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SYSTEMATIC REVIEW

Efficacy of platelet concentrates in bone healing: A systematic review on
animal studies – Part B: Large-size animal models

Sabrina Marcazzan DVM, PhD student1,2, Silvio Taschieri 1,3, Roberto Lodovico Weinstein MD, DDS4,
& Massimo Del Fabbro MSc, PhD1

1Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy, 2Department of Nanomedicine,
Houston Methodist Research Institute, Houston, TX, USA, 3Dental Clinic, IRCCS (Scientific Institute for Care and Clinical Research) Istituto Ortopedico
Galeazzi, Milan, Italy, and 4Scientific Director D&S ICH Humanitas Dental Center, Rozzano, Milan, Italy

Abstract

In the presence of large bone defects, delayed bone union, or nonunion and fractures, bone
reconstruction may be necessary. Different strategies have been employed to enhance bone
healing among which the use of autologous platelet concentrates (APCs). Due to the high
content of platelets and platelet-derived bioactive molecules (e.g., growth factors, antimicro-
bial peptides), they are promising candidates to enhance bone healing. However, both pre-
clinical and clinical studies produced contrasting results, mainly due to a high heterogeneity in
study design, objectives, techniques adopted, and outcomes assessed. The aim of the present
systematic review was to evaluate the efficacy of APCs in animal models of bone regeneration,
considering the possible factors that might affect the outcome. An electronic search was
performed on MEDLINE and Scopus databases. Comparative animal studies with a minimum
follow up of 2 weeks, at least five subjects per group and using APCs for regeneration of bone
defects were included. Articles underwent risk of bias assessment and quality evaluation. Fifty
studies performed on six animal species (rat, rabbit, dog, sheep, goat, mini-pig) were included.
The present part of the review considers studies performed on small ruminants, dogs, and
mini-pigs (14 articles). The majority of the studies were considered at low risk of bias. In
general, APCs’ adjunct positively affected bone regeneration. Animal species, platelet and
growth factors concentration, type of bone defect and of platelet concentrate used seemed
to influence their efficacy in bone healing. However, sound conclusions were not drawn since
too few studies for each large-size animal model were included. In addition, characterization of
APCs’ content was performed only in a few studies. Further studies with a standardized
protocol including characterization of the final products will provide useful information for
translating the results to clinical application of APCs in bone surgery.
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Introduction

In the last 20 years, autologous platelet concentrates (APCs) have
been widely used for tissue regeneration in several fields of
medicine, such as orthopedics, sports medicine, oral and max-
illofacial surgery, dentistry, ophthalmology, and plastic and car-
diac surgery [1]. Among APCs, platelet-rich plasma (PRP) is the
most known. A second-generation APC called platelet-rich fibrin
(PRF) was also developed and used in oral, maxillofacial, and
plastic surgery [2]. PRP is defined as an autologous derivative of
anticoagulated whole blood (WB) with a supra physiological
concentration of platelets, and generally is used in gel or liquid
form [3]. PRF differs from PRP under many aspects. First, the
PRF preparation protocol is very simple, avoiding the use of
anticoagulant. Therefore, platelet activation and fibrinogen poly-
merization occur without blood manipulation, during centrifuga-
tion, instead of being induced using specific chemical activators

