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Abstract— As samples of steel defects are industrially limited,
i t  is challenging for most deep learning methods that rely on
ample labeled data to identify steel surface defects. Recently, con-
trastive learning has achieved good performance in natural image
classification tasks with few labeled samples, yet two obstacles
prevent its effective application to steel surface defect images. One
is that due to the presence of inter-class and intra-class similar
samples in steel surface defect, the fixed contrast strength in con-
trastive learning will destroy the potential semantic information
of defect samples. Another is that contrastive learning requires
a large amount of unlabeled data, whereas steel surface defect
samples are insufficient. To overcome the above-mentioned prob-
lems, a novel framework named flexible and diverse contrastive
learning (FDCL) is proposed. This framework consists of two
parts, flexible contrast (FiCo) and diverse generative adversarial
networks (DGANs). Diverse images generated by  the DGAN and
real images are fed into FiCo for representation teaming. In the
FiCo, the contrast strength among samples is flexibly adjusted
by the proposed variable temperature discrimination and feature
reconstruction (FR). In addition, the output features (OF) of  FiCo
will be used as input to the DGAN generator to improve image
quality, thus further facilitating representation learning. The
proposed FDCL is implemented on four standard steel surface
defect data sets, and the experimental results demonstrated that
i t  achieves superior performance over state-of-the-art methods.
Our code is available at :  https://github.com-/jiacongc/FDCL.

Index Terms— Contrastive learning, diverse generative adver-
sarial network (DGAN), feature reconstruction (FR), flexible
contrast (FiCo), steel surface defect recognition, variable tem-
perature discrimination.
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I .  INTRODUCTION
TEEL strip is one of the major products of  the iron and
steel industry. Any surface defects will threaten the steel

product quality, which can pose significant economic and repu-
tational risks to steel manufacturers. Surface defect inspection
is mainly processed through automated visual inspection (AVI)
instruments [1], [2], [3]. One of  the main functions of AVI,
defect recognition, plays a key role in ensuring the quality of
steel.

Previously, automatic defect recognition focused on tradi-
tional image processing methods [4], [5], [6]. These methods
require manual design features and clean background. Once
the background becomes complex, these methods will not
work well. Fortunately, deep learning has a powerful automatic
feature extraction capability. It has been used with good
results in defect recognition in complex backgrounds in recent
years [7 ] ,  [ 8 ] ,  [9 ] .  However, these deep learning methods can
only achieve high accuracy if they possess lots of data. In some
actual cases, i t  i s  difficult to obtain images of steel surface
defects as they rarely appear on the steel surface and have
to be captured by the camera, which is time-consuming and
complex. Once the defect images have been collected, it takes
experienced personnel much time to screen and label them.
Therefore, the steel surface defect data are always insuffi-
cient, and the labeled samples are even few. The overfitting
problem will be triggered by few labeled samples due to
the numerous parameters of convolutional neural networks
(CNNs), which will lead to the degradation of  recognition
accuracy.

Based on the problem of  few labeled samples, researchers
are committed to exploring different methods [10] ,  [11] ,  [12] ,
[ l 3 ] ,  [14], [15]. Among them, contrastive learning shows the
powerful performance. It digs out supervision information
from a huge amount of unlabeled data to learn good repre-
sentations and uses them for classification tasks, which can
significantly enhance the performance of  recognition with only
few labeled samples. The supervision information is mined
in three main steps. First, a pair of samples is generated for
each instance, with samples from the same instance considered
positive and samples from different instances considered neg—
ative. Second, these samples are fed to the encoder to obtain
the embeddings. Third, under the influence of contrastive
loss [16], the embeddings of positive samples are pulled
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Fig. 1 .  (a) Strong and (b) weak contrastive embedding distributions with
three instances of steel surface defects on a hypersphere. The boxes of the
same color indicate intra-class similar samples, and the boxes of different
colors indicate inter-class similar samples. The black dots on the hypersphere
represent the embedding positions of the instance samples.

together to maximize their similarity, while the embeddings
of negative samples are pushed apart to maximize their dif-
ferences. These three steps guide the model to learn useful
representations.

In spite of the achievement of contrastive learning in nat-
ural images, there are two obstacles that prevent its effec-
tive application to images of steel surface defect. First, the
fixed contrast strength in contrast learning is not suitable
for representation learning of steel surface defect samples.
According to [17], contrastive learning is  classified as strongly
contrastive learning and weakly contrastive learning, which
has strong and weak contrast among samples, respectively.
Under strong contrast, it is  advantageous for representation
learning of inter-class similar samples of steel surface defect,
but detrimental to that of intra—class similar samples of steel
surface defect [see Fig. 1(a)]. The weak contrast is the opposite
of the strong contrast [see Fig. l(b)]. These two extreme con-
trast strengths will destroy the potential semantic information
of defect samples, thus reducing the quality of the learned
representations. Second,  the unlabeled data of steel surface
defects are inadequate, unlike ImageNet [18] that can provide
lots of unlabeled data for contrastive learning to learn better
representations.

Consequently, to counter the above-mentioned problems,
a novel contrastive learning framework, namely flexible and
diverse contrastive learning (FDCL), is  proposed. It consists
of flexible contrast (FiCo) and diverse generative adversarial
networks (DGANs). To address the first problem, FiCo is
proposed. In the FiCo, variable temperature discrimination is
designed to flexibly adjust the contrast strength among steel
defect samples. In addition, feature reconstruction (FR) is  also
designed to further adjust the contrast strength. To overcome
the second problem, generative adversarial network (GAN)
method [19 ]  i s  adopted to ass is t  FiCo.  However, GAN relies
on high volume of training data, and it is prone to suffer
from mode collapse [20] with insufficient steel surface defect
data. Mode collapse refers to the fact that the generator only
duplicate images, which is  ineffective for contrastive learning.
To alleviate mode collapse with limited steel surface defect
data, the DGAN is proposed. In the DGAN, the multiple
generators’ weights are used to generate diverse images,
providing more defect data for FiCo.

In summary, the major contributions of this article are
summarized as follows.
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l )  A novel contrastive learning framework, FDCL, i s  pro-
posed to overcome two obstacles of existing contrastive
learning that cannot be  effectively applied to steel sur-
face defect images: inappropriate contrast strength and
insufficient unlabeled data. It can accurately identify
steel surface defects with few labeled samples.

2) FiCo is proposed for representation learning of steel
surface defect images. Unlike contrastive learning with
fixed contrast strength, FiCo uses designed variable
temperature discrimination and FR to flexibly adjust
contrast strength, improving the quality of learned rep-
resentations.

3) A generative method named DGAN is proposed to
supplement the unlabeled data. DGAN uses multiple
generator weights to alleviate mode collapse and gen-
erate diverse images for FiCo, further improving the
quality of learned representations.

4)  Extensive experiments are conducted on four standard
steel surface defect data sets to validate the effective-
ness of the proposed method. The experimental results
show significant improvements over the state-of-the—art
methods.

H.  RELATED WORKS

In this section, deep learning in steel surface defect recogni-
tion, contrastive learning, and GANs will be briefly introduced.

A. Deep Learning in Steel Surface Defect Recognition

In recent years, deep learning methods have achieved good
performance in steel surface defect recognition tasks. A work
by Zhou et a1. [7] utilized a CNN to identify steel surface
defects and achieved a good performance. In [8], a multiscale
pyramidal pooling network was introduced to improve the
recognition rate for steel defects. Chen e t  al. [9] proposed
to combine three different CNNs to identify steel surface
defects. A method [10] combining semi-supervised learning
and convolutional autoencoder is  proposed to identify steel
surface defects. He et al. [11] presented a semi-supervised
learning method on the basis of GANs and residual networks
to identify steel surface defects. Through multiple training
processing, the above-mentioned two networks can achieve
higher accuracy and better robustness. Ren et al. [12] proposed
a defect identification method that first pre-trains on a CNN
and then migrates the pre-trained model weights to the clas-
sifier for defect recognition. Gao e t  al. [21] fused multilevel
information to identify steel surface defect. Wang et al. [22]
suggested a graph convolutional method to identify surface
defects. A work of [23] combined CNN and pseudo-label to
identify steel surface defect.

