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SOLUTIONS OF THE FRACTIONAL 1-LAPLACIAN: EXISTENCE,
ASYMPTOTICS AND FLATNESS RESULTS

CLAUDIA BUCUR

Abstract. In this paper, we study the existence of solutions of the equation (−∆)s
1
u = f

in a bounded open set with Lipschitz boundary Ω ⊂ Rn, vanishing on CΩ, for some given
s ∈ (0, 1), and asymptotics as p → 1 of solutions of (−∆)s

p
u = f . We obtain existence and

convergence by comparing the L
n

s norm of f to the sharp fractional Sobolev constant, or,
when f is non-negative, the weighted fractional Cheegar constant to 1 – in this case, the
results are sharp. We further prove that solutions are ”flat” on sets of positive Lebesgue
measure.

1. Introduction

In this note, we address some issues concerning minimizers and weak solutions of an
equation related to the fractional 1-Laplacian. For a bounded open set Ω ⊂ Rn with Lipschitz
boundary, a fixed fractional parameter s ∈ (0, 1) and a given function f in L

n
s (Ω), we deal

with the nonlocal problem
{

(−∆)s1u = f in Ω

u = 0 in CΩ.
(1.1)

The fractional 1-Laplacian arises in the Euler-Lagrange equation related to functions of least
W s,1-energy and could be thought, roughly speaking, as

(−∆)s1u(x) =

∫

Rn

u(x)− u(y)

|u(x)− u(y)|

dxdy

|x− y|n+s
, (1.2)

by simply taking p = 1 in the definition of the fractional p-Laplacian. We recall that up to
constants, the fractional p-Laplacian for some p > 1 is defined as

(−∆)spu(x) := P.V.

∫

Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dxdy.

Here, we continue the ongoing research started by the author and collaborators in [4, 5]
regarding (s, 1)-harmonic functions with non-vanishing boundary data, and minimizers of
the related energy

Es
1(u,Ω) =

1

2

∫∫

Q(Ω)

|u(x)− u(y)|

|x− y|n+s
dxdy, (1.3)

where ϕ : CΩ → R is given and Q(Ω) := R2n \ (CΩ)2. Regarding minimizers of (1.3) –
functions of least W s,1-energy – we proved the fractional counterpart of some results from
[1,16,22]. Precisely in [5], level sets of minimizers are proved to be nonlocal minimal surfaces
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and existence of minimizers is obtained, assuming that the exterior given data has “integrable
tail”. In [4] the sequence of minimizers of the energy

Es
p(u,Ω) =

1

2p

∫∫

Q(Ω)

|u(x)− u(y)|p

|x− y|n+sp
dxdy, (1.4)

as the parameter p tends towards 1, is proved to converge to a minimizer of (1.3).
Concerning weak solutions of (1.1), their definition was originally introduced in [19], for a
L2 right-hand side data. In [4], the existence of (s, 1)-harmonic functions, together with
their equivalence to minimizers is investigated. For more comprehensive details, interested
readers can also refer to the survey [3], where these findings are sketched, and the classical
problem is also discusses.

In this paper, also in view of these previous results, we wondered whether studying the
asymptotics as p→ 1 of the p-problem could lead to the existence of weak solutions of (1.1).
To be specific, our fractional setting is the following: for any p ∈ [1,+∞) we take

F s
p (u) :=

1

2p

∫∫

R2n

|u(x)− u(y)|p

|x− y|n+sp
dxdy −

∫

Ω

fu dx.

For p > 1, minimizers of F s
p are known to be weak solutions of

{

(−∆)spu = f in Ω

u = 0 in CΩ.
(1.5)

The study of existence of global minimizers for F s
1 seems to extend beyond direct methods of

the calculus of variations. Notably, the energy does not always present a bound from below,
and existence seems to depend, as in the classical case s = 1, on some characteristics of f
and Ω. We approach the problem in two different manners. For any f ∈ L

n
s (Ω), we compare

the norm of f to (2Sn,s)
−1, where Sn,s is the sharp fractional Sobolev constant, and prove

existence and asymptotics as p→ 1 of the associated p-problem when the norm is not larger
than such a constant, leaving open the case when the norm is larger. On the other hand,
for f > 0, we are able to provide sharp existence and asymptotics results, by comparing to
1 the weighted fractional Cheegar constant.

To be more precise, asking that f ∈ L
n
s (Ω), let up denote the unique minimizer/weak

solution of F
sp
p , vanishing on CΩ, for p ∈ (1, cn,s), where cn,s > 1 is such that

sp := n+ s−
n

p
∈ (s, 1) (1.6)

and spp < 1. If
‖f‖

L
n
s (Ω)

< (2Sn,s)
−1 then up −−→

p→1
u1 = 0,

where u1 = 0 is the unique minimzer of F s
1 and weak solution of (1.1). If

‖f‖
L

n
s (Ω)

= (2Sn,s)
−1, then up −−→

p→1
u1,

minimzer of F s
1 and weak solution of (1.1). We give examples that assure the reader that

in this case, non-vanishing minimizers exist, and also that when ‖f‖
L

n
s (Ω)

> (2Sn,s)
−1 the

energy may be unbounded from below, and global minimizer may not exist. This results are
the content of Theorem 3.2.

In the case f > 0, we are able obtain sharp results, by appealing to another interesting
problem, that of Cheegar sets. To be more precise, we take a non-negative f ∈ L

n
σ (Ω) for
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some σ ∈ (0, s) and recall the definition of the fractional perimeter of the set E ⊂ Rn,
introduced in [9], as

Pers(E,Ω) :=
1

2

∫∫

Q(Ω)

|χE(x)− χE(y)|

|x− y|n+s
dx dy, (1.7)

where χE is the characteristic function of the set E, and we denote

|E|f =

∫

E

f dx.

We point out that for E ⊂ Ω, Pers(E,Ω) = Pers(E), where we write Pers(E) = Pers(E,R
n).

We slightly modify the renown problem of the s-Cheegar constant (see [2,8]), by adding the
weight f in the contribution to the volume. We call the (s, f)-Cheegar constant

hfs (Ω) := inf

{

Pers(A)

|A|f

∣

∣

∣

∣

A ⊂ Ω, |A|f > 0

}

, (1.8)

and say that Ẽ ⊂ Ω is a (s, f)-Cheegar set if

hfs (Ω) :=
Pers(Ẽ)

|Ẽ|f
.

We obtain the following sharp existence and aysmptotic result. Let again up denote the
unique minimizer of F

sp
p . If

hfs (Ω) > 1 then up −−→
p→1

u1 = 0,

where u1 = 0 is the unique minimzer of F s
1 and weak solution of (1.1). If

hfs (Ω) = 1, then up −−→
p→1

u1,

minimzer of F s
1 and weak solution of (1.1). In this case, we provide an example showing

non-uniquness of solutions. If

hfs (Ω) > 1 then [up]W sp,p(Ω) −−→
p→1

+∞,

and minimizers of F s
1 do not exist. We insert these findings in Theorem 4.8.

We compare our findings with those in the classical framewok. The asymptotic results of
the type were first investigated in [17], where the author studied the behavior, as p → 1, of
weak solution up of the torsion problem for the p-Laplacian −∆pu = 1 in Ω. The author
observed that, if Ω is sufficiently small, then

up −−→
p→1

0 (1.9)

while for Ω large enough
up −−→

p→1
+∞. (1.10)

The research is continued in [11], where the authors considered a right hand side f ∈ Ln(Ω)
and prove that when ‖f‖Ln(Ω) 6 1/Sn with Sn being the sharp Sobolev constant, then (1.9)
holds for weak solutions. Additionally, minimizers of the p-energy approach minimizers of
the 1-energy, as p → 1, even though the 1-minimizer might not vanish. We point out that
these classical results rely on an explicit formula for solutions of the p-Laplace equation on
the ball, which is not available in the fractional case. We also remark that the constant
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2Sn,s in our result is as sharp as in the classical case, given that the multiplicative term 1/2
depends solely on the use of this constant in (1.4) introduced for symmetry purposes.

Regarding studying asymptotics by comparing the Cheegar constant h(Ω) to 1, this was
done in the classical case in [6,7], only when f has the constant value 1. In these two papers,
the authors emphasized the strong connection between the Cheegar constant and p-torsion
functions, i.e. unique solutions of (−∆)pu = 1 in Ω, showing that

lim
p→1

‖φp‖
1−p
L1(Ω) = lim

p→1
‖φp‖

1−p
L∞(Ω) = h(Ω), (1.11)

and also that φp, renormalized by the L1 norm, converges to a solution of the (−∆)1u = 1
as p→ 1. From this, comparing h(Ω) to 1, φp are proved to converge to either zero or +∞,
in the L1, L∞ norm.

We remark that with respect to the classical case, the nonlocal nature of our problem
significantly complicates the situation. In particular, the uniform bound on the minimizers,
which is needed to prove the convergence results, is not at all as straight forward as in the
classical case, and a lot of work is necessary to deal with the nonlocal contribution to the
energy.

To best of our knowledge, the results presented in this paper are completely new. We
shortly describe what is known in the fractional case. The fractional Cheegar constant was
introduced in [2], where the connection between a variational formulation for the torsion
problem for the (s, 1)-Laplacian and the eingenvalue problem (−∆)spu = λ|u|p−2u is studied.
In [8], an alternative characterization of the fractional Cheegar constant is provided, by
studying the (s, p)-torsional problem (−∆)spu = 1 and obtaining (1.11) in the fractional
case. The difference with our results – besides our use of a general term f – is that we prove
that the sequence of up, minimizers of F

sp
p , converges to minimizer and a weak solution of

F s
1 when hs(Ω) > 1. Moreover, the approach we use is different from that of [8], which is

based on results from [2]. Our approach, more similar to [6], allowed us to make full use of
the fractional parameter sp, which plays a significant role in our investigation. We point our
furthermore that neither of [2,8] are interested in solutions of the problem (1.1), nor mention
the existence of weak solutions.

To give some further input on weak solutions, we also discuss a so called ”flatness” results.
The difficulty of defining a weak solution of the fractional 1-Laplacian is evident looking at
(1.2) – the quotient (u(x)− u(y))/|u(x)− u(y)|, i.e. the sign function of (u(x)− u(y)), does
not have a meaning when u(x) = u(y). The definition of a weak solution cannot be given by
using purely an integro-differential equation, rather it is necessary, as done in [19], to require
that there exists a multivalued function z : R2n → [−1, 1] equal to sgn(u(x) − u(y)), where
sgn is the generalized sign function. A concern of this paper is to prove that generally, such a
definition cannot be simplified, since solutions are “flat” on sets of positive Lebesgue measure.
Precisely, if u is a weak solution of (1.2) then the set {(x, y) ∈ R

2n \ (CΩ)2 | u(x) = u(y)}
has positive Lebesgue measure – see Theorem 6.1. We prove a similar result for minimizers,
showing that {x ∈ Ω | |u(x)| = ‖u‖L∞(Ω)} has positive Lebesgue measure, in Theorem 6.2.
Such results are the fractional counterpart of [21], where the authors prove that a weak
solution of the 1-Laplacian equation with Ln(Ω) right hand side and zero boundary data has
a vanishing gradient on a set of positive Lebesgue measure.

We draw the reader’s attention to the use of the particular fractional parameter sp in (1.6),
first introduced in [19]. Such a choice appears necessary for technical reasons – see Remark
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3.3 – but is enforced by the fractional embedding W s,1(Ω) ⊂ W sp,p(Ω) (see [2, Lemma 2.6]
or [5, Lemma 3.1]), in other words when sending p → 1 in the (s, p)-fractional problem, in
the limit the fractional parameter s has to ”decrease” as well, and this ratio is described
precisely by the choice of sp. To further justify the use of sp, in the Appendix we obtain
that for all u ∈ W

sq ,q
0 (Ω) for some fixed q > 1 the pointwise limit holds

lim
p→1

Esp
p (u) = Es

1(u). (1.12)

A very interesting (in our opinion) issue is also discussed in Section 4: that of non-negative
minimizers of F s

1 and sets E ⊂ Ω that minimize

Ps(E) = Pers(E)− |E|f .

