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In this paper we introduce a new model, named CARMA(p,q)-Hawkes, as the Hawkes model with exponential 
kernel implies a strictly decreasing behavior of the autocorrelation function while empirical evidences reject 
its monotonicity. The proposed model is a Hawkes process where the intensity follows a Continuous Time 
Autoregressive Moving Average (CARMA) process. We also study the conditions for the stationarity and the 
positivity of the intensity and the strong mixing property for the increments. Furthermore, we present two 
estimation case studies based respectively on the likelihood and on the autocorrelation function.

1. Introduction

Point processes are useful mathematical models that describe the dynamics of observed event times and have been applied in several fields of 
study from queueing theory to forestry statistics. Among the family of point processes the Hawkes (1971a,b) process is widely the most established 
and widespread model in different areas, especially in quantitative finance, actuarial science and seismology (see Ogata 1988 and references therein 
for further details). Indeed the Hawkes process is particularly interesting since it is a self-exciting process, which means that each arrival excites the 
intensity such that the probability of the next arrival is increased for some period after the jump, and consequently it is well-suited to investigate, 
for instance, natural clustering effects and bank default in time. To show the versatility of the Hawkes process we mention a few other possible 
non-financial and non-insurance applications: a) social science area such as the modeling of urban crime (Mohler et al. 2011) and the population 
dynamics (Boumezoued 2016); b) social media sector as done in Rizoiu et al. (2017); and c) the modeling of disease spreading such as COVID-19 
transmission as discussed in Chiang et al. (2022).

Recently the Hawkes process has gained a relevant role in financial modeling, in particular in the field of market microstructure. As a matter 
of fact it is used to model market activity, especially order arrivals in the limit order book (e.g., Bacry et al., 2013; Muni Toke and Yoshida, 2017; 
Clinet and Yoshida, 2017). For a complete overview of applications of the Hawkes process in finance, we suggest the works of Bacry et al. (2015)

and Hawkes (2018). The Hawkes process has aroused its appeal among researchers and practitioners as well as in the insurance area. Indeed, as 
mentioned in Lesage et al. (2022), insurance companies are interested in point processes for the quantification of regulatory capital and in managing 
risks (e.g., computing ruin probabilities and measuring the effect of cyber-attacks as discussed respectively in Cheng and Seol 2020, Bessy-Roland et 
al. 2021 and, recently, Hillairet et al. (2023) for cyber-insurance derivatives). Swishchuk et al. (2021) show that the use of a Hawkes process with 
exponential kernel for modeling insurance claim occurrences provides an improvement over the fit of a classical Poisson model. However, they are 
not able to fit different empirical autocorrelation functions as exhibited in Swishchuk et al. (2021, Figures 3 and 5, p. 112). For recent results on 
Hawkes process we suggest Cattiaux et al. (2022) and references therein.

As stated in Errais et al. (2010), the Hawkes process with exponential kernel is Markov and shows a good level of tractability that makes it 
useful for real applications in the presence of large data sets (e.g., high-frequency market data). The specification of the kernel restricts the shape of 
the time dependence structure of the number of jumps observed in intervals with the same length. Indeed, as observed in Da Fonseca and Zaatour 
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(2014), the autocorrelation in a Hawkes model is a decaying function of lags which is not flexible enough to represent the dependence structure 
observed in many data sets (e.g., wind speed data in which the exponential autocorrelation overshoots the empirical one for small lags and vice 
versa for large lags as documented in Benth and Rohde 2019; and, as shown in Hitaj et al. 2019, mortality rates where the empirical autocorrelation 
function of the shock term appears to be non-monotonic).

To overcome the aforementioned drawback, in this paper we introduce a new model named CARMA(p,q)-Hawkes process. The proposed model 
is a Hawkes process where the intensity follows a Continuous-time Autoregressive Moving Average (CARMA) process and it is able to provide several 
shapes of the autocorrelation function as it removes the monotonicity constraint detected in the standard Hawkes process. The greater flexibility 
relies on the CARMA(p,q) component of our model, especially in the choice of the autoregressive and moving average parameters. The CARMA 
process, introduced in Doob (1944), is the continuous-time version of the ARMA model and has the advantage, other than to design different shapes 
of autocorrelation functions, to handle better irregular time series with respect to the ARMA process, especially for high-frequency market data, 
as discussed in Marquardt and Stelzer (2007) and Tómasson (2015). As a matter of fact, the CARMA model has found many applications in the 
literature. Here, we list a few of these applications: a) Andresen et al. (2014) use a CARMA(p,q) model for short and forward interest rates, while b) 
Hitaj et al. (2019) employ such a model in order to capture the dynamics of the shock term in mortality modeling; c) Benth et al. (2014) consider 
a non-Gaussian CARMA process for the dynamics of spot and derivative prices in electricity markets; and d) Mercuri et al. (2021) provide formulas 
for the futures term structure and options written on futures in the framework of a CARMA(p,q) model driven by a time-changed Brownian motion. 
As remarked in Iacus and Mercuri (2015), CARMA models have manifold interests: they can be used to describe directly the dynamics of time series 
and to construct the variance process in continuous time models (see Brockwell et al. 2006 and Iacus et al. 2017, 2018 for further details). Our 
paper presents a different type of application as we use CARMA(p,q) models for the intensity of a point process.

The paper is organized as follows. In Section 2, we review the Hawkes process with exponential kernel. In Section 3, we introduce the 
CARMA(p,q)-Hawkes process, study the conditions of stationarity and positivity for the intensity, and provide the likelihood function. In Sec-

tion 4, we focus on the autocorrelation function of jumps in the proposed model and prove the strong mixing property of increments that leads to 
the asymptotic distribution of the empirical autocorrelation function. In Section 5, we present two estimation case studies in which we highlight 
methodological differences that may emerge from the level of data granularity and data storage since the estimation of parameters can be affected 
(see Shlomovich et al. 2022 and reference therein for details). In case of non-aggregate data, discussed in Section 5.1 with exact event times as for 
seismological data, we use the maximum likelihood estimation. Whereas in Section 5.2, that deals with aggregate data that refer to market orders 
with time span of one minute interval, we employ the autocorrelation function. Section 6 concludes the paper.

2. The Hawkes process

Point processes are useful to describe the dynamics of observed event times, i.e., a collection of realizations {𝑡𝑖}∞𝑖=0, 𝑡𝑖 > 0 for 𝑖 = 1, 2, … with 
𝑡0 ∶= 0 of the non-decreasing non-negative process 

{
𝑇𝑖

}
𝑖≥1 called the time arrival process. The counting process 𝑁𝑡, representing the number of 

events up to time 𝑡, is obtained from the time arrival process as follows:

𝑁𝑡 ∶=
∑
𝑖≥1
1{𝑇𝑖≤𝑡} (1)

for 𝑡 ≥ 0 with associated filtration (𝑡)𝑡≥0 that contains the information of the counting process 𝑁𝑡 up to time 𝑡. An important quantity when dealing 
with a point process 𝑁𝑡 is the conditional intensity 𝜆𝑡 defined as:

𝜆𝑡 = lim
Δ→0+

𝖯𝗋[𝑁𝑡+Δ −𝑁𝑡 = 1|𝑡]
Δ

.

It then follows that the counting process satisfies the following properties

𝖯𝗋
[
𝑁𝑡+Δ −𝑁𝑡 = 𝜂 ||𝑡

]
=
⎧⎪⎨⎪⎩
1 − 𝜆𝑡Δ+ 𝑜 (Δ) if 𝜂 = 0
𝜆𝑡Δ+ 𝑜 (Δ) if 𝜂 = 1
𝑜 (Δ) if 𝜂 > 1.

The conditional intensity 𝜆𝑡 of a general self-exciting process has the following form:

𝜆𝑡 = 𝜇 + ∫
[0,𝑡)

ℎ (𝑡− 𝑠)d𝑁𝑠 (2)

with baseline intensity parameter 𝜇 > 0 and (excitation) kernel function ℎ (𝑡) ∶ [0,+∞)→ [0,+∞) that represents the contribution to the intensity at 
time 𝑡 that is made by an event occurred at a previous time 𝑇𝑖 < 𝑡. Following the general results about the Hawkes process in Brémaud and Massoulié 
(1996), the stationary condition reads:

+∞

∫
0

ℎ (𝑡)d𝑡 < 1. (3)

The most used kernel is the exponential function and specifically ℎ (𝑡) = 𝛼𝑒−𝛽𝑡 with 𝛼, 𝛽 ≥ 0. The stationary condition in (3) implies 𝛽 > 𝛼.

Exploiting the Markov property of the process 𝑋𝑡 ∶=
(
𝜆𝑡,𝑁𝑡

)
, it is possible to get the infinitesimal generator (see Errais et al. 2010 and Da 

Fonseca and Zaatour 2014 for further details) associated to a function 𝑓 ∶ℝ+ ×ℕ →ℝ with continuous partial derivatives with respect to the first 
argument 𝜕𝑓

𝜕𝜆
(𝑥). Starting from the definition of the infinitesimal operator for a Markov process 𝑋𝑡 , that is,

𝑓 ∶= lim
Δ→0+

𝔼
[
𝑓
(
𝑋𝑡+Δ

) ||𝑡

]
− 𝑓

(
𝑋𝑡

)
Δ

,

2

Errais et al. (2010) compute the infinitesimal generator for the Hawkes process with exponential kernel that writes as
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𝑓 = 𝛽
(
𝜇 − 𝜆𝑡

) 𝜕𝑓

𝜕𝜆

(
𝜆𝑡,𝑁𝑡

)
+ 𝜆𝑡

[
𝑓
(
𝜆𝑡 + 𝛼,𝑁𝑡 + 1

)
− 𝑓

(
𝜆𝑡,𝑁𝑡

)]
. (4)

For every function 𝑓 in the domain of the infinitesimal generator it is possible to build a martingale process 𝑀𝑡 with respect to the natural filtration 
in the following way

𝑀𝑡 = 𝑓
(
𝜆𝑡,𝑁𝑡

)
− 𝑓

(
𝜆0,𝑁0

)
−

𝑡

∫
0

𝑓
(
𝜆𝑠,𝑁𝑠

)
d𝑠,

which leads to the well-known Dynkin’s formula

𝔼
[
𝑓
(
𝜆𝑡,𝑁𝑡

) ||𝑠

]
= 𝑓

(
𝜆𝑠,𝑁𝑠

)
+ 𝔼

⎡⎢⎢⎣
𝑡

∫
𝑠

𝑓
(
𝜆𝑢,𝑁𝑢

)
d𝑢

|||||||𝑠

⎤⎥⎥⎦ , ∀𝑡 > 𝑠.

The above formula for 𝑓 ≡ 𝑁𝑡 is used in Da Fonseca and Zaatour (2014) to compute the moments and the autocovariance function of jump 
increments observed in intervals of length 𝜏 with lag 𝛿 in which is shown that the Hawkes model with exponential kernel can only reproduce strictly 
decreasing autocorrelation functions for varying lag values 𝛿. An interesting extension is given in Boswijk et al. (2018) where the self-excitation is 
identified through the modeling of common jumps between the log price process and its own jump intensity.

3. CARMA(p,q)-Hawkes model

In this section, we introduce the CARMA(p,q)-Hawkes model (Section 3.1), a point process where the intensity follows a CARMA(p,q) process, 
and its likelihood function (Section 3.2).

3.1. CARMA(p,q)-Hawkes: stationarity and positivity conditions for the intensity

Definition 1. A vector process [𝑋1,𝑡, … , 𝑋𝑝,𝑡, 𝑁𝑡]⊤ of dimension 𝑝 + 1 is a CARMA(p,q)-Hawkes process if the conditional intensity 𝜆𝑡 is defined as

𝜆𝑡 = 𝜇 + 𝐛⊤𝑋𝑡, (5)

where 𝜇 > 0 is the baseline parameter and 𝐛 is a 𝑝-dimensional column vector containing the 𝑞 + 1 moving average parameters 𝑏0, … , 𝑏𝑞 defined as

𝐛 =

{ [
𝑏0,… , 𝑏𝑞

]⊤
if 𝑝− 𝑞 = 1[

𝑏0,… , 𝑏𝑞 , 𝑏𝑞+1… , 𝑏𝑝−1
]⊤

, with 𝑏𝑞+1 =…= 𝑏𝑝−1 = 0 if 𝑝− 𝑞 ≥ 2.
(6)

The 𝑝-dimensional process 𝑋𝑡 =
[
𝑋1,𝑡,… ,𝑋1,𝑝

]⊤
is defined as:

𝑋𝑡 = ∫
[0,𝑡)

𝑒𝐀(𝑡−𝑠)𝐞d𝑁𝑠, (7)

where the exponential matrix 𝑒𝐀 ∶=
+∞∑
ℎ=0

1
ℎ!𝐀

ℎ.

The 𝑝 × 𝑝 matrix 𝐀, named companion matrix, has the following form

𝐀 =

⎡⎢⎢⎢⎢⎢⎣

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1

−𝑎𝑝 −𝑎𝑝−1 −𝑎𝑝−2 … −𝑎1

⎤⎥⎥⎥⎥⎥⎦𝑝×𝑝

, (8)

where 𝑎1, … 𝑎𝑝 are the autoregressive parameters. The 𝑝-dimensional column vector 𝐞 is defined as:

𝐞 = [0,… ,1]⊤ . (9)

Remark 1. The process 𝑋𝑡 in (7) satisfies the following stochastic differential equation (sde)

d𝑋𝑡 =𝐀𝑋𝑡d𝑡+ 𝐞d𝑁𝑡 with 𝑋0 = 𝟎. (10)

The dynamics in (10) describes the state space process in a CARMA(p,q) model driven by 𝑁𝑡 rather than a Lévy process as done in previous literature 
(see Brockwell, 2001; Brockwell et al., 2011; Tómasson, 2015, and references therein). As a result, the intensity 𝜆𝑡 in (5) is a CARMA(p,q) model. 
This means that the CARMA(p,q)-Hawkes process combines the self-exciting effect in a Hawkes process with the time-dependence structure of a 
CARMA(p,q) process (see Brockwell, 2004; Benth et al., 2014, for some examples). It is worth noting that 𝑁𝑡 is right-continuous while 𝑋𝑡 and 𝜆𝑡
are left-continuous.

Theorem 1. The process 𝑋𝑡 and the (𝑝 + 1)-dimensional column vector process 
[
𝑋𝑡,𝑁𝑡

]
in Definition 1 are Markov.1

1 For the Markov property we refer to Cinlar (2011, Theorem 1.2, p. 444). Let (Ω,,ℙ) be a probability space with filtration  =
(𝑡

)
𝑡∈𝕋 with 𝕋 ⊆ ℝ and let { }
3

(𝐸,) be a measurable space. Consider a stochastic process 𝑍 ∶= 𝑍𝑡 ∶ Ω→ 𝐸
𝑡∈𝕋 adapted to the filtration  . The process 𝑍 is Markov relative to  if and only if 
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Proof. See Appendix D.1 □

To investigate the stationary regime of a CARMA(p,q)-Hawkes model, it is necessary to determine the conditions required for a non-negative 
kernel, i.e., ℎ (𝑡) ∶= 𝐛⊤𝑒𝐀𝑡𝐞 ≥ 0, ∀𝑡 ≥ 0. In case of a CARMA(p,q) driven by a non-negative Lévy process the conditions of a non-negative kernel 
are presented in Tsai and Chan (2005, Theorem 1, p. 592). In a similar fashion such conditions can be applied directly to our case due to the 
non-negative trajectories of the counting process 𝑁𝑡. Indeed, as done in Brockwell et al. (2006, Theorem 5.2) for COGARCH(p,q) models, in the next 
proposition we rephrase the main result that can be applied in a generic CARMA(p,q)-Hawkes process with 𝑏0 > 0.

Proposition 1. For a CARMA(p,q)-Hawkes process in which the real part of all eigenvalues of 𝐀 is negative, the kernel function ℎ (𝑡) ∶= 𝐛⊤𝑒𝐀𝑡𝐞1{𝑡≥0} is 
non-negative if and only if the ratio function 𝑏(𝑧)

𝑎(𝑧) is completely monotone2 on (0,+∞) with the polynomials 𝑎(𝑧) and 𝑏(𝑧) defined respectively as

𝑎 (𝑧) ∶= 𝑧𝑝 + 𝑎1𝑧
𝑝−1 +…+ 𝑎𝑝 and 𝑏 (𝑧) ∶= 𝑏0 + 𝑏1𝑧+…+ 𝑏𝑝−1𝑧

𝑝−1.

Remark 2. In the case of real negative eigenvalues the following results apply:

(a) Suppose all eigenvalues of 𝐀 are negative real numbers sorted as follows �̃�𝑝 ≤, … , ≤ �̃�1 and that all the roots of 𝑏 (𝑧) = 0 are negative real 
numbers such that 𝛾𝑞 ≤, … , ≤ 𝛾1 < 0. If 

∑𝑘
𝑖=1 𝛾𝑖 ≤∑𝑘

𝑖=1 �̃�𝑖 for 1 ≤ 𝑘 ≤ 𝑞, then the kernel of a CARMA(p,q)-Hawkes process is non-negative.

