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SHARP GEOMETRIC AND FUNCTIONAL INEQUALITIES

IN METRIC MEASURE SPACES WITH LOWER RICCI CURVATURE BOUNDS

FABIO CAVALLETTI AND ANDREA MONDINO

Abstract. For metric measure spaces satisfying the reduced curvature-dimension condition CD
∗(K,N)

we prove a series of sharp functional inequalities under the additional assumption of essentially non-
branching. Examples of spaces entering this framework are (weighted) Riemannian manifolds satisfying
lower Ricci curvature bounds and their measured Gromov Hausdorff limits, Alexandrov spaces satisfy-
ing lower curvature bounds and more generally RCD

∗(K,N)-spaces, Finsler manifolds endowed with a
strongly convex norm and satisfying lower Ricci curvature bounds.

In particular we prove the Brunn-Minkowski inequality, the p-spectral gap (or equivalently the p-
Poincaré inequality) for any p ∈ [1,∞), the log-Sobolev inequality, the Talagrand inequality and finally
the Sobolev inequality.

All the results are proved in a sharp form involving an upper bound on the diameter of the space; all
our inequalities for essentially non-branching CD

∗(K,N) spaces take the same form as the corresponding
sharp ones known for a weighted Riemannian manifold satisfying the curvature-dimension condition

CD(K,N) in the sense of Bakry-Émery. In this sense inequalities are sharp. We also discuss the rigidity
and almost rigidity statements associated to the p-spectral gap.

Finally let us mention that for essentially non-branching metric measure spaces, the local curvature-

dimension condition CDloc(K,N) is equivalent to the reduced curvature-dimension condition CD
∗(K,N).

Therefore we also have shown that the sharp Brunn-Minkowski inequality in the global form can be
deduced from the local curvature-dimension condition, providing a step towards (the long-standing
problem of) globalization for the curvature-dimension condition CD(K,N).

To conclude, some of the results can be seen as answers to open problems proposed in the Optimal
Transport book of Villani [75].

1. Introduction

The theory of metric measure spaces satisfying a synthetic version of lower curvature and upper
dimension bounds is nowadays a rich and well-established theory; nevertheless some important functional
and geometric inequalities are in some cases still not proven and in others not proven in a sharp form. The
scope of this note is to generalize several functional inequalities known for Riemannian manifolds satisfying
a lower bound on the Ricci curvature to the more general case of metric measure spaces satisfying the so-
called curvature-dimension condition CD(K,N) as defined by Lott-Villani [51] and Sturm [72, 73]. More
precisely our results will hold under the reduced curvature dimension condition CD

∗(K,N) introduced
by Bacher-Sturm [7] (which is, a priori, a weaker assumption than the classic CD(K,N)) coupled with
an essentially non-branching assumption on geodesics. We refer to Section 2.1 for the precise definitions;
here let us recall that remarkable examples of essentially non-branching CD

∗(K,N) spaces are (weighted)
Riemannian manifolds satisfying lower Ricci curvature bounds and their measured Gromov Hausdorff
limits, Alexandrov spaces satisfying lower curvature bounds and more generally RCD

∗(K,N)-spaces,
Finsler manifolds endowed with a strongly convex norm and satisfying lower Ricci curvature bounds.

Remark 1.1. To avoid technicalities in the introduction, all the results will be stated for N > 1;
nevertheless everything holds (and will be proved in the paper) also for N = 1, but in this case CD∗(K,N)
has to be replaced by CDloc(K,N). The two conditions are equivalent for N > 1 and for N = 1,K ≥ 0,
but in case N = 1,K < 0 the CDloc(K,N) condition is strictly stronger (see Section 2.1 for more details).

Before committing a paragraph to each of the functional inequalities we will consider in this note,
we underline that most of the proofs contained in this note are based on L1 optimal transportation
theory and in particular on one-dimensional localization. This technique, having its roots in a work

Key words and phrases. optimal transport; Ricci curvature lower bounds; metric measure spaces; Brunn-Minkowski
inequality; log-Sobolev inequality; spectral gap; Sobolev inequality; Talagrand inequality.
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of Payne-Weinberger [64] and developed by Gromov-Milman [38], Lovász-Simonovits [53] and Kannan-
Lovász-Simonovits [42], consists in reducing an n-dimensional problem to a one dimensional one via tools
of convex geometry. Recently Klartag [45] found an L1-optimal transportation approach leading to a
generalization of these ideas to Riemannian manifolds; the authors [17], via a careful analysis avoiding
any smoothness assumption, generalized this approach to metric measure spaces.

