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Abstract
We address a continuous-variable quantum key distribution protocol employing quaternary
phase-shift-keying of coherent states and a non-Gaussian measurement inspired by quantum
receivers minimizing the error probability in a quantum-state-discrimination scenario. We
consider a pure-loss quantum wiretap channel, in which a possible eavesdropper is limited to
collect the sole channel losses. We perform a characterization of state-discrimination receivers and
design an optimized receiver maximizing the asymptotic secure key rate (SKR), namely the
key-rate optimized receiver (KOR), comparing its performance with respect to the pretty good
measurement and the heterodyne-based protocol. We show that the KOR increases the SKR for
metropolitan-network distances. Finally, we also investigate the implementations of feasible
schemes, such as the displacement feed-forward receiver, obtaining an increase in the SKR in
particular regimes.

1. Introduction

Quantum key distribution (QKD) is the art of sharing a secure key between two distant parties in the
presence of an untrusted channel [1–4]. In a QKD scenario, a transmitter (Alice) sends quantum states
through a quantum channel to a receiver (Bob), who performs a suitable measurement to extract a set of
correlated data. The security of this scheme against any potential attack by an eavesdropper (Eve) is
guaranteed by the laws of quantum mechanics [5, 6].

Within the field, continuous-variable QKD (CV-QKD) [7] is of particular interest due to its feasibility
with the technologies commonly employed in optical communications [8]. Indeed, in CV-QKD information
is encoded onto coherent states [9], that is, laser pulses, just as in classical communication systems. Several
CV-QKD protocols have been proposed in literature, employing either Gaussian modulation of coherent
states [10–14] or discrete modulation formats [15–26]. Nevertheless, all these schemes assume homodyne or
heterodyne (equivalent to double homodyne) detection at Bob’s side, and unconditional security proofs are
currently established only for Gaussian measurements [27–29].

On the other hand, in many other frameworks non-Gaussian measurements often outperform Gaussian
ones, and this makes it interesting to investigate their role also for CV-QKD. A relevant example is provided
by quantum state discrimination theory, in which Alice encodes information onto non-orthogonal states and
the task is to design an efficient receiver minimizing the error probability of Bob’s decision [30–34]. This
optimal receiver has been shown to be non-Gaussian, whereas Gaussian receivers are limited by the so-called
shot noise limit (SNL) [32]. However, deriving the optimum measurement is rather cumbersome as it
requires convex semidefinite programming [32, 35, 36]. As a consequence, there have also been developed
suboptimal methods such as the pretty good measurement (PGM) method, which provides an upper bound
to the minimum error probability and still beats the SNL [32, 37, 38]. Finally, feasible receivers have been
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proposed for both binary [39–42] and quaternary [43–46] coherent-state discrimination, exploiting linear
optics and photodetection, thus being easier to implement into practice. Beside quantum communications,
in the existing literature state-discrimination receivers have also been investigated for CV-QKD [47].

In this paper, we propose a new quantum state-discrimination receiver for CV-QKD, namely, the key-rate
optimized receiver (KOR). In more detail, we consider a CV-QKD protocol employing a quaternary
phase-shift-keying (QPSK) modulation of coherent states [15, 19–23, 25] in which Bob implements the KOR
rather than a Gaussian measurement. We compute the secure key rate (SKR), that is, the asymptotic length of
the secret key per unit time slot, assuming a quantum wiretap channel [48–50], which represents a realistic
paradigm for many different situations, e.g. free-space optical communications [51]. For the sake of
simplicity, we consider a pure-loss channel, in order to deal with discrimination of pure states at Bob’s side.
This latter assumption depicts a simplified scenario, providing a cornerstone fostering more advanced
developments. We design the KOR to maximize the SKR of the addressed protocol and compare it with the
PGM, showing that both these non-Gaussian measurements improve the SKR in the metropolitan-network
distance regime with respect to the heterodyne-based protocol. We also investigate the performance of some
feasible quantum receivers, by considering the feed-forward displacement receiver proposed in [43].

The structure of the paper is the following. First, in section 2 we briefly outline the general structure of
quantum state-discrimination receivers that will be employed throughout the work. Thereafter, section 3
presents the scheme of the protocol under investigation and describes the construction of the KOR. Then, in
section 4 we compare the performance of the designed receiver with the same protocol employing
heterodyne detection, whereas in section 5 we compute the SKR for the feed-forward displacement receiver.
Finally, in section 6 we summarize the results and draw some conclusions and outlooks.

2. General structure of a state-discrimination receiver

In this paper, we investigate the potentiality of state-discrimination receivers for secure quantum
communications and propose a new quantum receiver, the KOR, for CV-QKD protocols employing discrete
modulation. To begin with, in this section, we present the general structure of a state-discrimination receiver
within the framework of quantum state discrimination theory, or quantum decision theory [32–38].

Generally speaking, we have a source emittingM non-orthogonal linearly independent quantum states
{|γk⟩}k, k= 0, . . . ,M− 1, with a priori probabilities qk, 0⩽ qk ⩽ 1, and the task is to design a quantum
receiver. That is, we look for a positive-operator-valued measure (POVM) {Πj}j, j = 0, . . . ,M− 1, Πj ⩾ 0
and

∑
jΠj = 1̂, 1̂ being the identity operator over the whole Hilbert space, such that registering the outcome

j infers the state generated by the source to be |γj⟩. When the outcome j is obtained, we underline that the
receiver makes the decision j even if the state k ̸= j was sent, resulting in a decision error.