(b) A necessary and sufficient condition for a non-negative ℎ (𝑡) in a CARMA(2,1)-Hawkes process is that �̃�2 ≤ �̃�1 < 0 and 𝑏0 + �̃�1𝑏1 ≥ 0 with 𝑏1 ≥ 0.

We notice that the non-negativity requirement for the kernel implies a strictly positive intensity process 𝜆𝑡 as the baseline parameter 𝜇 is strictly 
positive.

Without loss of generality, we assume that matrix 𝐀 is diagonalizable which corresponds to the assumption that the eigenvalues of 𝐀 are distinct. 
The eigenvectors of 𝐀 are[

1, �̃�𝑗 ,… , �̃�𝑝−1
]⊤

, 𝑗 = 1,… , 𝑝

used to define a 𝑝 × 𝑝 matrix 𝐒 as

𝐒 ∶=

⎡⎢⎢⎢⎢⎢⎣

1 … 1
�̃�1 … �̃�𝑝

�̃�21 … �̃�2𝑝
⋮ ⋮

�̃�𝑝−1
1 … �̃�𝑝−1

𝑝

⎤⎥⎥⎥⎥⎥⎦
.

It follows that 𝐒 satisfies 𝐒−1𝐀𝐒 = 𝖽𝗂𝖺𝗀
(
�̃�1,… , �̃�𝑝

)
, a result used to prove the next theorem on the stationarity conditions for a CARMA(p,q)-Hawkes 

process.

Theorem 2. Let us consider a non-negative kernel function and suppose 𝜇 > 0. Then a CARMA(p,q)-Hawkes 
(
𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡

)
is a stationary process if 

all eigenvalues of 𝐀 are distinct with non-negative real part and −𝐛⊤𝐀−1𝐞 < 1.

Proof. See Appendix D.2. □

Assumption 1. We shall assume for the remainder of the paper that: i) the kernel is a non-negative function and 𝜇 > 0; and ii) all eigenvalues of 𝐀
are distinct with negative real part and −𝐛⊤𝐀−1𝐞 < 1.

For practical applications, instead of checking ex-post signs of eigenvalues of matrix 𝐀, it is possible to enforce ex-ante the negativity of the 
real part for eigenvalues using some transformations on the parameters space as done, for example, in Tómasson (2015). As a CARMA(p,q)-Hawkes 
process is Markov, we are able to calculate the infinitesimal operator as described in the following theorem.

Theorem 3. Let 𝑓 (𝑥1, … , 𝑥𝑝, 𝑛) ∶ ℝ𝑝 × ℕ → ℝ be a function in which the first 𝑝 derivatives 𝜕𝑓
𝜕𝑥1

, … , 𝜕𝑓
𝜕𝑥𝑝

are required to be well defined and continuous. 

Under the same conditions in Assumption 1, the infinitesimal generator of function 𝑓 for a CARMA(p,q)-Hawkes 𝑌𝑡 =
[
𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡

]
process is3:

𝑓𝑡 =

(
𝜇 +

𝑞∑
𝑗=1

𝑏𝑗𝑋𝑗,𝑡

)[
𝑓
(
𝑋1,𝑡,… ,𝑋𝑝,𝑡 + 1,𝑁𝑡 + 1

)
− 𝑓

(
𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡

)]
+

𝑝−1∑
𝑖=1

𝜕𝑓

𝜕𝑋𝑖,𝑡
𝑋𝑖+1,𝑡 +

𝜕𝑓

𝜕𝑋𝑝,𝑡
𝐀[𝑝,]𝑋𝑡 (11)

where 𝐀[𝑝,] is the 𝑝-th row of the companion matrix 𝐀 and the intensity process 𝜆𝑡 is defined as in (5). Alternatively, denoting with 𝑓
(
𝑋𝑡,𝑁𝑡

)
∶=

𝑓
(
𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡

)
, the infinitesimal generator can be written as

for every time 𝑡 and time 𝑢 > 𝑡 and any positive −measurable function 𝑔 we have 𝔼 
[
𝑔
(
𝑍𝑢

) ||𝑡

]
= 𝔼 

[
𝑔
(
𝑍𝑢

) ||𝑍𝑡

]
. For any indicator function 𝑔 = 1𝐴 with 𝐴 ∈  , 

the Markov property implies that ℙ 
[
𝑍𝑡+𝑢 ∈ 𝐴 ||𝑡

]
= ℙ 

[
𝑍𝑡+𝑢 ∈𝐴 ||𝑍𝑡

]
.

2 A function 𝑓 (𝑥) defined on (0,+∞) is said to be completely monotone if and only if it has derivatives of all orders and (−1)𝑛 𝜕𝑛𝑓 (𝑡)
(𝜕𝑥)𝑛

≥ 0 for 𝑛 = 0, 1, 3, ….[ ] ( )

4

3 The notation 𝑓𝑡 refers to the infinitesimal generator of 𝑓 applied to 𝑌𝑡 = 𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡 i.e. 𝑓𝑡 ∶= 𝑓 𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡 .
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𝑓𝑡 =
(
𝜇 + 𝐛⊤𝑋𝑡

) [
𝑓
(
𝑋𝑡 + 𝐞,𝑁𝑡 + 1

)
− 𝑓

(
𝑋𝑡,𝑁𝑡

)]
+∇𝑝𝑓

⊤𝐀𝑋𝑡 (12)

where ∇𝑝𝑓 ∶=
[

𝜕𝑓
𝜕𝑋1,𝑡

,… 𝜕𝑓
𝜕𝑋𝑝,𝑡

]⊤

. The quantities 𝑋𝑡, 𝐞 and 𝐞 have the same meaning as in Definition 1.

Proof. See Appendix D.3. □

Under some mild conditions for the integrability of the transformation 𝑓
(
𝑋𝑇 ,𝑁𝑇

)
at a generic finite final time 𝑇 < +∞ (see Errais et al., 2010; 

Cui et al., 2020, for instance), the conditional expected value for 𝑓
(
𝑋𝑇 ,𝑁𝑇

)
can be computed applying the Dynkin’s formula:

𝔼
[
𝑓
(
𝑋𝑇 ,𝑁𝑇

) |||𝑡0

]
= 𝑓

(
𝑋𝑡0

,𝑁𝑡0

)
+ 𝔼

⎡⎢⎢⎣
𝑇

∫
𝑡0

𝑓𝑡d𝑡 |||𝑡0

⎤⎥⎥⎦ (13)

that has a representation of the following form

d𝔼
[
𝑓
(
𝑋𝑡,𝑁𝑡

) |||𝑡0

]
= 𝔼

[𝑓𝑡
|||𝑡0

]
d𝑡, (14)

with initial condition 𝑓
(
𝑋𝑡0

,𝑁𝑡0

)
. We use the infinitesimal generator (12) and the result in (13) to obtain the following theorem for the computation 

of the first moment of the counting process 𝑁𝑡 . In the remainder of the paper, we use 𝔼𝑡 [⋅] ∶= 𝔼 
[
⋅ ||𝑡

]
.

Theorem 4. Let �̃� be a 𝑝 × 𝑝 companion matrix where the last row has the following structure

�̃�[𝑝,⋅] =
[
𝑏0 − 𝑎𝑝, 𝑏1 − 𝑎𝑝−1,… , 𝑏𝑝−1 − 𝑎1

]
. (15)

Under Assumption 1 and supposing that all eigenvalues of �̃� are distinct with negative real part, for any 𝑇 > 𝑡0 ≥ 0, the conditional first moment of the 
counting process is

𝔼𝑡0

[
𝑁𝑇

]
= 𝑁𝑡0

+ 𝜇
(
1 − 𝐛⊤�̃�−1𝐞

)(
𝑇 − 𝑡0

)
+ 𝐛⊤�̃�−1

[
𝑒�̃�

(
𝑇−𝑡0

)
− 𝐼

] [
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
, (16)

while the conditional expected value of the process 𝑋𝑇 is

𝔼𝑡0

[
𝑋𝑇

]
= 𝑒�̃�

(
𝑇−𝑡0

) [
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
− �̃�−1𝐞𝜇. (17)

The quantities in (16) and (17) satisfy respectively the following ordinary differential equations:

d𝔼𝑡0

[
𝑁𝑡

]
=
[
𝜇
(
1 − 𝐛⊤�̃�−1𝐞

)
+ 𝐛⊤𝑒�̃�

(
𝑡−𝑡0

) [
𝑋𝑡0

+ �̃�−1𝐞𝜇
]]

d𝑡 (18)

and

d𝔼𝑡0

[
𝑋𝑡

]
=
(
�̃�𝔼𝑡0

[
𝑋𝑡

]
+ 𝜇𝐞

)
d𝑡 (19)

with initial conditions4 𝑋𝑡0
and 𝑁𝑡0

. The long-run value for 𝔼𝑡0

[
𝑋𝑇

]
is obtained as follows

𝔼
[
𝑋∞

]
∶= lim

𝑇→+∞
𝔼𝑡0

[
𝑋𝑇

]
= −�̃�𝐞𝜇. (20)

Moreover, the expected number of events that occurs in an interval with length 𝜏 , i.e., (𝑇 ,𝑇 + 𝜏], given the information at time 𝑡0 < 𝑇 is

𝔼𝑡0

[(
𝑁𝑇+𝜏 −𝑁𝑇

)]
= 𝜇

(
1 − 𝐛⊤�̃�−1𝐞

)
𝜏 + 𝐛⊤�̃�−1𝑒�̃�

(
𝑇−𝑡0

) (
𝑒�̃�𝜏 − 𝐈

)(
𝑋𝑡0

+ �̃�−1𝐞𝜇
)

(21)

and the stationary behavior of (21) is

𝔼
[
Δ𝜏𝑁∞

]
∶= lim

𝑇→+∞
𝔼𝑡0

[
𝑁𝑇+𝜏 −𝑁𝑇

]
= 𝜇

(
1 − 𝐛⊤�̃�−1𝐞

)
𝜏, ∀𝜏 > 0. (22)

Proof. See Appendix D.4. □

Using the same arguments in Brockwell et al. (2006, proof of Proposition 4.1, p. 815), all eigenvalues of matrix �̃� have negative real parts if for 
some positive integer 𝑟 ≥ 1 the following inequality holds‖‖‖𝐒−1𝐞𝐛⊤𝐒‖‖‖𝑟

< 𝖱𝖾
(
�̃�1
)

(23)

where, in this context, ‖⋅‖𝑟 denotes the natural matrix norm induced by the vector 𝕃𝑟-norm. This result comes directly from an application of the 
Bauer-Fike Theorem (see Bauer and Fike 1960 for further details) since �̃� is obtained by perturbing matrix 𝐀 as �̃� =𝐀 + 𝐞𝐛⊤.

A sufficient condition for (23) is

4 For 𝑡0 = 0, then 𝔼𝑡0

[
𝑋𝑇

]
=
(
𝑒�̃�

(
𝑇−𝑡0

)
− 𝐈

)
�̃�−1𝐞𝜇 and[ ] ( )( ) [ ( ) ]
5

𝔼𝑡0
𝑁𝑇 = 𝜇 1 − 𝐛⊤�̃�−1𝐞 𝑇 − 𝑡0 + 𝐛⊤�̃�−1 𝑒�̃� 𝑇−𝑡0 − 𝐼 �̃�−1𝐞𝜇.
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𝜎max (𝐒)
𝜎min (𝐒)

‖𝐛‖2 < 𝖱𝖾
(
�̃�1
)

(24)

where ‖𝐛‖2 ∶=√∑𝑝
𝑖=1 𝑏2

𝑖−1 is the Euclidean norm of 𝐛, 𝜎max (𝐒) and 𝜎min (𝐒) are respectively maximal and minimal singular values of 𝐒. In particular, 
we observe that

‖‖‖𝐒−1𝐞𝐛⊤𝐒‖‖‖2 ≤ 𝑘2 (𝐒)
‖‖‖𝐞𝐛⊤‖‖‖2 (25)

and that 𝑘2 (𝐒) ∶= ‖𝐒‖2 ‖‖‖𝐒−1‖‖‖2, the condition number in 2-norm, can be written as

𝑘2 (𝐒) =
𝜎max (𝐒)
𝜎min (𝐒)

. (26)

Moreover, denoting with ‖‖𝐞𝐛⊤‖‖F the Frobenius norm of 𝐞𝐛⊤, we obtain ‖‖𝐞𝐛⊤‖‖2 ≤ ‖‖𝐞𝐛⊤‖‖F. Applying the definition of the Frobenius norm we have

‖‖‖𝐞𝐛⊤‖‖‖2 ≤ ‖𝐛‖2 , (27)

and combining (25), (26) and (27) we get

‖‖‖𝐒−1𝐞𝐛⊤𝐒‖‖‖2 ≤ 𝜎max (𝐒)
𝜎min (𝐒)

‖𝐛‖2 . (28)

Thus, the inequality in (24) implies (23).

3.2. Likelihood estimation of the CARMA(p,q)-Hawkes

As follows we present the likelihood of a CARMA(p,q)-Hawkes model. Consider that 𝜃 =
(
𝑏0,… , 𝑏𝑞 , 𝑎1,… , 𝑎𝑝

)
, then the likelihood of a 

CARMA(p,q)-Hawkes model is given by

 (𝜃,𝜇) = −

𝑇𝑘

∫
0

𝜆𝑡d𝑡+

𝑇𝑘

∫
0

ln
(
𝜆𝑡

)
d𝑁𝑡. (29)

Exploiting the fact that ∫ 𝑇𝑘
0 ln

(
𝜆𝑡

)
d𝑁𝑡 =

∑𝑘
𝑖=1 ln

(
𝜆𝑇𝑖

)
, then (29) can be written as

 (𝜃,𝜇) = −

𝑇𝑘

∫
0

[
𝜇 + 𝐛⊤𝑋𝑡

]
d𝑡+

𝑘∑
𝑖=1

ln
(
𝜆𝑇𝑖

)
(30)

and recalling once again that 𝑋𝑡 can be expressed by (7) and rearranging the expression we have

 (𝜃,𝜇) = −𝜇𝑇𝑘 − 𝐛⊤

𝑇𝑘

∫
0

𝑡

∫
0

𝑒𝐀(𝑡−𝑠)𝐞d𝑁𝑠d𝑡+
𝑘∑

𝑖=1
ln
(
𝜆𝑇𝑖

)
. (31)

Working on the inner integral, the likelihood becomes

 (𝜃,𝜇) = −𝜇
(
𝑇𝑘

)
− 𝐛⊤

𝑇𝑘

∫
0

⎡⎢⎢⎢⎣
𝑇𝑘

∫
𝑠

𝑒𝐀(𝑡−𝑠)d𝑡

⎤⎥⎥⎥⎦d𝑁𝑠𝐞+
𝑘∑

𝑖=1
ln
(
𝜆𝑇𝑖

)
, (32)

while using the results in (A.1) we get

 (𝜃,𝜇) = −𝜇𝑇𝑘 − 𝐛⊤

𝑇𝑘

∫
0

𝐀−1 [𝑒𝐀(𝑇𝑘−𝑠) − 𝐈
]
d𝑁𝑠𝐞+

𝑘∑
𝑖=1

ln
(
𝜆𝑇𝑖

)
. (33)

Developing the integral in (33) and recalling that 𝑆 (𝑘) ∶=
∑𝑘

𝑖=1 𝑒𝐀(𝑇𝑘−𝑇𝑖), we finally obtain that the likelihood of a CARMA(p,q)-Hawkes model 
writes

 (𝜃,𝜇) = −𝜇𝑇𝑘 − 𝐛⊤𝐀−1𝑆 (𝑘) 𝐞+ 𝑘𝐛⊤𝐀−1𝐞+
𝑘∑

𝑖=1
ln
(
𝜆𝑇𝑖

)
. (34)

4. Autocovariance and autocorrelation of a CARMA(p,q)-Hawkes process

In this section we compute the stationary autocorrelation and autocovariance functions for the number of jumps in non-overlapping time intervals 
of length 𝜏 . To this aim we introduce some quantities that are useful to compute the asymptotic covariance of a CARMA(p,q)-Hawkes process.
6

The first quantity we introduce is the 𝑝(𝑝+1)
2 × 𝑝(𝑝+1)

2 matrix ̃̃𝐀 defined as follows
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̃̃𝐀 ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐷1
[𝑝,𝑝] 𝑈1,2

