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Abstract: The prediction of drug metabolism is attracting great interest for the possibility of dis-
carding molecules with unfavorable ADME/Tox profile at the early stage of the drug discovery
process. In this context, artificial intelligence methods can generate highly performing predictive
models if they are trained by accurate metabolic data. MetaQSAR-based datasets were collected
to predict the sites of metabolism for most metabolic reactions. The models were based on a set of
structural, physicochemical, and stereo-electronic descriptors and were generated by the random
forest algorithm. For each considered biotransformation, two types of models were developed: the
first type involved all non-reactive atoms and included atom types among the descriptors, while the
second type involved only non-reactive centers having the same atom type(s) of the reactive atoms.
All the models of the first type revealed very high performances; the models of the second type show
on average worst performances while being almost always able to recognize the reactive centers;
only conjugations with glucuronic acid are unsatisfactorily predicted by the models of the second
type. Feature evaluation confirms the major role of lipophilicity, self-polarizability, and H-bonding
for almost all considered reactions. The obtained results emphasize the possibility of recognizing
the sites of metabolism by classification models trained on MetaQSAR database. The two types of
models can be synergistically combined since the first models identify which atoms can undergo a
given metabolic reactions, while the second models detect the truly reactive centers. The generated
models are available as scripts for the VEGA program.

Keywords: metabolism prediction; site of metabolism; MetaQSAR; random forest; atom typing

1. Introduction

The in silico evaluation of the ADME/Tox (absorption, distribution, metabolism,
excretion, and toxicity) profile for new chemical entities has attracted great interest in the
last decades since this represents a rapid and cost-effective strategy to discard molecules
with unfavorable drug-like properties at the early stages of the drug discovery process [1,2].
These preliminary filtering approaches have the clear objective to reduce attritions and risk
of failures. In this way, the attrition rate related to pharmacokinetic issues decreased from
about 40% in the 1990s to less than 10% during the 2000s [3].

The prediction of drug metabolism has played a crucial role as the involved metabolic
reactions and the formed metabolites influence the overall pharmacokinetic profile of
any xenobiotic compound determining, above all, its efficacy and safety [4]. In the past,
the most common computational approaches for drug metabolism were focused on the
prediction of the metabolites formed by specific enzymes and were mostly based on tailored
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docking simulations (the so-called local methods) [5]. The redox reactions catalyzed by
cytochromes P450 greatly enjoyed these studies [6,7] and some effective approaches were
implemented into commercial products [8]. In contrast, global methods able to predict the
entire metabolic fate of a given molecule were less frequent and mostly based on sets of
knowledge-based rules [9]. The scarcity of global methods might be attributed to the lack
of extended metabolic datasets amenable for such predictive studies [10].

The situation evolved in the last years due to the general increase of the available
scientific data which also concerned the field of drug metabolism. The recent progress in
artificial intelligence methods also played a crucial role offering convenient approaches for
the metabolism prediction [11]. Among the recent in silico global methods published in this
framework, one may mention (a) Biotransformer, which combines knowledge-based rules
with machine learning approaches to predict phase I and phase II metabolic reactions as
well as human gut and environmental microbial reactions [12]; (b) FAME, which predicts
the sites of metabolism (SOM) for phase I and phase II reactions based on tree classifiers [13],
and (c) Xenosite, which predicts the outcomes of some relevant metabolic reactions by
using neural network techniques mainly based on quantum-mechanical descriptors [14].

Notably, the development of reliable predictive models requires highly accurate
metabolic data because even some inaccurate data can undermine the overall predic-
tive power of the resulting models. Unfortunately, several available metabolic resources
do not possess a suitable accuracy since they are collected by automatic interrogation
of other databases [15] and often combine xenobiotic and endogenous reactions with a
metabolomics perspective [16]. Thus, we recently proposed a manually annotated database,
MetaQSAR, collected by critical meta-analyses of recent literature [17]. The MetaQSAR
database implements an ad hoc classification which subdivides the metabolic reactions into
3 major classes, 21 classes and 101 subclasses with a hierarchic structure which allows a
precise characterization of each reported biotransformation [18].