Although deep learning methods have performed with excel-
lence in steel surface defect recognition, they require lots of
training samples to maintain a high recognition rate. In some
industrial cases ,  defects are rare on the steel surface and only
few samples are available after selection and cropping. This
problem constrains the widespread use of deep learning meth-
ods for steel defect recognition. In recent years, contrastive
learning and GANs are effective solutions to this problem.
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Fig. 2 .  Overview of  the proposed FDCL method. The different shapes in  the batch fake and real images indicate different instance samples; different colored
samples of the same shape indicate augmentation from different times. In the pre-training stage, DGAN stores model weights in  mode set via discriminator.
In the training stage, first the batch fake images are generated by the generator randomly loaded with a weight from the mode set. Then, the fake and real
images are fed into FlCo for representation learning. The encoder i s  trained by variable temperature discrimination and FR. k features output by FlCo are
averaged at the end of  each iteration and will be  used as intake to  the DGAN generator. Feature average indicates taking the mean value of  k features in  the
width and height dimensions.

B. Contrastive Learning

Recently, contrastive learning has achieved the most
advanced performance on computer Vision tasks. In a study of
He et a1. [13], a dictionary look-up method is proposed to rep-
resentation learning by using a momentum encoder. After that,
a simple contrastive learning framework, named SimCLR [14] ,
was proposed. The SimCLR has three main components,
which are projection head, composition of data augmentations,
and larger batch size. Chen et al. [15] established a stronger
baseline called MOCOV2 by introducing data augmentation and
nonlinear transformation to MOCO. Zhai et a1. [17] proposed
a method of classifying batch instance samples to representa-
tion learning. Unlike the mechanism of the above-mentioned
methods, SwAV [24] applies the clustering algorithm into the
contrastive learning. SwAV clusters data by computing the
cluster assignment from one augmentation and predicting it
from another augmentation. Although no negative samples are
involved in  the learning mechanism of SwAV, the clustering
centers can be  viewed as negative prototypes.

Whereas the above-mentioned methods rely on  negative
examples for feature learning, BYOL [25] uses only positive
samples. BYOL consists Of an online network and a target
network that predict and interact with each other. TO fur-
ther simplify BYOL, Chen and He [26] proposed SimSiam,
a method that directly maximizes the similarity of different
views from the same image, without using either a momentum
encoder or negative pairs. Experiment verified that stopping
the target network gradient is the key to prevent collapse,
rather than the momentum encoder.

C. Generative Adversarial Networks

GAN is a deep learning method for unsupervised learning
which consists of a generator and a discriminator. The goal of

the generator is  to trick discriminator into reaching a high
discrimination value by learning generated distribution pg
to match data distribution pdam. Fake images are generated
by feeding variables z sampled from uniform or Gaussian
distribution pz into the generator. The discriminator acts as
a classifier with the aim Of determining whether the image i s
true or false. The objective function Of GAN is as follows:

mgnmgx VGAN(D) = lEx~pdm[logD(x)]

+1Ez~p,[10g(1 — D(G(z ) ) ) ] .  (1)
Although GAN has shown powerful potential for special

tasks, reaching the better optima for GAN is still a challenge.
Since GAN is vulnerable to mode collapse, especially with
limited data. To improve the learning of GAN, lots of works
have been proposed by modifying the GAN architecture.
Deep convolutional GANs (DCGANs) [27] were proposed
by introducing CNN to GAN architecture. Ghosh et a1. [28]
used m generators and a discriminator in order to learn the
joint distribution of different domain samples. In addition to
modifying the GAN architecture, lots of works have been done
to improve the learning Of GAN by analyzing the objective
function. WGAN [29] successfully improved the stability
of GAN training by using the Wassertein-l metric as loss
function. However, i t  does not work well  for a deeper model.
To address this problem, Gulrajani et al. [30] introduced
gradient penalty to WGAN and successfully demonstrated a
stable training performance. Mao et a1. [31] proposed a least
square loss for discriminator instead Of the cross-entropy loss.

I I I .  PROPOSED METHOD

The proposed FDCL mainly consists Of two parts: FiCO
and DGANs. Fig. 2 expounds the overall framework of the
proposed FDCL. First, in the pre-training stage, DGAN stores
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multiple generator model weights in mode set according to
different discriminant values. Next, in the training stage, the
generator randomly loads a weight from mode set to generate
batch fake images. After that, the batch fake and real images
are enhanced k times and sent to FiCo for representation learn-
ing. Then, in the FiCo, k batch-enhanced images are encoded
for variable temperature discrimination training. Finally, k
batch-enhanced images are transposed and reencoded for FR
training. In addition, k features’ output by FiCo are averaged
and used as intake to the DGAN generator to improve image
quality, further facilitating representation learning.

A.  Flexible Contrast

The FiCo is inspired by BIDFC [17]. There is  a similarity
between BIDFC and classification tasks that instance labels are
assigned to each batch of samples during the model training
phase. However, it is  worth noting that the model can be
difficult to converge during the training process, since the
labels of each instance sample must be different in each epoch.
To resolve this issue, k time augmentation on each sample in
the batch obtains k batch augmented data for training. Cross-
entropy loss is  utilized as the target function to guide BIDFC,
which is  expressed as

n TLce  = _1  210g  exp(wi v / t )
n i=1 23:1.1‘75 exp(wJTv/t) + exp(wiTv/t)

(2)

where n indicates the batch s ize,  w ,  and w 1‘ refer to weights
of positive and negative samples in the fully connected layer,
respectively, 1) stands for sample embedding, and 1' denotes
the temperature coefficient.

BDIFC replaces contrastive loss [16] with cross-entropy
loss to weaken the contrast strength among different samples,
which is  beneficial for representation learning of intra—class
similar samples, whereas opposite for that of inter-class sim-
ilar samples [see Fig. 1(b)]. BIDFC and strongly contrastive
learning have opposite contrast strength in  embeddings among
samples. Due to the existence of  both intra-class and inter-class
similar samples in steel surface defect data at the same time,
these two extreme contrast strengths are not suitable for
representation learning of steel surface defect samples.

To address this problem, appropriate contrast strength needs
to be found. Contrast strength is  related to alignment and
uniformity [32], which are two key properties of unsupervised
contrastive learning, representing the degree of aggregation of
positive samples and the uniformity of embeddings distribu-
tion, respectively. Excessive alignment and weak uniformity
can lead to model collapse, which in turn can be detrimental to
the semantic information of the features. For the representation
learning of steel surface defect samples, it is  important to
find a balance between alignment and uniformity. According
to [33], the temperature coefficient r is  able to regulate the
relationship between alignment and uniformity, so  we analyze
the loss function for BIDFC. The gradients with respect to
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negative sample weights w j is  formulated as

no. 1) 1 "= — — P- 3
Bwj ‘L' X n 12:; J ( )

exp(wJTv/t)
Pj = (4)

23521,].95 exp(w;.rv/t) + exp(wiTv/t)

where Pj denotes the probability of negative sample j being
identified as positive sample 1'. From (3) and (4), one can
observe that each negative sample has a different gradient,
and their gradient values are proportional to exp(wJT.v/t).
In addition, the more similar the negative samples are to the
positive samples, the larger their gradient values are. The
temperature coefficient t has an amplifying and reducing
effect on the gradient values. As  the temperature decreases,
the update of the model i s  concentrated in regions where the
samples are highly similar, making the embedding distribution
more uniform. And as the temperature increases, the model
updates each sample equivalently, resulting in a more aggre-
gated embedding distribution.