at the time of in situ application. In the PRF protocol, clotting is
favored by the contact with silica-coated or glass tubes that
initiates the clumping of the red blood cells, resulting in separa-
tion of the blood component, and in a few minutes activates most
platelets, which release coagulation factors. Therefore, during
centrifugation the polymerization of fibrinogen into fibrin occurs
differently and faster than PRP [4]. The physiological architecture
of PRF, which can be used in clot or membrane form, consists of
a mature and dense fibrin network in which almost 100% of
platelets and about 50% of leukocytes of the blood sample are
collected [5]. The fibrin clot in the PRF is more condensed than
the PRP gel, allowing a slow and prolonged release of the content
(including the growth factors (GFs) entrapped in the PRF clot)
[6,7]. In vitro studies showed that PRF releases gradually GFs and
cytokines for at least 10 days, whereas PRP gel displayed a
different kinetics, releasing most of the GFs and bioactive mole-
cules immediately after activation and up to 6–8 h after its
application [6–9]. However, it has been reported that, after such
intense release of the granules’ content, also PRP may continu-
ously release GFs at a slow rate, up to several days, with a
kinetics dependent on the GF type [6–8]. A study that investigated
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the overall amount of released GFs and the induction of cell
migration in vitro up to 28 days showed that PRF may offer
significant advantages over PRP [9]. Secondly, the volume of
plasma used to prepare the clot is different in the two APCs. In
PRF, fibrinogen in the plasma is not concentrated by blood
centrifugation. During PRPs’ preparation, the plasma column is
separated in different fractions, while in PRF there is no fraction-
ing and the total amount of plasma available to forming the final
clot is higher than in PRP. Minor drawbacks of PRF respect to
PRP may be noted. Since anticoagulant is not used, blood draw-
ing and PRF preparation must be done intrasurgically soon before
the application, as opposite to PRP, for which the blood can be
drawn from patients before starting the surgical procedure and
then activated when needed, during surgery. Since PRP can be
used in liquid form, it may also be applied by infiltration in the
tissues, while this is not feasible with PRF. Table I summarizes
the main properties and biological activities of APCs and the
main benefits produced, which support their use in a number of
clinical applications, though there is still no clear evidence that
the biological response to a given type of APC is clearly different
than others in specific interventions. The rationale of the use of
PRP and PRF in hard and soft tissue regeneration is the high
content of GFs and bioactive molecules, released by activated
platelets, which are claimed to enhance and speed up the healing
process. Indeed, platelets are involved in wound healing and
inflammation and have the capability to induce a number of
biological activities, among which osteoclast-like cells formation
from bone marrow cells, as demonstrated in a murine study [10].
Platelet-GFs contribute at different levels to angiogenesis, macro-
phages recruitment, chemotaxis of keratinocytes, fibroblasts, and
mitogenic activity [1]. In particular, some platelet-GFs are
strongly involved in bone regeneration: b-fibroblast growth factor
(bFGF) induces preosteoblast proliferation and differentiation;
insulin-like growth factor (IGF-1) stimulates expression of alka-
line phosphatase, osteopontin, and osteocalcin in bone marrow
stromal cells; and platelet-derived growth factor (PDGF) may
exert positive effect on bone regeneration through its mitogenic
activity and synergy with transforming growth factor- beta1
(TGF-1). The latter is the most important GF released by platelets
during bone healing and contributes to proliferation of fibroblasts,
marrow stem cells, pre-osteoblasts and osteoclasts activity. In

addition, vascular endothelial growth factor (VEGF) enhances
angiogenesis, which is fundamental in bone regeneration [11].
Also, other molecules and properties of APCs such as antimicro-
bial, analgesic, and anti-inflammatory activities may be useful for
bone tissue regeneration [1,3,12]. In addition, it was reported that
platelets might activate peripheral blood mononuclear cells,
which released insulin-like-10 (IL-10), an anti-inflammatory
cytokine involved in tissue regeneration [13]. Despite these posi-
tive features in a number of processes involved in tissue regenera-
tion, efficacy of APCs in bone healing is still debated
[1,11,14,15]. In vitro studies reported a dose-dependent effect of
PRP in osteoblasts and fibroblasts differentiation, with the best
results obtained with a moderate platelet concentration compared
to a high one [1,11]. In contrast, results obtained from in vivo and
clinical studies are controversial and the different platelet concen-
tration of PRP used, different protocols, as well as type of bone
defect and different animal species have been claimed as possibly
responsible for this variability [11,14,16–18]. A high heterogene-
ity was found in clinical studies, which used APCs for bone
reconstruction: PRP used as an adjunct to bone grafts was
reported to have a beneficial effect in the treatment of intrabony
defects, while it seemed apparently useless in improving bone
formation in sinus lift procedures [15,19]. In contrast, a recent
systematic review reported that PRF in combination with bone
grafts may enhance graft maturation [20]. PRF is currently mostly
used in oral surgery procedures, compared to PRP, whose use also
extends to other fields of surgery [20]. However, a comparison of
clinical studies is often difficult due to the variable protocols,
bone grafts combination, platelet concentration, and methods in
assessing bone regeneration [18–20]. In addition, there is a lack of
randomized controlled clinical trials on the efficacy of APCs in
bone injuries [19–22]. So, the aim of this systematic review was
to summarize the preclinical evidence of the APCs’ efficacy used
alone or in combination with bone grafts in animal studies.
Possible factors that might influence APCs’ outcome and the
possible translation of results in clinical practice were also eval-
uated. In the present review, only studies performed on large-size
animals (small ruminants, dogs, mini-pigs) were analyzed.

