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Neurophysiological markers can overcome the limitations of behavioural assessments of Disorders of Consciousness (DoC). EEG
alpha power emerged as a promising marker for DoC, although long-standing literature reported alpha power being sustained during
anesthetic-induced unconsciousness, and reduced during dreaming and hallucinations. We hypothesized that EEG power suppression
caused by severe anoxia could explain this conflict. Accordingly, we split DoC patients (n = 87) in postanoxic and non-postanoxic cohorts.
Alpha power was suppressed only in severe postanoxia but failed to discriminate un/consciousness in other aetiologies. Furthermore,
it did not generalize to an independent reference dataset (n = 65) of neurotypical, neurological, and anesthesia conditions. We then
investigated EEG spatio-spectral gradients, reflecting anteriorization and slowing, as alternative markers. In non-postanoxic DoC, these
features, combined in a bivariate model, reliably stratified patients and indexed consciousness, even in unresponsive patients identified
as conscious by an independent neural marker (the Perturbational Complexity Index). Crucially, this model optimally generalized to
the reference dataset. Overall, alpha power does not index consciousness; rather, its suppression entails diffuse cortical damage, in
postanoxic patients. As an alternative, EEG spatio-spectral gradients, reflecting distinct pathophysiological mechanisms, jointly provide
a robust, parsimonious, and generalizable marker of consciousness, whose clinical application may guide rehabilitation efforts.
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Introduction
The diagnosis of Disorders of Consciousness (DoC) following
severe brain-injury impacts prognosis, as well as treatment,
rehabilitation, and end-of-life decisions (Giacino et al. 2014;
Giacino et al. 2018a). Currently, the differential diagnosis of
DoC between the Minimally Conscious State (MCS) and the
Unresponsive Wakefulness Syndrome (UWS, also known as
Vegetative State, VS) relies on repeated behavioural assessments
through the Coma Recovery Scale-Revised (CRS-R) (Giacino et al.
2004, 2009), which can be unreliable due to patient’s sensorimotor
and executive deficits (Giacino et al. 2009).

To assist the diagnostic process of DoC, the visual inspec-
tion of spontaneous EEG recordings is strongly recommended by
most recent guidelines from the European Academy of Neurology
(Kondziella et al. 2020). Quantitative-EEG (qEEG) analysis should
follow thereafter, according to a recent expert opinion of lead-
ing clinicians and researchers on the topic (Comanducci et al.
2020). Multiple qEEG features (Bai et al. 2017; Engemann et al.
2018; Corchs et al. 2019; Wutzl et al. 2021) can be combined

by machine-learning methods to improve performance, although
high model complexity comes at the expense of generalizabil-
ity, interpretability, and pathophysiological understanding (James
et al. 2013; Noirhomme et al. 2017).

Alpha power demonstrated high diagnostic power in previous
studies of DoC (Lehembre et al. 2012; Chennu et al. 2014; Sitt
et al. 2014; Rossi Sebastiano et al. 2015; Naro et al. 2016; Piarulli
et al. 2016; Lutkenhoff et al. 2022). Accordingly, in the largest study
of qEEG in DoC (Engemann et al. 2018), absolute alpha power
emerged among more than hundred spectral, complexity, and
connectivity features as the most prominent feature to distin-
guish MCS from UWS patients and strongly drove the ensemble
model’s decisions. These findings led to the notion that alpha
rhythm represents the “rhythm of a conscious brain” (Sokoliuk
and Cruse 2018).

In stark contrast, several lines of evidence outside the literature
of DoC suggest that alpha power is not a general marker of
consciousness. On the one hand, alpha power can be enhanced/
preserved during unconsciousness induced by general anesthesia,
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for instance with propofol or ether-derived compounds (Ching
et al. 2010; Vijayan et al. 2013; Purdon et al. 2015; Scheinin et al.
2018). On the other hand, alpha power can be reduced despite
consciousness being present, during disconnected consciousness,
such as REM dreams (Benca et al. 1999; Esposito et al. 2004; Baird
et al. 2018) and ketamine dreams (Akeju et al. 2016; Vlisides
et al. 2017), or during psychedelic states induced by serotonergic
agents (Muthukumaraswamy et al. 2013; Schartner et al. 2017;
Muthukumaraswamy and Liley 2018; Timmermann et al. 2019).
Altogether, these findings question the role of alpha power as a
marker of consciousness following severe brain injury.

The discrepancy between the two literatures may originate
from the distinct neurophysiology of severe postanoxic brain-
injury, which may have conflated the diagnostic relevance of
alpha power in the context of DoC. Anoxia is a major aetiology
among UWS patients (van Erp et al. 2015) and typically causes
chronic unresponsiveness (Bernat 2006; Katz et al. 2009; Estraneo
et al. 2013; Howell et al. 2013). Prolonged anoxia typically leads
to severe diffuse cortical damage, as reflected by the low-voltage
EEG pattern (Cloostermans et al. 2012; Bauer et al. 2013; Rossi
Sebastiano et al. 2015; Estraneo et al. 2016; Hofmeijer and
van Putten 2016; Rossetti et al. 2016), an overall suppression
of EEG rhythms also known as hypo-voltage—associated to
poor outcome in comatose (Hofmeijer et al. 2015) and DoC
patients (Bagnato et al. 2015)—which may be most evident
in the alpha-band. Indeed, patients with postanoxic DoC did
not display any alpha-beta activity, according to the “ABCD”
visual scoring system (Forgacs et al. 2017), and postanoxic
unresponsive patients had the lowest occurrence of theta-
alpha spectral patterns, according to automated classification
(Fingelkurts et al. 2013).

Here, we first explicitly investigate whether alpha power may
particularly index the overall suppression of cortical activity (low-
voltage) typical of severe postanoxic damage, rather than the
absence of consciousness per se. Second, we propose prominent
spatial and spectral gradients of the spontaneous-EEG as reliable
alternatives for the diagnosis of DoC. Finally, to overcome the
limitations of behavioural assessments (Sanders et al. 2012) and
to strengthen the validity of our findings, we assessed the capacity
for consciousness beyond sheer behavioural responsiveness and
generalized the predictions obtained in DoC to known conditions
of a reference dataset.

To the first aim, we separately considered anoxic patients from
DoC of other aetiologies and investigated the specific role of alpha
power in indexing severe postanoxic damage.

To the second aim, we distilled physiological, neurological, and
pharmacological literature of loss of consciousness and assessed
changes in EEG spatial and spectral gradients as robust and
general markers of consciousness (see Fig. 1 for a schematic
depiction of the selected EEG features). Specifically, we considered
the EEG anteriorization, by assessing the alpha postero-anterior
organization (De Gennaro et al. 2001; Ogilvie 2001; Ching et al.
2010; Vijayan et al. 2013; Purdon et al. 2015; Scheinin et al. 2018),
and the broad-band slowing, by assessing the Spectral Exponent
(He et al. 2010; Miskovic et al. 2018; Colombo et al. 2019; Zilio et al.
2021; Maschke et al. 2022).

To test the generalizability of the observations on DoC patients,
we included in a reference dataset communicating patients with
widely different brain-injuries, as well as neurotypical subjects
during wakefulness and anesthesia—leading to either uncon-
sciousness or disconnected consciousness. Importantly, in doing
all this, we established the proper conditions to overcome the
limitations of behavioural assessments. Specifically, we assessed

the reliability of the above-mentioned spontaneous-EEG markers
against a novel scheme that explicitly attributes the capacity for
consciousness during unresponsiveness, by means of an indepen-
dent and highly sensitive neural index based on direct cortical
perturbations, proposed by Casali and colleagues (Casali et al.
2013) and validated in DoC patients by Casarotto and colleagues
(Casarotto et al. 2016).

Overall, we seek to rectify a common misconception about
the value of alpha power in the classification of DoC. Moving
beyond alpha power, we propose a parsimonious and inter-
pretable approach based on the combination of two features—
the EEG spatial and spectral gradients—which may provide a
generalizable index of the capacity for consciousness following
severe brain-injury.

