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Abstract
Volumetric polyhedral meshes are required in many applications, especially for solving partial differential equations on finite
element simulations. Still, their construction bears several additional challenges compared to boundary-based representations.
Tetrahedral meshes and (pure) hex-meshes are two popular formats in scenarios like CAD applications, offering opposite advan-
tages and disadvantages. Hex-meshes are more intricate to construct due to the global structure of the meshing, but feature much
better regularity, alignment, are more expressive, and offer the same simulation accuracy with fewer elements. Hex-dominant
meshes, where most but not all cell elements have a hexahedral structure, constitute an attractive compromise, potentially un-
locking benefits from both structures, but their generality makes their employment in downstream applications difficult. In this
work, we introduce a strict subset of general hex-dominant meshes, which we term ‘at-most-hexa meshes’, in which most cells
are still hexahedral, but no cell has more than six boundary faces, and no face has more than four sides. We exemplify the ease of
construction of at-most-hexa meshes by proposing a frugal and straightforward method to generate high-quality meshes of this
kind, starting directly from hulls or point clouds, for example, from a 3D scan. In contrast to existing methods for (pure) hexa-
hedral meshing, ours does not require an intermediate parameterization of other costly pre-computations and can start directly
from surfaces or samples. We leverage a Lloyd relaxation process to exploit the synergistic effects of aligning an orientation
field in a modified 3D Voronoi diagram using the L∞ norm for cubical cells. The extracted geometry incorporates regularity
as well as feature alignment, following sharp edges and curved boundary surfaces. We introduce specialized operations on the
three-dimensional graph structure to enforce consistency during the relaxation. The resulting algorithm allows for an efficient
evaluation with parallel algorithms on GPU hardware and completes even large reconstructions within minutes.
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1. Introduction

Due to reduced element count and more harmonic structures, quad-
meshes are often preferable over triangular-meshes for specific
tasks like solving partial differential equations or CAD applications
[BLP*13]. The same rivalry arises for volumetric meshes, where
hexahedral meshes are often preferred over tetrahedral meshes
[SHG*19]. Hex-meshes feature considerably fewer cells than tet-
meshes for the same simulation accuracy, which is a desirable cri-
terion for specific numerical solvers or finite element simulations.
Their semi-regularity is a better fit for parallelized computation and
makes their construction considerably more intricate due to the con-
straints implied by the global semi-regular lattice structure. On the
other hand, tet-meshes are easier to construct and provide more di-

rect control over the tessellation density, that is, allowing for adap-
tive meshing resolution while still being conforming.

Hex-dominant meshes, where the majority of cells are still hex-
ahedra, are a category of polyhedral meshes that are of interest be-
cause previous work [SRUL16, GJTP17] suggests that their con-
struction can be achieved more reliably than in the more compli-
cated case of pure hexahedral meshes (where all elements are hex-
ahedra).

We propose to adopt a strict subset of hex-dominant meshes,
called at-most-hexa meshes, where no cell exceeds six bounding
faces, which are at maximum quadrangular, otherwise triangular.
More specifically, all cells are either a hexahedron or are any valid
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Figure 1: Left to right: Stages of our pipeline from input samples to the final volume mesh with 9.5k primitives (89.5% hex).

polyhedron that can be obtained by starting from a hexahedron and
collapsing a few of its edges (see Figure 2); at-most-hexa meshes
are still conforming (free from T-junction).

Conceptually, the motivation for this choice is to ease the con-
struction of the mesh as much as possible by relaxing the definition
of hex-meshes while at the same time not sacrificing their usabil-
ity by the downstream application. A linked motivation is that, be-
cause our cells can be considered special cases of hexas, many tech-
niques applicable to pure-hexameshes easily extend to deal with this
new type of mesh. For example, internal representations, adjacency
structures, and file formats designed for hex-meshes, can be readily
adapted (Section 2).

The present work exemplifies how the construction of at-most-
hexa meshes can be at least as reliable and fast as the construction
of hex-dominant meshes. We are motivated by the intuition that
at-most-hexa can be easier to process than the more general, hex-
dominant meshes, which can feature arbitrary complex polyhedra
while still inheritingmost of the advantages from pure-hexameshes.

To this end, we propose a pipeline based on a 3D Lloyd relax-
ation under the L∞ norm for a harmonious hexahedral cell layout.
Extracted geometry serves as the basis for a graph matching algo-
rithm to identify all possible at-most-hexa primitives. The finalmesh
is then assembled with an iterative construction algorithm, prioritiz-
ing regular primitives over smaller polyhedra.

Many recently proposed approaches excel in solving a specific
sub-problem that contributes to the overall challenge of hexahedral
meshing, but that has to be set into the perspective of what specif-
ically tailored input is required. Our proposed concept is not ex-
plicitly designed to supersede all state-of-the-art techniques in ev-
ery domain but extends this collection of possibilities with a novel
start-to-finish procedure. A CAD-like specification, surface mesh,
hex-dominant volume mesh or solely a point cloud, as 3D scans ac-
quire it, is already sufficient for our fully autonomous pipeline to
produce at-most-hexa meshes. Nevertheless, we demonstrate how
our results can compete or improve some established approaches in
terms of hex-quantity and quality.

Key novelties and contributions. of our proposed meshing ap-
proach can be briefly summarized with the following points:

• At-Most-Hexa: Primitives in our result meshes never exceed the
base case of a hexahedral cell, which comes with many benefits over
general hex-dominant meshes, as elaborated in the upcoming Sec-
tion 2. We provide explicit graph matching routines with minimal
branching for efficient primitive extraction. • Simple, versatile in-
put: We do not assume input volume data, surface or volumetric
parameterizations, frame-fields, or a consistent meshing of the sur-
face. Hull meshes or sparse surface samples of arbitrary size and
resolution are sufficient. • Alignment: Our method can be guided
by an input orientation field if one is available, but this is not re-
quired. Initial orientations extrapolate from the input and then align
to form an orthogonal vector field, further optimized during the re-
laxation process. • Regularity and isometry: The method strives
to obtain regular meshing where most cells are hexahedral, most
edges are regular, and cells are equally sized and well-shaped. •
Object hull: Volumetric cells of the employed L∞ Voronoi diagram
materialize as final mesh primitives, thus there is no need to com-
pensate for hull shrinkage as it is common with Delaunay graph
meshing, for example, with Lp-CVTs [LL10]. Although this is triv-
ial when the input is a closed mesh, we can also guarantee closed
and feature-aligned result meshes starting from point cloud input
because the kNN-graph provides robust and straightforward in/out
labels, even for complex objects of higher genera. • Implicit paral-
lelism: Our method leverages several sub-steps, where the construc-
tion and maintenance of the kNN-graph and the Lloyd relaxation
rely on massively parallelized GPU code and the graph matching
algorithms on multithreaded CPU implementations.

1.1. Related work

Construction of Pure Hexa-Meshes. There is a variety of hex-
meshing approaches striving to automatically produce hex-meshes,
which achieve high-shape quality, low-singularity, feature-aligned,
or all-hex meshes [LBK16, SRUL16, GJTP17, LZC*18, CAS*19,
Tak19, GSP19, LPP*20]. The required input for these approaches
is, however, far from trivial to generate and primarily dictates the
achieved result quality. Tetrahedral input meshes, parameteriza-
tions, mappings, frame fields, or singularity graphs often have to
be determined beforehand, sometimes with heavy computation or
manual effort to guide automation in the right direction. The rela-
tionship between source-mesh and input frame field also often poses
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a non-trivial causality dilemma of which to compute, that is, derive
from the other, first.

Approaches like QEx [EBCK13] for quad-mesh extraction from
triangulations can be transferred to the hex-mesh extraction sce-
nario as shown by Lyon et al. [LBK16] using parameterization
[NRP11]. The all-hex meshing procedure proposed by Gregson
et al. [GSZ11] relies on a given tet-mesh that is first transformed to
PolyCubes [THCM04]. The all-hex method of Li et al. [LLX*12]
focused on high-quality primitives using a singularity-restricted
field. The octree-based method of Gao et al. [GSP19] does well in
preserving features in the final hex-mesh by adapting the resolu-
tion where necessary but entirely omits all curvature and flow align-
ment. Takayama’smethod [Tak19] for all-hexmeshes relies on user-
defined planes (dual-sheets) bisecting the object. In a recent publi-
cation, Livesu et al. [LPP*20] developed this idea further and ex-
tracted loop cuts automatically from ameshwith a set of (sometimes
manually) marked sharp feature edges and a frame field, resulting in
high-quality hex-dominant meshes. On volumetric data, Zhang et al.
[ZB06] published methods for high-quality quad- and hex-mesh ex-
traction. As hex-meshes consist of hexahedral primitives with six
quadrilateral faces each, one can easily comprehend that the surface
of a pure hex-mesh is a quad-mesh. Calvo et al. [CI00] and Kremer
et al. [KBLK14] proposed techniques to go the other way round and
come up with a hex-mesh with only the quad-faced hull given. Early
work by Shepherd et al. [SJ08] formulated general constraints for
hexahedral meshing. More recent publications focus on the extrac-
tion of hex-meshes from tet-meshes using frame-fields or parame-
terizations [SVB17, GJTP17, RSR*18, CAS*19] or structural mod-
ification to make an object suitable for hex-remeshing [GPW*17].
Others describe constraints on the octahedral fields of existing hex-
meshes to minimize singularities [LZC*18] which then qualify as
‘meshable’ input for further elaborate orientation field computations
[CC19]. Meshkat and Talmor [MT00] proposed a graph matching
algorithm to extract hexahedra from a given tet-mesh. The publica-
tion by Sokolov et al. [SRUL16] extends this concept extensively
with formal proofs and improves on the results of Lévy and Liu
[LL10] and Baudouin et al. [BRM*14]. Recently Pellerin et al. re-
visited the idea from tet- to hex-dominant mesh with a vertex-based
approach [PJVR18]. A detailed review on the distinctions between
Lévy and Liu’s Lp-CVT based hex-dominant meshing approach and
ours is featured in Section 6.2.