Methods

A systematic electronic research was performed on MEDLINE
and Scopus using the following terms: platelet-rich-plasma; plate-
let-rich-fibrin; plasma-rich-in-growth-factors; platelet concen-
trate; PRP; PRF; PRGF; bone regeneration; bone healing; bone
repair, with the limitation to animal studies. Such terms were
combined using Boolean operators AND, OR. The last electronic
search was performed on May 2016. Additional manual research
was performed on reference lists of reviews focused on APCs and
bone healing as well as those of the selected articles.

Inclusion criteria

Inclusion criteria were divided into primary and secondary.
Studies that did not meet these criteria were excluded. Primary
inclusion criteria were the following: articles in English language,
animal studies, articles published on peer-reviewed journals, bone
lesions (no soft tissue and osteochondral lesions), use of PRP or
PRF alone or in association with bone grafts (no multiple com-
pound mixtures), presence of negative controls, comparative stu-
dies, follow-up ≥ 2 weeks, animals/samples per group ≥ 5, and
full-text availability. Studies on implant osseointegration and
ectopic bone formation were excluded. Secondary inclusion cri-
teria regarded the protocol and features of the APCs used and
included platelet counts of PRP and/or GFs dosage reported, use

Table I. Main biological activities and clinical indications of platelet
concentrates.

Biological activity Clinical benefits

Enhancement of soft tissue
healing

Faster closure of surgical wounds
Faster epithelization and maturation of skin
and mucosa
Healing of chronic ulcers
Improvement of healing of tendon,
ligament, muscle injury

Enhancement of hard tissue
healing

More predictable healing of bone defects
Higher quality and quantity of newly
formed bone
Improved osseointegration of implants

Mechanical and cohesive
properties; pro-
coagulation activity

Improvement of bone graft handling and
reduction of granules dispersion
Control of intraoperative bleeding
Control of intrasurgical complications like
maxillary sinus membrane perforation

Control of inflammatory
cytokines and modulation
of microvessel
permeability

Reduction of pain, swelling, and other
postoperative symptoms, which improves
patients’ quality of life, satisfaction, and
treatment acceptance

Antimicrobial activity Control of postoperative infection
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of allogeneic PRP or PRF, and details of the protocol used to
produce PRP or PRF reported.

Articles selection

First, title and abstract of the articles found through the electronic
search were screened in order to assess the fulfillment of primary
inclusion criteria. When the title and abstract did not provide
adequate information to make a decision, the full text of publica-
tions was obtained and screened (first phase of selection). Only
studies that meet the primary inclusion criteria were included in
the second phase of selection. The latter phase was based on the
assessment of the secondary inclusion criteria previously
described. Articles that performed an inadequate platelet counts
(e.g., provided indication only of the fold increase of platelets in
PRP compared to WB) and that did not meet the other secondary
inclusion criteria were excluded.

Risk of bias assessment

The risk of bias of the included studies was assessed, according to
the Animals in Research: Reporting In Vivo Experiments guide-
lines [23]. The following criteria were adopted: ethical statement,
experimental animals, experimental procedures, sample size cal-
culation, randomization of groups, blinding of the evaluator,
statistical analysis, financial conflict of interest, number of ani-
mals analyzed, and translation of the results in the discussion. The
indication of the platelet baseline in WB was also added to these
criteria. All criteria were evaluated as adequate (score = 1),
unclear or incomplete (0.5), and inadequate (0). Among the
details regarding the animals used, indication of the age was
considered more important than sex and weight. Studies were
then classified at high (total score = 0–4), medium (>4–7), or
low risk of bias (>7–11).