Materials and methods
DoC population: DoC-Anoxia and
DoC-Not-Anoxia dataset
We retrospectively recruited 87 severely brain-injured patients
with DoC—72/87 previously included in Casarotto et al. (Casarotto
et al. 2016)—from four different centers, whose local ethical
committees approved the experimental protocols (Supplemen-
tary Materials S2.1 and S2.2). Patients were included at least
1 week from the injury date and had acute (n = 9), prolonged
(n = 23), and chronic (n = 55) DoC—according to the recently
proposed temporal definitions (Giacino et al. 2018a). Patients
were diagnosed as either UWS, MCS−, MCS+ according to the
best CRS-R assessment, applied at least 3 times within 1 week.
We included DoC patients of vascular (n = 37), traumatic (n = 22),
and anoxic (n = 28) aetiologies. Given the unique natural history
of postanoxic DoC (Rossetti et al. 2016; Giacino et al. 2018a), and
its distinct neurophysiological signatures (Cloostermans et al.
2012; Bauer et al. 2013; Rossi Sebastiano et al. 2015; Casarotto
et al. 2016; Estraneo et al. 2016; Hofmeijer and van Putten 2016;
Rossetti et al. 2016), we considered postanoxic patients with DoC
separately. In our database, the majority of postanoxic patients
were clinically in a UWS (20/28). We thus split our DoC population
into a “DoC-Anoxia” dataset (20 UWS, 5 MCS−, 3 MCS+ patients)
and a “DoC-Not-Anoxia” dataset (27 UWS, 17 MCS−, 15 MCS+
patients). Traumatic and vascular patients with DoC showed
highly consistent neurophysiological results when considered
separately (Supplementary Fig. 4) or jointly (main text). The
two DoC datasets did not differ for time since injury, or age
(P = 0.17, P = 0.37, respectively; details in Supplementary Table 1).
All prolonged and chronic patients with DoC were free from
sedative drugs; acute patients were so from at least 7 days.

Reference dataset
The Reference dataset consisted of conditions where individ-
uals could confirm the presence/absence of consciousness, by
functional communication or by immediate/delayed reports. The
Reference dataset included: (i) neurotypical individuals during
wakefulness (Wakefulness with Eyes Closed, Wakefulness with
Eyes Open) and different anesthetic conditions (Xenon, Propofol,
Ketamine), reported in Colombo et al. (2019) and in Sarasso et al.
(2015) (n = 30); (ii) patients with stroke (Cortical Stroke, SubCortical
Stroke) (n = 22), 20 of which reported in Sarasso et al. (2020);
(iii) Emergence from a previous MCS (EMCS) and Locked-In Syn-
drome (LIS) patients (n = 13), 11 of which previously reported in
Casarotto et al. (2016). Further details are reported in Fig. 2, in
Supplementary Material S2.3, and Supplementary Table 1.
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Fig. 1. Examples of spontaneous EEG traces of DoC patients across aetiologies; quantification of the EEG spectral features and expected changes
upon loss of consciousness. A) Illustrative examples of spontaneous EEG traces (10 s) from frontal and occipital electrodes (upper and lower traces,
respectively) of representative DoC patients. Each column corresponds to a different aetiology: anoxic, traumatic, and vascular. Each row corresponds
to a different patient group: UWS with LoPCI (Casali et al. 2013; Casarotto et al. 2016) (consistent with unresponsiveness and unconsciousness, see
Methods section: ‘Prior neural evidence: Perturbational Complexity Index’), UWS with HiPCI (c/w unresponsiveness and capacity for consciousness),
and MCS− (c/w responsiveness and capacity for consciousness). The anoxic UWS patient with LoPCI shows a low-voltage EEG; conversely, traumatic
and vascular UWS patients with LoPCI show a higher degree of EEG slowing and anteriorization, with respect to UWS patients with HiPCI and MCS−
patients alike. B) Alpha Power indexes the (log10 of the) PSD area between 8 and 13 Hz; thereby quantifying overall EEG alpha activity—the main rhythm
of neurotypical wakefulness. Alpha Postero-Anterior Ratio indexes the ratio of (the regional geometric mean of) alpha power between posterior and
anterior regions, thereby quantifying the degree of EEG anteriorization. The Spectral Exponent indexes the steepness of the PSD decay over frequencies
(1/f-like), thereby quantifying overall broad-band EEG slowing. C) Lower alpha power appears physiologically during sleep onset, pathologically after
cortical/thalamocortical structural damage; yet, pharmacological agents can yield high alpha power while suppressing consciousness, or viceversa,
can reduce alpha power while retaining consciousness. Lower Alpha Postero-Anterior Ratio values index the disruption of the neurotypical posterior-to-
anterior gradient, up to the reversal of the gradient (values << 1). Anteriorization is typically observed in physiological, pharmacological, and neurological
loss of consciousness. More negative Spectral Exponent values index a steeper decay, hence an overall slower EEG activity. Slowing is typically observed
in physiological, pharmacological, and neurological loss of consciousness.

Prior behavioural classification and stratification
In the DoC population, the diagnosis based on CRS-R led to a
natural dichotomic behavioural classification: behaviourally unre-
sponsive (B−: UWS) and behaviourally responsive patients (B+:
MCS−, MCS+). The Reference dataset consisted of behaviourally
unresponsive (B-: 5 Xenon, 5 Propofol, and 5 Ketamine) and

behaviourally responsive subjects (B+: 9 EMCS; 4 LIS; 10 Cortical
Stroke, 12 SubCortical Stroke, 10 Wakefulness with Eyes Closed, 5
Wakefulness with Eyes Open).

Furthermore, we stratified patients’ groups based on their
responsiveness on 4 levels (A, B, C, D), ranging from unrespon-
siveness, through intentional acts and command following, to the
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Fig. 2. The neuro-behavioural scheme provides a classification and stratification of subjects across the three datasets, by integrating neural evidence
into the behavioural scheme. A) We analyzed three datasets: a DoC-Anoxia dataset, composed of postanoxic DoC patients (mostly UWS, following their
natural history); a DoC-Not-Anoxia dataset, composed of DoC patients with vascular or traumatic aetiologies; and a Reference dataset, composed of
conscious patients with brain injury, neurotypical individuals during wakefulness and in three unresponsive conditions of anesthesia: Xenon, Propofol
(yielding no conscious reports and LoPCI), and Ketamine (yielding delayed conscious reports and HiPCI). B) According to the behavioural scheme, the
classification reflected the presence/absence of behavioural responsiveness (assessed by the CRS-R in DoC and severely brain-injured patients, by the
Ramsay-scale during anesthesia, or by functional communication otherwise); groups of patients were stratified according to 4 levels (A–D). According
to the neuro-behavioural scheme, the classification reflected the presence/absence of the capacity for consciousness, estimated from the best outcome
from behavioural and neural evidence (PCI-max values grouped into zero or low values vs high values). Furthermore, groups of patients were stratified
according to 7 levels (a–g), thus refining the behavioural stratification on the lower end according to PCI-max (reflecting the complexity of EEG patterns
evoked by direct cortical perturbations) and on the upper end according to the presence/absence of a brain injury. Abbreviations within the figure:
SubCort Stroke= SubCortical Stroke; Wake EC = Wakefulness with Eyes Closed; Wake EO = Wakefulness with Eyes Open

recovery of functional communication (Fig. 2). Lower stratifica-
tion ranks corresponded to a higher degree of behavioural impair-
ment (hereby defined). In the DoC datasets, UWS, MCS−, and
MCS+ were, respectively, ranked as A,B, and C; in the Reference
dataset, Xenon together with Propofol and Ketamine was ranked
as A, then Stroke (Cortical or SubCortical) together with LIS, EMCS,
and Wakefulness (with Eyes Closed or Open) as D.