Based on the above-mentioned analysis of the temperature
properties and combined with the characteristics of BIDFC,
FiCo is  proposed. FiCo consists of variable temperature
discrimination and FR. The spirit of variable temperature
discrimination is  the combination of temperature function
and representation learning. Different from the temperature
constant, the temperature function allows flexibility to adjust
the contrast strength among samples. In the early stage of
model training, the temperature is  kept constant and set
small so  that the model focuses on distinguishing among
embedding of different samples. In the later stages of model
training, the temperature values gradually increase. The model
gradually focuses on aggregating positive samples. Essen-
tially, the variable temperature discrimination separates and
aggregates different instances through temperature changes,
while implicitly separating inter-class similar samples and
aggregating intra—class similar samples. The objective function
of the variable temperature discrimination is  as follows:

k n exp (w§)Tv/t(t)———zzlg [ ]Lvtd  
—T (5)1:1 i=1 22=1exp|:(w;) 11/10)]

_ C, t 5 t1
t0 )  _ [ C +1ogc(t/100)a t > t1 (6)

where k represents the enhancement times, wf stands for the
weight of the lth enhanced view of simple i ,  and ‘L'(t) denotes
the temperature function. Different forms of  temperature func-
tions are also used in variable temperature discrimination,
as follows:

C,  t f tto»  = 1 (7)C +0.01 x (t —200), t > t1
C, t s  t1

t = 8fl )2 { C + C0400), t>  t1 ( )
w) ,  = C +logc[1+(t/150)] (9)
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Fig. 3 .  Illustration of  FR. Different shapes indicate different instance sample
embeddings. Different colors of  the same shape indicate enhanced embeddings
of  the same sample from different augmentation times.

where t denotes the training epochs and C represents the
temperature constant. A detailed discussion of the effects of
these temperature functions on  model performance is  shown
in Section IV (see Table XIII).

In BIDFC, to further weaken the contrast strength among
similar samples, a dynamic—weighted variance (DWV) loss is
adopted to aggregate positive sample pairs. Although aggregat-
ing positive sample pairs implicitly brings the embedding of
intra—class similar samples closer together, it also implicitly
brings the embedding of inter-class similar samples closer
together, which will  be harmful to the semantic features.
To aggregate intra—class similar samples while separating
inter-class similar samples, FR is proposed. The illustration
of the FR is shown in Fig. 3. The FR consists of aggregation
and separation components. In the aggregation part, differ-
ent enhanced views of the same sample are aggregated by
minimizing the variance among their features. The objective
function of the aggregation part is  as follows:

1 n k . k .Lamzz  2;:
1 :i=1 j=1

where z ;  is the feature vector of the jth enhanced View of
simple i from the global pooling layer. In the separation
part, different instance samples are appropriately separated by
increasing the variance among their features. The objection
function of the separation part can be expressed as

2

(10)
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| 52

(12)

where p denotes the length of Z; , bt’i represents a feature
value from Z; , and 0: refers to the degree of separation among
instance samples. These two parts serve to implicitly aggregate
intra-class similar samples and separate inter-class similar
samples. Based on the above-mentioned two parts of the loss,

2516014

the loss  i s  defined as

L f ,  = weight(t)1La + weight(t)2LK (13)

where weight(t)1 and weight(t)2 indicate the slowly increasing
function of training epochs t for adjusting the FR loss.
As  learned from [31], the representations learned by the model
will be  impaired if large weight is  used at the beginning of
model training. It is difficult for the model to learn information
from images if the weight is  small in the training phase.
Therefore, weight is  defined as a function that increases with
training epochs t .  The weight value of the aggregation part
changes based on T1 and T2, and the weight value of the
separation part changes based on T3 and T4, written as

t — Tweight(t)1 = max af min 1 , 1 ,0  (14 )
T2 — T1

. . t — T3we1ght(t)2 = max a f  m1n , 1 , 0  (15)T4 — T3
where at f > 0 denotes the weight coefficient. Overall, the total
loss function is formulated as

L = Lvtd  + Lf r -  (16 )

B. Diverse GAN

The performance of contrastive learning is  correlated with
the amount o f  data. Steel surface defect data are insufficient,
which will limit the performance of contrastive learning.
To further improve the performance of FiCo, a generative
method named DGAN is proposed to generate diverse images
for FiCo.

Although GAN is capable of generating large amounts of
data, it is  prone to mode collapse with insufficient data. Under
mode collapse, lots of duplicate images are generated, which
is ineffective for contrastive learning. In response to mode
collapse, m generators are adopted by MAD-GAN [28] to
generate images. In order for m generators to capture diverse
modes, the goal of  the discriminator is to distinguish not only
between fake and real images but also from which generator
the generated images come. However, simultaneously training
multiple generators in MAD-GAN consumes a lot of compu-
tational resources, and how many generators are required to
capture all modes of the data distribution is  unknown.

To address the above—mentioned problem, we proposed
DGAN to simply and effectively alleviate mode collapse
and reduce computational cost. The goal of DGAN is to
capture different modes using multiple model weights, but
only with one generator. Mode collapse is  characterized by
the discriminator pushing the generator away whenever the
generator grabs a mode during the training phase. Thus, the
generator will catch different single mode instead of all modes
in the case of mode collapse. Based on this property of mode
collapse, we will save different generator weights in mode
set according to the different discriminant values’ output by
discriminator. Since discriminator can be  viewed as metric
between generated distribution and data distribution, different
outcomes of the discriminator represent different modes cap-
tured by generator. One thing to note is  that the discriminator
and the generator have to reach a convergent state before
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| fc, 4x4x1024. EN | 3X3, conv, 16, stride=2, LR

| 3x3, conv, 1024, stride=l, BN, LR, us | 3x3, conv, 32, stride=2, LR

| 3x3, conv, 512, stride=l, BN, LR, US | 3x3, conv, 64, stride=2, LR

| 3x3, conv, 128, stride=1,BN, LR, US | 3x3, conv, 255, stride=2, LR

| 3x3,oonv,64,sm'de=1,BN,LR,US | 3x3,cmv,512,suide=2,LR

l |
l |
1 * |

] 3X3,conv,256,st|ide=l,BN,LR, us | | 3x3, conv, 128, gunman |

l |
l |
l || 3x3,conv,1,stride=1,BN,rh,Us | fc,1

Generator Discriminator
(a)

| fc, 4x4x256, EN | 3X3, conv, 16, stride=2, LR

| 3X3,eonv,256,5I1idFl,BN,LR,US | 3X3,conv,32,st1ide=2,LR

3XS, conv, 64, snide=2, LR
i

| 3X3,conv,64,stride=1,BN,LR,US | 3X3,conv,128,stride=2,LR

|
|

| 3x3, conv, 128, stride=l,BN, LR, Us | |

|
I fc, 1[ 3x3,oonv,1,suide=1,BN,rh,Us |

Generator Discriminator

(b)

Fig. 4 .  Configuration of  the model for DGAN. “K  x K,  conv, C ,  stride: S”
means a convolutional layer with K XK kernel, C output filters, and stride
= S .  BN and US denote batch normalization and upsampling, respectively.
LR and Th denote LeakyReLu activation and Tahn activation, respectively.
“,fc N”  indicates a fully connected layer with N output nodes. (a) DGAN
architecture for 256 x 256 image. (b) DGAN architecture for 64 X 64 image.

(a) (b) ”(c) (d) (e) (t)

Fig. 5 .  Examples of  defect samples in  the NEU-CLS. (a) Cr. (b) In. (c) Pa.
((1) Ps.  (e) Rs.  (f) Sc.

saving the model, which ensures that the generator learns to
produce real looking images. Here, we save 400 generator
weights to the mode set. The effects of number of generator
weights on model performance are shown in the experimental
section (see Table XVH). The configuration of the DGAN is
shown in Fig. 4(a) and (b) for generating images of 256 X
256 (NEU-CLS [36], X-SDD [37], and GC10 [38]) and 64 X
64 (NEU—CLS-64 [36]), respectively. To further improve the
image quality, k features generated by FiCo are averaged and
fed into the DGAN generator inspired by [35].

