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ARTICLE INFO ABSTRACT

Keywords: Ab initio studies of atomic nuclei are based on Hamiltonians including one-, two- and three-body
Nuclear structure operators with very complicated structures. Traditionally, matrix elements of such operators are
Matrix element expanded on a Harmonic Oscillator single-particle basis, which allows for a simple separation of

Three-body interaction

' e the center-of-mass motion from the intrinsic one. A few recent investigations have showed that
Chiral Effective Field Theory

the use of different single-particle bases can bring significant advantages to numerical nuclear
structure computations. In this work, the complete analytical expression of the Hamiltonian
matrix elements expanded on a generic spherical basis is presented for the first time. This will
allow systematic studies aimed at the determination of optimal nuclear bases.

1. Introduction

Much of our understanding of complex quantum mechanical systems is based on the capability to represent them as being
composed of simpler (or more elementary) particles that are subject to specific mutual interactions. This is referred to as the quantum
many-body problem. Techniques for finding accurate predictions for such systems have found applications across several fields of
Science, ranging from the modeling of crystals in solid state physics, to molecules for quantum chemistry, to cold gases, all the way
to the equation of state for neutron star matter and the unstable isotopes created during nucleosynthesis.

A vast range of different computational quantum many-body methods has been applied across all of these disciplines. Yet, almost
all of these start by representing each constituent as an independent particle in a one-body Hilbert space with a complete basis.
The correlations due to the inter-particle interactions are then added afterwards in order to construct the true many-body quantum
states of the system. The key ingredient for a simulation to be successful is to find a proper choice of the single-particle basis and
compute correctly the matrix elements of the Hamiltonian operator in such basis. For example, the realization that Gaussian states
can approximate accurately the electron cuspid while also accelerating the computation of Coulomb matrix elements has enabled
the whole development of Quantum Chemistry [1,2].

For nuclear physics things are more complicated because the nuclear interaction has a very complex operator structure, with
non-local terms and non-trivial radial expressions. The only possible simplifications come from exploiting spherical symmetry but no
other straightforward analytical properties of the Hamiltonian can be employed to accelerate the computation of matrix elements.
Modern applications use harmonic oscillator (HO) wave functions as the best surrogate to represent nuclear single-particle states [3]
while being able to exploit the symmetries of the HO under the transformation between the center-of-mass and laboratory frames.
Different strategies can be used a posteriori to accelerate the convergence of bulk properties of nuclei with respect to the size of
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the model space compared to the HO basis. For example, a Hartree-Fock (HF) computation defines a better reference state and a
single-particle basis optimized in energy. The Self Consistent Green’s Function (SCGF) method has employed the so-called Optimised
Reference State (OpRS) [4] to handle non-soft interactions since Refs. [5-7]. More recently, natural orbitals (NAT) obtained from
the correlated density matrix [8,9] have proven to enable a more efficient convergence than HF bases. The OpRS basis is built by
reproducing the first moments of the spectral distributions, hence, it is tuned to optimize both the correlated density matrix [4] and
the energy sum rules. Yet both the NAT and OpRS have been so far based on a preliminary expansion on the HO basis and require
handling nuclear matrix elements in a sufficiently large oscillator space.

HO wave functions are known to bring the wrong asymptotic behavior, which negatively affects for example the study of weakly
bound nuclei. A few past investigations in nuclear physics have focused on single-particle bases different than the HO [10-12] and
new classes of candidates for nuclear wave functions have been addressed by Ref. [13]. Though, all these studies are limited and
the corresponding proposed bases have never really been competitive with the HO basis. It is then an important open issue to
investigate more systematically whether the use of bases different from the conventional HO can lead to significant improvements
in the computation of nuclear properties.

Know-how for handling matrix elements in generic bases is fragmented into several publications that appeared across past
years but it mostly covers generic two-particle interactions. To the best of our knowledge, analytic expressions for the two- and
three-body matrix elements of a realistic nuclear Hamiltonian suitable for ab initio calculations in a generic (possibly spin- and
isospin-dependent) single-particle basis are still not available. The present paper aims to fill such gap, setting as a starting point
the matrix elements of the interaction in Jacobi coordinates [14,15] which is the usual form adopted by ab initio practitioners.
Expressions of such matrix elements are derived in a generic spherical basis, making use of the Wong—Clement (WC) [16] coefficients
in place of the usual Moshinsky brackets [17]. Known material and new developments are included in a self-contained manuscript
that incorporates all the necessary elements for computing matrix elements. Although the focus is on modern nuclear interactions,
including spin-isospin degrees of freedom, the formulae reported in this work could be easily adapted to other rotationally invariant
quantum many-body systems (and even specialized to simpler Hamiltonians as needed).

The structure of the manuscript is the following: Section 2 presents the main conventions and definitions used, as well as the
basic ingredients necessary for getting started with the calculation of matrix elements. Sections 3, 4 and 5 focus respectively on
the matrix elements relative for one-, two- and three-body operators. The matrix elements of two- and three-body interactions are
obtained as a change of basis from two- and three-body matrix elements in momentum-space. Finally Section 6 draws some final
conclusions and future perspectives. All the fine details regarding specific topics as the calculation of particular coefficients are left
in the Appendix.

2. Basic ingredients for the calculation of matrix elements
2.1. The nuclear Hamiltonian

The goal of ab initio methods [18-21] is to solve the non-relativistic many-body Schrédinger equation
H|¥,) = E,|¥,), 2.1
where H represents the intrinsic Hamiltonian of the system
H=T+V+W+.. (2.2)

and T, V and W represent respectively the intrinsic kinetic energy, the two-body potential and the three-body potential. Higher-body
operators of the Hamiltonian will be ignored in this work. The operators in Eq. (2.2) are assumed to be invariant under Galilean
boosts.

The intrinsic kinetic energy is conveniently written as the difference between the kinetic energy expressed in the laboratory
frame and its center-of-mass contribution:

T =TT, (2.3)
with
p?
Tl = 2.4
Z 2my 2.4
1
T is a two-body operator that can be expressed as
1 2
T = =~ 2, (P — P, (2.5)
2my A ; ! /

where A represents the particle-number operator' and my represents the average mass of the nucleon. Following [22,23], Eq. (2.5)

1 While operators are denoted in this paper without the ‘hat’ symbol, a different notation is used for the particle-number operator to allow a clear distinction
from the number of particles A of the system, consistently with [22].
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can be re-written by using the identity

D —p) =Y P} +pi—2p; p,)—(A—l)Zp -2 pp; (2.6)

i<j i<j i<j

which leads to an alternative expression for the intrinsic kinetic energy

A-1 i
r=A-ly P — > pip- 2.7
A 2”11\/ mNA i<y

Eq. (2.3) is then recovered by identifying the center-of-mass correction of the kinetic energy with
2
m _ l Z p i

A< 2’"N

which is the sum of a one-body and a two-body operators. Note that Eqs. (2.5) and (2.7) are equivalent only in virtue of the
presence of the particle number operator A [22]. In most practical applications this is simply replaced with the number of particles
A so that the equivalence between the two relations is preserved only for wave function based methods that are formulated in
the A-body Hilbert space, such as Full Configuration Interaction (FCI) or Quantum Monte Carlo (QMC) in coordinate space. For
methods formulated in Fock space—for example, the SCGF that explores intermediate configuration states by particle attachment
and removal-the two forms of the intrinsic kinetic energy with a fixed value of A are no longer exactly equivalent. In practice, it
is found that Eq. (2.7) is the most accurate choice in presence of explicit truncations of the many-body expansion. The calculation
of the matrix elements of the kinetic operator is then reduced to the calculation of the one-body pi2 and the two-body p; - p; matrix
elements. Thus, the complete intrinsic Hamiltonian reads

e D RO MRS W

m i<j i<j i<j<k (2.9)

— > by (2.8)

mNA i<j

A-1 =~
- y Tlab + Z(Vu _ Ticm)+ z ks

i<j i<j<k
where ij’" is the two-body component of Eq. (2.8).
2.2. Single-particle basis
In this work, Greek letters (a) will be used as collective indices for the quantum numbers defining the single-particle basis and

the corresponding letter a and a for specific subgroups of them. For spherical basis states with both spin (3) and isospin (#) degrees
of freedom, one has

=y, lysjo) = (Ngs gy o) » (2.10a)
a=(a,7y) = Ny, Ly jor Tg) = Ny Tgs Jigs Tg) » (2.10b)
a=(a,my) = (g, Ly jor Ty My) = (Mg Ty s Tes My) » (2.10¢)

where ng, 1, 7., j,» T, and m, represent respectively the principal quantum number, the orbital angular momentum, the parity, the
total angular momentum (resulting from the sum of the orbital angular momentum and the spin, j = I + ), the projection of the
isospin and the projection of the total angular momentum along the quantization axis of the quantum state. The parity is implied
by the angular momentum (z, = (—1)’«). Likewise, the magnitudes of spin and isospin are fixed as they are intrinsic properties
of particles (s = t+ = 1/2 for protons and neutrons). Note that the right hand sides of Eqgs. (2.10) assume spin s = 1/2 fermions
since the relation j, =/, + 1/2 implies that the pair of quantum numbers (/,, j,) can be inferred from the knowledge of (z,, j,). In
the general case, e.g. for s = 3/2 baryons, the value of /, must be retained. The coupling of /, and s, to give j, will be indicated
with the notation (/,s,)/j, and will be always implicitly assumed in the rest of this work when a total angular momentum ; is used.
The projection of the isospin encodes informations about the charge of the nucleon (neutron or proton). Many-body states built
by taking the quantum number m, explicitly into account are said to be in ‘m-scheme’. Likewise, for Nuclear Physics applications
one refers to isospin or to proton—neutron (p-n) scheme (or equivalently to ‘T-coupled’ or ‘T-decoupled’ scheme) when nucleons are
coupled respectively to the total isospin (I' = #, + ,) or when the isospin-projections z; and 7, are kept as an explicit label for
the single-particle states. In the latter case, one keeps track of the total number of protons and neutron separately. In this work,
J-coupled T-decoupled matrix elements will always be considered. Expressions for cases different from nuclear physics, such as
electron or quantum gasses where no isospin is present, can be obtained by specializing our results to systems with all polarized
isospins (for example assigning = = +1/2 to all the particles).
To describe fermions in Fock space, consider a set of anti-commuting creation (cZ) and annihilation (c,) operators

leacp) =0, {efie)) =0, {cqiey) = byp, (2.11)
where the latter notation represents the product of Kronecker deltas on all relevant quantum numbers,
(2.12)

5aﬁ = 5rlunﬂ 51011,; 5jajﬂ 5mamﬂ 5rarﬂ .
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One-, two- and three-nucleon states are defined as

lar) = [ 0), (2.13a)
lap) = clc’|0), (2.13b)
lapy) = cjejel10), (2.130)

where |0) is the vacuum state. A generic n-body operator O can be expressed as a function of creation and annihilation operators:

2

(L ot

o _<n!) ,Z/ Z Oaimal.almanc,x;”'Ca;,cﬂn“'cal’ (2.149)
oy 91

where the object OaJ/ ..d\a,..a, 15 the properly antisymmetrized matrix element (o] ... a} |0"q, ...a,),. The Hamiltonian in Eq. (2.9)
in second quantization reads

L\ iab + 1 = 1 T
H = Z (1 - X) Tag €, Cs + <5> z:(Va,ﬂ(;6 - T:;”ag)c;c;cgcé + <§> Z Waﬁy[;wc;c;cyc(pcécé. (2.15)
ad "/ afde “/ apydep
J-coupled scheme
The invariance under rotations of the Hamiltonian in Eq. (2.15) allows to reduce the number of matrix elements to be computed
for calculations in a fixed model space. To exploit this symmetry, the following two- and three-body states can be defined

1

@) M)y = ——= 2 Uamaipmsld M;)laB), (2.16)
V1 + 845 nigmy

l[(ab)dgpeld i My, ) = 2 (amadgmgldapy My Y Jap My, gy, | Jioe M, HaBy), (2.17)
mgmpnt,

where the subscript N indicates that the two-body state is normalized and the delta function

Oap =0 5, 8 (2.18)

neng 61“15 Jadp“TaTp

is analogous to Eq. (2.12). The normalization of the three-body state is cumbersome and is typically not included in the computed
matrix elements. The matrix elements of spherically symmetric operators among the J-scheme states (2.16)-(2.17) drop the
dependence on the M quantum number. As a consequence, less states are required to represent a given model space and the
computational time as well as the memory required to store two- and three-body matrix elements are reduced.

A generic J-coupled two-body state can be antisymmetrized as follows:

[(ab)T M) 4 = [(ab)J M ;) — (=1)a*5~ |(ba)T M ;) , (2.19)

while the antisymmetrization of J-coupled three-body states is more complicated and will be discussed in details in Section 5 and
Appendix E.