Whether it is true that E is a minimal set if only if χE is a minimal function and weak
solution of

(−∆)s1χE = 1

is investigated, together with the equivalence that u is a non-negative minimizer of F s
1 if and

only if any super-level set of u is a minimal set for Ps.

In the rest of the paper, we proceed as follows. We use Section 2 for the setting and
some very useful tools. Section 3 is dedicated to studying the limit case as p → 1 when
the L

n
s norm of f is sufficiently small, and prove the existence of a minimizer and a weak

solution. We also deal with the equivalence minimizer - weak solution, even in the absence of
a bound on ‖f‖

L
n
s
(Ω). Section 4 contains the sharp results on existence and asymptotics by

comparing the fractional Cheegar constant to 1 and we also discuss the relation to sets that
minimize Ps. We give examples of existence of non-trivial solutions and of non-existence
when the L

n
s norm of f is sufficiently large, coinciding with the case hs(f) 6 1. In Section 6

we discuss the “flatness” of weak solutions of problem (1.1) and of minimizers. The Appendix
contains the proof of (1.12) and some basic knowledge on (s, p)-minimizer/weak solutions.

2. Setting of the problem, tools and remarks

Let n > 1, 0 < s < 1 6 p < +∞ and let Ω ⊂ Rn be a bounded open set with Lipschitz
boundary. Since we mainly look at asymptotics as p → 1, we will emphasize some useful
properties when p is close enough to one, precisely when sp < 1.

We will use the notations

ωn = Hn−1(∂B1), Br = {x ∈ R
n : |x| < r} for some r > 0

and recall that Ln(B1) := |B1| = ωn/n. We also denote

Q(Ω) := R
2n \ (CΩ)2.

We use the notation for the fractional Sobolev space Ws,p(Ω),

Ws,p(Ω) :=

{

u : Rn → R

∣

∣

∣

∣

u|Ω ∈ Lp(Ω),

∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+sp
dxdy < +∞

}

,

and we denote

[u]W s,p(Ω) =

(
∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+sp
dxdy

)
1
p

, ‖u‖W s,p(Ω) =
(

‖u‖pLp(Ω) + [u]pW s,p(Ω)

)
1
p
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the fractional (Gagliardo) (s, p)-seminorm, respectively norm. Of course, Ws,p(Rn) =W s,p(Rn).
We denote Ws,p

0 (Ω) as the closure of C∞
c (Ω) with respect to the W s,p(Ω) norm. We point

out that, when sp < 1, it also holds

Ws,p
0 (Ω) =

{

u : Rn → R

∣

∣

∣

∣

u ∈ Ws,p(Ω), u = 0 on CΩ

}

,

check [12, Proposition A.1].
What is more, when sp < 1 and u = 0 on CΩ, the norms W s,p(Ω) and W s,p(Rn) are
equivalent, i.e. there exist C1, C2 > 0 (depending on n, s, p,Ω) such that

C1‖u‖W s,p(Ω) 6 [u]W s,p(Rn) 6 C2‖u‖W s,p(Ω). (2.1)

To see this, we point out the very useful result in [12, Corollary A.3].

Proposition 2.1. Let 1 6 p < 1/s. Then for every u ∈ W s,p(Ω)
∫

Ω

(
∫

CΩ

|u(x)|p

|x− y|n+sp
dy

)

dx 6 C‖u‖pW s,p(Ω), (2.2)

where C = C(n, s, p,Ω) > 0.

Due to (2.2),

[u]pW s,p(Rn) = [u]pW s,p(Ω) + 2

∫

Ω

(
∫

CΩ

|u(x)|p

|x− y|n+sp
dy

)

dx 6 C2‖u‖
p
W s,p(Ω),

while

[u]pW s,p(Rn) > [u]pW s,p(Ω) + 2

∫

Ω

|u(x)|p

(

∫

CBdiam(Ω)(x)

dy

|x− y|n+sp

)

dx

= [u]pW s,p(Ω) + ‖u‖pLp(Ω)

ωn

diam(Ω)spsp
> C1‖u‖

p
W s,p(Ω),

since for all x ∈ Ω, it holds that CBdiam(Ω)(x) ⊂ CΩ. Thanks to this, we have that for sp < 1,

Ws,p
0 (Ω) = C∞

0 (Ω)
[·]Ws,p(Rn)

. (2.3)

We recall now the Sobolev inequality with sharp constants, which we state in our case
sp < 1. This follows directly from [14, Corollary 4.2] just by checking (2.3) .

Theorem 2.2. Let n > 1, 0 < s < 1 6 p < 1/s. For all u ∈ Ws,p
0 (Ω) it holds that

‖u‖p
Lp∗(Ω)

6 Sn,s,p[u]
p
W s,p(Rn),

where

Sn,s,p =

(

p

p∗

)
1
p
(

n

ωn

)
s
n

C
− 1

p
n,s,p, (2.4)

with

Cn,s,p = 2

∫ 1

0

rps−1|1− r|
n−ps

p φn,s,p(r) dr,

and

φn,s,p = |Sn−2|

∫ 1

−1

(1− t2)
N−3

2

(1− 2rt+ r2)
n+ps

2

dt, N > 2

φn,s,p =
(

(1− r)−1−ps − (1 + r)−1−ps
)

, N = 1.
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As a consequence of Theorem 2.2, we get the fractional sharp isoperimetric inequality for
sets E ⊂ Ω (see also [15] for more details), recalling (1.7).

Theorem 2.3. Let E ⊂ Ω be a Borel set with finite Lebesgue measure. Then

|E|
n−s
n 6 2Sn,s Pers(E).

Notice also that

Sn,s =
|B1|

n−s
n

2 Pers(B1)
=
n− s

n

(

n

ωn

)
s
n 1

Cn,s,1
. (2.5)

We define now our notions of minimizers and weak solutions.

Definition 2.4. Let 0 < s < 1 6 p < +∞. We say that u ∈ Ws,p
0 (Ω) is an (s, p)-minimizer

if

F s
p (u) 6 F s

p(v)

for all v ∈ Ws,p
0 (Ω).

Furthermore, we recall the following.

Definition 2.5. Let 0 < s < 1 and 1 < p < +∞. We say that u : Rn → R is a weak solution
of the (s, p)-problem (1.5) if u ∈ Ws,p

0 (Ω), and for all w ∈ Ws,p
0 (Ω)

1

2

∫∫

R2n

|u(x)− u(y)|p−2(u(x)− u(y))(w(x)− w(y))

|x− y|n+sp
dxdy =

∫

Ω

fw dx.

For the fractional 1-Laplacian we give the following definition of weak solution – check
also [4, 19].

Definition 2.6. Let 0 < s < 1. We say that a measurable function u : Rn → R is a weak
solution of the problem (1.1) if u ∈ Ws,1

0 (Ω) and if there exists

z ∈ L∞(R2n) ‖z‖L∞(R2n) 6 1, z(x, y) = −z(y, x),

satisfying

1

2

∫∫

R2n

z(x, y)

|x− y|n+s
(w(x)− w(y))dx dy =

∫

Ω

f(x)w(x) dx for all w ∈ Ws,1
0 (Ω), (2.6)

and

z(x, y) ∈ sgn(u(x)− u(y)) for almost all (x, y) ∈ Q(Ω). (2.7)

We remark that since u = 0 in CΩ, the contribution to the double integral in (CΩ)2 is
null, hence it is enough to require (2.7) to hold on Q(Ω). We further point out that as a
consequence of Proposition 2.1, Definition 2.6 is well posed since

∣

∣

∣

∣

∫∫

R2n

z(x, y)

|x− y|n+s
(w(x)− w(y))dx dy

∣

∣

∣

∣

6

∫∫

R2n

|w(x)− w(y)|

|x− y|n+s
dx dy

= [w]W s,1(Ω) + 2

∫

Ω

(
∫

CΩ

|w(x)|

|x− y|n+s
dy

)

dx 6 C‖w‖W s,1(Ω) < +∞,

for all w ∈ W s,1(Ω).
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3. Existence of minimizers and of weak solutions when f ∈ L
n
s (Ω)

In this section we prove the existence of minimizers and weak solutions (and their equiva-
lence) when the L

n
s (Ω) norm of f is sufficiently small. Contextually, we prove that as p→ 1,

the sequence of (sp, p)-minimizers converges to an (s, 1)-minimizer.
We point to the definition of sp in (1.6) and prove first the following continuous embedding.

Proposition 3.1. Let u ∈ W
sp,p
0 (Rn). It holds that

[u]W s,1(Rn) 6 C
1−p
p

n,s,Ω[u]W sp,p(Rn),

with Cn,s,Ω > 0.

Proof. By employing Hölder, we have that
∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+spp
dxdy > [u]pW s,1(Ω)|Ω|

2(1−p). (3.1)

Denote for all x ∈ Ω, BΩ(x) := Bdiam(Ω)(x) and notice that CBΩ(x) ⊂ CΩ. We have that
∫

Ω

(
∫

CΩ

|u(x)|p

|x− y|n+spp
dy

)

dx =

∫

Ω

(
∫

BΩ(x)\Ω

|u(x)|p

|x− y|n+spp
dy

)

dx+

∫

Ω

(
∫

CBΩ(x)

|u(x)|p

|x− y|n+spp
dy

)

dx.

Using two times Hölder, for a fixed x ∈ Ω,
∫

BΩ(x)\Ω

|u(x)|

|x− y|n+s
dy 6

(
∫

BΩ(x)\Ω

|u(x)|p

|x− y|(n+s)p
dy

)
1
p

|BΩ(x) \ Ω|
p−1
p ,

and
∫

Ω

(
∫

BΩ(x)\Ω

|u(x)|

|x− y|n+s
dy

)

dx 6

∫

Ω

(
∫

BΩ(x)\Ω

|u(x)|p

|x− y|(n+s)p
dy

)
1
p

|BΩ(x) \ Ω|
p−1
p dx

6

[
∫

Ω

(
∫

BΩ(x)\Ω

|u(x)|p

|x− y|(n+s)p
dy

)

dx

]
1
p
(
∫

Ω

|BΩ(x) \ Ω| dx

)
p−1
p

=

[
∫

Ω

(
∫

BΩ(x)\Ω

|u(x)|p

|x− y|n+spp
dy

)

dx

]
1
p

M
p−1
p

Ω ,

recalling (n + s)p = n+ spp and denoting

MΩ =

∫

Ω

|BΩ(x) \ Ω| dx.

Integrating and again by Hölder,
∫

Ω

(
∫

CBΩ(x)

|u(x)|p

|x− y|n+spp
dy

)

dx = ‖u‖pLp(Ω)

ωn

spp(diam(Ω))spp

> ‖u‖pL1(Ω)|Ω|
1−p ωn

spp(diam(Ω))spp

= |Ω|1−p

(
∫

Ω

|u(x)|

∫

CBΩ(x)

dy

|x− y|n+s

)p

dx
ωn

spp(diam(Ω))spp

(

s diam(Ω)s

ωn

)p

=: |Ω|1−pγpn,s,p

(
∫

Ω

|u(x)|

∫

CBΩ(x)

dy

|x− y|n+s

)p

dx
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where

γn,s,p = (ωn diam(Ω)n)
1−p
p

s

(spp)
1
p

. (3.2)

We use the notations

A = [u]W s,1(Ω), B =

∫

Ω

(
∫

BΩ(x)\Ω

|u(x)|

|x− y|n+s
dy

)

dx,

C = ‖u‖L1(Ω)

ωn

s diam(Ω)s
=

∫

Ω

|up(x)|

(
∫

CBΩ(x)

dy

|x− y|n+s

)

dx,

(3.3)

and summing up the inequalities above, we have that

1

2
[u]W sp,p(Rn) >

1

2
Ap|Ω|2(1−p) +BpM1−p

Ω + Cp|Ω|1−pγpn,s,p

> min
{

|Ω|2(1−p), |Ω|1−p,M1−p
Ω

}

(

1

2
Ap +Bp + Cpγpn,s,p

)

> 41−pmin
{

|Ω|2(1−p), |Ω|1−p,M1−p
Ω

}

(

2−
1
pA+B + Cγn,s,p

)p

> 41−pmin
{

|Ω|2(1−p), |Ω|1−p,M1−p
Ω

}

2−p
(

2−
1
p
+1A+ 2B + 2Cγn,s,p

)p

> 41−pmin
{

|Ω|2(1−p), |Ω|1−p,M1−p
Ω

}

2−p (A+ 2B + 2Cγn,s,p)
p

recalling that (a+ b+ c)p 6 4p−1(ap + bp + cp) for all p > 1, a, b, c > 0 and since 2−1/p+1 > 1.
Noticing that

[u]W s,1(Rn) = A+ 2B + 2C,

if

γn,s,p > 1,

then

[u]pW sp,p(Rn) > 81−pmin
{

|Ω|2(1−p), |Ω|1−p,M1−p
Ω

}

[u]pW s,1(Rn),

otherwise if

γn,s,p < 1,

then

[u]pW sp,p(Rn) > γpn,s,p8
1−pmin

{

|Ω|2(1−p), |Ω|1−p,M1−p
Ω

}

[u]pW s,1(Rn)

> sp−1
(

e
n
s
+1
)1−p

(ωn diam(Ω)s)1−p 81−pmin
{

|Ω|2(1−p), |Ω|1−p,M1−p
Ω

}

[u]pW s,1(Rn),

counting on the fact that

log p

p− 1
6 1,

log sp
s

p− 1
=

log

(

1 +
n(p− 1)

sp

)

p− 1
6
n

s
.