[𝑝,𝑝−1] 0[𝑝,𝑝−2] … … …
𝐿2,1
[𝑝−1,𝑝] 𝐷2

[𝑝−1,𝑝−1] 𝑈2,3
[𝑝−1,𝑝−2] 0[𝑝−1,𝑝−3] … …

⋮ ⋱ ⋱ ⋱ ⋱ …
𝐿𝑗,1
[𝑝−𝑗+1,𝑝] … 𝐿𝑗,𝑗−1

[𝑝−𝑗+1,𝑝−𝑗+2] 𝐷𝑗
[𝑝−𝑗+1,𝑝−𝑗+1] 𝑈𝑗,𝑗+1

[𝑝−𝑗+1,𝑝−𝑗] 0[𝑝−𝑗+1,𝑝−𝑗−1]
⋮ ⋱ ⋱ ⋱ ⋱ …

𝐿𝑝,1
[1,𝑝] … … … … 𝐷𝑝

[1,1]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(35)

where the square matrices 𝐷𝑗
[𝑝−𝑗+1,𝑝−𝑗+1], 𝑗 = 1, … , 𝑝 − 1, have the following structure

𝐷𝑗
[𝑝−𝑗+1,𝑝−𝑗+1] =

⎡⎢⎢⎢⎢⎢⎣

0 2 0 … 0
0 0 1 … 0
⋮ ⋮ ⋱ ⋱ ⋮
0 … … … 1

𝑏𝑗−1 − 𝑎𝑝−𝑗+1 𝑏𝑗 − 𝑎𝑝−𝑗 … … 𝑏𝑝−1 − 𝑎1

⎤⎥⎥⎥⎥⎥⎦
,

with 𝐷𝑝
[1,1] = 2(𝑏𝑝−1 − 𝑎1). Matrices 𝐿𝑗,𝑖

[𝑝−𝑗+1,𝑝−𝑖+1] for 𝑗 = 2, … , 𝑝 and 𝑖 = 1, … , 𝑗 − 1 are characterized by the entries with the form

𝐿𝑗,𝑖(ℎ, 𝑙) =
⎧⎪⎨⎪⎩

𝑏𝑗−2+𝑖 − 𝑎𝑝−𝑗+1+(𝑖−1) if ℎ = 𝑝− 𝑗 + 1, 𝑙 = 𝑗 − 𝑖+ 1 and 𝑗 ≠ 𝑝
2
(
𝑏𝑗−2+𝑖 − 𝑎𝑝−𝑗+1+(𝑖−1)

)
if ℎ = 𝑝− 𝑗 + 1, 𝑙 = 𝑗 − 𝑖+ 1 and 𝑗 = 𝑝

0 otherwise

while matrices 𝑈𝑖,𝑖+1
[𝑝−𝑖+1,𝑝−𝑖] for 𝑖 = 1, … , 𝑝 − 1 have form

𝑈𝑖,𝑖+1
[𝑝−𝑖+1,𝑝−𝑖] =

[
𝟎[1,𝑝−𝑖]
𝐈[𝑝−𝑖,𝑝−𝑖]

]
.

Here an example of the matrix ̃̃𝐀 for a CARMA(3,2)-Hawkes model

̃̃𝐀 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 0 0
0 0 1 1 0 0

𝑏0 − 𝑎3 𝑏1 − 𝑎2 𝑏2 − 𝑎1 0 1 0
0 0 0 0 2 0
0 𝑏0 − 𝑎3 0 𝑏1 − 𝑎2 𝑏2 − 𝑎1 1
0 0 2(𝑏0 − 𝑎3) 0 2(𝑏1 − 𝑎2) 2(𝑏2 − 𝑎1)

⎤⎥⎥⎥⎥⎥⎥⎦
.

The second quantity introduced is the 𝑝 × 𝑝(𝑝+1)
2 matrix 𝐁 defined as:

𝐁 ∶=
⎡⎢⎢⎢⎣

𝑏0 𝑏1 … 𝑏𝑝−1 0 … … 0 … 0
0 𝑏0 … 0 𝑏1 … 𝑏𝑝−1 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ … 0
0 … 0 𝑏0 0 … 𝑏1 0 … 𝑏𝑝−1

⎤⎥⎥⎥⎦ (36)

where the generic 𝑖-th row is the result of a row concatenation of 𝑝 vectors with dimensions 𝑝, 𝑝 − 1, …, 𝑝 − 𝑖, … 1, respectively. The first 𝑖 − 1
vectors have zero entries except the element in position 𝑖 that coincides with 𝑏𝑖−1, the vector with dimension 𝑝 − 𝑖 contains the elements 𝑏𝑖, … , 𝑏𝑝−𝑖

and the remaining vectors have zero entries.

For example, in the case of a CARMA(3,2)-Hawkes model, the structure of matrix 𝐁 reads

𝐁 =
⎡⎢⎢⎣

𝑏0 𝑏1 𝑏2 0 0 0
0 𝑏0 0 𝑏1 𝑏2 0
0 0 𝑏0 0 𝑏1 𝑏2

⎤⎥⎥⎦ .

The third quantity is the 𝑝(𝑝+1)
2 × 𝑝 matrix �̃� in which the entry in the 𝑖− th row and in 𝑗− th column has the following structure

𝑐𝑖,𝑗 ∶=

⎧⎪⎪⎨⎪⎪⎩

0 if 𝑖 ≠ 𝑗
(
𝑝− 𝑗−1

2

)
and 𝑖 ≠ 𝑝(𝑝+1)

2

𝜇 if 𝑖 = 𝑗
(
𝑝− 𝑗−1

2

)
and 𝑖 ≠ 𝑝(𝑝+1)

2
𝑏𝑗−1 if 𝑖 = 𝑝(𝑝+1)

2 and 𝑗 ≠ 𝑝

2𝜇 + 𝑏𝑝−1 if 𝑖 = 𝑝(𝑝+1)
2 and 𝑗 = 𝑝

. (37)

Let 𝐻 be a 𝑝 × 1 vector. Then we define the operator 𝑣𝑙𝑡 (⋅) as a function that transforms the 𝑝 × 𝑝 matrix 𝐻𝐻⊤ into a 𝑝(𝑝+1)
2 vector containing the 

lower triangular part of the product 𝐻𝐻⊤. Specifically:

𝑣𝑙𝑡
(
𝐻𝐻⊤

)
∶=

⎡⎢⎢⎢𝐻1𝐻1,… ,𝐻𝑝𝐻1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

,𝐻2𝐻2,… ,𝐻𝑝𝐻2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

,… ,𝐻𝑖𝐻𝑖,… ,𝐻𝑝𝐻𝑖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

,… ,𝐻𝑝𝐻𝑝

⎤⎥⎥⎥
⊤

. (38)
7

⎢⎣ p entries p-1 entries p-i+1 entries
⎥⎦
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4.1. Conditions for existence of stationary autocovariance function

In the following section we present the variance and covariance of the number of jumps that occur in two non-overlapping time intervals of the 
same length for a CARMA(p,q)-Hawkes model. We rewrite the quantity 𝔼𝑡0

[
𝑋𝑇 𝑋⊤

𝑇

]
𝐛 using the 𝑣𝑙𝑡 (⋅) operator defined in (38).

Lemma 1. The following identity holds true

𝔼𝑡0

[
𝑋𝑇 𝑋⊤

𝑇

]
𝐛 = 𝐁𝑣𝑙𝑡

(
𝔼𝑡0

(
𝑋𝑇 𝑋⊤

𝑇

))
(39)

where the matrix 𝐁 is defined in (36) and the operator 𝑣𝑙𝑡 (⋅) is defined as in (38). Moreover:

𝑣𝑙𝑡
(
𝔼𝑡0

(
𝑋𝑇 𝑋⊤

𝑇

))
= 𝑒

̃̃𝐀
(
𝑇−𝑡0

)
𝑣𝑙𝑡

(
𝑋𝑡0

𝑋⊤
𝑡0

)
+
[
𝑒

̃̃𝐀
(
𝑇−𝑡0

)
− 𝐈

]
̃̃𝐀−1𝜇

(
�̃�− �̃��̃�−1𝐞

)
+ 𝑒

̃̃𝐀𝑇
⎡⎢⎢⎣

𝑇

∫
𝑡0

𝑒−
̃̃𝐀𝑡�̃�𝑒�̃�𝑡d𝑡

⎤⎥⎥⎦ 𝑒−�̃�𝑡0
[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
. (40)

Proof. See Appendix E.1. □

Theorem 5. Under Assumption 1 and supposing that all eigenvalues of �̃� and ̃̃𝐀 have negative real parts, the long-run covariance

𝐶𝑜𝑣(𝜏, 𝛿) ∶= lim
𝑡→+∞

𝔼[(𝑁𝑡+𝜏 −𝑁𝑡)(𝑁𝑡+2𝜏+𝛿 −𝑁𝑡+𝜏+𝛿)] − 𝔼[𝑁𝑡+𝜏 −𝑁𝑡]𝔼[𝑁𝑡+2𝜏+𝛿 −𝑁𝑡+𝜏+𝛿]

for a CARMA(p,q)-Hawkes process has the following form:

𝐶𝑜𝑣 (𝜏, 𝛿) = 𝐛⊤�̃�−1
[
𝑒�̃�𝜏 − 𝐈

]
𝑒�̃�𝛿𝑔∞ (𝜏) (41)

where 𝑔∞ (𝜏) is defined as

𝑔∞ (𝜏) ∶=
(
𝐈− 𝑒�̃�𝜏

)
�̃�−1𝜇

[
𝐞𝐛⊤�̃�−1𝐞− 𝐞+ �̃�−1𝐞𝜇

(
𝐛⊤�̃�−1𝐞

)
+𝐁 ̃̃𝐀−1 (�̃�− �̃��̃�−1𝐞

)]
. (42)

Proof. See Appendix D.3. □

Theorem 6. Under the same assumptions as in Theorem 5, the long-run variance

𝑉 𝑎𝑟(𝜏) ∶= lim
𝑡→+∞

𝔼[(𝑁𝑡+𝜏 −𝑁𝑡)2] − 𝔼[𝑁𝑡+𝜏 −𝑁𝑡]2

of the number of jumps in a interval with length 𝜏 for a CARMA(p,q)-Hawkes process has the following form:

𝑉 𝑎𝑟 (𝜏) =
(
1 − 𝐛⊤�̃�−1𝐞

)(
1 − 2𝐛⊤�̃�−1𝐞

)
𝜇𝜏 + 2𝐛⊤�̃�−1�̃�−1𝐞𝜏𝜇2 (𝐛⊤�̃�−1𝐞

)
+ 2𝐛⊤�̃�−1𝐁 ̃̃𝐀−1𝜇

(
�̃�− �̃��̃�−1𝐞

)
𝜏 − 2𝐛⊤�̃�−1

[
𝑒�̃�𝜏 − 𝐈

]
ℎ∞ (0) (43)

where ℎ∞ (0) is defined as

ℎ∞ (0) ∶= −�̃�−1𝐞𝜇
(
1 − 𝐛⊤�̃�−1𝐞

)
+ �̃�−1�̃�−1𝐞𝜇2𝐛⊤�̃�−1𝐞+ �̃�−1𝐁 ̃̃𝐀−1𝜇

(
�̃�− �̃��̃�−1𝐞

)
. (44)

Proof. See Appendix E.2. □

Remark 3. Combining the results in Theorems 5 and 6, we determine the asymptotic autocorrelation function of the number of jumps in non-

overlapping time intervals of length 𝜏 , i.e., 𝜌𝜏 (𝑑), for a CARMA(p,q)-Hawkes in a closed-form formula:

𝜌𝜏 (𝑑) =
𝐶𝑜𝑣 (𝜏, 𝑑 − 1)

𝑉 𝑎𝑟 (𝜏)
, 𝑑 = 1,2,… (45)

where 𝑑 denotes the lag order.

4.2. Strong mixing property for the increments of a CARMA(p,q)-Hawkes and asymptotic distribution of the autocorrelation function

The asymptotic distribution of the autocorrelation function of a CARMA(p,q)-Hawkes process can be easily obtained by showing that the 
increments of the process are strongly mixing.

Definition 2. Let (Ω, ,ℙ) be a probability space and ,  two sub 𝜎−algebras of  . The strong-mixing coefficient is defined as:

𝛼 (,) ∶= sup{|ℙ (𝐴 ∩𝐵) −ℙ (𝐴)ℙ (𝐵)|𝐴 ∈,𝐵 ∈} . (46)

Following Poinas et al. (2019), the quantity in (46) can be reformulated for a point process 𝑁𝑡 in the following way:(
𝑡 ∞ )
8

𝛼𝑁 (𝑟) ∶= sup
𝑡∈ℝ

𝛼 𝜉−∞, 𝜉𝑡+𝑟 (47)
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where 𝜉𝑏
𝑎 denotes the 𝜎−algebra generated by the cylinder sets on the interval (𝑎, 𝑏].5 Considering the sequence 

(
Δ1𝑁𝑘

)
𝑘∈ℤ where Δ1𝑁𝑘 ∶=

𝑁𝑘+1 −𝑁𝑘 is the number of jumps in the interval of length 1 and extremes 𝑘, 𝑘 + 1, then the strong-mixing coefficient has the form

𝛼Δ1𝑁
(𝑟) ∶= sup

𝑛∈ℤ
𝛼
(𝑛

−∞,∞
𝑛+𝑟

)
(48)

where 𝑏
𝑎 is the 𝜎−algebra generated by the sequence 

(
Δ1𝑁𝑘

)
𝑎≤𝑘≤𝑏

. If 𝛼𝑁 (𝑟)→ 0 (respectively 𝛼Δ1𝑁𝑘
(𝑟)→ 0) as 𝑟 → +∞, the point process 𝑁𝑡

(respectively Δ1𝑁𝑘) is said to be strongly-mixing.

Using Theorem 1 in Cheysson and Lang (2020), we obtain the following theorem.

Theorem 7. A CARMA(p,q)-Hawkes process satisfying Assumption 1 is strongly mixing with exponential rate.

Proof. See Appendix E.4. □

As shown in Cheysson and Lang (2020), we have that 𝛼Δ1𝑁
(𝑟) ≤ 𝛼𝑁 (𝑟) and the result in Theorem 7 implies that the sequence 

(
Δ1𝑁𝑘

)
𝑘∈ℤ is 

strongly mixing. This result is useful to determine the asymptotic distribution of the sample autocovariance and autocorrelation functions associated 
to the sequence 

(
Δ1𝑁𝑘

)
𝑘∈ℤ. Following the result in Ibragimov and Linnik (1971), we obtain the following result for the asymptotic distribution of 

the sample mean, the sample variance and the sample autocovariance function.

