Welcome to FENS Forum 2022

E-Book of Abstracts

fens.org/2022

To search in the book please download it and use control + F

BOARD NUMBER: S01-679

PHOTOACTIVATION OF INDIVIDUAL SYNAPSES IN VIVO WITH COVALENT PHOTOSWITCHES TARGETING ENDOGENOUS GLUTAMATE RECEPTORS

POSTER SESSION 01 - SECTION: OPTOGENETICS & IMAGING

<u>Miquel Bosch</u>^{1,2}, Aida Garrido^{2,3}, Hyojung Lee², Xavier Rovira^{2,4}, Silvia Pittolo^{2,5}, Artur Llobet⁶, Hovy Wong⁷, Ana Trapero^{2,4}, Carlo Matera^{2,8}, Claudio Papotto^{2,8}, Carme Serra⁴, Amadeu Llebaria⁴, Eduardo Soriano^{9,10}, Maria V. Sanchez-Vives^{11,12}, Christine Holt¹³, Pau Gorostiza^{2,14,15}

¹Universitat Internacional de Catalunya, Department Of Basic Sciences, Sant Cugat del Vallès, Spain, ²Institute for Bioengineering of Barcelona, Nanoswitches, Barcelona, Spain, ³University Medical Center Goettingen, Institute For Auditory Neuroscience, Gottingen, Germany, ⁴Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Laboratory Of Medicinal Chemistry, Barcelona, Spain, ⁵University of California, San Francisco, Kavli Institute For Fundamental Neuroscience, San Francisco, United States of America, ⁶University of Barcelona, Department Of Pathology And Experimental Therapy, Hospitalet de Llobregat, Spain, ⁷The Research Institute of the McGill University Health Centre, Centre For Research In Neuroscience, Department Of Medicine, Montreal, Canada, ⁸University of Milan, Department Of Pharmaceutical Sciences, Medicinal Chemistry Section "pietro Pratesi", Milan, Italy, ⁹Institute of Neuroscience, University of Barcelona, Department Of Cell Biology, Physiology, And Immunology, Barcelona, Spain, ¹⁰Instuto de Salud Carlos III, Centro De Investigación Biomédica En Red Sobre Enfermedades Neurodegenerativas (ciberned), Madrid, Spain, ¹¹Institut d'Investigacions Biomediques August Pi i Sunyer, Systems Neuroscience Group, Barcelona, Spain, ¹²ICREA, Catalan Institution For Research And Advanced Studies, Barcelona, Spain, ¹³University of Cambridge, Department Of Physiology, Development And Neuroscience, Cambridge, United Kingdom, ¹⁴ICREA, Catalan Institute For Research And Advanced Studies, Barcelona, Spain, ¹⁵CIBER_BBN, Bioengineering, Biomaterials And Nanomedicine, Madrid, Spain

Glutamate receptors play key roles in neurotransmission at excitatory synapses and in the regulation of synaptic plasticity. We have recently developed a targeted covalently-attached photoswitch (TCP, Izquierdo-Serra et al., 2016) that allows the remote control of endogenous ionotropic glutamate receptors using light. We combined this photopharmacological effector with genetic and chemical calcium sensors to demonstrate all-optical reversible control of glutamate receptors at multiple levels of spatial resolution in the brain: we achieved the photoactivation of multiple neurons, individual neurons, and single synapses in rat hippocampal slices and in intact *Xenopus laevis* brain *in vivo*, which is challenging using other methods. We show that this compound selectively targets AMPA and kainate receptors. Labeled receptors remained functional for long periods of time (>8 hours). This allowed us to longitudinally track endogenous receptor physiology during events of synaptic plasticity, such as long-term depression (LTD). We could monitor the loss of functionality of AMPA/kainate receptors during NMDAR-dependent LTD in hippocampal neurons. TCPs are therefore a unique optical tool to label, photo-control and functionally track endogenous receptors in brain tissue without genetic manipulation.