We have reached our conclusion. �

The main result of the Section is the following.

Theorem 3.2. Let f ∈ L
n
s (Ω) be such that

‖f‖
L

n
s (Ω)

6
1

2Sn,s
, (3.4)
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where Sn,s is given in (2.4). Let {up}p ∈ W
sp,p
0 (Ω) be a sequence of (sp, p)-minimizers. Then,

there exists u1 ∈ Ws,1
0 (Ω) such that, up to a subsequence,

up −−→
p→1

u1 in L1(Ω), a.e. in R
n and weakly in L

n
n−s (Ω). (3.5)

Furthermore, u1 is an (s, 1)-minimizer and weak solution of (1.2).
If

‖f‖
L

n
s (Ω)

<
1

2Sn,s
,

u1 = 0 is the unique (s, 1)-minimizer and a weak solution of (1.2).
Furthermore, it holds that

lim
p→1

F sp
p (up) = F s

1 (u1). (3.6)

Proof. We articulate the proof in five parts. We first use Proposition 3.1 to get a uniform
bound (in p) of the W s,1(Ω) norm of the (sp, p)-minimizer and obtain, by compactness, the
existence of u1 in the limit as p→ 1. We then focus on showing that u1 is an (s, 1)-minimizer
and a weak solution of (1.1). We easily obtain the result that u1 = 0 is the unique minimizer
in the case of strict inequality. In the last part, we study the pointwise limit.

Part 1. Uniform bound on the (sp, p)-minimizer.
We apply Corollary 8.2 and obtain that there exists a unique (sp, p)-minimizer up ∈ W

sp,p
0 (Ω).

Comparing with the null function, we have that

F sp
p (up) 6 F sp

p (0) = 0,

hence using Proposition 3.1 and Sobolev inequality,

1

2p
[up]

p
W s,1(Rn) 6

C1−p
n,s,Ω

2p
[up]

p
W sp,p(Rn) 6 C1−p

n,s,Ω

∫

Ω

fup dx 6 C1−p
n,s,ΩSn,s‖f‖Ln

s (Ω)
[up]W s,1(Rn).

(3.7)
We obtain

[up]
p−1
W s,1(Rn) 6 C1−p

n,s,Ωp
(

2Sn,s‖f‖Ln
s (Ω)

)

,

and

[up]W s,1(Rn) 6

(

2Sn,s‖f‖Ln
s (Ω)

)
1

p−1 e

Cn,s,Ω
. (3.8)

Since L1(Ω) ⊂ W s,1(Ω) compactly, there exists ũ1 ∈ W s,1(Ω) such that up to subsequences,
up → ũ1 as p→ 1, in L1 norm and almost everywhere in Ω.
Furthermore, ‖up‖L

n
n−s (Ω)

is uniformly bounded (by the Sobolev inequality), hence up to

subsequences

up −−→
p→1

u1

weakly in L
n

n−s (Ω), i.e.

lim
p→1

∫

Ω

fup dx =

∫

Ω

fu1 dx. (3.9)

We let u1 = ũ1 in Ω and u1 = 0 in CΩ and get u1 ∈ Ws,1
0 (Ω) with the desired properties.

Part 2. Existence of a minimizer
We prove now that u1 is an (s, 1)-minimizer ofF s

1(u). Indeed, let v ∈ Ws,1
0 (Ω) be a competitor
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for u. By the density of C∞
c (Ω) in Ws,1(Ω), we have that there exists a sequence {ψj}j∈N

with ψj : R
n → R such that

ψj ∈ C∞
c (Ω), lim

j→+∞
‖v − ψj‖W s,1(Ω) = 0, lim

j→+∞
(v − ψj) = 0 a.e. in R

n.

Notice that

lim
j→+∞

[ψj ]W s,1(Ω) = [v]W s,1(Ω), lim
j→+∞

∫

Ω

fψj dx =

∫

Ω

fv dx, lim
j→+∞

F s
1(ψj) = F s

1(v), (3.10)

given that
∣

∣

∣

∣

∫

Ω

(fψj − fv) dx

∣

∣

∣

∣

6 C‖f‖
L

n
σ (Ω)

‖ψj − v‖
L

n
n−σ (Ω)

6 C‖f‖
L

n
σ (Ω)

‖ψj − v‖
L

n
n−s (Ω)

6 C[ψj − v]W s,1(Rn) 6 C‖ψj − v‖W s,1(Rn)

and
∣

∣[ψj ]W s,1(Rn) − [v]W s,1(Rn)

∣

∣ 6 [ψj − v]W s,1(Rn) 6 C‖ψ − v‖W s,1(Ω)

by Hölder’s, Sobolev’s inequalities and (2.1). According to Theorem 7.1, for all j ∈ N,

lim
p→1

Esp
p (ψj) = Es

1(ψj). (3.11)

Using, in order, Fatou’s lemma coupled with (3.9), the minimality of up, and (3.11), we have
the line of inequalities

F s
1(u1) 6 lim inf

p→1
F sp

p (up) 6 lim sup
p→1

F sp
p (up) 6 lim sup

p→1
F sp

p (ψj) = F s
1(ψj). (3.12)

Now from (3.10),
F s

1(u)− F s
1(v) 6 lim

j→+∞
F s

1(ψj)− F s
1(v) = 0, (3.13)

and we obtain the desired conclusion that u1 is a minimizer of F s
1 (u).

Part 3. Existence of a weak solution We follow here the proof of [19, Theorem 3.4] (see
also [4, Theorem 1.6 (iii)]), leaving the details to these two references. We have thanks to
Theorem 8.1 that up is a weak solution of (1.5), hence

1

2

∫

R2n

|up(x)− up(y)|
p−2(up(x)− up(y))(w(x)− w(y))

|x− y|n+spp
dxdy =

∫

Ω

fw dx (3.14)

for all w ∈ W
sp,p
0 (Ω). We take a sequence {pk}k with pk → 1 as k → +∞ and we define

Cpk,M =

{

(x, y) ∈ R
2n

∣

∣

∣

∣

|upk(x)− upk(y)|
pk−2(upk(x)− upk(y))

|x− y|n+spkpk
> M

}

and, thanks to the uniform bound

‖upk‖W s,1(Ω) 6 c,

are able to show that there exists a subsequence pMk and multi-valued function z : R2n →
[−1, 1] such that ‖z‖L∞(R2n) 6 1 and

lim
M→+∞

lim
k→+∞

∫

R2n

|upM
k
(x)− upM

k
(y)|p

M
k −2(upM

k
(x)− upM

k
(y))(w(x)− w(y))

|x− y|
n+s

pM
k

pM
k

χR2n\C
pM
k

,M
(x, y) dxdy

=

∫

R2n

z(x, y)(w(x)− w(y))

|x− y|n+s
dxdy,
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together with

lim
M→+∞

lim
k→+∞

∫

R2n

|upMk (x)− upMk (y)|p
M
k −2(upMk (x)− upMk (y))(w(x)− w(y))

|x− y|
n+s

pM
k

pM
k

χC
pM
k

,M
(x, y) dxdy = 0,

for all w ∈ Ws,1
0 (Ω). Therefore, using (3.14)

1

2

∫

R2n

z(x, y)(w(x)− w(y))

|x− y|n+s
dxdy =

∫

Ω

fw dx,

for all w ∈ Ws,1
0 (Ω). At this point, it remains to see that z obtained in this way satisfies

z(x, y) ∈ sgn(u1(x)− u1(y)). (3.15)

Indeed, taking w = u1, we have that

1

2

∫

R2n

z(x, y)(u1(x)− u1(y))

|x− y|n+s
dxdy =

∫

Ω

fu1 dx >
1

2

∫

R2n

|u1(x)− u1(y)|

|x− y|n+s
dxdy,

given that u1 is an (s, 1)-minimizer and comparing with the null function. This shows (3.15)
and, according to Definition 2.6, concludes the proof that u1 is a weak solution.

Part 4. Null minimizer/weak solution. Due to the strict inequality ‖f‖
L

n
s (Ω)

<

(2Sn,s)
−1, from (3.8) by sending p→ 1 we obtain that

up −→ u1 = 0.

Notice furthermore that using the Sobolev inequality,

F s
1(v) > [v]W s,1(Rn)

(

1

2
− Sn,s‖f‖Ln

s (Ω)

)

> 0,

for all v ∈ Ws,1
0 (Ω), v 6= 0. Thus u1 = 0 is the unique minimizer/weak solution.

Part 5. Pointwise limit. By the density of C∞
c (Ω) in Ws,1(Ω), we have that there exists

a sequence {φj}j∈N with φj : R
n → R such that

φj ∈ C∞
c (Ω), lim

j→+∞
‖u− φj‖W s,1(Ω) = 0.

Notice that, as in (3.10),
lim

j→+∞
F s

1(φj) = F s
1(u1)

and reasoning as in (3.12), we get that

F s
1 (u1) 6 lim inf

p→1
F sp

p (up) 6 lim sup
p→1

F sp
p (up) 6 lim

j→+∞
lim
p→1

F sp
p (φj) = lim

j→+∞
F s

1(φj) = F s
1(u1)

and the conclusion immediatly follows. �

Remark 3.3. We discuss shortly the technical reason for which the specific fractional param-
eter sp in (1.6) is needed. As a matter of fact, with the methods here employed, one cannot
hope to work with the (s, p)-energy instead of the (sp, p)-energy. The underlying justification
lies in the fact that instead of (3.1), one would obtain that the W s,p(Ω) semi-norm of up is
bounded from below by the W σ,1(Ω) semi-norm of up for some σ ∈ (0, s) (see, in this regard,
for instance [5, Lemma 3.1]). On the other hand – unless one requires higher integrability
on f , i.e. that f ∈ L

n
σ (Ω) – (3.7) would read

1

2p
[up]

p
Wσ,1(Rn) 6 CSn,s‖f‖Ln

s (Ω)
[up]W s,1(Rn).
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This inequality however does not allow to continue – since the (σ, 1) seminorm is smaller
then the (s, 1)-seminorm, [13, Proposition 2.1], and not vice-versa.

Let us point out a more general result about the equivalence between mimimizers and
weak solutions, as in [4, Theorem 1.6].

Proposition 3.4. a) Let u ∈ Ws,1
0 (Ω) be a weak solution of (1.1). Then u is a minimizer

of F s
1(u).

b) Suppose that here exists a weak solution of (1.1). Then any minimizer of F s
1(u) is a weak

solution of (1.1).