MetaQSAR proved successful in developing predictive models for two conjugation
reactions (glucuronidation and reaction with glutathione), which play crucial roles in
determining the safety of chemicals [19,20]. Datasets extracted from MetaQSAR were
utilized to develop the above-mentioned FAME method [12], thus suggesting a general
applicability of its metabolic data. The global applicability was further confirmed by a
recent study, in which MetaQSAR-based datasets allowed the development of models
to predict the occurrence of almost all the reaction classes plus some suitably populated
subclasses by using the Random Forest (RF) classification algorithm. These predictive
models were implemented in a freely released tool, MetaClass, able to predict which
metabolic reactions undergo an input molecule [21].

The here-reported study can be seen as a step further since it is based on the same
MetaQSAR-based datasets, and its aim involves the development of RF-based models to
recognize the specific sites of metabolism (SOM) for all the reaction classes and subclasses
already considered by the MetaClass approach. Similarly to what was already done for
MetaClass, the here-developed predictive models are released into a suite of freely available
scripts, called MetaSpot, to predict which atoms undergo specific metabolic reactions for a
given input substrate.

2. Results
2.1. MetaQSAR-Based Datasets

The study was based on the same first-generation metabolic reactions utilized by the
previous study [20]. Specifically, the analyses involved 3788 metabolic reactions, which are
classified into 3 major classes (i.e., redox reactions, hydrolyses and conjugations), 21 classes
and 101 subclasses. Predictive models were generated for all classes and subclasses which
include at least 50 metabolic reactions. For each simulated dataset, attention was focused
only on the molecules which undergo the corresponding metabolic reaction and considering
as reactive atoms (R), the atoms involved in the biotransformation and as non-reactive
atoms (NR) all the remaining atoms without exceptions. The choice of focusing on the
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substrates to collect the non-reactive atoms had two major reasons: (a) avoiding extremely
unbalanced datasets (and however the number of NR atoms is still markedly higher);
(b) minimizing the number of false negative NR atoms.

For each class and subclass, the performed predictive analyses can be subdivided into
two steps. In the first step, the utilized datasets comprised all collected NR and R atoms.
Each dataset was balanced by randomly undersampling the majority NR class and this
task was repeated 100 times to minimize the randomness. The second step was based on
specifically collected datasets comprising only atoms of the same atom type(s) (according
to Kier-Hall E-states [22]) of the reactive centers to assess the capacity of the developed
models to discriminate between reactive and the non-reactive centers of the same atom
type. The models developed by the two steps can be sequentially utilized since the models
of the first step are intended to perform a coarse filter to discard those atoms which cannot
undergo a given biotransformation, while the models of the second round are more finely
tuned to recognize the truly reactive centers.

2.2. Prediction of the Reactive Atoms for the Reaction Classes

Figure 1 and Table S1 report the performances for the considered classes of metabolic
reactions as reached by the first round of predictions in which the NR atoms are randomly
extracted from all the possible NR atoms belonging to the collected substrates. Table S1
reports the overall performance as computed by considering both classes. For each
metabolic reaction, Table S1 comprises the mean and range values of the performance
metrics as obtained by repeating the model generation 100 times. For the three major
classes of reactions, Figure 1 and Table S1 also include the corresponding mean values as
well as the overall means.
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Figure 1. Performances (as described by Accuracy and MCC values) reached by the classification
models for the classes of metabolic reactions in the two rounds of predictions. The average values
for the three major classes (i.e., redox, hydrolyses and conjugations) as well as the overall means are
also reported.