2.3. The single-particle wave function

The nuclear single-particle isospin-dependent wave functions in coordinate space (CS) and momentum space (MS) take the form

Tnlm,r(r) = (rlnlm,r) = ¢nlr(r)Ylm[(f)5 (220)

iy (K) = (klnimy ) = 61 ()Y, (R, (2.21)

where ¢,,, represents the isospin-dependent radial wave function and Y,,, is a spherical harmonic, whose argument is a solid angle
Q = (9, ). Note that the radial wave functions can be easily generalized to spin-dependent wave functions ¢,,;.(r) and $ﬂ1 iz (k).
The total wave functions in CS and MS are related by a Fourier transform and equivalently their radial wave functions are related
through Hankel transforms

+oo
i (r) = (rlnlt) = \/%/0 dk k2 j(kr) . (K), (2.22)

+oco
Gz (k) = (k|nit) = \/g /0 drr? ji(kr) . (r), (2.23)

where j;(kr) represents the spherical Bessel function of the first kind. It is important to notice that Eq. (2.23) does not directly produce
the radial part of the Fourier transformed state (2.21) but there is an additional complex phase involved (see Appendix B for further
details):

Guie(0) = (=) by (k). (2.24)
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One may chose to disregard this phase and use Egs. (2.22) and (2.23) to define the CS and MS states [that is, q?,,,r(k) = $,,,T(k)].
This is convenient because both radial parts can be kept real, however, it must be bore in mind that Egs. (2.20) and (2.21) are no
longer exact Fourier transforms of each other in this case: matrix elements computed in the CS basis may acquire additional phases
in the MS one and vice versa. Furthermore, the radial functions can have oscillating asymptotic behaviors with changing number of
nodes—that is when varying the principal quantum number ». In this work, the general case where ¢,,,(r) and $n1,(k) take complex
values is considered. Leaving the imaginary phase aside, the following convention is assumed:

G (r) >0, for r — 0, (2.25)
Gy ~ (=", for k — 0. (2.26)

2.4. Beyond the Harmonic Oscillator basis

The HO basis has been widely employed in ab initio nuclear structure. The reasons are multiple: the HO potential seems to be a
proper choice to describe well-bound closed-shell systems, which are the first systems that have been studied in ab initio theory. The
specific analytical expression (Egs. (B.4) and (B.5)) of the HO wave functions allows for various simplifications: first of all, it allows
for an exact separation of the intrinsic and center-of-mass motions, which as discussed in Sections 4.4 and 5 is necessary to go from
the laboratory frame to the intrinsic one. Second, the specific transformation between center-of-mass (r, R) and single-particle (r;,
r,) coordinates:

W-Z JEe
R d+r1 dL+1 ry

(where d = m, /m, for a two-body system) can be carried out in the HO basis by the Moshinsky brackets ((nN(IL)A|n n,y(I;1,)A)4) [17],
whose implementation is computationally very convenient. Furthermore, these coefficients are diagonal among major oscillator
shells so that the constraint 2n+/+2N + L =2n; + 1, + 2n, + I, is always satisfied. This property is referred to as the conservation
of the energy for the Moshinsky brackets and it allows to greatly simplify the calculation based on HO states given the large number
of vanishing coefficients it implies. Finally, since HO wave-functions are isospin-independent, the number of matrix elements to be
stored can be reduced exploiting this symmetry.

The formalism developed in this paper allows to go beyond several limitations imposed by the HO basis. First of all, isospin-
dependent bases can be employed, so that one can exploit the advantages of expanding matrix elements on two different bases to
tackle for instance neutron-rich exotic systems in which the radial density behavior of neutrons and protons can be very different.
Second, the Moshinsky brackets that are employed in the case of the HO wave functions are substituted by the WC brackets
(rRUL)A|n;ny(l115)A) [16], which are at the heart of this paper and can be applied to a completely generic basis. This will allow
breaking the constraints that presently link ab initio methods in nuclear physics to the HO basis. These coefficients allow for a change
of coordinates that generalizes Eq. (2.27), as follows:

r _ (51 tl r
<rz> - (52 tz) (R) (2.28)

with s,,#,5,,7, € R. The matrix constituted by these coefficients will be referred to as matrix of Wong—Clement coefficients. It is
straightforward to invert Eq. (2.28) to obtain a generalization of Eq. (2.27). The WC bracket is different compared to the Moshinsky
bracket also in the type of states that are coupled, since it can act directly on MS momenta or CS positions, allowing to use single-
particle wave functions in either space. On the other hand, the presence of these continuous variables complicates the computation
of WC coefficients. A complete description of these coefficients is given in Appendix D.

3. One-body matrix elements
3.1. Laboratory-frame kinetic energy

Consider the matrix elements of the kinetic energy operator in the laboratory frame

2

|b) =6 flata 3.1)

laby g\ _ )4
(alT |ﬂ> = 5mnmﬂ (al sz mamﬁ‘sjajﬁéln[ﬁ(sr,,rﬂ nahp>

where the deltas select subblocks tﬁ,"; f,”ﬂ of non-vanishing matrix elements of T/%®. These matrix elements are easily computed for MS

radial wave functions,
+00
Ly AR SRt A) 3.2)
nghp sz 0 nylt nglt

with [ =1, =, and 7 = 7, = 75. The one-body matrix element in Eq. (3.1) can be re-expressed as a function of CS single-particle

5
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wave functions by exploiting the representation of the momentum operator in CS
p— —ihV (3.3)

and the expansion of the Laplace operator in spherical coordinates

d> 24 I?
A=V = | —+=5—-=]|. .
(r) () [dﬂ S dr rz] 3.4
The matrix elements of the operator t are easily re-expressed in CS
o[t d 24 l+1)
w ___ N 2 da 2d _
tn;nﬁ = "2 /s drr* ¢, 1 (r) o + I 2 ¢,,ﬁlf(r), (3.5)
where the completeness relation
/drrzlr)(rl =1 (3.6)
and the orthonormality relation
i
riry = 2= 3.7
Ia

for the radial state |r) hold. Equations analogous to (3.6) and (3.7) stand for the MS state |p).

4. Two-body matrix elements

In this section, working relations for computing two-body matrix elements in J-coupled T-decoupled scheme are obtained. The
J-coupled scheme minimizes the number of matrix elements to be considered, while the T-decoupling allows to take into account
for possible isospin dependence in the single-particle wave functions.

4.1. Center-of-mass correction of the kinetic energy

Expression with MS wave function

The calculation of the center-of-mass correction of the kinetic energy involves evaluating of the matrix elements of the two-body
operator p; - p, [11,24], where the subscripts 1 and 2 denote the two particles. By means of Egs. (A.11) and (A.12), one can write
this operator as a sum of spherical components, [p; - p,1,:

4 N N
P1- P2 = Z[Pl ‘Pl = ?ﬂ Z(—l)ﬂpll’zYly(Pl)Y1_,4(P2)~ (4.1)

H M

The radial and angular parts of Eq. (4.1) decouple easily in m-scheme. Thus,

4
(@BIIpy - P21, 178) = S (=D Cnaloyn nplyzylpypalm, Ly 7, m1575)

(4.2)
X{JaMgs Jgmpl Y1, (BDY _,(BD)jymy . jsms)-
The radial part is further separable in one-body matrix elements
(MalaTarnglatglpipaln,l, T,  nslsts) = (nglatelpln,l, 7, Xnglgtylplnslss) (4.3)
where each contribution is expressed as a radial integral
+oo - -
alesaloln ) = [ dvi B 0B 00 “.4)
Similarly, the angular bracket is separable in two one-body contributions
<J'ama’jﬂmﬂ|Y1,,(131)Y|_,,(132)|jymy7j,sm5> = <(1asa)jama|Y]/4|(lysy)jymy><(lﬁsﬁ)jﬂmﬂ|)]]—y|(l§S5)j5m§>- (4.5
To compute the one-body expectation value of a spherical harmonic we convert it from j-scheme to /s-scheme
((lasn)jmma|Yl;4|(lysy)jymy> = Z (lamlasamsa |jama><lymlysymsy |jymy>(lmmlasamsa|Y1;4|lymlysymsy>
my, M, my, ms,
(4.6)

= Z <lam1as./msy |jama)(lym,y s,ms, |jymy)(lam,a |Y]M|l},m,y),

my, mg, my,

where we use the fact that Y, does not act on spin and (s,m, |s},msy) =08, 6 . Furthermore, all spins have the same value
« 7

aSy Mg, Mg

6
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for a system of identical fermions. The angular bracket in Eq. (4.6) is given by Eq. (C.14):

31
(Lo, 1Yy, |1y ) = ‘/Hi—/(17010|la0><1ym,yl,u|lam,a), 4.7)
o

where we use the notation of Eq. (C.1). Eq. (C.23) can then be applied to simplify the summation over triple Clebsch-Gordan
coefficients

. . [31 . .
<(lasa).]ama|Ylu|(lysy)jymy> = Hi_}/UyOlOllaO) Z <lymlysymsy |jymy> <lamlasymsy|jama> <lym17 lﬂllamla>
a

m; mg m
1o Msy T,

T e . Lo, 1
=\ 2 OO0 L Gt {7t L

Eq. (4.8) is valid for fermions with s, = s,. For the special case of spin s = 1/2, such as electrons or nucleons, Eq. (C.24) allows
further simplifications:

(4.8)

oI, 1
1,01,010) 7«
(1,0,01 >{ja J 1/2}

n +(_1)/,,+1,+1] (_1)jy—j,,+l+1,,—ly B 1 0
= 3 77 (J,zja -5l ) (4.9
a'ly
(=W datttlaly 3
=x(l,,1,l )—— (=1~ 2101j,=),
x(l,,1,1,) 7afy (=1r 2.ja+1<172 |ja2>
where the definition
2y lys ) = %[1 + (=it (4.10)

has been used to enforce the parity constraint /, = /, + 1. Putting together all above results, one can confirm that the matrix
element (4.6) satisfies the Wigner-Eckart theorem

(UaSadiama| Y1y |5, )iym, ) =Cymy Liljame XU s a1Vl 5,)dy ) (4.11)

and identifies the reduced matrix elements for s = 1/2 fermions and integer angular momentum with

, , 3J i 1 1
(UasdialV111Uy5)d,) = 4/ E;‘y(‘”'" Iy 3 10l 52 1,0 (4.12)
a

The second contribution in Eq. (4.5) is analogous but with the substitution 4 — —u. By summing over u and coupling to total
angular momentum J we obtain:

Y (=1 (ab J1Yy,(p)Y,_,(Br)led: J) =
H

= D0 D amadgmgld My G,m, jsms| I My Y aBl Yy, (b)Y, (52)]y )
et
my mg

=Jds X G s i 15,05, X s piglY 1 )is) (= 1)+ sy 413)
ey .

my mg My

X(ja J j,;)(ja 1 jy><j§ J jy>(ja 1 j,,)
-my, M; -mg)\-m, p -m, -msg M; -m,) \ms; —p —my

. . A i i J
= (=1t {j j.” | } (Uasial V15,05, ) ps g 1Y 155505

s Jr
where Eq. (2.16) has been used without normalization and we have exploited the symmetry properties of the 3 symbols and
Eq. (C.18). Eventually, the antisymmetrized and normalized matrix elements of product of momenta p; - p, can be expressed as

(ab; J1p, - pyled: J) 4y = [<ab:J|p1 paled; J) — (=1 I~ (ab; J|p, -p2|dc;f>] : (4.14)

1 1
V146, 1464

Each two-body contribution is conveniently written as

o .. ] . 7
(abs J|py - pyled; J) = (=1Yotirt) j 7, {j j.” 1}<a||p1||c><b||pz||d>, (4.15)
6 Y

where the one-body reduced brackets, which include both the radial and angular one-body contributions, are defined by

+oo - -
(allplls) =/ 2 [ /O dpp’ &, () ¢nﬁlﬂf,,<p>] (U Tall Vi1 g3p)ip)- (4.16)

7
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The separability of the two-body matrix elements in Eq. (4.15) into a product of two one-body matrix elements makes the
computational time required for their calculation scale the same as one-body matrix elements.

Expression with CS wave function

For single-particle wave functions expressed in CS, the center-of-mass correction of the kinetic energy can be computed from
Eq. (4.14) through a preliminary Hankel transform [c.f.r. Eq. (2.23)] of the radial part in MS (and keeping track of the complex
phase (2.24), see Appendix B). In most cases this implies performing additional computations to evaluate the Hankel transform
which might introduce numerical noise. Another option is to represent the momentum operator in CS without manipulating the
wave functions. In this case, Eq. (4.4) and the reduced matrix elements (4.16) need to be substituted with appropriate CS integrals.
We discuss the relevant formulae in the following.