Proof. a) If u is weak solution, consider v ∈ Ws,1
0 (Ω) any competitor for u, and use w = u−v

in (2.6). Using that z(x, y)(u(x) − u(y)) = |u(x) − u(y)| and that z(x, y)(v(x) − v(y)) 6

|v(x)− v(y)|, we have

1

2

∫

R2n

z(x, y)(u(x)− u(y)− v(x) + v(y))

|x− y|n+s
dxdy =

∫

Ω

f(u− v) dx,

hence

F s
1(u) =

1

2

∫

R2n

|u(x)− u(y)|

|x− y|n+s
dxdy −

∫

Ω

fu dx =
1

2

∫

R2n

z(x, y)(v(x)− v(y))

|x− y|n+s
dxdy −

∫

Ω

fv dx

6
1

2

∫

R2n

|v(x)− v(y)|

|x− y|n+s
dxdy −

∫

Ω

fv dx = F s
1(v),

and we have the thesis.
b) If there exists ū a weak solution, then consider any w ∈ Ws,1

0 (Ω) and it holds that there
exists z ∈ L∞(R2n) such that z(x, y) ∈ sgn(ū(x)− ū(y) and such that

0 =
1

2

∫

R2n

z(x, y)(w(x)− w(y))

|x− y|n+s
dxdy −

∫

Ω

fw dx. (3.16)

We want to prove that z(x, y) ∈ sgn(u(x)− u(y)). Let us take w = ū− u, and notice that

0 =
1

2

∫

R2n

z(x, y)(ū(x)− ū(y))

|x− y|n+s
dxdy −

1

2

∫

R2n

z(x, y)(u(x)− u(y))

|x− y|n+s
dxdy −

∫

Ω

f(ū− u) dx

>
1

2

∫

R2n

|ū(x)− ū(y)|

|x− y|n+s
dxdy −

∫

Ω

fū dx−
1

2

∫

R2n

|u(x)− u(y)|

|x− y|n+s
dxdy +

∫

Ω

fu dx

> 0.

Since by using (3.16) first with w = ū and then with w = u, we have that

1

2

∫

R2n

|u(x)− u(y)|

|x− y|n+s
dxdy =

1

2

∫

R2n

z(x, y)(u(x)− u(y))

|x− y|n+s
dxdy,

the conclusion follows. �

Putting together Theorem 3.2 and Proposition 3.4, we have that if ‖f‖
L

n
s (Ω)

6 (2Sn,s)
−1

then u is a minimizer if and only if u is a weak solution. The interesting case here remains
‖f‖

L
n
s (Ω)

= (2Sn,s)
−1, since for the strict inequality, the null function is the unique minimizer

and weak solution. It is expected, in the equality case, for non-null minimizers to exist, and
we give an example in the subsequent Section 4.



SOLUTIONS OF THE FRACTIONAL 1-LAPLACIAN 14

What is more, in general, it is not expected uniqueness of solutions to hold. We give an
example of this in Section 4. However, we can say something more about the ”uniqueness”
of the multi-valued function z. Notice that in the proof of Proposition 3.4, it comes up that
if ū is a weak solution and z is used to verify this solution, then the same z can be used
to verify any other weak solution. This is a actually a general fact, true in the classical
framework as well, see [18, Remark 2.9].

Corollary 3.5. Let u1, u2 ∈ Ws,1
0 (Ω) be two weak solutions of (1.1), and let z1, z2 be as in

(2.6), (2.7). Then almost everywhere in Q(Ω),

zj(x, y) ∈ sgn(ui(x)− ui(y))

for i, j ∈ {1, 2}.

Proof. We observe that, since for all i 6= j ∈ {1, 2}

zi(x, y)(ui(x)− ui(y)) = |ui(x)− ui(y)|, zi(x, y)(uj(x)− uj(y)) 6 |uj(x)− uj(y)|,

we have that

z1(x, y) (u1(x)− u1(y)− (u2(x)− u2(y))) = |u1(x)− u1(y)| − z1(x, y)((u2(x)− u2(y))

> |u1(x)− u1(y)| − |u2(x)− u2(y)|

z2(x, y) (u1(x)− u1(y)− (u2(x)− u2(y))) = z2(x, y)((u1(x)− u1(y))− |u2(x)− u2(y)|

6 |u1(x)− u1(y)| − |u2(x)− u2(y)|.

By hypothesis, we have that for all w ∈ Ws,1
0 (Ω),

∫∫

R2n)

z1(x, y) (w(x)− w(y))

|x− y|n+s
dx dy =

∫∫

R2n)

z2(x, y) (w(x)− w(y))

|x− y|n+s
dx dy.

Inserting the above inequalities for w = u1 − u2, we have that
∫∫

R2n

|u1(x)− u1(y)| − |u2(x)− u2(y)|

|x− y|n+s
dx dy

6

∫∫

R2n)

z1(x, y) ((u1 − u2)(x)− (u1 − u2)(y))

|x− y|n+s
dx dy

=

∫∫

R2n)

z2(x, y) ((u1 − u2)(x)− (u1 − u2)(y))

|x− y|n+s
dx dy

6

∫∫

R2n

|u1(x)− u1(y)| − |u2(x)− u2(y)|

|x− y|n+s
dx dy.

It follows that almost everywhere in Q(Ω)

|ui(x)− ui(y)| − zj(x, y)((ui(x)− ui(y)) = 0

for i, j ∈ {1, 2}, and we have achieved our conclusion. �

4. Necessary and sufficient conditions for existence when f is non-negative

We provide in this section necessary and sufficient conditions for the existence of non-
negative minimizers of F s

1 , when f is non-negative. We further provide a sharp result on the
asymptotics as p→ 1 of solutions of (1.5). These sharp conditions are given in terms of the
”weighted Cheegar constant”.
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We focus on the case

f > 0, f ∈ L
n
σ (Ω) (4.1)

for some σ ∈ (0, s), and such that there is ro > 0 and xo ∈ Ω such that Br0 := Bro(xo) ⊂ Ω
and

∫

Bro

f(x) dx > 0. (4.2)

Alternative conditions are f ∈ L∞(Ω) with f > 0 almost everywhere in Ω. Each of these
alternatives admits the case f = 1, treated in [7] in the classical case. We remark that we
are not able to cover the entire class f ∈ L

n
s (Ω) (see Remark 4.5). We point out that our

result is new, even in the constant case f = 1.
We first notice that for f > 0, if u ∈ Ws,1

0 (Ω) then F s
1(u+) 6 F s

1(u) with u+ = min{u, 0},
that is, minimizers are non-negative. It is not restrictive then to look for non-negative
minimizers of the energy, i.e.

F s
1(u) 6 F s

1(v) for all v ∈ Ws,1
0 (Ω) such that v > 0.

We observe a very important homogeneity feature of our energy.

Remark 4.1. If there exists v ∈ Ws,1
0 (Ω) such that F s

1(v) < 0, then for any λ > 0,

lim
λ→+∞

F s
1(λv) = lim

λ→+∞
λF s

1(v) = −∞,

i.e. our energy is unbounded from below in the space Ws.1
0 (Ω), and a global minimizer does

not exist. Therefore, to assure the existence of a minimizer, it has to hold that

F s
1(v) > 0 for all v ∈ Ws,1

0 (Ω).

It follows that, if Ω is such that there exists a minimizer in Ws,1
0 (Ω) then

F s
1(u) = 0

by comparing with the null function. Moreover, if u 6= 0, then for all λ ∈ R

F s
1 (λu) = λF s

1(u) = 0,

and F s
1 has an infinite number of minimizers.

To obtain to the results in this section, we connect non-negative minimizers of F s
1 with

sets E ⊂ Ω that minimize
Ps(E) := Pers(E)− |E|f ,

where we recall the fractional perimeter in (1.7), that

|E|f =

∫

E

f dx,

and that
F s

1 (χE) = Ps(E). (4.3)

We also point out that by Tonelli
∫

Ω

f(x)u(x) dx =

∫

Ω

f(x)

(
∫

(0,+∞)

χ{u(x)>t}(t) dt

)

dx =

∫

(0,+∞)

(
∫

Ω

f(x)χ{u>t}(x) dx

)

dt

=

∫

(0,+∞)

|{u > t}|f dt,
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and that by the co-area formula [23], for u ∈ Ws,1
0 (Ω) it holds

1

2
[u]W s,1(Rn) =

∫

(0,+∞)

Pers({u > t}) dt,

hence

F s
1 (u) =

∫

(0,+∞)

Ps({u > t}) dt. (4.4)

We make some notes on sets E ⊂ Ω of finite fractional perimeter that realize

Ps(E) 6 Ps(F ) for all F ⊂ Ω,

proving at first existence for all Ω ⊂ Rn.

Proposition 4.2. Let f > 0, f ∈ L1(Ω). For any bounded open set Ω ⊂ R
n, there exists

E ⊂ Ω minimizer of Ps. Furthermore, E is of finite fractional perimeter.

Proof. We proceed by direct methods. We have that

Ps(E) > −‖f‖L1(Ω),

so there exists a minimizing sequence

m := inf
F⊂Ω

Ps(F ) = lim
k→+∞

Ps(Ek)

and notice that m+ ‖f‖L1(Ω) > 0. There exists some k̄ > 0 such that for all k > k̄

Ps(Ek) 6 m+ 1,

thus

Pers(Ek) 6 m+ 1 + ‖f‖L1(Ω) and ‖χEk
‖W s,1(Ω) 6 m+ 1 + ‖f‖L1(Ω).

By compactness of L1(Ω) in W s,1(Ω) there exists some set E ⊂ Ω of finite perimeter such
that up to subsequences

χEk
−−−−→
k→+∞

χE in L1(Ω) and a.e. in R
n.

By Fatou’s lemma and the dominated convergence theorem,

m > Ps(E),

hence E is a minimizer of Ps. Also, there is some Bro ⊂ Ω, and

Pers(E)−|Ω|f 6 Pers(E)−|E|f = Ps(E) 6 Ps(Bro) = Pers(Bro)−|Bro |f 6 Pers(Bro) < +∞.

This concludes the proof of the proposition. �

Notice that if there exists some set E ⊂ Ω that minimizes Ps such that Ps(E) < 0 then
from (4.3) and Remark 4.1, infu∈Ws,1

0 (Ω)F
s
1 (u) = −∞. We focus on the connection between

minimial sets of Ps and minimizers of F s
1 .

Proposition 4.3. Let f > 0, f ∈ L1(Ω).
(i) Let E ⊂ Ω be such that χE ∈ Ws,1

0 (Ω) is a minimizer of F s
1 , then E is a minimizer of

Ps.
(ii) Let E ⊂ Ω be a minimizer of Ps such that Ps(E) > 0. Then χE is a non-negative
minimizer of F s

1 .
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Proof. (i) For all F ⊂ Ω – and we assume without loss of generality that F has finite
fractional perimeter –, we have

Ps(E) = F s
1 (χE) 6 F s

1(χF ) = Ps(F ).

(ii) For any non-negative competitor v ∈ Ws,1
0 (Ω), we notice that by [5, Lemma 2.8], the set

{v > t} is of finite fractional perimeter. Furthermore, we have that

{v > t} ⊂ Ω for all t ∈ (0,+∞),

hence {v > t} is a competitor for E for all t ∈ (0,+∞). By the minimality of E

0 6 Ps(E) 6 Ps({v > t} for all t ∈ (0,+∞).

Now, if t ∈ (0, 1] then {χE > t} = E, while if t ∈ (1,+∞) then {χE > t} = ∅, hence

Ps({χE > t}) 6 Ps({v > t} for all t ∈ (0,+∞).

Then by (4.4)

F s
1(χE) =

∫

(0,+∞)

Ps({χE > t}) dt 6

∫

(0,+∞)

Ps({v > t}) dt = F s
1 (v).

This concludes the proof. �

We recall the definition of the (s, f)-Cheegar constant in (1.8). From [2, Proposition 5.3]
– with minor modifications – we have the existence of an (s, f)-Cheegar set. We insert the
proof for completeness, and to clarify the role played by f in the proof of existence.

Proposition 4.4. Let f satisfy (4.1) and (4.2). For any bounded open set Ω ⊂ Rn there

exists a (s, f)-Cheegar set Ẽ ⊂ Ω such that

hfs (Ω) :=
Pers(Ẽ)

|Ẽ|f
.

Moreover, hfs (Ω), |Ẽ|f ,Pers(Ẽ) ∈ (0,+∞).