Figure 1 reveals satisfactory performances for almost all considered metabolic reactions
with the conjugations which afford, on average, the best results, while redox reactions and
hydrolyses yield slightly worse performances. The reported accuracy values indicate that,
on average, 90% of reactive atoms are correctly predicted. Only two reactions classes show
accuracy values comprised between 0.7 and 0.8 with 11 out of 17 accuracy values being
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greater than 0.9. The MCC values also show similar trends: 11 out of 17 metabolic reactions
show MCC ≥ 0.8 and only 2 classes show MCC < 0.5.

Overall, the models appear to be quite stable as confirmed by the accuracy ranges (see
Table S1), which are lower than 0.02 in 9 cases out of 17, as well as by the MCC ranges,
which are lower than 0.15 for 10 classes. Only two classes, i.e., redox of quinones and
other hydrolyses, show modest performances in terms of both mean and range values. The
obtained outcomes do not reveal significant correlations between performance and number
of instances in each class. This suggests that all the considered classes are populated enough
to develop reliable models. The observed performance differences are thus ascribable to the
intrinsic complexity of each metabolic reaction rather than to the chemical space covered
by its substrates.

Figure 2 and Table S2 report the analysis of the feature importance for the 17 predicted
biotransformations: Table S2 compiles the selected descriptors for each model, while
Figure 2 focuses on their frequencies. The first consideration involves the number of
selected features which ranges from 1 to 11 with an average value equal to 4.8. The rather
limited number of included variables should assure a reliable robustness for the generated
models avoiding overfitting biases. Figure 2 emphasizes the remarkable role played by
atom typing as evidenced by the Kier and Hall E-states [21], which appear in 12 models
out of 17. In fact, the Broto’s and Moreau’s atomic increments for lipophilicity [23] can also
be seen as a sort of atom typing in which the atom types are indirectly encoded by their
atomic increments. Indeed, replacing the Broto’s and Moreau’s atomic constants with the
corresponding atom types provides truly superimposable overall performances (results
not shown). As a matter of fact, all models include at least one atom type and 7 models out
of 17 include both atom types.
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Figure 2. Occurrences of the descriptors as derived by analysis of feature importance for the predictive
models for the classes of reactions in the two rounds of predictions.

Among the stereo-electronic parameters, atomic self-polarizability (πS) and atomic
charge are the most frequently included descriptors. The role of atomic self-polarizability
agrees with previous studies which exploited such a descriptor to predict the sites of
metabolism [24] and, more in general, to rationalize the chemical reactivity. Concerning the
physicochemical descriptors, the number of H-bonding groups plays a key role reasonably
as it encodes for the substrate’s capacity to interact with the enzymes. In eight models,
there is at least one parameter related to molecular size, which may describe the capacity of
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a given molecule to be accommodated within the enzymatic cavity. The marginal role of
the virtual log P descriptor (see Table S2) can be explained by considering that lipophilicity
is already encoded by Broto’s and Moreau’s atomic increments.

Taken together, the obtained performances suggest that satisfactory predictions can be
achieved by correctly recognizing the atom types which can undergo a given metabolic reac-
tion. Even though almost all models also include stereo-electronic and/or physicochemical
descriptors which should encode for the intrinsic reactivity and accessibility of each atom,
the primary role played by atom typing might result in a high number of false positives
since there is the risk that all atoms belonging to a given atom type are predicted as reactive
regardless of their actual reactivity. Hence, the second round of predictions was performed
by excluding atom typing to assess whether the stereo-electronic and physicochemical
descriptors alone can recognize the reactive atoms regardless of their type. To do this and
for each considered class, a balanced dataset was generated by randomly collecting only
NR atoms having the same type(s) of the reactive sites.