Analogy with quad-remeshing. Many of the concepts above, and
our construction technique, can be considered extensions of ideas
originated in quad meshing. Our approach is inspired by the im-
age stylization technique of Hausner [Hau01] to simulate mosaic
images using Lloyd relaxations with an adapted metric and faces
similar challenges as the quad-meshing approach by Pellenard et al.
[PAM11] but with three dimensions. Furthermore, a smooth object-
aligned octahedral flow field [SVB17, GPW*17] is created along-
side the relaxation. We extended the method for fast computation of
generalized Voronoi diagrams using graphics hardware [HIKL*99]
to three-dimensional space. Our procedure utilizes a specially tai-
lored graph matching algorithm to extract at-most-hexa primitives
for the final mesh structure. As our approach relies on faces instead
of tetrahedra [SRUL16], the graph matching search space signifi-
cantly reduces to only one valid traversal path per primitive type.

Constructing Meshes from Point Clouds. Our construction
method, which can start from a point cloud, has direct concep-
tual predecessors in surface remeshing or point cloud reconstruc-
tion. Spatially harmonious triangulations of points in 2D or even
on a 3D surface are easily determined with a Delaunay triangula-
tion, the equivalent for points in a 3D volume results in a tetrahe-
dral mesh structure. However, neither concept extends directly to
quad nor hexa meshes. The popular Poisson surface reconstruction
[KBH06] utilizes the orientation of the samples to come up with
a closed surface representation for a given point cloud. Although
simple triangulations of these surfaces are trivially possible by ex-
tracting isosurfaces, quad meshes with feature-aligned topology are
often the more favourable option. The concepts proposed by Jakob
et al. [JTPSH15] and Schertler et al. [STJ*17] use flow-fields to
extract such quad meshes from oriented point clouds. Other works
[ZLGH10, BL18] proposed techniques that do not require scanned
or pre-computed normals for the point cloud to come up with a sur-
face or, in the latter case, with a quad-mesh.

Hex-dominant Meshes. The construction of hex-dominant
meshes is studied as an interesting and convenient relaxation of pure
hexa meshes. In recent works [SRUL16, GJTP17], hex-dominant
meshes are obtained by fusing or conglomerating tetrahedral cells
into more complex polyhedra, which are often but not always hex-
ahedra. The hex-dominant approaches are categorized according
to the polyhedra that are allowed for non-hexahedral cells. In the
proposal by Sokolov et al. [SRUL16], these polyhedra are limited
to quad-based pyramids, prisms and tetrahedra (plus ‘slivers’). Our
at-most-hexa meshes are a further relaxation, allowing for these
shapes but also others, making the construction considerably less
intricate than the one proposed by Sokolov et al. [SRUL16]. In
the proposal of Gao et al. [GJTP17], there is no assumption made
on the shape of the resulting non-hexahedral cells. Although this
maximally simplifies construction, the results are less usable for
the reasons discussed below.

2. At-Most-Hexa Meshes

In this section, we define at-most-hexa meshes, which are the output
of our construction technique, and outline a few of their favourable
characteristics. In our meshes, each cell is definable as the locus
of a tri-linear combination of the hexahedron’s (possibly coincid-
ing) vertices. In other words, each cell is a polyhedron that can be
obtained by starting from a hexahedral cell and collapsing zero or
more edges.

In Figure 2, we exhaustively list all the cell topologies that can
be obtained in this way (up to symmetries). Not all possibilities are
useful for our purposes. Specifically we can exclude the following
cases from further consideration:

• The Prysm (case 3) is topologically equivalent to the triangular
Prism (case 6), with an additional diagonal on one quad face.
Following the rules for extracting prisms (Figure A1), prysm con-
stellations would be trivially included, thus result as a subset of
all prisms. As the use of prysms would actively promote more
triangular constellations and sliver elements, the regular prism is
always the more favourable option. Therefore, prysm constella-
tions are not considered in the extraction.

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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Figure 2: The collection of at-most-hexa primitives featured in our
meshes (except the greyed-out ones). The list is exhaustive up to
rotational and reflection symmetries. Each configuration can be ob-
tained by collapsing up to four non-adjacent edges of a hexahedron.
This is modelled by duplicating the indices in a list of eight vertices
from the hexahedron.

• The Tie (case 2) can be seen as the combination of two Tetrahedra
(case 1) sharing one edge.

Two distinct configurations result in a pyramidal shape (case 4).

Volumetric Definition of Solid Objects. Both pure tetra-meshes
and pure hex-meshes, but not generic hex-dominant meshes, allow
for a straightforward definition of the represented object’s interior
(and the boundary) as the union of their cells. A tetrahedral cell triv-
ially defines as the set of all linear interpolations of themesh vertices
at its four corners; in hexahedral meshes, and also in our meshes, all
cells are polyhedra which can be defined as the set of the trilinear
interpolations of the eight vertices at their corners. Conveniently,
the interiors of any two adjacent cells (cells sharing a face) are dis-
joint sets, and their union is a simply connected locus of points (i.e.
no gap is left between them, despite cell faces not being necessar-
ily planar). This construction does not extend trivially to generic
hex-dominant meshes because it is unclear how to combine the ver-
tices at the corner of an irregular polyhedron (with non-flat faces).
Conversely, our at-most-hexa meshes generalize this situation. The
cell’s interior defines as the trilinear interpolation of the corners, but,
in the occasional non-hexahedral cells, a few of its corners are in-
stances of the same (x, y, z) mesh vertex. Additionally, when a cell

reduces to a tetrahedron, the above definition is equivalent to a lin-
ear interpolation of the four surviving distinct vertices, meaning that
the proposed structure generalizes both tetrahedral- and hexahedral-
meshes.

Signal Interpolation. Any scalar or vectorial signal sampled at the
tet- or hex-mesh vertices can trivially interpolate for any point inside
its interior (or boundary). Therefore, the same set of weights used
to define an interior point p as a linear combination of the corners
of its cell is employed to combine the signal defined at the vertices.
This results in the definition of a scalar or vectorial field inside the
mesh, which is C0 everywhere (and C∞ in the interior of the cells).
Once again, this functional principle is inherited directly by at-most-
hexa meshes, preserving all the properties, but not by general hex-
dominant meshes (as a generalization of barycentric coordinates is
not trivial even in 2D [HS17]).

Compact Representations. Both pure tet- and hex-meshes can be
internally represented as indexed meshes [BKP*10], a succinct data
structure consisting of a set of vertices and a set of cells; tetra cells
and hex cells are stored as a sequence of four (respectively, eight) in-
dices of vertices at their corners, in some prescribed order. This can
be useful for storing the mesh on drives, for example, in interex-
change formats. A general hex-dominant mesh does not allow for
such representations because non-hex elements have no structure
that is known a priori. Conversely, cells of an at-most-hexa mesh
can be represented the same way as hexahedra, where a few of the
vertex indices at the corners (in non-hex cells) repeat as listed in Fig-
ure 2. This representation is not only convenient for storing meshes,
allowing, for example, to reuse the same file formats of hexa meshes
but also allows for easy application of common hex-meshing oper-
ations like subdivision [WSK06].

A note on cell convexity. Our meshes are analogous to pure hex-
meshes in that their cells are not necessarily convex unless special
care is taken to ensure that every quadrangular face is exactly planar.
Although face planarity is implicitly pursued as a soft objective by
our construction strategy, we did not experiment with its strict en-
forcement. The same issue arises with quad surfaces, where strictly
enforced solutions have been proposed (PQ-meshes, [LPW*06]).

3. Overview of the Meshing Algorithm

3.1. Steps breakdown

The diagram in Figure 3 outlines the basic steps of our pipeline:

Input Preparation:The input object’s volume (plus margins) is
populatedwith points (sites) on a regular 3D grid, serving as seeds
of a Voronoi diagram. Each site creates a cell in the diagram, and
will generate one at-most-hexa primitive in the final output mesh.
k-Nearest-Neighbour Graph:This graph stores the nearest-
neighbour relationships between sites, and is crucial for an ef-
ficient evaluation of all subsequent steps.
Orientation Field:Orientations from the input hull or point
cloud are extrapolated once and further on jointly aligned during
the relaxation following parallel and orthogonal flow constraints.

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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Input:
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Output:
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Figure 3: The schematic pipeline of our method.

Lloyd Relaxation on Hex-like Cells:By exchanging the Eu-
clidean norm (L2) in the Lloyd relaxation with the Chebyshev
norm (L∞), the cell structure becomes more cubical, which is
suitable for further interpretation as a hex-like mesh structure.
Geometry Generation:Geometry is established by materializing
the hex-like cells as proportionally scaled unit cubes. Vertices and
edges are created with a simple match-and-merge operation.
Topology Extraction:With geometry established, tri- and quad-
faces are collected to form the base for all at-most-hexa primi-
tives. The primitives are then collected via graph matching, us-
ing small dedicated state-machine algorithms, effectively mini-
mizing the required search space.
Output:The final assembly routine allows for prioritizing regular
hexahedra of high quality. Therefore, result meshes solely feature
the at-most-hexa primitives listed in Figure 2 where the absolute
majority are hexahedra.

3.2. Terminology

To counteract misunderstandings, we first want to establish a uni-
form terminology for involved entities: We will refer to the points in
a Voronoi diagram as siteswhile the same point is a node in the asso-
ciated graph structure. A cell refers to the associated space around
each site. Points on the input surface, or point cloud points them-
selves, are referred to as samples. For simplicity, we call these en-
tities si in all instances and the unique index i may also be used to
identify corresponding properties like depth di, in/out-label li or a
normal ni. In the upcoming section for geometry extraction, cells
will materialize as scaled unit cubes, each defined with eight vir-
tual vertices. As the geometry extraction progresses, virtual vertices
are merged to real ones. The geometric entities emerging from the
topology extraction process feature hexa-, tetra-, and other polyhe-
dra, collectively called primitives.

4. Relaxation

The relaxation is essential to capture characteristic features of the
input. Therefore, the space inside and outside of the input object
is populated with volumetric cells, which eventually align with the
model’s shape and curvature. Rather than relying on a pre-defined
frame-field providing the orientation for volumetric cells, our relax-
ation optimizes the orientation and position of all sites in a collab-
orative process. Besides alignment to surface features, the goal of
this stage is to obtain equally sized and cube-shaped cells.