Results

Initially, 476 articles were found by electronic search and 8 more
articles were added by hand-searching on articles’ and reviews’
references (see the flowchart in Figure 1). After screening of titles
and abstract, a total of 358 articles were excluded because they
did not satisfy the inclusion criteria. In the first phase of selection,
the full text of 126 articles was analyzed and 51 articles were
excluded for the following reasons: 47 articles did not have an
adequate sample size (at least five animals/samples per group); 2
articles did not clearly report the number of animals employed; 1
article did not have the minimum follow-up requested and another
evaluated the effect of PRP on implant osseointegration. In the
second phase of selection, a total of 25 articles were excluded: 21
articles were excluded for inadequate or lacking PRP character-
ization; 3 articles were excluded because they employed human
PRP in animal models of bone healing [24–26]; 1 article did not
report in detail the procedure to produce PRP [27]. Finally, a total
of 50 articles were included: in the present review, only those
performing on large-size animals (small ruminants, dogs, mini-
pigs) are examined [28–41]. Seven included articles were per-
formed on small ruminant model of bone healing [28–34], three
on canine model [35–37], and four on porcine one [38–41]. The
main information of the included studies is reported in Table II. It
must be noted that all the included studies used PRP and only one
of them additionally tested PRF. They are ordered according to
the animal species and to the platelet concentration of PRP. In
addition, Table III indicates the characterization of PRP for each
study. The lack of PRP characterization (except for platelet
counts) in half of the included studies is noteworthy. When
performed, PRP characterization was different between studies.

Leukocyte concentration was measured only in two studies. In
contrast, five studies reported the dosage of GFs in PRP, particu-
larly TGF-1 and PDGF (Table III). Most of these studies were
performed on porcine models of bone regeneration.

Results of the bias assessment are reported in Table IV. Half of
the included studies (7/14) presented a low risk of bias. However,
only one study reported the sample size calculation. Seven out of
14 studies did not perform the platelet count in WB.

Discussion

Techniques for enhancing bone regeneration are necessary in the
presence of large bone defects, nonunion, and delayed bone union
or healing of fractures [42]. Graft biomaterials, recombinant
osteoinductive proteins [11], cell-based therapy [43], and APCs
are used in both preclinical and clinical studies to accelerate bone
healing. APCs contain higher platelet and GFs concentrations
than patient’s WB. The high level of GFs (particularly TGF-1
and PDGF) released by activated platelets constitutes the main
reason of using APC for tissue regeneration. In soft tissue healing,
PRP has shown interesting results in case of diabetic lower-limb
ulcers and other skin and mucosal lesions [1,44]. In contrast, its
efficacy in bone healing is controversial [11,16,19]. Variable
methods of preparation and the different features of PRP used
have been claimed as the principal factors responsible for the
contrasting results observed [11,14,16]. PRF was introduced in
2001 and presented easy preparation, lack of anticoagulants, and
additional activators, allowing a more physiological fibrin clot
formation than PRP. PRF membranes were used in combination
with bone grafts to enhance bone regeneration. In vitro, PRF
showed a slower and longer-lasting release of GFs [6–9], which
permitted more durable proliferation and differentiation of rat
osteoblasts than PRP [2]. The aim of the present review was to

Figure 1. Flowchart of the article selection procedure.
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evaluate the efficacy of PRF and PRP in animal models of bone
healing, considering the possible factors that might influence their
outcome.

The studies selected for the present review, composed by two
parts, were performed on six animal species (rabbit, rat, dog,
sheep, goat, mini-pig). Each species presents different features,
making interspecies comparison, as well as comparison with bone
regeneration in humans, unfeasible. In the present part of the
review, only studies using PRP and/or PRF on large-size animal
models were considered. These types of animal models are less
frequently used than small-size ones as rats and rabbits. Indeed,
they were used in the 28% (14/50 articles) of the included studies.