Figure 1 and Table S3 report the performances obtained by this second round of pre-
dictions and compare them with those reached during the first round of predictions. While
the performances of the first round were similarly satisfactory with limited differences
between the considered classes, the second round reveals significant differences, and some
models prove to be unsatisfactory. In detail, Figure 1 and Table S3 show that: (a) the
sites of metabolism of the redox reactions (especially those involving carbon atoms) can
successfully be recognized, (b) the reactive atoms of hydrolyses are recognized although
with slightly worse performances compared to Table S1 especially for the hydrolysis of
esters, while (c) the sites of conjugations are predicted with difficulty and the developed
models show markedly worse performances compared to the first round of predictions.
Overall, only 3 reaction classes show enhanced performances in this second round and
the drop in the MCC value is greater than 0.4 in 6 cases. The accuracy values indicate
that there are 3 classes for which the correctly identified reactive atoms are lower than
70%. In detail, the reported performances evidence that the sites of glucoronidation cannot
be conveniently predicted and the redox reactions on nitrogen atoms are predicted with
marked difficulty.

Figure 2 and Table S4 highlight the role of the selected features for this second round
of predictions.In addition, the developed models include a limited number of variables
which range from 3 to 9 with an average value equal to 4.9. Concerning the stereo-electronic
parameters, these models confirm the major role of self-polarizability and atomic charges,
while greater differences are seen among the physicochemical descriptors. Figure 2 empha-
sizes the key role of descriptors related to H-bonding as confirmed by the PSA parameter
which is included into 10 models. Descriptors related to the molecular size also play a
remarkable role since they are included in 15 models out of 17.

Taken together, the results of this second round of predictions suggest that the reactive
atoms of redox reactions largely depend on stereo-electronic factors, which are conveniently
captured by the considered descriptors. In contrast, reactive atoms involved in hydrolyses
and conjugations seem to be influenced by different factors not completely encoded by the
considered descriptors. Future studies involving additional descriptors and/or docking
simulations could enhance the predictive models for these classes.

2.3. Prediction of the Reactive Atoms for the Reaction Subclasses

Figure 3 and Table S5 show the performances for the considered subclasses as reached
by considering all possible NR atoms in the first round of predictions. A bird’s eye view of
the obtained results reveals the subclasses provide satisfactory performances in agreement
with those already reported for the metabolic classes. The remarkable results are confirmed
by the accuracy values which indicate that the correctly predicted centers are ≥90% for
16 subclasses out of 23, while the accuracy is less than 0.8 only in two cases. MCC values
provide similar trends with 15 out of 23 MCC values greater than 0.8. Only the oxidation
of aryls and phenols and the addition−elimination reactions of glutathione yield less
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than satisfactory models. The comparison between Figures 1 and 3 shows that the finer
classification by subclasses has a beneficial role for the hydrolyses, while redox reactions
and conjugations show roughly comparable performances. The models for subclasses also
reveal an appreciable stability as evidenced by the accuracy range which is <0.1 for 15 cases
out of 19 (see Table S5).
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Figure 3. Performances (as described by Accuracy and MCC values) reached by the classification
models for the subclasses of metabolic reactions in the two rounds of predictions. The color code of
the columns is the same as Figure 1 (i.e., blue and brown for accuracy and MCC of the first round;
azure and light brown for accuracy and MCC of the second round). The average values for the three
major classes (i.e., redox, hydrolyses and conjugations) as well as the overall means are also reported.

Table S6 and Figure 4 report the results of the feature importance for the 19 considered
subclasses: Table S6 compiles the selected descriptors, and Figure 4 shows their frequencies.
Here also, the number of involved descriptors is rather limited, a fact that should avoid
overfitting conditions. In detail, this ranges from 1 to 9 variables with an average equal to
5.0. The analysis of the selected features further confirms the remarkable role of the atom
typing, since all models include either Kier-Hall E-states or Broto’s and Moreau’s atomic
increments, and 12 models out of 19 include both atom types. On average, these results
emphasize a greater role of the atom typing in subclasses compared to classes. This finding
can be explained by considering that the finer classification of the metabolic reactions
enhances the capacity of the atom types to detect the reactive centers.