For the decision between pure states, the Kennedy theorem [32, 39] proves an optimum POVM to be
1- rank, namely, Πj = |µj⟩⟨µj|, expressed in terms of a set of measurement vectors {|µj⟩}j. As a consequence,
the problem may be recast into a geometric optimization task. Indeed, we introduce the state and
measurement (row) matrices

Γ = (|γ0⟩, . . . , |γM−1⟩) and M= (|µ0⟩, . . . , |µM−1⟩) , (1)

respectively. Moreover, it is not restrictive to reduce the problem to theM dimensional subspace spanned by
the encoded states, S = span{|γk⟩ : k= 0, . . . ,M− 1} [32, 52]. Accordingly, the measurement vectors are
expressible as a linear combination of the state vectors, |µj⟩=

∑
k akj|γk⟩, akj ∈ C, or equivalently,

M= ΓA , (2)

with A being anM×M matrix with coefficients (akj)k,j. The identity resolution constraint now becomes∑
jΠj = PS , PS being the projection operator onto subspace S .
In turn, the conditional probability of obtaining outcome j if the kth state is probed is given by

p( j|k) = Tr
[
|γk⟩⟨γk|Πj

]
= |Bkj|2 , (3)

where

B=M†Γ = A†G , (4)

G being theM×M Gram matrix:

G= Γ†Γ = (⟨γl|γk⟩)l,k=0,...,M−1 , (5)
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that is the matrix of the overlaps between the encoded states. Thus, a quantum receiver is completely
characterized by its corresponding matrix A, subject to the constraint

AA† = G−1 , (6)

guaranteeing the identity resolution of the resulting POVM, as derived in appendix A.
The scenario may be further simplified if the constellation of states {|γk⟩}k exhibits the geometric

uniform symmetry (GUS) [32], namely if there exists a symmetry operator S such that

|γk⟩= Sk |γ0⟩ and SM = 1̂ , (k= 0, . . . ,M− 1) . (7)

In this case, we may safely assume also the measurement vectors to exhibit the GUS for the same operator S,
thus the POVM {Πj}j is identified by a single ‘reference’ measurement vector

|µ0⟩=
M−1∑
k=0

ak0 |γk⟩ , (8)

ak0 ∈ C, while all the others will be retrieved as |µj⟩= Sj|µ0⟩, j = 0, . . . ,M− 1. Consequently, A is a circulant
matrix, having the form

A=


a00 aM−10 . . . a10
a10 a00 . . . a20
...

...
. . .

...
aM−10 aM−20 . . . a00

 , (9)

which is diagonalizable by the unitary matrix U= F−1, F= (e−i2π j k/M/
√
M)jk, j,k= 0, . . . ,M− 1, being the

discrete Fourier transform matrix [53]. Its eigendecomposition is given by A= UΛU†, where
Λ = diag(λ0, . . . ,λM−1), is the diagonal matrix composed of the eigenvalues {λj}j of A. Furthermore,
circulant matrices form a commutative algebra [53], thus A† is also circulant and [A,A†] = 0. Thereby,
A† = UΛ†U† and equation (6) becomes:

U |Λ|2U† = G−1 , (10)

where |Λ|2 = diag(|λ0|2, . . . , |λM−1|2). We conclude that A and G−1 are simultaneously diagonalizable and
|λj|2 = g−1

j , {gj}j being the eigenvalues of the Gram matrix (5) listed in increasing order, that is,
g0 ⩾ g1 ⩾ . . .⩾ gM−1. In conclusion, the matrix Amay be re-expressed in the following form:

A≡ Aϕ = UΛϕU
† , (11)

where

Λϕ = diag

({
λ
(ϕ)
j

}
j=0,...,M−1

)
, (12)

and

λ
(ϕ)
j = eiϕjg−1/2

j , (13)

in which the relative phases ϕ= (ϕ0, . . . ,ϕM−1) provide the only free parameters. Furthermore, the matrix
Aϕ is defined up to an overall phase due to (2), therefore we may fix ϕ0 = 0, ending up withM− 1 phases
whose value can be arbitrarily chosen.

We conclude that, in the presence of GUS, every quantum receiver is ultimately identified by the set of
phases ϕ, which may be properly chosen to optimize a desired figure of merit, according to the context under
investigation. In the existing literature, the typical figure of merit of quantum discrimination theory is the
error probability

Perr = 1−
M−1∑
k=0

qk p(k|k) , (14)

representing the probability of inferring a symbol j ̸= k if the kth state is sent. In this case, the optimal matrix
Aminimizing (14) may be retrieved via convex semidefinite programming [32, 35, 36]. Alternatively, simpler
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suboptimal schemes have been proposed, providing an upper bound of the minimum error probability. The
most relevant is the PGMmethod [32, 37, 38], leading to a suboptimal POVM which coincides with the
optimal measurement for constellations exhibiting GUS [32]. The matrix A for the PGM reads:

APGM = G−1/2 , (15)

which may be retrieved from (11) by setting all phases to zero, ϕ= (0, . . . ,0).
In the following section, we discuss a different approach and adopt a quantum receiver described by (11)

to maximize the SKR of the four-state CV-QKD protocol, optimizing the free phases to design the optimized
discrete receiver for CV-QKD, namely, the KOR.

3. CV-QKDwith state-discrimination receivers over a wiretap channel

As mentioned in the previous section, we design the KOR to optimize the SKR of the four-state protocol
depicted in figure 1, in which the sender, Alice, employs the QPSK modulation. The latter is a special case of
phase-shift keying (PSK) modulation in which information is encoded in one ofM coherent states

|αk⟩= |αeiπ (2k+1)/M⟩ , (k= 0, . . . ,M− 1) , (16)

where α⩾ 0, generated with equal a priori probabilities qk = 1/M. That is, the PSK constellation is
composed ofM coherent states with the same energy α2 and phase-shifted by θ = 2π/M; therefore, it
satisfies the GUS for the phase-shift symmetry operator Sθ = exp(−iθ n̂), n̂ being the photon-number
quantum operator [32]. The QPSK is a special case of PSK withM= 4.

