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A B S T R A C T

Ab initio studies of atomic nuclei are based on Hamiltonians including one-, two- and three-body
operators with very complicated structures. Traditionally, matrix elements of such operators are
expanded on a Harmonic Oscillator single-particle basis, which allows for a simple separation of
the center-of-mass motion from the intrinsic one. A few recent investigations have showed that
the use of different single-particle bases can bring significant advantages to numerical nuclear
structure computations. In this work, the complete analytical expression of the Hamiltonian
matrix elements expanded on a generic spherical basis is presented for the first time. This will
allow systematic studies aimed at the determination of optimal nuclear bases.

. Introduction

Much of our understanding of complex quantum mechanical systems is based on the capability to represent them as being
omposed of simpler (or more elementary) particles that are subject to specific mutual interactions. This is referred to as the quantum
any-body problem. Techniques for finding accurate predictions for such systems have found applications across several fields of
cience, ranging from the modeling of crystals in solid state physics, to molecules for quantum chemistry, to cold gases, all the way
o the equation of state for neutron star matter and the unstable isotopes created during nucleosynthesis.

A vast range of different computational quantum many-body methods has been applied across all of these disciplines. Yet, almost
ll of these start by representing each constituent as an independent particle in a one-body Hilbert space with a complete basis.
he correlations due to the inter-particle interactions are then added afterwards in order to construct the true many-body quantum
tates of the system. The key ingredient for a simulation to be successful is to find a proper choice of the single-particle basis and
ompute correctly the matrix elements of the Hamiltonian operator in such basis. For example, the realization that Gaussian states
an approximate accurately the electron cuspid while also accelerating the computation of Coulomb matrix elements has enabled
he whole development of Quantum Chemistry [1,2].

For nuclear physics things are more complicated because the nuclear interaction has a very complex operator structure, with
on-local terms and non-trivial radial expressions. The only possible simplifications come from exploiting spherical symmetry but no
ther straightforward analytical properties of the Hamiltonian can be employed to accelerate the computation of matrix elements.
odern applications use harmonic oscillator (HO) wave functions as the best surrogate to represent nuclear single-particle states [3]
hile being able to exploit the symmetries of the HO under the transformation between the center-of-mass and laboratory frames.
ifferent strategies can be used a posteriori to accelerate the convergence of bulk properties of nuclei with respect to the size of
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the model space compared to the HO basis. For example, a Hartree–Fock (HF) computation defines a better reference state and a
single-particle basis optimized in energy. The Self Consistent Green’s Function (SCGF) method has employed the so-called Optimised
Reference State (OpRS) [4] to handle non-soft interactions since Refs. [5–7]. More recently, natural orbitals (NAT) obtained from
the correlated density matrix [8,9] have proven to enable a more efficient convergence than HF bases. The OpRS basis is built by
reproducing the first moments of the spectral distributions, hence, it is tuned to optimize both the correlated density matrix [4] and
the energy sum rules. Yet both the NAT and OpRS have been so far based on a preliminary expansion on the HO basis and require
handling nuclear matrix elements in a sufficiently large oscillator space.

HO wave functions are known to bring the wrong asymptotic behavior, which negatively affects for example the study of weakly
ound nuclei. A few past investigations in nuclear physics have focused on single-particle bases different than the HO [10–12] and
ew classes of candidates for nuclear wave functions have been addressed by Ref. [13]. Though, all these studies are limited and
he corresponding proposed bases have never really been competitive with the HO basis. It is then an important open issue to
nvestigate more systematically whether the use of bases different from the conventional HO can lead to significant improvements
n the computation of nuclear properties.

Know-how for handling matrix elements in generic bases is fragmented into several publications that appeared across past
ears but it mostly covers generic two-particle interactions. To the best of our knowledge, analytic expressions for the two- and
hree-body matrix elements of a realistic nuclear Hamiltonian suitable for ab initio calculations in a generic (possibly spin- and

isospin-dependent) single-particle basis are still not available. The present paper aims to fill such gap, setting as a starting point
the matrix elements of the interaction in Jacobi coordinates [14,15] which is the usual form adopted by ab initio practitioners.
Expressions of such matrix elements are derived in a generic spherical basis, making use of the Wong–Clement (WC) [16] coefficients
in place of the usual Moshinsky brackets [17]. Known material and new developments are included in a self-contained manuscript
that incorporates all the necessary elements for computing matrix elements. Although the focus is on modern nuclear interactions,
including spin–isospin degrees of freedom, the formulae reported in this work could be easily adapted to other rotationally invariant
quantum many-body systems (and even specialized to simpler Hamiltonians as needed).

The structure of the manuscript is the following: Section 2 presents the main conventions and definitions used, as well as the
basic ingredients necessary for getting started with the calculation of matrix elements. Sections 3, 4 and 5 focus respectively on
the matrix elements relative for one-, two- and three-body operators. The matrix elements of two- and three-body interactions are
obtained as a change of basis from two- and three-body matrix elements in momentum-space. Finally Section 6 draws some final
conclusions and future perspectives. All the fine details regarding specific topics as the calculation of particular coefficients are left
in the Appendix.

2. Basic ingredients for the calculation of matrix elements

2.1. The nuclear Hamiltonian

The goal of ab initio methods [18–21] is to solve the non-relativistic many-body Schrödinger equation

𝐻|𝛹𝑛⟩ = 𝐸𝑛|𝛹𝑛⟩, (2.1)

where 𝐻 represents the intrinsic Hamiltonian of the system

𝐻 = 𝑇 + 𝑉 +𝑊 +… (2.2)

and 𝑇 , 𝑉 and 𝑊 represent respectively the intrinsic kinetic energy, the two-body potential and the three-body potential. Higher-body
operators of the Hamiltonian will be ignored in this work. The operators in Eq. (2.2) are assumed to be invariant under Galilean
boosts.

The intrinsic kinetic energy is conveniently written as the difference between the kinetic energy expressed in the laboratory
frame and its center-of-mass contribution:

𝑇 = 𝑇 𝑙𝑎𝑏 − 𝑇 𝑐𝑚, (2.3)

ith

𝑇 𝑙𝑎𝑏 =
∑

𝑖

𝒑2𝑖
2𝑚𝑁

. (2.4)

𝑇 is a two-body operator that can be expressed as

𝑇 = 1
2𝑚𝑁 𝐴̂

∑

𝑖<𝑗
(𝒑𝑖 − 𝒑𝑗 )2, (2.5)

where 𝐴̂ represents the particle-number operator1 and 𝑚𝑁 represents the average mass of the nucleon. Following [22,23], Eq. (2.5)

1 While operators are denoted in this paper without the ‘hat’ symbol, a different notation is used for the particle-number operator to allow a clear distinction
2

rom the number of particles 𝐴 of the system, consistently with [22].
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can be re-written by using the identity
∑

𝑖<𝑗
(𝒑𝑖 − 𝒑𝑗 )2 =

∑

𝑖<𝑗
(𝒑2𝑖 + 𝒑2𝑗 − 2𝒑𝑖 ⋅ 𝒑𝑗 ) = (𝐴̂ − 1)

∑

𝑖
𝒑2𝑖 − 2

∑

𝑖<𝑗
𝒑𝑖 ⋅ 𝒑𝑗 , (2.6)

hich leads to an alternative expression for the intrinsic kinetic energy

𝑇 = 𝐴̂ − 1
𝐴̂

∑

𝑖

𝒑2𝑖
2𝑚𝑁

− 1
𝑚𝑁 𝐴̂

∑

𝑖<𝑗
𝒑𝑖 ⋅ 𝒑𝑗 . (2.7)

q. (2.3) is then recovered by identifying the center-of-mass correction of the kinetic energy with

𝑇 𝑐𝑚 = 1
𝐴̂

∑

𝑖

𝒑2𝑖
2𝑚𝑁

+ 1
𝑚𝑁 𝐴̂

∑

𝑖<𝑗
𝒑𝑖 ⋅ 𝒑𝑗 , (2.8)

hich is the sum of a one-body and a two-body operators. Note that Eqs. (2.5) and (2.7) are equivalent only in virtue of the
resence of the particle number operator 𝐴̂ [22]. In most practical applications this is simply replaced with the number of particles
so that the equivalence between the two relations is preserved only for wave function based methods that are formulated in

he 𝐴-body Hilbert space, such as Full Configuration Interaction (FCI) or Quantum Monte Carlo (QMC) in coordinate space. For
ethods formulated in Fock space–for example, the SCGF that explores intermediate configuration states by particle attachment

nd removal–the two forms of the intrinsic kinetic energy with a fixed value of 𝐴 are no longer exactly equivalent. In practice, it
s found that Eq. (2.7) is the most accurate choice in presence of explicit truncations of the many-body expansion. The calculation
f the matrix elements of the kinetic operator is then reduced to the calculation of the one-body 𝒑2𝑖 and the two-body 𝒑𝑖 ⋅ 𝒑𝑗 matrix
lements. Thus, the complete intrinsic Hamiltonian reads

𝐻 = 𝐴̂ − 1
𝐴̂

∑

𝑖

𝒑2𝑖
2𝑚𝑁

− 1
𝑚𝑁 𝐴̂

∑

𝑖<𝑗
𝒑𝑖 ⋅ 𝒑𝑗 +

∑

𝑖<𝑗
𝑉𝑖𝑗 +

∑

𝑖<𝑗<𝑘
𝑊𝑖𝑗𝑘

= 𝐴̂ − 1
𝐴̂

𝑇 𝑙𝑎𝑏 +
∑

𝑖<𝑗
(𝑉𝑖𝑗 − 𝑇 𝑐𝑚𝑖𝑗 ) +

∑

𝑖<𝑗<𝑘
𝑊𝑖𝑗𝑘 ,

(2.9)

here 𝑇 𝑐𝑚𝑖𝑗 is the two-body component of Eq. (2.8).

.2. Single-particle basis

In this work, Greek letters (𝛼) will be used as collective indices for the quantum numbers defining the single-particle basis and
he corresponding letter 𝑎 and 𝑎̃ for specific subgroups of them. For spherical basis states with both spin (𝒔̂) and isospin (𝒕̂) degrees

of freedom, one has

𝑎̃ ≡ (𝑛𝛼 , 𝑙𝛼 , 𝑗𝛼) = (𝑛𝛼 , 𝜋𝛼 , 𝑗𝛼) , (2.10a)

𝑎 ≡ (𝑎̃, 𝜏𝛼) = (𝑛𝛼 , 𝑙𝛼 , 𝑗𝛼 , 𝜏𝛼) = (𝑛𝛼 , 𝜋𝛼 , 𝑗𝛼 , 𝜏𝛼) , (2.10b)

𝛼 ≡ (𝑎, 𝑚𝛼) = (𝑛𝛼 , 𝑙𝛼 , 𝑗𝛼 , 𝜏𝛼 , 𝑚𝛼) = (𝑛𝛼 , 𝜋𝛼 , 𝑗𝛼 , 𝜏𝛼 , 𝑚𝛼) , (2.10c)

where 𝑛𝛼 , 𝑙𝛼 , 𝜋𝛼 , 𝑗𝛼 , 𝜏𝛼 and 𝑚𝛼 represent respectively the principal quantum number, the orbital angular momentum, the parity, the
total angular momentum (resulting from the sum of the orbital angular momentum and the spin, 𝒋̂ = 𝒍̂ + 𝒔̂), the projection of the
isospin and the projection of the total angular momentum along the quantization axis of the quantum state. The parity is implied
by the angular momentum (𝜋𝛼 = (−1)𝑙𝛼 ). Likewise, the magnitudes of spin and isospin are fixed as they are intrinsic properties
of particles (𝑠 = 𝑡 = 1∕2 for protons and neutrons). Note that the right hand sides of Eqs. (2.10) assume spin 𝑠 = 1∕2 fermions
since the relation 𝑗𝛼 = 𝑙𝛼 ± 1∕2 implies that the pair of quantum numbers (𝑙𝛼 , 𝑗𝛼) can be inferred from the knowledge of (𝜋𝛼 , 𝑗𝛼). In
the general case, e.g. for 𝑠 = 3∕2 baryons, the value of 𝑙𝛼 must be retained. The coupling of 𝑙𝛼 and 𝑠𝛼 to give 𝑗𝛼 will be indicated

ith the notation (𝑙𝛼𝑠𝛼)𝑗𝛼 and will be always implicitly assumed in the rest of this work when a total angular momentum 𝑗 is used.
he projection of the isospin encodes informations about the charge of the nucleon (neutron or proton). Many-body states built
y taking the quantum number 𝑚𝛼 explicitly into account are said to be in ‘𝑚-scheme’. Likewise, for Nuclear Physics applications
ne refers to isospin or to proton–neutron (p-n) scheme (or equivalently to ‘𝑇 -coupled’ or ‘𝑇 -decoupled’ scheme) when nucleons are
oupled respectively to the total isospin (𝑻̂ = 𝒕̂1 + 𝒕̂2) or when the isospin-projections 𝜏1 and 𝜏2 are kept as an explicit label for
he single-particle states. In the latter case, one keeps track of the total number of protons and neutron separately. In this work,
-coupled 𝑇 -decoupled matrix elements will always be considered. Expressions for cases different from nuclear physics, such as
lectron or quantum gasses where no isospin is present, can be obtained by specializing our results to systems with all polarized
sospins (for example assigning 𝜏 = +1∕2 to all the particles).

To describe fermions in Fock space, consider a set of anti-commuting creation (𝑐†𝛼) and annihilation (𝑐𝛼) operators

{𝑐𝛼 , 𝑐𝛽} = 0, {𝑐†𝛼 , 𝑐
†
𝛽} = 0, {𝑐𝛼 , 𝑐

†
𝛽} = 𝛿𝛼𝛽 , (2.11)

here the latter notation represents the product of Kronecker deltas on all relevant quantum numbers,
3

𝛿𝛼𝛽 = 𝛿𝑛𝛼𝑛𝛽 𝛿𝑙𝛼 𝑙𝛽 𝛿𝑗𝛼𝑗𝛽 𝛿𝑚𝛼𝑚𝛽 𝛿𝜏𝛼𝜏𝛽 . (2.12)
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One-, two- and three-nucleon states are defined as

|𝛼⟩ ≡ 𝑐†𝛼|0⟩, (2.13a)

|𝛼𝛽⟩ ≡ 𝑐†𝛼𝑐
†
𝛽 |0⟩, (2.13b)

|𝛼𝛽𝛾⟩ ≡ 𝑐†𝛼𝑐
†
𝛽𝑐

†
𝛾 |0⟩, (2.13c)

where |0⟩ is the vacuum state. A generic 𝑛-body operator 𝑂[𝑛] can be expressed as a function of creation and annihilation operators:

𝑂[𝑛] ≡
(

1
𝑛!

)2
∑

𝛼′1…𝛼′𝑛

∑

𝛼1…𝛼𝑛

𝑂𝛼′1…𝛼′𝑛 𝛼1…𝛼𝑛 𝑐
†
𝛼′1
… 𝑐†

𝛼′𝑛
𝑐𝛼𝑛 … 𝑐𝛼1 , (2.14)

here the object 𝑂𝛼′1…𝛼′𝑛𝛼1…𝛼𝑛 is the properly antisymmetrized matrix element ⟨𝛼′1 … 𝛼′𝑛|𝑂
[𝑛]
|𝛼1 … 𝛼𝑛⟩𝐴. The Hamiltonian in Eq. (2.9)

n second quantization reads

𝐻 =
∑

𝛼𝛿

(

1 − 1
𝐴

)

𝑇 𝑙𝑎𝑏𝛼𝛿 𝑐
†
𝛼𝑐𝛿 +

(

1
2!

)

∑

𝛼𝛽𝛿𝜀
(𝑉𝛼𝛽 𝛿𝜀 − 𝑇 𝑐𝑚𝛼𝛽 𝛿𝜀)𝑐

†
𝛼𝑐

†
𝛽𝑐𝜀𝑐𝛿 +

(

1
3!

)

∑

𝛼𝛽𝛾𝛿𝜀𝜑
𝑊𝛼𝛽𝛾 𝛿𝜀𝜑𝑐

†
𝛼𝑐

†
𝛽𝑐

†
𝛾 𝑐𝜑𝑐𝜀𝑐𝛿 . (2.15)

-coupled scheme
The invariance under rotations of the Hamiltonian in Eq. (2.15) allows to reduce the number of matrix elements to be computed

or calculations in a fixed model space. To exploit this symmetry, the following two- and three-body states can be defined

|(𝑎𝑏)𝐽𝑀𝐽 ⟩𝑁 ≡ 1
√

1 + 𝛿𝑎𝑏

∑

𝑚𝛼𝑚𝛽

⟨𝑗𝛼𝑚𝛼𝑗𝛽𝑚𝛽 |𝐽𝑀𝐽 ⟩|𝛼𝛽⟩, (2.16)

|[(𝑎𝑏)𝐽𝑎𝑏𝑐]𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩ ≡
∑

𝑚𝛼𝑚𝛽𝑚𝛾

⟨𝑗𝛼𝑚𝛼𝑗𝛽𝑚𝛽 |𝐽𝑎𝑏𝑀𝐽𝑎𝑏 ⟩⟨𝐽𝑎𝑏𝑀𝐽𝑎𝑏 𝑗𝛾𝑚𝛾 |𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩|𝛼𝛽𝛾⟩, (2.17)

here the subscript 𝑁 indicates that the two-body state is normalized and the delta function

𝛿𝑎𝑏 = 𝛿𝑛𝛼𝑛𝛽 𝛿𝑙𝛼 𝑙𝛽 𝛿𝑗𝛼𝑗𝛽 𝛿𝜏𝛼𝜏𝛽 (2.18)

s analogous to Eq. (2.12). The normalization of the three-body state is cumbersome and is typically not included in the computed
atrix elements. The matrix elements of spherically symmetric operators among the 𝐽 -scheme states (2.16)–(2.17) drop the
ependence on the 𝑀 quantum number. As a consequence, less states are required to represent a given model space and the
omputational time as well as the memory required to store two- and three-body matrix elements are reduced.

A generic 𝐽 -coupled two-body state can be antisymmetrized as follows:

|(𝑎𝑏)𝐽𝑀𝐽 ⟩𝐴 = |(𝑎𝑏)𝐽𝑀𝐽 ⟩ − (−1)𝑗𝛼+𝑗𝛽−𝐽 |(𝑏𝑎)𝐽𝑀𝐽 ⟩ , (2.19)

hile the antisymmetrization of 𝐽 -coupled three-body states is more complicated and will be discussed in details in Section 5 and
ppendix E.

.3. The single-particle wave function

The nuclear single-particle isospin-dependent wave functions in coordinate space (CS) and momentum space (MS) take the form

𝛹𝑛𝑙𝑚𝑙𝜏 (𝒓) ≡ ⟨𝒓|𝑛𝑙𝑚𝑙𝜏⟩ ≡ 𝜙𝑛𝑙𝜏 (𝑟)𝑌𝑙𝑚𝑙 (𝑟̂), (2.20)

𝛹̃𝑛𝑙𝑚𝑙𝜏 (𝒌) ≡ ⟨𝒌|𝑛𝑙𝑚𝑙𝜏⟩ ≡ 𝜙𝑛𝑙𝜏 (𝑘)𝑌𝑙𝑚𝑙 (𝑘̂). (2.21)

here 𝜙𝑛𝑙𝜏 represents the isospin-dependent radial wave function and 𝑌𝑙𝑚𝑙 is a spherical harmonic, whose argument is a solid angle
= (𝜗, 𝜑). Note that the radial wave functions can be easily generalized to spin-dependent wave functions 𝜙𝑛𝑙𝑗𝜏 (𝑟) and 𝜙𝑛𝑙𝑗𝜏 (𝑘).

he total wave functions in CS and MS are related by a Fourier transform and equivalently their radial wave functions are related
hrough Hankel transforms

𝜙𝑛𝑙𝜏 (𝑟) ≡ ⟨𝑟|𝑛𝑙𝜏⟩ =
√

2
𝜋 ∫

+∞

0
𝑑𝑘 𝑘2 𝑗𝑙(𝑘𝑟)𝜙𝑛𝑙𝜏 (𝑘), (2.22)

𝜙𝑛𝑙𝜏 (𝑘) ≡ ⟨𝑘|𝑛𝑙𝜏⟩ =
√

2
𝜋 ∫

+∞

0
𝑑𝑟 𝑟2 𝑗𝑙(𝑘𝑟)𝜙𝑛𝑙𝜏 (𝑟), (2.23)

where 𝑗𝑙(𝑘𝑟) represents the spherical Bessel function of the first kind. It is important to notice that Eq. (2.23) does not directly produce
the radial part of the Fourier transformed state (2.21) but there is an additional complex phase involved (see Appendix B for further
details):

𝜙 (𝑘) = (−𝑖)𝑙 𝜙 (𝑘) . (2.24)
4

𝑛𝑙𝜏 𝑛𝑙𝜏
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One may chose to disregard this phase and use Eqs. (2.22) and (2.23) to define the CS and MS states [that is, 𝜙𝑛𝑙𝜏 (𝑘) ≡ 𝜙𝑛𝑙𝜏 (𝑘)].
This is convenient because both radial parts can be kept real, however, it must be bore in mind that Eqs. (2.20) and (2.21) are no
longer exact Fourier transforms of each other in this case: matrix elements computed in the CS basis may acquire additional phases
in the MS one and vice versa. Furthermore, the radial functions can have oscillating asymptotic behaviors with changing number of
nodes—that is when varying the principal quantum number 𝑛. In this work, the general case where 𝜙𝑛𝑙𝜏 (𝑟) and 𝜙𝑛𝑙𝜏 (𝑘) take complex
values is considered. Leaving the imaginary phase aside, the following convention is assumed:

𝜙𝑛𝑙𝜏 (𝑟) > 0, for 𝑟 → 0, (2.25)

𝜙𝑛𝑙𝜏 (𝑘) ∼ (−1)𝑛, for 𝑘→ 0. (2.26)

2.4. Beyond the Harmonic Oscillator basis

The HO basis has been widely employed in ab initio nuclear structure. The reasons are multiple: the HO potential seems to be a
proper choice to describe well-bound closed-shell systems, which are the first systems that have been studied in ab initio theory. The
specific analytical expression (Eqs. (B.4) and (B.5)) of the HO wave functions allows for various simplifications: first of all, it allows
for an exact separation of the intrinsic and center-of-mass motions, which as discussed in Sections 4.4 and 5 is necessary to go from
the laboratory frame to the intrinsic one. Second, the specific transformation between center-of-mass (𝒓, 𝑹) and single-particle (𝒓1,
𝒓2) coordinates:

(

𝒓
𝑹

)

=
⎛

⎜

⎜

⎝

√

𝑑
𝑑+1 −

√

1
𝑑+1

√

1
𝑑+1

√

𝑑
𝑑+1

⎞

⎟

⎟

⎠

(

𝒓1
𝒓2

)

, (2.27)

where 𝑑 = 𝑚1∕𝑚2 for a two-body system) can be carried out in the HO basis by the Moshinsky brackets (⟨𝑛𝑁(𝑙𝐿)𝜆|𝑛1𝑛2(𝑙1𝑙2)𝜆⟩𝑑) [17],
hose implementation is computationally very convenient. Furthermore, these coefficients are diagonal among major oscillator

hells so that the constraint 2𝑛 + 𝑙 + 2𝑁 + 𝐿 = 2𝑛1 + 𝑙1 + 2𝑛2 + 𝑙2 is always satisfied. This property is referred to as the conservation
f the energy for the Moshinsky brackets and it allows to greatly simplify the calculation based on HO states given the large number
f vanishing coefficients it implies. Finally, since HO wave-functions are isospin-independent, the number of matrix elements to be
tored can be reduced exploiting this symmetry.

The formalism developed in this paper allows to go beyond several limitations imposed by the HO basis. First of all, isospin-
ependent bases can be employed, so that one can exploit the advantages of expanding matrix elements on two different bases to
ackle for instance neutron-rich exotic systems in which the radial density behavior of neutrons and protons can be very different.
econd, the Moshinsky brackets that are employed in the case of the HO wave functions are substituted by the WC brackets
𝑟𝑅(𝑙𝐿)𝜆|𝑛1𝑛2(𝑙1𝑙2)𝜆⟩ [16], which are at the heart of this paper and can be applied to a completely generic basis. This will allow
reaking the constraints that presently link ab initio methods in nuclear physics to the HO basis. These coefficients allow for a change
f coordinates that generalizes Eq. (2.27), as follows:

(

𝒓1
𝒓2

)

=
(

𝑠1 𝑡1
𝑠2 𝑡2

)(

𝒓
𝑹

)

, (2.28)

ith 𝑠1, 𝑡1, 𝑠2, 𝑡2 ∈ R. The matrix constituted by these coefficients will be referred to as matrix of Wong–Clement coefficients. It is
traightforward to invert Eq. (2.28) to obtain a generalization of Eq. (2.27). The WC bracket is different compared to the Moshinsky
racket also in the type of states that are coupled, since it can act directly on MS momenta or CS positions, allowing to use single-
article wave functions in either space. On the other hand, the presence of these continuous variables complicates the computation
f WC coefficients. A complete description of these coefficients is given in Appendix D.

. One-body matrix elements

.1. Laboratory-frame kinetic energy

Consider the matrix elements of the kinetic energy operator in the laboratory frame

⟨𝛼|𝑇 𝑙𝑎𝑏|𝛽⟩ = 𝛿𝑚𝛼𝑚𝛽 ⟨𝑎|
𝑝2

2𝑚𝑁
|𝑏⟩ = 𝛿𝑚𝛼𝑚𝛽 𝛿𝑗𝛼 𝑗𝛽 𝛿𝑙𝛼 𝑙𝛽 𝛿𝜏𝛼𝜏𝛽 𝑡

𝑙𝛼𝜏𝛼
𝑛𝛼𝑛𝛽 , (3.1)

here the deltas select subblocks 𝑡𝑙𝛼𝜏𝛼𝑛𝛼𝑛𝛽 of non-vanishing matrix elements of 𝑇 𝑙𝑎𝑏. These matrix elements are easily computed for MS
adial wave functions,

𝑡𝑙𝜏𝑛𝛼𝑛𝛽 = ℏ2

2𝑚𝑁 ∫

+∞

0
𝑑𝑝 𝑝4 𝜙𝑛𝛼 𝑙𝜏 (𝑝)𝜙𝑛𝛽 𝑙𝜏 (𝑝), (3.2)

ith 𝑙 = 𝑙 = 𝑙 and 𝜏 = 𝜏 = 𝜏 . The one-body matrix element in Eq. (3.1) can be re-expressed as a function of CS single-particle
5

𝛼 𝛽 𝛼 𝛽
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wave functions by exploiting the representation of the momentum operator in CS

𝒑 → −𝑖ℏ𝛁 (3.3)

nd the expansion of the Laplace operator in spherical coordinates

𝛥(𝑟) = ∇2(𝑟) =
[

𝑑2

𝑑𝑟2
+ 2
𝑟
𝑑
𝑑𝑟

− 𝐿2

𝑟2

]

. (3.4)

he matrix elements of the operator 𝑡 are easily re-expressed in CS

𝑡𝑙𝜏𝑛𝛼𝑛𝛽 = − ℏ2

2𝑚𝑁 ∫

+∞

0
𝑑𝑟 𝑟2 𝜙𝑛𝛼 𝑙𝜏 (𝑟)

[

𝑑2

𝑑𝑟2
+ 2
𝑟
𝑑
𝑑𝑟

−
𝑙(𝑙 + 1)
𝑟2

]

𝜙𝑛𝛽 𝑙𝜏 (𝑟), (3.5)

where the completeness relation

∫ 𝑑𝑟𝑟2|𝑟⟩⟨𝑟| = 1 (3.6)

nd the orthonormality relation

⟨𝑟|𝑟′⟩ =
𝛿(𝑟 − 𝑟′)
𝑟2

(3.7)

or the radial state |𝑟⟩ hold. Equations analogous to (3.6) and (3.7) stand for the MS state |𝑝⟩.

