
ARTICLE

Single-cell transcriptomics reveals multi-step
adaptations to endocrine therapy
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Resistant tumours are thought to arise from the action of Darwinian selection on genetically

heterogenous cancer cell populations. However, simple clonal selection is inadequate to

describe the late relapses often characterising luminal breast cancers treated with endocrine

therapy (ET), suggesting a more complex interplay between genetic and non-genetic factors.

Here, we dissect the contributions of clonal genetic diversity and transcriptional plasticity

during the early and late phases of ET at single-cell resolution. Using single-cell RNA-

sequencing and imaging we disentangle the transcriptional variability of plastic cells and

define a rare subpopulation of pre-adapted (PA) cells which undergoes further transcriptomic

reprogramming and copy number changes to acquire full resistance. We find evidence for

sub-clonal expression of a PA signature in primary tumours and for dominant expression in

clustered circulating tumour cells. We propose a multi-step model for ET resistance devel-

opment and advocate the use of stage-specific biomarkers.
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The outgrowth of primary luminal breast cancer (BCa) is
driven by non-mutated oestrogen receptor α (ERα), with
all patients receiving adjuvant endocrine therapy (ET) after

curative surgery. This strategy significantly delays clinical relapse
but does not abrogate it completely, as about ~3% of the patients
each year come back with overt relapse, inevitably leading to
further metastatic development1–3. The frequency of relapse
remains constant up to 20 years after surgery making ET resis-
tance the most critical clinical problem for the management of
these patients4. The processes of adaptation and selection leading
to late relapse are currently poorly understood, and should be
interpreted in light of adjuvant therapies.

Recent developments in next-generation sequencing (NGS)
revealed that tumours are genetically heterogeneous5–7, and in
some cancer types, heterogeneity correlates with the likelihood of
recurrence and development of drug resistance8,9. In some
instances, targeted therapy can lead to the rapid expansion of
genetically defined pre-existent resistant cells that can be
explained by simple models of clonal selection10–12. However,
this same model is mostly inconsistent with the decade-long
latency observed in luminal BCa. In addition, despite recent
studies showed that the majority of the genetic lesions in BCa are
accumulated during the early phases of tumour development5,13,
they failed to identify any major driver associated to metastasis
and resistance, with the exception of a minor fraction of cases
showing either ESR1 mutations or CYP19A1 amplification14–17.
Yet, the transcriptomes of the resistant cells are profoundly het-
erogeneous and different from those of the primary tumour18–20,
suggesting a contribution of non-genetic mechanisms21.

Rare phenotypic subpopulations, showing features of drug
tolerance and sometimes of quiescence, have been found in pri-
mary melanomas22, leukaemia23, non-small-cell lung cancer24

and triple-negative breast cancer (TNBC)25. In primary mela-
noma, a rare, transient subpopulation expressing resistant mar-
kers at high levels can survive and persist to become stably
resistant26. Nevertheless, it remains unclear how genetic and non-
genetic components contribute to different types or stages of
ERα-positive BCa.

In this study, we use a combination of live cell imaging, single-
cell RNA-sequencing (scRNA-seq) and machine learning to dis-
sect the phenotypic heterogeneity and plasticity of ERα-positive
BCa, and leverage this information to identify a subpopulation of
rare, pre-adapted cells both in vitro and in vivo. These cells
(termed PA, from Pre-Adapted) display a unique transcriptional
signature with features of dormancy and mixed epithelial and
mesenchymal traits, which is found dominant in clusters of cir-
culating tumour cells. PA cells show a significant survival
advantage under short-term ET, but require further transcrip-
tional reprogramming and genetic alterations to acquire full
resistance and re-establish a proliferative phenotype in vitro.
These results highlight the multi-faceted effects of ET at single-
cell level, and suggest a multi-step mechanism of drug resistance
that involve both non-genetic and genetic contributions.

Results
Absence of features of resistance in treatment-naive cells. In
order to study the dynamic process of ET resistance, we exploited
an in vitro system that maximises reproducibility while mini-
mising confounding factors15,27. Long-term oestrogen-deprived
(LTED) cells originate from ESR1 wild-type MCF7 that have been
deprived from oestradiol (E2) for 1 year. This model is generally
considered a good proxy to study the effect of aromatase inhi-
bitors (AI) (Fig. 1a). Using endpoint analysis, we previously
showed that resistance in this model involves amplification of the
aromatase gene (CYP19A1) in combination with transcriptional

activation of endogenous cholesterol biosynthesis, but not by
mutated ESR115,28. Even in this accelerated model, fully resistant
cells emerge between 6 and 12 months of oestrogen deprivation29,
which is incompatible with clonal selection of a pre-resistant
cell30. In line with this, <1.5% of early-stage BCa show evidence of
a pre-existent ESR1-mutant clone31 (Supplementary Table 1),
suggesting key driver mutations to be acquired at a later stage.
However, this model does not fully exclude pre-existence of
transcriptomic clones with features of resistance. To investigate
this, we generated scRNA-seq high-quality profiles for >1200
MCF7 and >1900 LTED cells (Supplementary Table 2).

Dimensionality reduction (Similarity Weighted Nonnegative
Embedding, or SWNE)32 showed MCF7 and LTED as completely
separated populations, with no single MCF7 clustering with
LTED cells (Fig. 1b). Studies in melanoma and TNBC suggest
that drug-resistant cells can rapidly emerge25,26. This implies that
in drug-naive tumours, at least a few cells have a transcriptional
profile similar to that of fully resistant cells. However, our data
suggest this is not the case in luminal breast cancer cell lines,
which is concordant with the long latency taken by resistance to
occur in most patients treated with ET. To completely exclude
any contribution of a pre-existent genetic clone, we inferred
single-cell, copy number alterations (CNAs) from scRNA-seq
data (see Methods). Clustering of single MCF7 and LTED cells
based on the inferred patterns of CNAs identified two clades, one
including all the MCF7 and one all the LTED cells (Fig. 1c). In
line with CYP19A1 significantly contributing to AI resistance
in vivo and in vitro15, an amplification involving the region was
found in LTED cells, but not in MCF7 (Fig. 1c). This was
confirmed by shallow whole-genome sequencing (Supplementary
Fig. 1a). Clustering of single-cell profiles identified five distinct
groups (two for the MCF7 and three for the LTED), mainly
driven by differences in cell cycle (Fig. 1d). Even after running the
dimensionality reduction step separately on cells assigned to the
same cell-cycle phase, MCF7 and LTED cells were unambigu-
ously separable (Supplementary Fig. 1b). Importantly, scRNA-seq
confirmed that previously reported pathways, such as cholesterol
biosynthesis27, are profoundly reprogrammed by ET (Fig. 1d;
Supplementary Fig. 1c, d).