Proof. Notice that for all E ⊂ Ω,

|E|f 6 |Ω|f 6 ‖f‖
L

n
σ (Ω)

|Ω|
n−σ
n .

From (4.2), there is Bro ⊂ Ω, then Pers(Bro) ∈ (0,+∞) and |Bro|f ∈ (0, |Ω|f), hence

hfs (Ω) < +∞.

We let {Ek}k be a minimizing sequence, i.e.

lim
k→+∞

Pers(Ek)

|Ek|f
= hfs (Ω) < +∞,

with |Ek|f > 0 for all k ∈ N. Then there is some k̄ ∈ N such that for all k > k̄,

Pers(Ek) 6 (hfs (Ω) + 1)|Ek|f < (hfs (Ω) + 1)|Ω|f ,

hence, applying (2.1),

‖χEk
‖W s,1(Ω) < C(hfs (Ω) + 1)|Ω|f .

By the Sobolev inequality

|Ek|f 6 ‖f‖
L

n
σ (Ω)

|Ek|
n−σ
n , (4.5)
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and by the isoperimetric inequality we obtain
(

|Ek|f
‖f‖

L
n
σ (Ω)

)
n−s
n−σ

6 |Ek|
n−s
n 6 2Sn,s Pers(Ek) 6 2Sn,s(h

f
s (Ω) + 1)|Ek|f .

This yields that
|Ek|f > cn,s,σ,Ω > 0. (4.6)

By compactness of W s,1(Ω) in L1(Ω), there is Ẽ ⊂ Ω such that χEk
→ χẼ in L1(Ω) and

almost everywhere in Rn. By (4.6) and the dominated convergence theorem we have that

lim
k→+∞

|Ek|f = |Ẽ|f > 0.

Also by Fatou’s lemma

m > Ps(Ẽ)

and Ẽ is the minimizing set. Notice also that by the isoperimetric inequality and the fact
that hfs (Ω) < +∞ we get that Pers(Ẽ) ∈ (0,+∞), and finally that hfs (Ω) ∈ (0,+∞). �

Remark 4.5. Notice the necessity of taking f ∈ L
n
σ (Ω) instead of f ∈ L

n
s (Ω) in (4.5). The

larger class would not allow to obtain a uniform lower bound for |Ek|f .

Remark 4.6. When f ∈ L∞(Ω) with f > 0 almost everywhere, one could use also the
definition

hfs (Ω) := inf

{

Pers(A)

|A|f

∣

∣

∣

∣

A ⊂ Ω, |A| > 0

}

.

It holds that |E|f > 0 for all |E| > 0, while the uniform bound (4.6) follows by using

|Ek|f 6 ‖f‖L∞(Ω)|Ek|

instead of (4.5).

Notice furthermore that for all E ⊂ Ω,

Pers(E)− hfs (Ω)|E|f > 0, and Pers(Ẽ)− hfs (Ω)|Ẽ|f = 0,

hence Ẽ - the (s, f)-Cheegar set, minimizes Pers(E) − hfs (Ω)|E|f among all sets contained
in Ω.

Our sharp existence result if the following.

Theorem 4.7. Let f satisfy (4.1) and (4.2).
If hfs (Ω) > 1 then the null function is the unique minimizer of F s

1 .
If hfs (Ω) = 1 there exists a non-negative minimizer of F s

1 .
If hfs (Ω) < 1 then

inf
u∈Ws,1

0 (Ω)
F s

1(u) = −∞.

Proof. If hfs (Ω) > 1, then

Ps(A) = Pers(A)− |A| > Pers(A)− hfs (Ω)|A| > 0.

for all A ⊂ Ω. Let E be a minimizer of Ps, then Ps(E) > 0. According to Proposition 4.3
(ii), the function χE is a minimizer of F s

1 . Hence, if the inequality is strict, E = ∅ is the
unique minimal set of Ps, hence the unique minimizer of F s

1 is the null function, otherwise
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any λχE is a minimizer (see Remark 4.1).
If hfs (Ω) < 1, then

F s
1 (χẼ) = Pers(Ẽ)− |Ẽ|f < 0,

where Ẽ is an (s, f)-Cheegar set. The conclusion follows from Remark 4.1. �

We complement the existence result with the study of the asymptotics. Notice that from
Corollary 8.2, there is a unique minimizer of F

sp
p , since n/σ > n/s.

Theorem 4.8. Let f satisfy (4.1), (4.2) and up be the unique minimizer of F
sp
p .

If hfs (Ω) > 1 then

up −−→
p→1

u1,

where u1 is a minimizer of F s
1 . Furthermore, u1 is a weak solution of (1.1).

If hs(Ω) < 1 then

lim
p→1

[up]W sp,p(Rn) = +∞

Proof. We look first at the case hfs (Ω) > 1. Notice that up ∈ W
sp,p
0 (Rn) implies that

up ∈ Ws,1
0 (Rn) (see (7.2)) hence for all t ∈ (0,+∞), {up > t} is of finite fractional perimeter.

By the definition of the Cheegar constant and the existence of a (s, f)-Cheegar set we have

Pers({up > t}) > hfs (Ω)|{up > t}|f

and integrating, by the co-area formula (4.4), using that up minimizes F
sp
p (so F

sp
p (up) 6 0)

and Proposition 3.1,

1

2
[up]W s,1(Rn) > hfs (Ω)

∫

Ω

fup dx > hfs (Ω)
1

2p
[up]

p
Wsp,p(R

n)

> hfs (Ω)
1

2p
[up]

p
Ws,1(Rn)C

p−1
n,s,Ω.

Hence

[up]W s,1(Rn) 6

(

p

hfs (Ω)

)
1

p−1 1

Cn,s,Ω
6

e

Cn,s,Ω
, (4.7)

and from (2.1),

‖up‖W s,1(Rn) 6 C

with C > 0 independent of p. By compactness, and reasoning as in (3.12) and (3.13) we
obtain that up converges to u1, minimizer of F s

1 . The fact that u1 is also a weak solution
follows as in Part 3 of the proof of Theorem 3.2. That u1 = 0 when hfs (Ω) > 1 is clear either
from Theorem 4.7 or sending p→ 1 in (4.7). Observe also that we obtain

lim sup
p→1

[up]
p−1
Wsp,p(R

n) 6
1

hfs (Ω)
. (4.8)

We consider now the case hfs (Ω) < 1. Denote Ẽ a (s, f)-Cheegar set. We first notice, as

in [2, Remark 5.4], that ∂Ẽ has to touch the boundary ∂Ω. Let {tk}k∈N be a sequence such
that tk → 1− as n → +∞ and let Ek = tkẼ. Then Ek ⊂ Ω, χEk

→ χE as k → +∞ and by
the dominated convergence theorem

lim
k→∞

|Ek|f = |Ẽ|f .
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Since |Ẽ|f ∈ (0, |Ω|f ] from Proposition 4.4, for k large enough |Ek|f ∈ (0, |Ω|f + 1). We also
have that

Pers(Ek)

|Ek|f
= t−s

k

Pers(Ẽ)

|Ẽ|f
−−−−→
k→+∞

Pers(Ẽ)

|Ẽ|f
= hfs (Ω) ∈ (0,+∞), (4.9)

for k large enough also Pers(Ek) ∈ (0,+∞), thus χEk
∈ Ws,1

0 (Ω). By density, for any k large
enough, there exists {ϕk

j}j∈N ∈ C∞
0 (Ω) such that

lim
j→+∞

‖ϕk
j − χEk

‖W s,1(Ω) = 0.

It also follows that

lim
j→+∞

∫

Ω

fϕk
j dx = |Ek|f ∈ (0, |Ω|f + 1), lim

j→+∞

1

2
[ϕk

j ]W s,1(Rn) = Pers(Ek) ∈ (0,+∞),

(4.10)
reasoning as in (3.10). Hence for k, j large enough

∫

Ω

fϕk
j dx ∈ (0,+∞), [ϕk

j ]W s,1(Rn) ∈ (0,+∞).

From Proposition 3.1 and the fact that ϕk
j ∈ C∞

0 (Ω), also [ϕk
j ]W sp,p(Rn) ∈ (0,+∞). We define,

following an idea from [6, Lemma 1]

cp−1
p,j,k =

(

2p−
1

j

)

∫

Ω

fϕk
j dx

[ϕk
j ]

p
W sp,p(Rn)

∈ (0,+∞). (4.11)

Now, let up be the minimizer of F
sp
p and weak solution of (1.5). Then
∫

Ω

fup dx =
1

2
[up]

p
W sp,p(Rn),

hence

1

2p
[up]

p
W sp,p(Rn) −

∫

Ω

fup dx =
1− p

2p
[up]

p
W sp,p(Rn) 6 F sp

p (φ) =
1

p

(

1

2
[φ]pW sp,p(Rn) − p

∫

Ω

fφ dx

)

for all φ ∈ C∞
0 (Ω), by minimality. This yields that

[up]
p
W sp,p(Rn) >

1

p− 1

(

2p

∫

Ω

fφ dx− [φ]pW sp,p(Rn)

)

.

Let φ = cp,j,kϕ
k
j ∈ C∞

0 (Ω). Then

[up]
p
W sp,p(Rn) >

cp,j,k
p− 1

(

2p

∫

Ω

fϕk
j dx− cp−1

pj
[ϕk

j ]
p
W sp,p(Rn)

)

=
cp,j,k

j(p− 1)

∫

Ω

fϕj,k dx.

It follows that

[up]
p−1
W sp,p(Rn) > c

p−1
p

p,j,k

(

1

j

∫

Ω

fϕj,k dx

)
p−1
p
(

1

p− 1

)
p−1
p

,

so

lim inf
p→1

[up]
p−1
W sp,p(Rn) > lim

p→1
cp−1
p,j,k =

(

2−
1

j

)

∫

Ω

fϕk
j dx

[ϕk
j ]W s,1(Rn)

,
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where we have used (7.5). We send first j → ∞ and then k → ∞, make use of (4.10) and
(4.9) and get that

lim inf
p→1

[up]
p−1
W sp,p(Rn) >

|Ẽ|f

Pers(Ẽ)
=

1

hfs (Ω)
,

and together with (4.8),

lim
p→1

[up]
p−1
W sp,p(Rn) =

1

hfs (Ω)
.

For an arbitrary ε ∈ (0, 1− hfs (Ω)) there is some p̄ close to 1 such that

[up]W sp,p(Rn) >
(

hfs (Ω) + ε
)

1
p−1 ,

hence

lim
p→1

[up]W sp,p(Rn) = +∞

and we conclude the proof. �

We remark that the limit to infinity obtained when hfs (Ω) < 1 excludes that up might tend
to a W s,1 function.

Corollary 4.9. Let f satisfy (4.1), (4.2) and up be the unique minimizer of F
sp
p . There does

not exist u1 ∈ Ws,1
0 (Ω) such that

up −−→
p→1

u1 in L1(Ω) and weakly in L
n

n−σ (Ω).

Proof. Suppose by contradiction that such a function u1 exists. Employing (3.6), and notic-
ing that

lim
p→1

∫

Ω

fup dx =

∫

Ω

fu1 dx

we obtain

lim
p→1

[up]W sp,p(Ω) = [u1]W s,1(Ω).

The contradiction immediately follows. �

Corollary 4.10. Let f satisfy (4.1), (4.2) and

hfs (Ω) > 1.

Let E ⊂ Ω be a minimizer of Ps such that Ps(E) > 0. Then in a weak sense

(−∆)s1χE = f.

Proof. In our hypothesis, Theorem 4.8 gives the existence of a weak solution of (1.1). Then
any minimizer is also a weak solution according to Proposition 3.4. That χE is a weak
solution follows from Proposition 4.3 ii). �

We provide contextually a characterization of the weighted fractional Cheegar constant,
similar to that of [8].
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Corollary 4.11. Let f satisfy (4.1), (4.2) and up be the unique minimizer of F
sp
p . Then

lim
p→1

[up]
p−1
W sp,p(Rn) =

1

hfs (Ω)

and

lim
p→1

(
∫

Ω

fup dx

)p−1

=
1

hfs (Ω)
.