Consider the product of momenta in coordinate space

PPy =—hV, Vy= -1 Y (-1)'V,, V. (4.17)
M

The spherical components of the gradient operator have a rather complicated form [25]

[4 d i
vy, = ?”{Y,”E-i[yle,]l”}, (4.18)

which no longer factorizes in a radial and angular part. However, it still is a rank-1 tensor operator and it satisfies the Wigner—Eckart
theorem for the matrix elements among spherical angular states:

(nalam,awl”lnﬁlﬁm,ﬁ) = (n,ll,xra||V||nﬁlﬂrﬁ)(l/,m,ﬂ 1M|lam,a). (4.19)

The computation of such reduced matrix elements is lengthy but straightforward and is discussed in detail in Ref. [25] (Section
13.2.4). One has

I+ 1 I
_ 4 nplptp i nplpTp
(nolotyIVlinglyzs) = T A6y — TS BYVS 1yt (4.20)
with the definitions
+o0 l
nplpty _ 2 4k d ‘s
Atz —/0 drr ¢na[“1a(r)|:dr p ]‘f’nﬂ/ﬁrﬂ(")’ (4.21a)
+oo I+ 1
nglpty 2 d B
B, . = /0 dreedy e, O+ —— ]%zﬂfp(r). (4.21b)

To find the reduced matrix elements in a J-coupled single-particle states we proceed in analogy with Egs. (4.6)-(4.8) and write:

(alV, M|7> = 5fafy (nalara||V||nylyry) Z (lamlasymsy |jama)(lym,ysymsy |jymy)(l},m,y lyllamll)

e 4.22)
=60 nal TVl 1,7 YD et T G my ) jgme) {Z 317 f:} :
so that we have
(alIVlle) = 6, (nl o7Vl L, 7,) F (4.23)
with the definition of the quantity
i = il {Z Sly 5:} . (4.24)

Performing a coupling to J-scheme as for Eq. (4.13), we find the final expression for the (unnormalized and non-antisymmetric)
matrix element:
(ab; J\p; - paled; Iy = = W2 Y (=1)"(ab; J |V, V,_, lcd; J)

H

j j [ j j J
== nX(allVlle)(blIVId) =1y j, fy {55 I 1}, (4.25)
Y

2 jaf /ﬁjﬁ j i+ 2 2 ] J J
= = Wl IVl L gy IV sl B, B (<1704 G, {,: j/: 1}.

The matrix elements in Eq. (4.25) can be normalized and antisymmetrized according to Eq. (4.14).
4.2. Center-of-mass correction of the radius

In this subsection, the matrix elements of the operator r, - r, are obtained. This operator does not enter directly the Hamiltonian
but it is used for the calculation of nuclear radii. Given the symmetry between the expressions of the momentum operator in
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coordinate space and the radius operator in momentum space,
p— —ihV,, r — ihv,, (4.26)

it is straightforward to adapt the equations obtained for the center-of-mass correction of the kinetic energy in the previous section
to the case of the center-of-mass correction of the radius. The equations for the expectation value of the operator p, - p, expanded on
the MS wave functions (Egs. (4.14), (4.15), (4.16)) become the equations for the expectation value of the operator r, - r, expanded
on CS wave functions:

1 1 g
(abs J|ry - ryled; J) yy = —— —— [(ab;Jlrl sryled; Iy — (=Yt~ (ab; T |ry - rylde; T, (4.27)
N T, T+ 6y
. N j J
(abid|ry - ryled: J) = (<1 5 g, {j ” 1}<a||r||c><b||r||d>, (4.28)
6 b4
4 too 3 ik R .
(alrlle) = \J 5| | drr @), 0 b1y, ) adaI¥ill ) (4.29)
The same applies for the expectation value of the operator r; - r; expanded on MS wave functions:
’ Jo Jp J
(ab; J1ry - ryled: J) = =Hn,ly 2 IV, lin, 1,7, Xngly 7511V lnsls25) /2 ﬂ’;’,f; (=1yrtirtd {Jﬁ jﬂ 1} . (4.30)
Y
~n Iy, ~n Iy,
(1o T |1V, linglgTy) = 21 1 ,,:,:Tf B ETS +l ,,f,:,f Ll g1 (4.31)
LA e
A = A dpp* §; Ta(p) ¢nﬁ/ﬁfﬁ @, (4.32a)
B"slpTs L 1]
B, .-, E/o dpp &, , . (p) d—p + T Pugiye, (P (4.32b)

. . ~nylyT) ~nglyt, . . .
where the coefficients A *”* and B ”” 7 are defined in terms of integrals over momenta.
a‘ata a‘ata

4.3. Coulomb interaction

At the short distance scales typical of hadronic interactions, the strength of the electromagnetic force becomes important even
for nuclear systems. Hence, the two-body part of Hamiltonian (2.15) must contain a Coulomb interaction in the form

aZy Z,

V(lry—rl= I —r2|7

(4.33)

where « is the fine structure constant and Z; is the charge number of the ith particle. The inverse distance term in Eq. (4.33) can be
expanded by a multiple decomposition [26]:

r/L

— <
I —ry| ; T P;(cos 0), (4.34)

>

where 0 is the angle between the vectors r; and r,, P,(x) is a Legendre Polynomial of degree 1 and the convention
ro = min(ry, ry), (4.35a)
ry = max(ry,r,) (4.35Db)

is used. The Legendre polynomial can be expanded in spherical harmonics:

+4

Az
P;(cos ) = —Y (Fl)Y;‘ (Fy), (4.36)
; 24+ #

such that Eq. (4.34) becomes

—r2| - Z 2/1+1 A+1 Z( DY,y (FDY; () (4.37)

where the property Y* (7)) = (=1)*Y, _,(7) of spherical harmonics has been employed.
Unlike the case of the center-of-mass corrections discussed in previous subsections, the radial part of the operator (4.37) does
not separate in two one-body contributions. However, such factorization still holds for the angular terms. Thus, the matrix elements
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among single-particle basis states become

A
HH ,ngl ,ngls
2/1+1 (=D¥ (ngl 7o nplpsl =7 ;+1 In, Ly, nsl5Ts) (4.38)
X <(lasa)Juma| Yy, 1, s,)j,m, XU gsp)igmgl Yy, [Uss5)jsms) s

where the radial integral can be written explicitly as

rA oo * 1 n * A+2
(neloTornplysl— P In 1,7, n5l575) = A dry @, 1. ) btz (1) A dry @y 1,0, "D 15 Bugise; (2)

> ! (4.39)

wr [T 1

+ b —

+r /r dry by 150,(r2) e Gugize; (r2)
I 2

(@l 118) =01z, By Z

Note that no charge term is yet included in the operator (4.37) so that Eq. (4.38) is diagonal in isospin. Nevertheless, the
integral (4.39) still depend of isospin through the radial parts of the single-particle basis functions. The angular matrix elements in
Eq. (4.38) obey the Wigner—Eckart theorem

<(1asa)jama| Yﬁu I(lysy)jymy> = <jymy A”l]a’”a)((lasa)ja” YA ”([ysy)jy> (4-40)
and their derivation follows closely the one shown in Section 4.1 for MS. The reduced matrix element is found to be
laS)iadll Y, U, s,)j,) =6 L or,0140)—yrtsrj 00 {1 fe A (4.41)
(Uesdial Y Uy s,)Jy) =55, E<V OIAOY =Y j 1L, A .

which generalizes Eq. (4.8) to spherical harmonic operators of rank A and particles of generic spin s. This result can also be
specialized to spin s = 1/2 fermions using Eq. (C.24):

1. 1. 2A+1,. 1 o1
(U3 )il Vi 1y 50) = (S 5= g 3 40Uy )3 L)

H (4.42)
i _j 2A+1Jy,. 1 o1
= (=1t [ 22 2 i 2017 =Vl AL
(=1) Vs ja<Jy2 |Ja2>7r(a )
The general J-coupled and T-decoupled matrix element is then calculated as follows
1 oo oo 1
(abyJ|———led: Ty = D (Gamaipmpld My)j,m, jsms|J M)l ———|y8)
[ry =yl mom ) [ry =1yl
o Mp My, Mg
A
rt
= Oz, Ocye; Julp Z_( W2 gl o, nglytgl == et Iy Ty 5l575) (4.43)
>
. . . . ] g J
X (Uil Ya 5,0, X3 gl Y 11U 555))5) {jé j’y’ A} .
A simpler relation can be found for nucleons by substituting Eq. (4.42) directly into the latter relation. One finds
Jjpti,+J r/l
(ab; Jlﬁlcd J) =60 Scey Judp Z( DI (nglyty.nglytgl — pe In, 1,7, n5l57s)
(4.44)

jg J
Xl 21U A1) a3 0L, ) p 3 0L 3) {’“ ” A} :
v

which is valid for spin s = 1/2 fermions. The final normalized and antisymmetrized matrix elements are found substituting the latter
relations into Eq. (4.14).

4.4. Two-body interaction

The matrix elements of a two-body interaction entering Eq. (2.15) are intended in the laboratory frame so that they must be
expressed either with respect to products of single-particle orbits or between the corresponding J-coupled states (2.16). Invariance
under Galilean translation and rotational symmetry make it easier to model many-body interactions in terms of degrees of freedom
for the relative motion. For Nuclear physics this is normally done using relative two-body coordinates, or Jacobi coordinates for
three or more nucleons.

Let define the two-body relative and center-of-mass momenta p and P:

1 1
P\_(5 —3 ky
-( )

where k; and k, represent the momenta of the two particles. A general two-body interaction can be expanded in terms of the
momenta (k;, k,) as

2
= /dk,dkzdk’ldk; |k]k2><k1k2|V|k’1k;><k;k;|5<Z(k, - k;)>. (4.46)

10
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Equivalently, the expansion can be performed with respect to the momenta (p, P) and reads

V= / dpd Pdp/dP' |pP)(pP|V|p P')(p' P'|5(P — P')
(4.47)
- / dpdp' 1pYpIVIP )P | ® 1p.

where (p|V'|p’) is independent of P for a translationally invariant interaction and the center-of-mass contribution has been isolated
in the term

1p E/dPlP)(Pl. (4.48)

In practice, the most generic two-nucleon potential that is employed in ab initio simulations can be expanded on a partial-wave basis
as

(pIVIp'y — (p(US)j. TM|V|p'(I'S")j. T Mz), (4.49)

where p, I, S, j, T ad My represent respectively the modulus of p, the relative orbital angular momentum, the total spin, the relative
total angular momentum, the total isospin and the projection of the total isospin along the quantization axis of the two-body system.
The projection m of the relative total angular momentum along the quantization axis does not appear in Eq. (4.49) in virtue of
spherical symmetry. Note that Eq. (4.49) is also diagonal in M in virtue of the conservation of electric charge. For most of the
nuclear forces that are employed in nuclear physics, including earlier high-precision potentials [14,27] and those based on Chiral
Effective Field Theory (ChEFT) [28-30] , the matrix elements are also diagonal in 7.

As in the case of the center-of-mass corrections discussed above, the goal is to calculate the J-coupled T-decoupled matrix
elements:

(ab; IM;|V]ed; TM ;) = (nolyjaTonplpiptss IMy\Vin,l,j, 7, n5l5j57s I My). (4.50)

Differently from what seen in the previous sections, the matrix elements of the two-body interaction discussed here are not calculated
from scratch since for most applications they are provided in a partial wave basis. Hence, one needs to perform a change of basis
from Eq. (4.49) to Eq. (4.50). This change of basis is the topic of the rest of this section. We demonstrate it by focusing on the sole
isospin-independent part of the two-body states, |n,/,j,.5l5i5:J M), since the isospin couplings enter only the final part of the
transformation. In the following, the various intermediate transformations required are listed.

STEP 1
[nglojasnglgipgs I My) = |ngngl(alp)d, (s,55)S1T M) (4.51)

A change from J- to /s-coupling is operated:

111 s(X j(l
|nalaja,nﬂlﬂjﬂ;JMJ)=ZfafﬁAS ly s Jpglngnglelg)d, (s,s5)S1T M), (4.52)
is A0S T

where 4 is the orbital angular momentum that couples /, and /5, while S is the total spin that couples s, and s,.
STEP 2
Ingngl(alp)A, S1TM ;) = |pPI(IL)A, S1T M) (4.53)

Two different transformations are performed here with one step: the change of coordinate systems from single-particle to relative
and center-of-mass coordinates represented in Eq. (4.45), and the integration of the single-particle momenta, to give a state with
single-particle quantum numbers n, and n;:

[ngnp(llg)d) = Z / dpd P p* P? (PPUL)Angny(lalp)A)e, o, IPPULIA), (4.54)
1L

where / and L are the relative and center-of-mass orbital angular momenta of the two-body system. The intermediate bracket
represents the WC bracket discussed in Ref. [16] and Appendix D.3. In the specific case of the transformation between momenta
given by Eq. (4.45), the bracket appearing in Eq. (4.54) is associated with the inverse relation:

@) B <—11 i) <£> ’ (4.55)

so that the WC coefficients (analogous to Eq. (2.28)) read

sioon) (1 4.56
<52 t2>MS <—1 > (4.56)

11
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STEP 3
[pPIUL)A, S1T M) — |pPI(S)j, L1 M ) (4.57)
A change of coupling is required to couple the relative angular momentum to the total spin:

Jj L

J
1S l}lpP[(lS)j,L]JMJ), (4.58)

IPPIUL)A, SITMy) = Y Jj(~1yi+b+s+l {
J

where j is the relative total angular momentum of the two particles.
STEP 4
[pPL(1S)), L} M) — |p(IS)jm, PLmp) (4.59)

A decoupling of the center-of-mass angular momentum L from the total J is used to exploit the independency of the two-body
potential from the center-of-mass variables

IpPLUS)j, LI M)y =Y (jmLmy|J M) |p(S)jm, PLmp), (4.60)
mmp
where m and m; represent respectively the projection of j and L along the quantization axis.