Taken together, these data support that AI resistance is not
driven by a pre-resistant clone (whether genetic or in a particular
transcriptional state), suggesting a multi-step adaptation process
in which the necessary hits occur with a different timing during
ET. Nevertheless, we could not exclude the presence of a rare,
transcriptionally defined clone at a very low frequency. This led
us to leverage previously acquired knowledge on cancer cell
plasticity to further dissect the phenotypic heterogeneity of cells
in the drug-naive condition.

Phenotypic heterogeneity of luminal breast cancer cells. Pre-
vious studies identified CD44 as a marker of plastic cells in var-
ious solid tumours33–35. It has been suggested that CD44-positive
cells possess increased tumorigenic ability and resilience to
pharmacological treatments. To investigate the potential role of
CD44 as a surface marker to guide the dissection of the pheno-
typic heterogeneity of luminal breast cancer cells, we identified
those genes showing high transcriptional variability across single
MCF7 cells (n= 778) and intersected them with annotation from
the Cell Surface Protein Atlas36. CD44 was indeed found among
these genes (n= 27; Supplementary Fig. 2). Further investigation
confirmed variable expression of CD44 also in primary tumours
(Supplementary Fig. 3a–c; Fig. 2a, b). Cells expressed significantly
higher levels of CD44 after neo-adjuvant AI treatment (Fig. 2a;
3.8-fold, p-value= 0.0032; two-tailed paired t test) as well as
when comparing matched AI-treated primary-metastatic samples

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11721-9

2 NATURE COMMUNICATIONS |         (2019) 10:3840 | https://doi.org/10.1038/s41467-019-11721-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(Fig. 2b; Supplementary Fig. 3d; twofold, p-value= 0.0029; Wil-
coxon signed-rank test), suggesting higher chances of survival to
ET for cells expressing CD44 in vivo. We next sought to inves-
tigate if CD44high cells can be also found at other active sites in
breast cancer patients. Interestingly, we found substantial
CD44high cells in pleural effusions from all four patients exam-
ined (Supplementary Fig. 3e). In line with this, the fraction of
CD44high cells was significantly increased in LTED (upper panels
in Supplementary Fig. 3f, g). Extensive functional characterisation
of these cells demonstrated that MCF7-CD44high cells were more
invasive, more clonogenic and could form first- and second
generation of mammosphere at higher efficiency than CD44low

cells (Supplementary Fig. 3j–l). In agreement with previous stu-
dies35, CD44high cells also showed cellular plasticity as they could
recapitulate the entire population, while CD44low were capable of
generating only CD44low cells (Supplementary Fig. 3f).

To further investigate the plasticity of CD44high cells in vitro at
the single-cell level, we generated MCF7 and LTED cell lines with
a GFP reporter expressed under the promoter of the CD44 gene
(Supplementary Fig. 4). Reconstitution experiments from sorted
cells showed that CD44GFP-high cells could recapitulate all the
functional aspects of endogenous CD44high cells, including
cellular plasticity (Fig. 2c). Interestingly, both CD44GFP-high and
CD44GFP-low showed features of plasticity in fully resistant cells
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Fig. 1 Absence of fully resistant clones in treatment-naive cells. a Schematic representation of the in vitro approach (bottom), which mimics the
development of resistance to aromatase inhibitors (AI) in patients. b Bi-dimensional representation of 3159 single-cell transcriptomes (1125 MCF7 and
1944 LTED) (SWNE; k= 16). c Copy number profiles of the cells shown in (b), as estimated from scRNA-seq profiles. The data shown as heatmap and as
dendrogram (hierarchical clustering; Ward’s method; Euclidean distance). d Distribution of normalised expression levels for selected gene sets, by cluster
of cells (as defined in b). Area Under the Curve calculated using the cluster with higher median gene expression as a positive set. Box plots show median,
interquartile values, range and outliers (individual points). *p <= 1e-5, **p <= 1e-10, *** p <= 2.2e-16 (Kruskal–Wallis test)
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(Fig. 2d; Supplementary Fig. 3g). When MCF7 were challenged
with short-term ET, only CD44GFP-high cells appeared to adapt to
it, while CD44GFP-low cells were rapidly cleared out between days
4 and 7 (Fig. 2e). Single-cell plating experiments confirmed that
only CD44high cells could drive the formation of early colonies
under E2 deprivation, but the colonies were significantly smaller
compared with E2-supplemented conditions (Fig. 2f). These
observations indicate combined cytostatic and cytotoxic effects of ET
and that those cells that could adapt to the therapy originate within
the CD44high compartment. Extrapolation of cell-cycle dynamics of
CD44GFP-high and CD44GFP-low cells from time-lapse imaging data
revealed comparable cell-cycle length in E2-supplemented condition
(Fig. 2g; +E2). Nevertheless, CD44GFP-high cells had a significantly
lower proportion of cells engaged in productive cell-cycle entry,
suggesting the existence of a low-proliferative subpopulation
within the CD44high compartment even under permissive
environments. Under E2 deprivation, the CD44GFP-low comple-
tely failed to undergo cell-cycle entry, while 12% of CD44GFP-high

managed to do one or more cell cycles, with a much longer
latency (Fig. 2g; −E2).

Taken together, these results further support the idea that at
least some of the cells in the CD44GFP-high (but not CD44GFP-low)
compartment have an increased ability to survive the acute phase
of ET, and this correlates with their features of plasticity. This led
us to hypothesise that non-genetic, transcriptional variability
would reflect pre-existent, rare subpopulations in treatment-naive
cells with higher chances to survive and give rise to fully
resistant cells.

Transcriptional heterogeneity of plastic cells. To investigate the
transcriptional variability of CD44high cells, we carried out sorting
driven, scRNA-seq of CD44-GFP luminal breast cancer cells.

About 10,000 single cells in E2-supplemented condition were
profiled (CD44GFP-high and CD44GFP-low in equal proportions;
Fig. 3a; in the remainder of the text, these two sorted sub-
populations will be referred to as CD44high and CD44low).
Dimensionality reduction (Fig. 3a) highlighted a surprising
similarity between the profiles of CD44high and CD44low, except
for a small percentage (~4%) of CD44high cells significantly
departing from the main cluster. In line with this, differential
expression analysis of the two subpopulations resulted in tenfold
less differentially expressed genes (DEGs) than those observed by
comparing them to LTED (Fig. 3b; Supplementary Data 1).
Nevertheless, CD44high showed an overall, significantly higher
transcriptomic variability (p-value < 2.2e-16; Wilcoxon rank-sum
test) than CD44low (Fig. 3c).