The objection function of LSGAN [31] is  adopted by
DGAN to balance image quality and training stability, written
as

1
—1Ex~p,,,[(D(x) — 1)2 ]ngn V(D) = 2

1
+ EEZNPZ [(D(G(z)) + 1)2]
1ngn V(G) = §Ez~p.[(D<G<z)»2] (17)

where x represents the steel surface defect image sampled
from the data distribution pdata, z denotes the variable sampled
from uniform or Gaussian distribution pz, D stands for the
discriminator, and G i s  the generator.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

Fig. 6 .  Examples of defect samples in  the NEU-CLS-64. (a) Cr. (b) Gg.
(c) In. ((1) Pa. (e) Ps. (I) Rd. (g) Rs. (h) Sc. (i) Sp.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To validate and analyze our method, experiments are con-
ducted on four benchmark data sets .  First, we  introduce the
four steel surface defect data sets and construct few-label
databases, followed by experimental settings present. Then, the
comparison between the proposed method and related state-
of-the-art methods i s  made. Thereafter, the robustness o f  the
proposed method is tested for noise and blur inputs under few
labeled samples. Finally, the proposed method is analyzed by
ablation study.

A. Dataset and Experimental Settings

1 )  Steel Surface Defect Data Sets: NEU-CLS [36] refers
to a benchmark database containing six kinds of steel surface
defects, including crazing (Cr), inclusion (In), patches (Pa),
pitted surface (PS), rolled-in scale (Rs), and scratches (Sc).
Each category contains 300 images with a size of 200 X 200.
Sixty percent of them are randomly selected into the training
set and the rest as the testing set. Some samples in this dataset
are shown in  Fig. 5 .

Different from NEU-CLS, NEU—CLS-64 [36] has a smaller
image size (64 X 64) and more defect types, including crazing
(Cr), grooves and gouges (Gg), inclusion (In), patches (Pa),
pitted surface (Ps), rolling dust (Rd), rolled-in scale (Rs),
scratches (Sc), and spots (Sp). The number of these nine defect
samples is  1589, 1210, 1148, 797, 775, 773, 438, 296, and 200.
The data set is divided in the same way as NEU—CLS. Some
samples in this data set are shown in Fig. 6 .

X-SDD [37] is  a data set with seven types of surface defects
of hot rolled steel strip, including finishing roll printing,
iron sheet ash,  oxide scale of plate system, oxide scale o f
temperature system, red iron, inclusion, and scratch. The
number of these seven defect samples is  203, 122, 63, 203,
397 ,  238 ,  and 134 .  The sample size in the data set  i s  much
smaller. Following the procedure of [37], 70% of the defect
samples are randomly selected into the training set and the rest
as the testing set. Some samples in this data set are shown in
Fig. 7 .

GClO [38] is  a data set with ten types of surface defects
of steel plate, including punching (Pu), welding line (W1),
crescent gap (Cg), water spot (Ws), oil spot (Os), silk spot (SS),
inclusion (In), rolled pit (Rp), crease (Cr), and waist folding
(WI). Since an image contains different types of defects,
we crop the defects of the image according to bounding box.
The number o f  these ten defects samples i s  329 ,  513 ,  265 ,
354, 569, 884, 347, 85, 74, and 143. The data set is  divided
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(a) (b) (C) (d) (e) (0 (g)

Fig. 7 .  Examples of defect samples in  the X-SDD. (a) Finishing roll
printing. (b) Iron sheet ash. (c) Oxide scale of  plate system. (d) Oxide scale
of  temperature system. (6) Red iron. (f) Slag inclusion. (g) Surface scratch.
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(a) (b) (C) (d) (e) (g) (h) (i) (i)

Fig. 8 .  Examples of defect samples in  the GC10. (a) Pu.  (b) W1. (c) Cg .
(d) Ws .  (e) Os.  (f) Ss. (g) In.  (h) Rp.  (i) Cr. (i) Wf.

in the same way as NEU—CLS. Some samples in this data set
are shown in Fig. 8 .

The label information of  the above-mentioned three training
sets is  removed as unlabeled training data for contrastive
learning.

2)  Few-Label Database: To evaluate the classification per-
formance of FDCL with few labeled samples, few-label
database is  constructed. It is  comprised of several equivalent
samples that are randomly extracted from each class in the
training set. Four few-label databases are created as experi-
mental databases, namely 1- ,  2—, 3 - ,  and 4—label.

3)  Evaluation Metrics: Linear evaluation (LE) and fine-
tuning (FT) are widely used for performance evaluation of
contrastive learning [39]. LE committed to freezing model
weights and only the fully connected layer is  trained. It mea-
sures the relevance of learned features by the model during the
unsupervised learning phase to downstream tasks. Different
from LE, the weight of all layers will be trained during
FT phase. It reflects the potential of pre-trained models for
downstream task performance.

To evaluate the quality of images generated by GAN meth-
ods, Frechet inception distance (FID) [40] is  employed to
quantify generation quality of steel surface defect. It reflects
the distance between two distributions of the real and gener-
ated images. The lower the FID, the better the results.

4)  Implementation Details: Crop with resize, random ver-
tical fl ip ,  random horizontal fl ip ,  contrast, and brightness are
all adopted as  the data augmentation of FiCo. The number
of augmentation k is set to 5 .  Being as the encoder for
unsupervised learning, ResNetl8 i s  trained at batch size of
64 for 300 epochs. In the temperature function ‘L'(t), C is  set
to 3 .0  and t1 i s  set  to 200. T1 = 30 ,  T2 = 150 ,  T3 = 150 ,
T4 = 300, and 05f = 1.0 in FR loss. The separation degree
a is  set to 1.0. The Adam optimizer is  exploited for FiCo
training with learning of 0.3. DGAN is trained 4000 epochs
with a batch size of 64 and learning rate of 0.0002. The
Adam optimizer is  adopted by DGAN. In the LE and FT

2516014

TABLE I

COMPARISON WITH CONTRASTIVE LEARNING METHODS ON NEU-CLS
FEW-LABEL DATABASES. FT AND LE

Method l-label 2-label 3-label 4-label
FT:
SimCLR 75.02i7.42 85.22i4.60 88.71i4.16 91 .29i3  .29
MoCov2 74.67i8.28 83.05i5.01 86.48i3.82 88 .52i3  .48
SimSiam 49.00i9.00 62.76i7.38 70.38i5.60 73.91i5  .66
BYOL 56.37i9.87 71.83i8.39 78.58i6.54 82.44i5.21
SwAV 48.61i7.73 59.72i7.36 66.69i6.85 7 l .02i5 .82
BIDFC 77.53i8.74 86.30i5.73 89.31i4.74 91.31i3.44
FixMatch 39.45i8.08 78.49i4.71 83.95i4.65 91.92i2.67
MPL 51.83i9.97 52.58i7.38 81.79i5.61 86.00i3.61
SimMatch 79.43i5.16 90.87i4.17 92.38i2.77 93.11i2.11
Rotation 57.59i6.76 68.40i5.95 73.83i4.97 77.78i4.59
InstFeat 56.40:k7.30 70.67i6.58 78.00i5.30 82.64i4.21
ours 91.43:|:6.04 95.35i2 .90 96.  04d:1.88 96.48i1 .42
LE:
SimCLR 74.33i7.53 85.46i4.83 88.83i4.13 91 .24i3  .03
MoCov2 74.49i7.35 84.43i4.82 88.20i3.71 90.37i2.57
SimSiam 50.35i8.80 63.75i7.51 71.34i5.55 75 .305 .03
BYOL 63.52i7.68 78.31i6.49 84.44i4.38 87.35i3.73
SwAV 48.67i7.29 58.99i6.31 64.47i5.01 68.60i4.34
BIDFC 77.51i8.72 86.28i5.73 89.28i4.75 9 l .29i3 .43
FixMatch 30.51i6.23 75  .20i4.44 82.66i4.44 92.09i2.08
MPL 52.23i9.75 50.14i7.13 85.28i3.92 89.16i2.35
SimMatch 80.05i5  .44 91.38i4.14 92.77i2.12 92.48i1.86
Rotation 33.64i3  .99 37.40i3.97 40.69i4.38 43.38i4.00
InstFeat 46.75i6.28 56.89i5.34 62.84i4.55 67.52i4.93
ours 91.43:I:6.04 95.35i2.90 96.05i1.87 96.47:I:1.42

stage, the model is  trained for 200 epochs with learning rate of
0 .03 .  In addition to NEU-CLS-64, the images o f  NEU-CLS,
X-SDD,  and GC10  are resized to 224 X 224 before input to
train. To ensure accurate experimental results,  four few-label
databases are randomly created one hundred times to conduct
the experiments. Then the average accuracy and standard devi-
ations are calculated for each database. All experiments are
based on Pytorch framework and implemented in a computer
with an Nvidia GeForce RTX 2080Ti 11G GPU and an Intel
Core of i7—9800X CPU.

