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Abstract 

Background  Transcriptional classification has been used to stratify colorectal cancer (CRC) into molecular subtypes 
with distinct biological and clinical features. However, it is not clear whether such subtypes represent discrete, mutu-
ally exclusive entities or molecular/phenotypic states with potential overlap. Therefore, we focused on the CRC Intrin-
sic Subtype (CRIS) classifier and evaluated whether assigning multiple CRIS subtypes to the same sample provides 
additional clinically and biologically relevant information.

Methods  A multi-label version of the CRIS classifier (multiCRIS) was applied to newly generated RNA-seq profiles 
from 606 CRC patient-derived xenografts (PDXs), together with human CRC bulk and single-cell RNA-seq datasets. 
Biological and clinical associations of single- and multi-label CRIS were compared. Finally, a machine learning-based 
multi-label CRIS predictor (ML2CRIS) was developed for single-sample classification.

Results  Surprisingly, about half of the CRC cases could be significantly assigned to more than one CRIS subtype. 
Single-cell RNA-seq analysis revealed that multiple CRIS membership can be a consequence of the concomitant pres-
ence of cells of different CRIS class or, less frequently, of cells with hybrid phenotype. Multi-label assignments were 
found to improve prediction of CRC prognosis and response to treatment. Finally, the ML2CRIS classifier was validated 
for retaining the same biological and clinical associations also in the context of single-sample classification.

Conclusions  These results show that CRIS subtypes retain their biological and clinical features even when concomi-
tantly assigned to the same CRC sample. This approach could be potentially extended to other cancer types and 
classification systems.
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Background
Despite the advancements in translational oncology, 
colorectal carcinoma (CRC) is still the second leading 
cause of cancer death over the world [1]. To improve 
therapy decision making, in the last decades several tran-
scriptome-based tumor classifiers have been developed 
to stratify patients into groups with unique molecular, 
biological, and clinical hallmarks [2–7]. To streamline 
clinical practice, in 2015 the CRC Subtyping Consortium 
(CRCSC) integrated independent classification criteria 
to obtain four Consensus Molecular Subtypes (CMS) [8]. 
This classification was obtained from the gene expression 
of bulk cancer tissues strongly admixed with by tran-
scripts of stromal origin, as later revealed [9, 10], so that 
the CMS4 subtype is highly influenced by cancer-associ-
ated fibroblasts. To overcome the stromal contribution 
and explore cancer cell intrinsic features, we previously 
exploited gene expression profiles from CRC patient-
derived xenografts (PDXs), devoid of human stromal sig-
nals, and identified five “colorectal cancer cell intrinsic 
subtypes” (CRIS), each endowed with unique molecular 
characteristics, drug response, and clinical outcome [11].

Despite their great potential for clinical applications, 
transcriptional classifiers tend to summarize biological 
traits into separate, non-overlapping subtypes. However, 
as already shown [12], subtype signatures may represent 
features with continuous degree of activity, not necessar-
ily mutually exclusive, reflecting the complex phenotypes 
observed in human tumors. This is the case of glioblas-
toma in which multiple transcriptional subtypes were 
indeed observed to be activated in individual tumors 
[13, 14]. Likewise, in CRC, transcriptional heterogene-
ity for CMS was ascribed to both epithelial cancer cells 
and mesenchymal cell infiltrates [15, 16]. Moreover, sub-
type assignment typically relies on sets of samples [12, 
17], which may lead to incoherent classification depend-
ing on the composition of the dataset. These observa-
tions, which are in line with histopathological evaluation, 
require a careful assessment to improve stratification and 
capture the biological nuances of human tumors.

To tackle these issues, we employed a large collection 
of human tumors and experimental models to explore 
the heterogeneity of CRC phenotypes, by fuzzy assign-
ments and single-sample class prediction in bulk and 
single-cell profiling, unraveling the basis of multiple con-
tinuous phenotypes of CRC. These are the foundations 
for future clinical translation into transcriptome-based 
nomograms.

Methods
TCGA data
We used raw counts of RNA-seq expression data from 
the Colon adenocarcinoma (COAD) and Rectum 

adenocarcinoma (READ) projects of The Cancer Genome 
Atlas [18]. We downloaded this dataset from the GMQL 
repository [19] through its Web interface using the 
GMQL [20] query:

SELECT (gdc__project__project_id =  = "TCGA-COAD" 
OR.gdc__project__project_id =  = "TCGA-READ")

The dataset includes 698 primary tumor samples 
aligned to the GRCh38 human assembly, each with 
58,387 profiled genes. Furthermore, we collected molec-
ular and survival annotations for the TCGA dataset 
[21–23].

Patient‑derived xenografts collection
All the samples were obtained from patients treated by 
liver metastasectomy or primary tumor excision. Samples 
were procured and the study was conducted under the 
approval of the review boards of the institutions (proto-
col “Profiling”, code 225/2015 on 1 October 2015). Clini-
cal and pathologic data were entered and maintained in 
our prospective database. All patients provided informed 
consent.

Tumor material not required for histopathologic 
analysis was collected and placed in medium 199 sup-
plemented with 200 U/mL penicillin, 200  μg/mL strep-
tomycin, and 100  μg/mL levofloxacin. Each sample was 
cut into 25- to 30-mm3 pieces in antibiotic-containing 
medium; 2 other pieces were coated in Matrigel (BD 
Biosciences) and implanted subcutaneously in 4- to 
6-week-old female NOD (nonobese diabetic)/SCID 
(severe combined immunodeficient) mice, as previously 
described [24, 25]. At passage 2, multiple samples were 
subjected to gene expression profiling. In  vivo experi-
ments and related biobanking data were stored in the 
Laboratory Assistant Suite, a web-based, in-house devel-
oped data management system for automated data track-
ing [26]. All animal procedures were approved by the 
Ethical Commission of the Institute for Cancer Research 
and Treatment and by the Italian Ministry of Health 
(authorization 806/2016-PR), in accordance with Italian 
legislation on animal experimentation.