We next sought to systematically address whether the observed
variability was the result of either an increased transcriptional
noise specific to CD44high cells (compatible with a bet-hedging
mechanism) or instead the reflection of a regulated network
(leading to coordinated expression of multiple genes in the same
cell). We applied PIDC37, an algorithm using partial information
decomposition (PID), to identify regulatory relationships between
genes, and reconstructed the gene regulatory networks (GRNs)
from the scRNA-seq profiles of CD44high and CD44low cells,
separately (Supplementary Data 2). The two networks were
merged and analysed to identify major communities (Fig. 3d; the
three largest communities were consistently identified on the
separate CD44high and CD44low networks, with >95% overlap
with the corresponding community from the merged network;
Supplementary Table 3). The largest of the three identified
communities (#1 in Fig. 3d–f) showed the lowest similarity
between the CD44high and CD44low GRNs, with the majority of
edges supported only by the CD44high GRN (Jaccard Index= 0.23,
still higher than expected by chance, expected value= 0.0154,
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q-value <= 1e-3; Fig. 3e and Methods). Pathway enrichment
analyses38 for the genes in this community showed highly
significant enrichments for oestrogen response, TNFα signalling,
epithelial–mesenchymal transition and the p53 pathway (Fig. 3f;
q-value < 1e-8). These results strongly suggest that the variability
specific to the CD44high compartment is the result of the
coordinated regulation of genes in a small fraction of cells. With
this in mind, we hypothesised a central role for these rare cells in
the early phases of acute oestrogen deprivation (termed acute-ET).

Single-cell transcriptomics identifies pre-adapted cells. To
investigate the role of transcriptomic variability of plastic cells
during acute-ET, we performed scRNA-seq experiments upon
oestrogen deprivation (Supplementary Table 2). Continuous
single-cell imaging suggested that cells within the CD44low sub-
population started being differentially affected by acute-ET after
48 h of treatment (Fig. 2e). We thus profiled gene expression data
of about 10,000 single cells at 48 h of E2 starvation (Fig. 4a).
Applying a stringent threshold on the first SWNE component, we
could define a rare, pre-adapted (PA) subpopulation among
plastic cells (CD44high) expressing a signature of acute-ET even in
permissive E2-supplemented condition. The identification of PA
cells was confirmed using an orthogonal approach aimed at
identifying outliers and based on Random Forests classification
(Fig. 4b, Supplementary Data 3 and Methods). We then excluded
the PA cells identified using SWNE (Fig. 4a), and trained another
Random Forest classifier that was tested on the PA cells (Sup-
plementary Fig. 5a). Overall, 72.8% of PA cells were mis-classified
as starved cells, compared with an expected 2.2% (out-of-bag
classification error), further corroborating the observation that
PA cells are strongly biased towards features of starved cells. Of
note, PA cells are genetically indistinguishable from the other
CD44high cells, and have not yet acquired any of the genetic re-

arrangements of the fully resistant, LTED cells (Fig. 4c). Con-
sidering both approaches and either a lenient or a stringent
threshold, PA cells are estimated to constitute 0.76–4% of the
CD44high cells, which correspond to 0.03–0.14% of the total
MCF7 population. Overall, these data suggest that PA cells might
represent the first step in the process of adaptation to acute-ET.

We then sought to validate if the PA transcriptional state
would confer a survival advantage compared with other plastic
cells exposed to acute-ET. First of all, we identified the Claudin-1
gene (CLDN1) as a suitable surface marker to enrich for PA cells
by FACS in combination with CD44 (Supplementary Data 3 and
Supplementary Fig. 5b). We then generated MCF7 cells stably
labelled with either a nuclear GFP or mKate2 and leveraged this
tool to follow two subpopulations over time after mixing them.
The same amount of sorted PA cells (CD44high and CLDN1high)
was mixed with other plastic cells (CD44high and CLDN1low;
Fig. 4d). CD44high CLDN1high PA cells showed increased survival
to acute-ET compared with CD44high CLDN1low, with this effect
increasing over time. As a control, no difference was observed
between CLDN1high and CLDN1low from the CD44low compart-
ment. These data strongly support the hypothesis that PA cells
have a distinctive survival advantage under acute-ET (Fig. 4e).

We then further characterised these cells functionally, focusing
on the set of differentially expressed genes between the PA cells
and the rest of the CD44high cells in +E2 condition (cells
identified through the SWNE-based approach; 312 upregulated
and 1242 downregulated; Fig. 4a, b; Supplementary Data 3). PA
cells displayed features of mixed epithelial and mesenchymal
traits, along with upregulation of p53 pathway, cell polarity
(apical junction components) and hypoxia (Fig. 5a, upper panel).
PA cells also showed reduced ERα activity and downregulation of
the cell cycle machinery, while still expressing ESR1 (Fig. 5a,
lower panel and Supplementary Fig. 5c). Interestingly, both
plastic and non-plastic cells lied on a continuum showing a
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negative correlation between the expression of the genes of the
cell cycle and of those in the signature of PA cells (Fig. 5b;
Spearman’s rank correlation coefficient=−0.519; p-value < 2.2e-
16), with PA cells found at the edge of this spectrum. We finally
sought to quantify the overlap between the PA cells signature
(upregulated genes) with the CD44high-enriched GRN we
previously identified (Fig. 3d–f). Indeed, when we further
dissected the GRN (community #1) into its two main
components, we found extensive overlap between one of these
components and the PA signature (Fig. 5c; p-value= 2.7e-21;
hypergeometric test). This further supports the idea that the genes
in this signature are part of a co-regulated network.

Overall, these data support the hypothesis that plastic cells are
phenotypically heterogeneous (with no evidence supporting
genetic clones), and that among them rare cells in the PA state
have a survival advantage during acute-ET.

PA features persist in acute-ET, but not in full resistance.
While these analyses support a pivotal role for the PA phenotype
in conferring a survival advantage during acute-ET, PA cells are
still genetically indistinguishable from the rest of the cells. This
suggests these cells do not represent the final step of drug resis-
tance. Nevertheless, we aimed at determining whether longer
exposure to acute-ET correlates with the persistence of the PA
signature, and/or this also coincides with other reprogramming
events. In order to capture the different dynamics of survival of
CD44high and CD44low (Figs. 2e, 6a), we generated scRNA-seq
profiles at 4 and 7 days of E2 deprivation (Supplementary
Table 2), a period in which the relative number of CD44high cells
does not change while CD44low undergo rapid extinction.
Dimensionality reduction of >28 k cells showed increased pre-
valence of the PA signature with time of starvation (Fig. 6a).
Formal quantification using AUCell39 confirmed this trend
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(Fig. 6b, left panel and Fig. 6d). The same analysis using a LTED-
specific signature (Methods and Fig. 1) failed to identify any cell
expressing it during acute-ET (Fig. 6b, right panel). In line with
this, the critical transcriptional pathways driving full resistance
(i.e., cholesterol biosynthesis and re-activation of ERα signalling)
were completely abrogated in PA and cells exposed to acute-ET
(Fig. 6c, d). On the other hand, some of the pathways associated
to PA phenotype (partial-EMT, cell polarity, hypoxia) were found
to consistently increase during treatment.