. Two-body matrix elements

In this section, working relations for computing two-body matrix elements in 𝐽 -coupled 𝑇 -decoupled scheme are obtained. The
𝐽 -coupled scheme minimizes the number of matrix elements to be considered, while the 𝑇 -decoupling allows to take into account
for possible isospin dependence in the single-particle wave functions.

4.1. Center-of-mass correction of the kinetic energy

Expression with MS wave function
The calculation of the center-of-mass correction of the kinetic energy involves evaluating of the matrix elements of the two-body

operator 𝒑1 ⋅ 𝒑2 [11,24], where the subscripts 1 and 2 denote the two particles. By means of Eqs. (A.11) and (A.12), one can write
this operator as a sum of spherical components, [𝒑1 ⋅ 𝒑2]𝜇 :

𝒑1 ⋅ 𝒑2 =
∑

𝜇
[𝒑1 ⋅ 𝒑2]𝜇 = 4𝜋

3
∑

𝜇
(−1)𝜇𝑝1𝑝2𝑌1𝜇(𝑝̂1)𝑌1−𝜇(𝑝̂2) . (4.1)

The radial and angular parts of Eq. (4.1) decouple easily in 𝑚-scheme. Thus,

⟨𝛼𝛽|[𝒑1 ⋅ 𝒑2]𝜇|𝛾𝛿⟩ =
4𝜋
3
(−1)𝜇⟨𝑛𝛼𝑙𝛼𝜏𝛼 , 𝑛𝛽 𝑙𝛽𝜏𝛽 |𝑝1𝑝2|𝑛𝛾 𝑙𝛾𝜏𝛾 , 𝑛𝛿𝑙𝛿𝜏𝛿⟩

×⟨𝑗𝛼𝑚𝛼 , 𝑗𝛽𝑚𝛽 |𝑌1𝜇(𝑝̂1)𝑌1−𝜇(𝑝̂2)|𝑗𝛾𝑚𝛾 , 𝑗𝛿𝑚𝛿⟩.
(4.2)

The radial part is further separable in one-body matrix elements

⟨𝑛𝛼𝑙𝛼𝜏𝛼 , 𝑛𝛽 𝑙𝛽𝜏𝛽 |𝑝1𝑝2|𝑛𝛾 𝑙𝛾𝜏𝛾 , 𝑛𝛿𝑙𝛿𝜏𝛿⟩ = ⟨𝑛𝛼𝑙𝛼𝜏𝛼|𝑝|𝑛𝛾 𝑙𝛾𝜏𝛾 ⟩⟨𝑛𝛽 𝑙𝛽𝜏𝛽 |𝑝|𝑛𝛿𝑙𝛿𝜏𝛿⟩ , (4.3)

where each contribution is expressed as a radial integral

⟨𝑛𝛼𝑙𝛼𝜏𝛼|𝑝|𝑛𝛾 𝑙𝛾𝜏𝛾 ⟩ = ∫

+∞

0
𝑑𝑝 𝑝3 𝜙∗

𝑛𝛼 𝑙𝛼𝜏𝛼
(𝑝)𝜙𝑛𝛾 𝑙𝛾 𝜏𝛾 (𝑝) . (4.4)

Similarly, the angular bracket is separable in two one-body contributions

⟨𝑗𝛼𝑚𝛼 , 𝑗𝛽𝑚𝛽 |𝑌1𝜇(𝑝̂1)𝑌1−𝜇(𝑝̂2)|𝑗𝛾𝑚𝛾 , 𝑗𝛿𝑚𝛿⟩ = ⟨(𝑙𝛼𝑠𝛼)𝑗𝛼𝑚𝛼|𝑌1𝜇|(𝑙𝛾𝑠𝛾 )𝑗𝛾𝑚𝛾 ⟩⟨(𝑙𝛽𝑠𝛽 )𝑗𝛽𝑚𝛽 |𝑌1−𝜇|(𝑙𝛿𝑠𝛿)𝑗𝛿𝑚𝛿⟩. (4.5)

To compute the one-body expectation value of a spherical harmonic we convert it from 𝑗-scheme to 𝑙𝑠-scheme

⟨(𝑙𝛼𝑠𝛼)𝑗𝛼𝑚𝛼|𝑌1𝜇|(𝑙𝛾𝑠𝛾 )𝑗𝛾𝑚𝛾 ⟩ =
∑

𝑚𝑙𝛼𝑚𝑠𝛼𝑚𝑙𝛾 𝑚𝑠𝛾

⟨𝑙𝛼𝑚𝑙𝛼 𝑠𝛼𝑚𝑠𝛼 |𝑗𝛼𝑚𝛼⟩⟨𝑙𝛾𝑚𝑙𝛾 𝑠𝛾𝑚𝑠𝛾 |𝑗𝛾𝑚𝛾 ⟩ ⟨𝑙𝛼𝑚𝑙𝛼 𝑠𝛼𝑚𝑠𝛼 |𝑌1𝜇|𝑙𝛾𝑚𝑙𝛾 𝑠𝛾𝑚𝑠𝛾 ⟩

=
∑

𝑚𝑙𝛼𝑚𝑠𝛾 𝑚𝑙𝛾

⟨𝑙𝛼𝑚𝑙𝛼 𝑠𝛾𝑚𝑠𝛾 |𝑗𝛼𝑚𝛼⟩⟨𝑙𝛾𝑚𝑙𝛾 𝑠𝛾𝑚𝑠𝛾 |𝑗𝛾𝑚𝛾 ⟩⟨𝑙𝛼𝑚𝑙𝛼 |𝑌1𝜇|𝑙𝛾𝑚𝑙𝛾 ⟩ ,
(4.6)

where we use the fact that 𝑌 does not act on spin and ⟨𝑠 𝑚 |𝑠 𝑚 ⟩ = 𝛿 𝛿 . Furthermore, all spins have the same value
6

1𝜇 𝛼 𝑠𝛼 𝛾 𝑠𝛾 𝑠𝛼𝑠𝛾 𝑚𝑠𝛼𝑚𝑠𝛾
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for a system of identical fermions. The angular bracket in Eq. (4.6) is given by Eq. (C.14):

⟨𝑙𝛼𝑚𝑙𝛼 |𝑌1𝜇|𝑙𝛾𝑚𝑙𝛾 ⟩ =
√

3
4𝜋

𝑙𝛾
𝑙𝛼
⟨𝑙𝛾010|𝑙𝛼0⟩⟨𝑙𝛾𝑚𝑙𝛾 1𝜇|𝑙𝛼𝑚𝑙𝛼 ⟩ , (4.7)

where we use the notation of Eq. (C.1). Eq. (C.23) can then be applied to simplify the summation over triple Clebsch–Gordan
coefficients

⟨(𝑙𝛼𝑠𝛼)𝑗𝛼𝑚𝛼|𝑌1𝜇|(𝑙𝛾𝑠𝛾 )𝑗𝛾𝑚𝛾 ⟩ =
√

3
4𝜋

𝑙𝛾
𝑙𝛼
⟨𝑙𝛾010|𝑙𝛼0⟩

∑

𝑚𝑙𝛼𝑚𝑠𝛾 𝑚𝑙𝛾

⟨𝑙𝛾𝑚𝑙𝛾 𝑠𝛾𝑚𝑠𝛾 |𝑗𝛾𝑚𝛾 ⟩ ⟨𝑙𝛼𝑚𝑙𝛼 𝑠𝛾𝑚𝑠𝛾 |𝑗𝛼𝑚𝛼⟩ ⟨𝑙𝛾𝑚𝑙𝛾 1𝜇|𝑙𝛼𝑚𝑙𝛼 ⟩

=
√

1
4𝜋

⟨𝑙𝛾0𝑙𝛼0|10⟩(−)
𝑗𝛾+𝑠𝛾 𝑗𝛾 𝑙𝛼𝑙𝛾 ⟨𝑗𝛾𝑚𝛾1𝜇|𝑗𝛼𝑚𝛼⟩

{

𝑙𝛾 𝑙𝛼 1
𝑗𝛼 𝑗𝛾 𝑠𝛾

}

.

(4.8)

q. (4.8) is valid for fermions with 𝑠𝛼 = 𝑠𝛾 . For the special case of spin 𝑠 = 1∕2, such as electrons or nucleons, Eq. (C.24) allows
urther simplifications:

⟨𝑙𝛾0𝑙𝛼0|10⟩
{

𝑙𝛾 𝑙𝛼 1
𝑗𝛼 𝑗𝛾 1∕2

}

=
[1 + (−1)𝑙𝛼+𝑙𝛾+1]

2
(−1)𝑗𝛾−𝑗𝛼+1+𝑙𝛼−𝑙𝛾

𝑙𝛼 𝑙𝛾
⟨𝑗𝛾

1
2
𝑗𝛼 −

1
2
|10⟩

= 𝜋(𝑙𝛾 , 1, 𝑙𝛼)
(−1)𝑗𝛾−𝑗𝛼+1+𝑙𝛼−𝑙𝛾

𝑙𝛼 𝑙𝛾
(−1)𝑗𝛾−1∕2

√

3
2𝑗𝛼 + 1

⟨𝑗𝛾
1
2
10|𝑗𝛼

1
2
⟩ ,

(4.9)

here the definition

𝜋(𝑙1, 𝑙2,…) ≡ 1
2
[1 + (−1)𝑙1+𝑙2+…] (4.10)

as been used to enforce the parity constraint 𝑙𝛼 = 𝑙𝛾 ± 1. Putting together all above results, one can confirm that the matrix
lement (4.6) satisfies the Wigner–Eckart theorem

⟨(𝑙𝛼𝑠𝛼)𝑗𝛼𝑚𝛼|𝑌1𝜇|(𝑙𝛾𝑠𝛾 )𝑗𝛾𝑚𝛾 ⟩ =⟨𝑗𝛾𝑚𝛾1𝜇|𝑗𝛼𝑚𝛼⟩⟨(𝑙𝛼𝑠𝛼)𝑗𝛼‖𝑌1‖(𝑙𝛾𝑠𝛾 )𝑗𝛾 ⟩ (4.11)

and identifies the reduced matrix elements for 𝑠 = 1∕2 fermions and integer angular momentum with

⟨(𝑙𝛼𝑠𝛼)𝑗𝛼‖𝑌1‖(𝑙𝛾𝑠𝛾 )𝑗𝛾 ⟩ ≡
√

3
4𝜋

𝑗𝛾
𝑗𝛼

(−1)𝑗𝛼−𝑗𝛾+1⟨𝑗𝛾
1
2
10|𝑗𝛼

1
2
⟩𝜋(𝑙𝛾 , 1, 𝑙𝛼) . (4.12)

he second contribution in Eq. (4.5) is analogous but with the substitution 𝜇 → −𝜇. By summing over 𝜇 and coupling to total
ngular momentum J we obtain:

∑

𝜇
(−1)𝜇⟨𝑎𝑏; 𝐽 |𝑌1𝜇(𝑝̂1)𝑌1−𝜇(𝑝̂2)|𝑐𝑑; 𝐽⟩ =

=
∑

𝑚𝛼 𝑚𝛽 𝜇
𝑚𝛾 𝑚𝛿

(−1)𝜇⟨𝑗𝛼𝑚𝛼𝑗𝛽𝑚𝛽 |𝐽𝑀𝐽 ⟩⟨𝑗𝛾𝑚𝛾 𝑗𝛿𝑚𝛿|𝐽𝑀𝐽 ⟩⟨𝛼𝛽|𝑌1𝜇(𝑝̂1)𝑌1−𝜇(𝑝̂2)|𝛾𝛿⟩

= 𝑗𝛼𝑗𝛽
∑

𝑚𝛼 𝑚𝛽 𝜇
𝑚𝛾 𝑚𝛿 𝑀𝐽

(−1)𝑗𝛽+𝑗𝛾+𝐽 ⟨(𝑙𝛼𝑠𝛼)𝑗𝛼‖𝑌1‖(𝑙𝛾𝑠𝛾 )𝑗𝛾 ⟩⟨(𝑙𝛽𝑠𝛽 )𝑗𝛽‖𝑌1‖(𝑙𝛿𝑠𝛿)𝑗𝛿⟩ (−1)
𝑗𝛿+1+𝑗𝛾+𝑚𝛿+𝜇−𝑚𝛾

×
(

𝑗𝛼 𝐽 𝑗𝛽
−𝑚𝛼 𝑀𝐽 −𝑚𝛽

)(

𝑗𝛼 1 𝑗𝛾
−𝑚𝛼 𝜇 −𝑚𝛾

)(

𝑗𝛿 𝐽 𝑗𝛾
−𝑚𝛿 𝑀𝐽 −𝑚𝛾

)(

𝑗𝛿 1 𝑗𝛽
𝑚𝛿 −𝜇 −𝑚𝛽

)

= (−1)𝑗𝛽+𝑗𝛾+𝐽 𝑗𝛼𝑗𝛽

{

𝑗𝛼 𝑗𝛽 𝐽
𝑗𝛿 𝑗𝛾 1

}

⟨(𝑙𝛼𝑠𝛼)𝑗𝛼‖𝑌1‖(𝑙𝛾𝑠𝛾 )𝑗𝛾 ⟩⟨(𝑙𝛽𝑠𝛽 )𝑗𝛽‖𝑌1‖(𝑙𝛿𝑠𝛿)𝑗𝛿⟩ ,

(4.13)

where Eq. (2.16) has been used without normalization and we have exploited the symmetry properties of the 3𝑗 symbols and
Eq. (C.18). Eventually, the antisymmetrized and normalized matrix elements of product of momenta 𝒑1 ⋅ 𝒑2 can be expressed as

⟨𝑎𝑏; 𝐽 |𝒑1 ⋅ 𝒑2|𝑐𝑑; 𝐽⟩𝐴𝑁 = 1
√

1 + 𝛿𝑎𝑏

1
√

1 + 𝛿𝑐𝑑

[

⟨𝑎𝑏; 𝐽 |𝒑1 ⋅ 𝒑2|𝑐𝑑; 𝐽⟩ − (−1)𝑗𝛾+𝑗𝛿−𝐽 ⟨𝑎𝑏; 𝐽 |𝒑1 ⋅ 𝒑2|𝑑𝑐; 𝐽⟩
]

. (4.14)

ach two-body contribution is conveniently written as

⟨𝑎𝑏; 𝐽 |𝒑1 ⋅ 𝒑2|𝑐𝑑; 𝐽⟩ = (−1)𝑗𝛽+𝑗𝛾+𝐽 𝑗𝛼𝑗𝛽

{

𝑗𝛼 𝑗𝛽 𝐽
𝑗𝛿 𝑗𝛾 1

}

⟨𝑎‖𝒑1‖𝑐⟩⟨𝑏‖𝒑2‖𝑑⟩, (4.15)

here the one-body reduced brackets, which include both the radial and angular one-body contributions, are defined by

⟨𝑎‖𝒑‖𝑏⟩ =
√

4𝜋
[ +∞

𝑑𝑝 𝑝3 𝜙∗ (𝑝)𝜙𝑛 𝑙 𝜏 (𝑝)
]

⟨(𝑙𝛼𝑠𝛼)𝑗𝛼‖𝑌1‖(𝑙𝛽𝑠𝛽 )𝑗𝛽⟩. (4.16)
7

3 ∫0 𝑛𝛼 𝑙𝛼𝜏𝛼 𝛽 𝛽 𝛽
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The separability of the two-body matrix elements in Eq. (4.15) into a product of two one-body matrix elements makes the
computational time required for their calculation scale the same as one-body matrix elements.

Expression with CS wave function
For single-particle wave functions expressed in CS, the center-of-mass correction of the kinetic energy can be computed from

q. (4.14) through a preliminary Hankel transform [c.f.r. Eq. (2.23)] of the radial part in MS (and keeping track of the complex
hase (2.24), see Appendix B). In most cases this implies performing additional computations to evaluate the Hankel transform
hich might introduce numerical noise. Another option is to represent the momentum operator in CS without manipulating the
ave functions. In this case, Eq. (4.4) and the reduced matrix elements (4.16) need to be substituted with appropriate CS integrals.
e discuss the relevant formulae in the following.
Consider the product of momenta in coordinate space

𝒑1 ⋅ 𝒑2 = −ℏ2𝛁1 ⋅ 𝛁2 = −ℏ2
∑

𝜇
(−1)𝜇∇1𝜇∇1−𝜇 . (4.17)

The spherical components of the gradient operator have a rather complicated form [25]

∇1𝜇 =
√

4𝜋
3

{

𝑌1𝜇
𝑑
𝑑𝑟

− 𝑖
𝑟
[𝑌1 × 𝐿1]1𝜇

}

, (4.18)

which no longer factorizes in a radial and angular part. However, it still is a rank-1 tensor operator and it satisfies the Wigner–Eckart
theorem for the matrix elements among spherical angular states:

⟨𝑛𝛼𝑙𝛼𝑚𝑙𝛼 |∇1𝜇|𝑛𝛽 𝑙𝛽𝑚𝑙𝛽 ⟩ = ⟨𝑛𝛼𝑙𝛼𝜏𝛼‖𝛁‖𝑛𝛽 𝑙𝛽𝜏𝛽⟩⟨𝑙𝛽𝑚𝑙𝛽 1𝜇|𝑙𝛼𝑚𝑙𝛼 ⟩ . (4.19)

he computation of such reduced matrix elements is lengthy but straightforward and is discussed in detail in Ref. [25] (Section
3.2.4). One has

⟨𝑛𝛼𝑙𝛼𝜏𝛼‖𝛁‖𝑛𝛽 𝑙𝛽𝜏𝛽⟩ =

√

𝑙𝛽 + 1
2𝑙𝛼 + 1

𝐴
𝑛𝛽 𝑙𝛽 𝜏𝛽
𝑛𝛼 𝑙𝛼𝜏𝛼

𝛿𝑙𝛼 ,𝑙𝛽+1 −

√

𝑙𝛽
2𝑙𝛼 + 1

𝐵
𝑛𝛽 𝑙𝛽 𝜏𝛽
𝑛𝛼 𝑙𝛼𝜏𝛼

𝛿𝑙𝛼 ,𝑙𝛽−1, (4.20)

with the definitions

𝐴
𝑛𝛽 𝑙𝛽 𝜏𝛽
𝑛𝛼 𝑙𝛼𝜏𝛼

≡ ∫

+∞

0
𝑑𝑟 𝑟2 𝜙∗

𝑛𝛼 𝑙𝛼𝜏𝛼
(𝑟)

[

𝑑
𝑑𝑟

−
𝑙𝛽
𝑟

]

𝜙𝑛𝛽 𝑙𝛽 𝜏𝛽 (𝑟), (4.21a)

𝐵
𝑛𝛽 𝑙𝛽 𝜏𝛽
𝑛𝛼 𝑙𝛼𝜏𝛼

≡ ∫

+∞

0
𝑑𝑟 𝑟2 𝜙∗

𝑛𝛼 𝑙𝛼𝜏𝛼
(𝑟)

[

𝑑
𝑑𝑟

+
𝑙𝛽 + 1
𝑟

]

𝜙𝑛𝛽 𝑙𝛽 𝜏𝛽 (𝑟). (4.21b)

To find the reduced matrix elements in a 𝐽 -coupled single-particle states we proceed in analogy with Eqs. (4.6)–(4.8) and write:

⟨𝛼|∇1𝜇|𝛾⟩ = 𝛿𝜏𝛼𝜏𝛾 ⟨𝑛𝛼𝑙𝛼𝜏𝛼‖𝛁‖𝑛𝛾 𝑙𝛾𝜏𝛾 ⟩
∑

𝑚𝑙𝛼𝑚𝑠𝛾 𝑚𝑙𝛾

⟨𝑙𝛼𝑚𝑙𝛼 𝑠𝛾𝑚𝑠𝛾 |𝑗𝛼𝑚𝛼⟩⟨𝑙𝛾𝑚𝑙𝛾 𝑠𝛾𝑚𝑠𝛾 |𝑗𝛾𝑚𝛾 ⟩⟨𝑙𝛾𝑚𝑙𝛾 1𝜇|𝑙𝛼𝑚𝑙𝛼 ⟩

= 𝛿𝜏𝛼𝜏𝛾 ⟨𝑛𝛼𝑙𝛼𝜏𝛼‖𝛁‖𝑛𝛾 𝑙𝛾𝜏𝛾 ⟩(−1)
𝑙𝛼+𝑗𝛾+𝑠𝛾+1 𝑗𝛾 𝑙𝛼 ⟨𝑗𝛾𝑚𝛾1𝜇|𝑗𝛼𝑚𝛼⟩

{

𝑗𝛾 1 𝑗𝛼
𝑙𝛼 𝑠𝛾 𝑙𝛾

}

,
(4.22)

o that we have

⟨𝑎‖𝛁‖𝑐⟩ = 𝛿𝜏𝛼𝜏𝛾 ⟨𝑛𝛼𝑙𝛼𝜏𝛼‖𝛁‖𝑛𝛾 𝑙𝛾𝜏𝛾 ⟩𝐹
𝑗𝛼𝑗𝛾
𝑙𝛼 𝑙𝛾 𝑠𝛾

(4.23)

ith the definition of the quantity

𝐹
𝑗𝛼𝑗𝛾
𝑙𝛼 𝑙𝛾 𝑠𝛾

≡ (−1)𝑙𝛼+𝑗𝛾+𝑠𝛾+1𝑗𝛾 𝑙𝛼

{

𝑗𝛾 1 𝑗𝛼
𝑙𝛼 𝑠𝛾 𝑙𝛾

}

. (4.24)

Performing a coupling to 𝐽 -scheme as for Eq. (4.13), we find the final expression for the (unnormalized and non-antisymmetric)
atrix element:

⟨𝑎𝑏; 𝐽 |𝒑1 ⋅ 𝒑2|𝑐𝑑; 𝐽⟩ = − ℏ2
∑

𝜇
(−1)𝜇⟨𝑎𝑏; 𝐽 |∇1𝜇∇1−𝜇|𝑐𝑑; 𝐽⟩

= − ℏ2⟨𝑎‖𝛁‖𝑐⟩⟨𝑏‖𝛁‖𝑑⟩(−1)𝑗𝛽+𝑗𝛾+𝐽 𝑗𝛼 𝑗𝛽
{

𝑗𝛼 𝑗𝛽 𝐽
𝑗𝛿 𝑗𝛾 1

}

,

= − ℏ2⟨𝑛𝛼𝑙𝛼𝜏𝛼‖𝛁‖𝑛𝛾 𝑙𝛾𝜏𝛾 ⟩⟨𝑛𝛽 𝑙𝛽𝜏𝛽‖𝛁‖𝑛𝛿𝑙𝛿𝜏𝛿⟩𝐹
𝑗𝛼 𝑗𝛾
𝑙𝛼 𝑙𝛾 𝑠𝛾

𝐹
𝑗𝛽 𝑗𝛿
𝑙𝛽 𝑙𝛿𝑠𝛿

(−1)𝑗𝛽+𝑗𝛾+𝐽 𝑗𝛼 𝑗𝛽

{

𝑗𝛼 𝑗𝛽 𝐽
𝑗𝛿 𝑗𝛾 1

}

.

(4.25)

he matrix elements in Eq. (4.25) can be normalized and antisymmetrized according to Eq. (4.14).