Patient‑derived xenograft RNA‑seq profiles
We generated RNA-seq profiles from 646 liver metastatic 
and primary CRC PDXs [24] (each with 56,609 genes). 
To obtain bulk RNA-seq data, RNA was extracted using 
miRNeasy Mini Kit (Qiagen), according to the manufac-
turer’s protocol. The quantification and quality analysis 
of RNA was performed on a Bioanalyzer 2100 (Agilent), 
using RNA 6000 Nano Kit (Agilent). Total RNA was 
processed for RNA-seq analysis with the TruSeq RNA 
Library Prep Kit v2 (Illumina) following the manufactur-
er’s instructions and sequenced on a NextSeq 500 system 
(Illumina). Each generated FASTQ file was aligned using 
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STAR 2.5.1 [27] and mapped to the human GRCh38 and 
Mus musculus GRCm38 genome reference combined. 
outFilterMultimapScoreRange was set to 3 to remove 
reads with ambiguous alignment to GRCm38. The GEN-
CODE release 27 was used as transcriptome reference 
annotation, and gene expression quantification was per-
formed with featureCounts [28, 29]. Data are available 
in Additional file  1: Table  S1 and EGAS00001006492. 
Beside the RNA-seq data, we collected several metadata 
annotations such as KRAS, NRAS, BRAF, and PIK3CA 
gene mutations and the sensitivity to the Cetuximab 
drug treatment. Specifically, the latter one includes 
information on cancer volume variation after Cetuxi-
mab treatment and the sensitivity class, namely resistant 
(volume increase above + 35%), stable (volume variation 
between − 50 and + 35%) and sensitive (volume decrease 
greater than − 50%).

TCGA and PDX RNA‑seq data preprocessing
For the TCGA dataset preprocessing, we first extracted 
data from fresh samples only, to ensure uniformity 
with PDX samples that are not formalin-fixed par-
affin-embedded. Additionally, we removed all sam-
ples for which the top 5 genes (i.e., the ones with the 
highest amounts of raw counts) account for at least 
the 20% of the sample total raw counts: indeed, these 
samples cannot be considered well-sequenced at the 
used sequencing depth. Moreover, for each patient, we 
kept a unique sample only, if needed choosing the one 
with the highest number of raw counts. Preprocessing 
of PDX batches included removing technical replicas, 
keeping only the samples with the highest number of 
raw counts. At the end of the preprocessing pipeline, 
we obtained 620 primary tumoral samples in the TCGA 
dataset and 606 samples in the PDX dataset, with a 
common set of 15,084 genes.

For both TCGA and PDX datasets, we computed the 
CPM (counts per million) expression values [27] from the 
raw counts using the CPM function of the edgeR package 
[30]; next, we focused only on the genes of the CRIS sig-
nature [11], which characterize each CRIS class and are 
here used as features of all the proposed classifiers.

CRC single‑cell data and preprocessing
Public single-cell RNA-seq data were downloaded from 
the NCBI Gene Expression Omnibus (GEO) database 
under the accession code GSE132465 [31]. These data 
regard 63,689 cells obtained from 23 patients with pri-
mary colorectal cancer. To distinguish and select the epi-
thelial tumor cells, we used the SingleR [32] tool, which 
uses as reference transcriptome features of several pure 
cell types. From the epithelial cancer cells, potential dou-
blets were removed using the DoubletFinder tool [33]. 

Then, we filtered out low-quality cells with less than 1000 
genes supported by at least 4 reads. Furthermore, since 
the SMC05 and SMC15 patients were represented by less 
than 20 cells, we excluded them from further analyses. In 
total, 4291 cells passed all the described criteria.

Patient‑derived organoid bulk/scRNA‑seq data 
and preprocessing
We generated scRNA-seq and bulk profiles for an in-
house collection of 5 CRC patient-derived organoids 
(EGAS00001006214, PDO). The PDO single-cell profiles 
were generated by 10xGenomics, obtaining 15,766 sin-
gle-cell profiles across all 5 organoid samples. To remove 
the potential doublets, we used the DoubletFinder tool 
[33]. Then, we filtered out low-quality cells with less than 
1000 genes supported by at least 4 reads. In total, 4616 
cells passed all the described criteria. Instead, the PDO 
bulk profiles were performed by poly(A) RNA capture 
(Illumina) with more than 12 million reads per sample 
and 16,183 transcripts detected with at least 4 reads. 
After preprocessing, the scRNA-seq and bulk PDO pro-
files were normalized using the CPM approach [33].

Pseudo‑bulk from scRNA‑seq data
The pseudo-bulks of GSE132465 [31] and PDO scRNA-
seq data have been generated by summing the gene 
counts detected in all the cells belonging to the same 
patient. For the calculation, we used the cells passing all 
the criteria previously described. The pseudo-bulk counts 
of tumors and organoids were normalized using the CPM 
method [34].