After the modulation stage, Alice injects the signals into an untrusted quantum channel and the receiver,
Bob, probes the received pulses via a state-discrimination receiver, namely, a finite-valued POVM {Πj}j with
the properties described in section 2. However, already existing protocols [10–15, 17–19, 22] usually assume
Gaussian POVMs at the receiver, either homodyne or heterodyne detection, and unconditional security
proofs are guaranteed only for Gaussian measurements [27–29]. In fact, under the unconditional security
paradigm, one considers the most powerful eavesdropping attack, where an eavesdropper, Eve, performs any
arbitrary channel manipulation that preserves the local statistics at Alice’s and Bob’s sides. Physical layer
security is then addressed via a constrained functional optimization over all possible channels, leading to the
Devetak–Winter (DW) bound [54]. This task has been obtained for protocols employing Gaussian
measurements under the assumption of either a linear [15] or nonlinear channel [19], thanks to the
optimality of Gaussian attacks [27–29]. Recently, a tight lower bound to the DW bound has also been
obtained via nonlinear convex optimization algorithms and without invoking Gaussian optimality [20].

Nevertheless, in practical scenarios it is justified to address physical layer security under a wider set of
assumptions, including restricted eavesdropping [50] and different trust levels of the infrastructure [55],
computing the SKR under the so-called composable security paradigm. For instance, in a typical satellite
QKD attack, Eve intercepts a part of the signal not being captured by Bob’s telescope [56]. Similarly, in the
fiber based protocols we may assume an attack to be performed without breaking the structure of the fiber to
implement arbitrary signal manipulation. In the recent literature, secure key distillation in these practical
conditions is gaining much interest, with particular reference to wiretap channels [50] modeling the previous
realistic assumptions, and passive eavesdropping [57, 58], which have also been tested experimentally [59].

Given the present scenario, CV-QKD with non-Gaussian measurements still remains an open problem
since the Gaussian optimality theorem does not hold anymore, and the DW bound can only be directly
evaluated with the advanced methods presented in [20]. In light of this, here we start from scratch and
address composable security, by considering a quantum wiretap channel [48–50]. In this scenario, we
consider a restricted eavesdropping strategy where Eve may only collect the lost fraction of the encoded
signals without performing arbitrary channel manipulation. Once again, we remark that this represents a
realistic scenario which is worth of interest for practical conditions, but does not guarantee unconditional
security. In turn, the purpose of our research is to show that, in particular conditions, it is possible to
theoretically design a suitable measurement outperforming the conventional quadrature detection schemes.

Moreover, we also perform a further assumption and consider a pure-loss channel, described as a beam
splitter with transmissivity

T= 10−κd/10 , (17)

d being the transmission distance (expressed in km) and κ= 0.2 dB km−1 is the loss rate of common fibers at
telecom wavelength [60–64]. This case is worth of investigation for a twofold reason. At first, in the recent
literature there has been a revived interest in passive eavesdropping strategies [51, 57, 58, 65–67]. Secondly,
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Figure 1. Scheme of the CV-QKD protocol discussed in the paper. Alice generates one of the coherent states |αk⟩,
k= 0, . . . ,M− 1, with uniform probability qk = 1/M and sends it via the quantum wiretap channel to Bob, who performs the
POVM {Πj}j.

passive eavesdropping can be used as the first stepping stone to identify scenarios where a potential
advantage of quantum receivers may be substantial, even in the possible presence of nonzero excess noise.

Provided these two assumptions, in the following we construct the optimized POVM that describes the
KOR, and show it to bring advantages in some particular regimes.

In the presence of a pure-loss quantum wiretap channel, if Alice generates the state |αk⟩, the transmitted

fraction |α(t)
k ⟩= |

√
Tαk⟩ reaches Bob, whereas Eve receives the reflected part |α(r)

k ⟩= |
√
1−Tαk⟩, as shown

in figure 1. Accordingly, the dimensional reduction holds [32, 52], and we restrict our attention to the

M-dimensional subspace spanned by the transmitted pulses, namely, S = span{|α(t)
k ⟩ : k= 0, . . . ,M− 1}

and apply the results of section 2.
To form a truly identity-resolving set, the POVM elements {Πj}j, j = 0, . . . ,M− 1, shall be

complemented with an (M+ 1)th inconclusive element ΠM = 1̂−PS , PS being the projection operator
onto S . For the case under investigation, ΠM is irrelevant, and we will neglect it in the following. However,
this would not be true anymore in the presence of a channel excess noise; thus, registering a zero probability
for this additional outcome may provide a useful way to check the reasonableness of the pure-loss hypothesis
in a realistic implementation of the proposed protocol.

3.1. Construction of the KOR
In our protocol Bob shall employ an optimized POVM to perform discrimination among the transmitted

pulses, described by the state vector Γ = (|α(t)
0 ⟩, . . . , |α(t)

M−1⟩) and the Gram matrix:

G=
(〈
α
(t)
l

∣∣α(t)
k

〉)
l,k=0,...,M−1

, (18)

in which the overlap Glk = ⟨α(t)
l

∣∣α(t)
k

〉
reads [68]:

Glk = exp

{
−1

2

∣∣∣α(t)
k −α

(t)
l

∣∣∣2 + 1

2

[
α
(t)
k

(
α
(t)
l

)∗
−
(
α
(t)
k

)∗
α
(t)
l

]}
= exp

(
−Tα2

{
1− cos

[
2π

M
(k− l)

]}
+ iTα2 sin

[
2π

M
(k− l)

])
. (19)

The constellation of transmitted pulses maintains the GUS for the phase-shift operator Sθ, thus the set of
measurement vectorsM= {|µj⟩}j, j = 0, . . . ,M− 1, also satisfies the GUS, and the corresponding matrix A
is in the form (11), according to the results of section 2. The KOR is obtained by optimizing the phases ϕ to
maximize the SKR, and is described by the optimized ‘reference’ measurement vector:

|µ(ϕ)
0 ⟩=

M−1∑
k=0

(Aϕ)k0

∣∣∣α(t)
k

〉
(20)

= e−Tα2/2
∞∑
n=0

(√
Tα0

)n
√
n!