Unexpectedly, while imaging showed that after 7 days >75% of
the CD44low died and were destined to extinction (Fig. 2f), the

profiled CD44high and CD44low cells converged on the same
transcriptional changes. We reasoned that since scRNA-seq
experiments capture viable cells exclusively, we profiled only
those cells that were still alive at day 7. Thus, we hypothesised
that the PA-like transcriptional programme is an intermediate
bottleneck during acute-ET. In line with this, we discovered that
CD44low cells can occasionally upregulate a signature overlapping
that of PA cells, but this happens with lower efficiency (Fig. 6b),
and it is not sufficient to give them the survival advantage shown
by CD44high. To validate these observations at the protein level,
we performed a multi-marker tracing profile, exploiting some
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marker genes (namely, GPRC5A, MFGE8, FSCN1 and RAB11-
FIP1) showing a trend of upregulation with starvation time. This
trend was confirmed at the protein level, with values consistently
higher in CD44high compared with CD44low cells (Fig. 6e;
Supplementary Figs. 6, 7). Nevertheless, this did not prevent cells
in the CD44low compartment to die at an almost linear rate
(Fig. 6e).

Taken together, these observations confirmed that the PA
transcriptome is strongly selected by acute-ET. Nevertheless, the
observed rapid expansion (Fig. 6b) seems incompatible with the
strict selection of a pre-existing population30. The observation
that also CD44low cells can adopt a similar transcriptional profile
in response to ET (despite being unable to survive) suggests that
the PA programme is required, but not sufficient to explain the
survival of plastic cells to acute-ET (see Discussion).

The PA signature is enriched in clusters of CTCs. T47D cells
are another widely used model of hormone-dependent breast
ductal carcinoma that differ from MCF7 by their TP53 status
(mutated in T47D). We first confirmed that CD44 is a bona fide
marker of plasticity also in these cells (Supplementary Fig. 3h, i).
We then derived treatment-naive T47D cells stably expressing a
GFP reporter under the promoter of the CD44 gene. With this
tool, we generated high-quality scRNA-seq profiles from sorted

T47D-CD44high cells, either in the presence or absence of E2. We
also profiled unsorted population of T47D and LTED cells
(capturing ~3000–4000 cells each; Supplementary Table 2). In
line with what observed with MCF7 (Fig. 1b), dimensionality
reduction (SWNE) indicated that no single treatment-naive cell
clustered with LTED cells (Fig. 7a; Supplementary Fig. 8a; Sup-
plementary Data 4). We then looked specifically to CD44high cells
and, similarly to MCF7 (Fig. 4a), we were able to identify a small
fraction of treatment-naive cells overlapping with the E2-
deprived cells (Fig. 7b). Up- and downregulated genes in T47D-
PA cells showed extensive, highly significant overlap with those
singled out in MCF7-PA (Fig. 7c; ~15% and ~55% of the up- and
downregulated, respectively; p <= 2.2e-16, hypergeometric test),
with overlapping genes showing significantly higher effect size
compared with the rest (Fig. 7c; p <= 1e-5; Wilcoxon rank-sum
test). Importantly, CNAs estimated from scRNA-seq data sets
support the idea that also T47D-PA cells are transcriptional
clones. Although these cells do not show genetic lesions of LTED
cells (Supplementary Fig. 8b), the estimated profiles are qualita-
tively more heterogeneous than those of the other plastic cells
(Supplementary Fig. 8c). These results further strengthen a role
for the identified PA signature in the survival to AI.

We then looked for evidence of expression and co-regulation of
genes upregulated in PA cells, in 825 primary luminal breast
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tumours40. Tumours classified as luminal A showed significantly
higher expression of the signature compared with luminal B (p-
value < 2.2e-16; Wilcoxon rank-sum test) and TNBC/HER2+
lesions (p-value= 1.9e-8) (Supplementary Fig. 8d). Of note,
luminal A exhibits the longest latencies in relapse development
amongst all BCa41–43. Considering > 600 luminal A samples, we
then checked the distribution of pairwise correlations between the
expression pattern of the genes in the signature, as a proxy for co-
regulation. Compared with a size-matched set of randomly picked
genes, those in the PA signature showed significantly higher
coefficients (Supplementary Fig. 8e; p-value < 2.2e-16; Wilcoxon
rank-sum test), with hundreds of pairs with values over 0.5

(Spearman’s rank correlation coefficient). These results further
corroborate our previous observations that these genes tend to be
controlled by the same GRNs, and showed a trend of higher
expression in luminal tumours with longer latency of recurrence
(A vs B; Supplementary Fig. 8d).

Given that some of the key pathways active in PA cells hinted
to mixed epithelial and mesenchymal features, as well as cell
polarity and migration, we asked if the PA phenotype could play a
role in metastatic progression. Previous data strongly suggest that
epithelial-like clusters of circulating tumour cells (CTCs) are
responsible for 85–92% of metastatic dissemination44, with
individual CTC showing more mesenchymal features playing a
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more limited role45. Interestingly, the PA signature was found
significantly enriched in CTCs45 (Fig. 7d; q-value= 0.017,
permutation test) and at even higher levels in clusters of CTCs44

(Fig. 7e; q-value= 0.066, permutation test). These results provide
a further link between drug-induced adaptation and metastatic
invasion27,46.

Discussion
In this study, we leveraged two in vitro models to investigate the
contribution of genetic and transcriptional heterogeneity to the
development of resistance to ET in luminal breast cancer. As
opposed to previous observations in melanoma, TNBC, lung and
colorectal cancers, in which targeted therapy lead to the rapid
emergence of fully resistant cells10–12,18,26, we could not find any
genetic or phenotypic clone showing features of resistance in
treatment-naive cells (Figs. 1, 7). The same observation held true
even after thoroughly dissecting the heterogeneity of the cells
showing features of plasticity (Figs. 2, 3 and 7). On the other
hand, we could identify and characterise a small subpopulation
(~0.1% of the treatment-naive cells) showing a PA phenotype
(Figs. 4, 7). These cells showed a twofold increased survival to
acute-ET compared with other plastic cells (while non-plastic
cells undergo complete extinction under selective pressure;
Fig. 4e), along with mixed epithelial and mesenchymal features,
and quiescence. Interestingly, while any cell (also those with no
feature of plasticity) can adopt a transcriptional programme
overlapping that of the PA cells, only plastic cells can withstand
acute-ET (Fig. 6a, e), with PA cells showing a more pronounced
survival advantage (Fig. 4e). Finally, we found an enrichment of
the PA signature in clusters of CTCs, linking a quiescent sub-
population from the primary tumour to both features of survival
to therapy and of CTCs. Interestingly, it has been reported that
early-stage metastatic cells possess partial features of survival,
dormancy and EMT, which all overlap with our PA signature47. A
signature of partial-EMT has also been recently shown to be
expressed in the cells at the leading edge of primary head and
neck cancers48. It is tempting to speculate that PA cells might not
only display a survival advantage during the early phases of the
therapy but might also be the pioneers of micro-metastatic
spread.