CRIS classification
We employed, as a reference, the original CRIS classi-
fier based on the Nearest Template Prediction algorithm 
(NTP) [35], which returns the closest class template for 
each sample. This CRIS classifier uses a dataset-wide 
computation of the expression Z-score value for each 
gene in each sample: these Z-score normalized profiles 
are then compared with the five CRIS class templates 
(i.e., centroids) to assign the sample to the class whose 
centroid is at the minimum significant distance from 
the sample normalized profile [11]. The threshold cho-
sen for significant sample classification was the Benja-
mini–Hochberg false discovery rate (BH.FDR) < 0.2, as 
previously reported [2, 11, 35]. Accordingly, NTP-based 
classification was applied to the above described bulk, 
single-cell, and pseudo-bulk RNA-seq profiles. In par-
ticular, we developed a new NTP-based multi-label 
implementation of the CRIS classifier, “multiCRIS,” able 
to assign each sample to one or more CRIS classes based 
on the distance from each CRIS centroid and on its 
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significance (https://​github.​com/​cisel​la/​multi​CRIS, Sup-
plementary material Sect. 2.3).

For single-cell data, all genes with at least one read per 
gene in a sample were included, for a total of 95% of the 
CRIS gene signatures. For the implementation of single-
sample classifiers on the CRIS classification task, we used 
only confident NTP single-label assignments as state-of-
the-art references for the training and testing phases of 
each alternative method; specifically, this meant using 
562 confidently classified TCGA samples and 550 confi-
dently classified PDX samples.

Single‑label classifiers
We implemented and compared the performances of 
several state-of-the-art single-label classifiers to assign 
the most prominent CRIS class (primary class) to each 
sample individually: Random Forest (RF) [36], Extreme 
Gradient Boosting (XGBoost) [37], Neural Networks 
(NN; with a single hidden layer) [38], and Support Vec-
tor Machines with either linear (LSVM), polynomial 
(PSVM), or Gaussian radial basis function (GRBF-SVM) 
kernel [39].

Using NTP single-label assignments as target refer-
ences and CRIS gene signature as feature space, we 
trained all the assessed classifiers with a tenfold strati-
fied cross-validation on 70% of the TCGA confident sam-
ples (BH.FDR < 0.2); the remaining 30% was instead kept 
aside for a first testing. We included 393 TCGA samples 
in the training set and 169 TCGA samples in the testing 
set, while all 550 PDX samples were used entirely as an 
independent testing set to further evaluate the perfor-
mances of all the classifiers on completely independent 
data of a different type (liver metastasis PDXs instead of 
primary human tumors). During the training phase, we 
also performed hyperparameter tuning to optimize the 
performances of the classifiers by finding the best hyper-
parameter values, then used to train each model one last 
time on the entire training set.

All the details about the mentioned models, data split-
ting, hyperparameter tuning, and training Supplemen-
tary and testing phases are described in Supplementary 
material (Sects. 3.1–3.2), together with the metrics used 
both to cross-validate and test each model of inter-
est (Sect.  3.4). Additionally, we compared the obtained 
results with the performances of the Top Scoring Pairs 
algorithm [11], the only already existing attempt of a sin-
gle-sample CRIS classifier.

Multi‑label single‑sample classifiers
To move towards multi-label classification, we made 
use of algorithm adaptation strategies [37]; this kind of 
approach modifies existing single-label models to cope 
directly with the multi-label setting, as done also for the 

NTP classifier to obtain the multiCRIS classifier. While 
the primary class is directly inherited from the cor-
responding single-label classifiers, we worked on the 
scores of the single-label models to adapt them to cope 
with multi-label assignments. This approach resulted to 
be really promising in dealing with the CRIS classifica-
tion in a multi-label scenario; in Supplementary material 
Sect.  3.3, we reported our algorithm adaptation proce-
dure in full detail.

MultiCRIS references for testing single‑sample multi‑label 
classifiers
To assess the performances of our multi-label single-
sample classifiers, we used multi-label calls coming from 
our multiCRIS approach. In multiCRIS, a sample can be 
assigned to one or more “secondary” classes for which 
the membership is lower than for the primary class but 
still significant (BH.FDR < 0.2). To define reliable sec-
ondary classes as reference targets, the NTP multiCRIS 
calls of each sample were further compared to class-
specific thresholds. These thresholds were computed for 
each class as the 5th percentile of the primary class NTP 
scores on the entire TCGA and PDX sets separately (all 
details are reported in Supplementary material Sect. 2.3). 
This procedure confirms the primary assignment of the 
NTP single-label, and possibly assigns secondary classes 
that must be confident calls but also exceed a minimum 
accepted membership score. The so-obtained multiCRIS 
calls were used as reference targets for testing single-
sample, multi-label models.

Clinical and biological evaluation
Clinical and biological validations have been performed 
on the results provided by the assessed classifiers using 
survival analysis with Kaplan–Meier curves [40] and 
Fisher statistical tests [41], as detailed in Supplementary 
material Sect. 3.5.

We used Kaplan–Meier curves computed for the first 
36 months, due to the high number of censored patients 
(i.e., for whom the follow-up has terminated and thus 
no outcome information is available after a given date) 
between 36 and 60  months in the considered datasets. 
Because of this, all samples with disease-free survival 
greater than 36 months have been considered as disease-
free at the 36-month endpoint. To assess the statistical 
significance of the difference between two compared sur-
vival distributions, we used the log-rank test, a non-par-
ametric hypothesis test that can be used also when some 
observations are censored.

For Fisher tests, we used a p-value threshold of 0.05 
to discriminate statistically significant annotations from 
not significant ones. Also, to enrich our evaluation of 
each clinical correlate, we computed odds ratio and 

https://github.com/cisella/multiCRIS
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effect sizes, which respectively make comparisons with 
the overall scenario or with the complementary cases, as 
detailed in Supplementary material Sect. 3.5.