λ
(ϕ)
(n−1) mod M |n⟩ , (21)

where a mod b is the modulo operation, returning the reminder of the division a/b, a,b ∈ Z, and {|n⟩}n is
the photon-number basis.
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Given the previous considerations, we compute the SKR of the discussed protocol, considering a reverse
reconciliation scenario, which guarantees higher security in many existing protocols [10–12]. Moreover, for
the sake of simplicity, we perform the asymptotic key-rate calculation, where the channel parameters are
known with no uncertainty. Under this paradigm, for a generic state-discrimination receiver described by the
phase vector ϕ, the SKR reads:

K
(
ϕ,α2

)
= βIAB

(
ϕ,α2

)
−χBE

(
ϕ,α2

)
, (22)

where IAB and χBE are the mutual information between Alice and Bob and the Holevo information [69]
between Bob and Eve, respectively, and β ⩽ 1 is the reconciliation efficiency [15, 17].

The mutual information reads:

IAB
(
ϕ,α2

)
=H

[
p(ϕ)
B ( j)

]
− 1

M

M−1∑
k=0

H
[
p(ϕ)
B|αk

( j)
]
, (23)

where

p(ϕ)
B|αk

( j) =
〈√

Tαk

∣∣Πj

∣∣√Tαk

〉
=

∣∣∣∣(A†
ϕG
)
kj

∣∣∣∣2 , (24)

G being the Gram matrix (18), and

p(ϕ)
B ( j) =

1

M

M−1∑
k=0

p(ϕ)
B|αk

( j) , (25)

are the conditional and overall probabilities of Bob’s detection associated with outcome j = 0, . . . ,M− 1,
respectively, and H[p(x)] =−

∑
x p(x) log2 p(x) is the Shannon entropy of the probability distribution p(x).

To compute the Holevo information shared between Bob and Eve, that is the maximum amount of
information accessible to Eve, we approach the problem in the prepare-&-measure picture [7, 10, 11] and
obtain:

χBE

(
ϕ,α2

)
= S [ρE]−

M−1∑
j=0

p(ϕ)
B ( j) S

[
ρ
(ϕ)
E|j

]
, (26)

where ρ(ϕ)
E|j and ρE are the conditional and overall Eve’s state, respectively, p

(ϕ)
B ( j) is Bob’s probability

distribution (25) and S[ρ] =−Tr[ρ log2 ρ] represents the von Neumann entropy associated with state ρ.
These two states may be retrieved from the joint state of Bob and Eve after the channel, that is:

ρBE = UBS (T) ρA ⊗ |0⟩⟨0|UBS (T)
†

=
1

M

M−1∑
k=0

∣∣∣α(t)
k

〉〈
α
(t)
k

∣∣∣⊗ ∣∣∣α(r)
k

〉〈
α
(r)
k

∣∣∣ , (27)

where ρA =
∑

k qk|αk⟩⟨αk| is Alice’s overall state, |0⟩ is the vacuum state and UBS(T) is unitary operator
associated with a beam splitter with transmissivity T [9], as displayed in figure 1. In turn, we have:

ρE = TrB [ρBE] =
1

M

M−1∑
k=0

∣∣∣√1−Tαk

〉〈√
1−Tαk

∣∣∣ , (28)

and

ρ
(ϕ)
E|j =

1

p(ϕ)
B ( j)

TrB
[
ρBEΠj ⊗ 1̂E

]
=

1

Mp(ϕ)
B ( j)

M−1∑
k=0

p(ϕ)
B|αk

( j)
∣∣∣√1−Tαk

〉〈√
1−Tαk

∣∣∣ , (29)

TrB being the partial trace over Bob’s mode and 1̂E being the identity operator over Eve’s mode. Finally, the
von Neumann entropy of states (28) and (29) may be computed with the methods outlined in appendix B.
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In our analysis, we are interested in the maximum achievable SKR as a function of the transmission
distance d, therefore, in the end we will perform optimization over the free parameters, namely the phases ϕ
and the constellation energy α2. The final, optimized, SKR is therefore equal to

KKOR =max
ϕ,α2

K
(
ϕ, α2

)
, (30)

with the optimized phases and modulation energy denoted by ϕKOR = (0,ϕ(KOR)1 , . . . ,ϕ
(KOR)
M−1 ) and α2

KOR. As a
consequence, we define the KOR via equation (11), as the quantum receiver associated with the optimized
phase vector ϕKOR. Furthermore, we compare the performance of the KOR with that associated with the
PGM, for which the optimized SKR reads:

KPGM =max
α2

K
(
ϕ = 0, α2

)
, (31)

with zero phases and the optimized energy α2
PGM. The results obtained for the above two receivers are

discussed in the following section, where we compare both SKRs with the key rate of the heterodyne-based
protocol in order to highlight the advantages brought by the two non-Gaussian measurements.

The heterodyne-based protocol is analogous to the one discussed above and employs double homodyne
detection at Bob’s side, that is, a measurement of both field quadratures q and p, retrieving a pair of real
outcomes x= (xB,yB) ∈ R2. We underline that, while both the KOR and the PGM are described in terms of a
finite-valued POVM withM possible outcomes, in the presence of heterodyne detection we have a
continuous-variable measurement. Therefore, in this case Bob’s conditional probability reads:

p(het)B|αk
(x) =

1

4πσ2
0

exp

{
−
[
xB − 2σ0

√
TRe (αk)

]2
/
(
4σ20
)}

× exp

{
−
[
yB − 2σ0

√
T Im (αk)

]2
/
(
4σ20
)}

, (32)

σ0
2 being the shot-noise variance [9], which from now on will be taken equal to 1, meaning, we perform

calculations in shot-noise units (SNU). The obtained mutual information is, similarly as in (23), given by:

I(het)AB

(
α2
)
=H

[
p(het)B (x)

]
− 1

M

M−1∑
k=0

H
[
p(het)B|αk

(x)
]
, (33)

with p(het)B (x) =M−1
∑

k p
(het)
B|αk

(x). Instead, the Holevo information becomes:

χBE

(
α2
)
= S [ρE]−

ˆ
R2

d2x p(het)B|αk
(x) S

[
ρE|x
]
, (34)

with ρE given in (28) and

ρE|x =
1

Mp(het)B (x)

M−1∑
k=0

p(het)B|αk
(x)

∣∣∣√1−Tαk

〉〈√
1−Tαk

∣∣∣ . (35)

The integration in (34) can been performed numerically by exploiting the Simpson’s rule [70]. Finally, the
resulting SKR is obtained as

Khet =max
α2

[
βI(het)AB

(
α2
)
−χ

(het)
BE

(
α2
)]
, (36)

with the optimized modulation energy α2
het.

