : [0, 1] → [0, 1], so we map the 256 quarterly measurement dates

to the values t = i
256 , i = 0, . . . , 255, and, letting we scale the GDP range values

of u, dividing by 1.1 times maximal GDP value in the data set. The result is the

rescaled graph in Figure 1(b). We set M = 5, which means we have a total of 124

parameters in the optimization problem. We use the nonlinear program solver in

Maplesoft’s Maple to solve (12).

Table 1 shows the results for the example. The table reports the values of

η2 and η3, the entropy and sparsity weights, respectively; the values of the collage

distance (DFE(z)); the value of the entropy (ENT (z)); the sparsity outcome, given

as the number of nonzero parameter values (S P(z)); and, finally, ‖v − ū‖2, the L2

distance between the target u(t) and the resulting fixed point approximation ū =

Tū. Although values in the table are presented with various numbers of decimal

places, the computations were run with 100 digits of floating point precision.

The first row of Table 1 gives the results without any entropy or sparsity con-

straints: the resulting solution uses 74 parameters. In the next six rows, the en-
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tropy constraint enters the objective function. The middle four of these six rows

show for which the L2 error in the fixed point approximation improves thanks to

the addition of this tiny bit of entropy. Many values of η2 ∈ [6.58 × 10−6, 7.21 ×

10−6] induce a fixed point with such an improvement, but there also values of η2

in this interval for which the fixed point approximation error worsens compared

to the case η2 = 0. Notice, as well, that the value of ENT (z) increases when

η2 , 0, as we would expect, and, interestingly, the number of nonzero parameters

also increases. The next seven rows in the Table explore the effect of introducing

η2 (×10−6) η3 (×10−7) DFE(z) ENT (z) S P(z) ‖v − ū‖2
0 0 0.1594678 17.26794 74 0.00010417211319
6.57 0 0.1595238 27.41607 83 0.00010417305383
6.58 0 0.1595269 27.42275 83 0.00010416094993
6.69 0 0.1595286 27.42698 84 0.00010416223506
7.00 0 0.1595336 27.43881 84 0.00010416601317
7.21 0 0.1595371 27.44676 84 0.00010416870439
7.22 0 0.1595358 27.44398 84 0.00010419814398
0 0.11 0.1594678 13.50961 53 0.00010417205581
0 0.22 0.1594678 13.46549 53 0.00010417218565
0 1.54 0.1594682 13.07825 51 0.00010416990711
0 1.98 0.1594685 13.26600 50 0.00010416168674
0 2.42 0.1594687 13.13613 50 0.00010416639150
0 3.74 0.1594701 12.68110 49 0.00010416826871
0 22.80 0.1595283 9.59571 35 0.00010418056198
7.00 1.54 0.1595240 27.41526 83 0.00010415433247
6.69 1.98 0.1595171 27.39696 83 0.00010414801427

Table 1: Results of the ISFM Example, using United States GDP data.

sparsity into the objective function, with no entropy. In all seven rows, we see a

meaningful decrease in the number of nonzero parameters compared to the case

when the sparsity weight, η3, is zero. When η3 increases, we see that the number

of nonzero parameters decreases, and, despite this decrease, we see a number of

16



Figure 2: (top-to-bottom,left-to-right) Iterations 2, 4, 6 and 10 of the IFSM oper-
ator corresponding to the final row of Table 1.

η3 values that give an improvement in the fixed point approximation, compared to

row one. For illustration, the final of these seven rows, shows that we can drive the

number of nonzero parameters to below half the corresponding number in Table 1.

The final two rows of the Table show that combining a small amount of entropy

and sparsity in the objective function can generate parameter values that induces

an additional decrease in the fixed point approximation error.

Figure 2 displays some iterates of the IFSM operator T corresponding to the

final row of the table.
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4.2 Handwritten Digit Recognition via Logistic Regression

In this example we apply the theoretical framework described above to a handwrit-

ten digit recognition system. We use a logistic regression model for a one-vs-all

classification problem. The prediction will be the label that has the largest out-

put among all the possible one-vs-all classifications, that is the largest value of

the hypothesis function. We build on a widely known and freely available exam-

ple of logistic regression discussed in Andrew Ng course on Machine Learning at

Coursera. We use a subset of the MNIST database of handwritten digits. 1 Some

examples of the digits stored in the database are represented in Figure 3: each of

the handwritten digits consists of a 20x20 pixels grayscale picture.

Figure 3: Handwritten digits from the MNIST database

In the remainder of this section we implement a data fitting model based on a

scalarization of the problem 11, following the approach of Model 1. For the ac-

curacy of the approximation we use a standard logistic regression cost function:

DFE(λ) =
1
m

m∑
i=1

[−y(i) log(hλ(x(i))) −

(1 − y(i)) log(1 − hλ(x(i)))] (23)
1Available at http://yann.lecun.com/exdb/mnist/
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where m is the number of training examples, x(i) corresponds to the ith example’s

vector of features and y(i) to the associated label (with y = 0..9). The function

hλ(x(i) embodies the usual hypothesis of the logistic regression:

hλ(x(i)) =
1

1 + eλT x(i) (24)

In our case study we have m = 5000 training examples, while the dimension of the

feature vector x(i) is n = 400 (20x20 pixels), to which the bias term xi
0 is added.