Theorem 8. Let 
(
𝑁𝑡

)
𝑡≥0 be a stationary CARMA(p,q)-Hawkes process that satisfies the assumptions in Theorem 7. We assume the existence of a positive 

constant 𝜙 such that 𝔼 
[(
Δ1𝑁1

)4+𝜙
]

< +∞. Denoting with

𝑉𝑘 ∶=

⎡⎢⎢⎢⎢⎢⎣

Δ1𝑁𝑘(
Δ1𝑁𝑘 − 𝔼

(
Δ1𝑁∞

))2(
Δ1𝑁𝑘 − 𝔼

(
Δ1𝑁∞

))(
Δ1𝑁𝑘+1 − 𝔼

(
Δ1𝑁∞

))
⋮(

Δ1𝑁𝑘 − 𝔼
(
Δ1𝑁∞

))(
Δ1𝑁𝑘+𝑑 − 𝔼

(
Δ1𝑁∞

))
⎤⎥⎥⎥⎥⎥⎦
, with 𝑘 = 1, ..., 𝑛 and 𝑑 < 𝑛

as 𝑛 → +∞, we have:

√
𝑛

⎛⎜⎜⎜⎜⎜⎝
1
𝑛

𝑛∑
𝑘=1

𝑉𝑘 −

⎛⎜⎜⎜⎜⎜⎝

𝔼
(
Δ1𝑁∞

)
𝑉 𝑎𝑟

(
Δ1𝑁∞

)
Acv (1)

⋮
𝐴𝑐𝑣 (𝑑)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
→𝑑+2 (𝟎,Σ) (49)

where 𝐴𝑐𝑣 (𝑑) ∶= 𝐶𝑜𝑣(1, 𝑑 − 1) and

Σ ∶= 𝑉 𝑎𝑟
(
𝑉1
)
+ 2

+∞∑
𝑘=2

𝐶𝑜𝑣
(
𝑉1𝑉

⊤
𝑘

)
. (50)

Proof. See Appendix E.5. □

Through the use of the Delta method, we study the asymptotic behavior of the random vector that contains the sample mean of the increments 
in the first position and the empirical autocorrelations in the remaining entries. As a first result, we report the asymptotic distribution of the em-

pirical autocorrelation function. Denoting with �̂�𝑛,𝜏 ∶=
[
�̂�𝑛,𝜏 (1) ,… , �̂�𝑛,𝜏 (𝑚)

]⊤
where �̂�𝜏 (𝑑) is the sample estimator of 𝜌𝜏 (𝑑) in (45). The asymptotic 

distribution of �̂�𝑛,𝜏 is√
𝑛
(
�̂�𝑛,𝜏 − 𝜌𝜏

)
→𝑚

(
𝟎,Σ𝜌

)
, as 𝑛 → +∞. (51)

The variance - covariance matrix Σ𝜌 has the following form:

Σ𝜌 = 𝐽𝜌𝜏Σ
[
𝐽𝜌𝜏

]⊤
,

where Σ is defined in (50); 𝐽𝜌𝜏 is the Jacobian matrix of the autocorrelation that can be seen as a vector function of 𝜗 in (E.32). Therefore 𝐽𝜌𝜏 is 
determined as:

𝐽𝜌𝜏 =

[
𝟎𝑚×1

||||| − 𝜌𝜏

𝑉 𝑎𝑟
(
Δ1𝑁∞

) ||||| 𝐈𝑚×𝑚

𝑉 𝑎𝑟
(
Δ1𝑁∞

)] . (52)

5 Let 𝑁 be a counting process defined as a map from a probability space (Ω, ,ℙ) to a measurable space (𝕄,) of locally finite counting measures on Ω. Then 
the 𝜎−algebra 𝜉𝑏

𝑎 is defined as:

𝜉𝑏
𝑎 ∶= 𝜎 ({𝑁 ∈𝕄 ∶ 𝑁 (𝐴) = 𝑛} ;𝐴 ∈ ((𝑎, 𝑏]) , 𝑛 ∈ ℕ) .
9
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Following the same strategy, it is possible to determine the asymptotic distribution of the column vector �̂�𝑛,𝜏 ∶=
[
Δ̂𝜏𝑁𝑛, �̂�𝑛,𝜏

]⊤
where Δ̂𝜏𝑁𝑛 is the 

sample estimator for 𝔼 
[
Δ𝜏𝑁∞

]
. Therefore, we have:√

𝑛
(
�̂�𝑛,𝜏 − 𝜒𝜏

)
→𝑚+1

(
𝟎,Σ𝜒𝜏

)
, as 𝑛 → +∞ (53)

where 𝜒𝜏 is a column vector containing the first moment 𝔼 
[
Δ𝜏𝑁∞

]
and the first lag 𝑚 autocorrelations. The variance-covariance asymptotic matrix 

Σ𝜒𝜏
results to be

Σ𝜒 = 𝐽𝜒𝜏Σ
[
𝐽𝜒𝜏

]⊤
, (54)

while the Jacobian matrix 𝐽𝜒𝜏 can be written as

𝐽𝜒𝜏 =
[

𝑒1
𝐽𝜌𝜏

]
(55)

where the first element of row vector 𝑒1 is equal to one and the others are all zeros.

4.3. Asymptotic distribution of the moment matching estimation based on the autocorrelation function

As discussed in Shlomovich et al. (2022), real event data can provide imprecision in the recording of event time-stamps (e.g., network traffic 
data). Furthermore, we have usually the following trade-off: expensive cost in recording event time with a high precision and poor accuracy of 
measurements. As a matter of fact, common practice is to work with binned data (that is, without loss of generality, the technique of aggregating

data). To this aim, we propose a two-step estimation procedure, named Moment Matching Estimation (MME), for a CARMA(p,q)-Hawkes process 
and we provide the asymptotic distribution of the obtained estimators.

Consider a sequence of empirical observations for the increments of a counting process 
(
Δ𝜏𝑁𝑘

)
𝑘=1,…,𝑛

. The first step is to compute the least squares 
estimator as

�̂�𝑛 ∶= argmin
�̂�𝑛,𝜏∈Θ⊆ℝ𝑝+𝑞+1

𝑀
(
�̂�𝑛,𝜏 , 𝜃

)
(56)

where Θ is a compact subset of ℝ𝑝+𝑞+1 such that the stationary condition is guaranteed, the kernel function is non-negative, higher order moments 
of a CARMA(p,q)-Hawkes process exist and the true vector parameter 𝜃 is an interior point of Θ. For a fixed 𝑚 ≥ 𝑝 + 𝑞 + 1, 𝑀 ∶ ℝ𝑚

+ × Θ → ℝ+
0 is 

defined as:

𝑀
(
�̂�𝑛,𝜏 , 𝜃

)
∶=

𝑚∑
𝑑=1

(
�̂�𝑛,𝜏 (𝑑) − 𝜌𝜏 (𝑑)

)2
(57)

in which 𝑑 denotes the lag order, �̂�𝑛,𝜏 (𝑑) represents the empirical autocorrelation with lag 𝑑 while 𝜌𝜏 (𝑑) is its theoretical counterpart obtained in 
(45). The vector 𝜃 includes only the autoregressive (𝑎1, … , 𝑎𝑝) and moving average (𝑏0, … , 𝑏𝑞) parameters.

Let �̂�𝑛 be the solution of the minimization problem in (56). As the function in (57) is smooth (i.e., 𝑀
(
�̂�𝑛,𝜏 , 𝜃

)
∈ 𝐶∞ with respect to both arguments), 

we compute its gradient vector �̄�
(
�̂�𝑛,𝜏 , 𝜃

)
as follows

�̄�
(
�̂�𝑛,𝜏 , 𝜃

)
=

𝑚∑
𝑑=1

(
�̂�𝑛,𝜏 (𝑑) − 𝜌𝜏,𝜃 (𝑑)

)
∇𝜃𝜌𝜏,𝜃 (𝑑) .

�̂�𝑛 satisfies the first order condition, i.e.

�̄�
(
�̂�𝑛,𝜏 , 𝜃

)
= 𝟎. (58)

Applying the Implicit Function Theorem, we get a differentiable function that is the solution of the condition in (58). Specifically, that is

�̂�𝑛 = 𝑓
(
�̂�𝑛,𝜏

)
. (59)

Its Jacobian matrix 𝐽𝑓 (⋅) reads

𝐽𝑓 (�̂�𝑛,𝜏 , 𝜃) = −
[
𝐽𝜃�̄�

(
�̂�𝑛,𝜏 , 𝜃

)]−1
𝐽�̂�𝑛,𝜏

�̄�
(
�̂�𝑛,𝜏 , 𝜃

)
, (60)

where

𝐽�̂�𝑛,𝜏
�̄�
(
�̂�𝑛,𝜏 , 𝜃

)
∶=

[
∇𝜃𝜌𝜏,𝜃 (1)||… ||∇𝜃𝜌𝜏,𝜃 (𝑚)

]
, (61)

𝐽𝜃�̄�
(
�̂�𝑛,𝜏 , 𝜃

)
∶= −

𝑚∑
𝑑=1

(
∇𝜃𝜌𝜏,𝜃 (𝑑)

[
∇𝜃𝜌𝜏,𝜃 (𝑑)

]⊤)+
𝑚∑

𝑑=1

(
�̂�𝑛,𝜏 (𝑑) − 𝜌𝜏,𝜃 (𝑑)

)
𝐻𝜃𝜌𝜏,𝜃 (𝑑) (62)

while 𝐻𝜃𝜌𝜏,𝜃 (𝑑) is the Hessian matrix of the function 𝜌𝜏,𝜃 (𝑑) with respect to 𝜃.

Observe that√
𝑛
(
�̂�𝑛 − 𝜃

)
→𝑝+𝑞

(
𝟎,Σ𝜃

)
, as 𝑛 → +∞ (63)

where ( ) [ ( )]

10

Σ𝜃 = 𝐽𝑓 𝜌𝜏 , 𝜃 Σ𝜌 𝐽𝑓 𝜌𝜏 , 𝜃
⊤

. (64)
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In the second step, we estimate the baseline intensity parameter 𝜇 using the analytical first moment. Indeed, by inverting the equation in (22), we 
get

𝜇
(
𝔼
[
Δ𝜏𝑁∞

]
, 𝜃
)
=

𝔼
[
Δ𝜏𝑁∞

]
1 − 𝐛⊤�̃�−1𝐞

. (65)

The quantity �̂�𝑛 is a plug-in estimator, where instead of 𝔼 
[
Δ𝜏𝑁∞

]
, we consider its sample version Δ̂𝜏𝑁𝑛; we also substitute 𝜃 = (𝑎, 𝑏) with 

�̂�𝑛 =
(
�̂�𝑛, �̂�𝑛

)
.

To get the asymptotic distribution of �̂�0,𝑛 ∶=
[
�̂�𝑛, �̂�𝑛

]⊤
, we need to determine the asymptotic distribution of �̂�1,𝑛 ∶=

[
Δ̂𝜏𝑁𝑛, �̂�𝑛

]⊤
that results to be

√
𝑛

[(
Δ̂𝜏𝑁𝑛

�̂�𝑛

)
−
(
𝔼
[
Δ𝜏𝑁∞

]
𝜃

)]
→𝑝+𝑞+1

(
𝟎,Σ𝜃1

)
as 𝑛 → +∞ (66)

where

Σ𝜃1
=
[

1 𝟎1×𝑚
𝟎1×(𝑝+𝑞) 𝐽𝑓

(
𝜌𝜏 , 𝜃

) ]Σ𝜒

[
1 𝟎1×𝑚

𝟎1×(𝑝+𝑞) 𝐽𝑓
(
𝜌𝜏 , 𝜃

) ]⊤

(67)

with Σ𝜒 as in (54). The asymptotic distribution of �̂�0,𝑛 can be obtained straightforwardly using the results in (65) and in (67). Indeed√
𝑛
(
�̂�0,𝑛 − 𝜃

)
→𝑝+𝑞+1

(
𝟎,Σ𝜃0

)
as 𝑛 → +∞, (68)

with

Σ𝜃0
=
[
∇𝜇

(
𝔼
[
Δ𝜏𝑁∞

]
, 𝜃
)⊤

𝐈

]
Σ𝜃1

[
∇𝜇

(
𝔼
[
Δ𝜏𝑁∞

]
, 𝜃
)⊤

𝐈

]⊤

. (69)

All partial derivatives used for the computation of the asymptotic behavior of the parameter estimators involve the parameters differentiation of a 
matrix exponential. This can be easily done using the procedure proposed in Tsai and Chan (2003) (see Das et al., 2022, for recent developments).

5. Empirical analysis

In this section we perform two estimation exercises using real data, showing how CARMA(p,q)-Hawkes models may find applications in various 
areas. In the first case study, we consider the occurrences of earthquake events with timestamp values accurate down to the second. Indeed an 
insurance company, could be interested in an accurate modeling of time arrivals of new events as a consequence of large-magnitude earthquakes 
in order to improve the forecasting of future losses. Given exact timestamps, we estimate model parameters based on the likelihood function 
(Section 3.2) in which we select optimal 𝑝 and 𝑞 orders for the intensity process.

The second case study considers intra-day orders of an Italian government bond indexed to the Italian inflation rate received during the first 
day of placement period (October 2, 2023) reserved to individual investors. The security in question is the “BTP Valore Sc Oct28 Eur” with ISIN 
IT0005565400, which has quarterly coupons with a “step-up” mechanism. Data are recorded in equidistant intervals of one minute, allowing for 
cumulative indistinguishable events, and thus the estimation of model parameters is based on the minimization of the squared distance between 
empirical and theoretical autocorrelation as discussed in Section 4.3.

5.1. Estimation procedure using the likelihood function

For the estimation procedure based on the likelihood function (34), we use a data set composed of earthquake events registered on the coast of 
Ancona (central-eastern Italian coast) in the period January 2, 1982 to January 2, 2023.6 In Fig. 1 we report the events that define the counting 
process, observing that the coast of Ancona experienced two large-magnitude earthquakes in 2016 and 2022 followed respectively by subsequent 
events of smaller magnitude.

The estimation procedure with the selection of optimal 𝑝 and 𝑞 orders for the intensity process distinguishing for nested and non-nested models 
is performed as follows. The first candidate considered, which is also a natural choice of starting point, is a CARMA(1,0)-Hawkes that is compared 
with a CARMA(2,0)-Hawkes (i.e., the closest nested model in terms of the 𝑝 and 𝑞 orders) using the likelihood-ratio (LR) test. In the case that null 
hypothesis cannot be accepted at a desired significance level (in our case 5%), the procedure considers the next couple of models by increasing the 
order of 𝑝 and/or 𝑞 up to a fixed autoregressive order �̄� until the null hypothesis fails to be rejected. Following this strategy for a fixed �̄� = 3, the 
best fitting model in the subset of nested CARMA(p,q)-Hawkes processes is identified (see Table 1a); i.e., the CARMA(2,1)-Hawkes.

Then the selection is carried out for the case of non-nested models through the Akaike Information Criterion (AIC) and the Bayes Information 
Criterion (BIC); e.g., CARMA(2,1)-Hawkes and CARMA(3,0)-Hawkes (see Table 1b). From the combined results we observe that a CARMA(2,1)-

Hawkes is the most appropriate model within the CARMA(p,q)-Hawkes family up to a fixed autoregressive order �̄� = 3 for describing earthquake-time 
arrivals in the geographic area under investigation. Table 2 displays estimated parameters and standard errors of the best fitting CARMA(2,1)-Hawkes 
model.

To establish if the collected data are properly described by the estimated CARMA(2,1)-Hawkes process we implement the residual analysis 
discussed in Ogata (1988). In practice, the estimated residuals 

{
𝜏𝑖

}
𝑖=1,…,𝑛

of a point process are defined as 𝜏𝑖 ∶= ∫ 𝑡𝑖
0 �̃�𝑡d𝑡 where 

{
𝑡𝑖
}

𝑖=1,…,𝑛
denote 

observed event times and �̃�𝑡 is the estimated intensity. A given model is appropriate for reproducing the time arrivals 
{
𝑡𝑖
}

𝑖=1,…,𝑛
if the new counting 

6 For sake of clarity, an event is qualified as an earthquake if the seismograph records a movement of at least two magnitudes in the Richter scale. Data are 
11

downloaded from https://terremoti .ingv .it/.

https://terremoti.ingv.it/
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Fig. 1. Earthquake events on the coast of Ancona from January 2, 1985 to January 2, 2023.

Table 1

Estimation procedure of CARMA(p,q)-Hawkes models applied to the sequence of earthquake events with 𝑝 ≤ 3.

Model1 Model2 LR test Best fitting

CH(1,0) CH(2,0) 4.94

(0.0262)

CH(2,0)

CH(2,0) CH(2,1) 112.46

(<0.0001)

CH(2,1)

CH(2,1) CH(3,1) 1.63

(0.2087)

CH(2,1)

(a) LR test and corresponding 𝑝-value for nested models.

Model AIC BIC

CARMA(2,1)-Hawkes 1666 1685

CARMA(3,0)-Hawkes 1886 1691

(b) Fitting results for non-nested models.

Table 2

Estimated parameters (est. par.) and log-likelihood (loglik.) for 
the CARMA(2,1)-Hawkes model using MLE for earthquake events 
on the coast of Ancona.

𝜇0 𝑎1 𝑎2 𝑏0 𝑏1

est. par. 6.8532E-03 4.8540 0.2643 0.1874 1.7363

s.e. 7.9593E-04 1.6762 0.1411 0.0997 0.5009

loglik. -828.03

process �̃�𝑡 ∶=
∑

𝑖 1𝜏𝑖≤𝑡 results to be a homogeneous Poisson with intensity equal to one. Therefore, the estimated increments 𝜏𝑖 − 𝜏𝑖−1 should be 
modeled with an exponential random variable with rate equal to one.

We apply two statistical tests to the increments of the fitted CARMA(2,1)-Hawkes model: the Kolmogorov-Smirnov (KS) test, as done in Ogata 
(1988), and the Anderson-Darling (AD) test as is more sensitive on the tails. In both cases we obtain a 𝑝-value greater than 5% (respectively 40% 
for the KS-test and 7.23% for the AD-test), confirming the appropriateness of the fitted CARMA(2,1)-Hawkes in modeling earthquake-time arrivals 
in the coast of Ancona.

5.2. Estimation procedure using the autocorrelation function

In the second estimation case study, data of orders collected during the first day of placement period regarding the Italian government bond 
are recorded in time intervals of length one minute, allowing for the presence of indistinguishable multiple events. In this setting, the only viable 
solution for the estimation of model parameters is minimizing the squared distance between empirical and theoretical autocorrelation functions of 
the number of jumps within intervals of the same length. Furthermore, in this context, it is essential to determine the optimal 𝑝 and 𝑞 orders and 
the number of autocorrelation lags to use in the minimization problem. Here, we use a graphical approach, reporting the empirical and theoretical 
autocorrelation function (acf) as shown in Fig. 2. The choice of the number of lags in the acf is done applying the same rule in the acf R function. 
Specifically, we consider lags that do not exceed the integer part of 10 log10

(
�̄�
)

with �̄� being number of observations and, in this case, the 
maximum number of considered lags is equal to 26. Applying this idea, the best fitting model is the CARMA(2,1)-Hawkes (red line) which seems to 
fit better the curvature of the empirical acf with respect to the Hawkes with exponential kernel (blue line).