B. Comparison With State-of-the-Art Methods

In this section, the proposed method is compared with state-
of—the-art methods, including SimCLR [ l4] ,  MoCOV2 [15],
BIDFC [17], SwAV [24], BYOL [25], SimSiam [26], Fix-
Match [41], MPL [42], SimMatch [43], Rotation [44], and
InstFeat [45] .  These methods are trained at the unsupervised
learning stage with the data augmentations introduced earlier.

1 )  Results on  NEU—CLS: The experimental results are listed
in  Table I, the proposed method achieves competitive perfor-
mance on four few-label databases of NEU-CLS. Specifically,
under FT, the proposed method achieves an average accuracy
of 91.43%, 95.35%, 96.04%, and 96.48% on the 1-, 2—, 3-,
and 4-label databases, respectively. These are significantly
high than the state-of-the-art contrastive learning methods. The
accuracy o f  the proposed method i s  12 .00%,  4 .48%,  3 .66%,
and 3.37% higher than the best state—of-the—art methods on
these four few-label databases, respectively. Under LE, the
proposed method also achieves considerable accuracy. These
results demonstrate that our method can learn more meaningful
semantic information from steel surface defect images.
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TABLE II

COMPARISON WITH CONTRASTIVE LEARNING METHODS ON NEU-CLS-
64  FEW-LABEL DATABASES

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

TABLE ]]I

COMPARISON WITH CONTRASTIVE LEARNING METHODS ON X-SDD
FEW-LABEL DATABASES

Method 1-1abel 2-1abel 3-1abel 4-1abel Method l-label 2-label 3-labe1 4-label
FT: FT:
SimCLR 55.04i9.11 64.36i6.03 68.96i4.71 71.96i4.24 SimCLR 48.23i7.50 59.30i6.82 64 .815 .74  68 .005 .06
MoCov2 77 .125 .86  80 .945  .47 83.39i2.77 84 .72i250 MoCov2 46.93i7.04 62.32i6.40 70 .525  .30 75.59i4.95
SimSiam 51 .755 .12  62 .57580  68.69i4.38 70.96i4.13 SimSiam 31.56i7.30 40.17i6.22 44.11i6.78 47 .885 .00
BYOL 59.44i7.73 74 .68584  80.68i4.27 84.34i2.74 BYOL 43.00i7.04 57.28i6.70 66.64i6.66 71 .765 .87
SwAV 36.14:t7.59 46 .145 .60  53 .315 .43  57.86zt4.89 SwAV 41.55i7.17 52.09i6.46 59 ,825 .34  64 .235 .37
BIDFC 74 .775 .27  78.38i4.33 79.63i4.55 80 .385  .77 BIDFC 51.75i8.99 59.07i8.31 64.54i6.51 67.96i6.05
FixMatch 22 .18558  49.04i7.03 56.46i6.00 73 .695  .52 FixMatch 4 l .705 .40 6 l .995 .79 80.09i4.53 87.02i2.51
MPL 30 .175 .55  50.66zt6.42 53.36zt6.38 72.22:t4.72 MPL 49.28i8.54 65 .755  .07 77.96i4.00 82.42i4.09
SimMatch 64.91i6.93 81 .495 .63  81 .96530  85.96i2.20 SimMatch 49.75i9.06 65.74i6.16 76 .27554  81.84i4.14
Rotation 18 ,045 .70  21 .705 .90  25.47i6.41 26.76i4.94 Rotation 52.85i8.50 64 .78553  71.32i4.55 75 .965 .87
InstFeat 68.05i7.04 75 .25 i457  79 .605 .58  82 ,205 .12  InstFeat 44.10:t6.28 57 .275 .69  65.86i4.91 71.18i4.90
ours 81.565.47 85.615.92 87.375.36 88.305 .93 ours 71.425.60 81.595.55 86.385.08 88 .465.70

SimCLR 55.39i9.05 64.68i6.  12 69.32i4.54 72 .385  .88 SimCLR 48.20i7.62 59.07i6.85 64.945 .92 67 .635 .23
MoCov2 76.10i6.55 81 .145 .35  83 .83 i252  85 .25 i254  MoCov2 45.67i7.21 61.50zt6.85 68 ,385 .15  72 .315 .18
SimSiam 60.11i7.01 68 .315 .36  72.66i4.31 74 .915 .67  SimSiam 31.13i7.39 40.24i6.67 44.395 .21 54.38i4.47
BYOL 61.75i6.88 76045 .20  82215 .69  85.12i2.82 BYOL 43.57i7.05 60.36i6.43 68 .555  .27 73 .80527
SwAV 35.16i7.24 43 .905 .24  50 .945 .36  54.88i4.84 SwAV 40.29i7.24 50.30:t6.25 55 .885  .60 60.025 .47
BIDFC 74 .805 .28  78.41i4.34 79.63i4.54 80 .395  .77 BIDFC 51.76i9.01 59.04i8.28 64.58i6.49 67.93i6.05
FixMatch 18 .565 .81  49.25i6.45 49 .895 .10  74.18i2.98 FixMatch 38.30i9.54 59 .525 .88  79.60i4.43 87.19i2.40
MPL 31.30i6.43 51.72zt6.24 56.57:t4.60 77 ,615 .59  MPL 46.59i8.59 67535 .23  79 ,965 .77  80 .715 .98
SimMatch 60.23i7.13 81 .705  .26 82.03i2.95 85.52i2.25 SimMatch 49.19i8.48 65.80i6.49 75.48i6.12 78 .085 .81
Rotation 12.59i2.32 12.79i2.46 13.24i2.48 13.61i1.97 Rotation 31.66i7.94 39.73i7.31 44.67i6.99 48 .365 .64
InstFeat 66.56i7.18 75.81i4.51 80 .845 .16  83.63i2.73 InstFeat 40.77i6.25 57 .805 .66  65.65i4.49 70.67i4.42
ours 81555.56 85625.92 87.375.42 88.285 .96 ours 71.425.62 81.585.57 86.40:|:4.08 88.485.70

TABLE IV

2)  Results on NEU-CLS-64: The experimental results are
shown in Table I I .  From the results,  i t  can be  seen that the
proposed method achieves considerable performance even with
more types of defects and smaller image resolution. Under
PT, the proposed method achieves an average accuracy of
81.56%, 85.61%, 87.37%, and 88.30% on the 1-, 2—, 3-,
and 4—1abel databases, respectively. The performance Of the
proposed method exceeds the state-of-the-art methods by at
least 4 .44%,  4 .67%,  4 .08%,  and 2 .34% on these four few—
label databases, respectively. Under LE, the proposed method
achieves comparable performance to FT. The results suggest
that the proposed method can generalize to more steel surface
defect types and provide competitive performance at low
resolution.

3)  Results on X-SDD: The experimental results presented
in  Table III show that the proposed method is Significantly
better than the state-of-the—alt contrastive learning methods.
Under PT, the proposed method achieves an average accuracy
of 71.42%, 81.59%, 86.38%, and 88.46% on the 1-, 2—, 3-,
and 4—label databases, respectively. The performance of the
proposed method exceeds the state-of-the-art methods by at
least 18 .57%,  15 .84%,  6 .29%,  and 1 .44% on these four few-
label databases, respectively. Similar results are also observed
on LE. The results suggest that the proposed method also
performs well for the data set with smaller sample Size and
different types of defects.