Concerning the stereo-electronic descriptors, the developed models confirm the key
role of atomic charges and self-polarizability (πS) in describing the chemical reactivity. In
addition, the HOMO/LUMO energies appear 13 times, thus underlining the relevant role
played by nucleophilicity and electrophilicity in drug metabolism. The frequencies of the
physicochemical descriptors agree with what was observed in the previous models and
emphasize the marked role of H-bonds and molecular size (the related descriptors appear
10 times in both cases) which encode for interacting capacity and accessibility, respectively.

Figure 3 and Table S7 detail the performances reached by the subclasses in the second
round of model generation in which the utilized datasets include only NR atoms of the
same type(s) of the reactive centers. As already observed above, the second round of
predictions reveals marked differences in the performances of the considered subclasses.
On average, the reactive atoms for the redox reactions are conveniently predicted with
almost all accuracy values greater than 0.8 and 4 subclasses (out of 12) show even better
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performances compared to the first round. Table S7 confirms that the atoms undergoing
redox reactions can be suitably recognized based on their stereo-electronic features and the
finer classification of these reactions (as done in subclasses) improves the recognition of the
reactive atoms.
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The finer classifications of hydrolyses do not improve the resulting performances,
which remain for all considered subclasses around 0.75 (as already seen in Table S3).
This output suggests that the detection of the labile functional groups (as made by atom
types) plays a key role in determining the performances for these metabolic reactions,
and the stereo-electronic properties are not completely effective in recognizing the labile
moieties. Regarding glucuronidations, Figure 3 reveals that a finer classification improves
the performances for predicting metabolic reactions of phenols and carboxylic acids, while
the reactions of alcohols and the N-glucuronidations are still unsuitably predicted. Finally,
Figure 3 shows that the poor performance observed for the conjugations with GSH in
Figure 1 is ascribable to the reactions which occur via GSH addition and elimination, while
the nucleophilic GSH additions can be conveniently predicted.

As previously seen, Table S8 and Figure 4 detail the feature importance for this
second round of predictions on the 19 considered subclasses. This analysis confirms the
pivotal role of atomic charges and self-polarizability (πS) and evidences the enhanced
relevance of the atomic charge density the role of which in predicting chemical reactivity
is well-documented in literature [25]. Among the physicochemical descriptors, Figure 4
emphasizes the relevance of H-bonds (as especially encoded by PSA) and molecular size
with 15 occurrences in both cases.

3. Discussion

Since both studies are based on the same MetaQSAR-based training sets and roughly
involve the same set of descriptors, Figure 5 compares the performances (as expressed by
the MCC values) of the here reported models to recognize the reactive atoms with those
reported in the previous MetaClass study to predict the occurrence of a given metabolic
reaction. For simplicity, the analysis is focused on the predictive models as generated for
the classes of metabolic reactions and compares the MetaClass performances with those
here reported for both rounds of predictions.
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Figure 5 clearly emphasizes that the reactive atoms involved in most metabolic reac-
tions can be conveniently recognized by RF-based classifiers in which atom typing plays a
key role (first round). For almost all classes these models outperform the other predictions
suggesting that atom typing has a markedly greater role in the recognition of reactive
atoms rather than in predicting the occurrence of a given biotransformation. The rele-
vance of atom typing comes as no surprise when considering that most available global
methods were based on knowledge-based rules and atom typing is probably the most
effective way to transform these qualitative rules into computationally tractable molecular
descriptors. Even though all the proposed models also include stereo-electronic descriptors
to account for the chemical reactivity of each atom, the key role played by atom types
can lead to a significant number of false positive since the models tend to predict that
all atoms of a given type can yield the corresponding metabolic reaction regardless of
their reactivity. Stated differently, the models based on atom typing prove successful in
discarding the atoms which cannot undergo a given biotransformation, while being less
performing in recognizing the truly reactive atoms among those which can undergo a given
metabolic reaction.