Using the estimation procedure discussed in Section 4.3 and the result in (68), we report in Table 3 respectively the estimated parameters and 
12

the asymptotic standard errors for the CARMA(2,1)-Hawkes model.
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Fig. 2. Empirical and estimated autocorrelation functions. The red line is the estimated autocorrelation function of a CARMA(2,1)-Hawkes model and the blue line is 
the autocorrelation function of a standard Hawkes with exponential kernel. Vertical lines refer to empirical values of the autocorrelation function. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 3

Estimated parameters (est. par.) and asymptotic standard errors 
(s.e.) of a CARMA(2,1)-Hawkes fitted to the data set composed 
of orders arrivals recorded on October 2, 2023 for the Italian 
government bond “BTP Valore Sc Oct28 Eur”.

𝜇0 𝑎1 𝑎2 𝑏0 𝑏1

est. par. 6.2347 3.9375 0.1485 0.1453 3.5309

s.e. (5.5106) (1.9336) (0.1248) (0.1155) (2.0412)

6. Conclusion

In this paper we introduce a Hawkes process where the intensity is a CARMA(p, q) model. We analyze the statistical properties of this process 
and obtain a closed-form expression for the autocorrelation function of the number of jumps observed in non-overlapping time intervals of the 
same length. The model is a generalization of the standard Hawkes with exponential kernel but it is able to reproduce more complex dependence 
structures observed in physical events or in finance.
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Appendix A. Integration of matrix exponentials

Let 𝐀 be a square matrix and 𝐀(𝑖) ∶=𝐀𝐀⋯𝐀
⏟⏞⏟⏞⏟

𝑖 times

. As the exponential of the matrix 𝐀 can be computed as

exp (𝐀𝑡) = 𝐈+
+∞∑
𝑖=1

𝐴(𝑖)𝑡𝑖

𝑖!
,

it is straightforward to show that

𝑇

∫
𝑡0

𝑒𝐀(𝑇−𝑡)d𝑡 =𝐀−1
(
𝑒𝐀

(
𝑇−𝑡0

)
− 𝐈

)
=
(
𝑒𝐀

(
𝑇−𝑡0

)
− 𝐈

)
𝐀−1. (A.1)

Appendix B. Solution of a general linear ordinary differential equation

To solve d𝑌𝑡 =
(
𝑏𝑡 +𝐴𝑌𝑡

)
d𝑡, we consider the transformation 𝑋𝑡 = 𝑒−𝐴𝑡𝑌𝑡 and observe that

d𝑋𝑡 = −𝐴𝑒−𝐴𝑡𝑌𝑡d𝑡+ 𝑒−𝐴𝑡d𝑌𝑡 = 𝑒−𝐴𝑡𝑏𝑡d𝑡,

from where we have 𝑋𝑇 = 𝑋𝑡0
+ ∫ 𝑇

𝑡0
𝑒−𝐴𝑡𝑏𝑡d𝑡 that in terms of 𝑌𝑡 reads

𝑌𝑇 = 𝑒𝐴
(
𝑇−𝑡0

)
𝑌𝑡0

+

𝑇

∫
𝑡0

𝑒𝐴(𝑇−𝑡)𝑏𝑡d𝑡. (B.1)

Appendix C. Computation of integrals with matrix exponentials

Some useful results for computing integrals that involve matrix exponentials are provided in Van Loan (1978) and Carbonell et al. (2008). In 
particular, we recall the result that deals with the computation of the following two integrals:

𝑡

∫
0

𝑒𝐇11(𝑡−𝑢)𝐇12𝑒
𝐇22𝑢d𝑢 (C.1)

𝑡

∫
0

𝑢

∫
0

𝑒𝐇11(𝑡−𝑢)𝐇12𝑒
𝐇22(𝑢−𝑟)𝐇23𝑒

𝐇33𝑟d𝑟d𝑢 (C.2)

where 𝐇11, 𝐇12, 𝐇22, 𝐇23 and 𝐇33 have dimension 𝑑1 × 𝑑1, 𝑑1 × 𝑑2, 𝑑2 × 𝑑2, 𝑑2 × 𝑑3 and 𝑑3 × 𝑑3, respectively. We need to define a block triangular 
matrix 𝐇 as follows

𝐇 ∶=
⎛⎜⎜⎝
𝐇11 𝐇12 𝟎
𝟎 𝐇22 𝐇23
𝟎 𝟎 𝐇33

⎞⎟⎟⎠ . (C.3)

The integrals (C.1) and (C.2) coincide with the elements 𝐁12 (𝑡) and 𝐁13 (𝑡) in the matrix exponential:

𝑒𝐇𝑡 =
⎛⎜⎜⎝
𝐁𝟏𝟏 (𝑡) 𝐁𝟏𝟐 (𝑡) 𝐁𝟏𝟑 (𝑡)

𝟎 𝐁𝟐𝟐 (𝑡) 𝐁𝟐𝟑 (𝑡)
𝟎 𝟎 𝐁𝟑𝟑 (𝑡)

⎞⎟⎟⎠ (C.4)

while 𝐁11 (𝑡) ∶= 𝑒𝐇11𝑡, 𝐁22 (𝑡) ∶= 𝑒𝐇22𝑡 and 𝐁33 (𝑡) ∶= 𝑒𝐇33𝑡.

Remark 4. The eigenvalues of 𝐇 coincide with the eigenvalues of 𝐇11, 𝐇22 and 𝐇33. If the real part of all eigenvalues of 𝐇11, 𝐇22 and 𝐇33 is 
negative, the following result holds

lim
𝑡→+∞

𝑒𝐇𝑡 = 𝟎

that implies

lim
𝑡→+∞

𝐁12 (𝑡) = 𝟎 (C.5)

and
14

lim
𝑡→+∞

𝐁13 (𝑡) = 𝟎. (C.6)
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Appendix D. Proofs of theorems in Section 3

D.1. Proof of Theorem 1

Proof. To show the Markov property for 𝑋𝑡 in (7), we rewrite it as

𝑋𝑡+𝑢 = ∫
[0,𝑡)

𝑒𝐀(𝑢)+𝐀(𝑡−𝑠)𝐞d𝑁𝑠 +𝜙(𝑡, 𝑢)

where 𝜙(𝑡, 𝑢) ∶= ∫[𝑡,𝑡+𝑢) 𝑒
𝐀(𝑡+𝑢−𝑠)𝐞d𝑁𝑠. We recall that if 𝐻 and 𝐾 are two square matrices that commute, i.e. 𝐻𝐾 = 𝐾𝐻 , then the following result 

holds 𝑒𝐻+𝐾 = 𝑒𝐻𝑒𝐾 . We then consider the quantities 𝐻 =𝐀(𝑢) and 𝐾 =𝐀(𝑡 − 𝑠) and notice that they commute. Thus:

𝑋𝑡+𝑢 = 𝑒𝐀(𝑢)𝑋𝑡 + 𝜙(𝑡, 𝑢). (D.1)

Now, we show that the conditional distribution of 𝜙(𝑡, 𝑢) given the information at time 𝑡 does not depend on history before 𝑡 of the state process and 
counting process. Let us rewrite 𝜙 (𝑡, 𝑢) as

𝜙 (𝑡, 𝑢) = ∫
[0,𝑢)

𝑒𝐀(𝑢−𝑠)𝐞d�̂�𝑠

where for fixed 𝑡 and ∀𝑢 > 0 the quantities

�̂�𝑢 ∶= 𝑁𝑡+𝑢 −𝑁𝑡 (D.2)

coincide with the increments of the counting process over time intervals with extremes 𝑡 and 𝑡 + 𝑢, i.e. on a right-shifted time axis with the new 
origin corresponding to the current time 𝑡.
At this stage, we write the counting process 𝑁𝑡 in terms of a Poisson random measure. Let 𝑀 be a Poisson random measure on ℝ+ × 𝐸 where 
ℝ+ refers to time and 𝐸 to some physical space of events.7 From Theorem 6.11 page 302 in Cinlar (2011) a counting process 𝑁𝑡 with predictable 
intensity 𝜆𝑡 as the one defined as in (5), has the following (pathwise a.s.) form:

𝑁𝑡 (𝜔) = ∫
[0,𝑡]×ℝ+

1{(0,𝜆𝑠(𝜔)
]} (𝑧)𝑀 (d𝑠,d𝑧) .

Considering the increments �̂�𝑢 in (D.2) ∀𝑢 ≥ 0, we get:

�̂�𝑢 (𝜔) = ∫
[𝑡,𝑡+𝑢]×ℝ+

1{(0,𝜆𝑠(𝜔)
]} (𝑧)𝑀 (d𝑠,d𝑧) .

Now we define a shifted time axis such that [𝑡, 𝑡+ 𝑢]→ [0, 𝑢], and notice that:

�̂�𝑢 (𝜔) = ∫
[0,𝑢]×ℝ+

1{(0,�̂�𝑠(𝜔)
]} (𝑧)�̂� (d𝑠,d𝑧) , (D.3)

where �̂�𝑠 (𝜔) on the new axis coincides a.s. with 𝜆𝑡+𝑠 (𝜔) on the original time axis while �̂� is a (shifted) Poisson random measure.8 The increments 
in (D.3) allow us to rewrite the process 𝑋𝑡+𝑢 in (D.1) as a process �̂�𝑢 with dynamics:

�̂�𝑢 = 𝑒𝐀𝑢�̂�0 + ∫
[0,𝑢)

𝑒𝐀(𝑢−𝑠)d�̂�𝑠, where �̂�0 = 𝑋𝑡 a.s., (D.4)

and

�̂�𝑢 = 𝜇 + 𝐛⊤�̂�𝑢

which concludes the proof for the Markov property for 𝑋𝑡 . Notice that, on the new axis, �̂�𝑢 has a similar form as (7) and the additional term 𝑒𝐀𝑢�̂�0
is known at time 𝑡 since �̂�0 = 𝑋𝑡 almost surely. The integral in (D.4) is controlled only by 

{
�̂�𝑠

}
0≤𝑠≤𝑢

∶=
{
𝜆𝑡+𝑠

}
0≤𝑠≤𝑢

, it does not depend to the past 
information up to 𝑡.
The Markov property for the vector process 

[
𝑋𝑡,𝑁𝑡

]
(𝑝+1)×1 can be proved with similar steps as

[
𝑋𝑡+𝑢
𝑁𝑡+𝑢

]
=
[

𝑒𝐀𝑢 𝟎𝑝×1
𝟎1×𝑝 1

][
𝑋𝑡
𝑁𝑡

]
+

𝑡+𝑢

∫
𝑡

[
𝑒𝐀(𝑡+𝑢−𝑠)𝐞
1

]
d𝑁𝑠. (D.5)

Indeed, the result in (D.5) has the same structure as in (D.1) and, to compute its conditional distribution given the information at 𝑡, we need only 
the column vector 

[
𝑋𝑡,𝑁𝑡

]
. This concludes the proof of the Markov property for 

[
𝑋𝑡,𝑁𝑡

]
and the whole proof. □

7 See Definition 6.1, p. 299 in Cinlar (2011): the Poisson random measure 𝑀 asserts the independence of the future of 𝑀 from its past.
15

8 If ∀𝑢 ≥ 0 and ∀𝑧 ∈𝐸 we define �̂� (𝑢, 𝑧) ∶=𝑀 (𝑡+ 𝑢, 𝑧), �̂� is still a Poisson random measure independent of 𝑡 and has the same law as 𝑀 .
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D.2. Proof of Theorem 2

Proof. For a non-negative kernel function, the stationary condition in (3) for a CARMA(p,q)-Hawkes process becomes

+∞

∫
0

𝐛⊤𝑒𝐀𝑡𝐞d𝑡 = lim
𝑇→+∞

𝑇

∫
0

𝐛⊤𝑒𝐀𝑡𝐞d𝑡 = lim
𝑇→+∞

𝐛⊤𝐀−1 (𝑒𝐀𝑇 − 𝐈
)
𝐞, (D.6)

where 𝐈 is the identity matrix with dimension 𝑝. As 𝐀 is diagonalizable,

𝑒𝐀𝑇 = 𝐒𝑒𝚲𝑇 𝐒−1

where 𝚲 ∶= 𝖽𝗂𝖺𝗀
(
�̃�1,… , �̃�𝑝

)
. Thus the limit in (D.6) is

lim
𝑇→+∞

𝐛⊤𝐀−1 (𝑒𝐀𝑇 − 𝐈
)
𝐞 = 𝐛⊤𝐀−1

[
𝐒
(

lim
𝑇→+∞

𝑒𝚲𝑇

)
𝐒−1 − 𝐈

]
𝐞.

Recalling that all eigenvalues of 𝐀 have negative real part, we notice that 𝑒𝚲𝑇 tends to a 𝑝 × 𝑝 zero matrix. The integral in (D.6) becomes

+∞

∫
0

𝐛⊤𝑒𝐀𝑡𝐞d𝑡 = −𝐛⊤𝐀−1𝐞. (D.7)

The stationarity condition in (3) implies −𝐛⊤𝐀−1𝐞 < 1. □

D.3. Proof of Theorem 3

Proof. Let us consider two cases. If 𝑁𝑇+ℎ − 𝑁𝑇 = 0, the vector 𝑋𝑇 =
[
𝑋1,𝑡,… ,𝑋𝑝,𝑡

]⊤
becomes 𝑋𝑇+ℎ = 𝑋NJ

𝑇+ℎ
where 𝑋NJ

𝑇+ℎ
means no jump (NJ) 

occurred in the interval (𝑇 ,𝑇 + ℎ] and can be written in the following way

𝑋NJ
𝑇+ℎ = 𝑒𝐀

(
𝑇+ℎ−𝑡0

)
𝑋𝑡0

+ ∫[
𝑡0 ,𝑇

) 𝑒𝐀(𝑇+ℎ−𝑡)𝐞d𝑁𝑡

as the quantity ∫[𝑇 ,𝑇+ℎ) 𝑒
𝐀(𝑇+ℎ−𝑡)𝐞d𝑁𝑡 is zero due to the absence of jumps in the interval (𝑇 ,𝑇 + ℎ]. From

𝑋NJ
𝑇+ℎ = 𝑒𝐀ℎ

⎡⎢⎢⎢⎣𝑒
𝐀
(
𝑇−𝑡0

)
𝑋𝑡0

+ ∫[
𝑡0 ,𝑇

) 𝑒𝐀(𝑇−𝑡)𝐞d𝑁𝑡

⎤⎥⎥⎥⎦ = 𝑒𝐀ℎ𝑋𝑇

we have that

lim
ℎ→0

𝑋NJ
𝑇+ℎ = 𝑋𝑇 . (D.8)

If 𝑁𝑇+ℎ −𝑁𝑇 = 1 then 𝑋𝑇+ℎ ∶= 𝑋1J
𝑇+ℎ

is computed as

𝑋1J
𝑇+ℎ = 𝑒𝐀

(
𝑇+ℎ−𝑡0

)
𝑋𝑡0

+ ∫[
𝑡0 ,𝑇

) 𝑒𝐀(𝑇+ℎ−𝑡)𝐞d𝑁𝑡 + ∫
[𝑇 ,𝑇+ℎ)

𝑒𝐀(𝑇+ℎ−𝑡)𝐞d𝑁𝑡.

Defining the jump time 𝑇ℎ in the time interval (𝑇 ,𝑇 + ℎ] we get

∫
[𝑇 ,𝑇+ℎ)

𝑒𝐀(𝑇+ℎ−𝑡)𝐞d𝑁𝑡 = 𝑒𝐀
(
𝑇+ℎ−𝑇ℎ

)
𝐞.

As lim
ℎ→0

𝑇ℎ = 𝑇 , we observe that

lim
ℎ→0

𝑋1J
𝑇+ℎ =

⎡⎢⎢⎢⎣𝑒
𝐀
(
𝑇−𝑡0

)
𝑋𝑡0

+ ∫[
𝑡0 ,𝑇

) 𝑒𝐀(𝑇−𝑡)𝐞d𝑁𝑡

⎤⎥⎥⎥⎦+ 𝐞 = 𝑋𝑇 + 𝐞. (D.9)

Note that 𝑋𝑡 + 𝐞 =
[
𝑋𝑡,1,… ,𝑋𝑡,𝑝 + 1

]⊤
and consider the following quantity:

𝔼
[
𝑓
(
𝑋1,𝑡+ℎ,… ,𝑋𝑝,𝑡+ℎ,𝑁𝑡+ℎ

) ||𝑡

]
= 𝑓

(
𝑋NJ

1,𝑡+ℎ,… ,𝑋NJ
𝑝,𝑡+ℎ,𝑁𝑡

)(
1 − 𝜆𝑡ℎ

)
+ 𝑓

(
𝑋1J

1,𝑡+ℎ,… ,𝑋1J
𝑝,𝑡+ℎ,𝑁𝑡 + 1

)
𝜆𝑡ℎ+ 𝑜 (ℎ) .