Prior neural evidence: Perturbational Complexity
Index
We gathered prior neural evidence that allowed us to define signs
of retained capacity for consciousness irrespective of behavioural
responsiveness. Specifically, we estimated the complexity of the
EEG responses evoked by Transcranial Magnetic Stimulation
(TMS), by means of the Perturbational Complexity Index (PCI)
(Casali et al. 2013). Patients included in the current study
largely overlap with those previously reported in Casarotto
et al. (2016) (n = 104 across datasets), where the procedure is
described extensively (see also Supplementary Material). Briefly,
the highest individual PCI value across stimulation sites (PCI-
max) was retained and identified three categories of TMS-evoked
EEG responses:

-0PCI: no significant response could be evoked (PCI-max = 0),
the most severe pattern, indexing absent cortical reactivity and
thereby unconsciousness;

-LoPCI: low complexity (PCI-max ≤ 0.31), indexing unconscious-
ness;

-HiPCI: high complexity (PCI-max > 0.31), indexing preserved
capacity for consciousness.

Prior neuro-behavioural classification and
stratification
The neuro-behavioural classification combined the best result
available from previously gathered behavioural and neural
evaluations (PCI-max), to attribute the presence/absence of
capacity for consciousness (Fig. 2). As reported in Casarotto
et al. (2016), while most UWS patients had 0PCI or LoPCI values
(UWS_0PCI, UWS_LoPCI), a minority had HiPCI values (UWS_HiPCI);
conversely nearly all MCS and all conscious brain-injured patients
had HiPCI values. As reported in Colombo et al. (2019)), all individ-
uals under Propofol or Xenon anesthesia had LoPCI values and
reported no conscious experience upon awakening; conversely,
all individuals under Ketamine anesthesia had HiPCI values
and retrospectively reported vivid dreams upon awakening,
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thus constituting a model of unresponsive consciousness. The
neuro-behavioural classification defined in the two DoC datasets an
unconscious class (NB−: UWS_0PCI, UWS_LoPCI) and a conscious
class (NB+: UWS_HiPCI, MCS−, MCS+); similarly, it defined
in the Reference dataset an unconscious class (NB−: Xenon,
Propofol) and a conscious class (NB+: Ketamine, EMCS, Cortical
Stroke, SubCortical Stroke, LIS, Wakefulness with Eyes Closed,
Wakefulness with Eyes Open). We leveraged on PCI-max to
refine the lower end of the behavioural stratification in all
datasets; furthermore, in the Reference dataset, we considered the
presence/absence of a brain injury to refine the upper end. Lower
stratification ranks corresponded to a higher degree of neuro-
behavioural impairment (hereby specified): UWS_0PCI, UWS_LoPCI,
UWS_HiPCI, MCS−, MCS+ (respectively, ranked as a, b, c, d, e), in
both DoC datasets; in the Reference dataset, Xenon together with
Propofol (ranked as b), then Ketamine (c), then Stroke (Cortical
or SubCortical) together with LIS and EMCS (f), then Wakefulness
(with Eyes Closed or Open) (g).

Spontaneous EEG acquisition
During recordings, patients and healthy participants were seated
in an upright or reclined position, in a quiet room. Short
spontaneous EEG recordings (median = 5.13 min, interquartile
range = 4.03–6.59 min) were acquired contextually to TMS-EEG
in the same date (n = 135), or alternatively in a proximal session,
occurring within one day (n = 7), or at most within two weeks
(n = 10, median 6 days, all chronic patients). In these instances,
the CRS-R behavioural diagnosis remained constant.

Trained personnel continuously monitored for any signs of
sleepiness and, if needed, the CRS-R vigilance protocol was
administered to ensure patients’ vigilance (Giacino et al. 2004).
This procedure avoided sleep intrusions and minimized the
influence of arousal drops on the variables of interest.

EEG (Ag-Cl electrodes) was recorded with TMS-compatible
EEG amplifiers (Nexstim Ltd, 60 channels, n = 140; Brain Products
GmbH, 64-channels, n = 12). The two systems had very similar
electrode locations (Supplementary Fig. 1) and their acquisition
reference was ad-hoc placed on the forehead (near Fpz). Input-
impedance was kept below 20 kOhms. Example EEG traces are
shown in Fig. 1.

Within subject analysis of spontaneous EEG
Filtering, artifact rejection, and re-referencing
EEG was band-pass filtered (3rd-order Butterworth, 0.5–60 Hz
cutoffs, filtfilt Matlab function) notch-filtered (50-Hz harmonics
up to 250 Hz) and downsampled from the original sampling rate
(Brain Products: from 5,000 to 1,000 Hz; Nexstim: from 1,450 to
725 Hz). A trained neurophysiologist manually rejected artifactual
periods (retained minutes, percentage of time: median = 4.79 min,
98.74%, interquartile range = 3.58–6.12 min, 91.06–99.27%) and
electrodes (rejected electrodes: median = 2, interquartile range:
1–4) (details in Supplementary Material). Artifactual electrodes
were interpolated using spherical splines. Electrodes were then
re-referenced to the common average.

Rejection of artifactual components through independent
component analysis
Independent Component Analysis (ICA) decomposition allowed to
visually identify and reject components from ocular, muscular,
and cardiac origin (Supplementary Material S2.4). Overall, we
retained a median of 33 components (interquartile range = 25–
41.5). Clean EEG signals were then back-projected to the scalp.

EEG spectral features
We estimated the Power Spectral Density (PSD) of each electrode
with Welch’s method (3 s Hanning periodograms; 50% overlap).
From the PSD, we operationalized three features of interest (Fig. 1,
see introduction and Supplementary Material S1).

Alpha Power. To quantify the amount of alpha activity, we
estimated the magnitude of absolute Alpha Power—log10 of the
area under the PSD curve in the 8–13 Hz band, log10(μV2/Hz)—
then averaged across channels.

Alpha Postero-Anterior Ratio. We operationalized the EEG spa-
tial gradient as the Alpha Postero-Anterior Ratio, to observe the
anteriorization of EEG activity typically accompanying loss of
consciousness, most commonly observed in the alpha band (Pur-
don et al. 2015). We estimated first the geometric mean of alpha
power of posterior sites and that of anterior sites (according to the
line connecting the ears and Cz, Supplementary Fig. 1), then the
postero-anterior ratio. Values below 1 indexed that anterior alpha
activity dominated over posterior activity.

Spectral Exponent. We operationalized the EEG spectral gra-
dient as the Spectral Exponent, to observe the extent of broad-
band EEG slowing. We estimated the 1/f-like decay of the PSD
background (i.e. disregarding oscillatory peaks) by means of the
Spectral Exponent of the 1–40 Hz range, averaged across chan-
nels. More negative Spectral Exponent values index steeper spec-
tral decay, hence a larger amplitude ratio of slow- over fast-
frequencies, reflecting the slowing of broad-band arrhythmic or
quasi-rhythmic activity (Palva and Palva 2018).

The procedure is fully detailed in Colombo et al. (2019), and the
Matlab code is available online (https://github.com/milecombo/
spectralExponent/). Figure 3 displays the PSD (averaged by geo-
metric mean across electrodes and then groups) and the PSD
arrhythmic 1/f-like background.

Between subjects analysis: EEG-based
classification and stratification
We assessed the agreement of the spontaneous EEG predictors
(univariate features or multivariate statistical predictions) with
the prior classification of the presence/absence of capacity for
consciousness (classification) as well as with the prior stratifi-
cation of the patients’ groups (stratification). All analyses were
performed according to the neuro-behavioural scheme (Figs. 4–6;
see Supplementary Fig. 5 for the behavioural scheme). For classi-
fication analysis, the overall performance of spontaneous EEG
predictors was evaluated nonparametrically, by means of the area
under the Receiver-Operating Characteristic curve (AROC), and
parametrically, by means of an unpaired T-test across groups
(T-values). For stratification analysis, we assessed the rank corre-
lation (Spearman’s Rho) between the EEG predictors and the prior
stratification of patient’s groups (Fig. 2, only the ranks’ relative
order in each dataset was relevant). We controlled for the family-
wise error rate of each test using the Bonferroni–Holm correction,
according to the number of predictors (univariate or multivariate)
assessed in each dataset (see test statistics in Table 1, and their
relative P-values—raw and corrected—in Supplementary Table 2).