It is also convenient to introduce here the family of one-dimensional measures that will be used several
times for comparison:

FK,N,D :=
{

µ ∈ P(R) : supp(µ) ⊂ [0, D], µ = hµ · L1, hµ ∈ C2((0, D)), (R, | · |, µ) ∈ CD(K,N)
}

,

where (R, | · |, µ) ∈ CD(K,N) stands for: the metric measure space (R, | · |, µ) verifies CD(K,N) or
equivalently

(

h
1

N−1

µ

)
′′

+
K

N − 1
h

1
N−1

µ ≤ 0.

1.1. Brunn-Minkowski inequality. The celebrated Brunn-Minkowski inequality estimates from below
the measure of the t-intermediate points between two given subsets A0 and A1 of X , for t ∈ [0, 1]. For
metric measure spaces satisfying the reduced curvature-dimension condition CD

∗(K,N) (see Section 2.1
for a brief account of different versions of the curvature-dimension condition) almost by definition for any
A0, A1 ⊂ X

(1.1) m(At)
1/N ≥ σ

(1−t)
K,N (θ)m(A0)

1/N + σ
(t)
K,N (θ)m(A1)

1/N ,

where At is the set of t-intermediate points between A0 and A1, that is

At = et

(

{γ ∈ Geo(X) : γ0 ∈ A0, γ1 ∈ A1}
)

,

(see Section 2 for the definition of e) θ is the minimal/maximal length of geodesics from A0 to A1:

θ :=

{

inf(x0,x1)∈A0×A1
d(x0, x1), if K ≥ 0,

sup(x0,x1)∈A0×A1
d(x0, x1), if K < 0,

and σ
(t)
K,N (θ) is defined in (2.3). Nevertheless (1.1) is not sharp. Indeed if (X, d,m) is a weighted

Riemannian manifold satisfying CD
∗(K,N), then (1.1) holds but with better interpolation coefficients,

that is with τ
(t)
K,N (θ), τ

(1−t)
K,N (θ) replacing σ

(t)
K,N (θ) and σ

(1−t)
K,N (θ), respectively. Indeed for a weighted

Riemannian manifold the two (a priori) different definitions of CD∗(K,N) and CD(K,N) coincide and
then again almost by definition [73] one can obtain the improved (and sharp) Brunn-Minkowski inequality
(let us mention that a direct proof of the Brunn-Minkowski inequality in the smooth setting was done
earlier by Cordero-Erausquin, McCann and Schmuckenschläger [27]).

A first main result of this paper is to establish the sharp inequality for essentially non-branching
CD

∗(K,N) metric measure spaces.

Theorem 1.2 (Theorem 3.1). Let (X, d,m) with m(X) < ∞ verify CD
∗(K,N) for some K,N ∈ R and

N ∈ (1,∞). Assume moreover (X, d,m) to be essentially non-branching. Then it satisfies the following
sharp Brunn-Minkowski inequality:

for any A0, A1 ⊂ X

m(At)
1/N ≥ τ

(1−t)
K,N (θ)m(A0)

1/N + τ
(t)
K,N (θ)m(A1)

1/N ,

where At is the set of t-intermediate points between A0 and A1 and θ the minimal/maximal length of
geodesics from A0 to A1.

Remark 1.3. The remarkable feature of Theorem 1.2 is that the sharp Brunn-Minkowski inequality in
the global form can be deduced from the local curvature-dimension condition, providing a step towards
(the long-standing problem of) globalization for the curvature-dimension condition CD(K,N). For an
account and for partial results about this problem we refer to [6, 7, 16, 18, 68, 75].
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1.2. p-Spectral gap. In the smooth setting, a spectral gap inequality establishes a bound from below
on the first eigenvalue of the Laplacian. More generally, for any p ∈ (1,∞) one can define the positive

real number λ1,p(X,d,m) as follows

λ1,p(X,d,m) := inf

{

´

X
|∇f |p m
´

X
|f |p m : f ∈ Lip(X) ∩ Lp(X,m), f 6= 0,

ˆ

X

f |f |p−2
m = 0

}

,

where |∇f | is the slope (also called local Lipshitz constant) of the Lipschitz function f . The name is
motivated by the fact that in case (X, d,m) is the m.m.s corresponding to a smooth compact Riemannian

manifold then λ1,p(X,d,m) coincides with the first positive eigenvalue of the problem

∆pf = λ|f |p−2f,

on (X, d,m), where ∆pf := −div(|∇f |p−2∇f) is the so called p-Laplacian.
We now state the main theorem of this paper on p-spectral gap inequality.