Proof. The conclusion is obtined by noticing that up is also a weak solution, thus
∫

Ω

fup dx =
1

2
[up]

p
W sp,p(Ω). �

As further observation, we have the following result, mimicking [5, Theorem 1.3] and saying
basically that – under some additional assumptions – u is a minimizer of F s

1 if and only if
every level set of u is a minimizer for Ps.

Proposition 4.12. (i) Let hfs (Ω) > 1 and let u ∈ Ws,1
0 (Ω). If for almost all t ∈ (0,+∞),

the set {u > t} is a minimizer of Ps then u is a non-negative minimizer of F s
1 .

(ii) There exists a weak solution of F s
1 . If u ∈ Ws,1

0 (Ω) is a non-negative minimizer of F s
1 ,

the set {u > t} is a minimizer of Ps.

Proof. (i) Let

Z := {t ∈ (0,+∞) | the set {u > t} is a minimizer of Ps}

and it holds that L1(Z) = 0. We have that, for any v ∈ Ws,1
0 (Ω) and t ∈ (0,+∞) \ Z,

0 6 Ps({u > t}) 6 Ps({v > t}),

where the non-negativity follows from the existence of a minimizer of F s
1 . By the coarea

formula

F s
1(u) =

∫

(0,+∞)

Ps({u > t}) dt =

∫

(0,+∞)\Z

Ps({u > t}) dt

6

∫

(0,+∞)\Z

Ps({v > t}) dt = F s
1 (v),

hence u is a minimizer.
(ii) According to Proposition 3.4, u ∈ Ws,1

0 is also a weak solution. We use here an idea
from [20]. Recalling that χ{u>t} ∈ Ws,1

0 (Ω) thanks to [5, Lemma 2.8] and to (4.3), and

picking any F ⊂ Ω of finite fractional perimeter, hence χF ∈ Ws,1
0 (Ω), we can use them as

test functions in the definition of weak solution, i.e. it holds that
∫

R2n

z(x, y)(χF (x)− χF (y))

|x− y|n+s
dxdy−

∫

R2n

z(x, y)(χ{u>t}(x)− χ{u>t}(y))

|x− y|n+s
dxdy

=

∫

Ω

f(x)(χF − χ{u>t})(x) dx.

Since
z(x, y)(u(x)− u(y)) = |u(x)− u(y)|,

and

u(x)− u(y) =

∫ +∞

0

(

χ{u>t}(x)− χ{u>t}(x)
)

dt,
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together with

|u(x)− u(y)| =

∫ +∞

0

|χ{u>t}(x)− χ{u>t}(x)|dt,

then
z(x, y)

(

χ{u>t}(x)− χ{u>t}(x)
)

= |χ{u>t}(x)− χ{u>t}(x)|

for almost all t ∈ (0,+∞). Also

z(x, y)(χF (x)− χF (y)) 6 |χF (x)− χF (y)|,

and we obtain that
∫

Ω

f(x)(χF − χ{u>t})(x) dx 6

∫

R2n

|χF (x)− χF (y)|

|x− y|n+s
dxdy −

∫

R2n

|χ{u>t}(x)− χ{u>t}(y)|

|x− y|n+s
dxdy,

hence
Ps({u > t}) 6 Ps(F ),

and the proof is concluded. �

5. Examples of non-existence and non-uniqueness when f = 1

In this section we take a closer look at the torsion problem, i.e. (1.1) with f = 1 and
denote

Js(u,Ω) =
1

2
[u]W s,1(Rn) −

∫

Ω

u dx. (5.1)

We give examples of non-uniqueness encompassing open questions from both Section 3 and
4. Precisely, when hs(Ω) = 1 coinciding with |Ω|

s
n = 1/(2Sn,s), we give examples of non-

uniqueness of minimizers. When hs(Ω) > 1 coinciding with |Ω|
s
n > 1/(2Sn,s) we provide

examples of non-existence. In both cases, the example is provided by considering a ball BR

large enough, and relying on the isoperimetric inequality (2.5) and on s-calibrable sets, that
we define. A set Ω is said to be s-calibrable if it is the s-Cheegar set of itself. It is known ,
see [2, Remark 5.2], that the ball is such a set, i.e.

hs(BR) =
Pers(BR)

|BR|
= inf

A⊂BR

Pers(A)

|A|
.

Owing to the Faber-Krahn inequality (see [2, Proposition 5.5.]), it holds that

hs(Ω) > |Ω|−
s
n |B1|

− s
nhs(B1) = |Ω|−

s
n

1

2Sn,s
, (5.2)

hence |Ω|−
s
n

1
2Sn,s

> 1 implies hs(Ω) > 1.

We were not able to prove – or disprove – if there exists Ω such that

hs(Ω) > 1, and |Ω|
s
n > 1/(2Sn,s),

i.e., if minimizers exist but the bound of Theorem 3.2 does not hold.
In case of equality, we can give an example of a non-trivial minimizer, and at the same

time, of non-uniqueness of minimizers.

Proposition 5.1. Let Ω = BR be such that

hs(BR) = 1.

Then any u ∈ {λχBR
| λ > 0} is a non-negative minimizer of Js(·, BR).
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Proof. If hs(BR) = 1 and since BR is s-calibrable,

1 =
Pers(BR)

|BR|
,

and this happens if

R = (2Sn,s)
− 1

s |B1|
− 1

n = hs(B1)
1
s . (5.3)

We remark that in this case

|BR|
s
n =

1

2Sn,s

.

Let u = χBR
be the characteristic function of BR. Then

Js(χBR
, BR) = Ps(BR).

Rescaling by R and using (2.5), we have that

Js(χBR
, BR) = Rn−s Pers(B1)− |B1|R

n = Rn−s 1

2Sn,s

|B1|
n−s
n − Rn|B1|

= Rn−s 1

2Sn,s

|B1|
n−s
n

(

1− 2RsSn,s|B1|
s
n

)

= 0,

(5.4)

by hypothesis. We conclude the proof recalling Remark 4.1. �

On the other hand, we have the following.

Proposition 5.2. Let Ω ⊃ BR with

hs(BR) > 1,

then

inf
u∈Ws,1

0 (Ω)
Js(u,Ω) = −∞.

Proof. Notice that BR ⊆ Ω with R from (5.3) implies that

|Ω|
s
n > |BR| >

1

2Sn,s
.

The computations in (5.4) yield

Js(χBR
,Ω) = Js(χBR

, BR) < 0

and we conclude by homogeneity, see Remark 4.1. �

We point out that in [17], the author studies (−∆)pu = 1 on BR, proving that if R 6 n
then (1.9) holds, and if R > n then (1.10) is in place. Notice that h(B1) = n, thus our
results are sharp in the fractional case, and are the counterpart of those in [17].

We can draw from [2] some other very interesting aspects of sets E ⊂ Ω that minimize
Ps, precisely a regularity result following from [10]. One can prove that these minimizing
sets are almost minimal for the perimeter (basically, a perturbation of the set in a small
ball produces produced a term which is controlled by radius of the ball to a certain power).
Such sets are proved to have C1 boundary outside of a set of singular points Σ ⊂ Ω such
that dimH Σ 6 n − 2. Precisely, the authors of [2, Proposition 6.4] prove that if Ẽ ⊂ Ω is
s-Cheegar set, then ∂E ∩Ω is C1 outside of a set of Hausdorff dimension at most n−2. The
proof remains unchanged if one analyzes minimizers of Ps for f = 1.
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Further on, if x0 ∈ ∂E ⊂ Ω is a smooth point (i.e., there exists an interior and exterior
tangent ball to ∂E at x0) then an Euler-Lagrange equation holds pointwisely at that point.
To be more precise, we define

Hs[E](x) = lim
δ→0

∫

Rn\Bδ(x)

|χCE(y)− χE(y)|

|x− y|n+s
dy

the fractional mean curvature of ∂E at x ∈ ∂E. In [2, Theorem 6.7] it is proved that if
E ⊂ Ω is a minimizer of 2 Pers(E) − hs(Ω)|E|, then for any any smooth point x ∈ ∂E, it
holds that

Hs[E](x) = hs(Ω),

(we remark that the signs are opposite to those in [2] since we consider the definition of
the opposite sign for the mean curvature). In exactly the same way, it follows that if E
minimizes Ps then for at all smooth points on ∂E it holds point-wisely that

Hs[E](x) = 1.

6. ”Flatness” of weak solutions and of minmizers

In [21], the authors prove (using Stampacchia’s truncation method) that a weak solution
of the 1-Laplacian equation with Ln(Ω) right hand side data and zero boundary data has
a vanishing gradient on a set of positive Lebesgue measure (and that the same holds for a
right hand side with small norm in the Marcinkiewicz space or for a BV minimizer of the
associated energy).

In this section, we prove similar results for the nonlocal problem, following the lines of
the proofs in [21]. We believe that the results are interesting and worth a few words, in
particular to overcome the difficulties arrising from the nonlocal character of the problem.

We emphasize that when ‖f‖
L

n
s (Ω)

< (2Sn,s)
−1, the unique minimizer is the null function

and the flatness result is obvious. However, the ”flatness” still holds, independently on the
size of the norm of f .

We reiterate also that, as a consequence of the results in this section, in Definition 2.6,
one cannot get rid of z(x, y), since in general weak solutions of (1.1) for which z ∈ {−1, 1}
up to sets of measure zero (hence, when z(x, y) is the classical sign function of u(x)− u(y))
do not exist. Precisely, we have the following result.

Theorem 6.1. Let f ∈ L
n
s (Ω). Let u ∈ Ws,1

0 (Ω) be a weak solution of (1.1). Then the set

{(x, y) ∈ Q(Ω) u(x) = u(y)}

is of positive Lebesgue measure. In other words, there exists no function u ∈ Ws,1
0 (Ω) such

that u(x) 6= u(y) for almost any (x, y) ∈ Q(Ω), x 6= y, and such that u is a weak solution of
(1.1).

Proof of Theorem 6.1. We recall that Q(Ω) = R2n \ (CΩ)2. Suppose that such a u described
in the theorem exists. Then

1

2

∫∫

R2n

z(x, y)(w(v)− w(y))

|x− y|n+s
dx dy =

∫

Ω

fw, for all w ∈ Ws,1
0 (Ω).
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Since u(x) 6= u(y) for almost any (x, y) ∈ Q(Ω), then almost everywhere in Q(Ω) we have
that z(x, y) is the classical sign function and

z(x, y) =

{

1, if u(x) > u(y),

−1, if u(x) < u(y).
(6.1)

We define for k > 0,

Gk(t) =











t + k, t < −k

0, −k 6 t 6 k

t− k, t > k.

(6.2)

Let us denote

Ω1
k := {x ∈ Ω

∣

∣ u(x) < −k}, Ω2
k := {x ∈ Ω

∣

∣ u(x) > k}, Ωk := Ω1
k ∪ Ω2

k. (6.3)

Notice that Gk(u) ∈ Ws,1
0 (Ω), since Gk(u) = 0 almost everywhere in CΩk = (Ω \ Ωk) ∪ CΩ,

and
∫

Ω

∫

Ω

|Gk(u(x))−Gk(u(y))|

|x− y|n+s
dx dy

=

∫

Ωk

∫

Ωk

|Gk(u(x))−Gk(u(y))|

|x− y|n+s
dx dy + 2

∫

Ωk

∫

Ω\Ωk

|Gk(u(x))−Gk(u(y))|

|x− y|n+s
dx dy.