Results
Multi‑label CRIS stratification of colorectal cancer
To improve stratification and capture the biological traits 
of CRC according to the CRIS classification, we reasoned 
that its Nearest Template Prediction (NTP) algorithm 
can be employed not only to assign the single most prom-
inent class, but also to evaluate the assignment of each 
sample to all CRIS classes, as well as the false discovery 
rate of each assignment [11]. Thus, we implemented a 
new NTP-based multi-label version of the CRIS clas-
sifier, “multiCRIS,” able to assign each sample to one or 
more CRIS classes based on the distance from each CRIS 
centroid and on its significance (Supplementary material 
Sect. 2.3).

MultiCRIS was first applied to the 620-sample RNA-
seq dataset from The Cancer Genome Atlas (TCGA) [18], 
to confidently assign 91% of the samples to at least one 
class (Fig. 1a, Additional file 2: Table S2, BH. FDR < 0.2) 
[11]. Interestingly, 52% of the samples could also be con-
fidently assigned to additional CRIS subtypes (Fig.  1b). 
To verify if different FDR thresholds could impact on 
multiple class assignment, we performed multiCRIS 
analysis with more stringent thresholds and found that 
the fraction of samples belonging to multiple classes was 
only marginally reduced (Additional file 3: Table S3).

Therefore, each tumor may be assigned either to a sin-
gle class (48% of the assigned samples), to whom it dis-
plays the only significantly low distance, or to multiple 
classes (Fig.  1b), of which the class with the lowest dis-
tance is the primary.

Notably, for all CRIS subtypes, the number of sec-
ondary assignments was grossly equivalent to primary 
assignments (Fig.  1c, Additional file  4: Table  S4). As 
expected, non-primary assignments displayed signifi-
cantly higher distance to the CRIS centroids (Additional 
file  5: Table  S5). However, multiple assignments occur 
preferentially within two specific subfamilies: CRIS-
A/CRIS-B and CRIS-C/CRIS-D/CRIS-E as previously 
described [11] (Additional file  6: Table  S6). Finally, to 
assess whether these multiple assignments captured 
tumors with multiple CRIS biological traits, we explored 
the main characteristics associated with each CRIS class.

Interestingly, samples assigned to secondary classes 
mostly retain key molecular features of the classes as 
shown in Fig. 1d, including MSI status for CRIS-A, deple-
tion of KRAS mutations in CRIS-C, together with WNT 
pathway activity in CRIS-D/CRIS-E and Epithelial Mes-
enchymal Transition (EMT) in CRIS-B samples (Addi-
tional file 7: Table S7). Notably, we observed that samples 

with multiple assignments tend to have higher distances 
from CRIS centroids, which could reflect either a compo-
sition of cells concomitantly harboring different pheno-
types or a mixture of cells with different phenotypes.

Single‑cell heterogeneity in multiple CRIS assignments
The observed multiple class assignment of a consistent 
fraction of CRCs could be explained in two ways: tumors 
are composed of cancer cells with ambiguous phenotype, 
or mixed populations of cells of different subtypes are 
present. To explore the heterogeneity underpinning mul-
tiCRIS assignments, we performed a set of paired single-
cell RNA sequencing (scRNA-seq) and bulk profiles in 
an in-house collection of 5 CRC organoids derived from 
PDXs. These data allowed direct comparisons of single-
cell and bulk transcriptional profiles. As a third option, 
pseudo-bulk profiles were obtained by aggregating all sin-
gle-cell profiles derived from one sample. Notably, while 
the profiles from individual cells captured on average 
1116 transcripts with at least 5 supporting reads (Addi-
tional file  8: Figure S1), the pseudo-bulk profiles traced 
more than 17,095 transcripts on average (Additional 
file 9: Table S8a). As expected, the profiles from matched 
bulk/pseudo-bulk samples displayed strong correlations, 
which could not be reached by unmatched comparisons 
(average correlation R = 0.684, R-test p-value < 2.20−16; 
Additional file  8: Figure S2). These results indicate that 
(i) single-cell profiles display high heterogeneity and (ii) 
aggregated single-cell profiles recapitulate the transcrip-
tome obtained in bulk profiles. Thus, the 3D in  vitro 
organoid culture system captures a complex spectrum of 
transcriptionally heterogeneous cells.

In line with previous results, the CRIS classification of 
organoids’ bulk RNA-seq profiles revealed multiple class 
assignments for three organoids, a single class assign-
ment for one organoid, and one non-classified organoid 
(Additional file  10: Table  S9). To explore whether mul-
tiple class assignments are due to the presence of cells 
with a hybrid phenotype rather than a mixture of cells 
with different phenotypes, we performed CRIS assign-
ments on single-cell profiles (see “Methods” section and 
Additional file 11: Table S10). Interestingly, 78% of single 
cells were successfully assigned to at least one CRIS class; 
of these, 75% were assigned to a single class and 25% to 
multiple CRIS classes (Additional file  11: Table  S10). 
Notably, we found both coexisting mixtures of cells, each 
with a single CRIS assignment, and cells with hybrid mul-
tiCRIS classes. Individual cells from a given organoid 
were mainly assigned to the CRIS class/classes defined by 
the bulk profile of that organoid (Fig. 2).