.2. Center-of-mass correction of the radius

In this subsection, the matrix elements of the operator 𝒓1 ⋅ 𝒓2 are obtained. This operator does not enter directly the Hamiltonian
ut it is used for the calculation of nuclear radii. Given the symmetry between the expressions of the momentum operator in
8
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coordinate space and the radius operator in momentum space,

𝒑 → −𝑖ℏ𝛁𝑟 , 𝒓 → 𝑖ℏ𝛁𝑝 , (4.26)

t is straightforward to adapt the equations obtained for the center-of-mass correction of the kinetic energy in the previous section
o the case of the center-of-mass correction of the radius. The equations for the expectation value of the operator 𝒑1 ⋅𝒑2 expanded on
he MS wave functions (Eqs. (4.14), (4.15), (4.16)) become the equations for the expectation value of the operator 𝒓1 ⋅ 𝒓2 expanded

on CS wave functions:

⟨𝑎𝑏; 𝐽 |𝒓1 ⋅ 𝒓2|𝑐𝑑; 𝐽⟩𝐴𝑁 = 1
√

1 + 𝛿𝑎𝑏

1
√

1 + 𝛿𝑐𝑑

[

⟨𝑎𝑏; 𝐽 |𝒓1 ⋅ 𝒓2|𝑐𝑑; 𝐽 ⟩ − (−1)𝑗𝛾+𝑗𝛿−𝐽 ⟨𝑎𝑏; 𝐽 |𝒓1 ⋅ 𝒓2|𝑑𝑐; 𝐽 ⟩
]

, (4.27)

⟨𝑎𝑏; 𝐽 |𝒓1 ⋅ 𝒓2|𝑐𝑑; 𝐽⟩ = (−1)𝑗𝛽+𝑗𝛾+𝐽 𝑗𝛼𝑗𝛽

{

𝑗𝛼 𝑗𝛽 𝐽
𝑗𝛿 𝑗𝛾 1

}

⟨𝑎‖𝒓‖𝑐⟩⟨𝑏‖𝒓‖𝑑⟩ , (4.28)

⟨𝑎‖𝒓‖𝑏⟩ =
√

4𝜋
3

[

∫

+∞

0
𝑑𝑟 𝑟3 𝜙∗

𝑛𝛼 𝑙𝛼𝜏𝛼
(𝑟)𝜙𝑛𝛽 𝑙𝛽 𝜏𝛽 (𝑟)

]

⟨𝑙𝛼𝑗𝛼‖𝑌1‖𝑙𝛽𝑗𝛽⟩ . (4.29)

The same applies for the expectation value of the operator 𝒓𝑖 ⋅ 𝒓𝑗 expanded on MS wave functions:

⟨𝑎𝑏; 𝐽 |𝒓1 ⋅ 𝒓2|𝑐𝑑; 𝐽⟩ = −ℏ2⟨𝑛𝛼𝑙𝛼𝜏𝛼‖𝛁𝑝‖𝑛𝛾 𝑙𝛾𝜏𝛾 ⟩⟨𝑛𝛽 𝑙𝛽𝜏𝛽‖𝛁𝑝‖𝑛𝛿𝑙𝛿𝜏𝛿⟩𝐹
𝑗𝛼 𝑗𝛾
𝑙𝛼 𝑙𝛾 𝑠𝛾

𝐹
𝑗𝛽 𝑗𝛿
𝑙𝛽 𝑙𝛿𝑠𝛿

(−1)𝑗𝛽+𝑗𝛾+𝐽
{

𝑗𝛼 𝑗𝛽 𝐽
𝑗𝛿 𝑗𝛾 1

}

, (4.30)

⟨𝑛𝛼𝑙𝛼𝜏𝛼‖𝛁𝑝‖𝑛𝛽 𝑙𝛽𝜏𝛽⟩ ≡

√

𝑙𝛽 + 1
2𝑙𝛼 + 1

𝐴
𝑛𝛽 𝑙𝛽 𝜏𝛽
𝑛𝛼 𝑙𝛼𝜏𝛼

𝛿𝑙𝛼 ,𝑙𝛽+1 −

√

𝑙𝛽
2𝑙𝛼 + 1

𝐵
𝑛𝛽 𝑙𝛽 𝜏𝛽
𝑛𝛼 𝑙𝛼𝜏𝛼

𝛿𝑙𝛼 ,𝑙𝛽−1 , (4.31)

𝐴
𝑛𝛽 𝑙𝛽 𝜏𝛽
𝑛𝛼 𝑙𝛼𝜏𝛼

≡ ∫

+∞

0
𝑑𝑝 𝑝2 𝜙∗

𝑛𝛼 𝑙𝛼𝜏𝛼
(𝑝)

[

𝑑
𝑑𝑝

−
𝑙𝛽
𝑝

]

𝜙𝑛𝛽 𝑙𝛽 𝜏𝛽 (𝑝) , (4.32a)

𝐵
𝑛𝛽 𝑙𝛽 𝜏𝛽
𝑛𝛼 𝑙𝛼𝜏𝛼

≡ ∫

+∞

0
𝑑𝑝 𝑝2 𝜙∗

𝑛𝛼 𝑙𝛼𝜏𝛼
(𝑝)

[

𝑑
𝑑𝑝

+
𝑙𝛽 + 1
𝑝

]

𝜙𝑛𝛽 𝑙𝛽 𝜏𝛽 (𝑝) , (4.32b)

where the coefficients 𝐴 𝑛𝛽 𝑙𝛽 𝜏𝛽
𝑛𝛼 𝑙𝛼𝜏𝛼

and 𝐵 𝑛𝛽 𝑙𝛽 𝜏𝛽
𝑛𝛼 𝑙𝛼𝜏𝛼

are defined in terms of integrals over momenta.

4.3. Coulomb interaction

At the short distance scales typical of hadronic interactions, the strength of the electromagnetic force becomes important even
for nuclear systems. Hence, the two-body part of Hamiltonian (2.15) must contain a Coulomb interaction in the form

𝑉 (|𝒓1 − 𝒓2|) =
𝛼 𝑍1𝑍2
|𝒓1 − 𝒓2|

, (4.33)

here 𝛼 is the fine structure constant and 𝑍𝑖 is the charge number of the 𝑖th particle. The inverse distance term in Eq. (4.33) can be
xpanded by a multiple decomposition [26]:

1
|𝒓1 − 𝒓2|

=
∑

𝜆

𝑟𝜆<
𝑟𝜆+1>

𝑃𝜆(cos 𝜃), (4.34)

here 𝜃 is the angle between the vectors 𝒓1 and 𝒓2, 𝑃𝜆(𝑥) is a Legendre Polynomial of degree 𝜆 and the convention

𝑟< ≡ min(𝑟1, 𝑟2), (4.35a)

𝑟> ≡ max(𝑟1, 𝑟2) (4.35b)

s used. The Legendre polynomial can be expanded in spherical harmonics:

𝑃𝜆(cos 𝜃) =
+𝜆
∑

𝜇=−𝜆

4𝜋
2𝜆 + 1

𝑌𝜆𝜇(𝑟̂1)𝑌 ∗
𝜆𝜇(𝑟̂2), (4.36)

uch that Eq. (4.34) becomes

1
|𝒓1 − 𝒓2|

=
∑

𝜆

4𝜋
2𝜆 + 1

𝑟𝜆<
𝑟𝜆+1>

∑

𝜇
(−1)𝜇 𝑌𝜆𝜇(𝑟̂1)𝑌𝜆−𝜇(𝑟̂2) , (4.37)

here the property 𝑌 ∗
𝜆𝜇(𝑟̂) = (−1)𝜇𝑌𝜆−𝜇(𝑟̂) of spherical harmonics has been employed.

Unlike the case of the center-of-mass corrections discussed in previous subsections, the radial part of the operator (4.37) does
ot separate in two one-body contributions. However, such factorization still holds for the angular terms. Thus, the matrix elements
9
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⟨𝛼𝛽| 1
|𝒓1 − 𝒓2|

|𝛾𝛿⟩ =𝛿𝜏𝛼𝜏𝛾 𝛿𝜏𝛽 𝜏𝛿
∑

𝜆𝜇

4𝜋
2𝜆 + 1

(−1)𝜇 ⟨𝑛𝛼𝑙𝛼𝜏𝛼 , 𝑛𝛽 𝑙𝛽𝜏𝛽 |
𝑟𝜆<
𝑟𝜆+1>

|𝑛𝛾 𝑙𝛾𝜏𝛾 , 𝑛𝛿𝑙𝛿𝜏𝛿⟩

× ⟨(𝑙𝛼𝑠𝛼)𝑗𝛼𝑚𝛼| 𝑌𝜆𝜇 |(𝑙𝛾𝑠𝛾 )𝑗𝛾𝑚𝛾 ⟩⟨(𝑙𝛽𝑠𝛽 )𝑗𝛽𝑚𝛽 | 𝑌𝜆−𝜇 |(𝑙𝛿𝑠𝛿)𝑗𝛿𝑚𝛿⟩ ,

(4.38)

where the radial integral can be written explicitly as

⟨𝑛𝛼𝑙𝛼𝜏𝛼 , 𝑛𝛽 𝑙𝛽𝜏𝛽 |
𝑟𝜆<
𝑟𝜆+1>

|𝑛𝛾 𝑙𝛾𝜏𝛾 , 𝑛𝛿𝑙𝛿𝜏𝛿⟩ = ∫

+∞

0
𝑑𝑟1 𝜙

∗
𝑛𝛼 𝑙𝛼𝜏𝛼

(𝑟1)𝜙𝑛𝛾 𝑙𝛾 𝜏𝛾 (𝑟1)
[

1
𝑟𝜆−11

∫

𝑟1

0
𝑑𝑟2 𝜙

∗
𝑛𝛽 𝑙𝛽 𝜏𝛽

(𝑟2) 𝑟𝜆+22 𝜙𝑛𝛿 𝑙𝛿𝜏𝛿 (𝑟2)

+ 𝑟𝜆+21 ∫

+∞

𝑟1
𝑑𝑟2 𝜙

∗
𝑛𝛽 𝑙𝛽 𝜏𝛽

(𝑟2)
1
𝑟𝜆−12

𝜙𝑛𝛿 𝑙𝛿𝜏𝛿 (𝑟2)
]

.
(4.39)

Note that no charge term is yet included in the operator (4.37) so that Eq. (4.38) is diagonal in isospin. Nevertheless, the
integral (4.39) still depend of isospin through the radial parts of the single-particle basis functions. The angular matrix elements in
Eq. (4.38) obey the Wigner–Eckart theorem

⟨(𝑙𝛼𝑠𝛼)𝑗𝛼𝑚𝛼| 𝑌𝜆𝜇 |(𝑙𝛾𝑠𝛾 )𝑗𝛾𝑚𝛾 ⟩ = ⟨𝑗𝛾𝑚𝛾 𝜆𝜇|𝑗𝛼𝑚𝛼⟩⟨(𝑙𝛼𝑠𝛼)𝑗𝛼‖ 𝑌𝜆 ‖(𝑙𝛾𝑠𝛾 )𝑗𝛾 ⟩ (4.40)

and their derivation follows closely the one shown in Section 4.1 for MS. The reduced matrix element is found to be

⟨(𝑙𝛼𝑠𝛼)𝑗𝛼‖ 𝑌𝜆 ‖(𝑙𝛾𝑠𝛾 )𝑗𝛾 ⟩ =𝛿𝑠𝛼 𝑠𝛾

√

1
4𝜋

⟨𝑙𝛾0𝑙𝛼0|𝜆0⟩(−)
𝑗𝛾+𝑠𝛾 𝑗𝛾 𝑙𝛼𝑙𝛾

{

𝑙𝛾 𝑙𝛼 𝜆
𝑗𝛼 𝑗𝛾 𝑠𝛾

}

, (4.41)

which generalizes Eq. (4.8) to spherical harmonic operators of rank 𝜆 and particles of generic spin 𝑠. This result can also be
specialized to spin 𝑠 = 1∕2 fermions using Eq. (C.24):

⟨(𝑙𝛼
1
2
)𝑗𝛼‖ 𝑌𝜆 ‖(𝑙𝛾

1
2
)𝑗𝛾 ⟩ = (−1)𝜆

√

2𝜆 + 1
4𝜋

⟨𝑗𝛼
1
2
𝜆0|𝑗𝛾

1
2
⟩𝜋(𝑙𝛼 , 𝜆, 𝑙𝛾 ) .

= (−1)𝑗𝛼−𝑗𝛾+𝜆
√

2𝜆 + 1
4𝜋

𝑗𝛾
𝑗𝛼

⟨𝑗𝛾
1
2
𝜆0|𝑗𝛼

1
2
⟩𝜋(𝑙𝛼 , 𝜆, 𝑙𝛾 ) .

(4.42)

he general 𝐽 -coupled and 𝑇 -decoupled matrix element is then calculated as follows

⟨𝑎𝑏; 𝐽 | 1
|𝒓1 − 𝒓2|

|𝑐𝑑; 𝐽⟩ =
∑

𝑚𝛼 𝑚𝛽 𝑚𝛾 𝑚𝛿

⟨𝑗𝛼𝑚𝛼𝑗𝛽𝑚𝛽 |𝐽𝑀𝐽 ⟩⟨𝑗𝛾𝑚𝛾 𝑗𝛿𝑚𝛿|𝐽𝑀𝐽 ⟩⟨𝛼𝛽|
1

|𝒓1 − 𝒓2|
|𝛾𝛿⟩

= 𝛿𝜏𝛼𝜏𝛾 𝛿𝜏𝛽 𝜏𝛿 𝑗𝛼𝑗𝛽
∑

𝜆

4𝜋
2𝜆 + 1

(−1)𝑗𝛽+𝑗𝛾+𝐽+2𝜆⟨𝑛𝛼𝑙𝛼𝜏𝛼 , 𝑛𝛽 𝑙𝛽𝜏𝛽 |
𝑟𝜆<
𝑟𝜆+1>

|𝑛𝛾 𝑙𝛾𝜏𝛾 , 𝑛𝛿𝑙𝛿𝜏𝛿⟩

× ⟨(𝑙𝛼𝑠𝛼)𝑗𝛼‖ 𝑌𝜆 ‖(𝑙𝛾𝑠𝛾 )𝑗𝛾 ⟩⟨(𝑙𝛽𝑠𝛽 )𝑗𝛽‖ 𝑌𝜆 ‖(𝑙𝛿𝑠𝛿)𝑗𝛿⟩
{

𝑗𝛼 𝑗𝛽 𝐽
𝑗𝛿 𝑗𝛾 𝜆

}

.

(4.43)

A simpler relation can be found for nucleons by substituting Eq. (4.42) directly into the latter relation. One finds

⟨𝑎𝑏; 𝐽 | 1
|𝒓1 − 𝒓2|

|𝑐𝑑; 𝐽⟩ = 𝛿𝜏𝛼𝜏𝛾 𝛿𝜏𝛽 𝜏𝛿 𝑗𝛼𝑗𝛽
∑

𝜆
(−1)𝑗𝛽+𝑗𝛾+𝐽 ⟨𝑛𝛼𝑙𝛼𝜏𝛼 , 𝑛𝛽 𝑙𝛽𝜏𝛽 |

𝑟𝜆<
𝑟𝜆+1>

|𝑛𝛾 𝑙𝛾𝜏𝛾 , 𝑛𝛿𝑙𝛿𝜏𝛿⟩

× 𝜋(𝑙𝛼 , 𝜆, 𝑙𝛾 )𝜋(𝑙𝛽 , 𝜆, 𝑙𝛿)⟨𝑗𝛼
1
2
𝜆0|𝑗𝛾

1
2
⟩⟨𝑗𝛽

1
2
𝜆0|𝑗𝛿

1
2
⟩

{

𝑗𝛼 𝑗𝛽 𝐽
𝑗𝛿 𝑗𝛾 𝜆

}

,

(4.44)

which is valid for spin 𝑠 = 1∕2 fermions. The final normalized and antisymmetrized matrix elements are found substituting the latter
elations into Eq. (4.14).

.4. Two-body interaction

The matrix elements of a two-body interaction entering Eq. (2.15) are intended in the laboratory frame so that they must be
xpressed either with respect to products of single-particle orbits or between the corresponding 𝐽 -coupled states (2.16). Invariance

under Galilean translation and rotational symmetry make it easier to model many-body interactions in terms of degrees of freedom
for the relative motion. For Nuclear physics this is normally done using relative two-body coordinates, or Jacobi coordinates for
three or more nucleons.

Let define the two-body relative and center-of-mass momenta 𝒑 and 𝑷 :
(

𝒑
𝑷

)

=

(

1
2 − 1

2
1 1

)

(

𝒌1
𝒌2

)

, (4.45)

here 𝒌1 and 𝒌2 represent the momenta of the two particles. A general two-body interaction can be expanded in terms of the
omenta (𝒌1, 𝒌2) as

𝑉 = ∫ 𝑑𝒌1𝑑𝒌2𝑑𝒌′1𝑑𝒌
′
2 |𝒌1𝒌2⟩⟨𝒌1𝒌2|𝑉 |𝒌′1𝒌

′
2⟩⟨𝒌

′
1𝒌

′
2|𝛿

( 2
∑

(𝒌𝑖 − 𝒌′𝑖)
)

. (4.46)
10
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Equivalently, the expansion can be performed with respect to the momenta (𝒑, 𝑷 ) and reads

𝑉 = ∫ 𝑑𝒑𝑑𝑷 𝑑𝒑′𝑑𝑷 ′
|𝒑𝑷 ⟩⟨𝒑𝑷 |𝑉 |𝒑′𝑷 ′

⟩⟨𝒑′𝑷 ′
|𝛿(𝑷 − 𝑷 ′)

= ∫ 𝑑𝒑𝑑𝒑′ |𝒑⟩⟨𝒑|𝑉 |𝒑′⟩⟨𝒑′|⊗ 1𝑷 ,
(4.47)

where ⟨𝒑|𝑉 |𝒑′⟩ is independent of 𝑷 for a translationally invariant interaction and the center-of-mass contribution has been isolated
in the term

1𝑷 ≡ ∫ 𝑑𝑷 |𝑷 ⟩⟨𝑷 |. (4.48)

In practice, the most generic two-nucleon potential that is employed in ab initio simulations can be expanded on a partial-wave basis
as

⟨𝒑|𝑉 |𝒑′⟩ ⟶ ⟨𝑝(𝑙𝑆)𝑗, 𝑇𝑀𝑇 |𝑉 |𝑝′(𝑙′𝑆′)𝑗, 𝑇𝑀𝑇 ⟩, (4.49)

where 𝑝, 𝑙, 𝑆, 𝑗, 𝑇 ad 𝑀𝑇 represent respectively the modulus of 𝒑, the relative orbital angular momentum, the total spin, the relative
total angular momentum, the total isospin and the projection of the total isospin along the quantization axis of the two-body system.
The projection 𝑚 of the relative total angular momentum along the quantization axis does not appear in Eq. (4.49) in virtue of
spherical symmetry. Note that Eq. (4.49) is also diagonal in 𝑀𝑇 in virtue of the conservation of electric charge. For most of the
nuclear forces that are employed in nuclear physics, including earlier high-precision potentials [14,27] and those based on Chiral
Effective Field Theory (ChEFT) [28–30] , the matrix elements are also diagonal in 𝑇 .

As in the case of the center-of-mass corrections discussed above, the goal is to calculate the 𝐽 -coupled 𝑇 -decoupled matrix
elements:

⟨𝑎𝑏; 𝐽𝑀𝐽 |𝑉 |𝑐𝑑; 𝐽𝑀𝐽 ⟩ ≡ ⟨𝑛𝛼𝑙𝛼𝑗𝛼𝜏𝛼 , 𝑛𝛽 𝑙𝛽𝑗𝛽𝜏𝛽 ; 𝐽𝑀𝐽 |𝑉 |𝑛𝛾 𝑙𝛾 𝑗𝛾𝜏𝛾 , 𝑛𝛿𝑙𝛿𝑗𝛿𝜏𝛿 ; 𝐽𝑀𝐽 ⟩. (4.50)

Differently from what seen in the previous sections, the matrix elements of the two-body interaction discussed here are not calculated
from scratch since for most applications they are provided in a partial wave basis. Hence, one needs to perform a change of basis
from Eq. (4.49) to Eq. (4.50). This change of basis is the topic of the rest of this section. We demonstrate it by focusing on the sole
isospin-independent part of the two-body states, |𝑛𝛼𝑙𝛼𝑗𝛼 , 𝑛𝛽 𝑙𝛽𝑗𝛽 ; 𝐽𝑀𝐽 ⟩, since the isospin couplings enter only the final part of the
transformation. In the following, the various intermediate transformations required are listed.

STEP 1

|𝑛𝛼𝑙𝛼𝑗𝛼 , 𝑛𝛽 𝑙𝛽𝑗𝛽 ; 𝐽𝑀𝐽 ⟩ → |𝑛𝛼𝑛𝛽 [(𝑙𝛼𝑙𝛽 )𝜆, (𝑠𝛼𝑠𝛽 )𝑆]𝐽𝑀𝐽 ⟩ (4.51)

A change from 𝐽 - to 𝑙𝑠-coupling is operated:

|𝑛𝛼𝑙𝛼𝑗𝛼 , 𝑛𝛽 𝑙𝛽𝑗𝛽 ; 𝐽𝑀𝐽 ⟩ =
∑

𝜆𝑆
𝑗𝛼𝑗𝛽 𝜆̂𝑆̂

⎧

⎪

⎨

⎪

⎩

𝑙𝛼 𝑠𝛼 𝑗𝛼
𝑙𝛽 𝑠𝛽 𝑗𝛽
𝜆 𝑆 𝐽

⎫

⎪

⎬

⎪

⎭

|𝑛𝛼𝑛𝛽 [(𝑙𝛼𝑙𝛽 )𝜆, (𝑠𝛼𝑠𝛽 )𝑆]𝐽𝑀𝐽 ⟩, (4.52)

here 𝜆 is the orbital angular momentum that couples 𝑙𝛼 and 𝑙𝛽 , while 𝑆 is the total spin that couples 𝑠𝛼 and 𝑠𝛽 .

TEP 2

|𝑛𝛼𝑛𝛽 [(𝑙𝛼𝑙𝛽 )𝜆, 𝑆]𝐽𝑀𝐽 ⟩ → |𝑝𝑃 [(𝑙𝐿)𝜆, 𝑆]𝐽𝑀𝐽 ⟩ (4.53)

wo different transformations are performed here with one step: the change of coordinate systems from single-particle to relative
nd center-of-mass coordinates represented in Eq. (4.45), and the integration of the single-particle momenta, to give a state with
ingle-particle quantum numbers 𝑛𝛼 and 𝑛𝛽 :

|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩ =
∑

𝑙 𝐿
∫ 𝑑𝑝𝑑𝑃 𝑝2𝑃 2

⟨𝑝𝑃 (𝑙𝐿)𝜆|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩𝜏𝛼𝜏𝛽 |𝑝𝑃 (𝑙𝐿)𝜆⟩, (4.54)

here 𝑙 and 𝐿 are the relative and center-of-mass orbital angular momenta of the two-body system. The intermediate bracket
epresents the WC bracket discussed in Ref. [16] and Appendix D.3. In the specific case of the transformation between momenta
iven by Eq. (4.45), the bracket appearing in Eq. (4.54) is associated with the inverse relation:

(

𝒌1
𝒌2

)

=

(

1 1
2

−1 1
2

)

(

𝒑
𝑷

)

, (4.55)

so that the WC coefficients (analogous to Eq. (2.28)) read
(

𝑠1 𝑡1
𝑠 𝑡

)

=

(

1 1
2

−1 1

)

. (4.56)
11
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STEP 3

|𝑝𝑃 [(𝑙𝐿)𝜆, 𝑆]𝐽𝑀𝐽 ⟩ → |𝑝𝑃 [(𝑙𝑆)𝑗, 𝐿]𝐽𝑀𝐽 ⟩ (4.57)

change of coupling is required to couple the relative angular momentum to the total spin:

|𝑝𝑃 [(𝑙𝐿)𝜆, 𝑆]𝐽𝑀𝐽 ⟩ =
∑

𝑗
𝜆̂𝑗(−1)𝑗+𝐿+𝑆+𝜆

{

𝑗 𝐿 𝐽
𝜆 𝑆 𝑙

}

|𝑝𝑃 [(𝑙𝑆)𝑗, 𝐿]𝐽𝑀𝐽 ⟩, (4.58)

here 𝑗 is the relative total angular momentum of the two particles.

TEP 4

|𝑝𝑃 [(𝑙𝑆)𝑗, 𝐿]𝐽𝑀𝐽 ⟩ → |𝑝(𝑙𝑆)𝑗𝑚, 𝑃𝐿𝑚𝐿⟩ (4.59)

decoupling of the center-of-mass angular momentum 𝐿 from the total 𝐽 is used to exploit the independency of the two-body
otential from the center-of-mass variables

|𝑝𝑃 [(𝑙𝑆)𝑗, 𝐿]𝐽𝑀𝐽 ⟩ =
∑

𝑚𝑚𝐿

⟨𝑗𝑚𝐿𝑚𝐿|𝐽𝑀𝐽 ⟩|𝑝(𝑙𝑆)𝑗𝑚, 𝑃𝐿𝑚𝐿⟩, (4.60)

here 𝑚 and 𝑚𝐿 represent respectively the projection of 𝑗 and 𝐿 along the quantization axis.
The two-body potential is independent of the center-of-mass variables because of translational invariance, see Eq. (4.47).

urthermore, spherical symmetry implies that Eq. (4.49) it is independent of 𝑚 and couples only states with the same total angular
omentum 𝑗:

⟨𝑝(𝑙𝑆)𝑗𝑚, 𝑃𝐿𝑚𝐿|𝑉 |𝑝′(𝑙′𝑆′)𝑗′𝑚′, 𝑃 ′𝐿′𝑚′
𝐿⟩ =

𝛿(𝑃 − 𝑃 ′)
𝑃 2

𝛿𝐿𝐿′𝛿𝑚𝐿𝑚′
𝐿
𝛿𝑗𝑗′𝛿𝑚𝑚′ ⟨𝑝(𝑙𝑆)𝑗|𝑉 |𝑝′(𝑙′𝑆′)𝑗⟩. (4.61)

ence, set aside the isospin degrees of freedom, the expectation value of the two-body potential over the states of Eq. (4.60) leads
o

⟨𝑝𝑃 [(𝑙𝑆)𝑗, 𝐿]𝐽𝑀𝐽 |𝑉 |𝑝′𝑃 ′[(𝑙′𝑆′)𝑗′, 𝐿′]𝐽 ′𝑀 ′
𝐽 ⟩

=
∑

𝑚𝑚𝐿 𝑚′ 𝑚′
𝐿

⟨𝑗𝑚𝐿𝑚𝐿|𝐽𝑀𝐽 ⟩⟨𝑗
′𝑚′𝐿′𝑚′

𝐿|𝐽
′𝑀 ′

𝐽 ⟩⟨𝑝(𝑙𝑆)𝑗𝑚, 𝑃𝐿𝑚𝐿|𝑉 |𝑝′(𝑙′𝑆′)𝑗′𝑚′, 𝑃 ′𝐿′𝑚′
𝐿⟩

=
𝛿(𝑃 − 𝑃 ′)

𝑃 2
𝛿𝐿𝐿′𝛿𝑗𝑗′𝛿𝐽𝐽 ′𝛿𝑀𝐽𝑀 ′

𝐽
⟨𝑝(𝑙𝑆)𝑗|𝑉 |𝑝′(𝑙′𝑆′)𝑗⟩,

(4.62)

where at the last step the orthonormality of the Clebsch–Gordan coefficients (Eq. (C.8)) has been used. At a last step we still need
to recouple the isospin quantum numbers according to Eq. (4.49).

STEP 5

|𝑡𝛼𝜏𝛼 , 𝑡𝛽𝜏𝛽⟩ → |(𝑡𝛼𝑡𝛽 )𝑇𝑀𝑇 ⟩ (4.63)

The total isospin is recoupled

|𝑡𝛼𝜏𝛼 , 𝑡𝛽𝜏𝛽⟩ =
∑

𝑇𝑀𝑇

⟨𝑡𝛼𝜏𝛼𝑡𝛽𝜏𝛽 |𝑇𝑀𝑇 ⟩|𝑇𝑀𝑇 ⟩, (4.64)

and the only value of 𝑀𝑇 that is giving a non-vanishing contribution to the summation is given by the Clebsch–Gordan coefficient
through Eq. (C.3): 𝑀𝑇 = 𝜏𝛼+𝜏𝛽 . After gathering all the above transformations, the complete expression for the change of basis reads

|𝑛𝛼𝑙𝛼𝑗𝛼𝜏𝛼 , 𝑛𝛽 𝑙𝛽𝑗𝛽𝜏𝛽 ; 𝐽𝑀𝐽 ⟩ =
∑

𝜆𝑆 𝑙 𝐿 𝑗 𝑇 𝑀𝑇
∫ 𝑑𝑝𝑑𝑃 𝑝2𝑃 2 (−1)𝑗+𝐿+𝑆+𝜆𝑗𝛼𝑗𝛽 𝜆̂2𝑆̂𝑗

⎧

⎪

⎨

⎪

⎩

𝑙𝛼 𝑠𝛼 𝑗𝛼
𝑙𝛽 𝑠𝛽 𝑗𝛽
𝜆 𝑆 𝐽

⎫

⎪

⎬

⎪

⎭

× ⟨𝑝𝑃 (𝑙𝐿)𝜆|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩𝜏𝛼𝜏𝛽

{

𝑗 𝐿 𝐽
𝜆 𝑆 𝑙

}

⟨𝑡𝛼𝜏𝛼𝑡𝛽𝜏𝛽 |𝑇𝑀𝑇 ⟩|𝑝(𝑙𝑆)𝑗, 𝑇𝑀𝑇 ⟩.