The two-body potential is independent of the center-of-mass variables because of translational invariance, see Eq. (4.47).
Furthermore, spherical symmetry implies that Eq. (4.49) it is independent of m and couples only states with the same total angular
momentum j:

5(P - P")
P2
Hence, set aside the isospin degrees of freedom, the expectation value of the two-body potential over the states of Eq. (4.60) leads

to

(pUS)jm, PLm |V |p'(I'S")j'm, P' L'm}, ) = S1.1/ By, 85 St (PUSYIIV 1P (1 S1))). (4.61)

(pPLUSY), LI My |V1p' P'(' S, L'V M)
= X GmLmp I M) m Ll | I M) p(S)jm, PLmy |V |p'(1"'S")j'm’, P/ L))
mmy m' n (462)

L
_8(P—P)
==
where at the last step the orthonormality of the Clebsch-Gordan coefficients (Eq. (C.8)) has been used. At a last step we still need
to recouple the isospin quantum numbers according to Eq. (4.49).

6LL’6jj’5JJ’5MJM} (pUSYIVIP'U'S")j),s

STEP 5
[taTastgTp) = |(t41)T M7) (4.63)
The total isospin is recoupled

ltaTurtyTp) = Y, (taTal 7yl TMp)|T My), (4.64)
TMyp

and the only value of M; that is giving a non-vanishing contribution to the summation is given by the Clebsch-Gordan coefficient
through Eq. (C.3): My = 7, +7,. After gathering all the above transformations, the complete expression for the change of basis reads

ly  Sq  Ja
ol afuTos nplpiptys IMs) = D) /dePPzpz(—1)’+L+S“fafﬂ/123f lp sp g
ASILjT My A0S J (4.65)

j L

X (pP(lL)AInanﬁ(lalﬂ)ﬂ)rﬂﬂ {/1 S

J
/ } (taTotg7p|T M7 ) |p(1S)j, T Mr).

Let us now define the collective index*:

a={,S,j,T,M;}. (4.66)

2 To keep with standard notation in the literature, the Greek letter a is used to label the angular and isospin quantum numbers of the relative motion,
and similarly for three-body relative states in Eq. (5.6). This is not to be confused with the labels for single-particle states (2.10c). The two cases should be
distinguished easily from the context.

12
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The coefficient that expresses the probability amplitude for the change of basis presented in this section is called T-coefficient and
can be obtained multiplying Eq. (4.65) by the state |pa, PL)

1 i c e
T8 = (pa, PLlab; M)y = ——— Y (-1 F+5+4] 7,02 8]

\/1+5ab A

l s J (467)
a a « j L J

Xqlg  sg g <pP(lL)l|nanﬂ(lnlﬁ)/1)farﬁ {/1 S }(tarmtﬂrﬂTMT),
A S J

where the term 1/4/1 + 6, is the normalization factor for the two-body J-coupled state shown introduced in Eq. (2.16). The final
matrix elements must be antisymmetrized using the two-body antisymmetrization operator,

L
V2

The transposition operator is defined by T}, |af) = |fa). When acting on the coupled state |ab; J M) it brings in a phase (=1)«*/s~/
arising from the Clebsch—-Gordan coefficient needed to uncouple the angular momenta. Similarly, inverting the states a and b in
Eq. (4.66) introduces a phase (—1)«*~T from the isospin coupling, a phase (—1)'a+/s+Sa+ss+iatip+i+S+J from the 9 symbol and a
phase (—=1)*~ from the WC bracket. The latter can be obtained from the symmetry relations listed in [16]. In the assumption of
spin and isospin s = t = 1/2 and using parity conservation, all the above phases simplify to (—1)/*5+7, so that the T-coefficient for
the antisymmetrized two-body state is given by

laB) s = V2! AlaB) = —(laB) — | fa)). (4.68)

(pa, PL|ab; TM ) 4 n =(pa, PLl%[lab; IM;)yy — (1Y« 57 |ba; M)\
2
=(pa, PLl%[lab; IMy)y = (=D ab; T M) ] (4.69)
2

=V2 (I, 8, T)pa, PL|ab; J M) .

Finally, the complete formula for change of basis for two-body matrix elements reads

(ab; TM |V |cd; M) 4§ =/dP Py /dpdp’p2p’2
L (4.70)
X Z(ab; JM|pa, PLYN(pa|V | &) 4P, PLlcd; M)y ,
aa’
where the T-coefficients are from Egs. (4.67) and {pa|V |p'a’), =2 z(1,1, S, T) z(1,I',.S", T"){pa|V|p' '} is the antisymmetrized version
of Egs. (4.49). Because of antisymmetrization, the sums over a and o’ are limited to odd values of / + S+ T and I’ + S’ +T’.

The equations discussed above can be applied to MS wave functions. CS wave functions can be employed as well, but they need
to be first Hankel-transformed to momentum space (Eq. (2.22)), or equivalently the MS potential must be transformed to CS through
a Hankel transform:

2 +oo
(ralvir'ay = =i /0 dpdp' p*p ji(pr) ju @'r) (pal V1P ), (4.71)
where the phase i’ results from Eq. (2.24) and it is real for parity conserving interactions (for which / — I’ is an even number).
Eq. (4.71) assumes that the new relative and center-of-mass variables (r, R) in CS are conjugate to the momenta (p, P) of Eq. (4.45).
They are related to the single-particle positions through the following change of reference system:

(-0 7))

The computation of two-body matrix elements in CS follows exactly the same steps discussed above with this new reference system.
The only exception that the WC coefficients for the transformation in Eq. (4.54) are substituted by

1
= 1
<sl f|> =( 2 . (4.73)
S5 h)eg -3 1
which follow directly from inverting Eq. (4.72).
5. Three-body matrix elements

In this section we provide a transformation for a change of basis among three-particle states, similarly to the one of Section 4.4,
that applies to generic spherical bases. Let be defined the Jacobi momentum coordinates (Q,,,, p, q) as

0. 1 1 1 k,
1 1

pl=| 3 -3 oflk 5.1)
ST Y |

9 3 30 3\

13
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that represent the center of mass and Jacobi momenta as a function of the single-particle momenta (k;, k,, k3). A general
translationally-invariant three-body interaction can be expanded with respect to the momenta (k, k,, k3),

3
W= /dk]dkzdk3 dK,dk}dk, |k.k2k3><k,k2k3|W|k’lk;kg)<k’lk'2k’3|5<Z(k,. - k,’.)), (5.2)
i=1

or it can be equivalently expressed in terms of the momenta (Q,,,, p, 9):

W= / dQ,,dpdqdQ., dp'dq |0.,,pq)(Q..padWI|0Q., 0 qd 0., P q'15Q,., 0.,

(5.3)
= /dpdqdp’dq’ lPa){pgWp'd'YP'd'1®1g,, .
where the center-of-mass contribution has been isolated in the term
10, = [ 40100 Q. 5.4)

In practice, three-body nuclear interactions that are expressed in terms of Jacobi coordinates, Eq. (5.3), are often given in the
following J- and T-coupled partial-wave basis [15,31]

(pga|Wp'q' oy =(pq. (LS, UH]IT M 7, (TOT M \W |p'q' . [(L' ST, (1's")j' 1 T" MY (T'HT' M) (5.5)
where the collective index « carries the angular and isospin degrees of freedom similarly to Eq. (4.66) and it is defined as
a = {[(LSY,(U)j1T My, (T)T M7 }. (5.6)

The quantum numbers L, S, J and T represent respectively the orbital angular momentum, spin, total angular momentum and
isospin of the relative motion of particles 1 and 2 (associate to momentum p). /, s, j and ¢ characterize the orbital angular momentum,
the spin, the total angular momentum and the isospin of particle 3 relative to the center-of-mass of the other pair of particles (variable
q). The quantum numbers J and 7 represent the intrinsic total angular momentum and the total isospin of the three-body system,
while M; and My are their projections along the quantization axis. The parity of state (5.6) under spatial inversion is given by
= (=1)L*,

For three-body interactions the antisymmetrization is more cumbersome than the two-body case. For such reason, it is convenient
to perform the antisymmetrization directly in the partial-wave basis before projecting the three-body matrix elements in Eq. (5.5)
to spherical single-particle states.

5.1. Antisymmetrization

Let be defined the cyclic (anti-cyclic) permutation operators P,,; (P;3,) as the operators that permute cyclically (anticyclically) a
set of 3 particles:

Piyslapy) = lrap), (5.7a)
Py lafy) = |fra). (5.7b)

Likewise, the transposition operator T;; exchanges the two particles i and j (with i # j € {1,2,3}]).

Ty,laBy) = |Bay), (5.8a)
Tyslafy) = layp), (5.8b)
Tslafy) = |yfa). (5.8¢)

The two operators are connected through the following identities
Pioy =T1oTys = Tys T3, (5.9)
Pi3y =T13Tys = To3 T (5.10)
and the three-body antisymmetrization operator can be written as
1 1
A= (1 =Ti2=Tis = Tos + Proy + Pisp) = 2(1 = Tio)(1 + Pios + Pi). (5.11)

Because of Eq. (5.1) and the coupling convention (5.5), the state |pga) takes the following phase under the inversion of the first
two particles

Tyylpga) = (=5t | pga) (5.12)

which is obtained following the same expansion of Section 4.4 and the arguments given below Eq. (4.68). The state |pga) is said

14
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to be partially antisymmetrized with respect to particles 1 and 2 if
(ST = 1 (5.13)

so that T,|pga) = —|pga). In the following, |pga) will always be taken to be partially antisymmetric. With this assumption, the
matrix elements of the operator in Eq. (5.11) reduce to

1
(pqalAlp'q'a’) =§<an|1 + Po3 + Piylp'd' )
1
=§<an|1 +TpTys + T3 T 1P g’ ') (5.14)
=%<pqall —2T1p'q'’).

Three-body interactions from ChEFT can always be decomposed in terms of their three Faddeev components [31]
3
W = Z v, (5.15)
i=1

that are related through cyclic permutations of the three particles and each component V¥ is symmetric under exchange of the two
particles j,k # i € {1,2,3}. Hence, the interaction can be written in terms of any of the components and appropriate permutation
or transposition operators:

w=vO4+y@4y® =y p,yOp]

s+ P VOPEL = v 4 T, Ty VT Ty + Ty Tos VOO T, Ts. (5.16)

It follows that the product of the 3N interaction operator and the antisymmetrization operator is given by

WA= %(V“) + PV VP

s+ P VO PO+ Py + Pryy)

Nl
_1 o) ©17
= 31+ Py + PV V(1 + Pras + Pip).

One can easily prove that W and A commute, so that W.A = A W. When acting on partially antisymmetric states, Eq. (5.14) holds
and the matrix element of Eq. (5.17) reads

1
<pqa|WIpl/lql/la/N>A — 5 Z /dp/ dq/ dp// dq/lp/2q12pl/2ql/2<pqa|1 _2T23|p1q’a/>

o o

(5.18)
X <p/q/a! | V(l) |p/!q!/al/><p/lql/a!/ |1 _ 2T23 |p/!/q/!/a/l/>’

with (pqa|W|p"' """y, = (pqa|W A|p'"q"a""). The structure of the radial part of the transposition operator is discussed in
Appendix E and it implies the evaluation of the three-body potential for several instances of momenta p and g¢. For practical
implementation in MS, the three-body matrix elements are often given on a pre-defined mesh of momenta. Thus, an interpolation
of the potential is necessary and it can be conveniently performed with the modified cubic splines method introduced in Ref. [32] to
tackle integrals with moving singularities.

For practical applications to ChEFT in nuclear physics, the three-body momentum space matrix elements must be regularized. A
detailed analysis of such procedure as well as a complete explanation of the various type of regulators (non-local, semi-local, local)
either in momentum or coordinate space can be found in [33].

5.2. T-coefficient

This section derives the complete change of basis between the Jacobi MS state that appears in Eq. (5.5) and a single-particle
J-coupled T-decoupled three-body state

(gl o Tan gl gigTp) 121y L 7 1 e My, ) (5.19)
for a generic spherical basis. Let first of all factorize the isospin-dependent part
|[(nalajara’ nﬂlﬂjﬂfﬂ)‘]l% nylyjyfy]JratMJ,o,> (5 20)

= (gl ajos nglgig) 12 myly iy Wi My, ) ® |t Tos 157501, 7,)

and consider only the isospin-independent term. In the following, various intermediate transformations between states are
performed.