These results highlight that, at single-cell resolution, 
most cells are assigned to individual CRIS subtypes 
and that their mixture is responsible for multi-class 
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Fig. 1  Multi-label CRIS classification of 596 CRC samples from TCGA. a Heatmap representing CRIS classes genes (rows) as Z-scores and classified 
samples (columns). Above the heatmap, a panel reports secondary classifications. b Pie chart representing the proportion of samples with unique 
(white) or multiple (black) class assignments by multiCRIS in the TCGA CRC dataset. c Proportions of primary and secondary assignments for each 
CRIS class in the TCGA dataset. d Heatmap representing the enrichment of key molecular features in primary and secondary CRIS classes; black bars 
indicate positivity to a molecular feature (i.e., MSI status, and BRAF/KRAS mutations); Z-scores are represented for continuous variables such as EMT, 
Paneth and WNT scores. ***p-value < 0.0001, **p-value < 0.001, *p-value < 0.05, ns = not significant
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assignment of the bulk transcriptome; however, it is also 
possible that a small but sizable portion of cells with a 
hybrid phenotype may contribute to the assignment of 
multiple CRIS classes to a given bulk sample. Indeed, 
we detected the coexistence of both cells with different 
CRIS identity and cells with a hybrid phenotype in all the 
organoids that received multiple CRIS bulk assignments 
(Fig. 2).

To extend our observation to human tumors, we took 
advantage of public scRNA-seq data from a cohort of 
patients (GSE132465) [31], focusing on epithelial cells 
to compare multi-label CRIS assignments of pseudo-
bulk and single-cell profiles: such analysis confirmed the 
occurrence of patients harboring multiple CRIS assign-
ments (Additional file  12: Table  S11). In these samples, 
we confirmed that most individual cells are assigned to a 
specific CRIS class (64% of classified cells, of which 75% 
assigned to a single CRIS class and 25% to multiCRIS 
groups; Fig.  3a; Additional file  8: Figure S3; Additional 
file 13: Table S12). However, similarly to organoids, each 
sample was composed by different cell populations clas-
sified into various CRIS subtypes, leading to a complex 
phenotype that was captured by multiple CRIS assign-
ments of pseudo-bulk profiles (Fig.  3b). Accordingly, 
samples assigned to a single CRIS class tended to have 

a higher proportion of cells assigned to that class (Addi-
tional file 8: Figure S3). In specific samples, the high per-
centage of individual cells with multi-label assignments 
may reflect a portion of tissue undergoing a functional 
switch or a stable intermediate differentiation stage. For 
example, this occurred in patient SMC17 (Fig.  3b), in 
which 57% of classified cells displayed multi-label phe-
notypes. Similarly, SMCO3 and SMC21 patients showed 
34 and 28% of cells, respectively, with hybrid phenotype 
(Fig.  3b) in line with their multi-label status traced in 
bulk profile.

Altogether, these results show that the heterogeneity of 
the CRIS transcriptional profile is rooted at the single-cell 
level and that the phenotypes of individual cells sum up 
to define the CRIS classification of the bulk tumor. There-
fore, the evidence of multiCRIS tumors can be mainly 
explained either by a mosaic composition of different cell 
populations with specific functional characteristics, or by 
a small portion of hybrid cells with mixed phenotype.

Single‑sample approaches for CRIS classification
MultiCRIS paves the way for complex biological and 
clinical readouts; however, it is influenced by its NTP 
implementation, which relies on centroid distance and 
gene-level Z-score calculated on batches of samples, 

Fig. 2  MultiCRIS classification of human organoids. For each organoid line from left to right they are reported: MultiCRIS classification of bulk 
RNA-seq profile; number of cells with multiple assignments (MC), single assignment (SC), and not classified (NC); proximity of each classified cell to 
one or more centroids. Venn diagrams revealing the intersection between CRIS classes at the single-cell level
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Fig. 3  MultiCRIS classification of human CRCs. a multiCRIS classification of human pseudo-bulk tumors derived from single-cell profiles. b For each 
CRC case, from left to right they are reported: MultiCRIS classification of the pseudo-bulk profile; number of cells with multiple assignments (MC), 
single assignment (SC) and not classified (NC); proximity of each classified cell to one or more centroids. Venn diagrams revealing the intersection 
between CRIS classes at the single-cell level
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without allowing single-sample classification [35]. To 
overcome this, we moved towards single-sample algo-
rithms, able to classify each sample independently: these 
algorithms can deal both with single-label assignment to 

the primary class only (SC), or with multi-label assign-
ments (MC), to capture inner heterogeneity. Our work-
flow is outlined in Fig.  4; it includes an initial training 
phase for all the algorithms (in blue), their performance 

Fig. 4  Workflow for machine learning-based construction of a single-sample CRIS classifier. Overview of the main steps (training, testing, and 
clinical/biological validation) on TCGA and PDX CRC samples, for single-label and multi-label CRIS classifier construction
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evaluation on testing data (in pink) and a final clinical 
and biological validation of the most promising single-
sample approach (in green). We first implemented single-
sample single-label algorithms able to recognize the most 
prominent (primary) class of each sample, as the original 
version of the NTP classifier does for dataset-dependent 
classifications [11]. The considered approaches include 
Random Forest (RF) [36], Support Vector Machines 
with Linear (LSVM), Polynomial (PSVM), and Gaussian 
Radial Basis Function (GRBF-SVM) kernels [39], Neu-
ral Networks (NN) [38], and Extreme Gradient Boosting 
Trees (XGBoost) [37]. These single-sample algorithms 
were subsequently adapted to the multi-label context by 
extracting all CRIS class memberships of each sample; 
this allowed the validation of their results against those of 
the multi-label NTP (multiCRIS).

To evaluate each algorithm and identify the one most 
suitable to predict CRIS class memberships in a clinically 
applicable single-sample classifier, we took advantage of 
the collection of primary CRC samples from the TCGA 
project (n = 562) and of the cohort of patient-derived 
xenograft (PDX, n = 550). TCGA data were divided in 
training and testing sets, keeping the same CRIS class 
proportions of the entire dataset. Each classifier was 
trained considering only the expression values of the 
CRIS genes as feature space and using the NTP primary 
class as target reference [11], regardless of its single- or 
multi-label usage. A 30% of the TCGA samples and the 
full PDX dataset were used as two independent testing 
sets to evaluate the results of single-label and multi-label 
classifiers.