Large-size animal models for bone healing

Animal models play a critical role in many study domains of the
biomedical sciences, such as basic sciences, feasibility and bioac-
tivity testing, clinical modeling, and effective prediction (45). The
latter is also referred to as “preclinical testing” and is aimed at
evaluating the performance and the efficacy of a given method,
treatment or adjunctive therapy, simulating the clinical condition
on proper animal models. Key criteria for the choice of such
models are driven by the comparability of macro- and micro-
anatomy, metabolic background, and physiological responsive-
ness of the tissues under investigation with respect to human
ones, as well as of the modalities of therapy application and

activity (43). In contrast to small animals like mice, rats, and
rabbits, large-size animal models present more similarities with
human bone anatomy and/or physiology according to the litera-
ture [17,33,35,40,41,45]. Indeed, small ruminants such as sheep
and goats are suitable models for testing prosthesis and implants
for long bone and joint dimensions similar to humans. In addition,
weight-bearing is also very similar [17,46]. Mini-pigs are consid-
ered the best animal model of bone regeneration [46]. Their bone
structure, anatomy, and bone healing rate are very close to the
human ones [17,40]. In dogs, bone composition and structure
have several features in common with humans. In the past, canine
models were frequently used in dental research [17]. However,
their use as animal model raises several ethical problems.
Planning of randomized controlled clinical trials on the use of
PRP in dogs in the veterinary practice may overcome this pro-
blem. Indeed, dogs as humans are affected by several chronic
diseases, which are difficult to reproduce in laboratory [47].
Large-size animal models presented other disadvantages com-
pared to small-size animals: high cost, seasonal breeding cycles
(sheep), poor availability of biomarkers, long time for bone heal-
ing, and availability of appropriate equipment and facilities
[17,46]. Interestingly, all the included studies using porcine
model showed positive results using PRP in bone healing
(Table II). In contrast, the majority of the other studies did not
report a significant efficacy of PRP. Since the porcine model is
claimed as the best animal model for studying therapies regarding

Table III. Characterization of the platelet concentrates in the included studies.

Article Platelet morphology Leukocytes TGF-β1 PDGF VEGF EGF IGF-1

Ruminants Hernandez-Fernandez et al. [28] X
Mooren et al. [29]
Fennis et al. [30]
Fennis et al. [31]
Mooren et al. [32]
Scholz et al. [33]
Jakse et al. [34] X X

Dog Carvalho et al. [35]
Hatakeyama et al. [36] X X
Choi et al. [37]

Mini-pig Jungbluth et al. [38] X X
Li et al. [39] X
Hakimi et al. [40] X X
Schlegel et al. [41] X X X

Table IV. Risk of bias assessment of the included studies.

Article Total Sample size calculation Randomization Blinding WB platelet baseline

Ruminants Hernandez-Fernandez et al. [28] 6 NA 0 1 0
Mooren et al. [29] 8 0 0 1 0
Fennis et al. [30] 6 0 1 0 0
Fennis et al. [31] 8 0 1 1 0
Mooren et al. [32] 4 0 0 0 0
Scholz et al. [33] 7.5 0 1 0 1
Jakse et al. [34] 8.5 0 0 1 1

Dog Carvalho et al. [35] 8 0 1 1 0
Hatakeyama et al. [36] 6.5 0 1 0 1
Choi et al. [37] 4 0 0 0 1

Mini-pig Jungbluth et al. [38] 8.5 0 1 1 1
Li et al. [39] 8 0 1 1 1
Hakimi et al. [40] 10 1 1 1 1
Schlegel et al. [41] 6 0 1 0 0

Studieswith a total score from0 to 4were considered at high risk of bias, from5 to 7 atmedium riskof bias and from8 to 11 at low riskof bias. The
most important parameters are below reported.

NA = not applicable; 0 = inadequate; 1 = adequate; 0.5 = unclear; WB = whole blood.
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bone defects regeneration, the results obtained should have a good
transferability and one could conclude that PRP may be as well
effective for the treatment of bone defects in humans. However, it
is noteworthy that all the included studies using PRP in large
animal models were performed on healthy animals. One should
consider that the etiopathogenesis of diseases leading to bone
defects creates a tissue environment, which is quite different
from the one present in an experimentally induced bone defect.
Indeed, even though PRP has been reported to be more effective
in pathological tissues as compared to normal ones [47], the
scarce number of articles on spontaneous pathological bone con-
ditions in large-size animal model did not permit to draw defini-
tive conclusions.

Type of bone defect and outcome assessment

Critical-size defects are defined as the smallest wound created
intraosseously in a particular bone, which does not spontaneously
heal [17,48]. To obtain complete bone healing, use of supplemen-
tary biomaterials, cells, and GFs may be necessary [49]. In con-
trast, non-critical-size defects spontaneously heal and the
comparison between different treatments for bone healing may
be more difficult [17,48].