(4.65)

Let us now define the collective index2:

𝛼 ≡ {𝑙, 𝑆, 𝑗, 𝑇 ,𝑀𝑇 }. (4.66)

2 To keep with standard notation in the literature, the Greek letter 𝛼 is used to label the angular and isospin quantum numbers of the relative motion,
nd similarly for three-body relative states in Eq. (5.6). This is not to be confused with the labels for single-particle states (2.10c). The two cases should be
12

istinguished easily from the context.
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The coefficient that expresses the probability amplitude for the change of basis presented in this section is called 𝑇 -coefficient and
can be obtained multiplying Eq. (4.65) by the state |𝑝𝛼, 𝑃𝐿⟩

𝑇 2𝐵 ≡ ⟨𝑝𝛼, 𝑃𝐿|𝑎𝑏; 𝐽𝑀𝐽 ⟩𝑁 = 1
√

1 + 𝛿𝑎𝑏

∑

𝜆
(−1)𝑗+𝐿+𝑆+𝜆𝑗𝛼𝑗𝛽 𝜆̂2𝑆̂𝑗

×

⎧

⎪

⎨

⎪

⎩

𝑙𝛼 𝑠𝛼 𝑗𝛼
𝑙𝛽 𝑠𝛽 𝑗𝛽
𝜆 𝑆 𝐽

⎫

⎪

⎬

⎪

⎭

⟨𝑝𝑃 (𝑙𝐿)𝜆|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩𝜏𝛼𝜏𝛽

{

𝑗 𝐿 𝐽
𝜆 𝑆 𝑙

}

⟨𝑡𝛼𝜏𝛼𝑡𝛽𝜏𝛽 |𝑇𝑀𝑇 ⟩,
(4.67)

where the term 1∕
√

1 + 𝛿𝑎𝑏 is the normalization factor for the two-body 𝐽 -coupled state shown introduced in Eq. (2.16). The final
atrix elements must be antisymmetrized using the two-body antisymmetrization operator,

|𝛼𝛽⟩𝐴 ≡
√

2!|𝛼𝛽⟩ = 1
√

2
(|𝛼𝛽⟩ − |𝛽𝛼⟩). (4.68)

The transposition operator is defined by 𝑇12|𝛼𝛽⟩ = |𝛽𝛼⟩. When acting on the coupled state |𝑎𝑏; 𝐽𝑀𝐽 ⟩ it brings in a phase (−1)𝑗𝛼+𝑗𝛽−𝐽

rising from the Clebsch–Gordan coefficient needed to uncouple the angular momenta. Similarly, inverting the states 𝑎 and 𝑏 in
q. (4.66) introduces a phase (−1)𝑡𝛼+𝑡𝛽−𝑇 from the isospin coupling, a phase (−1)𝑙𝛼+𝑙𝛽+𝑠𝛼+𝑠𝛽+𝑗𝛼+𝑗𝛽+𝜆+𝑆+𝐽 from the 9𝑗 symbol and a

phase (−1)𝜆−𝐿 from the WC bracket. The latter can be obtained from the symmetry relations listed in [16]. In the assumption of
spin and isospin 𝑠 = 𝑡 = 1∕2 and using parity conservation, all the above phases simplify to (−1)𝑙+𝑆+𝑇 , so that the 𝑇 -coefficient for
the antisymmetrized two-body state is given by

⟨𝑝𝛼, 𝑃𝐿|𝑎𝑏; 𝐽𝑀𝐽 ⟩𝐴𝑁 =⟨𝑝𝛼, 𝑃𝐿| 1
√

2
[|𝑎𝑏; 𝐽𝑀𝐽 ⟩𝑁 − (−1)𝑗𝛼+𝑗𝛽−𝐽 |𝑏𝑎; 𝐽𝑀𝐽 ⟩𝑁 ]

=⟨𝑝𝛼, 𝑃𝐿| 1
√

2
[|𝑎𝑏; 𝐽𝑀𝐽 ⟩𝑁 − (−1)𝑙+𝑆+𝑇 |𝑎𝑏; 𝐽𝑀𝐽 ⟩𝑁 ]

=
√

2𝜋(𝑙, 𝑆, 𝑇 )⟨𝑝𝛼, 𝑃𝐿|𝑎𝑏; 𝐽𝑀𝐽 ⟩𝑁 .

(4.69)

inally, the complete formula for change of basis for two-body matrix elements reads

⟨𝑎𝑏; 𝐽𝑀𝐽 |𝑉 |𝑐𝑑; 𝐽𝑀𝐽 ⟩𝐴𝑁 =∫ 𝑑𝑃 𝑃 2
∑

𝐿
∫ 𝑑𝑝𝑑𝑝′ 𝑝2𝑝′2

×
∑

𝛼 𝛼′
⟨𝑎𝑏; 𝐽𝑀𝐽 |𝑝𝛼, 𝑃𝐿⟩𝑁 ⟨𝑝𝛼|𝑉 |𝑝′𝛼′⟩𝐴⟨𝑝

′𝛼′, 𝑃𝐿|𝑐𝑑; 𝐽𝑀𝐽 ⟩𝑁 ,
(4.70)

here the T-coefficients are from Eqs. (4.67) and ⟨𝑝𝛼|𝑉 |𝑝′𝛼′⟩𝐴 ≡ 2𝜋(1, 𝑙, 𝑆, 𝑇 )𝜋(1, 𝑙′, 𝑆′, 𝑇 ′)⟨𝑝𝛼|𝑉 |𝑝′𝛼′⟩ is the antisymmetrized version
f Eqs. (4.49). Because of antisymmetrization, the sums over 𝛼 and 𝛼′ are limited to odd values of 𝑙 + 𝑆 + 𝑇 and 𝑙′ + 𝑆′ + 𝑇 ′.

The equations discussed above can be applied to MS wave functions. CS wave functions can be employed as well, but they need
o be first Hankel-transformed to momentum space (Eq. (2.22)), or equivalently the MS potential must be transformed to CS through
Hankel transform:

⟨𝑟𝛼|𝑉 |𝑟′𝛼′⟩ = 2
𝜋
𝑖𝑙
′−𝑙

∫

+∞

0
𝑑𝑝𝑑𝑝′ 𝑝2𝑝′2 𝑗𝑙(𝑝𝑟) 𝑗𝑙′ (𝑝′𝑟′) ⟨𝑝𝛼|𝑉 |𝑝′𝛼′⟩ , (4.71)

here the phase 𝑖𝑙′−𝑙 results from Eq. (2.24) and it is real for parity conserving interactions (for which 𝑙 − 𝑙′ is an even number).
Eq. (4.71) assumes that the new relative and center-of-mass variables (𝒓, 𝑹) in CS are conjugate to the momenta (𝒑, 𝑷 ) of Eq. (4.45).
They are related to the single-particle positions through the following change of reference system:

(

𝒓
𝑹

)

=

(

1 −1
1
2

1
2

)

(

𝒓1
𝒓2

)

. (4.72)

he computation of two-body matrix elements in CS follows exactly the same steps discussed above with this new reference system.
he only exception that the WC coefficients for the transformation in Eq. (4.54) are substituted by

(

𝑠1 𝑡1
𝑠2 𝑡2

)

𝐶𝑆
=

(

1
2 1
− 1

2 1

)

, (4.73)

hich follow directly from inverting Eq. (4.72).

. Three-body matrix elements

In this section we provide a transformation for a change of basis among three-particle states, similarly to the one of Section 4.4,
hat applies to generic spherical bases. Let be defined the Jacobi momentum coordinates (𝑸𝑐𝑚, 𝒑, 𝒒) as

⎛

⎜

⎜

⎝

𝑸𝑐𝑚
𝒑
𝒒

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

1 1 1
1
2 − 1

2 0
− 1 − 1 2

⎞

⎟

⎟

⎟

⎛

⎜

⎜

⎝

𝒌1
𝒌2
𝒌

⎞

⎟

⎟

⎠

(5.1)
13

⎝ 3 3 3 ⎠ 3
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that represent the center of mass and Jacobi momenta as a function of the single-particle momenta (𝒌1, 𝒌2, 𝒌3). A general
ranslationally-invariant three-body interaction can be expanded with respect to the momenta (𝒌1,𝒌2,𝒌3),

𝑊 = ∫ 𝑑𝒌1𝑑𝒌2𝑑𝒌3 𝑑𝒌′1𝑑𝒌
′
2𝑑𝒌

′
3 |𝒌1𝒌2𝒌3⟩⟨𝒌1𝒌2𝒌3|𝑊 |𝒌′1𝒌

′
2𝒌

′
3⟩⟨𝒌

′
1𝒌

′
2𝒌

′
3| 𝛿

( 3
∑

𝑖=1
(𝒌𝑖 − 𝒌′𝑖)

)

, (5.2)

r it can be equivalently expressed in terms of the momenta (𝑸𝑐𝑚, 𝒑, 𝒒):

𝑊 = ∫ 𝑑𝑸𝑐𝑚𝑑𝒑𝑑𝒒 𝑑𝑸′
𝑐𝑚𝑑𝒑

′𝑑𝒒′ |𝑸𝑐𝑚𝒑𝒒⟩⟨𝑸𝑐𝑚𝒑𝒒|𝑊 |𝑸′
𝑐𝑚𝒑

′𝒒′⟩⟨𝑸′
𝑐𝑚𝒑

′𝒒′| 𝛿(𝑸𝑐𝑚 −𝑸′
𝑐𝑚)

= ∫ 𝑑𝒑𝑑𝒒𝑑𝒑′𝑑𝒒′ |𝒑𝒒⟩⟨𝒑𝒒|𝑊 |𝒑′𝒒′⟩⟨𝒑′𝒒′|⊗ 1𝑸𝑐𝑚 ,
(5.3)

here the center-of-mass contribution has been isolated in the term

1𝑸𝑐𝑚 = ∫ 𝑑𝑸𝑐𝑚 |𝑸𝑐𝑚⟩⟨𝑸𝑐𝑚|. (5.4)

n practice, three-body nuclear interactions that are expressed in terms of Jacobi coordinates, Eq. (5.3), are often given in the
ollowing 𝐽 - and 𝑇 -coupled partial-wave basis [15,31]

⟨𝑝𝑞𝛼|𝑊 |𝑝′𝑞′𝛼′⟩ ≡⟨𝑝𝑞, [(𝐿𝑆)𝐽 , (𝑙𝑠)𝑗]𝑀 , (𝑇 𝑡)𝑀 |𝑊 |𝑝′𝑞′, [(𝐿′𝑆′)𝐽 ′, (𝑙′𝑠′)𝑗′] ′𝑀 ′
 , (𝑇

′𝑡′) ′𝑀 ′
 ⟩ (5.5)

here the collective index 𝛼 carries the angular and isospin degrees of freedom similarly to Eq. (4.66) and it is defined as

𝛼 ≡ {[(𝐿𝑆)𝐽 , (𝑙𝑠)𝑗]𝑀 , (𝑇 𝑡)𝑀 } . (5.6)

he quantum numbers 𝐿, 𝑆, 𝐽 and 𝑇 represent respectively the orbital angular momentum, spin, total angular momentum and
sospin of the relative motion of particles 1 and 2 (associate to momentum 𝒑). 𝑙, 𝑠, 𝑗 and 𝑡 characterize the orbital angular momentum,
he spin, the total angular momentum and the isospin of particle 3 relative to the center-of-mass of the other pair of particles (variable
). The quantum numbers  and  represent the intrinsic total angular momentum and the total isospin of the three-body system,
hile 𝑀 and 𝑀 are their projections along the quantization axis. The parity of state (5.6) under spatial inversion is given by
= (−1)𝐿+𝑙.
For three-body interactions the antisymmetrization is more cumbersome than the two-body case. For such reason, it is convenient

o perform the antisymmetrization directly in the partial-wave basis before projecting the three-body matrix elements in Eq. (5.5)
o spherical single-particle states.

.1. Antisymmetrization

Let be defined the cyclic (anti-cyclic) permutation operators 𝑃123 (𝑃132) as the operators that permute cyclically (anticyclically) a
et of 3 particles:

𝑃123|𝛼𝛽𝛾⟩ = |𝛾𝛼𝛽⟩, (5.7a)

𝑃132|𝛼𝛽𝛾⟩ = |𝛽𝛾𝛼⟩. (5.7b)

ikewise, the transposition operator 𝑇𝑖𝑗 exchanges the two particles 𝑖 and 𝑗 (with 𝑖 ≠ 𝑗 ∈ {1, 2, 3}).

𝑇12|𝛼𝛽𝛾⟩ = |𝛽𝛼𝛾⟩, (5.8a)

𝑇23|𝛼𝛽𝛾⟩ = |𝛼𝛾𝛽⟩, (5.8b)

𝑇13|𝛼𝛽𝛾⟩ = |𝛾𝛽𝛼⟩. (5.8c)

he two operators are connected through the following identities

𝑃123 =𝑇12𝑇23 = 𝑇23𝑇13, (5.9)

𝑃132 =𝑇13𝑇23 = 𝑇23𝑇12. (5.10)

nd the three-body antisymmetrization operator can be written as

 ≡ 1
6
(1 − 𝑇12 − 𝑇13 − 𝑇23 + 𝑃123 + 𝑃132) =

1
6
(1 − 𝑇12)(1 + 𝑃123 + 𝑃132). (5.11)

Because of Eq. (5.1) and the coupling convention (5.5), the state |𝑝𝑞𝛼⟩ takes the following phase under the inversion of the first
wo particles

𝑇12|𝑝𝑞𝛼⟩ = (−)𝐿+𝑆+𝑇 |𝑝𝑞𝛼⟩ , (5.12)

hich is obtained following the same expansion of Section 4.4 and the arguments given below Eq. (4.68). The state |𝑝𝑞𝛼⟩ is said
14
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to be partially antisymmetrized with respect to particles 1 and 2 if

(−)𝐿+𝑆+𝑇 = −1. (5.13)

o that 𝑇12|𝑝𝑞𝛼⟩ = −|𝑝𝑞𝛼⟩. In the following, |𝑝𝑞𝛼⟩ will always be taken to be partially antisymmetric. With this assumption, the
atrix elements of the operator in Eq. (5.11) reduce to

⟨𝑝𝑞𝛼||𝑝′𝑞′𝛼′⟩ =1
3
⟨𝑝𝑞𝛼|1 + 𝑃123 + 𝑃132|𝑝′𝑞′𝛼′⟩

=1
3
⟨𝑝𝑞𝛼|1 + 𝑇12𝑇23 + 𝑇23𝑇12|𝑝′𝑞′𝛼′⟩

=1
3
⟨𝑝𝑞𝛼|1 − 2𝑇23|𝑝′𝑞′𝛼′⟩ .

(5.14)

Three-body interactions from ChEFT can always be decomposed in terms of their three Faddeev components [31]

𝑊 =
3
∑

𝑖=1
𝑉 (𝑖) , (5.15)

hat are related through cyclic permutations of the three particles and each component 𝑉 (𝑖) is symmetric under exchange of the two
articles 𝑗, 𝑘 ≠ 𝑖 ∈ {1, 2, 3}. Hence, the interaction can be written in terms of any of the components and appropriate permutation
r transposition operators:

𝑊 = 𝑉 (1) + 𝑉 (2) + 𝑉 (3) = 𝑉 (1) + 𝑃123𝑉 (1)𝑃−1
123 + 𝑃132𝑉

(1)𝑃−1
132 = 𝑉 (1) + 𝑇12𝑇23𝑉 (1)𝑇13𝑇23 + 𝑇13𝑇23𝑉 (1)𝑇12𝑇23. (5.16)

It follows that the product of the 3N interaction operator and the antisymmetrization operator is given by

𝑊 = 1
3
(𝑉 (1) + 𝑃123𝑉 (1)𝑃−1

123 + 𝑃132𝑉
(1)𝑃−1

132)(1 + 𝑃123 + 𝑃132)

= 1
3
(1 + 𝑃123 + 𝑃132)𝑉 (1)(1 + 𝑃123 + 𝑃132).

(5.17)

One can easily prove that 𝑊 and  commute, so that 𝑊 = 𝑊 . When acting on partially antisymmetric states, Eq. (5.14) holds
and the matrix element of Eq. (5.17) reads

⟨𝑝𝑞𝛼|𝑊 |𝑝′′′𝑞′′′𝛼′′′⟩𝐴 = 1
3

∑

𝛼′ 𝛼′′
∫ 𝑑𝑝′ 𝑑𝑞′ 𝑑𝑝′′ 𝑑𝑞′′ 𝑝′2𝑞′2𝑝′′2𝑞′′2⟨𝑝𝑞𝛼|1 − 2𝑇23|𝑝′𝑞′𝛼′⟩

× ⟨𝑝′𝑞′𝛼′|𝑉 (1)
|𝑝′′𝑞′′𝛼′′⟩⟨𝑝′′𝑞′′𝛼′′|1 − 2𝑇23|𝑝′′′𝑞′′′𝛼′′′⟩,

(5.18)

ith ⟨𝑝𝑞𝛼|𝑊 |𝑝′′′𝑞′′′𝛼′′′⟩𝐴 ≡ ⟨𝑝𝑞𝛼|𝑊|𝑝′′′𝑞′′′𝛼′′′⟩. The structure of the radial part of the transposition operator is discussed in
ppendix E and it implies the evaluation of the three-body potential for several instances of momenta 𝑝 and 𝑞. For practical

mplementation in MS, the three-body matrix elements are often given on a pre-defined mesh of momenta. Thus, an interpolation
f the potential is necessary and it can be conveniently performed with the modified cubic splines method introduced in Ref. [32] to
ackle integrals with moving singularities.

For practical applications to ChEFT in nuclear physics, the three-body momentum space matrix elements must be regularized. A
etailed analysis of such procedure as well as a complete explanation of the various type of regulators (non-local, semi-local, local)
ither in momentum or coordinate space can be found in [33].

.2. 𝑇 -coefficient

This section derives the complete change of basis between the Jacobi MS state that appears in Eq. (5.5) and a single-particle
-coupled 𝑇 -decoupled three-body state

|[(𝑛𝛼𝑙𝛼𝑗𝛼𝜏𝛼 , 𝑛𝛽 𝑙𝛽𝑗𝛽𝜏𝛽 )𝐽12, 𝑛𝛾 𝑙𝛾 𝑗𝛾𝜏𝛾 ]𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩ (5.19)

or a generic spherical basis. Let first of all factorize the isospin-dependent part

|[(𝑛𝛼𝑙𝛼𝑗𝛼𝜏𝛼 , 𝑛𝛽 𝑙𝛽𝑗𝛽𝜏𝛽 )𝐽12, 𝑛𝛾 𝑙𝛾 𝑗𝛾𝜏𝛾 ]𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

= |[(𝑛𝛼𝑙𝛼𝑗𝛼 , 𝑛𝛽 𝑙𝛽𝑗𝛽 )𝐽12, 𝑛𝛾 𝑙𝛾 𝑗𝛾 ]𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩⊗ |𝑡𝛼𝜏𝛼 , 𝑡𝛽𝜏𝛽 , 𝑡𝛾𝜏𝛾 ⟩
(5.20)

nd consider only the isospin-independent term. In the following, various intermediate transformations between states are
erformed.

TEP 1

|{[𝑛𝛼(𝑙𝛼𝑠𝛼)𝑗𝛼 , 𝑛𝛽 (𝑙𝛽𝑠𝛽 )𝑗𝛽 ]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩ (5.21)
15

→|{[𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆, (𝑠𝛼𝑠𝛽 )𝑆]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
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The 𝐽 -coupling of particles 1 and 2 is turned into an 𝑙𝑠-coupling3:

|[(𝑙𝛼𝑠𝛼)𝑗𝛼 , (𝑙𝛽𝑠𝛽 )𝑗𝛽 ]𝐽12⟩ =
∑

𝜆𝑆
𝑗𝛼𝑗𝛽 𝜆̂𝑆̂

⎧

⎪

⎨

⎪

⎩

𝑙𝛼 𝑠𝛼 𝑗𝛼
𝑙𝛽 𝑠𝛽 𝑗𝛽
𝜆 𝑆 𝐽12

⎫

⎪

⎬

⎪

⎭

|[(𝑙𝛼𝑙𝛽 )𝜆 (𝑠𝛼𝑠𝛽 )𝑆]𝐽12⟩. (5.22)

STEP 2

|{[𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆, (𝑠𝛼𝑠𝛽 )𝑆]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{[𝑃𝑝(𝐿𝑃𝐿)𝜆, (𝑠𝛼𝑠𝛽 )𝑆]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(5.23)

change of reference system is performed for particles 1 and 2 into their relative and center-of-mass frame, while at the same time
he single-particle momenta of particle 1 and 2 are integrated

|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩ = ∫ 𝑑𝑃𝑑𝑝 𝑃 2𝑝2
∑

𝐿𝑃𝐿
⟨𝑃𝑝(𝐿𝑃𝐿)𝜆|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩(𝑎)𝜏𝛼𝜏𝛽 |𝑃𝐿𝑃 𝑝𝐿, 𝜆⟩. (5.24)

he WC bracket is associated to the transformation
(

𝒌1
𝒌2

)

=

(

1
2 1
1
2 −1

)

(

𝑷
𝒑

)

(5.25)

nd the associated matrix of WC coefficients is
(

𝑠1 𝑡1
𝑠2 𝑡2

)𝑎

𝑀𝑆
=

(

1
2 1
1
2 −1

)

, (5.26)

here the superscript 𝑎 is used to distinguish the WC matrix from the one entering at step 5 below.

TEP 3

|{[𝑃𝑝(𝐿𝑃𝐿)𝜆, (𝑠𝛼𝑠𝛽 )𝑆]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{[𝑃𝐿𝑃 , 𝑝(𝐿𝑆)𝐽 ]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(5.27)

For particles 1 and 2, the angular momenta 𝐿, 𝐿𝑃 and 𝑆 are recoupled to have the total relative angular momentum 𝐽 as the
intermediate quantum number:

|[(𝐿𝑃𝐿)𝜆, 𝑆]𝐽12⟩ =
∑

𝐽
⟨[𝐿𝑃 , (𝐿𝑆)𝐽 ]𝐽12|[(𝐿𝑃𝐿)𝜆, 𝑆]𝐽12⟩|[𝐿𝑃 , (𝐿𝑆)𝐽 ]𝐽12⟩

=
∑

𝐽
(−)𝐿𝑃 +𝐿+𝑆+𝐽12 𝜆̂𝐽

{

𝐿𝑃 𝐿 𝜆
𝑆 𝐽12 𝐽

}

|[𝐿𝑃 , (𝐿𝑆)𝐽 ]𝐽12⟩.
(5.28)

STEP 4

|{[𝑃𝐿𝑃 , 𝑝(𝐿𝑆)𝐽 ]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{𝑃𝑛𝛾 (𝐿𝑃 𝑙𝛾 )𝛬, 𝑝[(𝐿𝑆)𝐽 , 𝑠𝛾 ]𝑋}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(5.29)

A 9𝑗 symbol is used to change the structure of the coupling scheme of 𝐽𝑡𝑜𝑡:

|{[𝐿𝑃 , (𝐿𝑆)𝐽 ]𝐽12, (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡⟩

=
∑

𝛬𝑋
⟨{(𝐿𝑃 𝑙𝛾 )𝛬, [(𝐿𝑆)𝐽 , 𝑠𝛾 ]𝑋}𝐽𝑡𝑜𝑡|{[𝐿𝑃 , (𝐿𝑆)𝐽 ]𝐽12, (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡⟩|{(𝐿𝑃 𝑙𝛾 )𝛬, [(𝐿𝑆)𝐽 , 𝑠𝛾 ]𝑋}𝐽𝑡𝑜𝑡⟩

=
∑

𝛬𝑋
𝐽12𝑗𝛾 𝛬̂𝑋̂

⎧

⎪

⎨

⎪

⎩

𝐿𝑃 𝐽 𝐽12
𝑙𝛾 𝑠𝛾 𝑗𝛾
𝛬 𝑋 𝐽𝑡𝑜𝑡

⎫

⎪

⎬

⎪

⎭

|{(𝐿𝑃 𝑙𝛾 )𝛬, [(𝐿𝑆)𝐽 , 𝑠𝛾 ]𝑋}𝐽𝑡𝑜𝑡⟩

=
∑

𝛬𝑋
𝐽12𝑗𝛾 𝛬̂𝑋̂

⎧

⎪

⎨

⎪

⎩

𝑙𝛾 𝐿𝑃 𝛬
𝑗𝛾 𝐽12 𝐽𝑡𝑜𝑡
𝑠𝛾 𝐽 𝑋

⎫

⎪

⎬

⎪

⎭

|{(𝐿𝑃 𝑙𝛾 )𝛬, [(𝐿𝑆)𝐽 , 𝑠𝛾 ]𝑋}𝐽𝑡𝑜𝑡⟩,

(5.30)

where at the last line the properties of invariance under exchange of rows and columns and swap of rows of the 9𝑗-symbols have
been used.

3 Here and in the following sections, intermediate quantum number that do not enter explicitly in each transformation will not always be shown. Their
16

mplicit presence should be clear from the states in each equation.



Annals of Physics 467 (2024) 169688A. Scalesi et al.

A
a
t

T

a

w

S

A

S

STEP 5

|{𝑃𝑛𝛾 (𝐿𝑃 𝑙𝛾 )𝛬, 𝑝[(𝐿𝑆)𝐽 , 𝑠𝛾 ]𝑋}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{𝑄𝑐𝑚𝑞(𝑙𝑐𝑚𝑙)𝛬, 𝑝[(𝐿𝑆)𝐽 , 𝑠𝛾 ]𝑋}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(5.31)

second change of reference system is performed, transforming the coordinates of the center-of-mass of the first two particles (1
nd 2) and particle 3 in the total center-of-mass and the Jacobi coordinate between the center-of-mass of particles 1 and 2 and the
hird particle

⎧

⎪

⎨

⎪

⎩

𝒒 = 2
3

[

𝒌3 −
1
2
(𝒌1 + 𝒌2)

]

= 2
3

[

𝒌3 −
1
2
𝑷
]

𝑸𝑐𝑚 = 𝒌1 + 𝒌2 + 𝒌3 = 𝑷 + 𝒌3
, (5.32)

|𝑃𝑛𝛾 (𝐿𝑝𝑙𝛾 )𝛬⟩ = ∫ 𝑑𝑄𝑐𝑚𝑑𝑞 𝑄
2
𝑐𝑚𝑞

2
∑

𝑙𝑐𝑚 𝑙
⟨𝑄𝑐𝑚𝑞(𝑙𝑐𝑚𝑙)𝛬|𝑃𝑛𝛾 (𝐿𝑝𝑙𝛾 )𝛬⟩(𝑏)𝜏𝛾 |𝑄𝑐𝑚𝑞(𝑙𝑐𝑚𝑙)𝛬⟩. (5.33)

he mixed WC bracket (see Appendix D.4) is the one associated with the inverse transformation of Eq. (5.32)
(

𝑷
𝒌3

)

=

(

2
3 −1
1
3 1

)

(

𝑸𝑐𝑚
𝒒

)

(5.34)

nd the associated matrix of WC coefficients is
(

𝑠1 𝑡1
𝑠2 𝑡2

)𝑏

𝑀𝑆
=

(

2
3 −1
1
3 1

)

, (5.35)

here the label 𝑏 is used to distinguish between the WC matrices that appear in this procedure.