The infinitesimal generator is:

𝔼
[
𝑓
(
𝑋1,𝑡+ℎ,… ,𝑋𝑝,𝑡+ℎ,𝑁𝑡+ℎ

) ||𝑡

]
− 𝑓

(
𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡

)

16

𝑓𝑡 ∶= lim
ℎ→0 ℎ
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= lim
ℎ→0

𝜆𝑡

[
𝑓
(
𝑋1J

1,𝑡+ℎ,… ,𝑋1J
𝑝,𝑡+ℎ,𝑁𝑡 + 1

)
− 𝑓

(
𝑋NJ

1,𝑡+ℎ,… ,𝑋NJ
𝑝,𝑡+ℎ,𝑁𝑡

)]
+ lim

ℎ→0

𝑓
(
𝑋NJ

1,𝑡+ℎ
,… ,𝑋NJ

𝑝,𝑡+ℎ
,𝑁𝑡

)
− 𝑓

(
𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡

)
ℎ

.

From (D.8) and (D.9) we obtain

𝑓𝑡 ∶= 𝜆𝑡

[
𝑓
(
𝑋1,𝑡,… ,𝑋𝑝,𝑡 + 1,𝑁𝑡 + 1

)
− 𝑓

(
𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡

)]
+ lim

ℎ→0

𝑓
(
𝑋NJ

1,𝑡+ℎ
,… ,𝑋NJ

𝑝,𝑡+ℎ
,𝑁𝑡

)
− 𝑓

(
𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡

)
ℎ

. (D.10)

To compute the limit (D.10) we use De l’Hôpital’s rule

lim
ℎ→0

𝑝∑
𝑖=1

𝜕𝑓

𝜕𝑋NJ
𝑖,𝑡+ℎ

𝜕𝑋NJ
𝑖,𝑡+ℎ

𝜕ℎ
= lim

ℎ→0

[
𝜕𝑓

𝜕𝑋NJ
1,𝑡+ℎ

,… 𝜕𝑓

𝜕𝑋NJ
𝑝,𝑡+ℎ

]
𝐀𝑒𝐀ℎ𝑋𝑡

=
𝑝−1∑
𝑖=1

𝜕𝑓

𝜕𝑋𝑖,𝑡
𝑋𝑖+1,𝑡 +

𝜕𝑓

𝜕𝑋𝑝,𝑡
𝐀[𝑝,]𝑋𝑡, (D.11)

and substituting (D.11) in (D.10), we finally obtain the result in (12). □

D.4. Proof of Theorem 4

Proof. Proof of Theorem 4. To determine the expected number of jumps in (16) we obtain first the infinitesimal generator of the function 
𝑓
(
𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡

)
= 𝑁𝑡, that is 𝑓𝑡 = 𝜆𝑡 where the conditional intensity 𝜆𝑡 is defined in (7). Applying the Dynkin’s formula in (14) we obtain the 

following ODE

d𝔼𝑡0

[
𝑁𝑡

]
=
[
𝜇 + 𝐛⊤𝔼𝑡0

(
𝑋𝑡

)]
d𝑡. (D.12)

Then, we compute 𝔼𝑡0

[
𝑋𝑡

]
that requires a system of infinitesimal generators. In particular, for 𝑖 = 1, … , 𝑝 − 1, we have

𝑋𝑡,𝑖 = 𝑋𝑡,𝑖+1

and

𝑋𝑡,𝑝 =
(
𝜇 + 𝐛⊤𝑋𝑡

)
+𝐀[𝑝,⋅]𝑋𝑡 = 𝜇 +

𝑝∑
𝑖=1

(
𝑏𝑖−1 − 𝑎𝑝+1−𝑖

)
𝑋𝑡,𝑖.

Applying (14), we get

d𝔼𝑡0

[
𝑋𝑡

]
=
(
�̃�𝔼𝑡0

[
𝑋𝑡

]
+ 𝜇𝐞

)
d𝑡 (D.13)

where �̃� is defined in (15). With the initial condition 𝑋𝑡0
, the solution of the system in (D.13) is (17). Substituting (17) in (D.12) we obtain the 

following ODE for the expected number of jumps

d𝔼𝑡0

[
𝑁𝑡

]
=
[
𝜇
(
1 − 𝐛⊤�̃�−1𝐞

)
+ 𝐛⊤𝑒�̃�

(
𝑡−𝑡0

) [
𝑋𝑡0

+ �̃�−1𝐞𝜇
]]

d𝑡

whose solution is in (16) with initial condition 𝑁𝑡0
. Using the result in (16) we observe by straightforward calculations that the expected number 

of jumps in an interval of length 𝜏 reads as in (21). Due to the negativity assumption for the real part of the eigenvalues of matrix �̃�, we obtain the 
asymptotic behavior in (20) and (22) as lim𝑇→+∞ 𝑒�̃�𝑇 = 𝟎 where 𝟎 is a 𝑝 × 𝑝 zero matrix (see (C.5)). □

Appendix E. Proofs of theorems in Section 4

E.1. Proof of Lemma 1

Proof. Using the definition of matrix 𝐁 in (36), the identity in (39) is straightforward. To show the result in (40), we need first to compute the 
infinitesimal generator for each component of 𝑣𝑙𝑡 

(
𝑋𝑡𝑋

⊤
𝑡

)
. From the definition in (38) we identify 𝑝 blocks where the dimension of each block 

decreases by one unit. More precisely, the 𝑗−th block has 𝑝 − 𝑗 + 1 elements. Considering the first block (i.e., 𝑗 = 1) we have 𝑝 infinitesimal 
generators obtained applying the result in (11) of Theorem 3. For the first element in the first block, we have 𝑋2

𝑡,1 = 2𝑋𝑡,2𝑋𝑡,1. While for the 𝑖−th 
element in the first block with 𝑖 = 2, … , 𝑝 − 1 we get 𝑋𝑡,𝑖𝑋𝑡,1 = 𝑋𝑡,𝑖𝑋𝑡,2 +𝑋𝑡,𝑖+1𝑋𝑡,1 and finally

𝑋𝑡,𝑝𝑋𝑡,1 = 𝜆𝑡

[(
𝑋𝑡,𝑝 + 1

)
𝑋𝑡,1 −𝑋𝑡,𝑝𝑋𝑡,1

]
+𝑋𝑡,𝑝𝑋𝑡,2 +𝐴[𝑝,⋅]𝑋𝑡𝑋𝑡,1

= 𝜇𝑋𝑡,1 +𝑋𝑡,𝑝𝑋𝑡,2 +
(
𝐛⊤ +𝐴[𝑝,⋅]

)
𝑋𝑡𝑋𝑡,1.

For a generic 𝑗−th block, we get 𝑝 − 𝑗 + 1 infinitesimal generators. In particular for 𝑖 = 𝑗 we have 𝑋2
𝑡,𝑗 = 2𝑋𝑡,𝑗𝑋𝑡,𝑗+1. For 𝑖 = 𝑗 + 1, … , 𝑝 − 1 we 
17

have 𝑋𝑡,𝑖𝑋𝑡,𝑗 = 𝑋𝑡,𝑖𝑋𝑡,𝑗+1 +𝑋𝑡,𝑗𝑋𝑡,𝑖+1 and
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𝑋𝑡,𝑝𝑋𝑡,𝑗 = 𝜆𝑡

[(
𝑋𝑡,𝑝 + 1

)
𝑋𝑡,𝑗 −𝑋𝑡,𝑝𝑋𝑡,𝑗

]
+𝑋𝑡,𝑝𝑋𝑡,𝑗+1 +𝐴[𝑝,⋅]𝑋𝑡𝑋𝑡,𝑗

= 𝜇𝑋𝑡,𝑗 +𝑋𝑡,𝑝𝑋𝑡,𝑗+1 +
(
𝐛⊤ +𝐴[𝑝,⋅]

)
𝑋𝑡𝑋𝑡,𝑗 .

The last block contains only one infinitesimal generator of the form

𝑋2
𝑡,𝑝 = 𝜆𝑡

[(
𝑋𝑡,𝑝 + 1

)2 −𝑋2
𝑡,𝑝

]
+ 2𝐴[𝑝,⋅]𝑋𝑡𝑋𝑡,𝑝

= 𝜇 + 𝐛⊤𝑋𝑡 + 2𝜇𝑋𝑡,𝑝 + 2
(
𝐛⊤ +𝐴[𝑝,⋅]

)
𝑋𝑡𝑋𝑡,𝑝.

Using the Dynkin’s formula in (14) we obtain the following system of linear ODE’s:

d𝑣𝑙𝑡
(
𝔼𝑡0

(
𝑋𝑡𝑋

⊤
𝑡

))
=
[
𝜇�̃�+ �̃�𝔼𝑡0

(
𝑋𝑡

)
+ ̃̃𝐀𝑣𝑙𝑡

(
𝔼𝑡0

(
𝑋𝑡𝑋

⊤
𝑡

))]
d𝑡 (E.1)

where the 𝑝(𝑝+1)
2 vector �̃� is composed of zero entries except the last position where the element is one; ̃̃𝐀 and �̃� are defined in (35) and (37)

respectively.

The first step is to solve the ODE defined in (E.1) whose solution has the following form

𝑣𝑙𝑡
(
𝔼𝑡0

(
𝑋𝑇 𝑋⊤

𝑇

))
= 𝑒

̃̃𝐀
(
𝑇−𝑡0

)
𝑣𝑙𝑡

(
𝑋𝑡0

𝑋⊤
𝑡0

)
+ 𝑒

̃̃𝐀𝑇

𝑇

∫
𝑡0

𝑒−
̃̃𝐀𝑡
[
𝜇�̃�+ �̃�𝔼𝑡0

(
𝑋𝑡

)]
d𝑡

= 𝑒
̃̃𝐀
(
𝑇−𝑡0

)
𝑣𝑙𝑡

(
𝑋𝑡0

𝑋⊤
𝑡0

)
+
[
𝑒

̃̃𝐀
(
𝑇−𝑡0

)
− 𝐈

]
̃̃𝐀−1𝜇�̃�

+ 𝑒
̃̃𝐀𝑇

𝑇

∫
𝑡0

𝑒−
̃̃𝐀𝑡�̃�𝔼𝑡0

(
𝑋𝑡

)
d𝑡. (E.2)

We also observe that

𝑒
̃̃𝐀𝑇

𝑇

∫
𝑡0

𝑒−
̃̃𝐀𝑡�̃�𝔼𝑡0

(
𝑋𝑡

)
d𝑡 = 𝑒

̃̃𝐀𝑇

𝑇

∫
𝑡0

𝑒−
̃̃𝐀𝑡�̃�

[
𝑒�̃�

(
𝑡−𝑡0

) [
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
− �̃�−1𝐞𝜇

]
d𝑡

= 𝑒
̃̃𝐀𝑇

𝑇

∫
𝑡0

𝑒−
̃̃𝐀𝑡�̃�𝑒�̃�𝑡d𝑡𝑒−�̃�𝑡0

[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]

−
[
𝑒

̃̃𝐀
(
𝑇−𝑡0

)
− 𝐈

]
̃̃𝐀−1�̃��̃�−1𝐞𝜇. (E.3)

Substituting (E.3) into (E.2) we obtain the result in (40). □

E.2. Proof of Theorem 5

We provide below the proof of Theorem 5 on the long-run covariance of the number of jumps in a CARMA(p,q)-Hawkes model.

Proof. We first determine the covariance of number of jumps in two non-overlapping time intervals given the information at time 𝑡0. This quantity 
is formally defined as

𝐶𝑜𝑣𝑡0
(𝜏, 𝛿) ∶= 𝔼𝑡0

[(
𝑁𝑡+𝜏 −𝑁𝑡

)(
𝑁𝑡+2𝜏+𝛿 −𝑁𝑡+𝜏+𝛿

)]
− 𝔼𝑡0

[(
𝑁𝑡+𝜏 −𝑁𝑡

)]
𝔼𝑡0

[(
𝑁𝑡+2𝜏+𝛿 −𝑁𝑡+𝜏+𝛿

)]
. (E.4)

Using the iteration property of the conditional expected value, (E.4) becomes

𝐶𝑜𝑣𝑡0
(𝜏, 𝛿) = 𝔼𝑡0

[(
𝑁𝑡+𝜏 −𝑁𝑡

)
𝔼𝑡+𝜏

[(
𝑁𝑡+2𝜏+𝛿 −𝑁𝑡+𝜏+𝛿

)]]
− 𝔼𝑡0

[(
𝑁𝑡+𝜏 −𝑁𝑡

)]
𝔼𝑡0

[(
𝑁𝑡+2𝜏+𝛿 −𝑁𝑡+𝜏+𝛿

)]
.

Applying the result (21) in Theorem 4, we get

𝐶𝑜𝑣𝑡0
(𝜏, 𝛿) = 𝐛⊤�̃�−1

[
𝑒�̃�(𝜏+𝛿) − 𝑒�̃�𝛿

]
𝑔𝑡0

(𝑡, 𝜏) (E.5)

where

𝑔𝑡0
(𝑡, 𝜏) = 𝔼𝑡0

[(
𝑁𝑡+𝜏 −𝑁𝑡

)
𝑋𝑡+𝜏

]
− 𝑒�̃�

(
𝑡+𝜏−𝑡0

)
𝔼𝑡0

[
𝑁𝑡+𝜏 −𝑁𝑡

]
𝑋𝑡0

+
(
𝐈− 𝑒�̃�

(
𝑡+𝜏−𝑡0

))
�̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡+𝜏 −𝑁𝑡

]
= 𝔼𝑡0

[
𝑁𝑡+𝜏𝑋𝑡+𝜏

]
+ �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]
− 𝑒�̃�𝜏

[
𝔼𝑡0

(
𝑁𝑡𝑋𝑡

)
+ �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]]
( ) [ ] ( ( )) [ ]
18

− 𝑒�̃� 𝑡+𝜏−𝑡0 𝔼𝑡0
𝑁𝑡+𝜏 −𝑁𝑡 𝑋𝑡0

+ 𝐈− 𝑒�̃� 𝑡+𝜏−𝑡0 �̃�−1𝐞𝜇𝔼𝑡0
𝑁𝑡+𝜏 −𝑁𝑡 . (E.6)
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In the rhs of (E.6), the last two terms are stationary due to the result in (22) and to the negativity of the real part for the eigenvalues of �̃�; the third 
term converges to zero as 𝑡 → +∞ while the fourth term has the following limit behavior(

𝐈− 𝑒�̃�
(
𝑡+𝜏−𝑡0

))
�̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡+𝜏 −𝑁𝑡

]
→ �̃�−1𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞

)
𝜏 a.s. 𝑡→ +∞. (E.7)

For the first two terms in the rhs (E.6) consider the quantity:

ℎ𝑡0
(𝑡, 𝜏) ∶= 𝔼𝑡0

[
𝑁𝑡+𝜏𝑋𝑡+𝜏

]
+ �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]
, ∀𝜏 ≥ 0, 𝑡 > 𝑡0 (E.8)

as 𝑡 → +∞. In (E.8) the vector 𝔼𝑡0

[
𝑁𝑡𝑋𝑡

]
requires the calculation of 𝑝 infinitesimal generators. We then observe that for 𝑖 = 1, … , 𝑝 − 1, the 

infinitesimal generator of the function 𝑁𝑡𝑋𝑡,𝑖 is:

𝑁𝑡𝑋𝑡,𝑖 =
(
𝜇 + 𝐛⊤𝑋𝑡

) [(
𝑁𝑡 + 1

)
𝑋𝑡,𝑖 −𝑁𝑡𝑋𝑡,𝑖

]
+𝑁𝑡𝑋𝑡,𝑖+1

=
(
𝜇𝑋𝑡,𝑖 +𝑋𝑡,𝑖𝑋

⊤
𝑡 𝐛

)
+𝑁𝑡𝑋𝑡,𝑖+1

while for 𝑖 = 𝑝

𝑁𝑡𝑋𝑡,𝑝 =
(
𝜇 + 𝐛⊤𝑋𝑡

) [(
𝑁𝑡 + 1

)(
𝑋𝑡,𝑝 + 1

)
−𝑁𝑡𝑋𝑡,𝑝

]
+𝑁𝑡𝐴[𝑝,⋅]𝑋𝑡

=
(
𝜇 + 𝐛⊤𝑋𝑡 + 𝜇𝑁𝑡

)
+
(
𝜇𝑋𝑡,𝑝 +𝑋𝑡,𝑝𝑋

⊤
𝑡 𝐛

)
+
(
𝐛⊤ +𝐴[𝑝,⋅]