Therefore, the necessary optimization is performed similarly to a
Lloyd relaxation with specific constraints to favour the generation

of hex-like cell structures. Eventually, the relaxation process outputs
sites with optimized location and orientation, defining the input to
the mesh extraction stage of Section 5.

4.1. Voronoi diagram

The basis for the Lloyd relaxation is the underlying Voronoi dia-
gram, which computes on a face-centred cubic (fcc) lattice [CS98,
HAB*17] with at least 123 times more lattice points than sites in
the diagram. This has proven to be a sufficiently high resolution
that is still practically feasibly with limited GPU memory. Further,
the fcc lattice is preferable over a regular cubical grid to avoid axis-
aligned bias but is in contrast to lattice-guided approaches [YS03,
NZH*18] merely a convenient way to label space. The diagram is
computed on the GPU using a z-buffer [HIKL*99] extended for
three dimensions. In this context, the publication Meshless Voronoi
on the GPU [RSLL18] comes to mind. But, as elaborated in the
following, our distance metric is not orientation-invariant as in a
standard Voronoi diagram, which drastically complicates the inte-
gration of a cell. Therefore, this concept is not trivially suitable for
our objective.

To propagate information between all sites S, the relaxation re-
lies on two different mechanisms: Lloyd iteration to optimize site
positions and cell extents and a kNN-graph to align orientations and
eventually promote hex-favourable grid structures.

Site Population. In the first step, the object’s bounding box plus
margin is populated with sites Sv initialized on a regular or jittered
grid, filling the entire volume. The number of sites in the diagram
directly gives the final mesh’s resolution. A partitioning is specified
for one dimension of the bounding box and scaled accordingly for
the others. It can be either user-defined to approach a certain target
resolution or heuristically derived from the input, that is, based on
minimumwidths in the input geometry. The whole set of sites in the
diagram consists of two disjunct subsets S = Spc ∪ Sv . Sites of Sv ,
which are close to the hull, spawn a second set of surface samples
Spc positioned directly on the input hull. In Appendix B, we propose
to replace the Spc set with an actual point cloud as an alternative to
meshed input. However, for now, Spc solely serves as query points
for the orientation extrapolation.

Input Hull. As the relaxation treats all cells equally, there is no dis-
tinction between cells in or outside the object. However, in the end,
only the inside cells are relevant for further use. Therefore, inside–
outside labels for all cells are determined using fast winding num-
bers [BDS*18] of the input surface. During the relaxation, the mesh

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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12 D. R. Bukenberger et al. / At-Most-Hexa Meshes

also acts as a natural boundary, limiting the individual cell’s extents
and protects them from crossing the hull.

DistanceMetric. Sites thrive to increase the distance between each
other during the relaxation, which eventually creates primitives of
homogeneous size and maximummesh isotropy. For a 2D example,
if one would keep the Euclidean distance (L2) as a metric, the ma-
jority of relaxed cells would resemble hexagons (like a honeycomb)
because this is the densest 2D packing of circles [CW10]. Therefore,
we employ the Chebyshev metric (L∞) for our relaxation: 2D cells
would now approximate squares [Hau01, MB12] and, respectively,
3D cells actually become cubical [LL10, BRM*14]. In each itera-
tion of the Lloyd relaxation, sites update with the geometric centre
of their cell, computed as the averaged position of their labelled lat-
tice points.

4.2. kNN-Graph

To allow for fast information propagation during the relaxation, we
incorporate a decentralized network between the sites, namely kNN-
graphs, where each site links to its k nearest neighbours. Particularly,
N26 and N6 neighbourhoods are used. N26 is purely based on geo-
metric distances. k = 26 corresponds to 3×3×3−1 cubes stacked
in a 3D grid. In irregular arrangements, Nk might also contain sites
that are not direct neighbours, but this hardly impacts the optimiza-
tion. In Section 4.4, anotherN6 neighbourhood promotes hexahedral
grid alignment. Although Nk includes neighbours based on their ge-
ometric distance alone, N6 also incorporates a site’s orientation: It
features only the most suitable six neighbours from each direction
(left, right, up, down, front and back) at an edge-length’s distance
e. As formulated in Equation (1), the N6 can be derived as a subset
of the Nk where Mi is a site’s orientation and �r corresponds to the
coordinate axes.

N6(i) =
{
min
j∈Nk (i)

||(si + (Mi · �r)e) − s j||2
}

�r∈[±x,±y,±z]

. (1)

Furthermore, each node also maintains an n-hop-distance di (Equa-
tion 2), which counts the number of steps required to reach the clos-
est sample nodes on the hull.

di =
{

0 if si ∈ Spc
min
j∈Nk (i)

[
dj

] + 1 else . (2)

Construction & Maintenance. The kNN graph initializes by set-
ting the neighbours of each node randomly. With a simple parallel
update routine on all nodes S, the randomly initialized graph be-
comes an actual nearest neighbour graph:

• For the node si, collect the neighbours of all neighbours
N2
k (i) = ⋃

j∈Nk (i) Nk( j).

• Sort by geometric distance ||si − s j||2 where j ∈ N2
k (i).

N2
k (i) := sort(N2

k (i))
• Update Nk(i) with the first k elements in N2

k (i).

It can be shown [DML11] that only seven update steps are required
to get an almost perfect kNN approximation from random input con-
nections. As the relaxation progresses, sites in the Voronoi diagram

Figure 4: Nodes with di = 1 (dashed) determine their initial orien-
tation from samples on the hull. Nodes of di > 1 derive theirs from
neighbouring nodes closer to the surface using portions of the N26

graph. The right side shows the N6 graph, transcending the outer
hull so that adjacent cells on the in- and outside can align.

change their position with every step, and therefore, the graph also
has to be updated with every iteration. However, once the graph is
established, neighbourhood fluctuation is marginal and usually only
one, or to be sure two, update cycles have to be performed.

4.3. Constrained relaxation

The Lloyd relaxation process is an iteration alternating two steps:
(1) compute a Voronoi diagram based on the given site positions
and (2) reposition each site to the geometric centre of its cell. But
as our employed distance metric is no longer orientation invariant,
we also have to maintain individual orientations for all sites.

Orientation Initialization. Each node in our graph carries its own
orientation, defined by the three orthogonal base vectors: normal,
tangent and bitangent, represented for interpolation by quaternions.

For samples Spc on the input hull, orientation is determined as the
surface normal plus principal curvature vectors [PdC76, Rus04]. As
initialization, the orientations of Spc are extrapolated once through
the volume for all sites in Sv . This is done in a wave-front prop-
agation manner [OBB*13] over the discrete node positions of the
graph. Portions of theNk graph are shown in Figure 4 (left): Discrete
n-hop-distances di as well as real geometric distances are employed
to weight individual orientations during propagation.

Maintaining Orientations. During relaxation, the orientation and
the spatial arrangement of neighbouring cells jointly align, result-
ing in the best fitting constellation concerning the geometrical con-
straints imposed by the input hull. In contrast to a pre-defined vol-
umetric frame-field, orientations emerge from the alignment itself
and are bound to the individual cells and their discrete site posi-
tions. Orientations of adjacent neighbouring sites are optimized to
be consistent, herein defined with invariance to axis-permutating ro-
tations. This constraint is beneficial for the mesh extraction step in
Section 5, where neighbouring cells shall become adjacent primi-
tives, forming hex-like structures.

Therefore, in each iteration, the orientation of a site is aligned to
a distance-weighted combination of all orientations from its neigh-
bours inNk. This is realized analogously to the extrinsic smoothness
energy minimization formulated by Jakob et al. [JTPSH15], which,

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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D. R. Bukenberger et al. / At-Most-Hexa Meshes 13

Figure 5: Left: Coherent orientation is no guarantee for proper alignment of adjacent cells. Right: The N6 graph reintroduces regularity to
the relaxed system.

summed up briefly, means: The base vectors for each site should
point in close-to-parallel or orthogonal directions compared to their
neighbour sites, regardless of their signs.

Convergence. Although Lloyd relaxations are known to converge
to Centroidal Voronoi Tesselations using the L2 norm [DEJ06], it
has yet to be shown that the same holds for higher dimensions or
other norms. However, in practice, we could not provoke scenarios
that showed tendencies of non-convergence or one that resulted in
a bi-stable state. This graph plots the accumulated movement of
all sites and the average volume of their cells over 100 relaxations.
Although the movement drops below numerical accuracy within the
first 50 iterations, the volume also approaches a steady fix-point.

4.4. Regularization

So far, sites Sv freely move around during the relaxation, maximiz-
ing the distance to each other and orient themselves accordingly.
However, for the upcoming geometry extraction step, sites should
be positioned to form a grid if possible. The constellation on the left
in Figure 5 resembling a brick wall is not unlikely to emerge with
aligned orientations alone and without positional constraints.

To counteract this brick wall alignment, we introduce a position-
ing scheme using the N6 neighbourhood. Equation (3) formulates
the updated centre c as the weighted sum of the Voronoi cell’s geo-
metric centre cg and the centre of its six neighbours cN6 . For constant
w(p) = 0, the process is equivalent to Lloyd’s algorithm.

c = (1 − w(p)) · cg + w(p) · cN6 . (3)

Here it is crucial to note that N6 neighbourhoods strictly exclude
hull samples (N6 ∩ Spc = ∅). Therefore, the effect shown on the
right in Figure 5 can benefit from outside cells, too, as illustrated in
Figure 4. Improved results can be achieved using a variable weight-
ing function that changes throughout the relaxation.

w(p) = 1

2
− cos

(
4π

(
max( 12 , p)− 1

2

))
2

. (4)

Heuristic experiments suggest letting the first half of the relax-
ation run based on cg centres alone, then increase the contribution
of cN6 centres (forcing the sites to from a hex grid) with a cosine
curve peaking at 75% of the procedure and have them converge to
0 again towards the end of the relaxation. Other strategies for w(p)
like a linear, squared, quadratic or sinusoidal decrease, increase or
both (as a peak) are possible but were outperformed by the curve,
formally expressed in Equation (4) with progress p ∈ [0, 1).