TEP 6

|{𝑄𝑐𝑚𝑞(𝑙𝑐𝑚𝑙)𝛬, 𝑝[(𝐿𝑆)𝐽 , 𝑠𝛾 ]𝑋}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{𝑄𝑐𝑚𝑙𝑐𝑚, 𝑞𝑝[𝑙, [(𝐿𝑆)𝐽 , 𝑠𝛾 ]𝑋] }𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(5.36)

6𝑗 is used to change again the internal coupling of 𝐽𝑡𝑜𝑡:

|[(𝑙𝑐𝑚𝑙)𝛬,𝑋]𝐽𝑡𝑜𝑡⟩ =
∑


⟨[𝑙𝑐𝑚, (𝑙𝑋) ]𝐽𝑡𝑜𝑡|[(𝑙𝑐𝑚𝑙)𝛬,𝑋]𝐽𝑡𝑜𝑡⟩|[𝑙𝑐𝑚, (𝑙𝑋) ]𝐽𝑡𝑜𝑡⟩

=
∑


(−)𝑙𝑐𝑚+𝑙+𝑋+𝐽𝑡𝑜𝑡 𝛬̂̂

{

𝑙 𝛬 𝑙𝑐𝑚
𝐽𝑡𝑜𝑡  𝑋

}

|[𝑙𝑐𝑚, (𝑙𝑋) ]𝐽𝑡𝑜𝑡⟩.
(5.37)

TEP 7

|{𝑄𝑐𝑚𝑙𝑐𝑚, 𝑞𝑝[𝑙, [(𝐿𝑆)𝐽 , 𝑠𝛾 ]𝑋] }𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{𝑄𝑐𝑚𝑙𝑐𝑚, 𝑝𝑞[(𝐿𝑆)𝐽 , (𝑙𝑠𝛾 )𝑗] }𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(5.38)

The coupling of  is changed to give the final 𝑗 coupling in the MS basis:

|[𝑙, (𝐽𝑠𝛾 )𝑋] ⟩ =
∑

𝑗
⟨[𝐽 , (𝑙𝑠𝛾 )𝑗] |[𝑙, (𝐽𝑠𝛾 )𝑋] ⟩|[𝐽 , (𝑙𝑠𝛾 )𝑗] ⟩

=
∑

𝑗
(−)𝑙+𝑗+𝑋+𝐽 𝑗𝑋̂

{

𝑙 𝑠𝛾 𝑗
𝐽  𝑋

}

|[𝐽 , (𝑙𝑠𝛾 )𝑗] ⟩.
(5.39)

STEP 8

|𝑡𝛼𝜏𝛼 , 𝑡𝛽𝜏𝛽 , 𝑡𝛾𝜏𝛾 ⟩ → |[(𝑡𝛼𝑡𝛽 )𝑇 , 𝑡𝛾 ]𝑀 ⟩ (5.40)

The isospin is recoupled

|𝑡𝛼𝜏𝛼 , 𝑡𝛽𝜏𝛽 , 𝑡𝛾𝜏𝛾 ⟩ =
∑

𝑇 
⟨𝑡𝛼𝜏𝛼𝑡𝛽𝜏𝛽 |𝑇𝑀𝑇 ⟩⟨𝑇𝑀𝑇 𝑡𝛾𝜏𝛾 |𝑀 ⟩|[(𝑡𝛼𝑡𝛽 )𝑇 , 𝑡𝛾 ]𝑀 ⟩ , (5.41)

where the sums over 𝑀𝑇 and 𝑀 drop because of the constraint from charge conservation.
To find the basis transformation coefficient one proceeds similarly to the case of two-body interactions. The steps 1 to 8 discussed

above are applied in sequence to expand Eq. (5.20) on states |[𝑄 𝑙 , 𝑝𝑞𝛼]𝐽 ⟩ of given center of mass momentum and partial
17
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𝑐𝑚𝑙

′
𝑐𝑚, 𝑝

′𝑞′𝛼′]𝐽𝑡𝑜𝑡| and exploiting the orthonormality relation

⟨[𝑄′
𝑐𝑚𝑙

′
𝑐𝑚, 𝑝

′𝑞′𝛼′]𝐽𝑡𝑜𝑡|[𝑄𝑐𝑚𝑙𝑐𝑚, 𝑝𝑞𝛼]𝐽𝑡𝑜𝑡⟩ =
𝛿(𝑄𝑐𝑚 −𝑄′

𝑐𝑚)
𝑄2
𝑐𝑚

𝛿𝑙𝑐𝑚𝑙′𝑐𝑚
𝛿(𝑝 − 𝑝′)

𝑝2
𝛿𝐿𝐿′𝛿𝑆𝑆′𝛿𝐽𝐽 ′𝛿𝑇𝑇 ′

𝛿(𝑞 − 𝑞′)
𝑞2

𝛿𝑙𝑙′𝛿𝑗𝑗′𝛿  ′𝛿  ′ , (5.42)

the following expression for the three-body 𝑇 -coefficient is found:

𝑇 3𝐵 ≡⟨[𝑄𝑐𝑚𝑙𝑐𝑚, 𝑝𝑞𝛼]𝐽𝑡𝑜𝑡|[(𝑎𝑏)𝐽12𝑐]𝐽𝑡𝑜𝑡⟩

=∫ 𝑑𝑃𝑃 2
∑

𝜆𝐿𝑃

∑

𝛬𝑋
⟨𝑡𝛼𝜏𝛼𝑡𝛽𝜏𝛽 |𝑇𝑀𝑇 ⟩⟨𝑇𝑀𝑇 𝑡𝛾𝜏𝛾 |𝑀 ⟩𝑗𝛼𝑗𝛽 𝜆̂𝑆̂

⎧

⎪

⎨

⎪

⎩

𝑙𝛼 𝑠𝛼 𝑗𝛼
𝑙𝛽 𝑠𝛽 𝑗𝛽
𝜆 𝑆 𝐽12

⎫

⎪

⎬

⎪

⎭

× ⟨𝑃𝑝 (𝐿𝑃𝐿)𝜆|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩(𝑎)𝜏𝛼𝜏𝛽 (−)
𝐿𝑃 +𝐿+𝑆+𝐽12 𝜆̂𝐽

{

𝐿𝑃 𝐿 𝜆
𝑆 𝐽12 𝐽

}

× 𝐽12𝑗𝛾 𝛬̂𝑋̂

⎧

⎪

⎨

⎪

⎩

𝑙𝛾 𝐿𝑃 𝛬
𝑗𝛾 𝐽12 𝐽𝑡𝑜𝑡
𝑠𝛾 𝐽 𝑋

⎫

⎪

⎬

⎪

⎭

⟨𝑄𝑐𝑚𝑞(𝑙𝑐𝑚𝑙)𝛬|𝑃𝑛𝛾 (𝐿𝑝𝑙𝛾 )𝛬⟩(𝑏)𝜏𝛾

× (−)𝑙𝑐𝑚+𝑙+𝑋+𝐽𝑡𝑜𝑡 𝛬̂̂
{

𝑙 𝛬 𝑙𝑐𝑚
𝐽𝑡𝑜𝑡  𝑋

}

(−)𝑙+𝑗+𝐽+𝑋𝑗𝑋̂
{

𝑙 𝑠𝛾 𝑗
𝐽  𝑋

}

.

(5.43)

Eq. (5.43) differs from the already known expression for the three-body 𝑇 -coefficient [34] since it projects a MS plane-wave basis
to a generic isospin-dependent spherical basis. Hence, it is not limited to HO states. Eq. (5.43) can be further simplified via the use
of a Wigner 12𝑗-symbol of the first kind [35] (see Appendix C.5)

⎧

⎪

⎨

⎪

⎩

𝐽 𝐿𝑃 𝛬 𝑙𝑐𝑚
𝐽12 𝑙𝛾 𝑙 

𝐽𝑡𝑜𝑡 𝑗𝛾 𝑠𝛾 𝑗

⎫

⎪

⎬

⎪

⎭1

= (−)𝐽−𝛬−𝐽𝑡𝑜𝑡+𝑠𝛾
∑

𝑋
𝑋̂2

⎧

⎪

⎨

⎪

⎩

𝑙𝛾 𝐿𝑃 𝛬
𝑗𝛾 𝐽12 𝐽𝑡𝑜𝑡
𝑠𝛾 𝐽 𝑋

⎫

⎪

⎬

⎪

⎭

{

𝑙 𝛬 𝑙𝑐𝑚
𝐽𝑡𝑜𝑡  𝑋

}{

𝑙 𝑠𝛾 𝑗
𝐽  𝑋

}

.

(5.44)

s all the Wigner 3𝑛𝑗 symbols, the 12𝑗 symbol can be decomposed in a summation over a single index of a product of 6𝑗 symbols.
uch decomposition reads

⎧

⎪

⎨

⎪

⎩

𝐽 𝐿𝑃 𝛬 𝑙𝑐𝑚
𝐽12 𝑙𝛾 𝑙 

𝐽𝑡𝑜𝑡 𝑗𝛾 𝑠𝛾 𝑗

⎫

⎪

⎬

⎪

⎭1

=
∑

𝑥
(−)𝑌−𝑥𝑥̂2

{

𝐽 𝐿𝑃 𝐽12
𝑗𝛾 𝐽𝑡𝑜𝑡 𝑥

}{

𝐿𝑃 𝛬 𝑙𝛾
𝑠𝛾 𝑗𝛾 𝑥

}{

𝛬 𝑙𝑐𝑚 𝑙
𝑗 𝑠𝛾 𝑥

}{

𝑙𝑐𝑚 𝐽𝑡𝑜𝑡 
𝐽 𝑗 𝑥

}

,

(5.45)

here 𝑌 is given by the sum of all the angular momenta appearing in the 12𝑗 symbol:

𝑌 ≡ 𝐽 + 𝐿𝑃 + 𝛬 + 𝑙𝑐𝑚 + 𝐽12 + 𝑙𝛾 + 𝑙 +  + 𝐽𝑡𝑜𝑡 + 𝑗𝛾 + 𝑠𝛾 + 𝑗. (5.46)

he expression in Eq. (5.45) allows for an efficient implementation of the 12𝑗 symbols through the precalculation of the 6𝑗
oefficients. With these simplifications, the 𝑇 -coefficient can be re-written in a compact expression

𝑇 3𝐵 =⟨[𝑄𝑐𝑚𝑙𝑐𝑚, 𝑝𝑞𝛼]𝐽𝑡𝑜𝑡|[(𝑎𝑏)𝐽12𝑐]𝐽𝑡𝑜𝑡⟩

=(−)𝑆+𝐿−𝑙𝑐𝑚+𝐽12+𝑗−𝑠𝛾 𝑗𝛼𝑗𝛽 𝑆̂𝐽𝐽12𝑗𝛾 ̂ 𝑗
∑

𝜆
𝜆̂2

⎧

⎪

⎨

⎪

⎩

𝑙𝛼 𝑠𝛼 𝑗𝛼
𝑙𝛽 𝑠𝛽 𝑗𝛽
𝜆 𝑆 𝐽12

⎫

⎪

⎬

⎪

⎭

∑

𝐿𝑃

(−)𝐿𝑃
{

𝐿𝑃 𝐿 𝜆
𝑆 𝐽12 𝐽

}

× ∫ 𝑑𝑃 𝑃 2
⟨𝑃𝑝 (𝐿𝑃𝐿)𝜆|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩(𝑎)𝜏𝛼𝜏𝛽

∑

𝛬
(−)𝛬𝛬̂2

⟨𝑄𝑐𝑚𝑞(𝑙𝑐𝑚𝑙)𝛬|𝑃𝑛𝛾 (𝐿𝑝𝑙𝛾 )𝛬⟩(𝑏)𝜏𝛾

×

⎧

⎪

⎨

⎪

⎩

𝐽 𝐿𝑃 𝛬 𝑙𝑐𝑚
𝐽12 𝑙𝛾 𝑙 

𝐽𝑡𝑜𝑡 𝑗𝛾 𝑠𝛾 𝑗

⎫

⎪

⎬

⎪

⎭1

⟨𝑡𝛼𝜏𝛼𝑡𝛽𝜏𝛽 |𝑇𝑀𝑇 ⟩⟨𝑇𝑀𝑇 𝑡𝛾𝜏𝛾 |𝑀 ⟩,

(5.47)
18

here the limits of integration over 𝑃 are constrained by the values of 𝑄𝑐𝑚 and 𝑞 through the mixed WC bracket. The integral over
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𝑃 can be converted in an integral over the cosine 𝑥𝑏 of the angle between 𝑄𝑐𝑚 and 𝑞,

𝑇 3𝐵 =⟨[𝑄𝑐𝑚𝑙𝑐𝑚, 𝑝𝑞𝛼]𝐽𝑡𝑜𝑡|[(𝑎𝑏)𝐽12𝑐]𝐽𝑡𝑜𝑡⟩

=(−)𝑆+𝐿−𝑙𝑐𝑚+𝐽12+𝑗−𝑠𝛾 𝑗𝛼𝑗𝛽 𝑆̂𝐽𝐽12𝑗𝛾 ̂ 𝑗
∑

𝜆
𝜆̂2

⎧

⎪

⎨

⎪

⎩

𝑙𝛼 𝑠𝛼 𝑗𝛼
𝑙𝛽 𝑠𝛽 𝑗𝛽
𝜆 𝑆 𝐽12

⎫

⎪

⎬

⎪

⎭

∑

𝐿𝑃

(−)𝐿𝑃
{

𝐿𝑃 𝐿 𝜆
𝑆 𝐽12 𝐽

}

× 8𝜋2 ∫

1

−1
𝑑𝑥𝑏⟨𝑃𝑝 (𝐿𝑃𝐿)𝜆|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩(𝑎)𝜏𝛼𝜏𝛽

×
∑

𝛬
(−)𝛬𝛬̂2 𝐴(𝑥𝑏,

𝑄𝑐𝑚
𝑞
, 𝑙𝑐𝑚, 𝑙, 𝐿𝑝, 𝑙𝛾 , 𝛬; 𝑠𝑏1, 𝑡

𝑏
1, 𝑠

𝑏
2, 𝑡

𝑏
2) 𝜙𝑛𝛾 𝑙𝛾 𝜏𝛾 (𝑘̃3)

×

⎧

⎪

⎨

⎪

⎩

𝐽 𝐿𝑃 𝛬 𝑙𝑐𝑚
𝐽12 𝑙𝛾 𝑙 

𝐽𝑡𝑜𝑡 𝑗𝛾 𝑠𝛾 𝑗

⎫

⎪

⎬

⎪

⎭1

⟨𝑡𝛼𝜏𝛼𝑡𝛽𝜏𝛽 |𝑇𝑀𝑇 ⟩⟨𝑇𝑀𝑇 𝑡𝛾𝜏𝛾 |𝑀 ⟩ ,

(5.48)

where 𝜙𝑛𝛾 𝑙𝛾 𝜏𝛾 (𝑘) is the radial single-particle wave function (2.21) in momentum space and the values

𝑘̃3 = |𝑡𝑏2| 𝑞
√

1 + 2𝑥𝑏𝑦𝑏𝑧𝑏 + (𝑦𝑏𝑧𝑏)2 and 𝑃 = |𝑡𝑏1| 𝑞
√

1 + 2𝑥𝑏𝑦𝑏 + 𝑦2𝑏 (5.49)

depend on the integration variable 𝑥𝑏 and are constrained by Eqs. (D.3) and (D.4) with coefficients (5.35). In Eqs. (5.48) and (5.49),
the subscript (superscript) 𝑏 denotes quantities relative to the mixed WC coefficient for transformation (5.34) and the definition of
the variables 𝑥𝑏, 𝑦𝑏 and 𝑧𝑏 is given in details in Appendix D. Finally, the 𝐽 -coupled 𝑇 -decoupled three-body matrix element is given
by

⟨[(𝑎𝑏)𝐽12𝑐]𝐽𝑡𝑜𝑡|𝑊 |[(𝑑𝑒)𝐽 ′
12𝑓 ]𝐽𝑡𝑜𝑡⟩ =

= ∫ 𝑑𝑄𝑐𝑚𝑄
2
𝑐𝑚

∑

𝑙𝑐𝑚
∫ 𝑑𝑝 𝑑𝑞 𝑝2𝑞2 ∫ 𝑑𝑝′ 𝑑𝑞′ 𝑝′2𝑞′2

∑

𝛼 𝛼′
⟨[(𝑎𝑏)𝐽12𝑐]𝐽𝑡𝑜𝑡|[𝑄𝑐𝑚𝑙𝑐𝑚, 𝑝𝑞𝛼]𝐽𝑡𝑜𝑡⟩

× ⟨𝑝𝑞𝛼|𝑊̂ |𝑝′𝑞′𝛼′⟩𝐴 ⟨[𝑄𝑐𝑚𝑙𝑐𝑚, 𝑝′𝑞′𝛼′]𝐽𝑡𝑜𝑡|[(𝑑𝑒)𝐽 ′
12𝑓 ]𝐽𝑡𝑜𝑡⟩

(5.50)

here the independence of the three-body potential from the center-of-mass of the three-body system (Eq. (5.3)) has been exploited.
q. (5.50) extends the transformation used in Ref. [34] to any spherical single-particle basis.

As for the two-body interactions, it can be useful to define CS three-body matrix elements to be used with CS regulators or wave
unctions. In this case the new Jacobi coordinates (𝑹𝑐𝑚, 𝒓, 𝒔) read

⎛

⎜

⎜

⎝

𝑹𝑐𝑚
𝒓
𝒔

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1
3

1
3

1
3

1 −1 0
− 1

2 − 1
2 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝒓1
𝒓2
𝒓3

⎞

⎟

⎟

⎠

(5.51)

nd are conjugate to (𝑸𝑐𝑚, 𝒑, 𝒒) from Eq. (5.1). When the matrix elements of the interaction are known in MS (as in Eqs. (5.18) or
5.5)), the corresponding relative CS can be obtained directly from a quadruple Hankel transform:

⟨𝑟𝑠𝛼|𝑊 |𝑟′𝑠′𝛼′⟩ = 4
𝜋2

𝑖𝐿
′+𝑙′−𝐿−𝑙

∫

+∞

0
𝑑𝑝𝑑𝑞𝑑𝑝′𝑑𝑞′ 𝑝2𝑞2𝑝′2𝑞′2 𝑗𝐿(𝑝𝑟)𝑗𝑙(𝑞𝑠)𝑗𝐿′ (𝑝′𝑟′)𝑗𝑙′ (𝑞′𝑠′)⟨𝑝𝑞𝛼|𝑊 |𝑝′𝑞′𝛼′⟩ . (5.52)

ll the steps for the computation of the 𝑇 -coefficients discussed in this section remain the same for CS with the exception the WC
oefficients for the transformations in Eqs. (5.25) and (5.34) must be substituted by

(

𝑠1 𝑡1
𝑠2 𝑡2

)𝑎

𝐶𝑆
=

(

1 1
2

1 − 1
2

)

(5.53)

nd
(

𝑠1 𝑡1
𝑠2 𝑡2

)𝑏

𝐶𝑆
=

(

1 − 1
3

1 2
3

)

. (5.54)

. Conclusions

A complete analytical derivation of matrix elements of a realistic nuclear Hamiltonian expanded on a generic spherical single-
article basis has been presented, including up to three-body interactions. This calculation requires to use WC brackets, which
ifferently from the Moshinsky brackets are no longer diagonal in major oscillator shells. To do this, the vector bracket from [36]
as been generalized to the case of a generic change of reference system and an efficient expression of the WC coefficient has
een obtained, which is computationally more convenient than the one from [16]. The full expansion of two- and three-body
atrix elements on a generic single-particle basis constitutes a novelty for what concerns the handling of the radial part of the

equations. Also, as for the three-body sector, a new scheme of angular momenta couplings that allows to re-obtain the expression
19
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for the three-body 𝑇 -coefficient from [34] has been presented. While these formulas are written for the specific case of nuclear
nteractions, they can be easily adapted to the case of other many-body systems with rotationally invariant Hamiltonians. The
orking equations presented in this work are suitable for implementation on high-performance computers. Hence, this work should
ave the way to systematic investigations of the possible advantages of bases different from the traditional HO states in the study of
ulk and spectroscopic properties of atomic nuclei. On the other hand, the implementation of these analytic expressions in numerical
alculations represents a challenge. In particular, the dependence of the WC coefficients from continuous variables (momenta or
ositions) tends to increase both the computational time and the storage requirements, so that new computational strategies are to
e designed. Work in this direction is currently underway.
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Appendix A. The spherical components of vectors

Let us recall how to express vectors in spherical components [37] since it is easier to perform rotations in this basis. Consider a
generic vector 𝑨 expressed in Cartesian coordinates {𝒆𝑥, 𝒆𝑦, 𝒆𝑧}:

𝑨 = 𝐴𝑥𝒆𝑥 + 𝐴𝑦𝒆𝑦 + 𝐴𝑧𝒆𝑧. (A.1)

One defines a spherical basis {𝜺1−1, 𝜺10, 𝜺11} related to the Cartesian one through the relations

𝜺1−1 =
𝒆𝑥 − 𝑖𝒆𝑦
√

2
, 𝜺10 = 𝒆𝑧, 𝜺11 = −

𝒆𝑥 + 𝑖𝒆𝑦
√

2
. (A.2)

The vector 𝑨 can be expressed in this basis as

𝑨 = −𝐴1−1𝜺11 + 𝐴10𝜺10 − 𝐴11𝜺1−1
=

∑

𝜇=−1,0,1
(−1)𝜇𝐴1𝜇𝜺1−𝜇 , (A.3)

where the components 𝐴1−1, 𝐴10 and 𝐴11 read

𝐴1−1 =
𝐴𝑥 − 𝑖𝐴𝑦

√

2
, 𝐴10 = 𝐴𝑧, 𝐴11 = −

𝐴𝑥 + 𝑖𝐴𝑦
√

2
, (A.4)

and the complex conjugate of 𝐴1𝜇 is

𝐴∗
1𝜇 = (−1)𝜇𝐴1−𝜇 . (A.5)

A generic vector 𝒓 in coordinate or in momentum space can be expressed in spherical components

𝒓 = −𝑟1−1𝜺11 + 𝑟10𝜺10 − 𝑟11𝜺1−1, (A.6)

with

𝑟1−1 =
𝑥 − 𝑖𝑦
√

, 𝑟10 = 𝑧, 𝑟11 = −
𝑥 + 𝑖𝑦
√

. (A.7)
20
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Since the Cartesian coordinates (𝑥, 𝑦, 𝑧) are expressed as a function of the spherical coordinates (𝑟, 𝜗, 𝜙) by

𝑥 = 𝑟 sin 𝜗 cos𝜙, 𝑦 = 𝑟 sin 𝜗 sin𝜙, 𝑧 = 𝑟 cos 𝜗 , (A.8)

the spherical components of the vector can then be written as

𝑟1−1 =
𝑟

√

2
sin 𝜗𝑒−𝑖𝜙 =

√

4𝜋
3
𝑟 𝑌1−1(𝑟̂) , (A.9a)

𝑟10 = 𝑟 cos 𝜗 =
√

4𝜋
3
𝑟 𝑌10(𝑟̂) , (A.9b)

𝑟11 = − 𝑟
√

2
sin 𝜗𝑒𝑖𝜙 =

√

4𝜋
3
𝑟 𝑌11(𝑟̂) , (A.9c)

here 𝑌1𝜇 are order-1 spherical harmonics

𝑌1−1(𝑟̂) =
√

3
8𝜋

sin 𝜗𝑒−𝑖𝜙 , (A.10a)

𝑌10(𝑟̂) =
√

3
4𝜋

cos 𝜗 , (A.10b)

𝑌11(𝑟̂) = −
√

3
8𝜋

sin 𝜗𝑒𝑖𝜙 . (A.10c)

The vector 𝒓 can then be expressed in spherical components

𝒓 =
√

4𝜋
3
𝑟
∑

𝜇
(−1)𝜇𝑌1𝜇𝜺1−𝜇 . (A.11)

It is easy to write the scalar product of two vectors 𝑨 and 𝑩 as

𝑨 ⋅ 𝑩 = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧
=
∑

𝜇
(−1)𝜇𝐴1𝜇𝐵1−𝜇

=
∑

𝜇
𝐴1𝜇𝐵

∗
1𝜇 .

(A.12)

Appendix B. Phases in the Fourier transform between spherical wave functions in coordinate and momentum space

A generic three-dimensional wave function in coordinate space 𝛹 (𝒓) = 𝜙𝑛𝑙(𝑟)𝑌𝑙𝑚𝑙 (𝑟̂) can be Fourier-transformed to its MS
representation by means of the plane-wave expansion:

𝑒𝑖𝒌⋅𝒓 = 4𝜋
∑

𝑙 𝑚𝑙

𝑖𝑙𝑗𝑙(𝑘𝑟)𝑌𝑙 𝑚𝑙 (𝑘̂)𝑌
∗
𝑙 𝑚𝑙

(𝑟̂). (B.1)

The complete transformation is obtained from Eq. (B.1) as follows:

𝛹̃ (𝒌) = {𝛹 (𝒓)}(𝒌)

= {𝜙𝑛𝑙(𝑟)𝑌𝑙𝑚𝑙 (𝑟̂)}(𝒌)

= 1
√

(2𝜋)3 ∫ 𝑑3𝒓 𝑒−𝑖𝒌⋅𝒓𝜙𝑛𝑙(𝑟)𝑌𝑙𝑚𝑙 (𝑟̂)

= 4𝜋
√

(2𝜋)3

∑

𝑙′𝑚′
𝑙

𝑌𝑙′𝑚′
𝑙
(𝑘̂)(−𝑖)𝑙

′

∫ 𝑑3𝒓 𝑗𝑙′ (𝑘𝑟)𝑌 ∗
𝑙′𝑚′

𝑙
(𝑟̂)𝑌𝑙𝑚𝑙 (𝑟̂)𝜙𝑛𝑙(𝑟)

=
√

2
𝜋
∑

𝑙′𝑚′
𝑙

𝑌𝑙′𝑚′
𝑙
(𝑘̂)(−𝑖)𝑙

′
𝛿𝑙𝑙′𝛿𝑚𝑙𝑚′

𝑙 ∫

+∞

0
𝑑𝑟 𝑟2𝑗𝑙(𝑘𝑟)𝜙𝑛𝑙(𝑟)

= (−𝑖)𝑙 𝜙𝑛𝑙(𝑘) 𝑌𝑙𝑚𝑙 (𝑘̂),

(B.2)

with

𝜙𝑛𝑙(𝑘) =
√

2
𝜋 ∫

+∞

0
𝑑𝑟 𝑟2𝑗𝑙(𝑘𝑟)𝜙𝑛𝑙(𝑟). (B.3)

Eq. (B.2) then shows an additional imaginary phase (−𝑖)𝑙 that must be explicitly taken into account in addition to performing a
Hankel transform on the radial part of a total wave function.