In single-label evaluation, focused on primary class 
assignments, we employed global accuracy, precision, 
and recall of each class, derived metrics (F1-score and 
Matthews correlation coefficient (MCC)), and thresh-
old-based measures (areas under the receiver operat-
ing characteristic and the precision-recall curves), as to 
evaluate the performances of the considered algorithms 
and compare them with the ones of the original NTP 
approach [35] (Additional file  14: Table  S13). LSVM 
reached approximately 80% of accuracy on TCGA test-
ing and 75% on PDX, showing good performances when 
considering both precision and recall of all the classes 
(Fig. 5). Although XGBoost and RF achieved interesting 
performances, their class-specific behaviors appear less 
stable and slightly worse overall than those of the LSVM 
(Fig. 5).

Furthermore, in the single-label scenario, the machine 
learning methods were compared with the TSP approach, 
a first attempt of a single-sample CRIS classifier, that had 
originally shown quite limited concordance with NTP 
classification [11]. Its sub-optimal results are confirmed 
in the current study: all our classifiers achieve higher 

accuracies compared to TSP, which reached at most 
70.7% (Additional file  14: Table  S13). Particularly for 
LSVM, even the class with worse F1-score on the TCGA 
test set (CRIS-E, with 73%) significantly overcomes the 
TSP result (CRIS-E with 28%).

Also, on the PDX set, LSVM reaches the most convinc-
ing results. The graphs in Additional file 8: Figure S4a and 
S4b show similar distributions of the CRIS classes within 
the two TCGA testing and PDX datasets. They indicate 
that, in TCGA, CRIS-A is the most frequent class, being 
slightly more represented than CRIS-C; CRIS-E follows, 
while CRIS-B and CRIS-D are lower in size but compara-
ble. Almost the same trend can be noticed in PDX, with 
the only exception of the CRIS-A class that is underrep-
resented in PDXs as a consequence of the scarcity of MSI 
cases (for which CRIS-A is enriched) among samples 
coming from metastatic CRC [23].

Thus, based on performance evaluations, we identified 
LSVM as the best single-label classifier in predicting the 
primary CRIS class of each single CRC sample. However, 
all the three trained algorithms are capable of computing 
memberships to all the 5 CRIS classes by means of algo-
rithm adaptation techniques [42], which paves the way 
towards the multi-label context.

Multi‑label CRIS classification through single‑sample 
approaches
Following an algorithm adaptation strategy, we devel-
oped multi-label adapted (mla) single-sample CRIS 
classifiers. Specifically, each mla algorithm inherits the 
primary class assignment from its single-label version 
but can associate any heterogeneous sample with one or 
more additional secondary classes.

To evaluate mla classifiers, we used both metrics analo-
gous to the single-label ones, but adapted for the multi-
label context (relaxed accuracy, precision, recall) and 
specific multi-label measures (average precision, Ham-
ming loss, subset, and multi-label accuracy). All these 
metrics compare the results of mla algorithms with tar-
get assignments obtained from the MultiCRIS approach, 
introduced in this work.

Among mla algorithms, LSVM still reached the best 
overall performance when considering class precisions 
and recalls, revealing to be the most robust approach also 
in the multi-label context (Fig. 5, Additional files 15, 16, 
17: Tables S14, S15, S16). Furthermore, LSVM assigned 
the primary multiCRIS class (i.e., the most prominent 
class according to the NTP algorithm) in 91.7% of the 
cases (relaxed accuracy) and reached an average preci-
sion of 92.6% in predicting the multi-label characteriza-
tion of the TCGA testing samples. When considering the 
Hamming loss, which represents the average fraction of 
misclassified labels, LSVM was the approach having the 
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lowest fractions, both in TCGA testing and PDX sets. 
Eventually, LSVM subset accuracy (the strictly identical 
attribution of all the expected labels) was quite relevant, 
even more considering that each algorithm is trained by 
providing the primary class only as a reference target.

Thus, LSVM clearly emerged as the best approach 
to perform single-sample classification, either on a 

single-label or multi-label perspective. The distributions 
of the CRIS classes predicted by the single-label (a, b) 
and multi-label adapted (c, d) LSVM on the TCGA test-
ing and PDX sets, respectively, are reported in Additional 
file  8: Figure S4. Multi-label distributions are coherent 
with expectations: in both the datasets, CRIS-C results 
to be the most prevalent class, while CRIS-B doubles its 

Fig. 5  Performance evaluation of machine learning-based CRIS classifiers. For each CRIS class, F1-scores, and additional performance metrics (see 
text) for different machine learning classifiers are reported for single-label (a, b) and multi-label (c, d) configurations, on the TCGA test set (a, c) and 
PDX validation set (b, d)
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assigned samples. Conversely, CRIS-D and CRIS-E col-
lect more non-primary assignments on PDX than on 
TCGA; eventually, CRIS-A is the second most frequent 
in TCGA while stays still underrepresented in PDX, as 
discussed for the single-label case.

Clinical and biological evaluation of single‑label 
and multi‑label LSVM classifier
Both the single-label and multi-label LSVM classifica-
tion results were evaluated for molecular and clinical 
correlates.