The size of bone defect used in preclinical studies influenced
the efficacy of PRP in bone healing [42]. Several studies per-
formed on critical-size defects showed good results with PRP
[11,49]. In clinical practice, critical-size defects are those that
require strategies to regenerate bone [18]. Few included studies
were performed on critical-size defects (Table I), but results of
PRP in bone healing were controversial. It is important to con-
sider that other factors such as the age of animals used (young vs.
adult), location of the defect (e.g., long bone or calvarium),
biomaterial used, and time of follow-up were important in asses-
sing the efficacy of therapies for bone healing in animal models
[17,42,48]. Several authors reported that the type of biomaterial
combined with PRP might strongly influence its efficacy for bone
regeneration [18,50,51]. This correlated with the study by
Schlegel et al. [41], who reported good results in bone formation
by combining PRP with autografts, but not by combining it with
bovine collagen. However, a discussion on all possible biomater-
ials, of natural and synthetic origin, that could be combined with
PRP or other APCs is not among the aims of the present review.

The most frequent techniques for bone healing assessment
were histology and histomorphometry (Table II), which have a
high translational value as well as imaging technologies [17].
Only few included studies performed radiographs or CT and
only one study performed other evaluations (e.g., immunohisto-
chemistry) (Table II). It is noteworthy that some clinical studies
performed only an imaging assessment to determine bone regen-
eration [52–55]. Authors’ opinion is that both techniques should
be performed to evaluate APCs’ effect on bone. In addition, a
more extensive use of immunohistochemistry or modern technol-
ogies (e.g., scintiscan) may provide useful information on the
effects of APCs.

Effects of platelet concentration, leukocytes, and GFs on
bone healing

For the present review, 21 articles were excluded for an absent or
inadequate PRP characterization, which rendered the reproduci-
bility of the results and the evaluation of the effect of PRP itself
difficult. Patients as well as animals presented interspecies and
intraindividual differences of both platelet counts and GFs content
in WB [51], which resulted in PRP with different features
[29,32,56]. Plachokowa et al. [51] using CT analysis demon-
strated a higher degree of bone union using human PRP + HA/

TCP compared to rat and goat PRP combined with the same
material. Surprisingly, no data regarding leukocytes and GFs
content of different PRPs were available. Platelet concentration
was the most frequent parameter measured in PRP (Tables I). It
differed among the different animal species and also among the
included studies performed on the same species (see Table II).
Several authors reported that only certain concentrations of plate-
lets in PRP might be effective in bone formation [51,57,58]. In
particular, a relatively low concentration of platelets in PRP
seemed to be more effective in bone healing than a high one
[1,11]. However, a dose-dependent effect of PRP was not
observed in the included studies: we could not find any correla-
tion between platelet concentration and the outcomes (significant
or nonsignificant benefit) (Table II). Possible reasons might be
the scarce number of included studies and the fact that every
animal species might have its own range of the effective platelet
concentration, which should be assessed in future preclinical
studies on PRP [29,32]. For this reason, the assessment of the
platelet concentration in WB of different animal species assumed
a critical significance. Unfortunately, most of the included studies
did not report such information (Tables III and 4IV).

In few studies, leukocytes were reported to diminish PRP effi-
cacy in tissue regeneration due to an increase of inflammatory
cytokines production [59]. However, an involvement of leukocytes
in antimicrobial activity, as well as soft and hard tissue healing, was
reported [60–62]. In the present review, only two studies counted
leukocytes in PRP (Table III) and no evaluation of its antimicrobial
potential was performed. Also in clinical studies, leukocytes in PRP
were evaluated only in few cases [63–65]. Further studies might be
necessary to elucidate the role of leukocytes in PRP for bone
regeneration. Same conclusions could be obtained regarding opti-
mal GFs levels for bone healing: few preclinical (Table III) and
clinical studies [52,54,66–68] measured them. In the included stu-
dies performed on mini-pigs, the use of PRPs with different levels
of GFs was associated with beneficial results in bone healing
(Tables I and III). It was also observed that the effect on bone
regeneration of a PRP with a high level of TGF-1 on bone regen-
eration was not significantly different compared to that of a PRP
with a lower level [41]. Since GFs’ levels do not depend on platelet
counts [14] and several of them (e.g., TGF-1, PDGF, VEGF) con-
tributed to bone healing [11,14,69], it may be important to assess
their content in PRP to evaluate the influence of the different GFs’
amount in bone regeneration.