In the case of the HO wave function, their radial components in CS and MS are related through Eq. (B.2) and their analytical
expressions read

𝜙𝑛𝑙(𝑟) =

√

2 (𝑛!)
3

(

𝑟
)𝑙
𝑒−

1
2 (

𝑟
𝑏 )

2
𝐿𝑙+1∕2𝑛

(

𝑟2
2

)

(B.4)
21

𝛤 (𝑛 + 𝑙 + 3∕2) 𝑏 𝑏 𝑏
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e

T

T

and

𝜙𝑛𝑙(𝑘) = (−)𝑛
√

2 (𝑛!) 𝑏3

𝛤 (𝑛 + 𝑙 + 3∕2)
(𝑘𝑏)𝑙𝑒−

1
2 (𝑘𝑏)

2
𝐿𝑙+1∕2𝑛 ((𝑘𝑏)2), (B.5)

where 𝛤 represents the Gamma function, 𝐿 the Laguerre polynomial and 𝑏 =
√

ℏ∕(𝑚𝜔) the oscillator length.

Appendix C. Angular momenta algebra

Here, we collect the results from angular momentum algebra that have been exploited in the derivation of the main text and
give specific definitions for the 12𝑗 coefficients. Several well known relations among 3𝑗, 6𝑗 and 9𝑗 symbols are also included for
ompleteness. We use the convention

𝑗 =
√

2𝑗 + 1 (C.1)

throughout this manuscript. Several useful angular momentum identities are collected in Ref. [38] while more advanced results are
taken from [25].

C.1. Clebsch–Gordan coefficients

Let 𝑗1 and 𝑗2 be two angular momenta with projections 𝑚1 and 𝑚2 along the quantization axis. The Clebsch–Gordan coefficient
xpresses the probability amplitude that 𝑗1 and 𝑗2 are coupled to a third angular momentum 𝑗3 with projection 𝑚3 and is represented

as

⟨𝑗1𝑚1𝑗2𝑚2|𝑗3𝑚3⟩. (C.2)

he Clebsch–Gordan coefficient is non-vanishing only if the three angular momenta {𝑗1𝑗2𝑗3} satisfy the triangular inequality :

• 𝑗1 < 𝑗2 + 𝑗3, 𝑗2 < 𝑗3 + 𝑗1, 𝑗3 < 𝑗1 + 𝑗2 ⟺ |𝑗1 − 𝑗2| ≤ 𝑗3 ≤ 𝑗1 + 𝑗2 ,
• 𝑗1 + 𝑗2 + 𝑗3 always integer ,

and if the following condition on the projections of angular momenta is satisfied:

𝑚1 + 𝑚2 = 𝑚3 . (C.3)

The Clebsch–Gordan coefficient is self-adjoint:

⟨𝑗1𝑚1𝑗2𝑚2|𝑗3𝑚3⟩ = ⟨𝑗3𝑚3|𝑗1𝑚1𝑗2𝑚2⟩ (C.4)

and it satisfies the following exchange symmetries:

⟨𝑗1𝑚1 𝑗2𝑚2|𝑗3𝑚3⟩ = (−1)𝑗1+𝑗2−𝑗3 ⟨𝑗1 (−𝑚1) 𝑗2 (−𝑚2)|𝑗3 (−𝑚3)⟩ (C.5a)

= (−1)𝑗1+𝑗2−𝑗3 ⟨𝑗2𝑚2 𝑗1𝑚1|𝑗3𝑚3⟩ (C.5b)

= (−1)𝑗1−𝑚1
𝑗3
𝑗2
⟨𝑗1𝑚1 𝑗3 (−𝑚3)|𝑗2 (−𝑚2)⟩. (C.5c)

The quantum numbers entering a non-vanishing Clebsch–Gordan coefficient satisfy the following two relations

(−1)2(𝑗𝑖−𝑚𝑖) = 1, ∀ 𝑖 ∈ {1, 2, 3}, (C.6)

(−1)2(𝑗1+𝑗2+𝑗3) = 1. (C.7)

he orthonormality relation of the Clebsch–Gordan coefficients, sometimes also referred to as unitarity relation, reads
∑

𝑚1𝑚2

⟨𝑗1𝑚1𝑗2𝑚2|𝑗3𝑚3⟩⟨𝑗1𝑚1𝑗2𝑚2|𝑗
′
3𝑚

′
3⟩ = 𝛿𝑗3𝑗′3𝛿𝑚3𝑚′

3
. (C.8)

C.2. 3𝑗 symbol

The Wigner 3𝑗 symbol is defined from the Clebsch–Gordan coefficient as
(

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

)

= (−1)𝑗1−𝑗2−𝑚3 1
𝑗3
⟨𝑗1𝑚1𝑗2𝑚2|𝑗3(−𝑚3)⟩, (C.9)

while the inverse relation is

⟨𝑗1𝑚1𝑗2𝑚2|𝑗3𝑚3⟩ = (−1)−𝑗1+𝑗2−𝑚3 𝑗3

(

𝑗1 𝑗2 𝑗3
)

. (C.10)
22

𝑚1 𝑚2 −𝑚3
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T

T

The 3𝑗 symbols are more symmetric objects than Clebsch–Gordan coefficients. A 3𝑗 symbol is invariant under even permutations of
ts columns

(

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

)

=
(

𝑗2 𝑗3 𝑗1
𝑚2 𝑚3 𝑚1

)

=
(

𝑗3 𝑗1 𝑗2
𝑚3 𝑚1 𝑚2

)

, (C.11)

hile any odd permutation of the columns introduces an additional phase:
(

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

)

= (−1)𝑗1+𝑗2+𝑗3
(

𝑗2 𝑗1 𝑗3
𝑚2 𝑚1 𝑚3

)

= (−1)𝑗1+𝑗2+𝑗3
(

𝑗1 𝑗3 𝑗2
𝑚1 𝑚3 𝑚2

)

= (−1)𝑗1+𝑗2+𝑗3
(

𝑗3 𝑗2 𝑗1
𝑚3 𝑚2 𝑚1

)

. (C.12)

he same phase is involved in time reversal transformations:
(

𝑗1 𝑗2 𝑗3
−𝑚1 −𝑚2 −𝑚3

)

= (−1)𝑗1+𝑗2+𝑗3
(

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

)

. (C.13)

he 3𝑗 symbols appear in evaluating of the Slater integrals over three spherical harmonics:

⟨𝑙1𝑚1|𝑌𝑙2𝑚2
|𝑙3𝑚3⟩ = ∫ 𝑑𝛺 𝑌 ∗

𝑙1𝑚1
(𝛺)𝑌𝑙2𝑚2

(𝛺)𝑌𝑙3𝑚3
(𝛺)

=
√

1
4𝜋
𝑙1𝑙2𝑙3(−1)−𝑚1

(

𝑙2 𝑙3 𝑙1
0 0 0

)(

𝑙2 𝑙3 𝑙1
𝑚2 𝑚3 −𝑚1

)

=
√

1
4𝜋

𝑙2𝑙3
𝑙1

⟨𝑙30 𝑙20|𝑙10⟩⟨𝑙3𝑚3 𝑙2𝑚2|𝑙1𝑚1⟩,

(C.14)

which follows directly from the so called Gaunt formula.

C.3. 6𝑗 symbol

The Wigner 6𝑗 symbols are denoted by curly braces and appear when coupling three different angular momenta 𝑗1, 𝑗2 and 𝑗3 to
a total momentum 𝑗. The probability amplitude among different possible coupling reads

⟨[(𝑗1𝑗2)𝑗12, 𝑗3]𝑗𝑚|[𝑗1, (𝑗2𝑗3)𝑗23]𝑗′𝑚′
⟩ = 𝛿𝑗𝑗′𝛿𝑚𝑚′ (−1)𝑗1+𝑗2+𝑗3+𝑗𝑗12𝑗23

{

𝑗1 𝑗2 𝑗12
𝑗3 𝑗 𝑗23

}

(C.15)

where we have used the notation (𝑗𝑎𝑗𝑏)𝑗𝑐 for the coupling of momenta 𝑗𝑎 and 𝑗𝑏 according to the Clebsch–Gordan coefficient
⟨𝑗𝑎𝑚𝑎 𝑗𝑏𝑚𝑏|𝑗𝑐𝑚𝑐⟩ (and similarly for ‘‘[, ]’’). From Eqs. (C.5) and (C.15) it follows that

⟨[(𝑗1𝑗2)𝑗12, 𝑗3]𝑗𝑚|[(𝑗1𝑗3)𝑗13, 𝑗2]𝑗′𝑚′
⟩ = 𝛿𝑗𝑗′𝛿𝑚𝑚′ (−1)𝑗2+𝑗3+𝑗12+𝑗13 𝑗12𝑗13

{

𝑗2 𝑗1 𝑗12
𝑗3 𝑗 𝑗13

}

, (C.16)

⟨[𝑗1, (𝑗2𝑗3)𝑗23]𝑗𝑚|[(𝑗1𝑗3)𝑗13, 𝑗2]𝑗′𝑚′
⟩ = 𝛿𝑗𝑗′𝛿𝑚𝑚′ (−1)𝑗1+𝑗+𝑗23 𝑗13𝑗23

{

𝑗1 𝑗3 𝑗13
𝑗2 𝑗 𝑗23

}

. (C.17)

The 6𝑗 symbol is defined as the sum of four 3𝑗 symbols
{

𝑗1 𝑗2 𝑗3
𝑗′1 𝑗′2 𝑗′3

}

=
∑

𝑚1𝑚2𝑚3
𝑚′1𝑚

′
2𝑚

′
3

(−1)𝑗
′
1+𝑗

′
2+𝑗

′
3+𝑚

′
1+𝑚

′
2+𝑚

′
3

(

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

)(

𝑗1 𝑗′2 𝑗′3
𝑚1 𝑚′

2 −𝑚′
3

)(

𝑗′1 𝑗2 𝑗′3
−𝑚′

1 𝑚2 𝑚′
3

)(

𝑗′1 𝑗′2 𝑗3
𝑚′
1 −𝑚′

2 𝑚3

)

.

(C.18)

It is invariant under any permutation of the columns
{

𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6

}

=
{

𝑗2 𝑗1 𝑗3
𝑗5 𝑗4 𝑗6

}

=
{

𝑗1 𝑗3 𝑗2
𝑗4 𝑗6 𝑗5

}

, (C.19)

and under the exchange of upper and lower arguments in any pair of columns
{

𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6

}

=
{

𝑗4 𝑗5 𝑗3
𝑗1 𝑗2 𝑗6

}

=
{

𝑗1 𝑗5 𝑗6
𝑗4 𝑗2 𝑗3

}

. (C.20)

The following two equations relate 3𝑗 and 6𝑗 symbols [38]:
(

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

){

𝑗1 𝑗2 𝑗3
𝑗′1 𝑗′2 𝑗′3

}

=
∑

𝑚′
1𝑚

′
2𝑚

′
3

(−1)𝑗
′
1+𝑗

′
2+𝑗

′
3+𝑚

′
1+𝑚

′
2+𝑚

′
3

(

𝑗1 𝑗′2 𝑗′3
𝑚1 𝑚′

2 −𝑚′
3

)(

𝑗′1 𝑗2 𝑗′3
−𝑚′

1 𝑚2 𝑚′
3

)(

𝑗′1 𝑗′2 𝑗3
𝑚′
1 −𝑚′

2 𝑚3

)

,
(C.21)

(

𝑙 𝑙′ 𝑘
){

𝑙 𝑙′ 𝑘
′

}

= −1 [1 + (−1)𝑙+𝑙
′+𝑘]𝑙−1𝑙′−1

(

𝑗 𝑗′ 𝑘
)

. (C.22)
23

0 0 0 𝑗 𝑗 1∕2 2 1∕2 −1∕2 0
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These identities can be easily rewritten by substituting the 3𝑗 symbols with Clebsch–Gordan coefficients by means of Eq. (C.9):

⟨𝑗1𝑗2𝑚1𝑚2|𝑗3𝑚3⟩

{

𝑗1 𝑗2 𝑗3
𝑗′1 𝑗′2 𝑗′3

}

=
∑

𝑚′
1 𝑚

′
2 𝑚

′
3

(−1)−𝑗
′
1−𝑗

′
2+𝑗

′
3−𝑚

′
3+𝑚2−𝑚1

𝑗′
2
3

⟨𝑗1𝑚1𝑗
′
2𝑚

′
2|𝑗

′
3𝑚

′
3⟩

× ⟨𝑗′1 −𝑚
′
1𝑗2𝑚2|𝑗

′
3 −𝑚

′
3⟩⟨𝑗

′
1𝑚

′
1𝑗

′
2 −𝑚

′
2|𝑗3𝑚3⟩,

(C.23)

⟨𝑙0𝑙′0|𝑘0⟩
{

𝑙 𝑙′ 𝑘
𝑗′ 𝑗 1∕2

}

= −
[1 + (−1)𝑙+𝑙′+𝑘]

2
(−1)𝑗−𝑗′+𝑙′−𝑙

𝑙 𝑙′
⟨𝑗 1
2
𝑗′ − 1

2
|𝑘0⟩. (C.24)

.4. 9𝑗 symbol

The Wigner 9𝑗 symbol appears in the evaluation of the probability amplitude

⟨[(𝑗1 𝑗2)𝑗12, (𝑗3 𝑗4)𝑗34]𝑗𝑚|[(𝑗1 𝑗3)𝑗13, (𝑗2 𝑗4)𝑗24]𝑗′𝑚′
⟩ = 𝛿𝑗𝑗′𝛿𝑚𝑚′ 𝑗12𝑗34𝑗13𝑗24

⎧

⎪

⎨

⎪

⎩

𝑗1 𝑗2 𝑗12
𝑗3 𝑗4 𝑗34
𝑗13 𝑗24 𝑗

⎫

⎪

⎬

⎪

⎭

. (C.25)

The 9𝑗 symbol is invariant under reflection about either diagonal as well as even permutations of its rows or columns:

⎧

⎪

⎨

⎪

⎩

𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6
𝑗7 𝑗8 𝑗9

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝑗1 𝑗4 𝑗7
𝑗2 𝑗5 𝑗8
𝑗3 𝑗6 𝑗9

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝑗9 𝑗6 𝑗3
𝑗8 𝑗5 𝑗2
𝑗7 𝑗4 𝑗1

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝑗7 𝑗4 𝑗1
𝑗9 𝑗6 𝑗3
𝑗8 𝑗5 𝑗2

⎫

⎪

⎬

⎪

⎭

. (C.26)

An odd permutation of the columns or of the rows yields

⎧

⎪

⎨

⎪

⎩

𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6
𝑗7 𝑗8 𝑗9

⎫

⎪

⎬

⎪

⎭

= (−1)𝑆
⎧

⎪

⎨

⎪

⎩

𝑗4 𝑗5 𝑗6
𝑗1 𝑗2 𝑗3
𝑗7 𝑗8 𝑗9

⎫

⎪

⎬

⎪

⎭

= (−1)𝑆
⎧

⎪

⎨

⎪

⎩

𝑗2 𝑗1 𝑗3
𝑗5 𝑗4 𝑗6
𝑗8 𝑗7 𝑗9

⎫

⎪

⎬

⎪

⎭

, (C.27)

with 𝑆 =
∑9
𝑖=1 𝑗𝑖. The Wigner 9𝑗 symbol is related to the Wigner 6𝑗 symbol by the following relation

⎧

⎪

⎨

⎪

⎩

𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6
𝑗7 𝑗8 𝑗9

⎫

⎪

⎬

⎪

⎭

=
∑

𝑥
(−1)2𝑥𝑥̂2

{

𝑗1 𝑗4 𝑗7
𝑗8 𝑗9 𝑥

}{

𝑗2 𝑗5 𝑗8
𝑗4 𝑥 𝑗6

}{

𝑗3 𝑗6 𝑗9
𝑥 𝑗1 𝑗2

}

. (C.28)

C.5. 12𝑗 symbol

The Wigner 12𝑗 symbol [35] of the first kind appears in the coupling of 5 angular momenta:

|[𝑏12, [𝑏23, [𝑏34, (𝑏41 𝑎1)𝑐4 ]𝑐3 ]𝑐2 ]𝑐1⟩

= (−1)2𝑎1
∑

𝑎2𝑎3𝑎4

𝑎̂2𝑎̂3𝑎̂4𝑐2𝑐3𝑐4

⎧

⎪

⎨

⎪

⎩

𝑎1 𝑎2 𝑎3 𝑎4
𝑏12 𝑏23 𝑏34 𝑏41

𝑐1 𝑐2 𝑐3 𝑐4

⎫

⎪

⎬

⎪

⎭1

|[ [ [(𝑎1𝑏12)𝑎2, 𝑏23]𝑎3, 𝑏34]𝑎4, 𝑏41]𝑐1⟩ .
(C.29)

The 12𝑗 coefficients can be expanded in terms of 6𝑗 coefficients:

⎧

⎪

⎨

⎪

⎩

𝑎1 𝑎2 𝑎3 𝑎4
𝑏12 𝑏23 𝑏34 𝑏41

𝑐1 𝑐2 𝑐3 𝑐4

⎫

⎪

⎬

⎪

⎭1

=
∑

𝑥
(−)𝑆−𝑥𝑥̂2

{

𝑎1 𝑎2 𝑏12
𝑐2 𝑐1 𝑥

}{

𝑎2 𝑎3 𝑏23
𝑐3 𝑐2 𝑥

}{

𝑎3 𝑎4 𝑏34
𝑐4 𝑐3 𝑥

}{

𝑎4 𝑐1 𝑏41
𝑎1 𝑐4 𝑥

}

(C.30)

∑4
24

with 𝑆 = 𝑖=1(𝑎𝑖 + 𝑐𝑖) + 𝑏12 + 𝑏23 + 𝑏34 + 𝑏41. The summed momenta 𝑥 is integer (semi-integer) if 𝑆 is integer (semi-integer). The
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12𝑗 symbol can also be related to a summation over 9𝑗 and 6𝑗 symbols

⎧

⎪

⎨

⎪

⎩

𝑎1 𝑎2 𝑎3 𝑎4
𝑏12 𝑏23 𝑏34 𝑏41

𝑐1 𝑐2 𝑐3 𝑐4

⎫

⎪

⎬

⎪

⎭1

= (−1)𝑎1−𝑎3−𝑐1+𝑐3
∑

𝑥
𝑥̂2

⎧

⎪

⎨

⎪

⎩

𝑏23 𝑎2 𝑎3
𝑐2 𝑏12 𝑐1
𝑐3 𝑎1 𝑥

⎫

⎪

⎬

⎪

⎭

{

𝑏34 𝑎3 𝑎4
𝑐1 𝑏41 𝑥

}{

𝑏34 𝑐3 𝑐4
𝑎1 𝑏41 𝑥

}

,

(C.31)

and is invariant under cyclic or anti-cyclic permutations of the columns {𝑎1, 𝑏12, 𝑐1}, {𝑎2, 𝑏23, 𝑐2}, {𝑎3, 𝑏34, 𝑐3} and {𝑎4, 𝑏41, 𝑐4} and
under exchange of the first and the third row. The 12𝑗 symbol of the first kind satisfies 8 triangular inequalities

{𝑎1𝑏12𝑎2}, {𝑎2𝑏23𝑎3}, {𝑎3𝑏34𝑎4}, {𝑎4𝑏41𝑐1}, {𝑐1𝑏12𝑐2}, {𝑐2𝑏23𝑐3}, {𝑐3𝑏34𝑐4}, {𝑐4𝑏41𝑎1} (C.32)

and 2 tetragonal inequalities

{𝑎1𝑐1𝑎3𝑐3}, {𝑎2𝑐2𝑎4𝑐4}. (C.33)

A set of 4 angular momenta {𝑗1, 𝑗2, 𝑗3, 𝑗4} is said to satisfy a tetragonal inequality if it satisfies the following properties:

• 𝑗1 + 𝑗2 + 𝑗3 + 𝑗4 is an integer
• 𝑗1 ≤ 𝑗2 + 𝑗3 + 𝑗4, 𝑗2 ≤ 𝑗3 + 𝑗4 + 𝑗1, 𝑗3 ≤ 𝑗4 + 𝑗1 + 𝑗2, 𝑗4 ≤ 𝑗1 + 𝑗2 + 𝑗3

The inequalities at the second point can be re-written in a compact way as
|𝑗3 − 𝑗4| + |𝑗2 − 𝑗3| + |𝑗2 − 𝑗4| − 𝑗2 − 𝑗3 − 𝑗4

3
≤ 𝑗1 ≤ 𝑗2 + 𝑗3 + 𝑗4. (C.34)

Appendix D. Coefficients for general changes of coordinates

We demonstrate the derivation of the coefficients for the change of coordinates of two-particle states. The results reported in
this appendix are valid for both momentum and coordinate space. Consider the general linear transformation

{

𝒓1 = 𝑠1𝒓 + 𝑡1𝑹
𝒓2 = 𝑠2𝒓 + 𝑡2𝑹 ,

(D.1)

where the vectors 𝒓1, 𝒓2, 𝒓 and 𝑹 can live either in coordinate or in momentum space. The transformation (D.1) implies that the
ectors 𝒓1 and 𝒓2 live on the same plane as 𝒓 and 𝑹. Due to rotational invariance angular coefficients will depend only on the angle
etween any two vectors and on the ratio of their length. Thus, it is useful to follow Ref. [16] and define the quantities

𝑥 ≡ cos(𝑟𝑅) = 𝒓 ⋅𝑹
|𝑟𝑅|

, 𝑦 =
𝑠1𝑟
𝑡1𝑅

, 𝑧 =
𝑠2𝑡1
𝑠1𝑡2

, (D.2)

from which one can also write the magnitudes of 𝑟1 and 𝑟2 as

𝑟1 =|𝑡1|𝑅
√

1 + 2𝑥𝑦 + 𝑦2 , (D.3)

𝑟2 =|𝑡2|𝑅
√

1 + 2𝑥𝑦𝑧 + 𝑦2𝑧2 . (D.4)

D.1. Vector bracket

To obtain the transformation among states coupled in angular momentum one starts by defining the ket

|𝐼⟩ ≡ |𝑟𝑙𝑅𝐿, 𝜆𝜇⟩

=
∑

𝑚𝑙𝑚𝐿

⟨𝑙𝑚𝑙𝐿𝑚𝐿|𝜆𝜇⟩|𝑟𝑙𝑚𝑙𝑅𝐿𝑚𝐿⟩

=
∑

𝑚𝑙𝑚𝐿

⟨𝑙𝑚𝑙𝐿𝑚𝐿|𝜆𝜇⟩∫ 𝑑𝑟̂𝑑𝑅̂ 𝑌𝑙𝑚𝑙 (𝑟̂)𝑌𝐿𝑚𝐿 (𝑅̂)|𝒓𝑹⟩ ,

(D.5)

where 𝜆 results from the coupling of 𝑙 and 𝐿 and 𝜇 is the projection along the axis of quantization. Eq. (D.5) follows directly from
the representation of a (spherical) single-particle basis state and of its angular wave function:

⟨𝒓|𝜓⟩ = 𝜙𝑛𝑙(𝑟)𝑌𝑙𝑚𝑙 (𝑟̂), (D.6)

⟨𝑟̂|𝑟𝑙𝑚 ⟩ = |𝑟⟩𝑌 (𝑟̂). (D.7)
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Similarly, we consider the angular momentum representation of a state |𝒓 1𝒓 2⟩:

|𝐼𝐼⟩ ≡ |𝑟1𝑙1𝑟2𝑙2, 𝜆𝜇⟩ , (D.8)

here 𝑙1 and 𝑙2 are coupled to 𝜆. The vector bracket associated to the transformation (D.1) is given by the overlap

⟨𝐼|𝐼𝐼⟩ = ⟨𝑟𝑅(𝑙𝐿)𝜆𝜇|𝑟1𝑟2(𝑙1𝑙2)𝜆𝜇⟩

= ∫ 𝑑𝒓 ′′𝑑𝑹 ′′𝑑𝒓 ′
1𝑑𝒓

′
2 ⟨𝐼|𝒓 ′′𝑹′′

⟩⟨𝒓 ′′𝑹 ′′
|𝒓 ′

1𝒓
′
2⟩⟨𝒓

′
1𝒓

′
2|𝐼𝐼⟩,

(D.9)

here the brackets are given by

⟨𝒓 ′′𝑹 ′′
|𝒓 ′

1𝒓
′
2⟩ = 𝛿(𝒓 ′

1 − 𝑠1𝒓
′′ − 𝑡1𝑹 ′′)𝛿(𝒓 𝟐

′ − 𝑠2𝒓 ′′ − 𝑡2𝑹 ′′) , (D.10)

⟨𝐼|𝒓 ′′𝑹′′
⟩ =

∑

𝑚𝑙𝑚𝐿

⟨𝑙𝑚𝑙𝐿𝑚𝐿|𝜆𝜇⟩∫ 𝑑𝑟̂𝑑𝑅̂ 𝑌 ∗
𝑙𝑚𝑙

(𝑟̂)𝑌 ∗
𝐿𝑚𝐿

(𝑅̂)⟨𝒓𝑹 |𝒓 ′′𝑹 ′′
⟩

=
∑

𝑚𝑙𝑚𝐿

⟨𝑙𝑚𝑙𝐿𝑚𝐿|𝜆𝜇⟩𝑌
∗
𝑙𝑚𝑙

(𝑟̂′′)𝑌 ∗
𝐿𝑚𝐿

(𝑅̂′′)
𝛿(𝑟 − 𝑟′′)

𝑟2
𝛿(𝑅 − 𝑅′′)

𝑅2
, (D.11)

with

⟨𝒓𝑹 |𝒓 ′′𝑹 ′′
⟩ =

𝛿(𝑟 − 𝑟′′)
𝑟2

𝛿(𝑅 − 𝑅′′)
𝑅2

𝛿(𝑟̂ − 𝑟̂′′)𝛿(𝑅̂ − 𝑅̂′′). (D.12)