4)  Results on GC10: The experimental results in Table IV
report that the proposed method achieves competitive perfor-
mance. Under FT, the proposed method achieves an average
accuracy o f  58 .47%,  65 .81%,  70 .66%,  and 73 .40% on the 1- ,
2—, 3 - ,  and 4-labe1 databases, respectively. The performance o f
the proposed method exceeds the state-of-the-art methods by at

COMPARISON WITH CONTRASTIVE LEARNING METHODS ON GC10  FEW-
LABEL DATABASES

Method 1 -labe1 2-label 3-labe1 4-label
FT:
SimCLR 43.67i6.44 53 ,535 .63  59 .015 .95  61 .855 .70
MoCov2 50 .73552  58.72i4.75 62 .815 .60  66 .175 .99
SimSiam 21 ,915 .32  24415 .45  25265 .76  25585 .72
BYOL 37.60:t6.08 47 ,775 .68  55175 .83  60 .135 .23
SwAV 36.06i6.70 44.13i6.07 47 .885 .42 51 .505 .85
BIDFC 53.87i6.42 61615 .07  66255 .53  67925 .41
FixMatch 26.465 .63 33 .855  .60 49155 .08  54835 .98
MPL 28.56i4.52 48 .855  .07 57155 .03  60475.49
SimMatch 44.81i6.45 57 ,375 .01  61 .725 .88  71 .685 .03
Rotation 32.08i4.83 42.55i4.06 48 .205 .57  52 .58520
InstFeat 38 .39598  47.8 15  .26 54.825.02 58 .78558
ours 58.475.35 65.815.79 70.665.29 73.405.78
LE:
SimCLR 43.76i6.43 53 .375  .78 58 .805 .19  61 .775 .66
MoCov2 52 ,985 .16  61.09zt4.98 65695 .80  68845 .15
SimSiam 21 ,875 .81  24155 .78  25325 .59  26235 .61
BYOL 45 ,315 .93  57835 .34  65435 .53  69 .71532
SwAV 36 .595 .90  43 .965 .41  47 .925 .14  51 ,195 .66
BIDFC 53.90:t6.43 61 ,635 .08  66 .26552  67 .935  .41
FixMatch 24 .975 .34 29995 .81  49785 .42  54 .345 .84
MPL 28 .655  .25 48.07i4.25 58 .415 .15  61 .655 .47
SimMatch 43.97i6.99 57.49zt4.84 60 .535 .17  72 .815 .87
Rotation 2 l . 855  .99 25 .545  .68 27 .405 .15  29525.66
InstFeat 36 .915 .82  48.00i4.98 55 .995 .48  59 .945 .95
ours 58.475.35 65.825.80 70.695.29 73.435.78

least  4 .60%,  4 .20%,  4 .41%,  and 1 .72% on these four few-label
databases, respectively. Under LE, the proposed method also
achieves considerable accuracy. The results also demonstrate
the effectiveness of the proposed method.

From the above-mentioned experiments, it  can be seen that
the proposed method outperforms the state-of-the-art con-
trastive learning methods on four standard steel surface defect
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TABLE V

COMPARISON WITH CLASSIFICATION NETWORKS ON NEU-CLS
FEW-LABEL DATABASES
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TABLE VII

COMPARISON WITH CLASSIFICATION NETWORKS ON X-SDD
FEW-LABEL DATABASES

Method 1 -label 2-label 3 -label 4-label Method l-label 2-label 3-label 4-label
VGG16 29.94i6.18 31.48i6.59 32.06i5.91 33.01i6.18 VGG16 23.22i8.54 25.61i7.7l  25.58i8.36 25.81i7.55

EffectvNetZ 37.04i8.19 47.70i7.77 53.59i6.71 58.21i6.67 EffectvNetZ 30.72i7.35 35.91i6.67 36.49i6.69 39 .19 i653
DenseNet 54.14i6.84 68.29i5.63 72.73i5.88 77.08i3.67 DenseNet 36.51i7.90 44.54i7.92 50.66i6.07 55.71i5.27

ShuffleNet 44.76i9.38 55.11i9.06 63.76i6.21 64.6:k5.89 ShuffleNetv2 28.17i6.82 33.92i5.88 37 .21 i6 . l3  39.69i5.06
MobileNetv3 41.17i6.68 51.32i7.15 5 8.96i6.06 64.405 .09 MobileNetv3 28.18i7.69 33.36i6.06 36.73i5.60 39.79i5.67

ResNet18 49.68i8.80 63.39i6.78 70 .83 i5  .88 76.53i3.87 ResNet18 34.93i8.02 43.18i6.27 49.84i6.10 54.15i5.57
ours 91.43:I:6.04 95.35i2.90 96.05i1.87 96.47d:1.42 ours 71.42:I:8.62 81.58557 86.40:I:4.08 88.483.70

TABLE VI
TABLE VH1COMPARISON WITH CLASSIFICATION NETWORKS ON

NEU-CLS-64  FEW-LABEL DATABASES COMPARISON WITH CLASSIFICATION NETWORKS ON
GC10  FEW-LABEL DATABASES

Method 1-label 2-label 3-label 4-label
VGG16 15.79i5.13 15 .80i5  .25 17.29i2.99 18 .03i5  .04 Method 1-label 2-label 3-label 4-label

EffectvNet2 16.57i5.19 22.12i5.35 25.76i4.07 27.40i4.19 VGG16 15.85i4.68 17.51i4.78 17.99i4.67 19.36i4.28
DenseNet 40.14i6.84 49.84i5  .23 54.81i4.52 58.75i4.18 EffectvNetZ 16.79i3.24 19.64i4.33 21.44i4.37 22.37i4.28

ShuffleNetv2 20.08i4.95 22.62i4.33 25.41i3  .69 27.52i2.88 DenseNet 20.22i3.59 24.85i3.03 27.74i2.99 29.35i2.76
MobileNetv3 21 .37i5  .16 28.00i6.37 32 .16 i5  .00 34.94i4.45 ShuffleNet 18.291187 21.41i3.58 23.33i3.06 24.50i2.97

ResNet18 31 .35 i5  .90 39 .19 i5  .06 43.87i4.45 47.76i4.34 MobileNetv3 16.131198 19.89i3.01 22.86i3.17 24.83i3.03
ours 81555.56 85.62=E3.92 87.37=E3.42 88.28i2.96 ResNetl  8 21.32i3.09 25.18i2.90 28.13i2.65 29.78i2.74

ours 58.47:I:S.35 65.82i4.80 70.69i4.29 73.431318

data sets. The reason iS twofold. One is that FDCL effectively
handles the potential relationships among instance samples
by suitable contrast strength. The second is that FDCL can
provide itself with sufficient data in the unsupervised learning
phase, which allows it to learn more diverse information. For
comparative contrastive learning methods, their inappropriate
contrast strength ignores the underlying relationships among
samples and harms feature useful for downstream tasks. More-
over, the limited steel defect data prevents them from learning
sufficient semantic information. For semi-supervised learning
methods, the classifier tends to predict the wrong pseudo-
labels to guide the model training, Since few labeled data are
available, resulting in impaired model performance. For other
unsupervised learning methods, the low correlation between
the pretext task and the defect classification task reduces
the quality of the learned representations. In addition, their
performance is  also limited due to insufficient defect data.

C. Comparison With Classification Networks

In this part, the proposed method iS compared with defect
classification networks [46], [47], [48], [49], [50], [51] under
four steel surface defect data sets. The comparison results are
presented in Tables V—VIII, respectively. From the results,
it can be  seen that the proposed method outperforms these
classification networks by a Significant margin. The results
account that the effective representation learning method can
prominently improve the performance of steel surface defect
recognition with few labeled samples compared to model
architectures. The model architecture does not play an impor-
tant role in steel surface defect recognition with few labeled
samples.

D. Performance of the Proposed Method Under Noise and
Blur Conditions

Industrial environments are complex and volatile. On pro-
duction lines, the quality of the acquired images can be

(1.03 0.06

Fig. 9 .  Examples of defect images with different noise weights.

disturbed by noise and blur. These interference factors will
affect the performance of recognition tasks. To evaluate the
robustness of the proposed method, noise and blur are added
to the test images and the few-label training images. The
model is  fine—tuned and linear evaluated on disturbed few—label
databases and then evaluated performance on disturbed test set.
The experiment is  based on NEU—CLS data set.