Interestingly, the second round of prediction which do not include the atom typ-
ing, provide, on average, worst performances which shows a certain degree of similarity
with those reached by the MetaClass models. This confirms that atom typing has a very
modest role in predicting the occurrence of a given metabolic reaction and both sets of
models similarly depend on the included physicochemical and stereo-electronic descriptors.
While showing lower MCC values, many developed models of the second round exhibit
satisfactory performances thus indicating that the recognition of the sites of metabolism
based on reactivity descriptors is yet possible and deserves further efforts to enhance the
resulting performances, especially for those classes and subclasses which provided here
unsatisfactory predictive models (see above).

Indeed, and while considering the generally satisfactory results reported here, this
study can be seen as an encouraging starting point which can be surely enhanced by extend-
ing the number and the informative richness of the considered descriptors. The descriptors
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utilized in this study were indeed chosen to cover a significant space of the (structural,
physicochemical and stereo-electronic) molecular properties while being computationally
simple and not time-expensive. This choice was made by considering the high number
of substrates included in the MetaQSAR-based datasets and to develop simple predictive
models to be quickly applied to new molecules. Notwithstanding this, one may figure out
that a wider and tailored set of descriptors could yield improved predictive models. For
example, the observed relevance of various stereo-electronic descriptors (here computed
by semi-empirical calculations) suggests that the inclusion of similar parameters computed
by DFT methods, although computationally markedly more demanding, might have a
beneficial effect. The role played in many models by molecular descriptors encoding for
the interaction capacities (e.g., H-bonding, molecular size and accessibility) suggests that
targeted docking simulations could describe the binding process in a more direct and
informative way. The enrichment of the considered descriptors may involve also the atom
typing by including extended atom types and/or fingerprints. Nevertheless, the enrich-
ment of this kind of descriptors should be cautiously pursued since an increased role of
atom typing could increase the number of false positives.

In more detail, the results of this study (especially concerning the second round of
predictions) can be summarized as follows:

(1) Redox reactions on carbon atoms are conveniently predicted even without atom typ-
ing; this outcome indicates that their reactive atoms mostly depend on the considered
stereo-electronic descriptors (e.g., atomic charges and self-polarizability).

(2) Redox reactions involving nitrogen atoms (and to minor extent Sulphur atoms) are sat-
isfactorily predicted only when using atom types, thus suggesting that their reactivity
depends on different factors compared to carbon atoms.

(3) Hydrolysis reactions yield markedly more accurate predictions when including atom
types which reasonably allow an easy detection of the labile groups.

(4) Conjugations with glucuronic acid are substantially unpredictable without atom
types; this finding suggests that the reactivity of the involved centers depends on
stereo-electronic factors not included in the considered descriptors.

(5) Most reactions with glutathione can be successfully predicted even without atom
types, a result which can be explained by considering that these conjugations depend
on the here parameterized electrophilicity of the reactive centers.

As mentioned above, the two sets of predictions (i.e., with and without atom types)
can be synergistically combined since the models including atom types can be used to
exclude the atoms which cannot undergo the considered biotransformation, while the
models without atom types should recognize the truly reactive centers.

4. Materials and Methods
4.1. Utilized Metabolic Data

The study utilized the same first-generation metabolic reactions extracted from the
MetaQSAR database [17] and already utilized in the previous MetaClass study [20].
In detail, they include 3788 metabolic reactions, which involve 2787 different substrates. As
done in the previous study, all the collected metabolic reactions were utilized during the
model generation to cover the widest possible chemical space of the substrates. Based on
the MetaClass results, the substrates are here simulated in their neutral form. A detailed
description of the set-up of the collected substrates and the calculation of the utilized
descriptors can be found elsewhere [20]. Briefly, the compounds were optimized by the
PM7 semi-empirical method which also allowed the calculation of an extended set of
stereo-electronic descriptors. For each molecule, a set of physicochemical and geometrical
descriptors were calculated by the VEGA suite of programs [26]. Atom typing involved the
Kier-Hall E-states [21] as well as the lipophilic atomic increments of Broto and Moreau [22].
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4.2. Generation of Models with Atom Typing (First Round)