For the state (D.8) one obtains:

⟨𝒓 ′
1𝒓

′
2|𝐼𝐼⟩ =

∑

𝑚1𝑚2

⟨𝑙1𝑚1𝑙2𝑚2|𝜆𝜇⟩𝑌𝑙1𝑚1
(𝑟̂′1)𝑌𝑙2𝑚2

(𝑟̂′2)
𝛿(𝑟1 − 𝑟′1)

𝑟21

𝛿(𝑟2 − 𝑟′2)

𝑟22
. (D.13)

Combining Eqs. (D.10), (D.11) and (D.13) allows to simplify Eq. (D.9) into

⟨𝐼|𝐼𝐼⟩ = ∫ 𝑑𝒓 ′′𝑑𝑹 ′′𝑑𝒓 ′
1𝑑𝒓

′
2
𝛿(𝑟 − 𝑟′′)

𝑟2
𝛿(𝑅 − 𝑅′′)

𝑅2

𝛿(𝑟1 − 𝑟′1)

𝑟21

𝛿(𝑟2 − 𝑟′2)

𝑟22
𝐴𝐼,𝐼𝐼 (𝑥′′, 𝑟′′∕𝑅′′)

× 𝛿(𝒓 ′
1 − 𝑠1𝒓

′′ − 𝑡1𝑹 ′′)𝛿(𝒓 ′
2 − 𝑠2𝒓

′′ − 𝑡2𝑹 ′′) ,

(D.14)

where the so-called angular bracket 𝐴𝐼,𝐼𝐼 is defined as

𝐴𝐼,𝐼𝐼 (𝑥′′, 𝑟′′∕𝑅′′) ≡
[

∑

𝑚𝑙 𝑚𝐿

⟨𝑙𝑚𝑙𝐿𝑚𝐿|𝜆𝜇⟩𝑌
∗
𝑙𝑚𝑙

(𝑟̂′′)𝑌 ∗
𝐿𝑚𝐿

(𝑅̂′′)
][

∑

𝑚1 𝑚2

⟨𝑙1𝑚1𝑙2𝑚2|𝜆𝜇⟩𝑌𝑙1𝑚1
(𝑟̂′1)𝑌𝑙2𝑚2

(𝑟̂′2)
]

(D.15)

nd depends implicitly on the angular momenta and the coefficients of transformation (D.1). The transformation properties of states
𝐼⟩ and |𝐼𝐼⟩ under rotation imply that their overlap (D.9) is diagonal in 𝜆 and 𝜇 and it is independent on the value of 𝜇. This allows
o rewrite Eq. (D.15) in the form

𝐴𝐼,𝐼𝐼 (𝑥′′, 𝑟′′∕𝑅′′) = 1
2𝜆 + 1

∑

𝜇

[

∑

𝑚𝑙 𝑚𝐿

⟨𝑙𝑚𝑙𝐿𝑚𝐿|𝜆𝜇⟩𝑌
∗
𝑙𝑚𝑙

(𝑟̂′′)𝑌 ∗
𝐿𝑚𝐿

(𝑅̂′′)
]

×
[

∑

𝑚1 𝑚2

⟨𝑙1𝑚1𝑙2𝑚2|𝜆𝜇⟩𝑌𝑙1𝑚1
(𝑟̂′1)𝑌𝑙2𝑚2

(𝑟̂′2)
]

,
(D.16)

which is manifestly invariant under rotation. The angular bracket can then be seen as a scalar quantity that can be shown to depend
only on the two quantities 𝑥′′ ≡ cos (𝑟′′𝑅′′) and 𝑟′′∕𝑅′′. The cosine of 𝑟′′𝑅′′ can be obtained from (D.1) exploiting the scalar products
𝒓 1 ⋅ 𝒓 1 or 𝒓 2 ⋅ 𝒓 2:

cos (𝑟′′𝑅′′) =
𝑟′21 − 𝑠21𝑟

′′2 − 𝑡21𝑅
′′2

2𝑠1𝑡1𝑟′′𝑅′′ =
𝑟′22 − 𝑠22𝑟

′′2 − 𝑡22𝑅
′′2

2𝑠2𝑡2𝑟′′𝑅′′ . (D.17)

When integrating in Eq. (D.14) over 𝒓 ′
1 and 𝒓 ′

2, the two deltas 𝛿(𝑟1 − 𝑟′1) and 𝛿(𝑟2 − 𝑟′2) fix the values of 𝑟′1 and 𝑟′2 according to
Eqs. (D.3) and (D.4):

𝑟′1 =
√

(𝑠1𝒓 ′′ + 𝑡1𝑹 ′′)2 = 𝑓1(cos (𝑟′′𝑅′′), 𝑟′′, 𝑅′′) , (D.18)

𝑟′2 =
√

(𝑠2𝒓 ′′ + 𝑡2𝑹 ′′)2 = 𝑓2(cos (𝑟′′𝑅′′), 𝑟′′, 𝑅′′) , (D.19)

where we put in evidence that their values depend only on the magnitudes 𝑟′′, 𝑅′′ and the angle 𝑥′′ among them. It follows that

⟨𝐼|𝐼𝐼⟩ = ∫ 𝑑𝒓 ′′𝑑𝑹 ′′ 𝛿(𝑟 − 𝑟′′)
𝑟2

𝛿(𝑅 − 𝑅′′)
𝑅2

𝛿(𝑟1 − 𝑟′1)

𝑟21

𝛿(𝑟2 − 𝑟′2)

𝑟22
𝐴𝐼,𝐼𝐼 (𝑥′′, 𝑟′′∕𝑅′′) . (D.20)

n integration over the two solid angles 𝑟̂ and 𝑅̂ can then be performed, with the notation 𝑑𝑟̂ ≡ 𝑑𝛺 = 𝑑𝜑 𝑑 cos 𝜗 . Given two
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vectors 𝒓 and 𝑹 in the three-dimensional space and a generic function 𝑓 (𝑥), with 𝑥 = cos 𝑟𝑅 = cos 𝜗𝑥, one finds

∫ 𝑑𝑟̂𝑑𝑅̂ 𝑓 (𝑥) = 8𝜋2 ∫ 𝑑(cos 𝜗𝑥) 𝑓 (𝑥) = 8𝜋2 ∫

1

−1
𝑑𝑥 𝑓 (𝑥), (D.21)

and therefore

⟨𝐼|𝐼𝐼⟩ = 8𝜋2 ∫ 𝑑𝑟′′𝑑𝑅′′ 𝑟′′2𝑅′′2
∫ 𝑑𝑥′′

𝛿(𝑟 − 𝑟′′)𝛿(𝑅 − 𝑅′′)
𝑟2𝑅2

𝛿(𝑟1 − 𝑟′1)𝛿(𝑟2 − 𝑟
′
2)

𝑟21𝑟
2
2

𝐴𝐼,𝐼𝐼 (𝑥′′, 𝑟′′∕𝑅′′). (D.22)

o evaluate Eq. (D.22) we need to express 𝑟′1 and 𝑟′2 in terms of the integration variables and perform an appropriate transformation
f the last two Dirac delta. We start considering

𝛿(𝑟1 − 𝑟′1) = 𝛿
(

𝑟1 −
√

𝑠21𝑟
′′2 + 𝑡21𝑅

′′2 + 2𝑠1𝑡1𝑟′′𝑅′′𝑥
)

. (D.23)

xploiting the composition property of the Dirac delta for continuously differentiable functions

𝛿(𝑔(𝑥)) =
∑

𝑖

𝛿(𝑥 − 𝑥𝑖)
|𝑔′(𝑥𝑖)|

, (D.24)

one can rewrite the Dirac delta as

𝛿(𝑟21 − 𝑟
′2
1 ) =

1
2𝑟′1

[𝛿(𝑟1 − 𝑟′1) + 𝛿(𝑟1 + 𝑟
′
1)], (D.25)

where 𝛿(𝑟1 + 𝑟′1) = 0 since 𝑟1, 𝑟′1 > 0. Hence,

𝛿(𝑟1 − 𝑟′1) = 2𝑟1𝛿(𝑟21 − 𝑟
′2
1 ) , (D.26)

𝛿(𝑟2 − 𝑟′2) = 2𝑟2𝛿(𝑟22 − 𝑟
′2
2 ) , (D.27)

and

⟨𝐼|𝐼𝐼⟩ = 8𝜋2

𝑟21𝑟
2
2
∫ 𝑑𝑟′′𝑑𝑅′′𝑑𝑥′′ 4𝑟1𝑟2𝛿(𝑟21 − 𝑟

′2
1 )𝛿(𝑟

2
2 − 𝑟

′2
2 )𝛿(𝑅 − 𝑅′′)𝛿(𝑟 − 𝑟′′)𝐴𝐼,𝐼𝐼 (𝑥′′, 𝑟′′∕𝑅′′) . (D.28)

We then manipulate again the two Dirac deltas for performing the integral over 𝑥:

𝛿(𝑟21 − 𝑟
′2
1 ) = 𝛿(𝑟21 − (𝑠21𝑟

′′2 + 𝑡21𝑅
′′2 + 2𝑠1𝑡1𝑟′′𝑅′′𝑥′′))

= 1
2|𝑠1𝑡1|𝑟′′𝑅′′ 𝛿

(

𝑥′′ −
𝑟21 − 𝑠

2
1𝑟

′′2 − 𝑡21𝑅
′′2

2𝑠1𝑡1𝑟′′𝑅′′

)

,
(D.29)

and

𝛿(𝑟22 − 𝑟
′2
2 ) = 𝛿

(

𝑟22 − 𝑠
2
2𝑟

′′2 − 𝑡22𝑅
′′2 − 2𝑠2𝑡2𝑟′′𝑅′′

𝑟21 − 𝑠
2
1𝑟

′′2 − 𝑡21𝑅
′′2

2𝑠1𝑡1𝑟′′𝑅′′

)

= |𝑠1𝑡1|𝛿(−𝑠2𝑡2𝑟21 + 𝑠1𝑡1𝑟
2
2 + (𝑠2𝑡2𝑠21 − 𝑠1𝑡1𝑠

2
2)𝑟

′′2 + (𝑠2𝑡2𝑡21 − 𝑠1𝑡1𝑡
2
2)𝑅

′′2)

= |𝑠1𝑡1|𝛿(𝑤)

(D.30)

ith

𝑤 ≡ 𝑠2𝑡2𝑟
2
1 − 𝑠1𝑡1𝑟

2
2 + (𝑡1𝑠2 − 𝑡2𝑠1)(𝑠1𝑠2𝑟′′2 − 𝑡1𝑡2𝑅′′2) . (D.31)

inally, Eq. (D.22) reduces to

⟨𝐼|𝐼𝐼⟩ = 16𝜋2 1
𝑟𝑅𝑟1𝑟2

𝐴𝐼,𝐼𝐼 (𝑥, 𝑟∕𝑅) 𝛿(𝑤) 𝜃(1 − 𝑥2), (D.32)

where 𝑥 = cos(𝑟𝑅) is evaluated according to Eq. (D.17), the Heaviside function 𝜃(⋅) imposes the constraint that the integral over
Eq. (D.29) vanishes unless −1 ≤ cos(𝑟𝑅) ≤ 1 and the full dependency of the function 𝐴𝐼,𝐼𝐼 is

𝐴𝐼,𝐼𝐼 = 𝐴𝐼,𝐼𝐼 (𝑥, 𝑟∕𝑅, 𝑙, 𝐿, 𝑙1, 𝑙2, 𝜆; 𝑠1, 𝑡1, 𝑠2, 𝑡2). (D.33)

Eq. (D.32) is referred to as the vector bracket and has been obtained in the case of a specific change of coordinates in [39,40]. This
coefficient will be simply denoted as 𝐴𝐼,𝐼𝐼 (𝑥, 𝑟∕𝑅).

D.2. Angular bracket 𝐴𝐼,𝐼𝐼 (𝑥, 𝑟∕𝑅)

The rotational invariance of 𝐴𝐼,𝐼𝐼 can be exploited to arrange the vectors 𝒓, 𝑹, 𝒓1 and 𝒓2 in space so that the final expression
for the angular bracket is easy to evaluate numerically [36]. As shown in Fig. D.1, we chose a reference frame (𝐢̂, 𝐣, 𝐤̂) such that all
27
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Fig. D.1. Reference frame used for the angular bracket.

vectors lie on the 𝑗 = 0 plane, 𝑹 lies along the axis 𝐤̂ and 𝒓 is on the 𝑖 > 0 half plane. Consider now the general expression for
𝐴𝐼,𝐼𝐼 (𝑥, 𝑟∕𝑅)

𝐴𝐼,𝐼𝐼 (𝑥, 𝑟∕𝑅) =
1

2𝜆 + 1
∑

𝜇

[

∑

𝑚𝑀
⟨𝑙𝑚𝐿𝑀|𝜆𝜇⟩𝑌 ∗

𝑙𝑚(𝑟̂)𝑌
∗
𝐿𝑀 (𝑅̂)

]

×
[

∑

𝑚1𝑚2

⟨𝑙1𝑚1𝑙2𝑚2|𝜆𝜇⟩𝑌𝑙1𝑚1
(𝑟̂1)𝑌𝑙2𝑚2

(𝑟̂2)
]

.
(D.34)

From the specific disposition of the vectors in Fig. D.1 it follows that 𝜗𝑅 = 0, so that the spherical harmonic 𝑌𝐿𝑀 (𝑅̂) is just

𝑌𝐿𝑀 (0, 0) = 𝛿𝑀0

√

2𝐿 + 1
4𝜋

. (D.35)

and it is independent of 𝜑𝑅. On the other hand 𝜗𝑟 = arccos 𝑥 and 𝜑𝑟 = 0.
Let consider now the value of the cosines of the angles between 𝑟1 and 𝑅 and 𝑟2 and 𝑅.

𝒓𝑖 ⋅𝑹 = 𝑠𝑖𝒓 ⋅𝑹 + 𝑡𝑖𝑅2 = 𝑠𝑖𝑟𝑅𝑥 + 𝑡𝑖𝑅2 = 𝑟𝑖𝑅 cos 𝜗𝑖 (D.36)

⟹ cos 𝜗𝑖 =
𝑠𝑖𝑟𝑥 + 𝑡𝑖𝑅

𝑟𝑖
for 𝑖 = 1, 2 (D.37)

which can be shown to be only a function of 𝑟∕𝑅, 𝑥, 𝑦 and 𝑧, simply by substituting Eqs. (D.3) and (D.4). Since 𝑹 has no components
along the axis 𝐢̂, Eq. (D.1) implies that

𝜑𝑖 =

{

0 if 𝑠𝑖 > 0
𝜋 if 𝑠𝑖 < 0 .

(D.38)

Recalling the property of the spherical harmonics

𝑌𝑙𝑚(𝜗, 𝜋 + 𝜑) = (−)𝑚𝑌𝑙𝑚(𝜗, 𝜑) , (D.39)

it is useful to define the quantities 𝑐1 and 𝑐2 such that

𝑐𝑖 =

{

0 if 𝑠𝑖 > 0
𝑚𝑖 if 𝑠𝑖 < 0

for 𝑖 = 1, 2 . (D.40)

Eventually, the expression found for the angular bracket 𝐴𝐼,𝐼𝐼 (𝑥) is particularly convenient for the implementation since it includes
only two summations:

𝐴𝐼,𝐼𝐼 (𝑥, 𝑟∕𝑅) =
1

2𝜆 + 1
∑

𝜇
⟨𝑙𝜇𝐿0|𝜆𝜇⟩𝑌 ∗

𝑙𝜇(𝜗, 0) 𝑌
∗
𝐿0(0, 0)

×
∑

⟨𝑙1𝑚1𝑙2(𝜇 − 𝑚1)|𝜆𝜇⟩𝑌𝑙1𝑚1
(𝜗1, 0) 𝑌𝑙2(𝜇−𝑚1)(𝜗2, 0) (−)

𝑐1+𝑐2 .
(D.41)
28

𝑚1



Annals of Physics 467 (2024) 169688A. Scalesi et al.
D.3. Wong–Clement bracket

The Wong–Clement brackets are used to express the wave functions of two particles with radial states |𝑛1 𝑙1⟩ and |𝑛2 𝑙2⟩ in terms
of new coordinates 𝑟 and 𝑅. They are obtained by a double-integration of (D.32):

⟨𝑟𝑅(𝑙𝐿)𝜆|𝑛1𝑛2(𝑙1𝑙2)𝜆⟩ = ∫ 𝑑𝑟1𝑑𝑟2 𝑟
2
1𝑟

2
2𝜙𝑛1𝑙1 (𝑟1)𝜙𝑛2𝑙2 (𝑟2)⟨𝑟𝑅(𝑙𝐿)𝜆|𝑟1𝑟2(𝑙1𝑙2)𝜆⟩, (D.42)

where 𝜙𝑛1𝑙1 (𝑟) and 𝜙𝑛2𝑙2 (𝑟) are orthonormal radial wave functions. Eq. (D.42) represents the so called Wong–Clement bracket [16],
which can be seen as a generalization of the coefficients obtained in [41]. The 𝑠1, 𝑠2, 𝑡1 and 𝑡2 will be referred to as the Wong–Clement
coefficients. Exploiting Eq. (D.32), the delta over 𝑤 simplifies the integration over 𝑟2:

𝛿(𝑤) = 1
2𝑟2|𝑠1𝑡1|

𝛿
(

𝑟2 −

√

|

|

|

|

𝑠2𝑡2𝑟21 + (𝑡1𝑠2 − 𝑡2𝑠1)(𝑠1𝑠2𝑟2 − 𝑡1𝑡2𝑅2)
𝑠1𝑡1

|

|

|

|

)

. (D.43)

The other integration can be simplified by the change of variable

𝑑𝑟1 =
𝑠1𝑡1𝑟𝑅
𝑟1

𝑑𝑥 . (D.44)

From Eqs. (D.3), (D.4) and (D.17), one finds that if 𝑠1𝑡1 > 0, the integration over 𝑥 is on the range [−1, 1] while if 𝑠1𝑡1 < 0 it is
on the range [1,−1]. However, the change of integration sign is absorbed by removing the absolute value in the denominator of
Eq. (D.43). Simplifying all the terms, the final expression for the WC bracket is then obtained

⟨𝑟𝑅(𝑙𝐿)𝜆|𝑛1𝑛2(𝑙1𝑙2)𝜆⟩ = 8𝜋2 ∫

1

−1
𝑑𝑥𝜙𝑛1𝑙1 (𝑟1)𝜙𝑛2𝑙2 (𝑟2)𝐴𝐼,𝐼𝐼 (𝑥, 𝑟∕𝑅) , (D.45)

with 𝑟1 and 𝑟2 determined by Eqs. (D.3) and (D.4), respectively. If the single-particle wave function includes an explicit dependence
on the isospin (as in Eqs. (2.22) and (2.23)), the WC bracket inherits such dependence and it can be rewritten as:

⟨𝑟𝑅(𝑙𝐿)𝜆|𝑛1𝑛2(𝑙1𝑙2)𝜆⟩𝜏1𝜏2 ≡ ⟨𝑟𝑅(𝑙𝐿)𝜆, 𝜏1𝜏2|𝑛1𝑛2(𝑙1𝑙2)𝜆, 𝜏1𝜏2⟩ = 8𝜋2 ∫

1

−1
𝑑𝑥𝜙𝑛1𝑙1𝜏1 (𝑟1)𝜙𝑛2𝑙2𝜏2 (𝑟2)𝐴𝐼,𝐼𝐼 (𝑥, 𝑟∕𝑅). (D.46)

D.4. Mixed Wong–Clement bracket

A single integration of Eq. (D.32) over the radial state of one particle gives the mixed Wong–Clement bracket :

⟨𝑟𝑅(𝑙𝐿)𝜆|𝑟1𝑛2(𝑙1𝑙2)𝜆⟩ = ∫ 𝑑𝑟2 𝑟
2
2 𝜙𝑛2𝑙2 (𝑟2)⟨𝑟𝑅(𝑙𝐿)𝜆|𝑟1𝑟2(𝑙1𝑙2)𝜆⟩. (D.47)

Proceeding in analogy to the previous section, one finds

⟨𝑟𝑅(𝑙𝐿)𝜆|𝑟1𝑛2(𝑙1𝑙2)𝜆⟩ = 8𝜋2 1
|𝑠1𝑡1|𝑟𝑅𝑟1

𝜃(1 − 𝑥2)𝐴𝐼,𝐼𝐼 (𝑥, 𝑟∕𝑅)𝜙𝑛2𝑙2 (𝑟2), (D.48)

where the argument of the radial wave function

𝑟2 =

√

𝑠2𝑡2𝑟21 + (𝑡1𝑠2 − 𝑡2𝑠1)(𝑠1𝑠2𝑟2 − 𝑡1𝑡2𝑅2)
𝑠1𝑡1

(D.49)

is constrained by of the Dirac delta 𝛿(𝜔). Notice that substituting Eq. (D.3) into (D.49) recovers Eq. (D.4) exactly. Furthermore, the
Heaviside theta constrains the value of 𝑥. Similarly to the case of the WC bracket, the mixed WC bracket can inherit an explicit
dependence on the isospin through the single-particle wave function and Eq. (D.47) can be rewritten as:

⟨𝑟𝑅(𝑙𝐿)𝜆|𝑟1𝑛2(𝑙1𝑙2)𝜆⟩𝜏2 = ∫ 𝑑𝑟2 𝑟
2
2 𝜙𝑛2𝑙2𝜏2 (𝑟2)⟨𝑟𝑅(𝑙𝐿)𝜆|𝑟1𝑟2(𝑙1𝑙2)𝜆⟩. (D.50)

Appendix E. Transposition operator 𝑻𝟐𝟑

Let us consider the following three definitions for three-particles states:

|𝑝𝑞𝛼⟩ ≡ |𝑝𝑞, [(𝐿𝑆)𝐽 , (𝑙𝑠)𝑗]𝑀 , (𝑇 𝑡)𝑀 ⟩ , (E.1)

|𝑝𝑞𝛽⟩ ≡ |𝑝𝑞, [(𝐿 𝑙), (𝑆𝑠)]𝑀 , (𝑇 𝑡)𝑀 ⟩ , (E.2)

|𝑝𝑞𝛾⟩ ≡ |𝑝𝑞, (𝐿 𝑙)𝑀 , (𝑆𝑠)𝑀 , (𝑇 𝑡)𝑀 ⟩ . (E.3)
29

  
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The transformations between the coupling schemes 𝛼, 𝛽 and 𝛾 read

|𝑝𝑞𝛼⟩ =
∑


̂̂𝐽𝑗

⎧

⎪

⎨

⎪

⎩

𝐿 𝑆 𝐽
𝑙 𝑠 𝑗
  

⎫

⎪

⎬

⎪

⎭

|𝑝𝑞𝛽⟩, (E.4)

|𝑝𝑞𝛽⟩ =
∑

𝑀𝑀

⟨𝑀𝑀 |𝑀 ⟩|𝑝𝑞𝛾⟩ (E.5)

and the state |𝑝𝑞𝛼⟩ can therefore be written as

|𝑝𝑞𝛼⟩ =
∑

𝑀𝑀

̂̂𝐽𝑗
⎧

⎪

⎨

⎪

⎩

𝐿 𝑆 𝐽
𝑙 𝑠 𝑗
  

⎫

⎪

⎬

⎪

⎭

⟨𝑀𝑀 |𝑀 ⟩|𝑝𝑞𝛾⟩

=
∑

𝑀𝑀

̂̂𝐽𝑗
⎧

⎪

⎨

⎪

⎩

𝐿 𝑆 𝐽
𝑙 𝑠 𝑗
  

⎫

⎪

⎬

⎪

⎭

⟨𝑀𝑀 |𝑀 ⟩

× |𝑝𝑞, (𝐿 𝑙)𝑀⟩⊗ |(𝑆𝑠)𝑀 ⟩⊗ |(𝑇 𝑡)𝑀 ⟩.

(E.6)

The expectation value of the transposition operator 𝑇23 over the states |𝑝𝑞𝛼⟩ reads

⟨𝑝𝑞𝛼|𝑇23|𝑝
′𝑞′𝛼′⟩ =

∑

𝑀𝑀′𝑀 ′


′𝑀 ′


̂̂𝐽𝑗̂′̂ ′𝐽 ′𝑗′

×

⎧

⎪

⎨

⎪

⎩

𝐿 𝑆 𝐽
𝑙 𝑠 𝑗
  

⎫

⎪

⎬

⎪

⎭

⟨𝑀𝑀 |𝑀 ⟩

⎧

⎪

⎨

⎪

⎩

𝐿′ 𝑆′ 𝐽 ′

𝑙 𝑠′ 𝑗′

′  ′  ′

⎫

⎪

⎬

⎪

⎭

⟨′𝑀 ′


′𝑀 ′
 |

′𝑀 ′
 ⟩

× ⟨𝑝𝑞, (𝐿 𝑙)𝑀|𝑇23|𝑝
′𝑞′, (𝐿′𝑙′)′𝑀 ′

⟩

× ⟨(𝑆𝑠)𝑀 |𝑇23|(𝑆′𝑠′) ′𝑀 ′
 ⟩⟨(𝑇 𝑡)𝑀 |𝑇23|(𝑇 ′𝑡′) ′𝑀 ′

 ⟩.

(E.7)

The coefficient ⟨𝑝𝑞, (𝐿 𝑙)𝑀|𝑇23|𝑝′𝑞′, (𝐿′𝑙′)′𝑀 ′
⟩ is proportional to 𝛿′𝛿𝑀𝑀 ′


and it is simply given by the vector bracket in

Eq. (D.32) evaluated for an appropriate transformation between the 𝒑 and 𝒒 and the result of inverting particles 2 and 3 on 𝒑′

and 𝒒′. For fermions, 𝑠 = 𝑡 = 1∕2, the spin and isospin contributions can be simplified as follows [31,42,43]:

⟨(𝑆𝑠)𝑀 |𝑇23|(𝑆′𝑠′) ′𝑀 ′
 ⟩ = 𝛿 ′𝛿𝑀 𝑀 ′


(−1)1+𝑆+𝑆

′
𝑆̂ 𝑆̂′

{

1∕2 1∕2 𝑆
1∕2  𝑆′

}

(E.8)

and

⟨(𝑇 𝑡)𝑀 |𝑇23|(𝑇 ′𝑡′) ′𝑀 ′
 ⟩ = 𝛿  ′𝛿𝑀 𝑀 ′


(−1)1+𝑇+𝑇

′
𝑇̂ 𝑇̂ ′

{

1∕2 1∕2 𝑇
1∕2  𝑇 ′

}

. (E.9)

Eventually, a term 𝛿  ′𝛿𝑀𝑀 ′


arises from the orthogonality of the Clebsch–Gordan coefficients. Then everything simplifies into

⟨𝑝𝑞𝛼|𝑇23|𝑝
′𝑞′𝛼′⟩ =

∑


𝛿  ′𝛿𝑀𝑀 ′


𝛿  ′𝛿𝑀 𝑀 ′ (−)

1+𝑆+𝑆′
(−)1+𝑇+𝑇

′ ̂2 ̂2 𝐽 ′𝑗′ 𝐽𝑗 𝑆̂𝑆̂′ 𝑇̂ 𝑇̂ ′

×

⎧

⎪

⎨

⎪

⎩

𝐿 𝑆 𝐽
𝑙 1∕2 𝑗
  

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

𝐿′ 𝑆′ 𝐽 ′

𝑙′ 1∕2 𝑗′

  

⎫

⎪

⎬

⎪

⎭

× ⟨𝑝𝑞, (𝐿 𝑙)|𝑇23|𝑝′𝑞′, (𝐿′𝑙′)⟩
{

1∕2 1∕2 𝑆
1∕2  𝑆′

}{

1∕2 1∕2 𝑇
1∕2  𝑇 ′

}

.