Surprisingly, we found that also cells with no features of
plasticity were able to adopt the PA signature, even though with a
much lower efficiency, which cannot prevent the extinction of the
compartment after two weeks of E2 deprivation (Fig. 6). On top
of this, 70% of the plastic cells adopted a PA signature within 48 h

of acute-ET (Fig. 6b). This fast transition to a diverse transcrip-
tional state is hardly explained by conventional Darwinian
selection of a pre-resistant (or persister) cell30. For reasons that
remain to be investigated, plastic cells have a much higher
probability than non-plastic ones to transition into a PA state,
and this probability is dramatically increased by E2 deprivation.
We reason that upon stress, plastic PA cells are better positioned
than cells requiring transcriptional reprogramming, hence the
observed difference in survival within the plastic compartment
(Fig. 6e). We estimated PA cells to constitute ~0.1% of the
treatment-naive cells. In order to obtain ~100 PA cells would
have required profiling at least 70,000 MCF7 cells by scRNA-seq.
Even in the best-case scenario, this single experiment requires
capturing more cells than those profiled across this entire study
(Supplementary Table 2). This suggests that functional approa-
ches leading to dissection of the phenotypic heterogeneity, and
thus to enrichment strategies (Fig. 2) are required for the feasi-
bility of this kind of studies.

The data presented here suggest PA cells as an obligated step
towards the acquisition of resistance while still requiring sub-
stantial reprogramming to recapitulate features of fully resistant
cells (Fig. 8). We propose that the delayed relapse common to ET-
treated patients might be mediated by similar processes, in which
PA-like cells are selected for and stalled by ET for up to >10 years.
This model would reconcile why ET are sometime effective for
downstaging neo-adjuvant patients, but fail to clear micro-
metastatic disease. Nevertheless, single-cell lineage-tracing
approaches coupling unambiguous identification of clones to
transcriptome mapping are needed to get a definitive proof that it
is the progeny of PA cells that will eventually acquire full resis-
tance. Besides, how this bottleneck affects the progression of the
tumour requires further investigation. Future studies on the
necessary steps and their timing of occurrence during treatment
must be carried out in order to expose potential vulnerabilities of
these quiescent cells.

Methods
Cell lines. MCF7 and long-term oestrogen-deprived cells (LTED) were kindly
provided by Philippa Darbre and T47D and LTED were kindly provided by
Matthew Ellis27. MCF7 and T47D cells were maintained in the Dulbecco’s mod-
ified Eagle’s medium (DMEM) containing 10% foetal calf serum (FCS) Long-term
oestrogen-deprived cells (LTED) were derived from MCF7 or T47D after 1 year
oestrogen deprivation and were maintained in phenol-red free DMEM containing
10% charcoal stripped foetal calf serum (SFCS)27. Both media were supplemented
with 2 mM L-glutamine, 100 units/mL penicillin and streptomycin. 10−8 M oes-
tradiol (E2758 Sigma) was added routinely to MCF7. Primary-metastatic breast
cancer cells were derived from pleural effusions of patients with metastatic breast

+E2 Short-Term (Weeks) Long-Term (Months) Full resistance

Adaptability

–E2

Genetic + Epigenetic Hits

Plasticity

Quiescence

+ –

Fig. 8 Proposed multi-step model of resistance to endocrine therapies. (Left to right). A hierarchy of cells with or without features of plasticity (in blue and
brown) co-exist in the primary tumour and in the micro-metastases (large and small green circles, respectively). These cells are already positioned on a
gradient of probability to survive to future exposure to endocrine therapies (light green box). Upon surgery and start of adjuvant treatment (−E2), only a
handful of plastic cells is able to survive (light blue boxes). These cells enrich for the transcriptional signature of pre-adaptation identified in this work, and
in turn are those able to accumulate those genetic hits and further transcriptional re-wiring observed in the fully resistant cells, which eventually lead to
metastasis (large blue circle)
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cancers. The pleural effusion (PE) cells were maintained in the DMEM containing
10% foetal calf serum (FCS) and 2 mM L-glutamine, 100 units/mL penicillin and
streptomycin. Written informed consent for the procedure was obtained from all
patients. The study was reviewed and approved by Imperial College Healthcare
NHS Trust Tissue Bank (R14059). Cells were tested for mycoplasma contamination
before the experiments and showed negative results.

Plasmids. pLVX-IRES-mCherry-puro lentiviral vector (Cambridge Bioscience,
Cambridge, UK) was used to infect MCF7 and LTED cells. MCF7- and T47D-
CD44 reporter GFP cells were established with CD44CR1-IRES-GFP-puro lenti-
viral vector (Tebu-Bioscience). Stable and polyclonal cell populations were estab-
lished after puromycin selection (0.5 μg/ml). NucLight Green lentivirus (IncuCyte,
4626) and NucLight Red Lentivirus (IncuCyte, 4627) were used to infect MCF7.
Stable and polyclonal cell populations were established after Zeocin selection
(300 μg/ml). H2B-mCherry-puro lentiviral vector was used to infect stable CD44
reporter GFP cells. Stable and polyclonal cell populations were established after
sorting.

Antibodies. Anti-ERα antibody (Vector Laboratories, VP-E613) 1:100 for immu-
nofluorescence (IF) and anti-ERα (Santa Cruz, HC-20) 1:1000 for western blot
(WB), anti-CD44 antibody (Santa Cruz, sc-7297) 1:200 for IF and 1:100 for
immunohistochemistry (IHC), anti-pan Cytochemistry antibody (Abcam,
ab17154) 1:200 for IF, anti-FGFR4 antibody (Abcam, ab44971) 1:100 for IF, anti-
FSCN1 (Sigma, HPA005723) 1:100 for IF, anti-MFGE8 (Sigma, HPA002807) 1:100
for IF, anti-RAB11FIP1 (Sigma, HPA023904) 1:100 for IF, anti-GPRC5A (Sigma,
HPA007928) 1:100 for IF and anti-caspase3 (Merk, MAB10753) 1:100 for IF.

FACS analysis. Cells were cultured to 70–80% confluence and detached from the
cell culture flasks using EDTA. Cell pellets were obtained and washed with cold
phosphate-buffered saline (PBS) containing 1% FCS and 5mM EDTA. All further
steps were performed on ice and all centrifugation steps at 4 °C. Fluorochrome-
conjugated monoclonal antibodies against human CD44 (FITC, BD Pharmingen;
BV421, BD Pharmingen), Claudin-1 (APC, R&D systems), and their isotype
controls were added to the cell suspension at concentrations recommended by the
manufacturer (BD Biosciences) and incubated at 4 °C in the dark for 30 min. The
labelled cells and CD44 reporter GFP cells were washed in PBS and then were
analysed on a FACS Aria (BD Biosciences). Gating was set to relevant isotype
control (IgG-FITC)-labelled cells or unstained cells for each cell line. Propidium
iodide (Bio-Rad, 1351101) and DRAQ7 (BioLegend, 424001) were used for the
dead cell removal.

Soft agar colony-forming assay. Anchorage independent cell growth was carried
out in six-well tissue culture plates. A 1-mL layer of 0.6% agar (DIFCO Labora-
tories) in appropriate cell culture medium was solidified at the bottom of each well.
Cells to be assayed were suspended in 1 mL of 0.3% agar in medium. In all, 1 × 104

cells were seeded in each dish. After 4 weeks of incubation at 37 °C in 5% CO2,
colonies were visualised by staining with 0.02% crystal violet.