As described above, the predictive analyses involved all the classes and subclasses,
including at least 50 instances. For each case, two predictive analyses were performed
including or excluding the atom types among the utilized descriptors. The analyses
including atom types were performed by using an ad-hoc script for the VEGA environment
that: (a) extracts from MetaQSAR the substrates for a given class or subclass; (b) identifies
within the substrates the reactive and non-reactive atoms and (c) calculates for the included
substrates a set of atom- and ligand-based descriptors. For each considered class and
subclass, the analyses comprised all collected atoms and involved the following tasks
carried out by the above-mentioned script: (a) performing the feature selection to reduce
the number of considered descriptors; (e) randomly under-sampling the NR atoms to
obtain balanced datasets; (f) developing the corresponding predictive model by using the
RF algorithm. Considering the very high number of NR atoms in all performed analyses,
tasks (e) and (f) were repeated 100 times to minimize the randomness of the obtained
results. Here, and in the analyses without atom types, the models were developed by
using the RF algorithm, as implemented in the WEKA 3.8.6 software [27], by applying
the default parameters since, in the previous MetaClass study, these conditions afforded
the best results [20]. The feature selection was also carried out by WEKA based on both
the BestFirst and the WrapperSubsetEval algorithms, as previously described [20]. All the
models generated in the first round of predictions were transformed in C-based scripts
by using the Tree2C program [28]. Briefly, Tree2C converts a tree model as generated by
WEKA into a C-based script for the VEGA program. The so-generated script predicts the
reactive centers for the molecule loaded within the VEGA workspace by applying the
tree model and by calculating on the fly all the required descriptors. All the so-generated
models were available within the Supplementary Materials.

4.3. Generation of Models without Atom Typing (Second Round)

To assess the capacity to predict the reactivity of the sites of metabolism regardless of
their atom types, the second set of predictions was developed by considering the NR atoms
with the same atom type(s) of the reactive centers. For each analyses class and subclass,
a specific dataset was manually collected by combining the reactive atoms with an equal
number of randomly selected non-reactive atoms having the same atom type(s) of the
reactive ones. The so-collected dataset undergo model generation and feature selection by
adopting the same procedures described above for the first round of predictions.

5. Conclusions

The present study describes the MetaSpot approach, which is based on the metabolic
data extracted from the MetaQSAR database and allows the predictions of the reactive
centers for almost all metabolic reactions. Apart from a few documented exceptions, all the
models developed within the MetaSpot project provided satisfactory performances (even
without atom typing), emphasizing the possibility of conveniently recognizing the reactive
atoms. The MetaSpot project can be seen as the natural extension of the already published
MetaClass study [20] since MetaClass predicts which metabolic reactions undergo a given
molecule, while MetaSpot predicts which are the involved sites of metabolism. The two
approaches can be combined and can have a mutually validating role since the reactive
centers predicted by MetaSpot for a given biotransformation can be confirmed if MetaClass
predicts that the substrate can undergo the biotransformation. Similarly, a metabolic
reaction predicted by MetaClass can be confirmed if MetaSpot finds at least one reactive
atom for this reaction.

As detailed in the discussion, this study can be seen as an encouraging starting point,
and the reported models could be improved both by enriching the arsenal of the considered
descriptors and by including structure-based approaches (such as docking simulations),
which can simulate the recognition between the substrate and the involved enzymes.
The predictive models could also be improved by extending and refining the collected
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metabolic data. Enriched metabolic data should maximize the chemical space covered by
the collected reactions, thus extending the predictive power of the developed models. In
addition, enriched metabolic data could be utilized to generate suitable external sets for a
more precise validation and tuning of the selected predictive models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241311064/s1.
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