(E.10)

Radial component of the transposition operator

The bracket of the operator 𝑇23 over momentum states is given by

⟨𝒑𝒒|𝑇23|𝒑′𝒒′⟩ = 𝛿(𝒑′ − 𝒑̃)𝛿(𝒒′ − 𝒒̃) , (E.11)

̃ ̃ ̃ ̃
30

where the vectors 𝒑 and 𝒒 result from by applying the transposition operator to the left side, |𝒑𝒒⟩ = 𝑇23|𝒑𝒒⟩, exploiting its property
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of being self-adjoint. Inverting Eq. (5.1) to find the single-particle momenta, one finds

⎛

⎜

⎜

⎝

𝒌1
𝒌2
𝒌3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1
3 1 − 1

2
1
3 −1 − 1

2
1
3 0 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑸𝑐𝑚
𝒑
𝒒

⎞

⎟

⎟

⎠

, (E.12)

nd reconstructing 𝒑̃ and 𝒒̃ after permuting 𝒌2 and 𝒌3

⎛

⎜

⎜

⎝

𝑸𝑐𝑚
𝒑̃
𝒒̃

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 1 1
1
2 − 1

2 0
− 1

3 − 1
3

2
3

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝒌1
𝒌3
𝒌2

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 0 0
0 1

2 − 3
4

0 −1 − 1
2

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑸𝑐𝑚
𝒑
𝒒

⎞

⎟

⎟

⎠

, (E.13)

which shows explicitly that 𝑇23 does not affect the center of mass motion. Thus, Eq. (E.11) becomes

⟨𝒑𝒒|𝑇23|𝒑′𝒒′⟩ = 𝛿(𝒑′ − 𝑠1𝒑 − 𝑡1𝒒) 𝛿(𝒒′ − 𝑠2𝒑 − 𝑡2𝒒) , (E.14)

with the following change of coordinates:
(

𝑠1 𝑡1
𝑠2 𝑡2

)

=

(

1
2 − 3

4
−1 − 1

2

)

𝑀𝑆

. (E.15)

Comparing to Eq. (D.10) and performing the angular momentum coupling as in Eq. (D.9), the radial part of Eq. (E.11) reduces to
the vector bracket (D.32):

⟨𝑝𝑞, (𝐿 𝑙)|𝑇23|𝑝′𝑞′, (𝐿′𝑙′)′
⟩ =⟨𝑝𝑞(𝐿 𝑙)|𝑝′𝑞′(𝐿′𝑙′)′

⟩

=16𝜋2 1
𝑝 𝑞 𝑝′ 𝑞′

𝐴𝐼,𝐼𝐼 (𝑥, 𝑝∕𝑞) 𝛿(𝑤) 𝜃(1 − 𝑥2) ,
(E.16)

here 𝑥 = cos(𝒑𝒒) is computed from 𝑝, 𝑞 and 𝑝′ and the Dirac delta imposes that only a mesh of values of 𝑝′ and 𝑞′ is geometrically
llowed changing the angle between the vectors 𝒑′ and 𝒒′.

When working in CS [see Eq. (5.51)] the whole derivation for the matrix elements of the transposition operator 𝑇23 remains
alid up to Eq. (E.10) but the vector bracket (E.16) must then be associated to the following WC transformation coefficients:

(

𝑠1 𝑡1
𝑠2 𝑡2

)

=

(

1
2 −1
− 3

4 − 1
2

)

𝐶𝑆

. (E.17)

Spin/isospin contributions to the transposition operator

The spin and isospin contributions in Eq. (E.10) have the same structure and can be obtained starting from a decoupling of the
angular momenta. We report here the derivation of the isospin term as the spin case is exactly equivalent.

⟨[(𝑡𝛼𝑡𝛽 )𝑇𝛼𝛽 , 𝑡𝛾 ]𝑀 |𝑇23|[(𝑡𝛿𝑡𝜀)𝑇𝛿𝜀, 𝑡𝜑]𝑀 ⟩

=
∑

𝜏𝛼 𝜏𝛽
𝑀𝑇𝛼𝛽 𝜏𝛾

⟨𝑡𝛼𝜏𝛼𝑡𝛽𝜏𝛽 |𝑇𝛼𝛽𝑀𝑇𝛼𝛽 ⟩⟨𝑇𝛼𝛽𝑀𝑇𝛼𝛽 𝑡𝛾𝜏𝛾 |𝑀 ⟩
∑

𝜏𝛿 𝜏𝜀
𝑀𝑇𝛿𝜀 𝜏𝜑

⟨𝑡𝛿𝜏𝛿𝑡𝜀𝜏𝜀|𝑇𝛿𝜀𝑀𝑇𝛿𝜀 ⟩⟨𝑇𝛿𝜀𝑀𝑇𝛿𝜀 𝑡𝜑𝜏𝜑|𝑀 ⟩

× ⟨𝑡𝛼𝜏𝛼 , 𝑡𝛽𝜏𝛽 , 𝑡𝛾𝜏𝛾 |𝑇23|𝑡𝛿𝜏𝛿 , 𝑡𝜀𝜏𝜀, 𝑡𝜑𝜏𝜑⟩ .

(E.18)

aving decoupled all the angular momenta, the particles on the right-hand side of the latter bracket can now be exchanged

⟨𝑡𝛼𝜏𝛼 , 𝑡𝛽𝜏𝛽 , 𝑡𝛾𝜏𝛾 |𝑇23|𝑡𝛿𝜏𝛿 , 𝑡𝜀𝜏𝜀, 𝑡𝜑𝜏𝜑⟩ = ⟨𝑡𝛼𝜏𝛼 , 𝑡𝛽𝜏𝛽 , 𝑡𝛾𝜏𝛾 |𝑡𝛿𝜏𝛿 , 𝑡𝜑𝜏𝜑, 𝑡𝜀𝜏𝜀⟩

= 𝛿𝑡𝛼 𝑡𝛿 𝛿𝜏𝛼𝜏𝛿 𝛿𝑡𝛽 𝑡𝜑𝛿𝜏𝛽 𝜏𝜑𝛿𝑡𝛾 𝑡𝜀𝛿𝜏𝛾 𝜏𝜀 .
(E.19)

Eq. (E.18) becomes

⟨[(𝑡𝛼𝑡𝛽 )𝑇𝛼𝛽 , 𝑡𝛾 ]𝑀 |𝑇23|[(𝑡𝛿𝑡𝜀)𝑇𝛿𝜀, 𝑡𝜑]𝑀 ⟩

=
𝛿𝑡𝛼 𝑡𝛿 𝛿𝑡𝛽 𝑡𝜑𝛿𝑡𝛾 𝑡𝜀

2 + 1
∑

𝜏𝛼 𝜏𝛽 𝜏𝛾
𝑀𝑇𝛼𝛽 𝑀𝑇𝛿𝜀 𝑀

⟨𝑡𝛼𝜏𝛼𝑡𝛽𝜏𝛽 |𝑇𝛼𝛽𝑀𝑇𝛼𝛽 ⟩⟨𝑇𝛼𝛽𝑀𝑇𝛼𝛽 𝑡𝛾𝜏𝛾 |𝑀 ⟩ ⟨𝑡𝛼𝜏𝛼𝑡𝛾𝜏𝛾 |𝑇𝛿𝜀𝑀𝑇𝛿𝜀 ⟩⟨𝑇𝛿𝜀𝑀𝑇𝛿𝜀 𝑡𝛽𝜏𝛽 |𝑀 ⟩

=
𝛿𝑡𝛼 𝑡𝛿 𝛿𝑡𝛽 𝑡𝜑𝛿𝑡𝛾 𝑡𝜀

2 + 1
∑

𝜏𝛼 𝜏𝛽 𝜏𝛾
𝑀𝑇𝛼𝛽 𝑀𝑇𝛿𝜀 𝑀

̂ 2 𝑇̂𝛼𝛽 𝑇̂𝛿𝜀(−1)
−𝑡𝛼+𝑡𝛽−𝑀𝑇𝛼𝛽 (−1)−𝑇𝛼𝛽+𝑡𝛾−𝑀 (−1)−𝑡𝛼+𝑡𝛾−𝑀𝑇𝛿𝜀 (−1)−𝑇𝛿𝜀+𝑡𝛽−𝑀

×

(

𝑡𝛼 𝑡𝛽 𝑇𝛼𝛽
𝜏𝛼 𝜏𝛽 −𝑀𝑇𝛼𝛽

)(

𝑇𝛼𝛽 𝑡𝛾 
𝑀𝑇𝛼𝛽 𝜏𝛾 −𝑀

)

(

𝑡𝛼 𝑡𝛾 𝑇𝛿𝜀
𝜏𝛼 𝜏𝛾 −𝑀𝑇𝛿𝜀

)(

𝑇𝛿𝜀 𝑡𝛽 
𝑀𝑇𝛿𝜀 𝜏𝛽 −𝑀

)

,

(E.20)

here we have used Eq. (C.10) and the independence of the bracket from 𝑀𝑇 due to rotational symmetry. The final summation
ver 3𝑗 symbols can be simplified with Eq. (C.18):

⟨[(𝑡𝛼𝑡𝛽 )𝑇𝛼𝛽 , 𝑡𝛾 ]𝑀 |𝑇23|[(𝑡𝛿𝑡𝜀)𝑇𝛿𝜀, 𝑡𝜑]𝑀 ⟩ = 𝛿𝑡 𝑡 𝛿𝑡 𝑡 𝛿𝑡 𝑡 (−1)
𝑡𝛽+𝑡𝛾+𝑇𝛼𝛽+𝑇𝛿𝜀 𝑇̂𝛼𝛽 𝑇̂𝛿𝜀

{

𝑡𝛽 𝑡𝛼 𝑇𝛼𝛽
}

. (E.21)
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Specializing to the case of isospin 𝑡 = 1∕2 one recovers Eq. (E.9).

ppendix F. Alternative version of the three-body 𝑻 -coefficient

In the following, an alternative version of the three-body 𝑇 -coefficient presented in Section 5 is presented. The angular momenta
couplings required to carry out this transformation are already known [44] and only the radial part has been changed to allow
the possibility of using a generic spherical basis. Only the isospin independent part is shown, since the transformation of the
isospin-dependent state is unchanged. Step 1, 2 and 5 are the same as in Section 5 but they are repeated here for clarity.

STEP 1

|{[𝑛𝛼(𝑙𝛼𝑠𝛼)𝑗𝛼 , 𝑛𝛽 (𝑙𝛽𝑠𝛽 )𝑗𝛽 ]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{[𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆, (𝑠𝛼𝑠𝛽 )𝑆]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(F.1)

The 𝑗 coupling of particles 1 and 2 is changed to 𝑙𝑠-coupling:

|[(𝑙𝛼𝑠𝛼)𝑗𝛼 , (𝑙𝛽𝑠𝛽 )𝑗𝛽 ]𝐽12⟩ =
∑

𝜆𝑆
𝑗𝛼𝑗𝛽 𝜆̂𝑆̂

⎧

⎪

⎨

⎪

⎩

𝑙𝛼 𝑠𝛼 𝑗𝛼
𝑙𝛽 𝑠𝛽 𝑗𝛽
𝜆 𝑆 𝐽12

⎫

⎪

⎬

⎪

⎭

|[(𝑙𝛼𝑙𝛽 )𝜆, (𝑠𝛼𝑠𝛽 )𝑆]𝐽12⟩. (F.2)

STEP 2

|{[𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆, (𝑠𝛼𝑠𝛽 )𝑆]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{[𝑃𝑝(𝐿𝑃𝐿)𝜆, (𝑠𝛼𝑠𝛽 )𝑆]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(F.3)

A change of reference system is performed for particles 1 and 2 into their relative and center-of-mass frame and at the same time
the single-particle momenta of particle 1 and 2 are integrated:

|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩ = ∫ 𝑑𝑃𝑑𝑝 𝑃 2𝑝2
∑

𝐿𝑃 𝐿
⟨𝑃𝑝(𝐿𝑃𝐿)𝜆|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩(𝑎)𝜏𝛼𝜏𝛽 |𝑃𝐿𝑃 𝑝𝐿, 𝜆⟩. (F.4)

The WC bracket is associated to the transformation
(

𝒌1
𝒌2

)

=

(

1
2 1
1
2 −1

)

(

𝑷
𝒑

)

, (F.5)

nd matrix of WC coefficients for the transformation is then
(

𝑠1 𝑡1
𝑠2 𝑡2

)𝑎

𝑀𝑆
=

(

1
2 1
1
2 −1

)

. (F.6)

TEP 3

|{[𝑃𝑝(𝐿𝑃𝐿)𝜆, (𝑠𝛼𝑠𝛽 )𝑆]𝐽12, 𝑛𝛾 (𝑙𝛾𝑠𝛾 )𝑗𝛾}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{[𝑃𝑝(𝐿𝑃𝐿)𝜆, 𝑛𝛾 𝑙𝛾 ]𝐿3, [(𝑠𝛼𝑠𝛽 )𝑆𝑠𝛾 ]}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(F.7)

The coupling scheme of 𝐽𝑡𝑜𝑡 is changed again from 𝐽− to 𝑙𝑠-coupling:

|[(𝜆𝑆)𝐽12, (𝑙𝛾𝑠𝛾 )𝑗𝛾 ]𝐽𝑡𝑜𝑡⟩ =
∑

𝐿3 
𝐽12𝑗𝛾 𝐿̂3̂

⎧

⎪

⎨

⎪

⎩

𝜆 𝑆 𝐽12
𝑙𝛾 𝑠𝛾 𝑗𝛾
𝐿3  𝐽𝑡𝑜𝑡

⎫

⎪

⎬

⎪

⎭

|[(𝜆𝑙𝛾 )𝐿3, (𝑆𝑠𝛾 )]𝐽𝑡𝑜𝑡⟩. (F.8)

STEP 4

|{[𝑃𝑝(𝐿𝑃𝐿)𝜆, 𝑛𝛾 𝑙𝛾 ]𝐿3, [(𝑠𝛼𝑠𝛽 )𝑆, 𝑠𝛾 ]}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{[𝑃𝑛𝛾𝑝(𝐿𝑃 𝑙𝛾 )𝛬𝐿]𝐿3, [(𝑠𝛼𝑠𝛽 )𝑆, 𝑠𝛾 ]}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(F.9)

The coupling of 𝐿3 is changed through a 6𝑗 coefficient:

|[(𝐿𝑃𝐿)𝜆, 𝑙𝛾 ]𝐿3⟩ =
∑

𝛬
⟨[(𝐿𝑃 𝑙𝛾 )𝛬,𝐿]𝐿3|[(𝐿𝑃𝐿)𝜆, 𝑙𝛾 ]𝐿3⟩|[(𝐿𝑃 𝑙𝛾 )𝛬,𝐿]𝐿3⟩

=
∑

(−)𝐿+𝑙𝛾+𝜆+𝛬𝜆̂𝛬̂
{

𝐿 𝐿𝑃 𝜆
𝑙 𝐿 𝛬

}

|[(𝐿𝑃 𝑙𝛾 )𝛬,𝐿]𝐿3⟩.
(F.10)
32
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STEP 5

|{[𝑃𝑛𝛾𝑝(𝐿𝑃 𝑙𝛾 )𝛬,𝐿]𝐿3, [(𝑠𝛼𝑠𝛽 )𝑆, 𝑠𝛾 ]}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{[𝑄𝑐𝑚𝑞(𝑙𝑐𝑚𝑙)𝛬, 𝑝𝐿]𝐿3, [(𝑠𝛼𝑠𝛽 )𝑆, 𝑠𝛾 ]}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(F.11)

A second change of reference system is performed, transforming the coordinates of the relative and center-of-mass of the first two
particles (1 and 2) and particle 3 in the total center-of-mass and the relative coordinate between the center-of-mass of particles 1
and 2 and the third particle

⎧

⎪

⎨

⎪

⎩

𝒒 = 2
3

[

𝒌3 −
1
2
(𝒌1 + 𝒌2)

]

= 2
3

[

𝒌3 −
1
2
𝑷
]

𝑸𝑐𝑚 = 𝒌1 + 𝒌2 + 𝒌3 = 𝑷 + 𝒌3
(F.12)

|𝑃𝑛𝛾 (𝐿𝑝𝑙𝛾 )𝛬⟩ = ∫ 𝑑𝑄𝑐𝑚𝑑𝑞 𝑄
2
𝑐𝑚𝑞

2
∑

𝑙𝑐𝑚 𝑙
⟨𝑄𝑐𝑚𝑞(𝑙𝑐𝑚 𝑙)𝛬|𝑃𝑛𝛾 (𝐿𝑝𝑙𝛾 )𝛬⟩(𝑏)𝜏𝛾 |𝑄𝑐𝑚𝑞(𝑙𝑐𝑚 𝑙)𝛬⟩. (F.13)

The mixed WC bracket (Eq. (D.47)) represents the transformation
(

𝑷
𝒌3

)

=

(

2
3 −1
1
3 1

)

(

𝑸𝑐𝑚
𝒒

)

. (F.14)

he matrix of WC coefficients associated to the transformation is then
(

𝑠1 𝑡1
𝑠2 𝑡2

)𝑏

𝑀𝑆
=

(

2
3 −1
1
3 1

)

. (F.15)

STEP 6

|{[𝑄𝑐𝑚𝑞(𝑙𝑐𝑚𝑙)𝛬, 𝑝𝐿]𝐿3, [(𝑠𝛼𝑠𝛽 )𝑆, 𝑠𝛾 ]}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{[𝑄𝑐𝑚 𝑝 𝑞 𝑙𝑐𝑚, (𝐿 𝑙)]𝐿3, [(𝑠𝛼𝑠𝛽 )𝑆, 𝑠𝛾 ]}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(F.16)

The angular momenta 𝐿 and 𝑙 are recoupled:

|[(𝑙𝑐𝑚 𝑙)𝛬,𝐿]𝐿3⟩ =
∑


⟨[𝑙𝑐𝑚, (𝑙𝐿)]𝐿3|[(𝑙𝑐𝑚 𝑙)𝛬,𝐿]𝐿3⟩|[𝑙𝑐𝑚, (𝑙𝐿)]𝐿3⟩

=
∑


(−)𝑙𝑐𝑚+𝐿3+𝛬̂̂

{

𝑙𝑐𝑚 𝑙 𝛬
𝐿 𝐿3 

}

|[𝑙𝑐𝑚, (𝐿 𝑙)]𝐿3⟩ .
(F.17)

STEP 7

|{[𝑄𝑐𝑚 𝑝 𝑞 𝑙𝑐𝑚, (𝐿 𝑙)]𝐿3, [(𝑠𝛼𝑠𝛽 )𝑆, 𝑠𝛾 ]}𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{𝑄𝑐𝑚𝑙𝑐𝑚, [𝑝 𝑞(𝐿 𝑙), (𝑆𝑠𝛾 )] }𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(F.18)

The orbital angular momenta scheme is changed again, coupling  and  in  :

|[(𝑙𝑐𝑚)𝐿3,]𝐽𝑡𝑜𝑡⟩ =
∑


⟨[𝑙𝑐𝑚, () ]𝐽𝑡𝑜𝑡|[(𝑙𝑐𝑚)𝐿3,]𝐽𝑡𝑜𝑡⟩|[𝑙𝑐𝑚, () ]𝐽𝑡𝑜𝑡⟩

=
∑


(−)𝑙𝑐𝑚+++𝐽𝑡𝑜𝑡 𝐿̂3̂

{

𝑙𝑐𝑚  𝐿3
 𝐽𝑡𝑜𝑡 

}

|[𝑙𝑐𝑚, () ]𝐽𝑡𝑜𝑡⟩.
(F.19)

STEP 8

|{𝑄𝑐𝑚𝑙𝑐𝑚, [𝑝 𝑞(𝐿 𝑙), (𝑆𝑠𝛾 )] }𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩

→|{𝑄𝑐𝑚𝑙𝑐𝑚, [𝑝 𝑞(𝐿𝑆)𝐽 , (𝑙𝑠𝛾 )𝑗] }𝐽𝑡𝑜𝑡𝑀𝐽𝑡𝑜𝑡 ⟩
(F.20)

Another change of couplings in the internal structure of  is performed:

|[(𝐿 𝑙), (𝑆𝑠𝛾 )] ⟩ =
∑

𝐽𝑗
̂̂𝐽𝑗

⎧

⎪

⎨

⎪

𝐿 𝑙 
𝑆 𝑠𝛾 
𝐽 𝑗 

⎫

⎪

⎬

⎪

|[(𝐿𝑆)𝐽 , (𝑙𝑠𝛾 )𝑗] ⟩. (F.21)
33
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The complete change of basis is

|[(𝑎𝑏)𝐽12𝑐]𝐽𝑡𝑜𝑡⟩ =∫ 𝑑𝑃 𝑑𝑝 𝑑𝑄𝑐𝑚 𝑑𝑞
∑

𝑇 

∑

𝜆𝑆

∑

𝐿𝑃 𝐿

∑

𝐿3 

∑

𝛬

∑

𝑙𝑐𝑚 𝑙

∑



∑



∑

𝐽 𝑗

× ⟨𝑡𝛼𝜏𝛼𝑡𝛽𝜏𝛽 |𝑇𝑀𝑇 ⟩⟨𝑇𝑀𝑇 𝑡𝛾𝜏𝛾 |𝑀 ⟩

× 𝑗𝛼𝑗𝛽 𝜆̂𝑆̂

⎧

⎪

⎨

⎪

⎩

𝑙𝛼 𝑠𝛼 𝑗𝛼
𝑙𝛽 𝑠𝛽 𝑗𝛽
𝜆 𝑆 𝐽12

⎫

⎪

⎬

⎪

⎭

𝑃 2 𝑝2 ⟨𝑃𝑝(𝐿𝑃𝐿)𝜆|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩(𝑎)𝜏𝛼𝜏𝛽

× 𝐽12𝑗𝛾 𝐿̂3̂
⎧

⎪

⎨

⎪

⎩

𝜆 𝑆 𝐽12
𝑙𝛾 𝑠𝛾 𝑗𝛾
𝐿3  

⎫

⎪

⎬

⎪

⎭

(−)𝐿+𝑙𝛾+𝜆+𝛬𝜆̂𝛬̂
{

𝐿 𝐿𝑃 𝜆
𝑙𝛾 𝐿3 𝛬

}

×𝑄2
𝑐𝑚 𝑞

2
⟨𝑄𝑐𝑚𝑞(𝑙𝑐𝑚𝑙)𝛬|𝑃𝑛𝛾 (𝐿𝑃 𝑙𝛾 )𝛬⟩(𝑏)𝜏𝛾

× (−)𝑙𝑐𝑚+𝐿3+𝛬̂̂
{

𝑙𝑐𝑚 𝑙 𝛬
𝐿 𝐿3 

}

× (−)𝑙𝑐𝑚+++𝐽𝑡𝑜𝑡 𝐿̂3̂
{

𝑙𝑐𝑚  𝐿3
 𝐽𝑡𝑜𝑡 

}

× ̂̂𝐽𝑗
⎧

⎪

⎨

⎪

⎩

𝐿 𝑙 
𝑆 𝑠𝛾 
𝐽 𝑗 

⎫

⎪

⎬

⎪

⎭

|[𝑄𝑐𝑚𝑙𝑐𝑚, 𝑝𝑞𝛼]𝐽𝑡𝑜𝑡⟩.

(F.22)

Eventually the three-body 𝑇 -coefficient reads

𝑇 3𝐵 = ⟨[𝑄𝑐𝑚𝑙𝑐𝑚, 𝑝𝑞𝛼]𝐽𝑡𝑜𝑡|[(𝑎𝑏)𝐽12𝑐]𝐽𝑡𝑜𝑡⟩

= ∫ 𝑑𝑃𝑃 2
∑

𝜆𝐿𝑃

∑

𝐿3 

∑

𝛬
(−)𝑙𝛾+𝜆+𝛬+𝐿++𝐽𝑡𝑜𝑡−𝐿3 𝑗𝛼𝑗𝛽 𝜆̂𝑆̂

⎧

⎪

⎨

⎪

⎩

𝑙𝛼 𝑠𝛼 𝑗𝛼
𝑙𝛽 𝑠𝛽 𝑗𝛽
𝜆 𝑆 𝐽12

⎫

⎪

⎬

⎪

⎭

× ⟨𝑃𝑝(𝐿𝑃𝐿)𝜆|𝑛𝛼𝑛𝛽 (𝑙𝛼𝑙𝛽 )𝜆⟩(𝑎)𝜏𝛼𝜏𝛽 𝐽12𝑗𝛾 𝐿̂3̂
⎧

⎪

⎨

⎪

⎩

𝜆 𝑆 𝐽12
𝑙𝛾 𝑠𝛾 𝑗𝛾
𝐿3  𝐽𝑡𝑜𝑡

⎫

⎪

⎬

⎪

⎭

𝜆̂𝛬̂
{

𝐿 𝐿𝑃 𝜆
𝑙𝛾 𝐿3 𝛬

}

× ⟨𝑄𝑐𝑚𝑞(𝑙𝑐𝑚𝑙)𝛬|𝑃𝑛𝛾 (𝐿𝑃 𝑙𝛾 )𝛬⟩(𝑏)𝜏𝛾 𝛬̂̂
{

𝑙𝑐𝑚 𝑙 𝛬
𝐿 𝐿3 

}

𝐿̂3̂
{

𝑙𝑐𝑚  𝐿3
 𝐽𝑡𝑜𝑡 

}

× ̂̂𝐽𝑗
⎧

⎪

⎨

⎪

⎩

𝐿 𝑙 
𝑆 𝑠𝛾 
𝐽 𝑗 

⎫

⎪

⎬

⎪

⎭

⟨𝑡𝛼𝜏𝛼𝑡𝛽𝜏𝛽 |𝑇𝑀𝑇 ⟩⟨𝑇𝑀𝑇 𝑡𝛾𝜏𝛾 |𝑀 ⟩.

(F.23)
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