Theorem 1.4 (Theorem 4.4). Let (X, d,m) be a metric measure space satisfying CD
∗(K,N) for some

K,N ∈ R and N ∈ (1,∞) and assume moreover it is essentially non-branching. Let D ∈ (0,∞) be the
diameter of X.

Then for any p ∈ (1,∞) it holds

λ1,p(X,d,m) ≥ λ1,pK,N,D,

where λ1,pK,N,D is defined by

λ1,pK,N,D := inf
µ∈FK,N,D

inf

{

´

R
|u′|p µ

´

R
|u|p µ : u ∈ Lip(R) ∩ Lp(µ),

ˆ

R

u|u|p−2µ = 0, u 6= 0

}

.

In other terms for any Lipschitz function f ∈ Lp(X,m) with
´

X f |f |p−2
m(dx) = 0 it holds

λ1,pK,N,D

ˆ

X

|f(x)|p m(dx) ≤
ˆ

X

|∇f |p(x)m(dx).

For more about the quantity λ1,pK,N,D the reader is referred to Section 4.1 where the model spaces are
discussed in detail. From the last formulation of the statement, it is clear that the sharp p-spectral gap
above is equivalent to a sharp p-Poincaré inequality.

Let us now give a brief (and incomplete) account on the huge literature about the spectral gap.
When the ambient metric measure space is a smooth Riemannian manifold equipped with the volume
measure, the study of the first eigenvalue of the Laplace-Beltrami operator has a long history going back
to Lichnerowicz [50], Cheeger [21], Li-Yau [49], etc. For an overview the reader can consult for instance
the book by Chavel [20], the survey by Ledoux [47], or Chapter 3 in Shoen-Yau’s book [71], and references
therein.

We mention that the estimate of Theorem 1.4 in the case p = 2 started with Payne-Weinberger [64]
for convex domains in Rn where diameter-improved spectral gap inequality for the Laplace operator was
originally proved. Later it was generalized to Riemannian manifolds with non-negative Ricci curvature
by Yang-Zhong [77], and by Bakry-Qian [9] for manifolds with densities. The generalization to arbitrary
p ∈ (1,∞) has been proved by Valtorta [74] for K = 0 and Naber-Valtorta [61] for any K ∈ R. All of
these results hold for Riemannian manifolds.

Regarding metric measure spaces, the sharp Lichnerowitz spectral gap for p = 2 was proved by Lott-
Villani [52] under the CD(K,N) condition. Jiang-Zhang [41] recently showed, still for p = 2, that the
improved version under an upper diameter bound holds for RCD

∗(K,N) metric measure spaces. For

Ricci limit spaces, in the case K > 0 and D = π
√

(N − 1)/K, the p-spectral gap above has been recently
obtained by Honda [40] via proving the stability of λ1,p under mGH convergence of compact Riemannian
manifolds; this approach was inspired by the celebrated work of Cheeger-Colding [25] where, in particular,
it was shown the stability of λ1,2 under mGH convergence. We also obtain the almost rigidity for the p-
spectral gap: if an almost equality in the p-spectral gap holds, then the space must have almost maximal
diameter.

Theorem 1.5 (Theorem 4.5). Let N > 1, and p ∈ (1,∞) be fixed. Then for every ε > 0 there exists
δ = δ(ε,N, p) such that the following holds.
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Let (X, d,m) be an essentially non-branching metric measure space satisfying CD
∗(N − 1− δ,N + δ).

If λ1,p(X,d,m) ≤ λ1,pN−1,N,π + δ, then diam (X) ≥ π − ε.

As a consequence, by a compactness argument and using the Maximal Diameter Theorem proved
recently for RCD∗(K,N) by Ketterer [43], we have the following p-Obata and almost p-Obata Theorems.