We use the definition of the entropy in 5:

ENT (λ) = −

n∑
j=1

|λ j|

λT
ln
|λ j|

λT
(25)

where

λT =

n∑
j=1

|λ j| (26)

It is important to notice that we have excluded the coefficient of the bias term λ0

from the calculation of the entropy, mimicking the procedure applied to regular-

ization terms. In defining the sparsity contribution to the objective function 11,

we have used the last option of section 3.3, desribed in equation10:

S P(λ) =

n∑
i=1

(
1 − e−αλ

2
i

)
(27)

The sparsity measure does not take into account λ0, the contribution associated to

the bias term xi
0. The training phase is made of ten one-vs-all classifications.

The results are shown in Table 2 for different values of the relative weights η2

and η3 . The Accuracy refers to the percentage of correct predictions in the training
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η2 η3 ENT (λ) S P(λ)/n Accuracy
0 0 78.449521 0.487567 94.78
1 × 10−6 0 79.148402 0.502829 94.92
5 × 10−3 0 81.077755 0.504458 94.94
1 × 10−2 0 82.271153 0.515114 95.10
1 × 10−1 0 97.071693 0.595306 94.98
0 5 × 10−3 77.499648 0.469070 94.62
0 5 × 10−2 71.823349 0.458263 94.80
0 1 × 10−1 66.323675 0.396736 94.50
1 × 10−2 1 × 10−6 83.078820 0.524375 95.12
1 × 10−2 1.001 × 10−6 82.879650 0.536819 95.20

Table 2: ENT (λ), S P(λ)/n and Accuracy on the training set.

set, while S P(λ)/n refers to the average of the sparsity measure 10 taken over the

ten one-vs-all classifications and divided by n, so to be comparable across different

machine learning algorithms. The parameter α in 10 has been set to α = 10.

An inspection of Table 2 corroborates the conclusions of the previous section.

With respect to the benchmark scenario (η2 = 0 and η3 = 0), a carefully chosen

entropy contribution ameliorates the accuracy, as shown in rows 2 to 5. The same

applies after the introduction of the sparsity term: it is possible to slightly increase

the accuracy while reducing S P(λ)/n, as shown in rows 6 to 8. The last two

rows shows that an additional gain in accuracy is attainable with a combination of

entropy and sparsity corrections.

4.3 Handwritten digits recognition with Neural Network

In this section we propose an example of handwritten digit recognition via a neural

network. We use the same database of the previous section and we build on the

same widely known Coursera’s example. The network’s architecture consists of

20



three layers , as shown in Figure 4: one input layer, one hidden layer and the

output layer. The input layers has n = 400 units plus the bias term, the hidden

layer has H = 10 units plus bias, the output layer has K = 10 units, corresponding

to the 10 digits (labels). We proceed as in Model 1. The cost function is:

Figure 4:

DFE(λ) =
1
m

m∑
i=1

K∑
k=1

[−y(i)
k log((hλ(x(i)))k) −

(1 − y(i)
k ) log(1 − (hλ(x(i)))k)] (28)

where the hypothesis (hλ(x(i)))k is obtained through forward propagation: each

unit or perceptron in the second and third layer processes the linear combination

of its incoming signals via a sigmoid function. The index k = 1..K represent the

kth label. As for the entropy, we follow the definition given in the previous section,

eq. 25, adapted to the network architecture:

ENT (λ) = −

H∑
j=1

n∑
i=1

∣∣∣λ(1)
ji

∣∣∣
λT

ln

∣∣∣λ(1)
ji

∣∣∣
λT

+ (29)

−

K∑
k=1

H∑
j=1

∣∣∣λ(2)
k j

∣∣∣
λT

ln

∣∣∣λ(2)
k j

∣∣∣
λT

(30)
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where

λT = max
(
λ(1)

T , λ(2)
T

)
, (31)

with

λ(1)
T = max

∣∣∣λ(1)
ji

∣∣∣ (32)

λ(2)
T = max

∣∣∣λ(2)
k j

∣∣∣ (33)

The matrices λ(1) and λ(2) represent the forward propagation from layer 1 to layer

2 and from layer 2 to layer 3 respectively. The bias terms, corresponding to the

indeces i = 0 and j = 0, have been excluded from the calculations.The sparsity

measure follows the definition in 10:

S P(λ) =

H∑
j=1

n∑
i=1

(
1 − e−α

(
λ(1)

ji

)2
)

+

K∑
k=1

H∑
j=1

(
1 − e−α

(
λ(2)

k j

)2
)

(34)

The results of the training are shown in Table 3 for different combinations of the

weights η2 and η3.

η2 η3 ENT (λ) S P(λ)/n Accuracy
0 0 461.1917 0.4766 97.88
1 × 10−6 0 463.0571 0.4832 97.94
0 1 × 10−4 455.4616 0.4759 97.90
1 × 10−6 1 × 10−4 467.2392 0.5091 98.38

Table 3: ENT (λ), S P(λ)/n and Accuracy on the training set.