)
𝑁𝑡𝑋𝑡,

that implies

d𝔼𝑡0

[
𝑋𝑡𝑁𝑡

]
=
[(

𝜇 + 𝐛⊤𝔼𝑡0

[
𝑋𝑡

]
+ 𝜇𝔼𝑡0

[
𝑁𝑡

])
𝐞+ 𝜇𝔼𝑡0

[
𝑋𝑡

]
+ 𝔼𝑡0

[
𝑋𝑡𝑋

⊤
𝑡

]
𝐛+ �̃�𝔼𝑡0

[
𝑋𝑡𝑁𝑡

]]
d𝑡 (E.9)

from where we get

𝔼𝑡0

[
𝑋𝑇 𝑁𝑇

]
= 𝑒�̃�

(
𝑇−𝑡0

)
𝑋𝑡0

𝑁𝑡0
+

𝑇

∫
𝑡0

𝑒�̃�(𝑇−𝑡)
(
𝜇 + 𝐛⊤𝔼𝑡0

[
𝑋𝑡

]
+ 𝜇𝔼𝑡0

[
𝑁𝑡

])
𝐞d𝑡

+

𝑇

∫
𝑡0

𝑒�̃�(𝑇−𝑡)
[
𝜇𝔼𝑡0

[
𝑋𝑡

]
+ 𝔼𝑡0

[
𝑋𝑡𝑋

⊤
𝑡

]
𝐛
]

d𝑡. (E.10)

The quantity 𝔼𝑡0

[
𝑋𝑇 𝑁𝑇

]
is not stationary but it is useful as it appears in the rhs of the function ℎ𝑡0

(𝑡, 𝜏) introduced in (E.8) that can be rewritten as

ℎ𝑡0
(𝑡, 𝜏) = 𝑒�̃�

(
𝑡+𝜏−𝑡0

)
𝑋𝑡0

𝑁𝑡0
+

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝜇𝐞d𝑢+

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐛⊤𝔼𝑡0

[
𝑋𝑢

]
𝐞d𝑢

+

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)
(
𝜇𝔼𝑡0

[
𝑁𝑢

])
𝐞d𝑢+ �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]

+

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)
[
𝜇𝔼𝑡0

[
𝑋𝑢

]
+ 𝔼𝑡0

[
𝑋𝑢𝑋

⊤
𝑢

]
𝐛
]

d𝑢. (E.11)

We analyze the long-run behavior of each term in the rhs of (E.11). We first observe that

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)d𝑢𝜇𝐞 =
(
𝑒�̃�

(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1𝜇𝐞

with

lim
𝑡→+∞

(
𝑒�̃�

(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1𝜇𝐞 = −�̃�−1𝜇𝐞. (E.12)

The formula for the conditional expected value of the process in (17) allows us to rewrite the third term in the rhs of (E.11) as follows

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐞𝐛⊤𝔼𝑡0

[
𝑋𝑢

]
d𝑢 = 𝑒�̃�(𝑡+𝜏)

𝑡+𝜏

∫
𝑡0

𝑒−�̃�𝑢𝐞𝐛⊤𝑒�̃�𝑢d𝑢𝑒−�̃�𝑡0
[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]

−

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)d𝑢𝐞𝐛⊤�̃�−1𝐞𝜇

= 𝑒�̃�(𝑡+𝜏)

𝑡+𝜏

𝑒−�̃�𝑢𝐞𝐛⊤𝑒�̃�𝑢d𝑢𝑒−�̃�𝑡0
[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]

19

∫
𝑡0
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−
(
𝑒�̃�

(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1𝐞𝐛⊤�̃�−1𝐞𝜇. (E.13)

To compute the integral 𝑒�̃�(𝑡+𝜏) ∫ 𝑡+𝜏
𝑡0

𝑒−�̃�𝑢𝐞𝐛⊤𝑒�̃�𝑢d𝑢𝑒−�̃�𝑡0 we use the result in (C.4) and exploiting its limit behavior (C.5), the long-run behavior of 
(E.13) becomes

lim
𝑡→+∞

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐞𝐛⊤𝔼𝑡0

[
𝑋𝑢

]
d𝑢 = �̃�−1𝐞𝐛⊤�̃�−1𝐞𝜇. (E.14)

The fourth term in the rhs of (E.11) can be written as

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)d𝑢𝐞𝜇𝑁𝑡0
+

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢) (𝑢− 𝑡0
)

d𝑢𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞
)

+

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐞𝜇𝐛⊤�̃�−1
[
𝑒�̃�

(
𝑢−𝑡0

)
− 𝐈

]
d𝑢

(
𝑋𝑡0

+ �̃�−1𝐞𝜇
)
+ �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]

=
(
𝑒�̃�

(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1𝐞𝜇𝑁𝑡0

+
⎡⎢⎢⎣

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢) (𝑢− 𝑡0
)

d𝑢
⎤⎥⎥⎦ 𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞

)

+ 𝑒�̃�(𝑡+𝜏)

𝑡+𝜏

∫
𝑡0

𝑒−�̃�𝑢𝐞𝐛⊤𝑒�̃�𝑢d𝑢𝑒−�̃�𝑡0 �̃�−1
[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
𝜇

− �̃�−1
(
𝑒�̃�

(
𝑡+𝜏−𝑡0

)
− 𝐈

)
𝐞𝐛⊤�̃�−1

[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
𝜇 + �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]
. (E.15)

Integrating by parts we get

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢) (𝑢− 𝑡0
)

d𝑢 = �̃�−1
[(

𝑒�̃�
(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1 − 𝐈

(
𝑡+ 𝜏 − 𝑡0

)]
.

Thus (E.15) becomes(
𝑒�̃�

(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1𝐞𝜇𝑁𝑡0

+ �̃�−1
[(

𝑒�̃�
(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1 − 𝐈

(
𝑡+ 𝜏 − 𝑡0

)]
𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞

)
+ 𝑒�̃�(𝑡+𝜏)

𝑡+𝜏

∫
𝑡0

𝑒−�̃�𝑢𝐞𝐛⊤𝑒�̃�𝑢d𝑢𝑒−�̃�𝑡0 �̃�−1
[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
𝜇

− �̃�−1
(
𝑒�̃�

(
𝑡+𝜏−𝑡0

)
− 𝐈

)
𝐞𝐛⊤�̃�−1

[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
𝜇 + �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]
.

Using the formula for the conditional expected value of the counting process in (16) we get(
𝑒�̃�

(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1𝐞𝜇𝑁𝑡0

+ �̃�−1
[(

𝑒�̃�
(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1 − 𝐈

(
𝑡+ 𝜏 − 𝑡0

)]
𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞

)
+ 𝑒�̃�(𝑡+𝜏)

𝑡+𝜏

∫
𝑡0

𝑒−�̃�𝑢𝐞𝐛⊤𝑒�̃�𝑢d𝑢𝑒−�̃�𝑡0 �̃�−1
[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
𝜇

− �̃�−1
(
𝑒�̃�

(
𝑡+𝜏−𝑡0

)
− 𝐼

)
𝐞𝐛⊤�̃�−1

[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
𝜇

+ �̃�−1𝐞𝜇
[
𝑁𝑡0

+ 𝜇
(
1 − 𝐛⊤�̃�−1𝐞

) (
𝑡− 𝑡0

)
+ 𝐛⊤�̃�−1

(
𝑒�̃�

(
𝑡1−𝑡0

)
− 𝐈

)[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]]

= 𝑒�̃�
(
𝑡+𝜏−𝑡0

)
�̃�−1𝐞𝜇𝑁𝑡0

+ �̃�−1
[(

𝑒�̃�
(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1 − 𝐈𝜏

]
𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞

)
+ 𝑒�̃�(𝑡+𝜏)

𝑡+𝜏

∫
𝑡0

𝑒−�̃�𝑢𝐞𝐛⊤𝑒�̃�𝑢d𝑢𝑒−�̃�𝑡0 �̃�−1
[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
𝜇

− �̃�−1𝑒�̃�
(
𝑡+𝜏−𝑡0

)
𝐞𝐛⊤�̃�−1

[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
𝜇 + �̃�−1𝐞𝜇𝐛⊤�̃�−1𝑒�̃�

(
𝑡−𝑡0

) [
𝑋𝑡0

+ �̃�−1𝐞𝜇
]

and its long-run behavior is established considering 𝑡 → +∞, that is

−�̃�−1 [�̃�−1 + 𝐈𝜏
]
𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞

)
. (E.16)
20

The fifth term in the right-hand side of (E.11) can be rewritten as
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𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝔼𝑡0

[
𝑋𝑢

]
d𝑢𝜇 =

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝑒�̃�
(
𝑢−𝑡0

)
d𝑢

[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
𝜇

−

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)d𝑢�̃�−1𝐞𝜇2

= 𝑒�̃�
(
𝑡+𝜏−𝑡0

) (
𝑡+ 𝜏 − 𝑡0

) [
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
𝜇

− �̃�−1
(
𝑒�̃�

(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1𝐞𝜇2,

that has the following long-run behavior

lim
𝑡→+∞

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝔼𝑡0

[
𝑋𝑢

]
d𝑢𝜇 = �̃�−1�̃�−1𝐞𝜇2. (E.17)

Lemma 1 suggests that the last term in the rhs of (E.11) can be written as

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝔼𝑡0

[
𝑋𝑢𝑋

⊤
𝑢

]
𝐛d𝑢 =

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐁𝑒
̃̃𝐀
(
𝑢−𝑡0

)
d𝑢𝑣𝑙𝑡

(
𝑋𝑡0

𝑋⊤
𝑡0

)

+

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐁𝑒
̃̃𝐀
(
𝑢−𝑡0

)
d𝑢 ̃̃𝐀−1𝜇

(
�̃�− �̃��̃�−1𝐞

)

−

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)d𝑢𝐁 ̃̃𝐀−1𝜇
(
�̃�− �̃��̃�−1𝐞

)

+

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐁𝑒
̃̃𝐀𝑢
⎡⎢⎢⎣

𝑢

∫
𝑡0

𝑒−
̃̃𝐀ℎ�̃�𝑒�̃�ℎdℎ

⎤⎥⎥⎦ 𝑒−�̃�𝑡0
[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]

d𝑢.

The result in (A.1) implies that

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝔼𝑡0

[
𝑋𝑢𝑋

⊤
𝑢

]
𝐛d𝑢 =

⎡⎢⎢⎣
𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐁𝑒
̃̃𝐀
(
𝑢−𝑡0

)
d𝑢
⎤⎥⎥⎦𝑣𝑙𝑡

(
𝑋𝑡0

𝑋⊤
𝑡0

)

+
⎡⎢⎢⎣

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐁𝑒
̃̃𝐀
(
𝑢−𝑡0

)
d𝑢
⎤⎥⎥⎦ ̃̃𝐀−1𝜇

(
�̃�− �̃��̃�−1𝐞

)
−
(
𝑒�̃�

(
𝑡+𝜏−𝑡0

)
− 𝐈

)
�̃�−1𝐁 ̃̃𝐀−1𝜇

(
�̃�− �̃��̃�−1𝐞

)
+

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐁𝑒
̃̃𝐀𝑢
⎡⎢⎢⎣

𝑢

∫
𝑡0

𝑒−
̃̃𝐀ℎ�̃�𝑒�̃�ℎdℎ

⎤⎥⎥⎦ 𝑒−�̃�𝑡0d𝑢
[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
.

To determine the asymptotic behavior of this term, we analyze the long-run behavior of the integral ∫ 𝑡+𝜏
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐁𝑒
̃̃𝐀
(
𝑢−𝑡0

)
d𝑢. Exploiting the result 

in Appendix C, we have

lim
𝑡→+∞

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐁𝑒
̃̃𝐀
(
𝑢−𝑡0

)
d𝑢 = 𝟎

as all eigenvalues of �̃� and ̃̃𝐀 have negative real part. Using the Fubini-Tonelli’s Theorem the last integral becomes

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐁𝑒
̃̃𝐀𝑢
⎡⎢⎢⎣

𝑢

∫
𝑡0

𝑒−
̃̃𝐀ℎ�̃�𝑒�̃�ℎdℎ

⎤⎥⎥⎦ 𝑒−�̃�𝑡0d𝑢 =

𝑡+𝜏

∫
𝑡0

𝑢

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐁𝑒
̃̃𝐀(𝑢−ℎ)�̃�𝑒�̃�

(
ℎ−𝑡0

)
dℎd𝑢.

Its long-run behavior is obtained using the result in (C.6), that is

lim
𝑡→+∞

𝑡+𝜏

∫
𝑡0

𝑢

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝐁𝑒
̃̃𝐀(𝑢−ℎ)�̃�𝑒�̃�

(
ℎ−𝑡0

)
dℎd𝑢 = 𝟎. (E.18)
21

Finally, we have
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lim
𝑡→+∞

𝑡+𝜏

∫
𝑡0

𝑒�̃�(𝑡+𝜏−𝑢)𝔼𝑡0

[
𝑋𝑢𝑋

⊤
𝑢

]
𝐛d𝑢 = �̃�−1𝐁 ̃̃𝐀−1𝜇

(
�̃�− �̃��̃�−1𝐞

)
. (E.19)

From (E.12), (E.14), (E.16), (E.17) and (E.19) we obtain the limit behavior for the quantity in (E.11)

ℎ∞ (𝜏) ∶= lim
𝑡→+∞

ℎ𝑡0
(𝑡, 𝜏)

= −�̃�−1𝜇𝐞+ �̃�−1𝐞𝐛⊤�̃�−1𝐞𝜇 − �̃�−1 [�̃�−1 + 𝐈𝜏
]
𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞

)
+ �̃�−1�̃�−1𝐞𝜇2�̃�−1𝐁 ̃̃𝐀−1𝜇

(
�̃�− �̃��̃�−1𝐞

)
. (E.20)

Using (E.20) we can determine the asymptotic behavior of (E.6) and we get

𝑔∞ (𝜏) ∶= lim
𝑡→+∞

𝑔𝑡0
(𝑡, 𝜏)

= lim
𝑡→+∞

ℎ𝑡0
(𝑡, 𝜏) − 𝑒�̃�𝜏

[
lim

𝑡→+∞
ℎ𝑡0

(𝑡,0)
]
+ �̃�−1𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞

)
𝜏

= ℎ∞ (𝜏) − 𝑒�̃�𝜏ℎ∞ (0) + �̃�−1𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞
)
𝜏. (E.21)

By straightforward calculations (E.21) becomes (42) and the covariance reads as in (41). □

E.3. Proof of Theorem 6

Here we provide the proof of Theorem 6.

Proof. For the asymptotic variance we need to compute the conditional variance of the number of jumps in an interval with length 𝜏 . First we 
observe that

𝜎2
𝑡0
(𝑡, 𝜏) ∶= 𝖵𝖺𝗋𝑡0

(
𝑁𝑡+𝜏 −𝑁𝑡

)
= 𝔼𝑡0

[(
𝑁𝑡+𝜏 −𝑁𝑡

)2]− 𝔼2
𝑡0

[
𝑁𝑡+𝜏 −𝑁𝑡

]
.

We then compute the second moment of the increments

𝔼𝑡0

[(
𝑁𝑡+𝜏 −𝑁𝑡

)2] = 𝔼𝑡0

[
𝑁2

𝑡+𝜏

]
+ 𝔼𝑡0

[
𝑁2

𝑡

]
− 2𝔼𝑡0

[
𝑁𝑡𝔼𝑡

[
𝑁𝑡+𝜏

]]
= 𝔼𝑡0

[
𝑁2

𝑡+𝜏

]
− 𝔼𝑡0

[
𝑁2

𝑡

]
− 2𝔼𝑡0

[
𝑁𝑡

]
𝜇
(
1 − 𝐛⊤�̃�−1𝐞

)
𝜏

− 2𝐛⊤�̃�−1
[
𝑒�̃�𝜏 − 𝐈

][
𝔼𝑡0

[
𝑁𝑡𝑋𝑡

]
+ �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]]
.

For 𝔼𝑡0

[
𝑁2

𝑡

]
it is useful to compute the infinitesimal operator for the function 𝑓

(
𝑋1,𝑡,… ,𝑋𝑝,𝑡,𝑁𝑡,

)
= 𝑁2

𝑡 , that reads

𝑓𝑡 = 𝜇
(
2𝑁𝑡 + 1

)
+ 2𝐛⊤𝑁𝑡𝑋𝑡 + 𝐛⊤𝑋𝑡.

Applying the Dynkin’s formula, we have

𝔼𝑡0

[
𝑁2

𝑡

]
= 𝑁2

𝑡0
+ 2𝜇

𝑡

∫
𝑡0

𝔼𝑡0

[
𝑁𝑢

]
d𝑢+ 𝜇

(
𝑡− 𝑡0

)
+ 2𝐛⊤

𝑡

∫
𝑡0

𝔼𝑡0

[
𝑁𝑢𝑋𝑢

]
d𝑢+ 𝐛⊤

𝑡

∫
𝑡0

𝔼𝑡0

[
𝑋𝑢

]
d𝑡.