Corollary 1.6 (p-Obata Theorem). Let (X, d,m) be an RCD
∗(N − 1, N) space for some N ≥ 2, and let

1 < p <∞. If

λ1,p(X,d,m) = λ1,pN−1,N,π(= λ1,p(SN )),

then (X, d,m) is a spherical suspension, i.e. there exists an RCD
∗(N − 2, N − 1) space (Y, dY ,mY ) such

that (X, d,m) is isomorphic to [0, π]×N−1
sin Y .

Corollary 1.7 (Almost p-Obata Theorem). Let N ≥ 2, and p ∈ (1,∞) be fixed. Then for every ε > 0
there exists δ = δ(ε,N, p) > 0 such that the following holds.

Let (X, d,m) be an RCD
∗(N − 1− δ,N + δ) space. If

λ1,p(X,d,m) ≤ λ1,pN−1,N,π + δ,

then there exists an RCD
∗(N − 2, N − 1) space (Y, dY ,mY ) such that

dmGH

(

(X, d,m), [0, π]×N−1
sin Y

)

≤ ε.

Let us mention that the classical Obata’s Theorem for RCD∗(K,N)-spaces, i.e. the version of Corollary
1.6 for p = 2, was recently obtained by Ketterer [44] (see also [41]) with different methods.

Finally we recall that the case p = 1 can be attacked using the identity h(X,d,m) = λ1,1(X,d,m), where

h(X,d,m) is the so-called Cheeger isoperimetric constant, see Section 5.1. Therefore Theorem 1.4, Theorem
1.5, Corollary 1.6 and Corollary 1.7 for the case p = 1 follow from the analogous results proved for the
isoperimetric profile in [17]. Nevertheless for reader’s convenience, the case p = 1 will be discussed in
detail in Section 5.

1.3. Log-Sobolev and Talagrand inequality. Given a m.m.s. (X, d,m), we say that it supports
the Log-Sobolev inequality with constant α > 0 if for any Lipschitz function f : X → [0,∞) with
´

X
f(x)m(dx) = 1 it holds

(1.2) 2α

ˆ

X

f log f m ≤
ˆ

{f>0}

|∇f |2
f

m.

The largest constant α, such that (1.2) holds for any Lipschitz function f : X → [0,∞) with
´

X
f(x)m(dx) =

1, will be called Log-Sobolev constant of (X, d,m) and denoted with αLS
(X,d,m).

Log-Sobolev inequality is already known [75, Theorem 30.22] for essentially non-branching metric
measure spaces satisfying CD(K,∞) with K > 0 with sharp constant α = K, but it is an open problem
(see for instance [75, Open Problem 21.6]) to get the sharp dimensional constant αK,N = KN

N−1 for metric
measure spaces with N -Ricci curvature bounded below by K. This is the goal of the next result.

As already done above, let us introduce the model constant for the one-dimensional case. GivenK ∈ R,
N ≥ 1, D ∈ (0,+∞) we denote with αLS

K,N,D > 0 the maximal constant α such that

(1.3) 2α

ˆ

R

f log f µ ≤
ˆ

{f>0}

|f ′|2
f

µ, ∀µ ∈ FK,N,D,

for every Lipschitz f : R → [0,∞) with
´

f µ = 1.

Remark 1.8. If K > 0 and D = π
√

N−1
K , it is known that the corresponding optimal Log-Sobolev

constant is KN
N−1 (for more details see the discussion in Section 6.1). It is an interesting open problem,

that we don’t address here, to give an explicit expression of the quantity αLS
K,N,D for generalK ∈ R, N ≥ 1,

D ∈ (0,∞).

Theorem 1.9 (Sharp Log-Sobolev inequality, Theorem 6.2). Let (X, d,m) be a metric measure space
with diameter D ∈ (0,∞) and satisfying CD

∗(K,N) for some K ∈ R, N ∈ (1,∞). Assume moreover it
is essentially non-branching.
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Then for any Lipschitz function f : X → [0,∞) with
´

X f m = 1 it holds

2αLS
K,N,D

ˆ

X

f log f m ≤
ˆ

{f>0}

|∇f |2
f

m.

In other terms it holds αLS
(X,d,m) ≥ αLS

K,N,D.

As a consequence, if K > 0 and no diameter upper bound is assumed or D = π
√

N−1
K , then αLS

K,N = KN
N−1

i.e. for any Lipschitz function f : X → [0,∞) with
´

X f m = 1 it holds

2KN

N − 1

ˆ

X

f log f m ≤
ˆ

{f>0}

|∇f |2
f

m.