Behavioural outcome assessment and influence
of time from injury
The main aim of the study was to assess EEG features diagnostic
performance; thus, included DoC patients were mostly in
the prolonged/chronic phase (51/59 not-anoxic patients and
27/28 of anoxic patients), where diagnosis is relatively stable
over time. Thus, we verified the outcome after one year, in a
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Fig. 3. Unconsciousness entails a broad-band power suppression in postanoxic patients, whereas it implies a clock-wise rotation of the PSD in not-
anoxic patients and in reference conditions. PSD is shown for each group, in each of the three datasets, from left to right: DoC-Anoxia, DoC-Not-Anoxia,
and Reference dataset. Geometric mean is used to average across electrodes (first) and individuals (subsequently), accounting for the exponential PSD
distribution. Inlet graphs show the 1/f-like fit of the PSD over the 1–40 Hz, yielding a straight line in log–log coordinates. Unconscious individuals
(UWS_0PCI and UWS_LoPCI) show suppressed power in the DoC-Anoxia dataset, maximally in UWS_0PCI. In the DoC-Not-Anoxia and in the Reference
dataset, the PSD rotates clockwise (implying a steeper PSD decay and thus broad-band slowing) from conscious to unconscious conditions, as highlighted
by the inlet graphs. Abbreviations within the figure: Wakefulness EC = Wakefulness with Eyes Closed; Wakefulness EO = Wakefulness with Eyes Open;
Previously it mentioned: Wake EC = Wakefulness with Eyes Closed; Wake EO = Wakefulness with Eyes Open. A dark outline was used for the unconscious
groups (NB−), a clear outline for the conscious group (NB+).

Table 1. Classification and stratification performances, for the behavioral and the neuro-behavioural scheme, of the predictors: three
spontaneous-EEG features and the bivariate regression model.

Test Predictor DoC-Anoxia DoC-Not-Anoxia Reference

behavioural neuro-
behavioural

behavioural neuro-
behavioural

behavioural neuro-
behavioural

T-test Classification Alpha Power −2,47 −4,15 −3,31 −0,76 3,27 3,94
Alpha PostAntRatio −1,62 −1,23 −3,53 −4,39 −5,75 −7,09
Spectral Exponent 0 0,79 −4 −6,91 −9,41 −12,09
PLS1 DoC-Not-Anoxia −0,93 −0,26 −4,66 −7,47 −8,9 −11,78

AROC Classification Alpha Power 0,788 0,889 0,738 0,591 0,785 0,864
Alpha PostAntRatio 0,706 0,661 0,742 0,84 0,844 0,936
Spectral Exponent 0,475 0,633 0,795 0,941 0,935 1
PLS1 DoC-Not-Anoxia 0,613 0,528 0,817 0,964 0,943 1

Rho Stratification Alpha Power 0,423 0,571 0,451 0,387 −0,416 −0,021
Alpha PostAntRatio 0,325 0,265 0,422 0,496 0,502 0,677
Spectral Exponent −0,028 −0,094 0,502 0,612 0,634 0,518
PLS1 DoC-Not-Anoxia 0,184 0,129 0,547 0,656 0,646 0,704

Tests were performed separately according to the behavioural scheme and to the neuro-behavioural scheme. See Fig. 2 for the prior classification and
stratification schemes across groups. Classification performance is quantified by the T and AROC values, Stratification by the Rho values. The degrees of
freedom for the T-test and the Spearman correlation were 26 in the Doc-Anoxia dataset, 57 in the Doc-Not-Anoxia dataset, and 63 in the Reference dataset.
Bold highlights statistically significant values, after family-wise Bonferroni–Holm correction (4 tests in each family: 3 features and 1 model, P < 0.05); see
Supplementary Table 2 for raw and corrected P-values. PLS1 DoC-Not-Anoxia = Partial Least Square Bivariate regression model with 1 component trained on
the DoC-Not-Anoxia dataset. Alpha PostAntRatio = Alpha Postero-Anterior Ratio.

subset of DoC patients where we could retrieve the information
(42/59 not-anoxic patients and 24/28 anoxic). Patient’s diagnosis
remained typically unchanged, particularly so for anoxic patients
(Supplementary Material). We also conducted supplemen-
tary analysis to assess the influence of time from injury on
EEG features. We observed that time from injury normalized

EEG features, yet no effects or marginally significant effects
were observed once controlling for the effects related to the
capacity for consciousness; conversely, controlling for the influ-
ence of time from injury on EEG features did not alter the main
effects related to the capacity for consciousness (Supplementary
Material).
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Fig. 4. Alpha Power was suppressed only in severe postanoxic DoC patients—maximally in UWS with 0PCI; whereas lower Alpha Postero-Anterior
Ratio and Spectral Exponent—respectively indexing anteriorization and slowing—predicted unconsciousness in both the DoC-Not-Anoxia and in the
Reference dataset. Features from the spontaneous EEG yielded univariate quantitative values, which were compared in each dataset to the neuro-
behavioural scheme (Fig. 2). The performance of the classification of the capacity for consciousness (NB− vs NB+, left-side) is quantified by T-values and
by the area under the receiver operator characteristic (ROC) curve (AROC). The performance of the stratification (ranks, right-side) is quantified by the
Spearman correlation between the features’ values and the prior stratification of groups (ranked according to the letter’s order), resulting in Rho values.
Light gray background is shown where no significant association is observed. Classification performances are similar for traumatic and vascular DoC
patients (composing the DoC-Not-Anoxia dataset), as shown in Supplementary Fig. 4. Abbreviations within the figure: Wake EO = Wakefulness with Eyes
Open; Wake EC = Wakefulness with Eyes Closed.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhad031/7091601 by U

niversita degli Studi di M
ilano user on 09 M

ay 2023

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad031#supplementary-data


8 | Cerebral Cortex, 2023

Fig. 5. The bivariate model, combining the Spectral Exponent and the Alpha Postero-Anterior Ratio, robustly performed on the training DoC-Not-
Anoxia dataset, and optimally generalized to the Reference dataset, but not to the DoC-Anoxia dataset. The linear PLS regression model combined
the Spectral Exponent and the Alpha Postero-Anterior Ratio into one component (PLS1). Such bivariate regression model was trained to predict the
capacity for consciousness in the DoC-Anoxia dataset (classification: NB− vs NB+, left-side); the resulting values defined an empirical stratification
of groups (right-side), which were compared with the prior neuro-behavioural stratification of groups (Fig. 2), by means of Spearman’s rank-correlation.
Classification performance (T-values, AROC) and stratification performance (Rho) are reported as in Fig. 4. Light gray background is shown where no
significant association is observed. The bivariate regression model displayed high performance in the DoC-Anoxia dataset and maximal generalization
performance in the Reference dataset, but it did not generalize to the DoC-Anoxia dataset.

Multivariate analysis: partial least square model
Following univariate analysis, the three spectral features were
selected according to their univariate neuro-behavioural classifi-
cation performance. The selected features were z-scored and
jointly combined into a multivariate regression model. Specif-
ically, a partial least square model (PLS, plsregress function in
Matlab) aggregated the selected features into a single component
(PLS1), to statistically predict the presence/absence of the capacity
for consciousness (numerically encoded as 1/0). The predicted
continuous regression values were subsequently also used for
stratification analysis.

PLS DoC models: trained on DoC datasets, tested
on the Reference dataset
For each DoC-dataset, we trained a PLS model, including those
spontaneous EEG features showing significant univariate classifi-
cation, according to the neuro-behavioural scheme. For this scheme,
UWS_HiPCI patients were never included in any training set, and
thus, they did not bias the model’s estimates of the capacity
for consciousness. Each model’s performance was tested in the
same DoC dataset and validated in the Reference dataset. This
revealed the potential to estimate the capacity for consciousness
within a specific DoC dataset (resubmit performance) and its
generalization to controlled reference conditions.