STEP 1

|{[Vla(/asa)ja, nﬁ(lﬂsﬁ)jﬁ]‘IIZ’ny(lysy)jy }JtotMJmt>

(5.21)
= HngngUalpA, (sgs)SW 12,0, s,y }J,O,MJW)
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The J-coupling of particles 1 and 2 is turned into an /s-coupling®:

I(X sﬂ j(l
|[(lasa)ja7(lﬂsﬂ)jﬂ]‘]]2> = Zjafﬁ/ls ly sg Jp |[(1al[3))v (Sasp)S]Jn)- (5.22)
48 A0S Jp

STEP 2

{nanpal ). (545 SW 121, (L5, ), Vi My, ) 5.93)
S HIPP(LpL)A. (545951 1201y Ly, )iy Vi My )

A change of reference system is performed for particles 1 and 2 into their relative and center-of-mass frame, while at the same time
the single-particle momenta of particle 1 and 2 are integrated

[ngnp(lalp) Ay :/depP2p2 Z(Pp(LPL)A|nanﬁ(lalﬂ)ﬂ)(r?fp|PLPpL, ). (5.24)
LpL

The WC bracket is associated to the transformation

<2> B <% —11> (ﬁ) (5.25)

and the associated matrix of WC coefficients is

soon\' L 1 5.26
<52 t2>MS < —1>’ (5.26)

where the superscript « is used to distinguish the WC matrix from the one entering at step 5 below.

N = —

STEP 3

HIPp(LpL)4, (545p)S1 12,1, (L 5,)J, }JroIMJm,> (5.27)
~UIPLps HLS)T 13,1, 0y 5,y Voo My, ) '

For particles 1 and 2, the angular momenta L, Lp and S are recoupled to have the total relative angular momentum J as the
intermediate quantum number:

I(LpL)A SW12) = Y ALLp. (LS5 |[(LpL)A SW 1)L p. (LT 5)
J

(5.28)
~a [ L L 4
_ N (_\Lp+L+S+ip, P L. (L '
;( ) AF { s I, J} [Lp, (LS5
STEP 4
HIPLp,p(LS)1J 5, n,(l,s,)J, }erMJm> (5.29)
=P, (Lpl)A.pl(LS)] . 5,1X} ]y M, ) '
A 9j symbol is used to change the structure of the coupling scheme of J,,:
HILp, (LS 112, (U, 5,)dy Hror)
= Z({(LPI;/)A’ (LS, s, 1X Mo [{[Lp, (LS 1 12, Uy 5,)J, Yo L pl )AL, 5,1X } 6,)
AX
Lp J Jp
= Z Juh AX{L s, g, ¢ W pl A WLS), 51X } o) (5.30)
AX A X Jy
I, Lp A
= Z ol AX3J,  Jin o i p WLl )ALLS)T 5, 1X 1),
AX s, J X

where at the last line the properties of invariance under exchange of rows and columns and swap of rows of the 9,-symbols have
been used.

3 Here and in the following sections, intermediate quantum number that do not enter explicitly in each transformation will not always be shown. Their
implicit presence should be clear from the states in each equation.
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STEP 5

|{Pn,(Lpl,)A. pl(LS)] . 5,1X} ], M, )

(6.31)
_)l{Qcmq(lcml)A’ [J[(LS)J, Sy]X}JtotM.lmr>

A second change of reference system is performed, transforming the coordinates of the center-of-mass of the first two particles (1
and 2) and particle 3 in the total center-of-mass and the Jacobi coordinate between the center-of-mass of particles 1 and 2 and the
third particle

2 1 2 1
=Z|ky— (k) +ky)| =S |ks— =P
q 3[3 5k 2)] 3[3 2] ’ (5.32)
On=k +ky+ky=P+k;
|Pn,(L,l,)A) = / dQ,,dq 02, ¢* Z(Qcmq(lcml)AIPny(Lply)A)(T’;)|Qcmq(lcml)A). (5.33)
lem!

cm

The mixed WC bracket (see Appendix D.4) is the one associated with the inverse transformation of Eq. (5.32)

2
2
<P> - <; ) <Qcm> (5.34)
ks z 1 q
3
and the associated matrix of WC coefficients is
b 2
2
<s1 tl) —(3 ’ (5.35)
5 B/ ys 3 1
where the label b is used to distinguish between the WC matrices that appear in this procedure.

STEP 6

HQuntUemh A pLLS)T ., 5,1X V100 M, )

(5.36)
= Qemlems apll, (LS, 5, 1X1T V1M, )
A 6/ is used to change again the internal coupling of J,,:
[LenDA, X1 1) = 2<[l£m’(IX)J]Jmll[(lcml)A’ XM WU e UX)T M0
J
lpHAX 4 24 ) 1A (5:37)
= Y (=)en or A N s UX)T 1 ).
;m J{J,a, 7 X}um( )TV or)
STEP 7
HQemlem> apll, (LSY, 5, 1X1T M0 M, ) (5.38)
U Qemlems DAL (Is)NNT V10 My, ) '
The coupling of J is changed to give the final j coupling in the MS basis:
1, (Js)X1T) = Z<Us s )JIT WL (T s XTI, Us,)j1T )
: s, (5.39)
I P Sy y ;
= ;( ) ix {J 7 X} |[J. Us)i1T)-
STEP 8
[taTastpTp-1,7,) = (12 )T, 1, 1T M) (5.40)
The isospin is recoupled
ltaTar tgTpt, 7)) = D (taTul p7g T My X(T Mgt 7, |T M) [ty p)T, 1,17 M), (5.41)

TT
where the sums over M; and M drop because of the constraint from charge conservation.

To find the basis transformation coefficient one proceeds similarly to the case of two-body interactions. The steps 1 to 8 discussed
above are applied in sequence to expand Eq. (5.20) on states |[Q,,,/.... paalJ,,) of given center of mass momentum and partial
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waves (5.6). Multiplying to the left with state the state ([Q/,.!’ .p'q'a']J,,| and exploiting the orthonormality relation

c

8Qem = Qi) 8(p—p') (g —q")
Qs P 4" &V 1 QL s PACNT ) = Csz U 2 0110551855107 ——5——018;;1 855/ 8777 (5.42)
cm
the following expression for the three-body T'-coefficient is found:
TzB E<[Qcmlcm’pqa]‘]tt)r|[(ab)"12c]Jtot>
N n A A la Sll jﬂ
:/dPP2 D Y tatatymy | TMpWT Myt 7, |T M), jg 2831, s g
ALp AX A0S T
~xfLp L A
X (Pp(LpL)A LAHA)D (bptL+S+lnjj ¢ =P
(Pp(LpL)Alngng (Iylg) ),a,ﬂ( ) S gy J (5.43)
I, Lp A
} i, AX i, T T (QemdUenDAIPR,(LyL)A)Y
s, J X
a1 A ; o 1 s,
lem+HI+X+J, cm I+j+J+X 2
X (=)'em o0 AJ —)t X 4 .
© (o o Sporan{s 5 3

Eq. (5.43) differs from the already known expression for the three-body T-coefficient [34] since it projects a MS plane-wave basis
to a generic isospin-dependent spherical basis. Hence, it is not limited to HO states. Eq. (5.43) can be further simplified via the use
of a Wigner 12j-symbol of the first kind [35] (see Appendix C.5)

J Ly A lem
Jin Ly ! 7
. X . ; | (5.44)
I, Lp A
|7 P LA bos d
— (_)J—A—Jror""‘r Z X2 jy Jio Jia { C'"} { 7 } .
X s, J X o T XTI X

As all the Wigner 3nj symbols, the 12 symbol can be decomposed in a summation over a single index of a product of 6; symbols.
Such decomposition reads

Jiot Jy Sy J (5.45)
— Z(_)Y—x&Z { J LP JIZ} {LP A [y } {A lcm l } {lcm Jrot j}
~ Jy o e x s, J, X Jj s, X J j X
where Y is given by the sum of all the angular momenta appearing in the 12 symbol:
Y=sJ+Lp+ A+l +Jp+l,+1+T+Ji +j, +5,+ ] (5.46)

The expression in Eq. (5.45) allows for an efficient implementation of the 12j symbols through the precalculation of the 6;
coefficients. With these simplifications, the T-coefficient can be re-written in a compact expression

T3B :< [Qcmlcm’ pqa]]xot | [(ab)']l2c]‘]mt>

. N n AAa . an N 1‘1 sa jll L L j’
=(_)S+L4gm+./12+jfsyjajﬂsjjlzjyjj Z a2 ly sy Z(_)Lp { P }
4 A

N S de J
n 5.47
x [ ap PPO(Lp LAy (A0, T A Qoalon) AP (L 1)1) .47)
Ta'[ﬂ A '[V
J Ly A Lo
X Jip I, / T ¢ taTalprs| TMp T Mypt,7,|T Mr),
Jior Jy Sy J

1

where the limits of integration over P are constrained by the values of Q,,, and g through the mixed WC bracket. The integral over
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P can be converted in an integral over the cosine x, of the angle between Q,,, and ¢,
T3B =<[Qcmlcm’ pqa]Jtatl[(ab)J12c]Jmt>

Ars A o an A « L L i
=(- )S+L lem+J12+j— AVJ J SJ 2y Fi 2/12 Iﬁ s g Z(_)LP { SP ; _]}
4 A0S Jpl|Le 12

1
xser/ dxb(Pp(LPL)/llnanﬂ (lazﬂmg‘;;ﬂ

(5.48)

XZ( )AAzA(x S Leme L L Ly A s) 10 55,10) g o (R3)

J Lp A Lom
X Jip > / T ¢ taTalprpl TMp T Mypt,7,|IT My ),
Jrot jy Sy J

1

where $ny 1,7, (k) is the radial single-particle wave function (2.21) in momentum space and the values

ky =11 q\/l + 23,3525 + (Vp25)? and P =t g\ /14 2x,y, + y2 (5.49)

depend on the integration variable x, and are constrained by Egs. (D.3) and (D.4) with coefficients (5.35). In Egs. (5.48) and (5.49),
the subscript (superscript) b denotes quantities relative to the mixed WC coefficient for transformation (5.34) and the definition of
the variables x,, y, and z, is given in details in Appendix D. Finally, the J-coupled T-decoupled three-body matrix element is given
by

([@b)J1pel 1o | WII(de) |, 1) =

= / do,,02, Z / dpdqp’q’ / dp dq’p/zq’zZ([(ab)lec]Jm,I[Q,;mlfm’pqa]J,oJ (5.50)
lcm

X (paa|W1p'q' a") 4 ((Qemlems P'd' &'V, |[(d )T |, 1 00)
where the independence of the three-body potential from the center-of-mass of the three-body system (Eq. (5.3)) has been exploited.

Eq. (5.50) extends the transformation used in Ref. [34] to any spherical single-particle basis.
As for the two-body interactions, it can be useful to define CS three-body matrix elements to be used with CS regulators or wave

functions. In this case the new Jacobi coordinates (R,,,, r, s) read
1 1 1
Rn) 15 5 3|
r |=]1 -1 0]|r, (5.51)
1 1
s -2 —3 L\

and are conjugate to (Q.,,, p, q) from Eq. (5.1). When the matrix elements of the interaction are known in MS (as in Egs. (5.18) or
(5.5)), the corresponding relative CS can be obtained directly from a quadruple Hankel transform:

4 g +co
(rsa|W|r's'a’y = = =L / dpdadp'dq’ p*a*p"*q"” jL(pr)j)as)ip (B’ )iy (@' s Y paal W p'd' ). (5.52)
0

All the steps for the computation of the T-coefficients discussed in this section remain the same for CS with the exception the WC
coefficients for the transformations in Egs. (5.25) and (5.34) must be substituted by

a 1 l
<S1 t1> _ 2 (5.53)
2 h)eg 1 -3
b
1 —
<51 t1> _ 3. (5.54)
Sy Iy cs 1 3

6. Conclusions

and

W=

A complete analytical derivation of matrix elements of a realistic nuclear Hamiltonian expanded on a generic spherical single-
particle basis has been presented, including up to three-body interactions. This calculation requires to use WC brackets, which
differently from the Moshinsky brackets are no longer diagonal in major oscillator shells. To do this, the vector bracket from [36]
has been generalized to the case of a generic change of reference system and an efficient expression of the WC coefficient has
been obtained, which is computationally more convenient than the one from [16]. The full expansion of two- and three-body
matrix elements on a generic single-particle basis constitutes a novelty for what concerns the handling of the radial part of the
equations. Also, as for the three-body sector, a new scheme of angular momenta couplings that allows to re-obtain the expression
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for the three-body T-coefficient from [34] has been presented. While these formulas are written for the specific case of nuclear
interactions, they can be easily adapted to the case of other many-body systems with rotationally invariant Hamiltonians. The
working equations presented in this work are suitable for implementation on high-performance computers. Hence, this work should
pave the way to systematic investigations of the possible advantages of bases different from the traditional HO states in the study of
bulk and spectroscopic properties of atomic nuclei. On the other hand, the implementation of these analytic expressions in numerical
calculations represents a challenge. In particular, the dependence of the WC coefficients from continuous variables (momenta or
positions) tends to increase both the computational time and the storage requirements, so that new computational strategies are to
be designed. Work in this direction is currently underway.
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Appendix A. The spherical components of vectors

Let us recall how to express vectors in spherical components [37] since it is easier to perform rotations in this basis. Consider a
generic vector A expressed in Cartesian coordinates {e,, e, e, }:
A=Ae, +Aje, +Aze,. (A1)