Mammosphere culture. Cells were plated as single cells at a density of 5 × 102

viable cells/well in ultralow attachment six-well plates (Corning, CLS3814). Cells
were grown in a serum-free DMEM or phenol-red free DMEM, supplemented with
B27 (Invitrogen, 17504-044), 20 ng/mL EGF (Sigma, E9644) and 20 ng/mL bFGF
(R&D systems, 233-FB-025). Mammospheres were grown for 10–14 days, and
phase contrast images were obtained using the ImageXpress Micro microscope
(Molecular Devices). For the second-generation experiment, first-generation
mammospheres were collected from multiple wells and spun at 500 × g per 5 min.
The pellet was resuspended in 50 μl of Trypsin, and the sample was passed 25 times
through a sterile needle to get single-cell suspension. The same density of cells as in
first-generation culture was seeded, and cells were allowed to grow for 14 days.

Immunofluorescence. Briefly, 104 cells were seeded on chamber slides (Lab-Tek).
On the final day, cells were washed twice with PBS at room temperature, and 4%
PFA/PBS was added for 15 min. Cells were washed twice with PBS, and NH4Cl was
added as a quencher. In all, 0.2% Triton/PBS was added for 5 min. In all, 10% BSA/
PBS was used as a blocking reagent. Five percent of BSA/PBS was used to dilute
primary antibodies and Alexa-fluor 488, 568, 594, 647 labelled anti-rabbit or anti-
mouse secondary antibodies (ThermoFisher). Nuclei were counterstained with
DAPI, and were mounted in ProLong Antifade Mountant (ThermoFisher, P36941).
Pictures were acquired using the EVOS microscope system (Advanced Microscopy
Group, Bothell, WA, USA) or a Zeiss Axiovert 200M inverted microscope.

Tissue microarray (TMA). Twenty primary breast carcinomas with a paired
metastasis were acquired from the pathology archives of Charing Cross Hospital,
London, UK. A tissue microarray was constructed using a manual microarrayer
and 0.6 mm punches. The tissue microarray was immunohistochemically profiled
for CD44 (Santa Cruz sc-7297). Antigen retrieval was performed using 0.01 M
citrate buffer, pH 6.0 followed by blocking in 0.3% hydrogen peroxide in PBS, then
in normal goat serum (20 μl per ml) for 30 min. The primary antibody was

incubated overnight at 4 °C at 1:100, and then detected using anti-mouse secondary
antibody (Vector Laboratories), Vectastain Elite peroxidase ABC kit and
ImmPACT DAB kit (Vector Laboratories). Subsequently, 4 μm TMA sections were
immunostained using the optimised staining protocol, including negative controls
(omission of the primary antibody). Staining was scored based on the H-score by
three independent investigators (including one consultant pathologist) blinded to
the clinicopathological characteristics of patients. H= (3 × % of strongly stained
cells)+ (2 × % of moderately stained cells)+ (1 × % of weakly stained cells)+ (0 ×
% of cells without staining). Negative controls were performed by omission of the
primary antibody. The study was reviewed and approved by Imperial College
Healthcare NHS Trust Tissue Bank (R14111).

Neo-adjuvant treated patient selection. All clinical data from patients operated
at the European Institute of Oncology (IEO) were prospectively entered in an
Institutional database. For this study, we retrieved data from patients with a neo-
adjuvant AI treatment from 1999 to 2014. We selected patients having had pre-
surgical biopsy and surgery in our Institute, in order to have their sample analysed
in the same laboratory. We randomly selected 20 patients with luminal tumours,
treated by neo-adjuvant hormone only (aromatase inhibitors), 10 responders and
10 non-responders. The tissue bank was regulated by the IEO, and written
informed consent for collecting samples was obtained from all patients.

Reconstitution assay. We first sorted cells for endogenous CD44 using FACS Aria
III (BD Biosciences), we then seeded 105 cells of CD44high and CD44low on six-well
plates with E2 supplement and incubated them for 7 days. After 7 days, cells were
trypsinised and stained with anti-CD44 antibody (FITC, BD) for FACS. In order to
follow plasticity in real time, we sorted MCF7- and LTED-CD44-GFP cells for GFP
expression using FACS Aria III (BD Biosciences). Overall, 105 cells of CD44GFP-high

and CD44GFP-low were seeded on six-well plates with E2 supplement or deprivation.
Five pictures per condition were taken using an EVOS microscope system
(Advanced Microscopy Group, Bothell, WA, USA) for 14 days. Fifty different fields
were counted. The percentage of GFP-positive cells was calculated by the number of
GFP-positive cells/number of total cells × 100.

Monoclonal assay. Using FACS Aria III (BD Biosciences), single cell of mCherry-
MCF7 was seeded on 96-well plates with E2 supplement or deprivation. Single cell
was confirmed using an EVOS microscope system (Advanced Microscopy Group,
Bothell, WA, USA). The cells were incubated for 30 days, and colonies were
counted on the EVOS microscope system.

Live cell imaging and data analysis. After sorting with GFP by FACS Aria III (BD
Biosciences), 105 cells of H2B mCherry-MCF7-CD44rep GFPhigh and GFPlow were
seeded on six-well plates with E2 supplement or deprivation. Time-lapse live cell
imaging was performed on IncuCyte ZOOM (Essen BioScience) equipped with
temperature, humidity and CO2 control. Images were acquired every 6 h with 10×
plan fluorescence objectives for a proliferation assay and every 15 min with 20x up
to 10 days for a cell-cycle analysis. Excitation (Ex) and emission (Em) filters sets
(Chroma Technology Corporation) were as follows: CFP, 427-10 nm (Ex), 483-32
nm (Em); YFP, 504-12 nm (Ex), 542-27 nm (Em); mCherry, 589-15 nm (Ex) and
632-22 nm (Em). Micromanager 1.3 was used for acquisition of time-lapse images.
All data analysis was done with scripts written in Matlab (Mathworks) or using Cell
Profiler (Broad Institute) and ImageJ (National Institutes of Health). Symmetric/
asymmetric/conversion analyses were performed on a total of 200 cells. Each cell
was monitored for the first three cell divisions (one cell to two cells, two cells to
four cells, four cells to eight cells). Symmetric division was scored if the daughter
cell matched the mother. Asymmetric was scored if the daughter cell did not match
the mother. Conversion was scored if cell changed CD44 status without cell
division (at least 4 h pre- or post division). Cell-cycle speed was established by
calculating the time intervening between two consecutive metaphase plates.

Statistical analyses. Unless specified otherwise, all the analyses and plots were
performed in the statistical computing environment R v3 (www.r-project.org).