Cross-validation on the merged datasets
Furthermore, we merged the datasets where a model showed
consistent generalization and evaluated the overall performance

by repeated stratified cross-validation (see Supplementary Mate-
rial S2.5). This strategy allowed us to observe if the spontaneous
EEG predictors aligned with the proposed neuro-behavioural strat-
ification across a wide range of brain states, including DoC and
Reference datasets.

Finally, to evaluate the sensitivity of the neuro-behavioural PLS
model at a single cutoff, we thresholded the PLS regression values
(in each cross-validation run). Since the neuro-behavioural scheme
accounts for the capacity for consciousness during unresponsive-
ness, the threshold was set at the maximum of the unconscious
class (NB−), corresponding to specificity = 1.

Correlations with PCI
We assessed the correlation across participants (Pearson’s R)
between the spontaneous EEG predictors (univariate or multivari-
ate) and the complexity of the TMS-evoked EEG responses (PCI-
max), in each dataset (Fig. 7). To avoid a leverage bias, UWS_0PCI

patients—all having the same PCI value by definition—were
excluded from this analysis. To further assess this relationship
across all patients, including those with 0PCI, we accordingly
performed Spearman’s correlations, which considered tied-
ranks (Supplementary Table 5). Bonferroni–Holm correction was
applied to the P-values, according to the number of predictors
(univariate or multivariate) assessed in each dataset.

Data availability
Raw EEG signals of neurotypical subjects during wakefulness
and anesthesia are available at the repository Zenodo (10.5281/
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Fig. 6. The bivariate model was cross-validated on the Reference and DoC-Not-Anoxia dataset merged together; its predictions highly align with the
neuro-behavioural stratification, consistently across traumatic and vascular brain injury, anesthesia, and neurotypical wakefulness. The bivariate model,
combining the Spectral Exponent and the Alpha Postero-anterior ratio into a single partial least square component (PLS1), was cross-validated on the
merged datasets (DoC-Not-Anoxia + Reference). The bivariate model was highly predictive of the capacity for consciousness; the resulting regression
values were highly aligned with the proposed neuro-behavioural stratification (Fig. 2), as revealed by high Rho values from Spearman’s rank-correlations.
Statistics reported are averages across the cross-validation repetitions. The model’s predicted value shown for each individual (colored dot) is the
average across all the validation/test folds and repetitions, thus avoiding the bias of including the same datapoint in the train- and test-set. Top right,
the ROC curve is shown in thin light gray for each repetition of the cross-validation, and the median is shown in thick stroke (black for neuro-behavioural,
gray for behavioural scheme). An empirical threshold was derived to maximize specificity in each cross-validation run, yielding discrete predictions on
the capacity for consciousness (neuro-behavioural scheme). Bottom right, the confusion matrix displays the absolute number of individuals, averaged
across the cross-validation runs, in each quadrant; the percentage of individuals relative to those in the real class is color-coded. Targeting for maximal
specificity yielded nonetheless an excellent sensitivity (90/97, 92.78% throughout cross-validation runs).

zenodo.806176). Further data are available upon reasonable
request, following a data sharing agreement with the two research
groups that collected the data: (i) Dipartimento di Scienze
Biomediche e Cliniche, Università Degli Studi di Milano (89
recordings), and (ii) Coma Science Group, GIGA-Consciousness,
University of Liège and Centre du Cerveau2, University Hospital
of Liège (33 recordings). Anesthesia data (30 recordings) were
jointly collected by both research groups.

Results
PCI specifies the lower end of the prior
neuro-behavioural scheme
A cross-tabulation of the patients’ neuro-behavioural group and
aetiology is depicted in Supplementary Fig. 2. See Supplementary
Material for detailed PCI results (Supplementary Material S3.1,
Supplementary Fig. 3). Briefly, PCI predicted the capacity for
consciousness in 8/8 MCS and in 2/20 UWS patients of the
DoC-Anoxia dataset and in 30/32 MCS and in 10/27 UWS patients
of the DoC-Not-Anoxia dataset. Patients with no EEG response to
TMS were all UWS, and primarily anoxic (12/13 UWS_0PCI, Fig. 2).
Furthermore, PCI correctly identified the presence/absence of

consciousness (respectively 55 and 10) in all cases of the Reference
dataset.

Univariate results
In each dataset, we assessed whether spontaneous EEG pre-
dictors could classify the presence/absence of the capacity for
consciousness (classification, AROC, T-values) and to stratify
patients in agreement with the prior neuro-behavioural strati-
fication (stratification, Spearman’s Rho). We also assessed the
correlation (Pearson’s R) across subjects of the spontaneous-EEG
features with PCI-max (Fig. 7). First, classification, stratification,
and correlation were performed for each univariate feature
(Table 1, Supplementary Table 2; neuro-behavioural results in
Fig. 4, behavioural results in Supplementary Fig. 5). The main
results observed in the entire DoC-Not-Anoxia dataset were also
consistently observed when vascular and traumatic patients were
considered separately (Supplementary Fig. 4, Supplementary
Material S3.3).

Briefly, Alpha Power was markedly suppressed only among
unconscious anoxic patients (in UWS_LoPCI, and maximally in
UWS_0PCI); thus, it distinguished the un/conscious class in the
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Fig. 7. Alpha Postero-Anterior Ratio and Spectral Exponent, as well as their bivariate combination, correlated with PCI-max, in both the DoC-Not-Anoxia
and in the Reference dataset. Features derived from the spontaneous-EEG were correlated across subjects with PCI-max (individual’s best value of the
PCI, obtained from TMS-evoked EEG responses) by means of Pearson’s correlation, resulting in R values. Results were similar for the Spectral Exponent,
for the Alpha Postero-Anterior Ratio, and for their bivariate combination, obtained by the partial least square regression model with 1 component
(PLS1), trained on the DoC-Not-Anoxia dataset. The correlation between these values and PCI-max was positive in the Reference dataset and in the
DoC-Not-Anoxia dataset, yet absent in the DoC-Anoxia dataset. The correlation between Alpha Power and PCI-max was negative in the Reference
dataset, positive albeit not significant in the DoC-Anoxia dataset, and absent in the DoC-Not-Anoxia dataset. P-values (raw and corrected) are reported
in Supplementary Table 5. Patients with 0PCI are displayed (small black dots aligned on 0 on the Y coordinate) but excluded from correlation analysis
(note: these were included in Spearman correlation analysis, reported in Supplementary Table 5).

DoC-Anoxia dataset and did not correlate with PCI values (but
see Supplementary Table 5). Such associations were not found
in the DoC-Not-Anoxia dataset, whereas a negative association
was found in the Reference dataset (during Xenon and Propofol
anesthesia, Alpha Power was sustained to wakefulness levels).
Furthermore, Alpha Power positively correlated with the neuro-
behavioural stratification in the DoC-Anoxia dataset, and to a
lesser extent, in the DoC-Not-Anoxia dataset.

Both Spectral Exponent and Alpha Postero-Anterior Ratio
(mutually correlated across datasets, Supplementary Fig. 7)
discriminated consciousness and correlated with the neuro-
behavioural stratification and PCI values in both the DoC-Not-
Anoxia and Reference datasets, but not in the DoC-Anoxia dataset
(details in Supplementary Material S3.4). Univariate results are
detailed further in Supplementary Material (S3.2).