An additional problem in assessing PRP effects on bone for-
mation was the variability of protocols adopted for its production
in both animal and clinical studies [11,42]. Several authors
claimed a standardization of the procedure, which might render
more accurate the evaluation of PRP regenerative properties in
bone [18,42,63,70].

Bias assessment of the included studies

The majority of the included studies were at low risk of bias
(Table III). However, almost all of the included studies did not
report a sample size calculation (Table III). It is necessary to
ensure that an adequate number of animals is used to achieve a
statistical power >80% [17]. An animal study should always
comply with the 3R principles (Replacement, Reduction,
Refinement) and should report all the details concerning the
number of animals used and their characteristics (e.g., species/
strain, sex, and age) [23]. It is well known that the age of animals
strongly influences the rate of bone healing. It has been suggested
to use only sexual mature animals for an experiment on bone
healing (except for mice and rats) to avoid the bias of additional
bone growth [17,71]. In the present part of the review, the major-
ity of the studies duly reported this information (Table II).
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Reporting of the sex of animals used is also important. Some
authors suggested to use male animals instead of female ones due
to the absence of estrous cycle, which might cause an increase of
variability of the results [72].

Use of PRF in animal models of bone healing

In contrast to PRP, few preclinical and clinical studies have been
published on the use of PRF for bone regeneration. Only one
study included in the present review performed a comparison
between PRP and PRF on a canine model of buccal dehiscence
after tooth extraction, and PRF produced better outcomes than
PRP in bone formation (Table II). However, it is needed to per-
form more studies, possibly based on the comparison of different
APCs, to investigate the in vivo regenerative potential of PRF.

Limits of the review

Due to the high heterogeneity of the included studies, a meta-analysis
of the results was not performed. In the present review, only studies
performed on bone defects and evaluating PRP/PRF effect on bone
healing were included. Other types of defects were excluded, such as
osteochondral ones, and also studies on implant osseointegration
were not considered. Use of APCs might be promising to enhance
bone healing in patients affected by bone pathologies or other dis-
eases associated with compromised bone health. However, all the
included studies were performed on healthy animals. Therefore, it is
difficult to predict how subjects with a compromised bone tissue may
respond to treatment involving the delivery of a large amount of
platelet GFs. Other properties of APCs (e.g., antimicrobial activity,
stimulation of angiogenesis, enhancement of soft tissue healing)
might be involved in bone healing, but these aspects were not
investigated in the studies performed on large-size animal models.

Conclusion

Avery limited number of articles was found per each animal species
considered, and most of them only tested PRP. In addition, a strong
variability in species, platelet and GFs’ amount at baseline, protocol
employed, type of bone defect, duration of follow-up, and combina-
tion with different biomaterials make it difficult to reach a general
consensus on the actual efficacy of platelet concentrates. This
adjunctive therapy may be promising to enhance healing in patients
with a low bone regeneration potential and those at risk of infections
due to the regenerative and antimicrobial potential of platelets.
Unfortunately, few studies were performed on animal models of
disease or infection. Further studies on such animal models should
be performed in order to evaluate the mechanism of APCs in
pathologic tissues, rather than in normal ones. This type of model
is closer to the clinical condition of patients, who require special
strategies for bone regeneration. APCs’ characterization is absent or
inadequate in the majority of clinical studies and some animal
studies. At least the baseline platelet count should be always per-
formed because it correlates to bone healing capability. Also the
leukocyte count and the dosage of the main GFs present in APCs
(TGF-1, PDGF, VEGF) are suggested. Finally, the role of other
platelet-derived-GFs and -molecules (e.g., IGF-1, EGF, bioactive
lipids, antimicrobial molecules) in bone regeneration should be
investigated for a better understanding of the properties of APCs
and their future clinical applications in this field.
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