1 )  Noise: Image sensor CCD camera will introduce noise
when capturing images of steel surface defects, due to the
influences of operating environment, electronic components,
circuit stlucture, etc.  Gaussian noise with a mean of O and a
variance of l is  introduced into the defect image. Fig. 9 shows
the defect images perturbed by Gaussian noise with different
weights. The experimental results under different noise condi-
tions are presented in Table IX. From the experimental results,
one can be observed that the proposed method is resistant to
noise interference. When the noise weights are in range of O to
0.09, the proposed method can maintain a high recognition
rate. Although the steel defect images are severely corrupted
at noise weights of  0.12 and 0.15, the proposed method iS able
to achieve a moderate recognition rate. This result indicates
that the proposed method is robust in noisy environments.

2 ) Blur: Blurred images of steel defects are mainly caused
by improperly focused lenses, dirty lenses, and machine Vibra-
tions on  the steel production lines. In this part, Gaussian blur
with different radii are introduced into the defect images.
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Fig. 10.  Examples of defect images with different blur radii.

TABLE IX
PERFORMANCE OF THE PROPOSED METHOD 0N NEU-CLS FEW-LABEL

DATABASES WITH VARIOUS NOISE DISTURBANCE

N91“ l-label 2-1abel 3-label 4-labelwelght
FT:

0 91.43zt6.04 95.35:1:2.90 96.04i1.88 96.48zt1.42
0.03 89.53i6.73 93.63i2.99 94.52:1:2.53 95.30:1:1.99
0.06 86.55i6.85 91.26zt3.80 92.28i3.11 93.30:1:2.22
0.09 81.49i8.60 87.71i4.48 89.27i3.60 90.47i3.41
0.12 74.83i9.72 82.26i5.40 84.59zt4.55 86.35zt4.28
0.15 69.63i9.64 76.86i6.55 80.07i5.61 82.28i4.96

LE:
0 91.43i6.04 95.35:1:2.90 96.05i1.87 96.47i1.42

0.03 89.54i6.73 93.64:1:2.99 94.53:1:2.53 95.32:1:1.99
0.06 86.55i6.83 91.25zt2.81 92.25i3.11 93.26zt2.48
0.09 81.46i8.56 87.66zt4.47 89215.61 90.42:1:3.4l
0.12 74.83i9.65 82.22zt5.40 84.54i4.58 86.31i4.27
0.15 69.7mm 76.86i6.57 80.09i5.63 82.26i5.04

TABLE x
PERFORMANCE OF THE PROPOSED METHOD 0N NEU-CLS FEW-LABEL

DATABASES WITH VARIOUS BLUR DISTURBANCE

Blur. l-label 2-1abel 3-label 4-1abelradius
FT:

0 91.43i6.04 95.35i2.90 96.04i1.88 96.48i1.42
1.5 87.65i7.37 92.53i3.34 93.24i2.88 93.99i2.74
2.0 82.99i7.69 88.82i3.98 89.81i3.41 90.73i3.68
2.5 78.01i8.58 84.96i4.75 86.46i4.18 87.57i4.16
3.0 72.68i8.48 79.44i5 .69 82.16i4.45 83.95i4.20
3.5 69.61i8.38 76.46i5.87 79.82i4.72 82.23i4.33

LE:
0 91.43i6.04 95.35i2.90 96.05i1.87 96.47i1.42

1.5 87.64i7.36 92.52i3.33 93.23i2.91 93.99i2.75
2.0 82.97i7.64 88 .79i3  .96 89 .79i3  .40 90.72i3  .70
2.5 78.00i8.53 84.95i4.73 86.42i4.17 87.53i4.14
3 .0  72.43:1:8.43 79.42:1:5 . 65  82.12:1:4.42 83.87:1:4. 12
3.5 69.57i8.36 76.37i5.80 79.73i4.69 82.17i4.34

Examples of blurred images and the recognition rates under
different fuzzy degrees are shown in Fig. 10  and Table X .  The
experimental results indicate that our method can effectively
resist the influences of fuzziness. Even in the case of severely
blurred images, our method can maintain a considerable recog-
nition rate in few—label databases. The results suggest that the
model is  also tolerant to fuzzy interference.

E. Ablation Study

To examine and analyze the effectiveness of the proposed
method, ablation studies are conducted on NEU-CLS data
set, including augmentation times k, degree of separation
at, temperature function t ( t ) ,  DGAN, output features (OF),
FR loss ,  number of generator weights,  weight coefficient o f ,
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TABLE XI

LE WITH DIFFERENT K VALUES UNDER NEU-CLS
FEW-LABEL DATABASES

k 1-1abe1 2-1abe1 3-1abe1 4-1abe1
1 fail fail fail fail
2 fail fail fail fail
3 fail fail fail fail
4 65.83i7.03 71  .42i4.91 7 3.48i3.23 74.30i2.76
5 91.43:I:6.04 95.35i2.90 96.05i1.87 96.47:I:1.42
6 89.34i5.82 93.60i3.74 94.97i2.88 96.01i1.64

TABLE XII

LE  WITH DIFFERENT a VALUES UNDER NEU-CLS
FEW-LABEL DATABASES

a 1-label 2-lable 3-lable 4-label
0.6 86.32i6.03 91.70:1:4.22 93.33:1:3.57 94.35i2.65
0.8 89.57i6.50 93.92:1:3.11 94.85i2.30 95.57i1.67
1.0 91.43:!z6.04 95.35:1:2.90 96.05i1.87 96.47:].42
1.2 89.50i6.30 92.95i3.90 94.19i3.36 95.08i2.52

TABLE XIII

LE  WITH DIFFERENT TEMPERATURE FORMS UNDER NEU-CLS
FEW-LABEL DATABASES

Method l-label 2-label 3-label 4-label
1.0 75.03i7.43 83.99i4.53 87.16i3.17 88.07i3.56
2.0 78.41i7.89 87.65i4.58 90.31i3.67 90.81i3.13
3.0 87.79i6.84 93.26i3.46 94.78i2.38 95.60i1.80
4.0 85.71i6.07 91.93i4.18 93.59i3.11 94.39i2.31
5.0 84.53i5.16 89.64i3.65 91.37i3.10 92.53i2.16

1(t)1 89.95i7.03 94 .38 i334  95.60i2.28 96.21i1.57
1(t)2 89.09i6.91 94.23i3.02 95.36i2.11 95.87i1.70
1(t)3 88.44i4.66 9 l .78 i3  .07 92.92i2.78 93.69i2.30

r(t)(ours) 91.43:!z6.04 95.35i2.90 96.05i1.87 96.47:1:1 .42

TABLE XIV

COMPARISON OF FID SCORES WITH DIFFERENT GENERATION METHODS
OF OUTPUT FEATURES

Method FID
LSGAN 199.75
DCGAN 208.52
WGAN-GP 296.06
MAD-GAN 191.99
DGAN 162.16
DGAN + OF(ours) 152.36

and iterations of FDCL. Evaluation metrics for ablation studies
are based on LE.

1 )  Eflects of Augmentation Times k: Augmentation times
k is  an important parameter that helps the model converge.
As illustrated in Table XI,  the augmentation times k i s  set
to 1 ,  2 ,  3 ,  4 ,  5 ,  and 6 ,  respectively. The model fails to train
effectively when k = 1 ,  2 ,  and 3 ,  because k i s  too small
for the model to extract feature information from a batch of
images. The recognition rate increases rapidly when k changes
from 4 to 5,  but decreases slightly when k reaches 6,  which is
due to overfitting. Therefore, it  is  reasonable to choose 5 for k.