Single cell preparation. Single cells were prepared from a full population of MCF7
and MCF7-LTED, or T47D and T47D-LTED. At different time points of E2
deprivation, single cells were prepared from sorted MCF7 or T47D-CD44-GFP
reporter cells by the level of GFP expression. After centrifugation, single cells were
washed with PBS and were resuspended with a buffer (Ca++/Mg++ free PBS+
0.04% BSA) at 1000 cells/µl.

Single-cell RNA sequencing. Viability was confirmed to be >90% in all samples
using acridine orange/propidium iodide dye with LUNA-FL Dual Fluorescence
Cell Counter (Logos Biosystems, L20001). Single-cell suspensions were loaded on
a Chromium Single Cell 3′ Chip (10X Genomics), and were run in the Chromium
Controller to generate single-cell gel bead-in-emulsions using the 10x genomics 3′
Chromium v2.0 platform as per the manufacturer’s instructions. Single-cell RNA-
seq libraries were prepared according to the manufacturer’s protocol, and the
library quality was confirmed with a Bioanalyzer High-Sensitivity DNA Kit
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(Agilent, 5067-4627) and a Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851).
Samples were pooled up to four, and sequenced on an Illumina HiSeq 4000
according to the standard 10X Genomics protocol.

Single-cell RNA-seq raw data analysis. cellRanger (v2.1.1) was run on the raw
data using GRCh38 annotation (v1.2.0). Output from cellRanger was loaded into R
using the function load_cellranger_matrix_h5 from package cellranger (v1.1.0;
genome= “GRCh38”). Data sets were merged according to gene names. All cells
sampled were retained, except for flow-sorted CD44high and CD44low either in+E2
media or starved for 2 days, for which the top 5000 cells in terms of UMIs per cell
were considered. In order to robustly detect transcriptional states, a recent paper
suggested to consider a coverage of at least 1500 detected genes per cell49. A filter
on cells showing at least 1500 detected genes per cell, and at least 5000 UMIs per
cell was then applied. After that, reads mapping on mitochondrial genes were
excluded. Before normalisation, a series of filtering steps were performed. To do
that, data were imported in Seurat (v2.3.4)50 and scaled (NormalizeData function
using normalisation.method= “LogNormalize”, scale.factor= 10,000, followed by
the ScaleData function). A filtering step was then performed based on the
cumulative level of expression (the sum of the Seurat-scaled values) of three
housekeeping genes (GAPDH, RPL26 and RPL36)51. Manual inspection of these
values versus the number of UMIs per cell (or the number of genes with non-zero
expression per cell) revealed no correlation between the two. Nevertheless, a
number of cells showed very low expression for these genes. Cells showing
housekeeping gene expression in the bottom 1% were then excluded from further
analyses. At last, genes expressed in less than 20 cells were excluded. Across cells
normalisation was performed using the R package Scran (v1.6.9)52. Raw counts
were imported into a SCE object using the newSCESet function; size factors were
calculated using computeSumFactors (sizes= seq(20, 250, 10)), on data pre-
clustered through quickCluster.

Estimation of copy number alterations from scRNA-seq data. CNAs were
estimated directly from the scRNA-seq data, using an approach similar to the one
used by Patel et al.53. Only genes expressed in >= 25 cells were considered.

A reference gene expression profile was generated based on published scRNA-
seq profiles of hormone-responsive luminal cells (termed L2)54, using only the data
sets obtained using a droplet-based approach. After normalising each single-cell
profile based on the total number of detected transcripts to a fixed constant
(10,000), a pseudo-bulk profile for the L2-cells was derived using the mean
expression value of each gene across all cells.

Before running the actual CNAs quantification, all the raw scRNA-seq data sets
generated in this study (after filtering, pre-normalisation) and the pseudo-bulk
profile generated as described above were linearly normalised to a constant
(10,000) and log-scaled (pseudo-count set to 1).

First of all, chromosomal coordinates of all genes were retrieved using the
biomaRt R package (v2.34.2; host set to “jul2015.archive.ensembl.org”)55. This way,
genes were sorted by chromosomal coordinates. A genome-wide scan was then
conducted using a sliding window of 100 genes, with a step of 10. Using the
rollapply function from the zoo package in R (v1.8-3), mean value of expression in
each bin was calculated for each single cell, as well as for the reference profile. The
resulting genome-wide profile from each single cell was then linearly regressed
against the reference estimate (using the function lm). The residuals were then
considered as a proxy for CNAs and plotted in the form of heat maps. Single-cell
CNAs profiles were hierarchically clustered (hclust, method= “ward.D2”) and
shown as a circular dendrogram using circlize_dendrogram from R package
dendextend (v1.8.0). In case of full populations, CNAs were estimated on all the
cells. In case of the identified pre-adapted cells, the same number of cells was
randomly sampled from the other groups of cells.

Estimation of copy number alterations from ChIP-input-DNA. Reads were
aligned to the hg19 human reference genome using bowtie2 (v2.3.4.3)56. Aligned
reads were converted to BAM files, sorted and indexed using Samtools (v1.9)57.
Duplicated reads were marked and removed using Picard MarkDuplicates (v2.1.1;
REMOVE_DUPLICATES= true). Only uniquely mapped reads were retained for
further analyses. Copy numbers were inferred using CNVkit tools (v.0.9.4.dev0)58,
as described here: https://cnvkit.readthedocs.io/en/stable/pipeline.html. CNVkit
was run with the default parameters of the batch command after creating a flat
reference genome as suggested in the manual using the command reference.

Dimensionality reduction and clustering. Normalised data were then imported
in Seurat and scaled. Variable genes were identified using the FindVariableGenes
function (mean.function= ExpMean, dispersion.function= LogVMR, x.low.cutoff
= 0.01, x.high.cutoff= 6, y.cutoff= 0.01, num.bin= 100). Principal component
analysis (PCA) was run using variable genes as input, and the top 50 components
were kept. Clusters were then identified using FindClusters (resolution= 0.6).
Considering only those variable genes identified, as described above (Similarity
Weighted Nonnegative Embedding (SWNE)32, was applied to further reduce the
dimensionality of the data. The k parameter was estimated using FindNumFactors
on a subsample of 1000 cells (loss= “mse”, 2–50 as range of values, with a step of
2). The choice of k is determined by randomly set 20% of the gene expression

matrix as missing, followed by finding the factorisation that best imputes the
missing values, minimising the mean squared error. Using this parameter,
nonnegative matrix factorisation was then run through RunNMF (alpha= 0, init
= “ica”, loss= “mse”), followed by EmbedSWNE (alpha.exp= 1.25, snn.exp= 1.0,
n_pull= n_4, dist.use= “IC”). For this step, the shared nearest neighbour (SNN)
matrix calculated by the FindClusters function of Seurat was used.

Differential expression analysis. The two-sample Likelihood Ratio Test imple-
mented in the LRT function of the MAST R package (v1.4.1)59 was used to identify
marker genes for a given sample or cluster. Briefly, each cell was either flagged as
either belonging to the sample (or the cluster) or not. Those genes identified as
upregulated in the cluster at q-value <= 0.05 (Benjamini–Hochberg correction)60

and showing an area under the curve (AUC) >= 0.6 were classified as markers for
the sample or the cluster. The AUC is an estimate on how accurately a certain gene
predicts a cell as part of a certain sample or cluster. AUCs were calculated using the
ROCR R package61.