We first evaluated the prognostic value of LSVM-based 
models, on the TCGA dataset considering different sce-
narios: only the samples assigned to the class as primary 
class, only the samples assigned to the class as second-
ary class, or all the tumors classified to the CRIS class 
regardless of whether it is a primary or secondary assign-
ment. In all such cases, any comparison using the Fisher 
test [43] is always with regard to all the samples that are 
not assigned at all to the CRIS class under examination. 
For both the NTP and LSVM-based single-label classifi-
ers, Kaplan–Meier (KM) [40] survival analysis confirmed 
that the CRIS-B class is significantly associated with 
poor prognosis (Fig. 6a,b). Interestingly, with multi-label 
assignments, excluding samples with secondary CRIS-B 
assignment from the non-CRIS-B group highlighted an 
even higher association with poor prognosis (Fig.  6c,d). 

Accordingly, when samples with primary CRIS-B assign-
ment were excluded from the analysis, samples with sec-
ondary assignment to CRIS-B displayed worse prognosis 
(Fig.  6e,f ). When primary and secondary CRIS-B cases 
were joined, prognostic significance reached the maxi-
mum values (Fig. 6g,h). Notably, prognostic significance 
was higher for LSVM-based classification in all cases.

Response to anti-EGFR treatment was evaluated in 
the PDX cohort. We confirmed associations of CRIS-
C and sensitivity to Cetuximab, for which single-label 
LSVM (odds ratio (O.R.) = 3.281, confidence interval 
(CI) = 1.66–6.73) and multi-label LSVM, including also 
secondary assignments in the CRIS-C cohort, displayed 
similar performances (O.R = 3.36, CI = 1.24–10.64) 
(Additional file 8: Figure S5).

Other molecular and clinical characteristics of the 
CRIS subtypes, already extensively analyzed and dis-
closed by Isella et al. in [11], were significantly captured 
with LSVM models, either considering the primary 
class only, or the complete multi-label characterization, 
as shown in Additional file 8: Figure S5. This is particu-
larly evident for the enrichment of MSI-high cases in 
CRIS-A and for the depletion of KRAS mutations in 
CRIS-C samples. Additionally, we performed a feature 
importance analysis based on the coefficients of the 
LSVM models to prioritize and extract the most impor-
tant genes for each class. This selection highlighted genes 

Fig. 6  Prognostic significance of single- and multi-label CRIS-B assignment. Kaplan–Meier survival curves over 36 months focused on CRIS-B 
classification by NTP-based and machine learning-based methods in the TCGA CRC dataset. The prognostic value of CRIS-B assignment by NTP (top) 
and LSVM (bottom) is displayed for a, b single-label CRIS-B vs non-CRIS-B; c, d CRIS-B primary vs. non-CRIS-B, excluding cases with secondary CRIS-B 
assignment; e, f CRIS-B secondary only vs non-CRIS-B; g, h CRIS-B primary plus secondary vs non-CRIS-B
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with interesting roles and functions for each class, sum-
marized in Additional file  18: Table  S17. In particular, 
for CRIS-A: FCGBP, an immunoglobulin-binding mucin 
involved in humoral immune responses in CRC [44], 
and ANKRD37, induced by hypoxia and likely involved 
in autophagy [45]; for CRIS-B: Kallikreins 10 and 6, 
and IGF2BP3, all known to promote cancer metasta-
sis [46–49], consistently with the poor prognosis of the 
CRIS-B subtype; for CRIS-C: two metabolic enzymes, 
CES2 and QPRT, both involved in promoting resistance 
to antineoplastic agents [50–52], highlighting CRIS-
C-specific possible therapeutic strategies; for CRIS-D: 
three genes involved in the WNT pathway, enhanced in 
CRIS-D, either as a modulator (NOTUM) [53], a target 
(FGF20) [54] and a non-canonical mediator (PTK7) [55]; 
and for CRIS-E: PTPRO, a tyrosine phosphatase recep-
tor induced by the WNT pathway [56], typically active in 
CRIS-E subtype.

All these evidences confirmed the reliability of the pre-
dictions obtained with our LSVM single-sample mod-
els, especially the mla LSVM, henceforth referred to as 
ML2CRIS (Multi-Label Machine Learning CRIS, which is 
able to highlight biologically meaningful inner heteroge-
neity of the samples (if any), while assessing each patient 
individually in a clinical usage setting.

Discussion
The global transcriptome profile of bulk tumors provides 
and aggregates portraits of several cell types composing 
the whole tumor ecosystem, including cancer cells, ves-
sels, fibroblasts, and immune cells. These data provide 
invaluable information to discern the biology of different 
tumor types and improve patient stratification for clinical 
practice. However, such data stem from different tissues, 
and in current biomedical research, it is essential to dis-
sect the contribution of each cell type to tailor the most 
suited therapeutic strategy.

In this perspective, the CRIS classifier was designed to 
subdivide CRC into five subtypes specifically based on 
the intrinsic epithelial cancer cell transcriptome [9, 11]. 
This cancer cell-oriented taxonomy not only assists in 
stratifying patients by outcome, it also captures differ-
ent dysregulated biological traits, which can be targeted 
for novel therapeutic strategies, independently of the 
amount and composition of the stromal cell compart-
ment [57]. However, the CRIS classifier required two 
key implementation aspects to be solved. First, NTP-
based classification univocally assigns one subtype label 
to a tumor, ignoring the potential coexistence of traits 
pertaining to different subtypes. Indeed, the member-
ship of a sample to a transcriptional class is a quantita-
tive and probabilistic attribute, rather than a qualitative, 
univocal one [12, 17]. Furthermore, a tumor may display 

ambiguous transcriptional features, associated with more 
than one subtype and still informative for the prediction 
of specific biological and clinical features as previously 
show in glioblastoma [13, 14] and CRC for CMS classi-
fier [15, 16]. Second, NTP relies on a large cohort of sam-
ples to properly standardize the data and assign a tumor 
to a CRIS class. To improve feasibility in clinical practice, 
a novel implementation of CRIS subtyping should allow 
profiling and classification of individual samples, while 
maintaining the capacity to explore the intratumoral het-
erogeneity of CRIS classes.