One defines a spherical basis {€,_;, €y, €} related to the Cartesian one through the relations

e —ie e +ie
£ = ——, €0 =e;, £y = ——— (A.2)
V2 V2
The vector A can be expressed in this basis as
A=A _ 1€+ ApE— A€
= Y DA ALE (a.3)
u=—10,1
where the components A,_;, A,y and A,; read
A, —iA A, +iA
A= ———, A=A, Ay =-——7F, (A.9)
V2 V2
and the complex conjugate of 4, is
A, =CEDIAL,. (A.5)
A generic vector r in coordinate or in momentum space can be expressed in spherical components
r=-—ri_i&; +tripfio —réi-1 (A.6)
with
x =iy x+i
= ryop =2, == y. (A7)
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Since the Cartesian coordinates (x, y, z) are expressed as a function of the spherical coordinates (r, 9, ¢) by
Xx = rsindcos ¢, y=rsindsing, z=rcosd, (A.8)

the spherical components of the vector can then be written as

1o = —=sin 9~ = \/4?” rY (), (A.92)
V2 ;

rig=rcosd =4/ 4?” rY o, (A.9b)
I T Y S N
n ——7 sin 9¢'? = ?rY”(r), (A.9¢)
2
where Y;, are order-1 spherical harmonics
~ 3 . —i¢p
Y,_1(F) =/ =—sinde™?, (A.102)
8r
Yi0(F) = 3 cosd (A.10Db)
10l =1/ cose, .
Y =—4/ 3 singei®. (A.100)
8z

The vector r can then be expressed in spherical components

r= ,/%”r Z(—l)ﬂymel_”. (A.11)
M

It is easy to write the scalar product of two vectors A and B as
A-B=AB, +AB +A.B,
= Z(—l)“AlﬂBl_#

U

— £

- ZAIMBIA'
"

Appendix B. Phases in the Fourier transform between spherical wave functions in coordinate and momentum space

(A.12)

A generic three-dimensional wave function in coordinate space ¥(r) = ()Y, (7) can be Fourier-transformed to its MS
representation by means of the plane-wave expansion:

O =4n 12 k)Y, (RO, . (B.1)
my
The complete transformation is obtained from Eq. (B.1) as follows:
P (k) = F{¥(r)}(k)
=F{du (Y, (M} k)
1 / 3. —ikr ~
d’re ¢ (MY, (7)
any 1F) Xy,

_ 4z A .1// 3. PN o
= Y1, (k)(—i) d’r jp(kr)Y; (#)Y}, (P, (r) (B.2)

2 el e 2,
= \/;Z Y[/m;(k)(—l)l 5,,/5,,,[,,,; / dr 2 jy (ke (r)
1'm) 0

= (=) (k) Yy, (k).

+oo
D) = \/g / drrj,(kr),, (r). (B.3)
0

Eq. (B.2) then shows an additional imaginary phase (—i)' that must be explicitly taken into account in addition to performing a
Hankel transform on the radial part of a total wave function.

In the case of the HO wave function, their radial components in CS and MS are related through Eq. (B.2) and their analytical
expressions read

2(n!) \ _lery 1+1/2<r2>
Ry 2 L - B.4
=\ v+ 308 <b> A 4
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~ o 2(n) b3 | —tkn? 1412 5
@u(k) = (=) v Th+i+3/2) (kb)ye 2 L, "~ ((kb)), (B.5)

where I' represents the Gamma function, L the Laguerre polynomial and b = y/h/(mw) the oscillator length.

and

Appendix C. Angular momenta algebra

Here, we collect the results from angular momentum algebra that have been exploited in the derivation of the main text and
give specific definitions for the 12 coefficients. Several well known relations among 3, 6 and 9 symbols are also included for
completeness. We use the convention

j=vai+1 D
throughout this manuscript. Several useful angular momentum identities are collected in Ref. [38] while more advanced results are
taken from [25].

C.1. Clebsch-Gordan coefficients

Let j, and j, be two angular momenta with projections m; and m, along the quantization axis. The Clebsch-Gordan coefficient
expresses the probability amplitude that j, and j, are coupled to a third angular momentum j; with projection m; and is represented
as

(Jimyjpmy|jzms). (C.2)
The Clebsch—-Gordan coefficient is non-vanishing only if the three angular momenta {j,j,j;} satisfy the triangular inequality:

c i <batiz h<iitij, J3<iiti P Ly = jal <z < Jy+ins
s ji+J,+Jj3  always integer,

and if the following condition on the projections of angular momenta is satisfied:

my+my =mjy. (C.3)
The Clebsch-Gordan coefficient is self-adjoint:

(rmyjamyljzms) = (jzmzljymyjamy) (C4)

and it satisfies the following exchange symmetries:

(imy jomalizms) = (=I5B (=my) o (=my)ljz (—=m3)) (C.5a)
= (=DM D(amy jimy | jzms) (C.5b)
= (-1 ;%mml Js (Cmp)ls (~my)). (C.5¢)

2

The quantum numbers entering a non-vanishing Clebsch-Gordan coefficient satisfy the following two relations

(=D2Uimm) =1, vie{1,2,3}, (C.6)

(_1)2(j|+/'2+/3) =1. (C.7)
The orthonormality relation of the Clebsch-Gordan coefficients, sometimes also referred to as unitarity relation, reads

Z Gimyjamaljsms)Gimyjama | 5ms) = 8 6y - (C.8)

mymy
C.2. 3j symbol

The Wigner 3, symbol is defined from the Clebsch-Gordan coefficient as

. B3 fi—jp—my L /. .
= (=117 = (jimy jymy | j3(—m3)), (C9)
(ml my m3> % 1myjamyljz(—ms
while the inverse relation is
o ) ir4jpemyn [T J J
(Jymyjamy|jzms) = (—1)7/1F27"s jy (mll m22 _;3) . (C.10)
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The 3 symbols are more symmetric objects than Clebsch-Gordan coefficients. A 3 symbol is invariant under even permutations of
its columns

v B\_ (i s h\_{(J i R (C.11)
my my my my m3nm my mp omy)’ )
while any odd permutation of the columns introduces an additional phase:
v T3\ _ (=1yii+ia+is VI N A (=1yi+ia+is hvois ) _ (=1yii+ia+is s Jr) (C.12)
my my my m, m; mg my mz  m my  my my
The same phase is involved in time reversal transformations:
Ji Ja 3\ _ (=1)ii+intis v s (C.13)
—my —mp g mmy ms)’

The 3 symbols appear in evaluating of the Slater integrals over three spherical harmonics:

(Lymy Yy, l13ms) = / dQyy, ()Y, (Y, (2)
Lase omfl I3 L\ (L i 1
=4/ — -1
,/4”111213( ) (O 0 0)\m m -m (C.14)

1 bl
= 4—A—<130120|110><13m312”’2”1’"1)»
T 1,

which follows directly from the so called Gaunt formula.
C.3. 6j symbol

The Wigner 6 symbols are denoted by curly braces and appear when coupling three different angular momenta j,, j, and j; to
a total momentum j. The probability amplitude among different possible coupling reads
([Griiras J3limlUiss Gads)iasli'm') = 6508y (=11 2405 /o g {jl " j.”} (C.15)
3 23

where we have used the notation (j,j,)j. for the coupling of momenta j, and j, according to the Clebsch-Gordan coefficient
(amg jymyli.m.) (and similarly for “[,]”). From Egs. (C.5) and (C.15) it follows that

(Gri)iras JslimlGris)iize Joli'm') = 8518,y (123402413 7 o {ﬁ ’jl jlz} , (C.16)
3 1
<[jls02/3)123]]’"'[(]1!3)/135./2].//ml>=5jj/5mm/(_1)/1+/+123./13./23{j; ; /;} (C.17)

The 6, symbol is defined as the sum of four 3; symbols
(I B Bl 3 oy,
Sy U mymym3
i mh (C.18)
oo B\(h B S N A A A
mp o my omy) \myoml o —ml ) \-m) my ml ) \m| -m) my)

It is invariant under any permutation of the columns

{jl Ja 13}:{12 J1 j3}:{j1 J3 jz} (C.19)
Ja Js s Js da e Ja Js s

and under the exchange of upper and lower arguments in any pair of columns

{j. J J3}={14 Js j3}={11 Js je} (C.20)
Ja Js s J1 Ja s Ja U3

The following two equations relate 3 and 6, symbols [38]:

<j1 s j3>{11 J> 13}
my my omy) \JyoJy g

T, ST, A A (C.21)
-y (Yt (11 7 J3l> < Ik 13/> (J{/ /;, /3>’
!, my o omy —my ) \—mp my my) \my  —m, m
Uk Ik 1 I ki1 =1 [ J' k
<o 0 o) {j’ j 1/2} =—pUHEDTREE s S o) (¢22)
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These identities can be easily rewritten by substituting the 3 symbols with Clebsch-Gordan coefficients by means of Eq. (C.9):

! ! /
. . Jioh (pThTATET
(J1sz1mz|13m3){ 0 7} = ) (Jrmy oy |jzm})
Jio s ) ), J'5 (C.23)
X (Jy =m jamy | jy —ml)(jim o, —m)y jz3ms),
1 ! k [1 +(_1)I+l/+k] (_l)jfj/+l'7l 1 1
101'0|k0 =- j= j' —=kO0). C.24
(1or'o >{j, ; 1/2} 5 iz 7 =510 (C.24)
C.4. 9j symbol
The Wigner 9, symbol appears in the evaluation of the probability amplitude
R EL T
(U1 d2)dra> Us daddsadiml Uy J3)itzs Un Jadinali'm'y = 68,08 Jiadaadiadoa s Ja Jaag- (C.25)
Jiz Ju
The 9 symbol is invariant under reflection about either diagonal as well as even permutations of its rows or columns:
i s J1 o Ja Jq Jo Je J3 J1Js
Ja Js Je( =32 Js Js¢=3\Js Js Jag=9Jo Jo Jag- (C.26)
J1 s Jo J3 Js Jo J1 o Ja Js Js 2
An odd permutation of the columns or of the rows yields
i 72 s Ja Js s VI S )
o Js Jep=CD i h Jsg=CDs s depe (€27
J7Js o J1 s o Js J1 o
with S = Z?: \ Ji- The Wigner 9; symbol is related to the Wigner 6; symbol by the following relation
s qvoda i\ fh ds s\ [Js e i
Js U5 dep= X EDNE {j' i ;} {jz N j*‘} {; P j9}. (C.28)
JiJs o x 0 ¢ 6 b
C.5. 12j symbol
The Wigner 12 symbol [35] of the first kind appears in the coupling of 5 angular momenta:
[[b125 [by3, [b34, (byy apey Jesz ley Iey)
4 e RE 44 (C.29)
= (D1 Y dydydslyésd, by ba3 by, by ¢ I[11a1b12)as, byslas, byslas, byjler).
ayazay ¢ [ &) =2
1
The 12 coefficients can be expanded in terms of 6; coefficients:
a; a, as a,
b1, by3 b3y by
¢ ¢ 3 cy (C.30)

— Z(_)S—x 2] @ by, a a3 by az ag by ay ¢ by
~ ¢ x 3 ¢ X ¢ ¢ X a; ¢ X
with § = 2?=1(a,- +¢;) + by + by3 + b3y + by;. The summed momenta x is integer (semi-integer) if S is integer (semi-integer). The
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12j symbol can also be related to a summation over 9 and 6 symbols

a; a, a a,
byy by; b3y by
1 5] €3 €4 .
(C.31)
byy ay a
_ (_1\a—az—ci+e3 52 byy a3 ay byy g o
=(-1) X*q9¢ b ¢ s
~ ¢ by x a by x
c3 a; x

and is invariant under cyclic or anti-cyclic permutations of the columns {ay, b;,,c;}, {ay, by3,¢5}, {a3,b34.¢3} and {ay, by, c,} and
under exchange of the first and the third row. The 12 symbol of the first kind satisfies 8 triangular inequalities

{a1b12a,}, {agbrzas ), {azbgas}, {agbyicr ), {erbnca ), {eabazes), {esbyacy ), {abyrar) (C.32)
and 2 tetragonal inequalities

{ajciazcs}, {azcpac, ). (C.33)
A set of 4 angular momenta {j,, j,, j3,js} is said to satisfy a tetragonal inequality if it satisfies the following properties:

* ji +J, +Jj3 +Jj, is an integer
chShtiztis hSj3tistin BS<dstiitin a<ii it
The inequalities at the second point can be re-written in a compact way as

iz —dal + 12 —Jjsl + o —Jal —Ja—J3—Ja
3

S Stz tis (C.34)
Appendix D. Coefficients for general changes of coordinates

We demonstrate the derivation of the coefficients for the change of coordinates of two-particle states. The results reported in
this appendix are valid for both momentum and coordinate space. Consider the general linear transformation

ri=sr+4R ®.1)
r,=sr+unR,

where the vectors r|, r,, r and R can live either in coordinate or in momentum space. The transformation (D.1) implies that the
vectors r; and r, live on the same plane as r and R. Due to rotational invariance angular coefficients will depend only on the angle
between any two vectors and on the ratio of their length. Thus, it is useful to follow Ref. [16] and define the quantities