As a final remark, towards a realistic implementation of the present protocol, we underline that both the
KOR and the PGMmay not represent appropriate POVMs for the channel evaluation stage. Indeed,
assuming that the channel properties do not change, Alice and Bob must estimate the channel parameters,
which in the present case is limited to the sole transmissivity T. However, unlike homodyne and heterodyne
detection, in principle the designed POVM {Πj}j does not guarantee full channel characterization. This
problem may be circumvented, at least for the asymptotic key rate calculation, by performing Gaussian
detection on a small fraction of the exchanged pulses and reserving it for the channel estimation stage, whilst
exploiting the non-Gaussian receiver only for the key extraction. On the contrary, in the presence of a
finite-size scenario, Alice and Bob estimate the channel transmissivity T with a finite uncertainty∆T, thus
leaving more space for Eve’s intervention. Therefore, they employ a conservative strategy and compute the

7
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SKR by considering a lower value of the transmissivity, namely T−∆T. However, the main effect of this
lower effective transmissivity is to reduce the range of distances for which the state-discrimination receivers
outperforms the heterodyne protocol. Furthermore, the dataset for the key extraction is also finite, resulting
in a lower SKR with respect to the asymptotic case.

4. Results

In this section, we compare the results derived previously. In figure 2(a) we plot the SKRs (30), (31) and (36)
as a function of the transmission distance d, expressed in km. The reconciliation efficiency is fixed to
β= 0.95 [22, 61, 62]. It can be seen in the plot that both PGM and KOR beat the heterodyne-based protocol,
that is Kp ⩾ Khet, p= PGM,KOR. The improvement in the SKR is more relevant for metropolitan-network
distances, in particular for d⩽ 100 km, whereas for larger ones both KKOR and KPGM approach Khet and
achieve the same asymptotic scaling. To quantify this improvement we compute the ratio

Rp =
Kp

Khet
, (p= PGM,KOR) , (37)

reported in figure 2(b). Both the ratios exhibit peaks for d⩽ 40 km and then decrease towards 1 in the
long-distance regime, but the behaviour is rather different between the two cases. In fact,RPGM achieves a
single maximum at≈5 km, increasing the SKR with respect to Khet by more than 42%, and then decays
monotonously to 1. On the contrary, KKOR is not a monotonic function of the transmission distance and, in
turn, the associated ratio exhibits two separated peaks. The KOR coincides with the PGM up to its first
maximum, that isRKOR =RPGM for d≲ 7 km, while for larger d we haveRKOR ⩾RPGM. Thereafter,RKOR

reaches a local minimum and then achieves a second maximum at≈23 km, with≈47% increase in the SKR.
Ultimately, the curve decreases to 1, approaching the heterodyne-based protocol together withRPGM.

The behavior of KKOR is a consequence of the resulting optimized phases ϕ(KOR)j , depicted in figure 3(a).

We recall that ϕ(KOR)0 = 0 by definition. For d≲ 7 km we have ϕKOR = 0 and the optimized receiver is
identical to the PGM, whereas for larger distances the optimized phases are nonzero andRKOR ⩾RPGM.
Interestingly, for d≳ 20 km the optimized phase tuple becomes distance-independent and reads
ϕKOR = (0,π/2,π,π/2). This choice allows to reach the second maximum in figure 2(b), after which the
KOR approaches the heterodyne-based protocol. For completeness, figure 3(b) reports also the optimized
energies α2

p, p= PGM,KOR, and α2
het. All curves converge to 0.5 average number of photons in the

long-distance regime but, differently from the other cases, α2
KOR shows the same non-monotonic trend of

KKOR.
The previous results prove non-Gaussian receivers as a potential tool for improving the key rate of the

QPSK protocol, at least in the present composable security approach. Remarkably, they also highlight that
the discrete-valued POVMminimizing the error probability, namely the PGM, does not coincide with the
discrete-valued POVMmaximizing the SKR, namely the KOR. The reason becomes evident when comparing
separately the mutual and the Holevo information appearing in the SKR (22). In figure 4 we plot the

quantities I(p)AB and χ(p)
BE , p= PGM,KOR, computed with the same optimized energy and phases previously

obtained and depicted in figure 3. As we can see, in the metropolitan-network distance regime the optimized
receiver is associated with a reduced mutual information with respect to the PGM but, at the same time,
reducing the mutual information induces also a reduction of the Holevo information extractable by Eve, thus
resulting in a higher SKR. As a consequence, differently from the state-discrimination scenario, in CV-QKD
there emerges a tradeoff between the goal of increasing the information accessible to Bob and the necessity of
making the encoded symbols less ‘distinguishable’ to weaken Eve’s attack.

In light of this, we may interpret the physical meaning of the optimized phases as follows. For small
transmission distances κd≪ 1, Eve’s intercepted signals are too weak to give her sufficient knowledge on
which symbol was sent and the two different goals of reducing the error probability and maximizing the SKR
are compatible, therefore the KOR coincides with the PGM. On the contrary, for larger d the compatibility
does not hold anymore, and Bob has to sacrifice part of his potential information and to reduce the mutual
information shared with Alice to the detriment of the eavesdropper.

The discussed tradeoff may be qualitatively appreciated by comparing the phase-space representations of
the PGM and the KOR effects. More in detail, we consider the two reference measurement vectors |µ0⟩p,
p= PGM,KOR, computed from (20) with the phases ϕ= 0 and ϕ= (0,π/2,π,π/2), respectively, and
compute the associated Wigner function

W(p) (x,y) =
2

π

∞∑
n=0

(−1)n ⟨n|D† (ζ) ρpD(ζ) |n⟩ , (p= PGM,KOR) , (38)

8
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Figure 2. (a) Logarithmic plot of Kp, p= PGM,KOR, compared to Khet, as a function of the transmission distance d in km. (b)
Plot of the ratioRp, p= PGM,KOR, as a function of the transmission distance d. State-discrimination receivers improve the SKR
with respect to the heterodyne-based protocol in the regime d ⩽ 100 km. In both pictures we set β= 0.95.