Multivariate results
Bivariate DoC models and their validation on the Reference
dataset
We trained a bivariate PLS regression model to predict the
presence/absence of the capacity for consciousness in each
DoC dataset, according to the neuro-behavioural scheme. We
selected the features with significant univariate classification
performance (Fig. 4), z-scored them, and combined them into a
single PLS component (see Methods). In the DoC-Anoxia dataset,
only Alpha Power showed significant univariate performance, and
thus, the PLS model—being analogous to univariate analysis—
was not further explored. The DoC-Not-Anoxia model combined
the Spectral Exponent (PLS slope of regression, β = 0.239)

and the Alpha Postero-Anterior Ratio (β = 0.185; details in
Supplementary Table 3, Supplementary Material S3.6.1). This
bivariate model classified the capacity for consciousness in most
cases of the DoC-Not-Anoxia dataset and generalized to all cases
of the Reference dataset but did not so in the DoC-Anoxia dataset
(Fig. 5, Table 1). In addition, the PLS regression values of the
bivariate DoC-Not-Anoxia model robustly correlated with the
neuro-behavioural stratification, both in the DoC-Not-Anoxia and
in the Reference dataset, but not in the DoC-Anoxia dataset.
For the neuro-behavioural scheme, we thresholded predictions
values into a discrete classification; targeting for maximal
specificity still resulted in high sensitivity in the DoC-Not-Anoxia
dataset (35/42, 83.33%) and maximal in the Reference dataset
(55/55, 100%), thus generalizing across traumatic/vascular brain
injuries, neurotypical wakefulness, and anesthesia (details in
Supplementary Material S3.5).

Cross-validation of the bivariate model in the merged
datasets
Subsequently, to observe if the proposed neuro-behavioural strati-
fication aligned with the spontaneous-EEG statistical predictions
across a wide range of brain states, we merged the datasets where
a PLS model could show consistent generalization. Accordingly,
the Doc-Not-Anoxia model (combining Spectral Exponent and
Alpha Postero-Anterior Ratio; details in Supplementary Material
S3.6.2 and Supplementary Table 4) was cross-validated on the
DoC-Not-Anoxia and the Reference dataset merged together, to
predict the capacity for consciousness (neuro-behavioural clas-
sification; Fig. 6), or Behavioral responsiveness for comparison.
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This bivariate model could predict the capacity for consciousness
in the vast majority of cases, and the resulting regression val-
ues were highly correlated to the neuro-behavioural stratification,
across behaviourally (un)responsive patients with brain injuries of
traumatic/vascular aetiology, and neurotypical individuals during
wakefulness and different anesthetic conditions. In this challeng-
ing context, a binary classification targeting for maximal speci-
ficity (threshold: average = 0.557, SD = 0.005) yielded an excellent
sensitivity (90/97 correct cases; 7/97 incorrect cases, of which 3
UWS_HiPCI, 3 MCS−, and 1 MCS+ patients), consistently in all
rounds of cross-validation (Fig. 6).

Discussion
Here, we first evaluated whether alpha power suppression could
particularly index severe diffuse cortical postanoxic damage
rather than unconsciousness per se, and second, whether
the alteration of spatial and spectral gradients could stratify
patients with DoC and classify their capacity for consciousness.
EEG-based stratification and classification was contrasted to
a here-developed neuro-behavioural scheme (Fig. 2), integrating
behavioural assessments with an independent reliable neural
marker of consciousness, i.e. PCI. Finally, to assess the validity
of diagnostic indexes as markers of consciousness, we evaluate
whether findings could generalize to the known conditions of the
Reference dataset.

We observed a marked suppression of Alpha Power only among
severe postanoxic patients (UWS with LoPCI, and particularly in
UWS with 0PCI, i.e. absent EEG responses to TMS, Fig. 4), in the
context of an overall power suppression (low-voltage, Figs 1 and
3, and Supplementary Fig. 6). Yet, Alpha Power could not index
the capacity for consciousness in not-anoxic DoC patients, and it
did not generalize to the Reference dataset, revealing instead an
opposite pattern whereby Alpha Power was sustained to wakeful-
ness levels during anesthetic-induced unconsciousness (Xenon,
Propofol). Thus, Alpha Power could reliably index the overall sup-
pression of cortical activity (reflected by the low-voltage pattern
and the absence of reactivity to direct cortical perturbations) typ-
ical of severe diffuse postanoxic damage, rather than the absence
of consciousness.

Viceversa, spatial and spectral gradients—indexed by the
Alpha Postero-Anterior Ratio and the Spectral Exponent—
robustly stratified patients with not-anoxic DoC and discrimi-
nated their capacity for consciousness while robustly generalizing
to pharmacological and neurological conditions of the Reference
dataset (Fig. 4). However, the two features were not reduced
in the specific case of severe anoxic DoC patients, due to the
overall marked suppression of the neurogenic signal below
the level of peripheral artifacts (Supplementary Material and
Supplementary Fig. 6) masking expected differences in spatial
and spectral gradients. The two features were subsequently
combined in a bivariate index, improving classification and
stratification performance in the DoC-Not-Anoxia dataset, and
in the generalization to the Reference dataset (Fig. 5), reaching
excellent performance across the two datasets (Fig. 6).

Alpha power suppression reflects severe diffuse
brain damage
Severe postanoxic damage led to EEG low-voltage—a
broad-band power suppression—and predominantly arrhythmic
activity (Figs. 1A and 3 and Supplementary Fig. 6)—in line with
previous findings (Hockaday et al. 1965; Estraneo et al. 2016;
Hofmeijer and van Putten 2016; Rossetti et al. 2016; Snider
et al. 2022). This overall suppression of cortical activity was

most evident as a marked alpha power suppression (Figs. 3
and 4), partially because this frequency range is inherently less
confounded by artifacts (low-frequency ocular activity and high-
frequency muscular activity). According to a visual categorization
of EEG in DoC, alpha power suppression and arrhythmic activity
characterize the “A”-type EEG (Schiff 2016), a pattern that may
represent diffuse thalamocortical damage and complete loss of
structural integrity, typical of severe postanoxic UWS patients
(Forgacs et al. 2017).

Here, Alpha Power was suppressed only among severe
postanoxic UWS patients (Fig. 4). In particular, suppressed Alpha
Power (i.e. a ∼1.7 median reduction in Alpha Power relative
to healthy waking participants, yielding negligible values) was
consistently observed among patients with no EEG response to
TMS (0PCI), a group primarily represented by anoxic aetiology
(12/13). As previously suggested, 0PCI may signal the absence
of cortical reactivity, thereby consistent with a severe diffuse
cortical damage and thus unconsciousness (Casarotto et al. 2016).
Conversely, in the DoC-Not-Anoxia dataset, Alpha Power was not
suppressed among UWS patients (Figs. 1, 3 and 4), and Alpha
Power was related to responsiveness (i.e. behavioural classification;
Supplementary Fig. 5) rather than the capacity for consciousness
(Fig. 4, Supplementary Fig. 4).

Among multiple spectral, information-theoretic, and connec-
tivity features, absolute alpha power showed the highest diag-
nostic performance in discriminating UWS from MCS patients in
previous large studies (Sitt et al. 2014; Engemann et al. 2018) and
strongly influenced the ensemble classifier decisions (Engemann
et al. 2018). Yet, the present findings suggest that this perfor-
mance may be conflated by the high prevalence of anoxic aetiol-
ogy in the UWS population and by the adoption of a behavioural
classification. Thus, training a model on a dataset where anoxic
patients are significantly represented would lead to attribute
importance to features strongly influenced by EEG low-voltage,
most notably alpha power, that may be detrimental for the classi-
fication of the capacity for consciousness in not-anoxic patients.
This bias could apply to the prolonged/chronic phases as well as
to the early phases of DoC (Sitt et al. 2014; Engemann et al. 2018;
Amiri et al. 2022). When evaluating the diagnostic and prognostic
value of EEG features influenced by band-power suppression,
future studies should consider anoxic and non-postanoxic DoC
patients separately (Estraneo et al. 2016).