Therefore

𝔼𝑡0

[(
𝑁𝑡+𝜏 −𝑁𝑡

)2] = 2𝜇

𝑡+𝜏

∫
𝑡

𝔼𝑡0

[
𝑁𝑢

]
d𝑢+ 𝜇𝜏 + 2𝐛⊤

𝑡+𝜏

∫
𝑡

𝔼𝑡0

[
𝑁𝑢𝑋𝑢

]
d𝑢+ 𝐛⊤

𝑡+𝜏

∫
𝑡

𝔼𝑡0

[
𝑋𝑢

]
d𝑢

− 2𝔼𝑡0

[
𝑁𝑡

]
𝜇
(
1 − 𝐛⊤�̃�−1𝐞

)
𝜏 − 2𝐛⊤�̃�−1

[
𝑒�̃�𝜏 − 𝐈

][
𝔼𝑡0

[
𝑁𝑡𝑋𝑡

]
+ �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]]
= 2𝜇

𝑡+𝜏

∫
𝑡

𝔼𝑡0

[
𝑁𝑢 −𝑁𝑡

]
d𝑢+ 𝜇𝜏 + 𝐛⊤

𝑡+𝜏

∫
𝑡

𝔼𝑡0

[
𝑋𝑢

]
d𝑢

+ 2𝐛⊤

𝑡+𝜏

∫
𝑡

[
𝔼𝑡0

[
𝑁𝑢𝑋𝑢

]
+ �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]]
d𝑢

− 2𝐛⊤�̃�−1
[
𝑒�̃�𝜏 − 𝐈

][
𝔼𝑡0

[
𝑁𝑡𝑋𝑡

]
+ �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]]
. (E.22)

We study the asymptotic behavior of the terms in (E.22). Denoting with 𝑎𝑡0
(𝑡, 𝜏) ∶= ∫ 𝑡+𝜏

𝑡 𝔼𝑡0

[
𝑁𝑢 −𝑁𝑡

]
d𝑢, we obtain

𝑎𝑡 (𝑡, 𝜏) =

𝑡+𝜏

𝜇
(
1 − 𝐛⊤�̃�−1𝐞

)
(𝑢− 𝑡)d𝑢+

𝑡+𝜏

𝐛⊤�̃�−1
[
𝑒�̃�

(
𝑢−𝑡0

)
− 𝑒�̃�

(
𝑡−𝑡0

)]
d𝑢

[
𝑋𝑡 + �̃�−1𝐞

]

22

0 ∫
𝑡

∫
𝑡

0
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= 𝜇
(
1 − 𝐛⊤�̃�−1𝐞

) 𝜏2

2
+

𝑡+𝜏

∫
𝑡

𝐛⊤�̃�−1
[
𝑒�̃�(𝑢−𝑡) − 𝐈

]
d𝑢𝑒�̃�

(
𝑡−𝑡0

) [
𝑋𝑡0

+ �̃�−1𝐞
]
.

We observe that the following integral is finite

𝑡+𝜏

∫
𝑡

𝐛⊤�̃�−1
[
𝑒�̃�(𝑢−𝑡) − 𝐈

]
d𝑢 < +∞

from where we deduce that

𝑎∞ (𝜏) ∶= lim
𝑡→+∞

𝑎𝑡0
(𝑡, 𝜏) = 𝜇

(
1 − 𝐛⊤�̃�−1𝐞

) 𝜏2

2
. (E.23)

We then focus on the quantity 𝑏𝑡0
(𝑡, 𝜏) ∶= 𝜇𝜏 + 𝐛⊤ ∫ 𝑡+𝜏

𝑡 𝔼𝑡0

[
𝑋𝑢

]
d𝑢 that through straightforward computations can be written as

𝑏𝑡0
(𝑡, 𝜏) = 𝜇𝜏 + 𝐛⊤

𝑡+𝜏

∫
𝑡

[
𝑒�̃�

(
𝑢−𝑡0

) (
𝑋𝑡0

+ �̃�−1𝐞𝜇
)
− �̃�−1𝐞𝜇

]
d𝑢

=
(
1 − 𝐛⊤�̃�−1𝐞

)
𝜇𝜏 + 𝐛⊤𝑒�̃�

(
𝑡−𝑡0

) 𝑡+𝜏

∫
𝑡

𝑒�̃�(𝑢−𝑡)
(
𝑋𝑡0

+ �̃�−1𝐞𝜇
)

d𝑢.

Since we have a continuous integrand in a compact support

𝑡+𝜏

∫
𝑡

𝑒�̃�(𝑢−𝑡)d𝑢 < +∞,

we have

𝑏∞ (𝜏) ∶= lim
𝑡→+∞

𝑏𝑡0
(𝑡, 𝜏) =

(
1 − 𝐛⊤�̃�−1𝐞

)
𝜇𝜏. (E.24)

Denoting with 𝑐𝑡0
(𝑡, 𝜏) ∶= ∫ 𝑡+𝜏

𝑡

[
𝔼𝑡0

[
𝑁𝑢𝑋𝑢

]
+ �̃�−1𝐞𝜇𝔼𝑡0

[
𝑁𝑡

]]
d𝑢, we obtain

𝑐𝑡0
(𝑡, 𝜏) = 𝐼0,𝑡0 (𝑡, 𝜏) + 𝐼1,𝑡0 (𝑡, 𝜏) + 𝐼2,𝑡0 (𝑡, 𝜏) + 𝐼3,𝑡0 (𝑡, 𝜏) + 𝐼4,𝑡0 (𝑡, 𝜏) + 𝐼5,𝑡0 (𝑡, 𝜏)

where 𝐼0,𝑡0 (𝑡, 𝜏) ∶= ∫ 𝑡+𝜏
𝑡 𝑒�̃�

(
𝑢−𝑡0

)
𝑋𝑡0

𝑁𝑡0
d𝑢 is rewritten as

𝐼0,𝑡0 (𝑡, 𝜏) = 𝑒
̃𝐀(𝑡−𝑡0)𝜏

𝑡+𝜏

∫
𝑡

𝑒�̃�(𝑢−𝑡)𝑋𝑡0
𝑁𝑡0

d𝑢

and using the same arguments as above, we get

𝐼0,∞ (𝑡, 𝜏) ∶= lim
𝑡→+∞

𝐼0,𝑡0 (𝑡, 𝜏) = 𝟎.

The quantity 𝐼1,𝑡0 (𝑡, 𝜏) ∶= ∫ 𝑡+𝜏
𝑡

(
𝑒�̃�

(
𝑢−𝑡0

)
− 𝐈

)
�̃�−1𝐞𝜇d𝑢 can be rewritten as

𝐼1,𝑡0 (𝑡, 𝜏) =

𝑡+𝜏

∫
𝑡

𝑒�̃�
(
𝑢−𝑡0

)
�̃�−1𝐞𝜇d𝑢− �̃�−1𝐞𝜇𝜏

while taking the limit as 𝑡 → +∞, we have

𝐼1,∞ (𝑡, 𝜏) ∶= lim
𝑡→+∞

𝐼1,𝑡0 (𝑡, 𝜏) = −�̃�−1𝐞𝜇𝜏. (E.25)

The quantity

𝐼2,𝑡0 (𝑡, 𝜏) ∶=

𝑡+𝜏

∫
𝑡

𝑢

∫
𝑡0

𝑒�̃�(𝑢−𝑠)𝐞𝐛⊤𝑒�̃�
(
𝑠−𝑡0

)
d𝑠d𝑢

[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]

−

𝑡+𝜏

∫
𝑡

(
𝑒�̃�

(
𝑢−𝑡0

)
− 𝐈

)
d𝑢�̃�−1𝐞𝐛⊤�̃�−1𝐞𝜇 (E.26)

depends on the integral ∫ 𝑡+𝜏
𝑡 ∫ 𝑢

𝑡0
𝑒�̃�(𝑢−𝑠)𝐞𝐛⊤𝑒�̃�

(
𝑠−𝑡0

)
d𝑠d𝑢 where from the substitutions 𝑠 − 𝑡0 = ℎ and 𝑟 = 𝑢 − 𝑡 we get

𝜏 𝑡+𝑟−𝑡0

𝑒�̃�
(
𝑡−𝑡0+𝑟−ℎ

)
𝐞𝐛⊤𝑒�̃�ℎdℎd𝑟. (E.27)
23

∫
0

∫
0
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Defining

�̈� ∶=
[

�̃� 𝐞𝐛⊤

𝟎𝑝,𝑝 �̃�

]
and applying the result in Appendix C, the inner integral in (E.27) becomes[

𝐈𝑝,𝑝;𝟎𝑝,𝑝

]
𝑒�̈�(𝑡−𝑡0+𝑟)

[
𝟎𝑝,𝑝

𝐈𝑝,𝑝

]
. (E.28)

Thus the integral in (E.27) can be computed as follows

[
𝐈𝑝,𝑝;𝟎𝑝,𝑝

]
𝑒�̈�(𝑡−𝑡0)

𝜏

∫
0

𝑒�̈�𝑟d𝑟

[
𝟎𝑝,𝑝

𝐈𝑝,𝑝

]
. (E.29)

We notice that as ∫ 𝜏
0 𝑒�̈�𝑟d𝑟 < +∞ and all eigenvalues of �̈� have negative real part, then

𝐼2,∞ (𝜏) ∶= lim
𝑡→+∞

𝐼2,𝑡0 (𝑡, 𝜏) = �̃�−1𝐞𝐛⊤�̃�−1𝐞𝜇𝜏.

Similarly, we get the limit for the term 𝐼3,𝑡0 (𝑡, 𝜏) ∶= ∫ 𝑡+𝜏
𝑡

[∫ 𝑢
𝑡0

𝑒�̃�(𝑢−𝑠)𝜇𝔼𝑡0

(
𝑁𝑠

)
𝐞d𝑠+ �̃�−1𝐞𝜇𝔼𝑡0

(
𝑁𝑢

)]
d𝑢 as 𝑡 → +∞:

𝐼3,∞ (𝑡, 𝜏) ∶= lim
𝑡→+∞

𝐼3,𝑡0 (𝑡, 𝜏) = −�̃�−1
[
𝐈 𝜏

2

2
+ �̃�−1𝜏

]
𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞

)
.

We define the following quantity

𝐼4,𝑡0 (𝑡, 𝜏) ∶=
⎡⎢⎢⎣

𝑡+𝜏

∫
𝑡

𝑒�̃�
(
𝑢−𝑡0

) (
𝑢− 𝑡0

)
d𝑢
⎤⎥⎥⎦
[
𝑋𝑡0

+ �̃�−1𝐞𝜇
]
𝜇 + �̃�−1�̃�−1𝐞𝜇2𝜏

− �̃�−1

𝑡+𝜏

∫
𝑡

𝑒�̃�
(
𝑢−𝑡0

)
d𝑢�̃�−1𝐞𝜇2

and observe that the first integral can be rewritten as

𝑡+𝜏

∫
𝑡

𝑒�̃�
(
𝑢−𝑡0

) (
𝑢− 𝑡0

)
d𝑢 = 𝑒�̃�

(
𝑡−𝑡0

) 𝑡+𝜏

∫
𝑡

𝑒�̃�(𝑢−𝑡) (𝑢− 𝑡)d𝑢+ 𝑒�̃�
(
𝑡−𝑡0

) (
𝑡− 𝑡0

) 𝑡+𝜏

∫
𝑡

𝑒�̃�(𝑢−𝑡)d𝑢

where both terms in the rhs tend to be zero as 𝑡 → +∞ thus

𝐼4,∞ (𝜏) = lim
𝑡→+∞

𝐼4,𝑡0 (𝑡, 𝜏) = �̃�−1�̃�−1𝐞𝜇2𝜏.

Similar arguments are used to determine the limit as 𝑡 → +∞ for the quantity 𝐼5,𝑡0 (𝜏) ∶= ∫ 𝑡+𝜏
𝑡 ∫ 𝑢

𝑡0
𝑒�̃�(𝑢−𝑠)𝔼𝑡0

[
𝑋𝑠,𝑋

⊤
𝑠

]
𝐛d𝑠d𝑢 as follows

𝐼5,∞ (𝜏) = lim
𝑡→+∞

𝐼5,𝑡0 (𝑡, 𝜏) = �̃�−1𝐁 ̃̃𝐀−1𝜇
(
�̃�− �̃��̃�−1𝐞

)
𝜏.

Combining all results, we get the stationary behavior for the quantity 𝑐∞ (𝜏) ∶= lim𝑡→+∞ 𝑐𝑡0
(𝑡, 𝜏) that reads

𝑐∞ (𝜏) = −�̃�−1𝐞𝜇𝜏
(
1 − 𝐛⊤�̃�−1𝐞

)
− �̃�−1

[
𝐈 𝜏

2

2
+ �̃�−1𝜏

]
𝐞𝜇2 (1 − 𝐛⊤�̃�−1𝐞

)
+ �̃�−1�̃�−1𝐞𝜇2𝜏

+ �̃�−1𝐁 ̃̃𝐀−1𝜇
(
�̃�− �̃��̃�−1𝐞

)
𝜏. (E.30)

Furthermore,

lim
𝑡→+∞

𝔼𝑡0

[(
𝑁𝑡+𝜏 −𝑁𝑡

)2] = 2𝜇𝑎∞ (𝜏) + 𝑏∞ (𝜏) + 2𝐛⊤𝑐∞ (𝜏) − 2𝐛⊤�̃�−1
[
𝑒�̃�𝜏 − 𝐈

]
ℎ∞ (0)

= 𝜇2 (1 − 𝐛⊤�̃�−1𝐞
)2

𝜏2 +
(
1 − 𝐛⊤�̃�−1𝐞

)(
1 − 2𝐛⊤�̃�−1𝐞

)
𝜇𝜏

+ 2𝐛⊤�̃�−1�̃�−1𝐞𝜏𝜇2 (𝐛⊤�̃�−1𝐞
)
+ 2𝐛⊤�̃�−1𝐁 ̃̃𝐀−1𝜇

(
�̃�− �̃��̃�−1𝐞

)
𝜏

− 2𝐛⊤�̃�−1
[
𝑒�̃�𝜏 − 𝐈

]
ℎ∞ (0) .

By straightforward calculations, we obtain the result in (43) for the asymptotic variance. □

E.4. Proof of Theorem 7

Proof. Proof of Theorem 7. We first prove the existence of a positive constant 𝑎0 > 0 such that the kernel function satisfies the condition

𝑒𝑎0|𝑡|ℎ (𝑡)d𝑡 < +∞. (E.31)
24

∫
ℝ



Insurance Mathematics and Economics 116 (2024) 1–26L. Mercuri, A. Perchiazzo and E. Rroji

We notice that Assumption 1 implies that

∫
ℝ

𝑒𝑎0|𝑡|ℎ (𝑡)d𝑡 = 𝐛⊤

+∞

∫
0

𝑒𝑎0𝑡𝑒𝐀𝑡d𝑡𝐞 = 𝐛⊤𝐒
+∞

∫
0

𝑒𝑎0𝑡𝑒𝚲𝑡d𝑡𝐒−1𝐞.

Choosing 𝑎0 ∈
(
0, |||𝖱𝖾(𝜆1)|||) the condition in (E.31) is ensured and thus we can apply the result in Theorem 1 proved by Cheysson and Lang (2020), 

and the strong-mixing coefficient results to be 𝛼𝑁 (𝑟) = 𝑂 (𝑒−𝑎𝑟) where 𝑎 ∈
(
0, 𝑎0

)
. □

E.5. Proof of Theorem 8

Proof. Proof of Theorem 8. The proof is quite standard and is an application of Theorem 18.5.3 in Ibragimov and Linnik (1971) and Cramér-Wold 
device. Denoting with

𝜗 ∶=
[
𝔼
(
Δ1𝑁∞

)
, 𝑉 𝑎𝑟

(
Δ1𝑁∞

)
,𝐴𝑐𝑣 (1) ,… ,𝐴𝑐𝑣 (𝑑)

]⊤
(E.32)

we apply Theorem 18.5.3 in Ibragimov and Linnik (1971) to the linear combination 
(
𝑐⊤𝑉𝑘

)
𝑘=1,2,…𝑛

where 𝑐 is a generic 𝑑 + 2 real vector such that 
𝑐⊤Σ𝑐 > 0. Since the strong mixing property is preserved under linear transformations as well as the rate we have√

𝑛

(
1
𝑛

𝑛∑
𝑘=1

𝑐⊤𝑉𝑘 − 𝑐⊤𝜗

)
→

(
0, 𝑐⊤𝑉 𝑎𝑟

(
𝑉1
)
𝑐 + 2

+∞∑
𝑘=1

𝑐⊤𝐶𝑜𝑣
(
𝑉1𝑉

⊤
𝑘

)
𝑐

)
, as 𝑛 → +∞

that is √
𝑛

(
1
𝑛

𝑛∑
𝑘=1

𝑐⊤𝑉𝑘 − 𝑐⊤𝜗

)
→ (0, 𝑐⊤Σ𝑐) , as 𝑛 → +∞.

Applying Cramér-Wold device we obtain the asymptotic behavior in (49). □

Appendix F. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .insmatheco .2024 .01 .007.
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