Figure 3. (a) Plot of the optimized phases ϕ
(KOR)
j , j = 1, . . . ,3, as a function of the transmission distance d in km. We recall that

ϕ
(KOR)
0 = 0. (b) Plot of the optimized modulation energies α2

p, p= PGM,KOR, and α2
het, as a function of the transmission

distance d. In both pictures we set β= 0.95.

Figure 4. Logarithmic plot of I
(p)
AB and χ

(p)
BE , p= PGM,KOR, as a function of the transmission distance d in km. Both the

quantities are computed with the optimized parameters α2
p and ϕKOR (for the optimized receiver). We set β= 0.95.

where ζ = (x+ iy)/2 expressed in SNU, ρp = |µ0⟩p p⟨µ0| and D(ζ) is the displacement operator [9, 68]. The
contour plots ofW(p)(x,y) are depicted in figure 5 for α2 = 1 and two different transmission distances
d= 30 km and d= 100 km. If d= 30 km, that is for metropolitan-network distances, there is a qualitative
difference between the two compared cases, see figures 5(a) and (b). Both Wigner functions exhibit four

peaks, corresponding to the four transmitted states |α(t)
k ⟩. However,W(PGM)(x,y) is well concentrated

around state |α(t)
0 ⟩, whileW(KOR)(x,y) is more delocalized over the four states and the peaks are less

distinguishable. This implies a reduced distinguishability of the states and, in turn, a reduced mutual

9
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Figure 5. Contour plot of the Wigner functionsW(p)(x,y) of the reference measurement vectors |µ0⟩p, p= PGM,KOR, for either
d= 30 km (a) and (b) or d= 100 km (c) and (d). We set α2 = 1 and ϕ= 0 and ϕ= (0,π/2,π,π/2) for the PGM and the
optimized receiver, respectively.

information I(KOR)AB . On the contrary, when the distance is larger, e.g. d= 100 km, the transmitted states are
weak coherent states with a greater overlap between one another. As a consequence,W(p)(x,y) for respective
receivers are equally delocalized over the four peaks and the differences between PGM and KOR become
negligible; see figures 5(c) and (d). In turn, the associated SKRs converge to the same value, corresponding
also to the rate of the heterodyne-based protocol, as depicted in figure 2. Furthermore, in all cases we observe
a Wigner-negativity, proving both |µ0⟩p to be non-classical (as well as non-Gaussian) states at all distances
[9, 68, 71].

5. Employing feasible receivers

Even though both PGM and KOR discussed in the previous sections have shown interesting potentialities for
CV-QKD, from a practical point of view there is no clear idea on their experimental implementation.
Differently from the case of binary discrimination where the PGM is implemented via the Dolinar receiver
[72, 73], in the presence of QSPK designing a feasible optimum receiver is an open problem. In fact, the
Dolinar receiver has been generalized, obtaining the so-called Bondurant receiver [74], which, unfortunately,
is not optimum. As a consequence, it is not known how to reach the minimum error probability with optical
feedback and linear optics. Nevertheless, at the state of the art many feasible quantum receivers are based on
displacement operations and photon counting [39–41, 43–46]. Therefore, it is worth of interest to investigate
also the performance of these receivers for CV-QKD. Here, in particular, we focus on the proposal of the

10
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Figure 6. Scheme of the displacement feed-forward receiver proposed in [43]. The incoming signal |αk⟩ is split into N copies.
Each copym= 1, . . . ,N undergoes a conditional displacement D(−αjm/

√
N) followed by on-off detection. For the first copy we

have j1 = 0. For the others, the outcome of the (m− 1)th detection sets out the displacement amplitude jm to be implemented on
the following copy.

displacement feed-forward receiver (DFFRx) presented in [43] and depicted in figure 6. Its functioning will
be presented in detail in the following subsection.

5.1. Description of the displacement feed-forward receiver
The DFFRx, presented schematically in figure 6, aims at QPSK discrimination of coherent states in the form
|αk⟩= |αeiπ (2k+1)/M⟩, k= 0, . . . ,M− 1, withM= 4. It is based on the slicing property of coherent states:
indeed, thanks to an array of splitters, the incoming signal |αk⟩ is split into N⩾M− 1 identical copies with
reduced amplitude |αk/

√
N⟩. Then, eachmth copy,m= 1, . . . ,N, undergoes a conditional displacement

operation followed by an on–off detection which returns a click-no click result. The first copy is displaced by
D(−αj1/

√
N), with j1 = 0, being mapped into the coherent state |(αk −αj1)/

√
N⟩. In turn, if k= 0 the

incoming signal is displaced into the vacuum and the subsequent on-off detector will not click, whereas if
k ̸= 0 the detector is more likely to click with a probability 1− pk, where

p0 = 1 ,

p1 = p3 = e−2α2/N ,

p2 = e−4α2/N . (39)

According to the result of the first detection, we decide what would be the value of the amplitude of the
displacement D(−αj2/

√
N) applied to the second copy: if an ‘off ’ result is registered, that is the detector does

not click, we set j2 = j1 = 0; otherwise we discard hypothesis ‘k= 0’, set j2 = j1 + 1 and probe the final
hypothesis from the remaining set k= 1,2,3. We proceed iteratively in this way until the last copy is
processed, following the feed-forward rule: if the (m− 1)th detection gives outcome ‘off ’ we displace themth
copy by D(−αjm/

√
N) with jm = jm−1, if an ‘on’ is obtained we set jm = jm−1 + 1, discard all states j⩽ jm−1

and restrict the decision to the states jm, . . . ,M− 1. The outcome of the last detection determines the final
decision. If an ‘off ’ is retrieved, we decide the state j = jm has been sent, otherwise we perform a random
decision among the remaining states.