Split Cells. Some geometry might cause unfavourable constella-
tions in the relaxed graph, like neighbourhood clusters. A cluster
occurs if a node is considered as a direct neighbour by more than
six other nodes. As the N6 graph constantly updates during the re-
laxation, one can quickly determine and resolve such clusters by
splitting the affected node. However, if a node is split too early, for
example, with a cluster size of 7, the two resulting split nodes will
have an underpopulated neighbourhood, which is why we chose a
split-limit of 10. The to-be-split node is replaced by two new nodes,
inheriting its neighbours and linking to each other. Their geomet-
ric position is based on the split-node’s site position, shifted in the
positive or negative direction of the cells principal direction vec-
tor, respectively.

5. Mesh Extraction

The focus of this section is the post-relaxation domain, schemat-
ically outlined in Figure 6, which is to extract the geometry and
topology of the mesh from the relaxed sites. Since every site posi-
tion represents the centre of a primitive, the relaxed Voronoi dia-
gram, hence the kNN graph, only gives the dual of the anticipated
hex-mesh, which its vertices should define. Geometry and topology
are gathered for the at-most-hexa mesh by utilizing all the informa-
tion that was accumulated for each site during the relaxation: 3D
position and orientation, cell extent and volume, N6 direct neigh-
bours, in/out state and n-hop distance. Simply put, our approach is
to place actual hexahedra in all cells and fuse them wherever triv-
ially possible. A closed mesh can still be guaranteed by introducing
non-hex primitives where necessary.

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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14 D. R. Bukenberger et al. / At-Most-Hexa Meshes

Relaxation
Unit Cube
Merging

Graph
Matching

Assembly

Site / Cell
Data

Vertices
and Edges Primitives AMH Mesh

Figure 6: The post-relaxation domain: Extracting vertices and edges from relaxed sites (5.1) followed by the collection and assembly (5.2)
of at-most-hexa primitives for the final mesh.

Figure 7: Voronoi cells (left) and materialized cubes (right). Due to the cell’s keystoning, the distances between virtual vertices may vary
significantly and is therefore not a robust criterion for a merge.

The strict mechanisms for extracting the at-most-hexa mesh are
designed to make inverted primitives impossible. Therefore, the re-
sulting mesh does not contain negative Jacobians.

5.1. Stage one: geometry

The geometric basis for the further steps is based on the materializa-
tion of all Voronoi cells with small cubes centred on their sites’ posi-
tion. This contrasts previous Lp-CVT based hex-dominant meshing
concepts [LL10, BRM*14, SRUL16], which solely operate on the
bi-graph of the relaxed diagram, by assembling hexahedral prim-
itives from the Delaunay tetrahedralization. In our approach, each
cube is scaled uniformly to approximate the extent of its correspond-
ing cell and is rotated to the site’s orientation. Boundary cells are en-
sured to grow such that the boundary faces align with the input hull
or point cloud. This stage is illustrated in Figure 7 and as example
in Figure 1 (centre, left).

One can easily comprehend how two neighbouring cubes should
be connected: Take the quad of each cube that is facing the other
cube and merge them into one. The eight virtual vertices of these
two virtual quads shall become four real vertices of one real quad.

This task may sound fairly simple, but it is rather complex to
determine robust connections geometrically. The left of Figure 7
shows relaxed cells; the right illustrates how uniform cubes are
placed in this scenario. A simple snap-merge approach could suc-
ceed on very regular structures, but as soon as cells approximate
curved surfaces, the distances between potential merge partners vary
heavily due to keystone deformations of the cells. A merge criterion
only based on geometric distance is therefore not very robust.

Our algorithm incorporates topology information provided by the
six nearest neighbours N6 of each node to approach this issue in the
merging step. If there is a mutually unique link established between
two cubes, they can be trivially interconnected. However, while the

regularization in Section 4.4 vastly improves the number of mutu-
ally unique relationships, they cannot be established everywhere.
Some node might be considered as a neighbour to fewer or more
than six other nodes. Those complicated cases will be considered
after the trivial cases.

Matching Scores. To find the best suitable matches of the cube’s
quads to be merged, we first determine a score for each pair. There-
fore, the merging order determines by a global score-sorted priority
queue over all possible faces that could fuse two cubes. For each face
of a cube, the algorithm queries suitable faces of all six neighbours
and computes a geometric score ϕ as formulated in Equation (5),
expressing how well the two cubes match.

ϕ(U,V ) =
(
2 − arccos(�nu · �nv )

π

) ∑
i∈(0,1,2,3)

||ui − vi||2, (5)

where ui are vertices of faceU , vi vertices of faceV and�nu,�nv are the
face normals, respectively. Assuming the best suitable permutation
for the vertices on the other face has been determined, the scoring
function computes the accumulated pairwise distance between face
vertices scaled by an angular component based on the face normals.
For normals perfectly facing each other, the angular factor is 1, and
it can grow up to 2 for face normals pointing in the same direction.
Face pairs and corresponding neighbours are collected in the priority
queue, sorted by ascending score values. Faces for which there is no
inside neighbour are labelled as part of the outer hull of the final hex-
mesh.

Vertex Merging. With the face-merging order in place, we have
to find a suitable way to merge vertices. In an entirely regular sce-
nario, the corners of eight cubes would make up one vertex for the
final mesh. However, in an irregular arrangement, sometimes more
or fewer than eight virtual vertices make up one real vertex. Posi-
tions of real vertices in the final hex-mesh are set to be the geomet-
ric centres of the associated sets of virtual vertices. By working off

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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D. R. Bukenberger et al. / At-Most-Hexa Meshes 15

Figure 8: Despite the N6 regularization, ambiguous scenarios as on the left may still occur. The result on the right emerged from the automated
matching in which a face is collapsed to an edge.

the priority queue, the information which virtual vertices are to be
merged comes in serial form and has to be assembled entirely be-
fore the vertices can actually be combined. Therefore, the merging
process itself is split up into two steps: In the first run, all merge-
relevant information is collected and the virtual vertices accumulate
in merge-sets. In the second run, all merge-sets compute the real
vertex position for the final hex-mesh.

Processing the priority queue. As mentioned before, the major-
ity of all cubes can be connected straightforwardly, but some may
require extra care. Our implemented algorithm to process the prior-
ity queue follows a simple defensive strategy promoting only high-
quality mesh output. Therefore, a bit-field is maintained, which
keeps track of already merged and unmerged faces. If a face pair is
up-next in the priority queue and one of the faces is already flagged
as merged, the pair is skipped and left open.

Some of the skipped faces, for example, as in the ambiguous as-
signment problem in Figure 8, are resolved implicitly by the vertex
merging step. A cube’s edge can collapse if two virtual vertices are
in the same merge-set. Suppose this occurs on two opposing edges
of a quad-face, then one side of a cube collapses to an edge.

Closing Cuts. So-called cuts occur when there is a gap in the
neighbourhood topology at the time when matching scores are com-
puted. These topological gaps are totally valid and relatively easy
to fix by running another matching-score iteration before merging
the vertices. If two cubes were not direct but indirect neighbours,
it might happen that two of their virtual vertices will be together
in the same two merge-sets. If those two merge-sets form an edge
that connects open faces from these cubes, they will be considered
neighbours now, and the faces can be merged as well. Figure 9 illus-
trates this process in theory. A very prominent result can be found in
Figure 15 on the long rounded vertical corner of our Fandisk result
in the rightmost image.

After these steps, the positions of all real vertices are computed
by averaging over all virtual vertices contained in their respective
merge-sets. In some cases, the vertices generated by a merge can
be a bit off from the anticipated surface. For example, mainly the

Figure 9: The dark-blue cubes have dangling nodes (green) in their
N6 neighbourhood. Indirect merges (red) are possible over common
edges (orange) at small enclosing angles.

narrowing geometry of the Jumpramp in Figure 18 provokes such
merges, which in combination with the concave 90◦ edge, can cause
displaced vertices. However, a simple optimization step, pulling ver-
tices onto the input surface (or a Spc surface patch in case of point
cloud input) would allow for an easy fix in such scenarios, for ex-
ample, using the energy-term formulated for feature-aligned vertex
placement in established surface-meshing methods [JTPSH15].

5.2. Stage two: topology

This is the point where actual mesh topology comes together. So far,
the simple match-and-merge algorithm has only generated the final
mesh vertices and associated edges derived from the merged cube
structures. This edge network already features trivial triangular and
quadrangular faces, suitable for at-most-hexa primitives. However,
this complex structure is not yet entirely suitable for our objective
as it also includes constellations that are unresolvable with at-most-
hexa primitives. We can identify such regions as spirals, shown in
Figure 10, and resolve them by inserting additional edges. This can
be done simultaneously to the identification of trivial tri- and quad-

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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16 D. R. Bukenberger et al. / At-Most-Hexa Meshes

Figure 10: Spiral structures cannot be represented with at-most-hexa primitives. Identified penta-loops are supplemented with additional
edges, which are only used where needed in the final mesh.

faces (I). On this basis, small graph matching state-machine pro-
grams, as shown in Figure A1, extract all possible at-most-hexa
primitives (II) from the edge-network. The final mesh is then as-
sembled (III) from a quality-sorted priority queue.

I. Collect Faces. Specified at-most-hexa primitives are based on
triangular and quadrangular faces found in the given edge com-
plex. Triangular faces are identified as loops of three adjacent edges
or four edges for quadrangular faces, respectively. However, there
are also cases where adjacent edge paths do not form closed loops
of length three or four. As shown in Figure 10, topological miss-
configurations can be caused during the relaxation in narrowing ge-
ometry and cannot be resolved using at-most-hexa primitives, thus
would cause holes and missing primitives in the final mesh. Spiral-
ing edge structures are identified and broken down, therefore, be-
coming tri- and quadrangulatable. In an iteration over all edges, a set
of penta-loops is gathered, defined as five adjacent edges, not inter-
connected by any other existing edge. Spirals can always be broken
down into one or more (overlapping) penta-loops, which can be eas-
ily split up by creating five new interior edges per loop. Regardless
of being a prior existing or newly added edge, they are only featured
in the final mesh as part of a fitting primitive. Furthermore, it is suit-
able to split very skewed or non-planar quadrangular faces into two
triangles by inserting a diagonal edge in some cases. For trapezoidal
quads, we chose π

4 as the lower limit for corner angles and π

3 as
the upper limit between opposing edges on trapezoidal quads. The
shortest diagonal of such a quad is then added and treated equally
to prior existing edges.