Now,
∫

Ωk

∫

Ωk

|Gk(u(x))−Gk(u(y))|

|x− y|n+s
dx dy

6

∫

Ω1
k

∫

Ω1
k

|u(x)− u(y)|

|x− y|n+s
dx dy +

∫

Ω2
k

∫

Ω2
k

|u(x)− u(y)|

|x− y|n+s
dx dy

+ 2

∫

Ω1
k

(

∫

Ω2
k

|u(x)− u(y)|+ 2k

|x− y|n+s
dy

)

dx 6 4[u]W s,1(Ω) + 2

∫

Ω1
k

(

∫

Ω2
k

u(y)− u(x)

|x− y|n+s
dy

)

dx

6 6[u]W s,1(Ω),

noting that and k < −u(x) on Ω1
k and k < u(y) for y ∈ Ω2

k. On the other hand
∫

Ωk

(
∫

Ω\Ωk

|Gk(u(x))−Gk(u(y))|

|x− y|n+s
dy

)

dx = 2

∫

Ω1
k

(
∫

Ω\Ωk

−u(x)− k

|x− y|n+s
dy

)

dx

+ 2

∫

Ω2
k

(
∫

Ω\Ωk

u(x)− k

|x− y|n+s
dy

)

dx 6 2

∫

Ω1
k

(
∫

Ω\Ωk

−u(x) + u(y)

|x− y|n+s
dy

)

dx

+ 2

∫

Ω2
k

(
∫

Ω\Ωk

u(x)− u(y)

|x− y|n+s
dy

)

dx 6 4[u]W s,1(Ω),

noting that for y ∈ Ω \ Ωk we have that −k 6 u(y) 6 k. This concludes the proof that
Gk(u) ∈ Ws,1

0 (Ω).
What is more,

[Gk(u)]W s,1(Rn) =

∫

Ωk

∫

Ωk

|Gk(u(x))−Gk(u(y))|

|x− y|n+s
dx dy + 2

∫

Ωk

(
∫

CΩk

|Gk(u(x))|

|x− y|n+s
dy

)

dx.
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By Hölder’s inequality and the fractional Sobolev inequality in Theorem 2.2,
∣

∣

∣

∣

∫

Ω

f(x)Gk(u(x)) dx

∣

∣

∣

∣

6 ‖f‖
L

n
s (Ωk)

‖Gk(u)‖L
n

n−s (Ωk)
6 Sn,s‖f‖Ln

s (Ωk)
[Gk(u)]W s,1(Rn). (6.4)

We also point out that, since z(x, y) ∈ sgn(u(x)− u(y))

z(x, y) (Gk(u(x))−Gk(u(y))) = |Gk(u(x))−Gk(u(y)|

almost everywhere on R2n \ (CΩk)
2. Indeed, this is obvious if (x, y) ∈ (Ω1

k ×Ω1
k)∪ (Ω2

k ×Ω2
k),

while, for instance, if x ∈ Ω1
k, y ∈ Ω2

k, since u(y) > k > −k > u(x) and z(x, y) = −1, it holds
that

z(x, y) (Gk(u(x))−Gk(u(y))) = u(y)− u(x)− 2k = |Gk(u(x))−Gk(u(y))| .

The other cases can be settled with similar observations.
This, together with the use of Gk(u) as a test function in (2.6), gives that

1

2

∫∫

R2n

|Gk(u(x))−Gk(u(y))|

|x− y|n+s
dx dy =

1

2

∫∫

R2n

z(x, y)
Gk(u(x))−Gk(u(y))

|x− y|n+s
dx dy

=

∫

Ω

fGk(u) dx,

hence by using the Sobolev inequality

1

2
[Gk(u)]W s,1(Rn) 6 Sn,s‖f‖Ln

s (Ωk)
[Gk(u)]W s,1(Rn),

that is
(

1− 2Sn,s‖f‖Ln
s (Ωk)

)

[Gk(u)]W s,1(Rn) 6 0. (6.5)

Denote T := ‖u‖L∞(Ω) ∈ [0,+∞], then we claim that

|{|u| = T}| = 0.

Indeed, if T = +∞ it is obvious since u is summable. Otherwise, on the set {|u| = T} we have
that u(x) = u(y), but this can hold only almost everywhere, according to our hypothesis.
From this and the Lebesgue dominated convergence theorem, we deduce that that

lim
kրT

‖f‖
L

n
s (Ω∩{|u|>k})

= ‖f‖
L

n
s (Ω∩{|u|=T})

= 0.

Consequently, for all ε > 0 there exists k̃ ∈ (0, T ) such that

2Sn,s‖f‖Ln
s (Ω∩{|u|>k})

< ε,

for all k > k̃. In particular, from (6.5), we obtain

‖Gk̃(u)‖L
n

n−s (Ω
k̃
)
6 Sn,s[Gk̃(u)]W s,1(Rn) 6 0.

Hence |u| 6 k̃ almost everywhere in Ω, hence T 6 k̃. This is in contradiction with the choice

of k̃ and concludes the proof. �

What is more, we are able to prove that minimizers of F1
s are bounded in Ω, and that they

reach the value of the L∞ norm on a set with positive Lebesgue measure. More precisely,
we have the following.
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Theorem 6.2. Let f ∈ L
n
s (Ω) and let u ∈ W1,s

0 (Ω) be a minimizer of F s
1 . Then u ∈ L∞(Rn)

and the set of extremal points
{

x ∈ R
n
∣

∣ |u(x)| = ‖u‖L∞(Rn)

}

has positive Lebesgue measure.

Proof of Theorem 6.2. We define, for k > 0,

Tk(t) =











− k, if t < −k

t, if − k 6 t 6 k

k, if t > k.

We recall the definition of Gk(t), and remark that

t = Tk(t) +Gk(t), |t− τ | = |Tk(t)− Tk(τ)|+ |Gk(t)−Gk(τ)|. (6.6)

We notice that Tk(u) = 0 in CΩ and we claim that Tk(u) ∈ Ws,1
0 (Ω). Using the notations

in (6.3), when (x, y) ∈ Ωi
k × Ωi

k for i ∈ {1, 2}, Tk(u(x))− Tk(u(y)) = 0. Then
∫

Ω

∫

Ω

|Tk(u(x))− Tk(u(y))|

|x− y|n+s
dxdy

= 2

∫

Ω1
k

(

∫

Ω2
k

2k

|x− y|n+s
dy

)

dx+ 2

∫

Ω1
k

(
∫

Ω\Ωk

u(y) + k

|x− y|n+s
dy

)

dx

+ 2

∫

Ω2
k

(
∫

Ω\Ωk

−u(y) + k

|x− y|n+s
dy

)

dx+

∫

Ω\Ωk

∫

Ω\Ωk

|u(x)− u(y)|

|x− y|n+s
dydx

6 2

∫

Ω1
k

(

∫

Ω2
k

u(y)− u(x)

|x− y|n+s
dy

)

dx+ 2

∫

Ω1
k

(
∫

Ω\Ωk

u(y)− u(x)

|x− y|n+s
dy

)

dx

+ 2

∫

Ω2
k

(
∫

Ω\Ωk

u(x)− u(y)

|x− y|n+s
dy

)

dx+

∫

Ω\Ωk

∫

Ω\Ωk

|u(x)− u(y)|

|x− y|n+s
dydx

6 C[u]W s,1(Ω),

since −u > k in Ω1
k, and k < u in Ω2

k. Therefore Tk(u) is a competitor for u, and from the
minimality of u,

F s
1(u) 6 F s

1(Tk(u)),

that is
∫∫

R2n

|u(x)− u(y)| − |Tk(u(x))− Tk(u(y))|

|x− y|n+s
dx dy 6

∫

Ω

f(x) (u(x)− Tk(u(x))) dx.

From (6.6) we obtain that
∫∫

Q(Ω)

|Gk(u(x))−Gk(u(y))|

|x− y|n+s
dx dy 6

∫

Ω

f(x)Gk(u(x)) dx.

This implies (6.5), and also that
(

1− 2Sn,s‖f‖Ln
s (Ωk)

)

‖Gk(u)‖L
n

n−s (Ω)
6 0.
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Denoting T := ‖u‖L∞(Rn) ∈ [0,∞], f we have that

‖Gk(u)‖
n−s
n

L
n

n−s (Ω)
=

∫

Ω1
k

|u(x) + k|
n−s
n dx+

∫

Ω2
k

|u(x)− k|
n−s
n dx > 0,

so for all 0 < k < T

‖f‖
L

n
s (Ωk)

>
1

2Sn,s
. (6.7)

Since f ∈ L
n
s (Ω), and u is finite almost everywhere, it should hold that ‖f‖

L
n
s (Ωk)

is small for

k large enough. Suppose by contradiction that T = +∞. Since Ωk = {x ∈ Ω | |u(x)| > k},
and |{u = +∞}| = 0, by Lebesgue’s dominated convergence theorem

lim
k→+∞

‖f‖
L

n
s (Ωk)

= ‖f‖
L

n
s ({u=+∞})

= 0,

hence for any ε > 0 there is some k̃ > 0 such that for all k > k̃

‖f‖
L

n
s (Ωk)

< ε.

This gives a contradiction to (6.7) and implies that T < ∞. It follows that u ∈ L∞(Rn).
Furthermore, letting k ր T in (6.7), we observe that

lim
kրT

‖f‖
L

n
s (Ωk)

= ‖f‖
L

n
s ({|u|=T})

>
1

2Sn,s
,

hence {|u| = ‖u‖L∞(Rn)} has positive Lebesgue measure, as stated. �

7. Appendix A. Pointwise limit

In this section, we are interested in the behavior of the limit as p → 1 of the kinetic part
of the energy, specifically what we have denote in (1.4) by Es

p . What we want to emphasize is
that the fractional parameter sp, used throughout this paper, arises naturally when looking
at this pointwise limit. To broaden the scope of our statement, we allow for non-vanishing
exterior data under specific additional conditions. These prerequisites are expressed in terms
of the so-called nonlocal tail of u introduced in [5], precisely for x ∈ Ω

Tailpsp(u, x) =

∫

CΩ

|u(y)|p

|x− y|(n+s)p
dy,

basically encompassing the contribution of the exterior data to the energy.

Theorem 7.1. Let q ∈ (1, cn,s), where cn,s is such that sq ∈ (s, 1) and sqq < 1. Let
u : Rn → R be such that u ∈ W sq,q(Ω) and

Tail1s(u, ·), Tail
q
sq(u, ·) ∈ L1(Ω). (7.1)

Then it holds that
lim
p→1

Esp
p (u,Ω) = Es

1(u,Ω).

Proof. Let s0 ∈ (s, 1), δ ∈ (0, 1− s). Since p converges to 1, it is safe to assume that

p 6 min

{

q,
n− δ

n+ 1− s
,
n + s0
n+ s

}

.

Notice that
(n+ s)q = n+ sqq.
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We remark that if u ∈ Wsq,q(Ω), then by the Hölder inequality we have that u ∈ Wst,t(Ω)
for all t ∈ [1, q). Indeed
∫

Ω

∫

Ω

|u(x)− u(y)|t

|x− y|n+stt
dxdy 6 [u]tW sq,q(Ω)|Ω|

2(q−t)
q , and

∫

Ω

|u|t dx 6 ‖u‖tLq(Ω)|Ω|
q−t
q .

(7.2)
Furthermore, (7.1) implies that Tailtst(u, ·) ∈ L1(Ω) for all t ∈ (1, q). Indeed, there exists
a unique τ ∈ (0, 1) such that t = τ + (1 − τ)q, and by Young inequality we have that for
a, b > 0,

aτb(1−τ)q 6 τa + (1− τ)bq 6 a+ bq,

which, for a = b becomes

at 6 a+ aq (7.3)

for all t ∈ (1, q). This applied to a = |g(y)|/|x− y|n+s, gives

|u(y)|t

|x− y|(n+s)t
6

|u(y)|

|x− y|n+s
+

|u(y)|q

|x− y|(n+s)q
, (7.4)

hence integrating, we get that Tailtst(u, ·) ∈ L1(Ω) for all t ∈ (1, q), as desired.
We prove the thesis of the theorem in two steps, first for smooth, compactly supported

functions, and then conclude by density.

Step 1. We prove that
lim
p→1

Esp
p (ψ,Ω) = Es

1(ψ,Ω), (7.5)

for all ψ : Rn → R, such that ψ ∈ C∞
0 (Ω) and ψ = u on CΩ.

To estimate the contribution in Ω× Ω, we notice that if |x− y| > 1,

1

p

|ψ(x)− ψ(y)|p

|x− y|n+spp
6

2‖ψ‖pL∞(Ω)

|x− y|n+spp
6

C1

|x− y|n+s
,

with C1 = C1(‖ψ‖L∞(Ω)) > 0. On the other hand, when |x− y| < 1,

1

p

|ψ(x)− ψ(y)|p

|x− y|n+spp
6

‖∇ψ‖pL∞(Ω)|x− y|p

|x− y|n+spp
6

C2

|x− y|n−δ
,

with C2 = C2(‖∇ψ‖L∞(Ω)) > 0, recalling that (n+ s− 1)p < n− δ by choice of δ. Now,
∫∫

(Ω×Ω)∩{|x−y|>1}

dx dy

|x− y|n+s
6

∫∫

Ω×Ω

dx dy = |Ω|2,

and
∫∫

(Ω×Ω)∩{|x−y|<1}

dx dy

|x− y|n−δ
6

∫

Ω

(
∫

B1(x)

dy

|x− y|n−δ

)

dx 6 C(Ω, δ, n).