2)  Eflects of Degree of Separation a :  The role of the
degree of separation or is  to adjust the embedding distribution
of samples. To test the effect of separation in the proposed
method, the performance corresponding to different at values
is presented in Table XII. It can be  seen that when a is  set to
1.0, the recognition accuracy achieves the best performance.
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TABLE XV
LE FOR FICo  WITH DIFFERENT GENERATION METHODS UNDER NEU-CLS FEW-LABEL DATABASES

Method l-label 2-label 3-label 4-label
FiCo 89.37:I:5.91 93.00:l:2.96 93.47:l:2.64 94.65:I:l.66
FiCo + LSGAN 86.47i6.81 92.18:I:3 .49 93.94:I:2.90 94.99:I:2.05
FiCo + WGAN—GP 84.74i5.88 90.54i3 .6l  92.58i2.55 93.86zt2.15
FiCo + DCGAN 86.83:I:6.23 91.63:I:3.74 93.33i2.98 94.46:I:l.98
FiCo + MAD-GAN 88.78:I:4.90 92.36:I:3.59 93.68i2.72 94.70:I:2.05
FiCo + DGAN 90.43i6.04 93 .9 l i3 .31  94.67i2.94 95.3 l i 2 .08
FiCo + DGAN + OF(ourS) 91.43:I:6.04 95.35:l:2.90 96.05:I:l.87 96.47:!:1.42

When smaller or is  selected, the embedding distribution tends TABLE XVI
to be more aligned, which makes it difficult for the model to LE WITH DWV LOSS AND FR LOSS UNDER NEU-CLS
distinguish inter-class similar samples. When it gets bigger, FEW'LABEL DATABASES
the embedding distribution tends to be more uniform, which Method 1-1abe1 2-label 3-labe1 4-labe1
will strongly push the intra—class similar samples to break DWV loss 86.22i6.95 92.01i4.l4 93.51i3.26 94.6lzt2.65
the semantic information. Therefore, set t ing CV to 1 .0  i s  the FR 1055(0111‘8) 91 .43 i6 .04  95.35i2 .90  96.05i1.87 96 .47i1 .42

best choice to balance the uniformity and alignment of the
embedding distribution.

3)  Efiects of Temperature Function ‘L’(t ).' Temperature func-
tion 1 ( t )  plays an important role in the unsupervised represen-
tation learning of the proposed method. To verify and analyze
the effectiveness of temperature function, it is  compared with
temperature constants. The temperature constants are set to
1.0,  2 .0 ,  3 .0 ,  4 .0 ,  and 5 .0 ,  respectively. In addition to the
temperature function used in the proposed method, there are
the linear [see (7)], exponential [see (8)], and logarithmic [see
(9)] temperature functions for comparison. The experimental
results are shown in Table XIII. In the comparison among
temperature constants, i t  can be  observed that the performance
increases with the r ise  o f  1:. When 1’ i s  larger than 3 ,  the
performance starts to decrease. This is because, for larger
or smaller 1:, the contrast strength becomes more extreme.
As a result, the semantic information of the defect samples is
damaged. Therefore, 1: is  set to 3.0 as the initial temperature
of the temperature function and the temperature function iS
varied from 3 .0  to 4 .0 .  From this table, i t  can be observed
that the performance of  the temperature function is  better than
the constant temperature except for r( t )3,  indicating that the
appropriate temperature variation is  more conducive to the rep—
resentation learning of steel defects. In the comparison of r ( t )
and r( t )3,  the conclusion can be  obtained that the continuous
temperature changes in the early stages of training will hurt
the performance. Thus, the temperature is  set as a constant for
the first 200 training epochs, and then the temperature varies
with the training epochs. In the comparison of temperature
functions, the proposed method achieves the best performance,
which indicates that the logarithmic temperature function is
more favorable for learning the representation of steel defects.

4)  Efi‘ects 0f DGAN: DGAN is an essential component of
the proposed method. In this section, the influence of different
GAN methods is  estimated in terms of image quality and
representation learning of FiCo. The image quality results are
Shown in Table XIV, and DGAN achieves lowest FID score.
It reflects that compared to other GAN methods, the images
generated by DGAN have the best performance in terms of
diversity and quality. The recognition results are displayed in
Table XV;  i t  can be seen that DGAN outperforms other GAN

methods. The reason is  that diverse images promote the quality
of representation learning and thus classification accuracy i s
improved.

5) Eflects of 0Fs: In this part, we conduct experiments
to verity the effectiveness of OF. As  can be  seen from
Tables XIV and XV,  OFS have a positive contribution to
image quality and representation learning of FiCo. The reason
i s  that OF contain semantic information, which can guide
DGAN to generate better images and thus facilitate represen-
tation learning.

6) Eflects of FR Loss: In our method, the proposed FR loss
replaces the DWV loss. To verify the merits of the proposed
FR loss ,  we  compare i t  with DWV loss .  As  can be  seen from
Table XVI, FR loss  achieves better performance. This indicates
that the model can learn more useful semantic information
from the steel surface defect images under the guidance of
FR loss.

7) Eflects of Number of Generator Weights: In the proposed
method, multiple generator weights are used by DGAN to
provide diverse images for FiCo. For testing the effects of
the number of generator weights, the performance of proposed
method with different numbers of generator weights is  Shown
in Table XVII. From this table, i t  can be  observed that as
the number of generator weights increases from 100 to 400,
the recognition rate of model gradually increases. When the
number of generator weights is  over 400, the recognition rate
decreases. The reason iS that the generated defect data Size
is much larger than the real defect data Size, making the
generated defect data occupy a major part of the represen-
tation learning. When the model with learned representation
i s  classified on a real defect test  set ,  the recognition rate will
decrease to some extent. Therefore, the number o f  generator
weights is  set to 400.

8) Eflects of Weight Coefi‘icient elf: The weight coefficient
a f  is  an important parameter in FR loss. To test the effect
of weight coefficient, the performance of proposed method
with different 01f values is presented in Table XVIII. It can
be seen that the recognition accuracy sharply increases when
05f increases from 0.6 to 1.0. When 05f grows larger than 1.0,
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TABLE XVII

LE WITH DIFFERENT NUMBERS 0F  GENERATOR WEIGHTS
UNDER NEU-CLS 4-LABEL DATABASE

Number o f
generator weights Accuracy

100 94.96i1.50
200 95.33i1.67
300 95 .84 i l  .44
400 96.47:t1.42
500 95 .85 i l .71
600 95.40i1.62

TABLE XVIH

LE WITH DIFFERENT a f  VALUES UNDER NEU-CLS
FEW-LABEL DATABASES

af 1 -1abel 2-lable 3-lable 4-label
0.6 87.69zt6.03 92.04i3.40 93.69i2.65 94.73i2.10
0.8 89.61i6.86 93.70i2.89 94.56i2.49 95.36i2.02
1.0 91.43:t6.04 95.355290 96.05:Izl.87 96.47:t1.42
1.2 91.07i6.02 94.89i2.98 95.79i2.19 96.35i1.78

100
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1—label 2-label 3-Iabel 4—label
Small SampleDatabase

Fig. 11.  LE with different training epochs under NEU-CLS few-label
databases.

the recognition accuracy decreases Slightly. Therefore, ozf is
chosen as 1.0 in the proposed method.

9) Eflects of Iterations of FDCL: To test the effect of
iterations of FDCL on the performance of the model, FDCL
is trained 500 epochs. The experimental results are Shown in
Fig. 11; it can be seen that the model performance improves
Significantly when the epoch ranges from 100 to 300. When
epoch is over 300, the model performance tends to stabilize.
Hence, the iterations of FDCL are set to 300.

V. CONCLUSION

In this article, FDCL i s  presented. I t  refers to a novel con-
trastive learning framework for steel surface defect recognition
with few labeled samples. This method solves the following
two problems of contrastive learning in Steel surface defect
images: inappropriate contrast strength among defect samples
and insufficient steel surface defect data for unsupervised
learning. In the proposed method, diverse images are gen-
erated by DGAN and provided to FiCo for representation
learning. The contrast strength among samples is  flexibly
adjusted by FiCo to improve the quality of representation
learning. Through experiments, it can be  proved that FDCL

IEEE TRANSACTIONS ON ]NSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

can maintain high accuracy even provided with few labeled
samples. Moreover, i t  i s  robust to noise and blur disturbance.
Therefore, i t  is  meaningful for efficient industrial production
to deploy this framework in AVI instruments.
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