II. Graph Matching Algorithm. Based on the collected tri- and
quad-faces, our algorithm now generates the basic building blocks
for the final mesh assembly, namely the at-most-hexa primitives.
This poses a straightforward graph matching task, but the greedy
search’s complexity escalates quickly if not approached with care.
With insight into possible outcomes, one can specify a strict set
of rules to prune the search tree drastically and avoid incredible
amounts of redundancy early on.

The algorithm in Listing 1 iterates over the available faces, gen-
erating the individual primitive types. The outer loop can be paral-

lelized, such that all primitive types are processed at the same time.
Pruning is achieved as the algorithm obeys the following rules:

• Every face fi is considered as a possible starting point to assemble
a primitive.

• Once a face fi was a starting point, all possible primitives featur-
ing fi have been explored.

• Search paths from other starting points f j including fi would re-
sult in redundant results.

• Therefore, used starting points fi are marked and allow for an
early termination of redundant search paths f j.

The state-machine programs featured in Figure A1 are designed
for as little branching as possible. Therefore, a triangular face is
favourable over a quad as a primary face due to only three open
edges, hence branching directions; except for the hexahedron obvi-
ously and the pyramid due to symmetry. This pre-selection of suit-
able tri/quad faces is also implemented in the following algorithm.
Our face-based state-machines can be formulated with as little as
only one, or at maximum two, possible assembly sequences. This
contrasts common tet-based hex-assembly [MT00, LL10, BRM*14,
SRUL16], where the hexahedron alone can be formulated in 10 dif-
ferent constellations, featuring 5, 6 or 7 tetrahedra plus sliver ele-
ments.

Listing 2 describes the general algorithm to generate at-most-
hexa primitives from a given starting face fi, as illustrated in Fig-
ure A1. Although there are unfinished primitives in the openPrims
list, the algorithm queries for adjacent, unused and type-suitable
candidate faces f j (line 7). New candidate faces explicitly qualify
by sharing one of the open edges in the unfinished primitive. A new

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

 14678659, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14393 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [18/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



D. R. Bukenberger et al. / At-Most-Hexa Meshes 17

Figure 11: Progress (left to right) of the assembly routine on a cut open example of the Twistcube. This visualizes iterations of the while
loop in Listing 3, lowering the primType each round (8 hex> 7 hexPrism> 6 prism> 5 slice) to close open faces (white). The start amhMesh
on the left is initialized with hex-only elements of high quality.

primitive struct is generated by adding face f j to the open primitive
(line 8). If this leads to a complete primitive, it is added to the re-
sult set (line 10). If the new primitive is not yet complete but a valid
state, it is added to the set of open primitives for the next round (line
13). If neither case is satisfied, the new primitive is an invalid state
and rejected. For the same starting face fi, the algorithm may return
multiple primitives, that is, two hexahedra sharing a common quad
face, but never any duplicates.

For the upcoming assembly routine, the at-most-hexa primitives
are sorted by quality within their class. Minimum Scaled Jacobians
(MSJ) are employed as an intuitive quality property. Not all primi-
tives support this property as trivially as the hexahedron with eight
suitable vertices. However, as the primitives derive from a hexa-
hedron by collapsing edges, each primitive trivially maps to a unit
cube. Collapsed edges result in a Jacobian of 0 on affected ver-
tices. Therefore, Jacobians are computed on non-hex primitives only
where possible, namely on vertices connected to three edges.

III. Assembly. With all available primitives at hand, we will now
focus on the concept of assembling a full mesh. The upper histogram
in Figure 12 shows the proportional amount of the different types
from all collected primitives. As illustrated, each collection of prim-
itives is internally sorted by quality (MSJ). With the following algo-
rithm, the final mesh is assembled by incrementally adding the best
suitable primitives to the existing set as exemplified in Figure 11.

The relaxation produces a hex-dominant mesh, where the major-
ity of hexahedra can be adopted on the fly to initialize the assem-
bly’s starting point in Listing 3: All available hexahedral primitives
(type 8) with a certain quality (MSJ > 0.5) are directly added to
the amhMesh set. If there are conflicting hexahedra (i.e. partial over-
laps) within this set by initialization, the lower quality primitives of
conflict-pairs are removed until amhMesh is conflict-free. Further,
faces used by two adjacent primitives are considered closed. Faces
used only once are collected in the openFaces set.

The algorithm’s design ensures it prioritizes larger (favourably
hexahedral) elements of high quality. Smaller primitives serve as a
fallback solution, especially the tetrahedron, as a last resort to fill up
the smallest gaps in the volume. Therefore, the criteria for primitives
to be considered candidates start high andwill be automatically low-
ered if there are no elements to be added with the current settings,
and reset if there was progress again.

Each iteration of the assembly algorithm in Listing 3 consists of
three phases: • First (line 4–11) a pre-selection, where the main
criteria for being considered in the next step are the primType, the
minimum number of how many open faces a primitive should close
cLim and a minimum quality threshold minQ which we set at 0.25.
Suitable primitives are collected in the newPrims set and sorted
(lexicographically) by their qualification criteria; first by their two
integer keys (primitive type and the number of closeable faces), then
the float quality measure: primType > c > prim.Q. Therefore,
the first newPrim element of this sorted list has the maximum prim-
itive type, closes the most open faces and is of the highest quality.
• Second (line 13–19), primitives are added but only if they are not
in conflict (primInConflict()) with the existing mesh. Our con-
flict definition follows the relaxed interface-conformity constraints
for hex-dominant meshes [YS03], prohibiting partial overlaps or in-
clusions, that is, two prisms in a hexahedron. If it is safe, newPrim is
added to the amhMesh set and the openFaces set is updated with a
symmetric difference set operation (	 in the pseudo-code). Possible
conflicts may arise for newPrims with each newly added primitive,
while they still await their turn, queued in newPrims. Therefore, this
check has to be performed individually and not for all elements in
the pre-selection. •Lastly (line 21–26), the qualification constraints
for the next addable primitives are either lowered or reset.

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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18 D. R. Bukenberger et al. / At-Most-Hexa Meshes

Figure 12: Quality histograms of primitives for the Fandisk model,
lex-sorted by hexType then quality (MSJ). Stats are shown before
(top) and after the assembly (bottom). The final mesh only features
high-quality (>minQ) primitives, primarily hexahedra.

The lower histogram in Figure 12 gives the composition of the
resulting at-most-hexa mesh after the assembly algorithm in List-
ing 3, most dominantly featuring hexahedral elements. However, the
assembly routine is not necessarily as straightforward as Figure 11
suggests; the enclosing while loop is allowed to lower and reset the
adding criteria multiple times. Further, the loop may only terminate
when there was not a single tet (type 1) left that would close up any
more faces. Consequently, as the tetrahedron is the smallest possible
primitive, the final mesh is completely filled up.

Figure 13: The percentage of hexahedral cells (#) and volume (V)
obtained by our construction algorithm on models with complex ge-
ometries and high genera.

Figure 14: Minerva [Bol09] features over 100k primitives, recon-
structed from a point cloud of only 8k points. The Bunny [Sta14]
and the Hand were given as meshes and feature around 48k each.
Stats show the percentage of hexahedra as: #: number; V: volume.

6. Experiments and Discussion

We have tested our construction strategy on a number of examples.

6.1. Requirements on input

One strength of our construction strategy is the versatility in terms of
input. The input shape can be given as a triangular boundary mesh,
a generic hex-dominant volume mesh, or even, as described in the
dedicated Appendix B, an unstructured point cloud.

Normal and orientation initialization is sampled from the input
hull or point cloud. Surface orientation can be robustly extracted
using winding numbers [BDS*18] for meshes, or various strategies
for point clouds [JBG19]. A frame-field is not required, and cell ori-
entations get implicitly aligned to boundaries during the relaxation.
The method is robust with varying sampling density in the input,
and the input boundary is not required to be closed (as exemplified
by the Bunny dataset and the Minerva dataset in Figure 14, which
are open at the bottom). Manifolds of higher genera and complex
geometries can also be meshed correctly, as shown in Figure 13.

6.2. Experimental results

We tested our construction method on several 3D objects, both
with a mechanical and an organic shape. For comparison purposes
against competing approaches, we included popular 3D test objects.
We used the real 3D scan data ofMinerva in Figure 14 and synthetic
point cloud examples for our results of theCylinder in Figure 19 and

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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D. R. Bukenberger et al. / At-Most-Hexa Meshes 19

Gao et al. [GJTP17] | #: 88.36% | V: 87.74% [GJTP17] + Ours | #: 90.6% | V: 96.1% Ours | #: 89.5% | V: 95.3%

Figure 15: A direct comparison of results for the Fandisk model. Cells with more than six faces (larger than hexahedra), which are avoided
in our solutions, are coloured in red. Cells that are not hexahedral, but are at-most-hexahedral, are coloured in yellow. The centre column
shows the results we obtain using, as input, the hex-dominant from the left. Stats show the percentage of hexahedral cells (#) and their volume
(V).

Igea in Figure B3. Table 1 lists numerical evaluations of our results
compared to other approaches. Shown results and measurements re-
flect the native outcome of our procedure, without any further opti-
mization, which would be possible [LSVT15].

Comparisons & Quality. Table 1 offers comparisons, in terms of
mesh quality, of the results obtained with our method with the ones
resulting from existing hex-meshing approaches. As confirmed by
direct visual comparison, shown in Figure 19, our results are on par
with the state-of-the-art in terms of quality. This is in spite of our
method working with much fewer assumptions on the input, which
is a main motivation in our work. Many competing method methods
require a starting tet-mesh, and additional inputs such as additional
frame-fields [LLX*12, SRUL16, SVB17, LPP*20] (which can be
computed as part of the method, such as in [GJTP17]), volumetric
parameterizations [GSZ11, LBK16, RSR*18, CAS*19], and hand-
crafted singularity graphs [LZC*18, CC19], dual-sheets [Tak19] or
feature-edge selections [LPP*20].