The conditional probabilities of inferring the state j = 0, . . . ,M− 1 if state k= 0, . . . ,M− 1 was sent
read:

p(N)B|αk
(0) = pN0 , (40a)

p(N)B|αk
(1) =

N−2∑
t=0

ptk (1− pk) p
N−1−t
(k−1) mod M +

pN−1
k (1− pk)

3
, (40b)

p(N)B|αk
(2) =

N−3∑
t=0

N−3−t∑
s=0

ptk (1− pk) p
s
(k−1) mod M

(
1− p(k−1) mod M

)
pN−2−t−s
(k−2) mod M

+
N−2∑
t=0

ptk (1− pk)
pN−2−t
(k−1) mod M

(
1− p(k−1) mod M

)
2

+
pN−1
k (1− pk)

3
, (40c)
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Figure 7. Plot of the decision error probability P
(disp)
err (N) as a function of the signal energy α2 for different N, compared to both

the SQL and the minimum error probability achieved by the PGM. The displacement feed-forward receiver beats the SQL only in

the regime α2 ≫ 1 and, for large N, scales as P
(disp)
err (N)≈ α2e−2α2

, whilst the minimum error probability is P
(PGM)
err ≈ e−2α2

.

p(N)B|αk
(3) =

N−3∑
t=0

N−3−t∑
s=0

N−3−t−s∑
u=0

ptk (1− pk) p
s
(k−1) mod M

(
1− p(k−1) mod M

)
pu(k−2) mod M

×
(
1− p(k−2) mod M

)
pN−3−t−s−u
(k−3) mod M +

N−2∑
t=0

ptk (1− pk)
pN−2−t
(k−1) mod M

(
1− p(k−1) mod M

)
2

+
pN−1
k (1− pk)

3
. (40d)

The overall Bob’s probability can then be written as:

p(N)B ( j) =
1

M

M−1∑
k=0

p(N)B|αk
( j) , ( j = 0, . . . ,M− 1) . (41)

In the context of quantum-state discrimination, the associated decision error probability reads:

P(disp)err (N) = 1− 1

M

M−1∑
k=0

p(N)B|αk
(k) , (42)

depicted in figure 7 as a function of α2 for different N. As emerges from the plot, the present displacement

receiver outperforms the SNL achieved with heterodyne detection, namely P(het)err = 1− [1+ erf(α/
√
2)]2/4,

only in the high-energy regime α2 ≫ 1. We also note that, in the limit N≫ 1, we have P(disp)err (N) =
e−2α2

(α2 + 3/4), and the DFFRx reaches the Bondurant receiver [74]. Nevertheless, it does not provide a
near-optimum receiver. In fact, the minimum error probability, associated with the PGM, reads

P(PGM)
err = 1− 1

M2

(
M−1∑
k=0

√
λk

)2

, (43)

with λ0(1) = 2e−α2
[cosh(α2)± cos(α2)] and λ2(3) = 2e−α2

[sinh(α2)± sin(α2)], which for α2 ≫ 1 scales

only exponentially, P(PGM)
err ≈ e−2α2

.
When Bob employs the DFFRx in the protocol of figure 1, the previous conditional probabilities shall be

modified accordingly by substituting α2 → Tα2 in the pk in (39), as Bob receives only the transmitted
fraction of Alice’s signals.

12
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Figure 8. (a) Plot of the ratioRdisp(N) as a function of the transmission distance d in km. Differently from both PGM and KOR,
discussed in section 4, the DFFRx improves the SKR with respect to the heterodyne-based protocol only up to a maximum
distance dmax(N), increasing with the number of copies N. (b) Plot of the optimized modulation energies α2

disp(N), α
2
PGM, and

α2
het, as a function of the transmission distance d. In both pictures we set β= 0.95.

5.2. Calculation of the SKR
We now compute the SKR Kdisp(N;α2) associated with the DFFRx by exploiting equations (22), (23)

and (26), provided the substitutions p(ϕ)
B|αk

→ p(N)B|αk
and p(ϕ)

B → p(N)B , and optimize over the modulation
energy, obtaining:

Kdisp (N) =max
α2

Kdisp

(
N;α2

)
. (44)

Moreover, we also compute the ratio with respect to the heterodyne-based protocol, namely,

Rdisp (N) =
Kdisp (N)

Khet
, (45)

reported in figure 8(a) for different number of copies N. Unlike the PGM and the KOR, the DFFRx
outperforms the heterodyne-based protocol only up to a maximum transmission distance dmax(N) whose
value increases with N. Afterwards, Kdisp(N)⩽ Khet and, in turn,Rdisp(N) saturates to an asymptotic value
⩽ 1. The best performance is achieved in the limit of infinite copies, N≫ 1, where the receiver approximates
the Bondurant receiver, obtaining a maximum increase in the SKR of about≲20% and dmax(N)≲ 25 km.

This behaviour is a direct consequence of the optimized modulation α2
disp(N), reported in figure 8(b). In

fact, α2
disp(N) is a decreasing function of d, which in the long-distance regime, κd≫ 1, reaches an asymptotic

value≳0.5. Numerical calculations also show this asymptote to be independent of the number of copies N.
In these conditions, Bob receives a signal with Tα2

disp(N)≪ 0.5 mean photons, for which the DFFRx does
not beat the SQL, as depicted in figure 7. In turn, even the SKR of the CV-QKD protocol is lower than the
corresponding heterodyne protocol. On the other hand, for κd≪ 1, the optimized modulation is of few
photons, the DFFRx outperforms the SQL and we observe an increase also in the SKR.

In conclusion, despite its feasibility, the present displacement feed-forward scheme is not optimal for
CV-QKD, just as it is not optimal for coherent state discrimination. Nevertheless, it still provides an
improvement of the resulting key rate in the short-distance regime, being a candidate for experimental
realizations of the present protocol.