The conclusions are consistent with those obtained in the logistic regression
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experiment. The entropy contribution improves on the benchmark scenario (row

2 wrt row 1) in terms off accuracy. S P(λ)/n increases slightly the accuracy while

reducing the number of nonzero elements. A carefully crafted combination of

ENT and S P creates an additional increase in accuracy.

4.4 Time Series Forecasting with a Deep Neural Network

The model is a deep neural network consisting of 32 input neurons (1 for bias,

30 for historical data points, 1 for current data point), a hidden layer containing

8 fully connected neurons, and a single output neuron. The network architecture

is one variation of Figure 4. The input layer and hidden layer use a rectified

linear unit activation function while the output neuron uses the Adam optimizer

with a mean squared error cost function, DFE(w) = L(y(w) − y∗), where y(w) is

the predicted value, w is the network weights, and y∗ is the actual data value, as

the base case cost function. The use of a rectified linear unit (ReLU) activation

function, defined by f (x) = max{x, 0}, helps the network to converge quickly.

The Adam optimization algorithm [12] is a modified version of the stochastic

gradient descent method that is computationally efficient and has little memory

requirement.

As in Section 4.1, we use the quarterly GDP data from the United States,

starting from 1947. The network forecasts the GDP based on the previous 30 data

points; for example, 2015 Q3 GDP would be predicted using data points from

2008 Q1 through 2015 Q2. The training data is made up of 70% of the complete

dataset and the remaining 30% is test data. The model is trained over 100 epochs

with batch sizes of 30. For clarity, for each epoch the model trains the network,
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Figure 5: Training results for the base case: Time steps 15-20 correspond to the
recession in 2008-09.

adjusting values of the weights using 30 of the data points; the following epoch

will contain 30 different data points from which to train; and this procedure occurs

100 times.

When looking at the testing data in Figure 1(a), we see a dip in the value of

GDP in the years of 2008 and 2009, during the great recession. We expect that

this dip in the data will cause issues for the training of the network and, hence, the

predictions it provides. Sure enough, the trained network in the dase case, with

cost function DFE(w), produces a prediction which begins to have errors around

the years of 2008-09. The predictions instead continuing the trend of a steady

increase seen in the training data in prior years. See Figure 5.

As discussed in Section 3.3, the `1 norm can serve as a proxy sparsity term,

S P(w) = `1(w). Using η3 = 0.0001, we see in Figure 6(a) that we have improved

upon the error found in the base case of Figure 5. Indeed, around 2014 (time

step 40), the network’s predictions lie very close to the actual values. The results

with η3 = 0.1, in Figure 6(b), show a slightly poorer match between prediction

and actual results at the earlier time steps, but a modest improvement over the

base case for later time steps. To give a sense of the speed of convergence of the

network, we also present graphs of the loss or cost function versus epoch for these
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(a) (b)

(c) (d)

Figure 6: Training results with η2 = 0, S P(w) = `1(w), and (a) η3 = 0.0001 and
(b) η3 = 0.1. The corresponding cost function graphs are in (c) and (d).

two cases in Figure 6(c)-(d). No entropy term is introduce as yet (η2 = 0).

We note as well that the `2 norm can serve as a proxy sparsity term, S P(w) =

`2(w). For comparison purposes, we consider the same cases we did for the `1

norm, η3 = 0.0001 and η3 = 0.1, and present the corresponding graphs in Figure 7.

Although the addition of this term improves the predictions compared to the base

case, the improvement is less than the corresponding case with S P(w) = `1(w).

We introduce an entropy term ENT (w) of the form in (30). In the earlier

exploration, we never saw a network weight grow beyond the value of 10, so

we set λT = 10 to hopefully ensure that the terms |wi|/λT < 1. In the absence

of a sparsity constraint (η3 = 0), we consider η2 = 0.001 to find that the error

improves compared to the base case. In particular, around time step 30, there is a

notable decrease in the error. The situation improves modestly when we increase
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(a) (b)

(c) (d)

Figure 7: Training results with η2 = 0, S P(w) = `1(w), and (a) η3 = 0.0001 and
(b) η3 = 0.1. The corresponding cost function graphs are in (c) and (d).

the coefficient to η2 = 0.1. See Figure 8(a)-(b).

Finally, we introduce both entropy and sparsity terms into the formulation. In

this case, we use S P(w) = `1(w)+`2(w). Figure 9 presents the predictions for four

values of (η2, η3). In general, the error obtained by including the two constraints

is lower than the corresponding cases of the individual constraints with the same

ηi value. The choices (η2, η3) = (0.001, 0.0001) and (η2, η3) = (0.1, 0.1) produce

very good results.

Once again, we observe that adding a “small amount” of sparsity or entropy to

the base objective function gives a noticeable improvement in the function of the

network, and adding appropriate amounts of both types of constraints can lead to

a further improvement.
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(a) (b)

Figure 8: Training results with η3 = 0, ENT (w) term, and (a) η2 = 0.001 and (b)
η2 = 0.1.
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