These required inputs can be constructed in separate, non-trivial
and preliminary steps, each subject to own lines of research: For
example, the construction of a tet-mesh from a boundary tri-mesh
[SJ08, Si15, HZG*18], of a tri-mesh from a point cloud [BTS*17],
of a volumetric directions-field from boundary geometry [BRM*14,
SVB17] or sharp-feature lines from a boundary mesh [MAR*20].
Despite the recent advancements in each of these fronts, we consider
it advantageous to bypass the need for these tasks.

As the relaxation strives to maximize uniformity, equidistantly
distributed sites generate primitives of approximately the same size.
The inset histogram shows the distribution of edge lengths of the
Fandisk model of Gao et al. compared to our result. The plot is
zoomed in on the median peak, which was scaled to 1.

Figure 12 reports quality measure histograms for the Fandisk
model of all gathered primitives from the relaxation (top) and the
used ones in the final mesh (bottom). The hexahedral cells in our
output feature very regular shapes and a high Average Scaled Ja-
cobians [PTS*08], matching or even superior to the ones obtained
with state-of-the-art procedures. As expected, the Minimum Scaled
Jacobians never fall below our threshold minQ of 0.25. In terms of
the number of hexahedral elements, the proportions of hexahedral
primitives in our at-most-hexa meshes (> 80%) exceed recent hex-
dominant procedures. Feature alignment and homogeneous edge-

flow is similar to the one obtained with existing meshing algorithms
focusing on this feature [GSZ11].

Figure 16 shows a comparison that highlights the limitation of
existing all-hex methods [Tak19, LPP*20], in terms of reliance
on complex-to-produce input. In these cases, irregular cell shapes,
widely varying element sizes, and inverted elements are produced
with the competing strategies. Authors of LoopyCuts [LPP*20] at-
tribute this failure case to a limitation of their procedure, which
only performs well on suitable input frame-fields with evenly dis-
tributed singularities.

Figure 15 illustrates another direct comparison with the hexa-
dominant result of Gao et al. [GJTP17], highlighting all non-
hexahedral elements. The crucial difference is that their results fea-
ture generic polyhedra with more than eight vertices and faces with
more than four vertices. In contrast, our method produces at-most-
hexa meshes, with the consequences discussed in Section 1. In this
experiment, wemodify our construction algorithm to refine an exist-
ing generic hexa-dominant mesh into one valid at-most-hexa mesh:
we simply skip the relaxation part to generate the geometry and di-
rectly break down the input structure, and then reassemble the final
elements as usual.

As an experiment, we also tested the same procedure starting
from existing irregular tet-meshes, such as the ones produced by a
TetWild [HZG*18] (see results in Figure 20). In this case, the input
fails to provide any flow or direction information to guide the con-
struction, so it is expected that the results will be less regular and
less hexa-dominant. Nevertheless, by lowering the quality thresh-
old minQ to 0.1, the assembly routine managed to recover 21.4%
hexahedral elements.

Comparison to Lp-based Meshing. Lévy and Liu [LL10] exten-
sively studied Centroidal Voronoi Tessellations (CVT) under the Lp
norm. Although their focus lies on the formulation and derivation
of Lp-CVTs, they also propose their use for quad and hex-dominant
meshing. There are clear distinctions between their approach and
ours: Although our approach aims to materialize the hexahedral
cells of the diagram itself, Lévy and Liu utilize the diagram bi-graph
for the geometry extraction. Similar to Sokolov et al. [SRUL16],
the graph matching approach of Meshkat and Talmor [MT00] is
employed to assemble hex-like cells from the diagram’s Delaunay
tetrahedralization. As their mesh vertices are actually former cell
centroids, they have to compensate for the resulting shrinkage on

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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20 D. R. Bukenberger et al. / At-Most-Hexa Meshes

Gao et al. [GJTP17] Takayama [Tak19] Ours (s)

Gao et al. [GJTP17] Livesu et al. [LPP∗20] Ours

Figure 16: Results of the Bunny and Sphinx with about the same resolution each. General (larger than hexa) polyhedra are shown in red,
smaller ones in yellow and inverted primitives in magenta.

Lp-CVT Ours

Figure 17: In the Lp-CVT mesh [LL10], the rounded cavity cap
dominates the interior alignment; our cells are more aligned to the
outer shape. Here we adopted the colour scheme of Lévy and Liu
with yellow hull faces and white for the exposed cut-open interior.

the most outer hull layer. This is not required in our approach where
a cell itself corresponds to a mesh primitive, thus there is no gap
between generated geometry and the targeted hull. The concept of
Lévy and Liu also does not allow for control over the mesh regular-
ity, as their cell’s positional alignment is solely based on the relax-
ation. In contrast to that, our internal graph structures can enforce
specific favourable alignments during the relaxation, as introduced
in Section 4.4with theN6 graph. Furthermore, ourNk graph provides
the possibility to propagate and interpolate orientations throughout
the diagram, thus it allows for cells aligned to the input hull but also
to each other. In the diagram of Lévy and Liu, individual cell orien-
tations are queried from anisotropy matrices associated with outer
hull faces, based on single nearest-neighbour connections. There-
fore, adjacent cells are not necessarily similarly oriented but solely
depend on their closest connection to the outer hull. This effect is
prominently visible in Figure 17 on the cut-open Anc101 model:
In Lévy and Liu’s Lp-CVT result, the rounded cap of the pin-cavity
dominates large portions of the interior cells. In our result, the small
cavity only has a minor influence as the cells primarily align with
the dominant outer shape of the model.

Regularity and Alignment. The results presented in Figure 18 are
prime examples of the synergy of hull samples and cell orientations
during the relaxation with no frame-field given. On planar surfaces,
as on the Jumpramp, only surface normals are determined robustly,

Figure 18: The Jumpramp is challenging for hex-meshing ap-
proaches based on regular parameterizations or integer mappings.
Nevertheless, our relaxation is flexible enough to cope with the an-
gled and narrowing geometry. Inner faces are shaded blue, non-hex
primitives (all triangular prisms) are highlighted in yellow.

primary curvature directions are just random guesses. Since there
was no consistent curvature field, the cell alignment of the flanks
dominates during the relaxation, and the orthogonally aligned ori-
entations follow along, so the resulting arrangement is as regular as
possible. Nevertheless, hex-like cells also intuitively align to more
distinctively shaped geometry like the Fandisk in Figure 15, featur-
ing creases, flat, angled, curved and narrowing regions.

The relaxation process also promotes homogeneity throughout
the whole object. For example, the Cylinder in Figure 19 features
equally sized primitives in its centre as well as on the outer hull.
Some hex-meshing algorithms tend to mimic proportions of the
hull in deeper layers which leads to an unnecessarily high reso-
lution towards the core of an object [LBK16, SRUL16, SVB17].
Cells are not explicitly bound to stay close to their initial position or
neighbourhood. Although objects like theCylinder or theHoleblock
(Figure 13) cannot provide much vertical support, cells do not twist
out of control and maintain a quite regular vertical alignment.

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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D. R. Bukenberger et al. / At-Most-Hexa Meshes 21

Table 1: Quality measures for our results and results obtained with compet-
ing approaches. We list the total number of primitives, as well as the propor-
tions of hexahedra and their volume. The quality metric of Scaled Jacobians
(best is 1) is given with Minimum and Average. The Cylinder (Figure 19) is
included as the native (n) and guided (g) version, the Twistcube (Figure 20)
with three resolutions (s,m,l) and the tet-based example (t). The total con-
struction time (in seconds) is also reported.

# prims hex (%) vol (%) MSJ ASJ t

anc101
Ours 84,551 93.3 96.9 0.261 0.983 1590
[LL10] 105,000 77.14 – – – 720
[GSP19]* 188,886 – – 0.094 0.865 46.3k

aries
Ours 14,004 94.8 97.6 0.255 0.987 1255
[GSP19]* 22,547 – – 0.092 0.813 4568

bunny
Ours (l) 49,243 76.7 88.2 0.252 0.938841 1639
Ours (s) 3201 71.4 84.9 0.258 0.934747 153
[SRUL16] – 60.57 88.61 – 0.950 469
[RSR*18] – – 92.2 – – –
[GJTP17] 2135 66.16 65.17 0.285299 0.952704 –
[Tak19]* 2832 – – −0.771 0.749 –
[GSP19]* 29,698 – – 0.292 0.790 –
[LPP*20]* 2172 – – 0.451 0.911 112

cylinder
Ours (g) 1665 93.4 97.0 0.373 0.973 22
Ours (n) 1671 85.8 93.1 0.298436 0.963537 16
[SRUL16] – 64.66 90.85 – 0.960 327
[RSR*18] – – 99.3 – – –

fandisk
Ours 9523 89.5 95.3 0.303358 0.973101 780
[SRUL16] – 51.36 77.82 – 0.969 10
[GJTP17] 7069 88.36 87.74 0.668 0.986 –
[Tak19]* 1774 – – 0.217 0.905 –

fertility
Ours 4997 75.8 86.9 0.261 0.946137 645
[SRUL16] – 33.63 78.4 – 0.930 1121
[GJTP17] 4769 72.04 72.56 −0.33 0.960 1429

hanger
Ours 12,706 91.1 95.8 0.256075 0.976 1905
[GSP19]* 26,918 – – 0.155 0.828 1536
[Tak19]* 1382 – – 0.333 0.944 –

igea
Ours 27,015 76.8 88.2 0.251 0.941251 1228
[GJTP17] 12,936 81.0 81.0 −0.23 0.970 –

rod
Ours 7409 87.2 94.1 0.355 0.968 541
[GSP19]* 26,918 – – 0.155 0.828 1536
[Tak19]* 600 – – 0.221 0.763 –

sculpt
Ours 5247 77.1 89.1 0.250509 0.934 667
[GSP19]* 15,202 – – 0.104 0.759 826
[LPP*20]* 168 – – 0.806 0.918 18

(Continued)

Table 1: (Continued).