Functional enrichment analyses. For functional enrichment analyses, a selected
number of gene sets was employed. The 50 Hallmark gene sets from the Molecular
Signature Database (MSigDB)38 were downloaded from the MSigDB website
October 19, 2017. Gene sets from Puram et al.48 (Table S7), along with a manually
curated list of ERα-core target genes (BYSL, GREB1, HEY2, MPHOSPH10, MYB,
NIP7, RARA, SLC9A3R1, TFF1, XBP1) were also considered. For a given subset of
cells, each gene set was scored separately as the sum of the normalised expression
values of all the genes in the set. The resulting distributions were then used for
statistical testing and visualisation.

Single-cell gene regulatory network inference. Networks were inferred sepa-
rately for CD44high and CD44low cells, with nodes representing genes and edges
representing statistical dependencies between gene pairs. For each data set, genes
expressed in fewer than 20% of cells were excluded; then all possible network edges
were ranked using the PIDC network inference algorithm37 implemented in
NetworkInference.jl (http://github.com/Tchanders/NetworkInference.jl), with
expression data for each gene discretised independently into 6 bins of equal width;
finally, a network was defined keeping the 2000 highest ranking edges. The two
networks were then superimposed to form an overlapping network with edges
belonging (i) only to the CD44high network, (ii) only to the CD44low network, or
(iii) to both networks. Communities were detected in the overlapping network (and
recursively in each community) using the label propagation method implemented
in LightGraphs.jl (http://github.com/JuliaGraphs/LightGraphs.jl). Communities
were required to include at least ten nodes. Similarity of the CD44high and CD44low

networks within each community was calculated using the Jaccard index: the
number of edges in the community that belong to both the CD44high and CD44low

networks divided by the total number of edges in the community; an edge was
deemed to belong to a community if it connected two nodes in the community. In
order to estimate the probability of getting an equal or higher similarity value by
chance, we first generated 1000 random configuration models with the same degree
distribution of a given community, separately for the CD44high and CD44low-
derived networks. The Jaccard similarities of each randomly generated pair was
then used to build a null distribution from which empirically estimate a p-value.
The mean of this distribution was considered as the expected value.

Identification of pre-adapted cells. Two different strategies were employed to
identify the pre-adapted cells. The first one takes advantage of SWNE; a threshold
was applied on the first component and the cells showing extreme values (>=0.75)
were labelled as pre-adapted. The second strategy leverages random forests clas-
sifiers62. First of all, the data sets of CD44high cells in +E2 media and starved
conditions (2 days) were split into training and testing sets, using 10% and 90% of
the cells, respectively. The training set was then used to call the DEGs between the
two conditions (+E2 vs starved), using the procedure described in the Differential
expression analysis paragraph above. These DEGs were used as input features to
train a random forest classifier, using the randomForest R package (v4.6-14; default
parameters). This model was then used to test the remaining data. Those cells in
the testing set labelled as +E2 that were showing a probability >50% of being
classified as starved were considered pre-adapted.

AUCell39 (R package v1.0.0) was the used to quantify the activity of the pre-
adapted signatures (and of other signatures, whenever indicated in the text) in
single cells. First of all, normalised data were processed using the
AUCell_buildRankings function. The resulting rankings, along with the signatures
of interest, were then subject to function AUCell_calcAUC (aucMaxRank set to 5%
of the number of input genes). Following inspection of the resulting distributions,
thresholds were then manually set to 0.37, 0.18 and 0.32 for the signatures of pre-
adapted cells either based on SWNE or random forests, or for the LTED signature
(defined as those genes upregulated in LTED vs MCF7, as described in the
Differential expression analysis section above).

Re-analysis of published primary samples. Bulk RNA-seq data sets for 1222
breast cancer samples were downloaded from the GDC (Genomic Data Commons)40

data portal (http://portal.gdc.cancer.gov/) using gdc-client, according to metadata
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obtained on July 25, 2018. Gene features were normalised to sequencing depth.
Given that only a fraction of the samples was pre-classified using PAM5063, k-
nearest neighbours (k-NN) classification was employed to impute the rest of the
samples. This was performed via the knn function in the R package class (v7.3-14),
using the pre-classified samples as the training data. Unclassified samples were
ascribed to a particular subtype only when showing >60% probability of being
assigned to that class. Spearman’s correlations between expression profiles of pairs
of genes were calculated on the depth-normalised values. Prior to calculating sig-
nature scores, these numbers were further log2-transformed (pseudo-count set to
1) and scaled to z-score gene-wise.

Re-analysis of published profiles of CTCs. Normalised data for circulating
tumour cells (CTCs) collected at five time points from a single patient along with
identically processed blood specimens from 10 healthy donors45 were downloaded
from GEO (GSE41245). For each capture, the log2-fold-change between EPCAM+
cells and the matched IgG+ cells (control) was calculated. DEGs were defined as
those genes showing a linear fold change between EPCAM+ cells and control >=
1.5. The fraction of DEGs overlapping the genes in the pre-adapted signature was
then calculated for each pair. To test if the observed difference between the fraction
of DEGs in CTCs and in healthy specimens was random, a P-value was calculated
using the Wilcoxon rank-sum test. The corresponding false discovery rate (FDR)
was estimated by 1000 permutations.

Raw data for individual CTC-clusters (median of three cells per cluster) and
numerically matched pools of single CTCs from the same specimen44 were
downloaded from GEO (GSE51827). Each profile was normalised by depth, then a
profile-specific score was derived for the signature of the pre-adapted cells by
summing the normalised expression values of all genes in the signature. These
numbers were then divided by the maximum across all profiles. To test if the
observed difference between the values obtained for the clusters against the
matched pools of CTCs, a P-value was calculated using the Wilcoxon rank-sum
test. The corresponding false discovery rate (FDR) was estimated by 1000
permutations.

Quantification of GFP-positive cells. A custom Python script (available on
request) was employed to segment images based on DAPI (to count the total
number of cells) and GFP signal (to quantify the fraction of GFP+ cells).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw sequencing data were deposited at the Gene Expression Omnibus (GEO) under
accession number GSE122743. Processed data for single and clustered circulating tumour
cells were obtained from the GEO (GSE41245 and GSE51827, respectively). Bulk RNA-
seq profiles for luminal breast cancer samples were downloaded from the GDC (Genomic
Data Commons)40 data portal (http://portal.gdc.cancer.gov/; July 25, 2018). All the other
data supporting the findings of this study are available within the article and
its supplementary information files and from the corresponding authors upon reasonable
request. A reporting summary for this article is available as a Supplementary Information
file.

Code availability
The R scripts to reproduce the analyses and plots reported in this paper are available
from the corresponding authors upon request.
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