Moreover, Alpha Power in the Reference dataset varied in
contrast to the capacity for consciousness—irrespectively of
behavioural responsiveness. During anesthetic-induced uncon-
sciousness (Xenon and Propofol conditions), Alpha Power
was sustained to wakefulness levels, as previously reported
(Laitio et al. 2008; Purdon et al. 2015; Scheinin et al. 2018;
Pelentritou et al. 2020). On the flip side, during Ketamine
anesthesia, consciousness was retained—albeit dissociated from
environmental inputs—while Alpha Power was attenuated, as
previously reported (Akeju et al. 2016; Vlisides et al. 2017).
Furthermore, serotonergic psychedelic substances (e.g. LSD,
Psilocin, Dimethyltryptamine) markedly reduce alpha power
(Rodin and Luby 1966; Muthukumaraswamy et al. 2013; Schartner
et al. 2017; Muthukumaraswamy and Liley 2018; Timmermann
et al. 2019), yet despite phenomenological changes, consciousness
is retained (Millière et al. 2018). Further supporting the notion that
alpha activity may not reflect the presence of consciousness, we
found reduced Alpha Power in conscious patients with LIS (Fig. 4),
consistently with previous reports (Babiloni et al. 2010). Finally,
healthy conscious individuals can completely lack resting alpha
oscillations, due to a rare condition known as “Low-voltage alpha
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EEG” (Vogel 1970; Anokhin 2014). All of the above challenges the
recently proposed notion that alpha activity is “the rhythm of a
conscious brain” (Sokoliuk and Cruse 2018).

Overall, alpha power cannot be a general marker of conscious-
ness, given the absence of a consistent relationship with the
capacity for consciousness across patients with not-anoxic brain-
injury, and neurotypical individuals during wakefulness and
multiple anesthetic conditions. Among brain-injured patients,
alpha power suppression was often associated with absent
reactivity to direct cortical perturbations and may index profound
loss of thalamocortical integrity, typical of severe diffuse
postanoxic injury.

Anteriorization and the loss of consciousness
While the alpha gradient was disorganized across most postanoxic
patients—irrespectively of the presence of consciousness—
it indexed unconsciousness and correlated with the neuro-
behavioural stratification both in the DoC-Not-Anoxia and in the
Reference dataset. More specifically, besides variations in global
Alpha Power, the alpha gradient progressively normalized from
UWS_LoPCI to MCS+ in the DoC-Not-Anoxia dataset and markedly
reversed during Xenon and Propofol anesthesia (Fig. 4). Consis-
tently, alpha anteriorization is typically associated to the loss
of consciousness, irrespectively of its origin, either physiological
(De Gennaro et al. 2001; Ogilvie 2001), pharmacological (Ching
et al. 2010; Vijayan et al. 2013; Purdon et al. 2015; Scheinin et al.
2018), or neurological (Scollo-Lavizzari and Bassetti 1987; Synek
1988; Berkhoff et al. 2000; Estraneo et al. 2016). Alterations of
the neurotypical postero-anterior gradient could result either
from an anterior increase or a posterior decrease in alpha
power (Hirsch et al. 2021). The first may be explained by a
potentiation of the inhibitory drive (GABA A) that synchronizes
frontal thalamocortical circuits in the alpha frequency range; the
second may arise from decreased thalamic drive to the occipital
cortex (Vijayan et al. 2013).

EEG slowing and the loss of consciousness
In patients with vascular or traumatic aetiology included in
our DoC-Not-Anoxia dataset—where focal or multifocal brain
lesions coexist with structurally preserved areas–broad-band
slowing (measured by the Spectral Exponent, Fig. 1) reliably
indexed the presence of consciousness and stratified patients
in agreement with the neuro-behavioural stratification (Fig. 4;
supplementary Fig. 4). A similar relation was found in general
anesthesia—where functional disconnection occurs in a struc-
turally preserved brain. This relationship was absent in anoxic
patients though, where the Spectral Exponent was relatively
unaltered. Indeed, diffuse and severe anoxic damage leaves
little to no structurally preserved cortical tissue able to generate
neurogenic signal (as indexed by suppressed broad-band and
alpha-band power; Figs 3 and 4 and Supplementary Fig. 6), thus
lowering the signal to noise ratio of neuronal to myogenic activity
(see Supplementary Material). Similarly, in a recent study during
acute coma following cardiac arrest, the broad-band Spectral
Exponent was not different from healthy controls (Alnes et al.
2021).

The present findings are consistent with the notion that slow
waves emerge in structurally preserved cortical tissue suffer-
ing from (partial) deafferentation (Sanchez-Vives and McCormick
2000; Timofeev 2000). Controlled focal brain lesions generate
slowing in areas connected to the lesion (Gloor et al. 1977), as
revealed by intracranial human recordings (Russo et al. 2021). In
cats, cortical slowing appears with the interruption of afferences,
either by white matter, thalamic, hypothalamic, or brainstem

lesions (Gloor et al. 1977). In DoC patients, EEG slowing correlated
with thalamic atrophy, implying that cortical slowing follows
the damage of diffuse thalamocortical projections (Lutkenhoff
et al. 2022). Furthermore, hemispheric slowing—measured by the
Spectral Exponent—identified the affected hemisphere of stroke
patients and negatively predicted functional recovery (Lanzone
et al. 2022). Overall, loss of consciousness in nonanoxic DoC (and
anesthesia conditions) was significantly associated to EEG slow-
ing, likely generated by (functionally/structurally) deafferented,
yet intact, cortical tissue.

Spectral exponent, PCI, and the propagation of
cortical activity
More negative Spectral Exponent values, indexing broad-band
slowing and steeper PSD decay, predicted unconsciousness and
lower PCI values across a wide range of conditions, including
focal/multifocal brain injuries, neurotypical wakefulness, and dif-
ferent anesthetics (Figs 3, 4, and 7). Spectral Exponent and PCI
capture separate aspects of brain activity (spontaneous and TMS-
evoked, respectively), hence their correlation is intriguing. Their
relationship may be explained by mechanisms regulating the
propagation/extinction of cortical activity. Specifically, steeper
PSD decay has been associated with lower excitation-inhibition
ratio of synaptic activity (Gao et al. 2017), longer lasting inhibitory
postsynaptic potentials, and lower firing rate (Brake et al. 2021).
Near the critical transition between activity propagation and
extinction, neural activity becomes maximally integrated and dif-
ferentiated across areas (Tagliazucchi 2017). The criticality frame-
work offers a mechanistic explanation for the joint emergence
of consciousness and integrated information (Kim and Lee 2019;
Lee et al. 2019). Thus, the critical regime may provide an optimal
condition to obtain high complexity of TMS-evoked EEG activity, a
key property of conscious states (Casali et al. 2013; Casarotto et al.
2016). Conversely, the prevalence of extinction over propagation
mechanisms entails low PCI values—corresponding to less com-
plex, more stereotypical and/or spatially constrained responses,
typical of unconsciousness. Supporting this view, a reduction in
network criticality and a steeper PSD decay were jointly observed
during propofol-induced loss of consciousness (Maschke et al.
2022; Toker et al. 2022). In sum, the balance between propagation
and extinction of cortical activity may underlie the observed
relation between the PSD decay, PCI values, and capacity for
consciousness.

Blocking activity propagation: a pathway to
unconsciousness, yielding slowing, and
anteriorization
The Spectral Exponent and the Alpha Postero-Anterior Ratio
were mutually correlated across neurotypical wakefulness,
pharmacological, and neurological alterations of conscious-
ness (Supplementary Fig. 7) and—except for anoxic aetiology—
decreased together as a function of the neuro-behavioural stratifi-
cation (Fig. 4). Coherently, in other neurological conditions such
as hepatic encephalopathy, slowing and alpha anteriorization
co-occurred with increasing severity of symptoms, ranging from
mild impairment to coma (Olesen et al. 2016). Given that the
two features are methodologically unrelated, this correlation
may reflect a single underlying neurobiological mechanism.
Indeed, both effects were jointly obtained by progressively
blocking activity propagation, in a simple neuropercolation
model of general anesthesia (Zhou et al. 2015). In this study, the
wakefulness model was initialized with the biological constraint
of predominant feedback connectivity. The progressive stochastic
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disruption of neural connections yielded an increase in low-
frequency activity; furthermore, by predominantly affecting
feedback connectivity, it also yielded the anteriorization of
delta and alpha activity. Despite its simplicity, this coarse-
grained model provides evidence that the blockage of activity
propagation may represent a general principle linking EEG
slowing, anteriorization, and loss of consciousness.