# prims hex (%) vol (%) MSJ ASJ t

sphinx
Ours 2100 81.5 90.9 0.312 0.963478 200
[GJTP17] 2170 76.68 77.85 0.158026 0.971 –
[GSP19]* 45,348 – – 0.182 0.814 –
[LPP*20]* 3944 – – −0.803 0.808 672

Ours
hand 47,132 81.5 90.8 0.252666 0.950202 521
holeblock 7491 87.8 93.9 0.250119 0.969598 175
jumpramp 1460 97.3 98.7 0.775665 0.994222 9
minerva 100,567 77.6 88.9 0.251374 0.939938 1235
trefoil 8526 65.0 81.1 0.251915 0.916715 362
twistcube (s) 1301 88.9 95.6 0.488316 0.977847 7
twistcube (m) 5695 96.2 98.5 0.570509 0.991736 16
twistcube (l) 15,841 96.2 98.4 0.315914 0.990406 76
twistcube (t) 2836 21.4 41.3 0.125383 0.801364 –

Bold values highlight the best scores in each category.

[LZC∗18] [CAS∗19] [CC19] Ours (n) Ours (g)

Figure 19: Results of other recent work using tet-meshes, polycube
mappings, and singularity graphs as input compared to ours based
on hull points only. This also compares a native (n) outcome of our
procedure with an experimentally guided (g) version.

The choice for initial site positions on an axis-aligned regular grid
is well suited for objects that also feature axis-aligned parts like the
Jumpramp, the Holeblock, or the CAD models in Figure 21. Nev-
ertheless, the relaxation is very flexible and able to approximate or-
ganic shapes without explicitly axis-aligned parts faithfully. But to
be fair, even organic shapes likeMinerva or Fertility are usually not
given with an arbitrary rotation but are also often oriented for at least
axis-aligned symmetry.

The Twistcube in Figure 20 illustrates how the relaxation also
maximizes isotropy on objects with non-axis-aligned surfaces: The
curved point cloud hull acts as inside/outside separation on the ini-
tially regular grid cells. This rasterized initialization is resolved in
the relaxation with a varying number of homogeneously shaped
primitives instead of squashed and stretched ones.

Guidance. Due to the relaxation, the mesh’s flow naturally aligns
to object curvature, based on surface features alone. Nevertheless,
it is quite easy to supplement this process with guiding structures
inside the object to control the internal flow-field and orientations.
For the Cylinder in Figure 19, we extended Spc with additional sam-
ples on two orthogonal planes, intersecting on the rotational axis of
the object, similar to dual-sheet meshing [Tak19]. This pushes the
anticipated regularity for simple geometric shapes even further by
guiding the relaxation to obey symmetry or similar characteristics.

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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12
11
10

(s) (m) (l) (t)

Figure 20: The Twistcube [JTPSH15] in three different resolutions (s,m,l) and with a cutout. The rightmost cube (t) is based on a Delaunay
tetrahedralization [HZG*18] instead of our relaxed input.

#: 93.3% | V: 96.9% #: 91.1% | V: 95.8% #: 87.2% | V: 94.1% #: 77.1% | V: 89.1% #: 94.8% | V: 97.6%

Figure 21: More results on CAD models. Stats show the percentage of hexahedra as: #: number | V: volume.

Performance. Due to the decentralized graph structure (Sec-
tion 4.2), the relaxation part of our pipeline is easily parallelized.
Timings were measured with an implementation in CUDA, run on a
GeForce GTX 1080Ti graphics card. The performance of the relax-
ation heavily depends on the selected parameters, for example, grid
resolution and the dimensions of the input structure. Included results
were created using 150 relaxation iterations. The Minerva object,
one of the larger reconstructions listed in Table 1, features about
225k Voronoi cells (including the space outside of the object). One
complete relaxation iteration includes: ComputingVoronoi cells and
recentring their sites, updating theN6 andN26 neighbourhood graphs
and n-hop distances, updating and interpolating separate individual
positions and orientations, and combining them with the progress-
dependent weighing function.With a neighbourhood size of k = 26,
one iteration for these 225k elements is done in 2.43 s. For recon-
structions of coarser resolution, for example, the Jumpramp model,
our implementation reaches about 18 iterations per second. The
vertex merging steps for geometry generation as well as the graph
matching for topology extraction are also easily parallelizable and
finish within a few seconds on a multithreaded Python CPU imple-
mentation: As described in Section 5.2, the outer loop in Listing 1
can be parallelized for the individual primitive types to be acquired
and sorted simultaneously. How much time is spent in each step
varies and depends on the chosen parameters as well as on the input
object: The GPU relaxation time correlates with the chosen mesh
resolution, thus the overall number of cells in the diagram. An ob-
ject’s shape directly influences the time that is consumed by the
primitive-collection and mesh-assembly routines. For blocky ob-
jects like the Twistcube in Figure 11, the assembly routine starts
with a strongly hex-dominant initialization. In organic shapes or
contorted CAD models like the Fandisk in Figure 15, the initial-
ization contains larger quantities of non-hex cavities to be fill-up,
hence also a larger pool of at-most-hexa primitives to choose from.
This assembly routine (Listing 3) is the only serial CPU operation

in our pipeline. Nevertheless, the straight ordering of the priority
queue (Figure 12) allows for an efficient execution of the assembly,
which also terminates within minutes.

An extensive comparison of number-of-primitives versus time
stats with a recent publication might be rather misleading due to
the following reasons: Our relaxation currently (see Outlook) op-
erates on all cells within the objects bounding box volume. And
as mentioned above, filigree objects (Figure 13) would do rather
poorly compared tomassive blocky objects (Figure 20). On the other
hand, timings of other approaches with similar primitive count usu-
ally also heavily depend on the task to be solved and the given in-
put conditions. Our heterogeneous mixture of Cuda GPU-, single-,
and multithreaded Python CPU code introduces further bias on the
comparison with single-core C++ implementations of competing
methods [LL10, GJTP17, Tak19, LPP*20]. Nevertheless, Table 1
lists our measured timings for the included result.

Figure 12 lists about 200k gathered primitives of which only
9.5k were used in the final mesh. This brute-force approach seems
wasteful but still outperformed more advanced alternatives. An in-
terleaved routine, alternating assembly steps with primitive collec-
tion queries only where needed caused overall too much overhead.
The simplest method proved to be the fastest: Gather primitives in
parallel and run the assembly on sorted data.

6.3. Outlook

Additional Guidance. As experimentally introduced in Figure 19,
the relaxation can be supplied with guidance from additional
geometry. Possible scenarios in future research could be to explore
the utilization of common and more explicit guiding structures.
Dual-sheets, frame-fields or singularity graphs are currently not re-
quired in our method but could improve result quality.

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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Non-uniform Cells. Cells of non-uniform size and/or shape bear
geometric challenges which have yet to be explored. However, solv-
ing them may pay out in the form of improved hex-mesh quality or
adaptive meshing options. Formulating non-hex cells in the relax-
ation or cells scaled anti-proportional to the n-hop distance would
allow for a more resourceful and detail-focused evaluation.

Exclude far away Cells. To further improve the relaxation perfor-
mance, it could be beneficial to investigate mechanisms to exclude
far-away outside cells at an early stage of the relaxation. A com-
bined criterion with an n-hop distance > 1 would already exclude
many cells from further computation, probably without too much
impact on the closest relevant cells on the hull’s inside.

7. Conclusion

In this work, we present a new and innovative way to construct at-
most-hexa mesh structures. Further, our proposed procedure suc-
ceeded in bridging the gap between surface point clouds and volume
hex-mesh generation. The quantity and quality of hexahedral ele-
ments in our meshed results are improved compared to established
state-of-the-art algorithms. We introduce at-most-hexa meshes, a
novel class of hex-dominant meshes, where non-hex elements are
linear combinations of hexahedra. This allows for trivial interpola-
tion of scalar or vector signals within the volume and greatly sim-
plifies the internal representation due to the suitability for indexed
meshes. Contrasting common requirements for such tasks, arbitrary
meshes or point clouds of various sizes and densities are sufficient as
input. The resolution for the resulting mesh can be selected indepen-
dently. The proposed approach consists of two parts, starting with
a Lloyd relaxation that eventually reintroduces constrained regular
structures. In contrast to previous Lp relaxation methods using De-
launay tetrahedralizations, our geometry extraction is based on the
actual materialization of the relaxed Voronoi cells. At-most-hexa
primitives are extracted with specialized state-machine programs,
and the final mesh assembles from a quality-sorted priority queue.
The interaction between fixed hull or point cloud samples and re-
laxed cells generates a homogeneous orthogonal vector field for
feature-aligned mesh structures. Therefore, the approach is suitable
to reconstruct organic and curved objects as well as flat surfaces,
sharp edges or angled geometry with well-aligned hexahedral prim-
itives.
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Appendix A: At-Most-Hexa Primitives

The base case of our at-most-hexa mesh is a simple hexahedron
with eight vertices and six quad faces. All other allowed primitives
are listed in Figure A1 and derive from this base case by collapsing
up to four edges.

State-Machine Programs. The search for primitives in the set of
quadrangular and triangular faces can be performed very efficiently,
using specifically tailored state-machine algorithms for each prim-
itive type. Starting from the initialization state with only one face,
adding a face is the only supported operation to transition from one
state to the next. If a transition generates a valid state, the search
path continues or is discarded otherwise. The illustration in Fig-
ure A1 shows the progress of the individual state-machines with
colour-coded faces and edges. The primary face is the starting po-
sition, providing the first set of open edges. Secondary faces may
only be added on open edges of the primary face. Tertiary faces
are determined indirectly by a specific set of open edges, for exam-
ple, in the penultimate state of the hexahedron, the last four open
edges unambiguously specify the last quad face. Since only faces in
a direct adjacent neighbourhood (fix size) are considered for a state
transition, the search’s complexity is in O(n).

Interexchange Format. At-most-hexa primitives can be formu-
lated as linear combinations of the eight vertices of a hexahedron.
We use this property to store our results as simple indexed mesh
files, commonly used for hex-meshes. Therefore, corner vertex in-
dices are duplicated as listed in Figure 2 with eight-vertex-index
sets for the different primitives, respectively. Out in the wild, this
format could easily be read by dedicated hex-meshing applications.
However, some internal routines may struggle with collapsed edges
or faces: Graphite [LA] can load our meshes but may not be able
to differentiate between interior and hull faces robustly. Neverthe-
less, the HexaLab [BTP*19], an online visualiser/analyser that is
designed for pure-hexa meshes, can be used to examine our results,
which are provided in the supplemental material.