6. Conclusions and outlooks

In this paper we have investigated the role of state-discrimination receivers for CV-QKD. In particular, we
have addressed a QPSK protocol based on a pure-loss wiretap channel assumption, and proposed an
optimized non-Gaussian state-discrimination receiver, the KOR, to be employed by Bob in place of the
commonly exploited Gaussian measurements. We have compared the performance of both the KOR and
PGM with respect to the heterodyne-based protocol and obtained an increase in the SKR for
metropolitan-network distances. Moreover, we have also discussed the role of feasible schemes, such as the
displacement feed-forward receiver, obtaining an increased SKR in the short-distance regime up to a
maximum transmission distance.

The results obtained in this paper suggest suitable non-Gaussian receivers as a resource to increase the
key rate in the CV-QKD framework. Nevertheless, they only provide a first step towards the analysis of
CV-QKD with non-Gaussian measurements and leave many points as open problems. At first, the extension
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of the present analysis to the more realistic case of a thermal-loss channel remains a challenging task. In fact,
in the presence of thermal mixed states, designing the receiver achieving the minimum error probability is
non-trivial. The general structure of quantum receivers derived in section 2 does not hold anymore, as theM
mixed states now span the whole infinite dimensional Hilbert space. Moreover, from the perspective of
quantum communications, the optimum receiver achieving the minimum error probability can only be
obtained numerically via linear convex semidefinite programming [32]. There exists an extension of the
PGMmethod, where the Gram matrix is obtained via the ‘factor decomposition’ of the quantum states [32,
36, 75, 76]. However, the resulting POVM is not optimal anymore, even in the presence of GUS, and only
provides a non-tight upper bound of the minimum error probability. As a consequence, the search of the
KOR could only be obtained via a brute-force functional optimization over all possible POVMs, being a
nonlinear and non-convex problem.

Secondly, the sketch of an unconditional security proof may be designed, identifying which is the optimal
Eve’s attack. To do so, we should optimize over all the possible attacks compatible with Alice and Bob’s
statistics, retrieving the DW bound [22, 54] by extending the methods of [20]. Indeed, the question whether
or not protocols employing non-Gaussian measurement guarantee higher security than Gaussian ones is an
interesting open problem.

Finally, we should investigate the scalability of the present scheme with discrete-modulation formats of
higher order, like PSK schemes withM⩾ 4 encoded states or quadrature-amplitude-modulation (QAM)
constellations, in which the GUS is not satisfied anymore [26, 32].
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Appendix A. Derivation of the constraint onmatrix A

As discussed in section 2, the optimal receiver for pure-state discrimination is a 1-rank POVM {Πj}j,
Πj = |µj⟩⟨µj|, j = 0, . . . ,M− 1, where |µj⟩=

∑
k akj|γk⟩, akj ∈ C and

N ≡
M−1∑
j=0

|µj⟩⟨µj|= PS . (A.1)

The previous condition may be turned into the constraint (6) as follows. Equation (A.1) is an equality of
quantum operators, therefore it shall be

N|ψ⟩= |ψ⟩ ∀|ψ⟩ ∈ S , (A.2)

where |ψ⟩=
∑

s bs|γs⟩, bs ∈ C. Accordingly, the following equations hold:∑
j

∑
k,l

akja
∗
lj |γk⟩⟨γl|

∑
s

bs|γs⟩=
∑
t

bt|γt⟩ , (A.3)

∑
k

∑
j,l,s

akja
†
jlGlsbs

 |γk⟩=
∑
t

bt|γt⟩ , (A.4)

where Gls = ⟨γl|γs⟩. In the matrix notation we have AA†Gb= b to be satisfied for all b= (b0, . . . ,bM−1). In
turn,

AA†G= 1M , (A.5)

1M being theM×M identity matrix and, ultimately, AA† = G−1.
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Appendix B. Computation of the von Neumann entropy of Eve’s states

To perform the SKR analysis outlined in section 3.1 we need to compute the von Neumann entropies of
states (28) and (29). Both of them are in the following form:

ρ=
M−1∑
k=0

ck |α(r)
k ⟩⟨α(r)

k | , (B.1)

for some coefficients ck ∈ C. To compute the associated entropy we need to diagonalize state (B.1). If |ψ⟩ is
the eigenvector of ρ associated with eigenvalue λ, we have |ψ⟩=

∑
m bm|α

(r)
m ⟩ and the following equations

hold:

ρ|ψ⟩= λ|ψ⟩ (B.2)(∑
k

ck|α(r)
k ⟩⟨α(r)

k |

)∑
m

bm|α(r)
m ⟩= λ

∑
s

bs|α(r)
s ⟩ (B.3)

∑
k

ck

(∑
m

Gkmbm

)
|α(r)

k ⟩= λ
∑
s

bs|α(r)
s ⟩ , (B.4)

where Gkm = ⟨α(r)
k |α(r)

m ⟩.
As a consequence, we have a set of equations:

λbk = ck

(
M−1∑
m=0

Gkmbm

)
, (k= 0, . . . ,M− 1) , (B.5)

or, equivalently, (
λ

ck
− 1

)
bk −

∑
m̸=k

Gkmbm = 0 . (B.6)

This defines the homogeneous linear systemMb= 0, where b= (b0, . . . ,bM−1) and

M=


λ
c0
− 1 −G01 −G02 −G03

−G10
λ
c1
− 1 −G12 −G13

−G20 −G21
λ
c2
− 1 −G23

−G30 −G31 −G32
λ
c3
− 1

 . (B.7)

The equationMb= 0 always admits a trivial solution b= 0, therefore to obtain a nonzero eigenvector we
shall impose the condition detM= 0. This provides us with the four eigenvalues {λj}j and the corresponding
von Neumann entropy S[ρ] = −

∑
jλj log2λj.

For state ρE in (28), for which ck =M−1, the equation detM= 0 may be solved analytically, leading to:

λ0(1) =
e−(1−T)α2

2

{
cosh

[
(1−T)α2

]
± cos

[
(1−T)α2

]}
,

λ2(3) =
e−(1−T)α2

2

{
sinh

[
(1−T)α2

]
±
∣∣∣ sin[(1−T)α2

]∣∣∣} . (B.8)
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