Bivariate DoC model, validation in the Reference
dataset and stratification in the merged datasets
To predict the capacity for consciousness, we trained a linear
PLS model in each DoC dataset, selecting features based on
univariate results. Hence, the DoC-Not-Anoxia model combined
the Spectral Exponent with the Alpha Postero-Anterior Ratio.
While this model could not extend to the Doc-Anoxia dataset—
where only Alpha Power showed significant performance—this
model performed well in the DoC-Not-Anoxia and optimally
generalized to the Reference dataset. Based on these results,
we cross-validated this bivariate model across the DoC-Not-
Anoxia and the Reference datasets merged together. The
model’s predictions were in large agreement with the neuro-
behavioural stratification, across datasets including patients with
traumatic or vascular brain-injury (either DoC or functionally
communicating), as well as healthy individuals during wakeful-
ness and under different anesthetics. In all these conditions,
unconsciousness and lower ranks in the neuro-behavioural
stratification were predicted by broad-band slowing together
with alpha anteriorization. Specifically, both univariate (Fig. 4,
Table 1) and bivariate analysis (Supplementary Tables 3 and 4)
revealed that the strongest effects were observed for the Spectral
Exponent.

A parsimonious model, disadvantages and
advantages
Previous studies have shown that the combination of several EEG
features in multivariate models can provide useful diagnostic
indices for DoC (Sitt et al. 2014; Noirhomme et al. 2017; Engemann
et al. 2018; Corchs et al. 2019; Amiri et al. 2022). Particularly, a
recent ensemble model combining dozens of EEG features could
discriminate UWS from MCS patients with good performance
and was more robust to data corruption than univariate markers
(Engemann et al. 2018). However, the cross-validated performance
of the multivariate model was not superior to that afforded
by absolute alpha power alone, as reported in the supplemen-
tary material of the paper (Engemann et al. 2018). Notably,
alpha power likely reflects thalamocortical integrity rather
than indexing consciousness, as revealed by our observations
and discussed above. At the same time, the combination of
several markers across recording paradigms and neuroscientific
tools does not necessarily improve diagnostic performances
in DoC (Hermann et al. 2021; Amiri et al. 2022). Finally, the
neurophysiological insights of these multivariate models are
inherently limited by the large number of features influencing
diagnosis, and by multiple levels of nonlinearity (James et al. 2013;
Noirhomme et al. 2017).

Here, rather than combining a multitude of EEG features
or multimodal measures by elaborate machine learning archi-
tectures, which may remain opaque to clinical understanding,
we chose a model based on few clinically relevant and patho-
physiologically informed EEG features. This approach resulted
in a parsimonious and interpretable regression model, which
was highly predictive of the capacity for consciousness in

not-anoxic patients, correlated with the neuro-behavioural strat-
ification, and generalized to reference conditions. This result,
although potentially surprising at first, is conceivable given
that disparate EEG features tend to be interdependent (e.g.
Supplementary Fig. 7), that visual analysis of EEG in DoC relies
on the combination of a rather small set of criteria (Forgacs
et al. 2014; Estraneo et al. 2016), and that even the multivariate
ensemble model for DoC can actually be driven by few markers,
such as absolute alpha power (Engemann et al. 2018).

Neuro-behavioural scheme, a step toward an
unobservable ground truth
Predictions from the spontaneous EEG showed an overall larger
agreement with the neuro-behavioural scheme—in alignment with
PCI results (Casarotto et al. 2016)—with respect to the purely
behavioural scheme (Figs 4–6, Supplementary Fig. 5; Table 1 and
Supplementary Table 2). This supports the notion that sponta-
neous EEG predictions can index the capacity for consciousness,
going beyond behavioural responsiveness per se (Chennu et al.
2017; Candia-Rivera et al. 2021). Since the neuro-behavioural
scheme contemplates the capacity for consciousness during
unresponsiveness, we set the empirical threshold to exclude
any false positives. Targeting for such maximal specificity, still
resulted in high sensitivity in the Doc-Not-Anoxia (83.33%) and
Reference dataset (100%). Further empirical studies are warranted
to refine such threshold.

Of relevance, our study confirms the notion that a well-
preserved EEG is compatible with covert consciousness (Forgacs
et al. 2014) and provides both a quantification and a model
that allows a graded stratification across a wide range of con-
ditions including neurotypical wakefulness, general anesthesia,
multifocal, and focal brain-injury, as well as DoC of traumatic
or vascular aetiology. In practice, considering specificity (100%),
a positive EEG prediction should be taken as an indication of
preserved capacity for consciousness, thus calling for intensive
therapeutic efforts aimed at restoring functional communication,
especially in the early rehabilitation phases (Comanducci et al.
2020). Conversely, considering sensitivity (83.33%), a negative EEG
prediction warrants further assessments to reduce misdiagnosis,
similarly to the recommendations for the CRS-R (Wannez et al.
2017) and to the European and American Academy of Neurology
guidelines (Giacino et al. 2018b; Kondziella et al. 2020). In this
case, a diagnostic tool with even higher sensitivity, such as PCI
(Casarotto et al. 2016), could potentially reveal “islands of high-
complexity” (Bayne et al. 2020). Hence, our informed quantitative
approach to spontaneous-EEG may constitute a widely available,
reliable first-step screening at the bed-side, that well fits with the
flowchart of diagnostic assessment in DoC (Comanducci et al.
2020, Fig. 9 therein).

Limitations
Misdiagnosis can result from the important daytime arousal fluc-
tuations typical of DoC patients, affecting both behaviour and EEG
activity (Piarulli et al. 2016; Mertel et al. 2020). It is thus crucial
to minimize the intrusion of sleepiness during EEG recording and
preprocessing.

Furthermore, common biological artifacts may affect EEG-
derived metrics. For instance, ocular and muscular artifacts,
respectively, increase low- and high-frequency power, dispro-
portionately affecting the EEG when the neurogenic signal is
suppressed, as in severe anoxic patients (Supplementary Material
S3.7). Artifact correction procedures (such as ICA cleaning applied
here, Supplementary Material S2.4) are needed to minimize these

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhad031/7091601 by U

niversita degli Studi di M
ilano user on 09 M

ay 2023

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad031#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad031#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad031#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad031#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad031#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad031#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad031#supplementary-data


14 | Cerebral Cortex, 2023

sources of bias, although the practice is not common in the field
of EEG in DoC (Corchs et al. 2019). It will be crucial to adapt the
procedures for standard clinical EEG recordings equipped with
less electrodes.

Here, we did not focus on the effects of time from injury.
Instead, we focused on diagnostic capacity of EEG features;
accordingly, our dataset is mostly represented by prolonged/chronic
patients, whose diagnosis is relatively stable over time (Supple-
mentary Material). In our dataset, there was only a marginal effect
on EEG features directly attributable to time from injury, and the
main results were not affected by it (Supplementary Material).
Yet, time from injury may play a role in the early phases that
follow brain-injury, where EEG features and diagnosis are more
likely to evolve. In acute patients, time of injury can be predictive
of the amount of alpha power, particularly so for anoxic patients.
Interestingly, prominent alpha power was predictive of favorable
outcome, during the first day of coma (Kustermann et al. 2019).
Future studies, particularly longitudinal ones in acute settings,
are warranted to assess the influence of time from injury on EEG
features.

Conclusions
Our findings revealed that alpha power is not a general marker
of consciousness; rather, alpha suppression indexes the overall
suppression of cortical activity typical of diffuse severe postanoxic
injury. Such an instance represents a special adverse case,
with markedly different pathophysiology, which if not properly
accounted for, may confound the evaluation of DoC in traumatic
and vascular aetiology. Moving beyond alpha power, we based
our approach on few clinically relevant and pathophysiologically
informed EEG features, reflecting slowing and anteriorization, in
contrast to more elaborate yet more opaque machine learning
tools. This approach provides a robust, generalizable, and
parsimonious index of the capacity for consciousness, whose
application in the clinic may allow better resource allocation and
individualized rehabilitation strategies.
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