Appendix B: Point Cloud Input

In addition to supporting closed manifold input, we also propose
a simple extension to our method to require point clouds as input
only. This feature is elaborated analogously to Section 4.

B.1. Motivation

Although surface reconstruction techniques can easily start from
point cloud samples directly, established hex-meshing algorithms
require complex input like parameterizations, mappings, other vol-
ume or surface meshes. The goal of any signal processing pipeline
should be to avoid thmare concatenation of Lossy processing
steps and the accumulation of errors. Even for well-researched
procedures, it is always important to study alternative ways—if
only to prove a point. So if we can go from point samples to a
surface mesh and from a surface mesh to a volume mesh—why
not skip this surface pre-computation step and generate the volume
mesh directly from point cloud samples? Nevertheless, a surface
mesh is indirectly generated anyway as the outer hull of the volume
mesh. Therefore, we propose an approach to bridge this gap and
produce high-quality hex-dominant meshes and watertight surfaces
solely from point cloud surface samples.
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8 hex [Q:1, T:0, OE:4] [Q:2, T:0, OE:6] [Q:3, T:0, OE:6|8] [Q:4, T:0, OE:6] [Q:5, T:0, OE:4] [Q:6, T:0, OE:0]

A

B

C

D

E

F

G

H

7 hexPrism [Q:0, T:1, OE:3] [Q:1, T:1, OE:5] [Q:2, T:1, OE:5|7] [Q:3, T:1, OE:5] [Q:3, T:2, OE:4] [Q:4, T:2, OE:0]

A BC

D

E

F

G

H

6 prism [Q:0, T:1, OE:3] [Q:1, T:1, OE:5] [Q:2, T:1, OE:5] [Q:3, T:1, OE:3] [Q:3, T:2, OE:0]

A BC

D

E FG

H

5 slice [Q:0, T:1, OE:3] [Q:1, T:1, OE:5] [Q:1, T:2, OE:4] [Q:2, T:2, OE:0]

A BC

D

EH

FG

4 pyra [Q:1, T:0, OE:4] [Q:1, T:1, OE:5] [Q:1, T:2, OE:4|6] [Q:1, T:3, OE:3] [Q:1, T:4, OE:0]

A
BC
FGD

E

H

1 tet [Q:0, T:1, OE:3] [Q:0, T:2, OE:4] [Q:0, T:3, OE:3] [Q:0, T:4, OE:0]

AE

BC

FG
DH

Figure A1: State-machine programs for the different (used) at-most-hexa primitives, with an initialization state of only one face on the left
and completed primitives on the right. Valid states are encoded in triples: Number of Quads/Tris and the number of Open Edges. Colours
highlight open edges, primary, secondary and tertiary faces.

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

 14678659, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14393 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [18/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



D. R. Bukenberger et al. / At-Most-Hexa Meshes 25

Figure B1: Nodes with di = 1 (dashed) determine their in/out label
from the dot product of direction �vi and normal �ni. Nodes of di > 1
derive their label from neighbouring nodes closer to the surface, as
illustrated with the graph in magenta. The right side shows the N6

graph (green), transcending the outer hull, so that adjacent cells on
the in- and outside are able to align nevertheless.

B.2. Site population

The whole set of sites in the Voronoi diagram consists of two dis-
junct subsets S = Spc ∪ Sv: Sv initializes as before. Additionally, to
represent the surface, each 3D point cloud sample creates one ad-
ditional site, forming the second set of sites Spc. Sites in Spc have
a fixed location—the one of their point cloud sample—and a fixed
normal derived from the local neighbourhood. Both properties do
not change during the optimization. The sites Spc serve two pur-
poses: They separate inside from outside cells, ensuring that the
created boundary precisely aligns to the implicit hull. Further, they
enforce that the orientation of all other interior sites Sv will adapt to
the surface features.

B.3. Point cloud hull

In the Voronoi diagram, both site-sets Sv and Spc spawn cells. Sv

cells are uniformly shaped with the Chebyshev metric following
the sites’ orientation and therefore will approximate cuboids; for
Spc cells, an anisotropic transformed norm is applied: These cells
are compressed along the direction of their normal and stretched
along the direction of their tangent and bitangent as illustrated in
Figure B1 (with factors 0.5 and 1.5). Even sparsely sampled point
clouds provide a sufficiently dense hull to separate sites floating
around the in- and outside of the object [Hau01]. Throughout the
relaxation, the height of the Spc cells is slowly reduced to 0 to ensure
that the hull is not covering any volume (Figure B2, right). Further-
more, sites Spc are not allowed to move during the relaxation. This
way sites Sv can move up to the outer hull from the in- and outside
of the object but will not pass the hull. Sites that start somewhere
on this hull will be pushed either in or out of the object within only
a few iterations.

B.4. kNN-Graph

There are no modifications required for the kNN-graphs to support
the point cloud input. TheN26 is allowed to include neighbours from
S, therefore natively interconnecting Spc and Sv sites. As before, N6

only operates on Sv .

Figure B2: Left: A node identifies as in because its primary direc-
tion is in accord with the majority of its hull neighbours. Centre: A
majority vote of the N6 neighbourhood easily fixes false-positives.
Right: Spc cells converge to 0 height at the end of the relaxation, so
the hull no longer covers any volume.

B.5. Inter- and extrapolation

Analogously to Section 4.3, all sites initialize with orientations
propagated from the hull, in this case, point cloud samples. After
the relaxation, an in/out label is propagated.

Orientation Initialization. Instead of sampling the hull individ-
ually, nodes of level di = 1 query their orientation from the clos-
est point cloud neighbours (di = 0), which are naturally included in
their k nearest neighbour list. A Sv may query multiple Spc nodes,
and a Spc node may be shared by multiple Sv nodes as illustrated on
the left in Figure B1.

Inside/Outside. Determining inside–outside labels is no longer as
trivial as with a hull given. Although algorithms specialise in wind-
ing numbers for point clouds, we propose to query the information
at hand using the neighbourhood graph and simple geometry. First,
this labelling operation simplifies by focusing only on nodes of level
di = 1, close to the hull. All other nodes with 1 < di easily derive
their state from already labelled nodes in their direct neighbourhood.
In/out labels for nodes with di = 1 depend on their normals pointing
towards or away from hull nodes as shown in Figure B1. Vector �vi
in Equation (B.1) is the normalized average direction from node si
to its direct neighbours s j ∈ Spc with j ∈ N26(i). As formulated in
Equation (B.2), the in/out label li derives from the sign of the dot
product between direction vector �vi and normal �ni.

�vi = 1

|N26(i) ∩ Spc|
∑

j∈N26(i)∩Spc

s j − si
||s j − si||2 , (B.1)

li =
{
in if �vi · �ni > 0.
out else

(B.2)

Close to sharp edges, this procedure may cause false-positives.
The scenario illustrated in Figure B2 (left) shows a case where the
majority of direct point cloud neighbours is just around the corner.
Therefore, the derived normal �ni and averaged direction�vi point into
the same direction. This is a perfectly valid behaviour, but one can
also easily fix such outliers by querying the labels of their N6 neigh-
bourhood as illustrated in Figure B2 (centre): If a node is labelled
as inside and has less than three direct neighbours, which are also
labelled as inside, its label is switched to outside.

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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0.0% 0.1% 1.0% 10.0%

Figure B3: Reconstructions of the Igea artefact from 5k points per-
turbed with random noise vectors. Noise magnitude levels are given
in percent of the length of the bounding-box’s diagonal. Raw output
of the relaxation and merging pipeline, no at-most-hexa topology.

Compared to winding numbers [BDS*18], our approach trivially
blends in with the rest of the graph operations and does not add
any further computation steps. Since we limit our labelling to points
that are closest to the oriented hull and propagate results for farther
points, our results are practically error-free.

Bring the Noise. Due to our focus on simple and minimal input,
we never used more than 10k randomly sampled points for included
results. The quality of actual 3D scans is usually higher than what
we aimed for: Modern mid-range 3D scanners can produce high-
density results with millions of points arranged in nice regular pat-
terns. However, robustness to bad input is always crucial for recon-
struction tasks. To explore the limits of our procedure, we artifi-
cially perturbed input samples with noise vectors (sphere samples
with limited random magnitude). Figure B3 illustrates results us-
ing different magnitudes of noise which are given in percent of the
length of the object’s bounding-box diagonal. Normals and orienta-
tions were computed from the noisy point clouds to simulate unreli-
able data. Furthermore, we did not apply any topology reconstruc-
tion or remeshing steps to these results. Even with a certain amount
of noise, our method can concisely reconstruct the object with only
minor flaws on the hull. Enough noise can also provoke failures, as
shown on the right in Figure B3. With noise magnitudes larger than
the cell size, the hull becomes very vague: The in/out labels of the
outermost layer can no longer be determined with certainty, which
is why there are loose hexahedra floating around. However, already
from the second layer on inwards, the mesh is fine and follows a
smooth orientation field.

B.6. Relaxation

The Lloyd relaxation process with point cloud input is equivalent
to the one introduced in Section 4.3 with one exception: As there
is no hull separating interior and exterior cells, the sites Spc are not
altered during the relaxation. They remain in their initial position
during the whole process and also maintain their normal direction.

However, tangent and bitangent are free to be updated according
to the frame field generated during the relaxation. By keeping their
normals fixed, the hull barrier is guaranteed to stay intact, but the
cells can align with dominant surface features.

Limitations. Voronoi cells relax under the assumption to approx-
imate a cubical shape with uniform edge lengths. Cells within ge-
ometry, thinner than the average relaxed edge length, are in a very
unrelaxed state and might be squeezed outside of the object. How-
ever, with samples placed sufficiently dense, it becomes improbable
for cells to pass the outer hull, and even thin geometry can be rep-
resented, for example, with only one layer of hexahedra.
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