By the dominated convergence theorem we have that

lim
p→1

1

p

∫∫

Ω×Ω

|ψ(x)− ψ(y)|p

|x− y|n+spp
dxdy =

∫∫

Ω×Ω

|ψ(x)− ψ(y)|

|x− y|n+s
dxdy. (7.6)

Furthermore, for the nonlocal contribution (x, y) ∈ Ω× CΩ,

1

p

|ψ(x)− u(y)|p

|x− y|n+spp
6

2p−1(|ψ(x)|p + |u(y)|p)

|x− y|n+spp
6

C3

|x− y|n+spp
+

2|u(y)|p

|x− y|n+spp
,
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with C3 = C1(‖ψ‖L∞(Ω)) > 0. When |x − y| > 1 then |x − y|n+spp > |x − y|n+s and when
|x− y| 6 1 then |x− y|n+spp > |x− y|n+s0 by the choice of s0. Together with (7.4), we have
then

1

p

|ψ(x)− u(y)|p

|x− y|n+spp
6

C3

|x− y|n+σ
+

2|u(y)|

|x− y|n+s
+

2|u(y)|q

|x− y|(n+s)q

with either σ = s or σ = s0, for the suitable cases |x − y| less or greater than 1. Recalling
(7.1) and that

Perσ(Ω,R
n) =

∫∫

Ω×CΩ

dx dy

|x− y|n+σ
< +∞,

the right hand side is an L1(Ω× CΩ) and the dominated convergence theorem gives that

lim
p→1

1

p

∫∫

Ω×CΩ

|ψ(x)− u(y)|p

|x− y|n+spp
dxdy =

∫∫

Ω×CΩ

|ψ(x)− u(y)|

|x− y|n+s
dxdy.

This, together with (7.6), concludes (7.5).

Step 2. By the density of C∞
c (Ω) in Wsq ,q(Ω), we have that for u ∈ Wsq ,q(Ω), there exists

ψj : Ω → R such that ψj ∈ C∞
c (Ω) and

‖ψj − u‖W sq,q(Ω) −→ 0, as j → ∞.

Without changing notations, we take ψj : R
n → R such that ψj = u on CΩ. From (7.2) it

holds
‖ψj − u‖W st,t(Ω) −→ 0, as j → ∞.

for all t ∈ [1, q]. We have

lim
p→1

(

Esp
p (u,Ω)− Es

1(u,Ω)
)

= lim
j→+∞

lim
p→1

(

Esp
p (u,Ω)− Esp

p (ψj ,Ω)
)

+ lim
j→+∞

lim
p→1

(

Esp
p (ψj ,Ω)− Es

1(ψj ,Ω)
)

+ lim
j→+∞

(Es
1(ψj ,Ω)− Es

1(u,Ω))

= L1 + L2 + L3.

Notice that L2 = 0 by Step 1, and L3 = 0 since

|Es
1(ψj ,Ω)− Es

11(u,Ω)| 6

∫∫

Q(Ω)

|(ψj − u)(x)− (ψj − u)(y)|

|x− y|n+s
dydx 6 Cn,s,Ω‖ψj − u‖W s,1(Ω),

using also (2.2). To prove that also L1 = 0, we proceed as follows. We use the inequalities
||a|p − |b|p| 6 p(|a|p−1 + |b|p−1)|a− b| and Hölder’s to get that

∣

∣(Esp
p (u,Ω)− (Esp

p (ψj ,Ω)
∣

∣

6

∫∫

Q(Ω)

p(|u(x)− u(y)|p−1 + |ψj(x)− ψj(y)|
p−1)|(u− ψj)(x)− (u− ψj)(y)|

|x− y|(n+s)p
dxdy

6 2

(
∫∫

Q(Ω)

|(u− ψj)(x)− (u− ψj)(y)|
p

|x− y|(n+s)p
dxdy

)
1
p

[

(
∫∫

Q(Ω)

|u(x)− u(y)|p

|x− y|(n+s)p

)
p−1
p

+

(
∫∫

Q(Ω)

|ψj(x)− ψj(y)|
p)

|x− y|(n+s)p

)
p−1
p

]

:= 2I(j, p) [J(p) +K(j, p)] .
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Now, using (7.3) for a = |(u− ψj)(x)− (u− ψj)(y)|/|x− y|(n+s)

I(j, p)p 6

∫∫

Q(Ω)

|(u− ψj)(x)− (u− ψj)(y)|

|x− y|n+s
dxdy +

∫∫

Q(Ω)

|(u− ψj)(x)− (u− ψj)(y)|
q

|x− y|(n+s)q
dxdy

6 [u− ψj ]W s,1(Ω) + [u− ψj ]
q
W sq,q(Ω)

+ 2

∫∫

Ω×CΩ

|(u− ψj)(x)|

|x− y|n+s
dxdy + 2

∫∫

Ω×CΩ

|(u− ψj)(x)|
q

|x− y|n+sqq
dxdy

6 Cn,s,q,Ω

(

‖u− ψj‖W s,1(Ω) + ‖u− ψj‖
q
W sq,q(Ω)

)

,

by (2.2) and recalling that u = ψj on CΩ. Renaming the constants and using (7.2), we get
that

I(j, p) 6 Cn,s,q,Ω‖u− ψj‖W sq,q(Ω),

from which follows that

lim
j→+∞

lim
p→1

I(j, p) = 0.

On the other hand, again by (7.3) and (2.2),

J(p)
p

p−1 6 Cn,s,q,Ω

(

‖u‖W s,1(Ω) + ‖u‖qW sq,q(Ω)

+

∫∫

Ω×CΩ

|u(y)|

|x− y|n+s
dy dx+

∫∫

Ω×CΩ

|u(y)|q

|x− y|(n+s)q
dy dx

)

6 Cn,s,q,Ω

(

‖u‖W s,1(Ω) + ‖u‖qW sq,q(Ω) + ‖Tails(u, ·)‖L1(Ω) + ‖Tailqsq(u, ·)‖L1(Ω)

)

using (7.2) and renaming the constants. Thus J(p) can be bounded from above, uniformly
in p. Finally, in the same way,

K(j, p)
p

p−1 6 Cn,s,q,Ω

(

‖ψj‖W s,1(Ω) + ‖ψj‖
q
W sq,q(Ω) + ‖Tails(u, CΩ)‖L1(Ω) + ‖Tailqsq(u, ·)‖L1(Ω)

)

,

using that for j large enough,

‖ψj‖W st,t(Ω) 6 ‖u‖W st,t(Ω) + ‖u− ψj‖W st,t(Ω) 6 ‖u‖W st,t(Ω) + 1

for all t ∈ [1, q]. Thus also K(j, p) can be bounded from above uniformly in p. It follows
that

lim
j→+∞

lim
p→1

I(j, p)(J(p) +K(j, p)) = 0,

hence that L1 = 0. This concludes the proof of the theorem. �

We remind the reader that according to [4, Lemma 2.3], (7.1) can be achieved with u ∈
W s,q(CΩ) – or can be sharpened, by requiring a combination of condition near the boundary
of Ω, and far from the boundary. Notice also that when ϕ = 0, such a requirement is satisfied,
and we can write the following corollary.

Corollary 7.2. Let q ∈ (1, cn,s), where cn,s is such that sq ∈ (s, 1) and sqq < 1. Let
u : Rn → R be such that u ∈ W

sq ,q
0 (Ω). Then

lim
p→1

F sp
p (u) = F s

1(u).
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8. Appendix B. The (s, p)-problem

For completeness of the exposition and for the reader’s benefit, we prove in this appendix
some basic facts about minimizers/weak solutions of the (s, p)-problem, that we have used
in this note.

Theorem 8.1. Let γ > n
sp

and let f ∈ Lγ(Ω). There exists up ∈ Ws,p
0 (Ω), the unique

(s, p)-minimizer and weak solution of (1.5).

Proof. Recalling that

p∗s =
np

n− sp
,

notice that
n

sp
=

np

np− n + sp
= (p∗s)

′,

the conjugate Sobolev exponent. We point out that the constants may change value from
line to line, indicating a positive quantity, possibly depending on s, p, n, γ,Ω. Using the
Hölder and Sobolev inequality, we get that

∣

∣

∣

∣

∫

Ω

fu dx

∣

∣

∣

∣

6 ‖f‖
L

n
sp (Ω)

‖u‖Lp∗s (Ω) 6 S
1
p
n,s,p‖f‖Lγ(Ω)[u]W s,p(Rn). (8.1)

Using the Young inequality, we further have for some fixed ε ∈ (0, 1/2),

‖f‖Lγ(Ω)[u]W s,p(Rn) 6 ε
[u]pW s,p(Rn)

p
+
p− 1

pε
1

p−1

(

‖f‖Lγ(Ω)

)
p

p−1 =: ε
[u]pW s,p(Rn)

p
+ Cε‖f‖

p
p−1

Lγ(Ω).

It follows that

F s
p(u,Ω) >

1

2p
[u]pW s,p(Rn) −

∫

Ω

fu dx =
1

p

(

1

2
− ε

)

[u]pW s,p(Rn) − Cε‖f‖
p

p−1

Lγ(Ω) > −Cε‖f‖
p

p−1

Lγ(Ω).

Thus the energy is bounded from below, and it follows that there exists a minimizing se-
quence. Let {uk}k ∈ Ws,p

0 (Ω) be such that

lim
k→∞

F s
p (uk,Ω) = inf

u∈Ws,(Ω)
F s

p (u,Ω) =: m > −Cε‖f‖
p

p−1

Lγ(Ω).

There exists k ∈ N such that for all k > k

F s
p(uk) < m+ 1.

By this and by (2.1), we obtain that

‖uk‖
p
W s,p(Ω) 6 C2[uk]

p
W s,p(Rn) 6 C

(

m+ 1 + Cε‖f‖
p

p−1

Lγ(Ω)

)

.

By compactness, there exists u ∈ Ws,p
0 (Ω) and a subsequence

uki → u in Lp(Ω) and a.e. in R
n.

Further, ‖uki‖L
np

n−sp (Ω)
is uniformly bounded by the Sobolev inequality, hence up to taking a

subsequence of uki that we still call uki,

uki −→ u
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weakly in L
np

n−sp (Ω). By Fatou it holds that
∫∫

R2n

|u(x)− u(y)|p

|x− y|n+sp
dxdy 6 lim inf

i

∫∫

R2n

|uki(x)− uki(y)|
p

|x− y|n+sp
dxdy,

and this summed up with the weak convergence in L
np

n−sp (Ω), gives that

F s
p(u) 6 m,

hence u is a minimizer.
To see that the minimizer u is also a weak solution, i.e. that u solves the corresonding Euler-
Lagrange equation, one takes in a standard way a perturbation of u with a test function
ϕ ∈ Ws,p

0 (Ω) and deduces u is a weak solution by using that the first variation of the energy
vanishes,

d

dt
F s

p (u+ tϕ)
∣

∣

t=0
= 0.

As customary, if u is a weak solution and v is any competitor for u, we consider as test
function w = u − v, and the fact that u is a minimizer is obtained by using the Young
inequality.
Finally, uniqueness follows by strict convexity of the energy F s

p . �

Since we need the existence of a (sp, p)-minimizer, we clarify the following corollary.

Corollary 8.2. Let f ∈ L
n
s (Ω). There exists up ∈ W

sp,p
0 (Ω), the unique (sp, p)-minimizer

and weak solution of (1.5).

Proof. The proof is immediate, noticing that

γ =
n

s
>

n

(sp)p
=

n

n+ sp −
n
p

=
np

(2n+ s)p− 2n

and applying Theorem 8.1. �
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