In this work, we show that multiple CRIS subtypes 
can coexist in the same tumor and that this is a quite 
common occurrence in CRC. To investigate this aspect, 
we implemented a multi-label CRIS NTP classifier to 
enable statistically significant assignment of each tumor 
sample to one or more classes. With multi-label clas-
sification, the majority of TCGA CRC cases received 
multiple assignments. The observation that key bio-
logical and molecular features were associated with 
CRIS classes, even when a secondary assignment was 
attributed to the sample, indicates that a fuzzy clas-
sification reliably reflects the complexity of the tumor 
biology. Multiple assignments were driven by two main 
causes: (i) concomitant presence of cell subpopulations 
with distinct CRIS phenotypes, or (ii) a homogeneous 
cell population carrying a hybrid CRIS phenotype. To 
discern the relative contribution of each of the above-
mentioned drivers of heterogeneity, we took advan-
tage of matched single-cell and bulk RNA-seq profiles 
to compare the fuzzy assignment of the tumor bulk 
with single-cell multi-label CRIS assignments. The 
observed concordance of classification between orga-
noid bulk and single-cell RNA-seq profiles confirmed 
the adequacy of multiCRIS also for single-cell classifi-
cation. It should be noted that the robustness of mul-
tiCRIS derives from its use of lists of signature genes, 
without any quantitative parameters assigned to them. 
This approach has proven robust to cross-platform 
analyses, which typically involve dropout of signature 
genes [35]; furthermore, CRIS classifier genes were 
initially selected for having highly variable expression 
and therefore be highly expressed in at least a subset of 
samples [11]. This analysis revealed that, in most cases, 
coexistence of cells assigned to distinct CRIS subtypes 
is likely to explain the multiple assignments of the bulk 
profile. However, we also observed cells in which multi-
ple CRIS traits coexist, and, in a minority of cases, cells 
with a hybrid CRIS phenotype were the dominant pop-
ulation. These observations are in line with a previous 
work describing intratumoral heterogeneity of the CMS 
subtype at the single-cell level: Lineage-dependent gene 
expression programs influence the immune landscape 
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of colorectal cancer [31]. The new multiCRIS approach 
proposed in this work allows the exploration of fuzzy 
membership in CRIS transcriptional classes capturing 
intratumoral heterogeneity. Future characterization of 
these new mixed phenotypes will allow defining their 
stable or transitory nature, increasing the understand-
ing of tumor evolution and cell differentiation.

To overcome the need of NTP for a large sample 
series, machine learning-based single-sample classifica-
tion methods (SVMs, NN, RF, and XGBoost) have been 
evaluated here. These methods can reflect sample inner 
complexity while overcoming the dataset-dependence 
issue of the multiCRIS NTP approach. This is essential 
towards a clinical application of such transcriptional clas-
sification of patients’ samples, single or in small batches, 
to assist in therapy decision in clinical practice. Further-
more, this method can also be successfully applied to 
data from clinical trials, which typically target a specific 
subgroup of cases that are likely not balanced in terms of 
CRIS class representation. Among all the tested classifi-
ers, the Linear Support Vector Machine resulted as the 
best algorithm, both in single-label and in its multi-label 
adapted configuration, named ML2CRIS. Indeed, the 
here designed multi-label adaptation procedure allows 
enriching the original single-label assignments of the 
model with the addition of secondary classes. ML2CRIS 
correctly assigns the CRIS classes based on the origi-
nal single-label NTP algorithm in 91.7% of TCGA test 
cases, with an average precision of 92.6% in estimating 
the multi-label characterization of each sample. Besides 
these encouraging performances, primary and second-
ary CRIS assignments of ML2CRIS confirmed that the 
molecular traits characterizing each of the five sub-
types (e.g., enrichment of KRAS mutations and MSI-
high status for CRIS-A, depletion of KRAS mutations 
for CRIS-C, and poor prognosis of CRIS-B) were main-
tained also in secondary assignments. When the single-
label LSVM-based classifier was applied, CRIS-C cases 
were significantly associated with Cetuximab sensitiv-
ity (OR = 3.281, p-value < 0.0003). In the multi-label sce-
nario of ML2CRIS, when secondary CRIS-C cases were 
added to primary ones, the odds ratio increased (3.359), 
although with reduced significance (p-value = 0.0127). 
However, when secondary CRIS-C cases were removed 
from both groups, and CRIS-C primary cases were com-
pared with non-CRIS-C (not even secondary), the odds 
ratio increased together with its significance (OR = 4.164, 
p-value < 0.004).

Therefore, ML2CRIS shows promising capabilities in 
predicting CRIS-C patients responsive to Cetuximab 
pharmacological treatment, with adjustable sensitivity 
and specificity depending on the assignments of CRIS-C 
subtype secondary samples.

These results confirm that tumors harboring multiple 
CRIS phenotypes also express clinical features that reflect 
their multiple assignments. However, our study was lim-
ited to broad multi-label analysis. Dedicated studies with 
a higher number of multi-label samples may allow, in the 
future, to explore relations between different classes and 
how they affect the course of the disease.

Conclusions
In summary, this work provides the biological and meth-
odological basis for multi-label fuzzy classification of 
CRC. The results presented here confirm that captur-
ing intratumor heterogeneity provides a more compre-
hensive picture of the biological and clinical features of 
human tumors. This information represents a milestone 
for deciphering tumor biology and for the development 
of novel therapeutic strategies, and it could be extended 
to other tumor types.
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