~ . Sir SHt
x =cos(rR) = Q, y= L z= 2L, (D.2)
|rR| 1R Sity

from which one can also write the magnitudes of r; and r, as

ry =t | RV +2xy + %, (D.3)
ry =|ty| RV 1+ 2xyz + y?22. (D.4)

D.1. Vector bracket

To obtain the transformation among states coupled in angular momentum one starts by defining the ket

)

|FIRL, Au)

= Z (Im;Lmy | Auy|rim;RLmy)
mymy (D.5)

Z (lm,LmLMy)/dfdﬁ Y, (A1, (R)IFR),

mymp,

where 4 results from the coupling of / and L and u is the projection along the axis of quantization. Eq. (D.5) follows directly from
the representation of a (spherical) single-particle basis state and of its angular wave function:

(rly) = @ (1Y, (P), (D.6)

(Plrimp) = |r)Yy,, (). D.7)
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Similarly, we consider the angular momentum representation of a state |r r,):

[IT) = |ryliryly, Auy, (D.8)
where /, and I, are coupled to . The vector bracket associated to the transformation (D.1) is given by the overlap

(I T) = {rRUL)Aplryry(l 1) Apn)

(D.9)
= / dr”’dR"dr'dr!, (Ilr" R")(r" R"|r r),r r)|I1),
where the brackets are given by
r riry)=6(r, —s;r’ —t (ry  —sor” —t ), .
//Rlll ; /2 5( /I 1 " 11{//)5 2/ 5 " 2R// (D].O)
{I|r"R"y = Z (Im;Lmy | Au) / drdR Y/fm(f)YZ'mL(R)(rR [r"R"Y
mymy,
. <, 8(r—r")S(R—R")
= X (ImLmy | a0, G, (RN S (0.11)
mymp,
with
o Y/ . .
(rR|r"R"y = %%5(?—?”)5(1@—1«’) (D.12)
For the state (D.8) one obtains:
8(ry =11 8(ry = 1l)
GUAINEY (11m]12m2|/1,4>Y,lml(f’l)Y,zmz(fz)—zl—22 . (D.13)
mymy T 3
Combining Egs. (D.10), (D.11) and (D.13) allows to simplify Eq. (D.9) into
/ /
(i =/dr”dR”dr’dr’ =PSRRI ) A=) o ey
1972 2 R2 r? ,% ’ (D.14)
x 8y —sir” —t;R"5(r, —spr”" —1,R"),
where the so-called angular bracket A, ;; is defined as
App "R = [ > <1m,LmL|w>Y1;,<f”>Ysz<R”)] [ D (imyLymy | A)Y, y (FDY () (D.15)

mypmy, mymy

and depends implicitly on the angular momenta and the coefficients of transformation (D.1). The transformation properties of states

|I) and |IT) under rotation imply that their overlap (D.9) is diagonal in 4 and y and it is independent on the value of y. This allows
to rewrite Eq. (D.15) in the form

1 N A
MR = e B S bt 0, R

(D.16)
X [ Z <llm|12m2|}»ll>Yllml(fll)lemz(’A‘;)] ,
my my

which is manifestly invariant under rotation. The angular bracket can then be seen as a scalar quantity that can be shown to depend
only on the two quantities x" = cos (" R"") and "’ /R". The cosine of ' R” can be obtained from (D.1) exploiting the scalar products

P F | OrT, Ty
/2 2,012 2 pI2 /2 2,012 2 p2

re—sprt—nR ry —syr’t =R

— f
cos (" R") = 25t 1" R" = 2s,t,r"" R ’ (D-17)

When integrating in Eq. (D.14) over r/1 and r’z, the two deltas 6(r; — r/l) and 6(ry — r;) fix the values of r/1 and r; according to
Egs. (D.3) and (D.4):

P =/(sr” +1,R")? = fy(cos (" R").r", R"), (D.18)
ry =/ (sar” + 1R = fy(cos (" R7), 7", R"), (D.19)

where we put in evidence that their values depend only on the magnitudes r”/, R” and the angle x”” among them. It follows that

8(r— ") (R — R") 8(ry = r}) 8(ry —17)

2 2 2 2
r R
" "

(I|ITy= / dr”"dR" Ay <" /R (D.20)

An integration over the two solid angles # and R can then be performed, with the notation d? = d@, = dg,d cosd,. Given two
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vectors r and R in the three-dimensional space and a generic function f(x), with x = cos R = cos 9., one finds

1
/ dPdR f(x) = 8x° / d(cos9,) f(x) = 872 / . dx f(x), (D.21)
and therefore
_ _ RN 8(r; —F)8(ry — 1)
(IIT) = SHZ/dr,/dRH 12 RI12 / dx" o(r rr)jlgf R") 1 ]2 . 2 2 AI,II(x”vr” R”). (D.22)
i

To evaluate Eq. (D.22) we need to express r’1 and r’2 in terms of the integration variables and perform an appropriate transformation
of the last two Dirac delta. We start considering

8(ry—r)=6 <r1 - \/s%r”z +2R7? + ZS]tlr”R”x> . (D.23)
Exploiting the composition property of the Dirac delta for continuously differentiable functions
6(x — x;)
5(g(x) = ), ——. (D.24)
,Z. g/ Gl

one can rewrite the Dirac delta as

s —rhH = L, [6(r) = r)) +6(r; + 7], (D.25)
2r1

where &(ry + /) = 0 since r,r| > 0. Hence,

8(ry =) =2r60% = 1'%, (D.26)
8(ry — 1) = 2,82 = 12, (D.27)
and
2
I = % / dr'dR"dx" 4r ry6(r2 — r1)s(r3 — PSR — R"s(r — A, (" 7" [R"). (D.28)
"

We then manipulate again the two Dirac deltas for performing the integral over x:

5(’% _ r/lz) - 5(’,% _ (S%r”z + I%R”z + ZSltlr”R”x”))

1 . sy -0R"” (D.29)
T 20,4 R T 25 r"RY ’
and
2 2.2 2 p2
ri—s5r'’s —t“R
22y 2 2.2 _ 2pm 1ol 1 1
5(7’2—72)—5(7'2—527' —IZR —252127 R W) (DBO)
=51t |6(—szt2r% + sltlrg + (sztzs% - sltlsg)r”z + (sztzt% - sltltg)R”z) ’
= syt |6(w)
with
w= sztzr% - sltlrg + (155 — 155y 557" — 1,1, R"?). (D.31)
Finally, Eq. (D.22) reduces to
(I|IT) = 167r2rRr - Ap 10, r/R)8(w) 6(1 — x7), (D.32)
12

where x = cos(r/l\{) is evaluated according to Eq. (D.17), the Heaviside function () imposes the constraint that the integral over
Eq. (D.29) vanishes unless —1 < cos(rR) < 1 and the full dependency of the function A, ;, is

App = A 0or/RILLL L, 5151, 59, 1). (D.33)

Eq. (D.32) is referred to as the vector bracket and has been obtained in the case of a specific change of coordinates in [39,40]. This
coefficient will be simply denoted as A; ;;(x,r/R).

D.2. Angular bracket Ay ;;(x,r/R)

The rotational invariance of A;;, can be exploited to arrange the vectors r, R, r| and r, in space so that the final expression
for the angular bracket is easy to evaluate numerically [36]. As shown in Fig. D.1, we chose a reference frame (i, j, k) such that all
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&u‘y

i

Fig. D.1. Reference frame used for the angular bracket.

vectors lie on the j = 0 plane, R lies along the axis k and r is on the i > 0 half plane. Consider now the general expression for
Ap(x,r/R)

Ap(x,r/R)= U;H Z [Z(lmLMMM)Yl;(f)YZM(R)]
u tmM

(D.34)
X [ Z (ymylLmy | Ap)Y (fl)lemz(Fz)}
mymy
From the specific disposition of the vectors in Fig. D.1 it follows that 9, = 0, so that the spherical harmonic Y; ,,(R) is just
2L+ 1
Y (0,0) = 6y i (D.35)
T
and it is independent of ¢y. On the other hand 9, = arccos x and ¢, = 0.
Let consider now the value of the cosines of the angles between r; and R and r, and R.
ri-R=s;r-R+14;R* =s;rRx+1,R* = r;Rcos 9, (D.36)
s;irx + 1R
= cos §; = ——— fori=1,2 (D.37)
r.

1
which can be shown to be only a function of r/R, x, y and z, simply by substituting Egs. (D.3) and (D.4). Since R has no components
along the axis i, Eq. (D.1) implies that

_Jo if s; >0 (D.38)
o= b if 5; <0. ’

Recalling the property of the spherical harmonics

Y, 7+ @) = (=)"Y,,(9, ), (D.39)
it is useful to define the quantities ¢; and ¢, such that
0 if s, >0
¢ = B for i =1,2. (D.40)
m; ifs; <0

Eventually, the expression found for the angular bracket A, ;,(x) is particularly convenient for the implementation since it includes

only two summations:
1
A Cor/R) =5 D (IHLOIAp)Y;(3,0) Y} (0,0)
" (D.41)
X zulmllz(ll - m1)|/1/4>Y11m] 31,0 Y,Z(M,ml>(192, 0) (-)1+e2.

my
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D.3. Wong-Clement bracket

The Wong-Clement brackets are used to express the wave functions of two particles with radial states |n, /;) and |n, I,) in terms
of new coordinates r and R. They are obtained by a double-integration of (D.32):

(rR(lL)/llnlnz(lllz)/l)=/drldr2 r?r%qﬁnl,](rl)¢"2,2(r2)(rR(lL)A|r1r2(lllz)A), (D.42)

where NG and Dy, (r) are orthonormal radial wave functions. Eq. (D.42) represents the so called Wong-Clement bracket [16],
which can be seen as a generalization of the coefficients obtained in [41]. The s, s,, #; and ¢, will be referred to as the Wong-Clement
coefficients. Exploiting Eq. (D.32), the delta over w simplifies the integration over r,:

Sotor? + (ty Sy — t25))(s1 5y — 1,1, R?)
5(1,4;):—1 5<r2—\/ 22 2 s L2 ) (D.43)
2rylsit] 511
The other integration can be simplified by the change of variable
trR
dry = 25y (D.44)

r

From Egs. (D.3), (D.4) and (D.17), one finds that if 5,7, > 0, the integration over x is on the range [—1, 1] while if 5,7, < 0 it is
on the range [1,—1]. However, the change of integration sign is absorbed by removing the absolute value in the denominator of
Eq. (D.43). Simplifying all the terms, the final expression for the WC bracket is then obtained

1
(rRUL)Anny(l1)A) = 871'2/ dx ¢, (r)p, 1, (r)Ap 1 (x,r/R), (D.45)
1

with r; and r, determined by Egs. (D.3) and (D.4), respectively. If the single-particle wave function includes an explicit dependence
on the isospin (as in Egs. (2.22) and (2.23)), the WC bracket inherits such dependence and it can be rewritten as:

1
(FRUL)AInyny(ly15)A),, o) = (FRUL)A 1y Ty |1y 1) 2,7y 7)) = 87;2/ AX Py 10, Do (P Ap 1 (x,7/ R). (D.46)
1

D.4. Mixed Wong—Clement bracket

A single integration of Eq. (D.32) over the radial state of one particle gives the mixed Wong—Clement bracket:
(rRUL)A|r ny (111 A) = /dr2 r% ¢n2,2(r2)(rR(lL)A|r1r2(11IZ)A). (D.47)

Proceeding in analogy to the previous section, one finds

1

R(IL)A I1)A) = 82> ————
<" (L) |"1"2(12)> T |51t1|rer

01 = x*)Ap 1 (X, /R, 1, (F2), (D.48)

where the argument of the radial wave function

2 2 2
Sotyr 4+ (815y — 15 )(s185,7" — 111, R”)
72=\/ 1 (D.49)

sty

is constrained by of the Dirac delta §(w). Notice that substituting Eq. (D.3) into (D.49) recovers Eq. (D.4) exactly. Furthermore, the
Heaviside theta constrains the value of x. Similarly to the case of the WC bracket, the mixed WC bracket can inherit an explicit
dependence on the isospin through the single-particle wave function and Eq. (D.47) can be rewritten as:

(rRUL)AIr ny(1115)A)., =/dr2 r% Bnytyr, r)(rRUL)Alr 1y (1113) 4). (D.50)

Appendix E. Transposition operator T3

Let us consider the following three definitions for three-particles states:

|pga) = |pq, (LS)T,(s)j1T M4, (THT M7), (E.1)
|pap) = |pq, (LDL,(Ss)SITM 7, (THT M), (E.2)
Ipay) = |pq. (LDLM, (Ss)SM, (THT M7). (E.3)
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The transformations between the coupling schemes «, # and y read

[paB), (E.4)

0w
Q~

L
lpga) = Y £SJj< 1
s C

lpaBy =Y. (LM SMs|JMy)lpar) (E.5)

My Mg

and the state |pga) can therefore be written as

L S J
lpgay=" Y L£SFj{1 s j (LM SMs|TMy)lpar)
LSMy Mg L s J
L S J (E.6)
= ) LS s (LM SMg|TMy)
LSMpMg L s J
X |pg, (LDLM ) ® |(S5)SMg) ® (THT M7 ).
The expectation value of the transposition operator T); over the states |pga) reads
(paa|Ty|p'q' ") = D LSTE'S' T}
LMpSMgL!MLS' M,
L S J L s J
X3l 5 (£M55M5|JMJ) 1 s (E’MLS’MZQL]'M}) (E.7)
L s J cos g

X (pq.(LDLM ¢ |Tys|p'q’ . (L'I)E" M)
X ((S$)SMg|To3|(S's)S' MN(THT My | Tos|(T' )T M)

The coefficient (pq, (L )LM|Tylp'q,(L'1")C'M é) is proportional to &6 MM, and it is simply given by the vector bracket in
Eq. (D.32) evaluated for an appropriate transformation between the p and q and the result of inverting particles 2 and 3 on p’
and ¢'. For fermions, s =t = 1/2, the spin and isospin contributions can be simplified as follows [31,42,43]:

b aa (172 172 S
((S5)SM|Ty3|(S'sNS' M%) = 65 5,5MSM§(—1)1+S+S S8 {1;2 é s'} (E.8)

and
PN 1/2 1/2 T
((TOT My | Ty |(T'YT' M}, ) = 517/5M,M;(—1)””T T { 1?2 ; T,}. (E.9)

Eventually, a term 6556y, M, arises from the orthogonality of the Clebsch-Gordan coefficients. Then everything simplifies into

! ! A ~ ApA) AA A AY A A
(aa|Toslp'a'a’) = Y 857180 m1 87080ty aay, ()T (T L2827 7SS/ TT

LS
L s Jl|lrv s Uy

X310 12 jeql 12 ) (E.10)
c s Jlle s g

L 12 12 S 12 12 T
><<pq,(Ll)£|T23|pq,(Ll)ll){lj2 é S’}{I;Z 4 T,}~

Radial component of the transposition operator

The bracket of the operator T,; over momentum states is given by

(PqITslp'q")y = 50" - P)3(d' - @), (E.11)
where the vectors p and g result from by applying the transposition operator to the left side, |pg) = T»3|pq), exploiting its property
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of being self-adjoint. Inverting Eq. (5.1) to find the single-particle momenta, one finds

1 1
kl ? 1 _? Qcm
k=3 -1 3|l p | (E.12)
ks ;0 1 [\a

Qcm } 11 1 kl 1 0 03 Qcm
p |=|3 —? O0llk;|= > ~ill e | (E.13)
~ 1 2 1
a) \-3 -5 5)\k) (0 -1 —3)U4

which shows explicitly that T,; does not affect the center of mass motion. Thus, Eq. (E.11) becomes

(PaITylp'q") =6(p" —s1p—1,9)5(¢" — s:p — 19), (E.14)

with the following change of coordinates:

1 3
<51 t1> _( 2 3 ) (E.15)
S, I -1 ~2/) ms
Comparing to Eq. (D.10) and performing the angular momentum coupling as in Eq. (D.9), the radial part of Eq. (E.11) reduces to
the vector bracket (D.32):

(pa, (LDLITy1p'q", (L'1)L"y =(pa(L DLIP ¢’ (L'1)L')

E.16
=16fr2p Appr(x.p/9)8w) 01 — x?), (E16)

qr' q
where x = cos(pq) is computed from p, g and p’ and the Dirac delta imposes that only a mesh of values of p’ and ¢’ is geometrically
allowed changing the angle between the vectors p’ and ¢q'.

When working in CS [see Eq. (5.51)] the whole derivation for the matrix elements of the transposition operator T,; remains
valid up to Eq. (E.10) but the vector bracket (E.16) must then be associated to the following WC transformation coefficients:

1
Gon-( )
4 2/cs
Spin/isospin contributions to the transposition operator
The spin and isospin contributions in Eq. (E.10) have the same structure and can be obtained starting from a decoupling of the
angular momenta. We report here the derivation of the isospin term as the spin case is exactly equivalent.
([t Top t, T My | Tos|[(t5t )T 5, 1,17 M)
= IZ:;] (taTal g7yl Tup M, W Top Mr, 1,7, |T Mr) TEZ, (157517 | Tse My, WT5e My, 1,7,|T My ) (E.18)
Mr, 55 My 7
X (g Ty s 1, Ty | Toslt5T5, 1T, 1T, -
Having decoupled all the angular momenta, the particles on the right-hand side of the latter bracket can now be exchanged

(FaTartpTps by Ty | T3 llsT5 1, Tes 14T ) = (1aTas 1gTp, 1, Ty [5T50 14 Tgs 1o Te)

(E.19)
= 5’0{’5 510(15 5:,31@ 6rﬁrw 6tyt5 5@15 .
Eq. (E.18) becomes
([t p)Top, t, 1T My | Tos|[(t51 ) 5,1, 1T M7 )
14159151, 01yt
= Zﬂ: (taTatp| Tup M, W Tup My, 1,7, |T M) 171, 7, |T5, My, )(T5 My, 1575 T M)
Wy
My, , M7, My
8 6. 6 .
_ _fafs Mo tyle Z 72 Taﬁ T&(_l)—tn,Jrrﬁeraﬂ (1)~ Tap+ty=Mr (1) ~tactty =My, (_1)~Tac+1y=Mr (E.20)

2T +1

o' Tp Ty
Mr, , M, My

ot Typ Ty t, T <za 1, T, ><T55 15 T)
Ty T _MTaﬂ MTaﬁ T, —Myp|\7r, 1, -Mgp, Mg, 15 —-My

where we have used Eq. (C.10) and the independence of the bracket from M; due to rotational symmetry. The final summation
over 3/ symbols can be simplified with Eq. (C.18):

NN t t T,
(ot )T t, 1T My | Tos |57 ) 56, 1,17 M) = 6, 1,6,1 61,1, (G VALARLARE PV Y {rﬂ Ta TZI’} . (E.21)
Y I3
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Specializing to the case of isospin = 1/2 one recovers Eq. (E.9).

Appendix F. Alternative version of the three-body T-coefficient

In the following, an alternative version of the three-body T-coefficient presented in Section 5 is presented. The angular momenta
couplings required to carry out this transformation are already known [44] and only the radial part has been changed to allow
the possibility of using a generic spherical basis. Only the isospin independent part is shown, since the transformation of the
isospin-dependent state is unchanged. Step 1, 2 and 5 are the same as in Section 5 but they are repeated here for clarity.

STEP 1

|{[na(lnrsa)j(xa nﬂ(l/}sﬂ)jﬁ]Jn’ ny(lysy)jy }erMJm,>
- | { [nanﬂ(lalﬂ)i’ (Sasﬂ)S]JIZ’ ny (l;/sy).jy }JtatM./mr>

(F.1)

The j coupling of particles 1 and 2 is changed to /s-coupling:

141 slx jll
[Uasdia UpspighTiny = D Judgh831y 55 Jg plUalp)hs (5455)S1 1) (F.2)
48 A0S Jp

STEP 2
{nanp ol )2 (50591 10,1, (L, 5,)J, Wi My, )

= {LPP(LpL)A, (5q3p)S 1051y (L 5))iy Mot M y,,)

tot

(F.3)

A change of reference system is performed for particles 1 and 2 into their relative and center-of-mass frame and at the same time
the single-particle momenta of particle 1 and 2 are integrated:

Inang(Ualg)A)y = / dPdpP’p’ Y (Pp(LpL)Alngnylylp)A), |PLppL. 4). (F.4)
LpL

The WC bracket is associated to the transformation

1
0= 5)0)
= , (F.5)
()-( 2)G
and matrix of WC coefficients for the transformation is then
a 1
= 1
<S 1t 1> -(3 ) (F.6)
2 B/ ys 3 -1
STEP 3

HIPp(LpL)A, (sq5p)S1 12, n, (L5, )jy Y1t My, ) (F.7)
S {[PP(LpL)An,l,1L3. [(5455)S5,1S 0 My, ) '

The coupling scheme of J,,, is changed again from J— to /s-coupling:

IR
[[(AS) 12, Ly 5))jy W 0r) = Z Ji, L3S Los, ¢ lA)L3,(Ss5,)S1g)- (F.8)
LS Ly S Jiu
STEP 4
HIPD(LpL)A,n,1,1L3, [(5,55)S. 5,18} My ) (F.9)
= |{[Pn,p(Lpl,)ALIL3, [(s454)S. 5,15}, M}, ) -
The coupling of L; is changed through a 6, coefficient:
I(LpL)A, 1, 1L3) = Z([(Lply)/l,L]L3|[(LPL)/1,ly]Lg)I[(Lpl,)A, L]L3)
A
(F.10)

_ _L+/V+A+A;1A{L Lp /1} Lol)A LIL.).
;m LA [[(Lpl,)A. LIL3)
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STEP 5

[{[Pn, p(Lpl, A, L1L3, [(5,55)S: 5,18} My, )
=>{1QemaUemDA, pLIL3, [(545p)S, 5,151 M, )
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(F.11)

A second change of reference system is performed, transforming the coordinates of the relative and center-of-mass of the first two

particles (1 and 2) and particle 3 in the total center-of-mass and the relative coordinate between the center-of-mass of particles 1

and 2 and the third particle

2 1 2 1
Q=§[k3—§(k1+kz)] =§[k3—§P]

On=ki+ky+ky=P+k;

|Pn,(L,l,)A) = / dQ,,dq 02, ¢* Z(Qcmq(lcm l)A|Pny(Lpl,)A)(TL;)chmq(lcm DA).
]

i

cm

The mixed WC bracket (Eq. (D.47)) represents the transformation

2
(e)=(1 7))
ks L q
The matrix of WC coefficients associated to the transformation is then
<s1 t,)b (:
5 B/ ys % 1)
STEP 6

HLQemaUenD A PLIL3, [(5455)S, 5,15 1 My, )
= {0Qem P4 Lems (LDLIL3, [(5455)S, 5,15} My, )

The angular momenta L and / are recoupled:

[ DA, L1Ly) = Z([lcm, (IL)L1Ls [y DA, L1LA (U s UL)LTL3)
c

NV et Lt A p fem 1A
—;( Ylem+L3 Aﬁ{ T, ﬁ}l[lcm,(u)mg)-

STEP 7

{LQem P4 Lem (L DLIL3, [(3459)S, 5,15} My, )
“HQemlem Pa(LDL.(S5,)S1T V1M, )

The orbital angular momenta scheme is changed again, coupling £ and S in J:

|[(lcm£)L3’ S]Jml> = Z<[lcm7 (ES)J]JIOI | [(lcm[’)Lf&’ S]Jtot”[lcms (‘CS)J]Jmt>
J

_ NemtLAS+p 74 Iem L L;
B ;( : L3J{ Sy J } Wl (EST 1)

STEP 8

{Qemlem: [Pa(L DL (S5,)S1T 1T, M)
> Qemlem: P a(LS) . (Us)]1T VT, My, )

Another change of couplings in the internal structure of .J is performed:

L I L
I(LDEL.(Ss)S1T) = Y £8T]1S s, S PILS)T.Us)LT).
7] IJJg
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(F.12)

(F.13)

(F.14)

(F.15)

(F.16)

(F.17)

(F.18)

(F.19)

(F.20)

(F.21)
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The complete change of basis is

J

I[@B)12¢1,0r) = / ZIZ M TDIDISIDIDIDIN I
L J

TT 7S LpLL3S A Iyl
X (taTat 75| T My T Myt 7, |T M7)

o m A A 1(1 sa jll
X JodgdS31y  sp g P2p2(Pp(LPL)A|nanﬂ(lalﬁ)/1)(fi)rﬂ
A0S Jp
A0S Uy
PO ! o [L Lp A
XJij LySq L s,y (‘)LHHMM{I L A}
Ly S J r (F.22)
X 0% * Qe o)Al Pn, (L PIV)A)(TI;)
a1 I A
—YemtLa+L g4 ) Fem
e {L Ls ﬁ}
L (1 £ L
lem+L+S+J, cm 3
X (=)'em tot |, J
( ) 3 {S Jtot J}
L 1 ¢
XLST]IS s, S tQmlems a2 10r)-
JjJ
Eventually the three-body T-coefficient reads
T3B = <[Qcmlcm’ an]-’ror|[(ab)-’12C]er>
. A 1(1 Sa j(l
=/dPP2 Z ZZ(_)17+/1+A+L+S+J,D,—L3fafﬁls ly sy s
ALp L3S AL A0S Jp
A0S Jp L L. 4
X (Pp(LpL)MngngU )N O Jaj, L3841, s, j, pAA P
«Tp L Ly A (F.23)
L3 S Jtat
a1 I A : 4 (1 L L
(b) cm cm 3
><(Qcmq(lcml)A|Pny(LPly)A)TyA£{L L, E}L3J{S Iy g}
L | ¢
XLSTJAS s, S p{tttpry|TMp T Myt z,|T My).
J i J
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