In order to state the Talagrand inequality let us recall that the relative entropy functional Entm :
P(X) → [0,+∞] with respect to a given m ∈ P(X) is defined to be

Entm(µ) =

ˆ

X

̺ log ̺m, if µ = ̺m

and +∞ otherwise. Otto-Villani [62] proved that for smooth Riemannian manifolds the Log-Sobolev
inequality with constant α > 0 implies the Talagrand inequality with constant 2

α preserving sharpness.
The result was then generalized to arbitrary metric measure spaces by Gigli-Ledoux [34].

Combining this result with Theorem 1.9 we get the following corollary which improves the Talagrand
constant 2/K, which is sharp for CD(K,∞) spaces, by a factor N−1/N in case the dimension is bounded
above by N . This constant is sharp for CD

∗(K,N) (or CDloc(K,N)) spaces, indeed it is sharp already
in the smooth setting [75, Remark 22.43]. Since both our proof of the sharp Log-Sobolev inequality and
the proof of Theorem 6.4 are essentially optimal transport based, the following can be seen as an answer
to [75, Open Problem 22.44].

Theorem 1.10 (Sharp Talagrand inequality). Let (X, d,m) be a metric measure space with diameter
D ∈ (0,∞), satisfying CD

∗(K,N) for some K ∈ R, N ∈ (1,∞), and assume moreover it is essentially
non-branching and m(X) = 1.

Then it supports the Talagrand inequality with constant 2
αLS

K,N,D

, where αLS
K,N,D was defined in (1.3),

i.e. it holds

W 2
2 (µ,m) ≤ 2

αLS
K,N,D

Entm(µ) for all µ ∈ P(X).

In particular, if K > 0 and no upper bound on the diameter is assumed or D = π
√

N−1
K , then

W 2
2 (µ,m) ≤ 2(N − 1)

KN
Entm(µ) for all µ ∈ P(X),

the constant in the last inequality being sharp.

1.4. Sobolev inequality. Sobolev inequalities have been studied in many different contexts and many
papers and books are devoted to this family of inequalities. Here we only mention two references mainly
dealing with them in the Riemannian manifold case and the smooth CD condition case, respectively [39]
and [46].

We say that (X, d,m) supports a (p, q)-Sobolev inequality with constant αp,q if for any f : X → R

Lipschitz function it holds

(1.4)
αp,q

p− q

{

(
ˆ

X

|f |p m
)

q
p

−
ˆ

X

|f |q m
}

≤
ˆ

X

|∇f |q m,

and the largest constant αp,q such that (1.4) holds for any Lipschitz function f will be called the (p, q)-
Sobolev constant of (X, d,m)and will be denoted by αp,q

(X,d,m).

A Sobolev inequality is known to hold for essentially non-branching m.m.s. satisfying CD(K,N),
provided K < 0, see [75, Theorem 30.23] and other Sobolev-type inequalities have been obtained in
[52] for CD(K,N) spaces. Let us also mention [66] where the sharp (2∗, 2)-Sobolev inequality has been
established for RCD

∗(K,N)-spaces, K > 0, N ∈ (2,∞). The goal here is to give a Sobolev inequality
with sharp constant for essentially non-branching CD

∗(K,N) spaces, K ∈ R, N > 1, taking also into
account an upper diameter bound.
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Theorem 1.11 (Sharp Sobolev inequality, Theorem 7.1). Let (X, d,m) be a metric measure space with
diameter D ∈ (0,∞) and satisfying CD

∗(K,N) for some K ∈ R, N ∈ (1,∞). Assume moreover it is
essentially non-branching.

Then for any Lipschitz function it holds

αp,q
K,N,D

p− q

{

(
ˆ

X

|f(x)|p m(dx)

)

q
p

−
ˆ

X

|f(x)|q m(dx)

}

≤
ˆ

X

|∇f(x)|q m(dx),

where αp,q
K,N,D is defined as the supremum among α > 0 such that

α

p− q

{

(
ˆ

X

|f |p µ
)

q
p

−
ˆ

X

|f |q µ
}

≤
ˆ

X

|∇f |q µ, ∀ f ∈ Lip, ∀ µ ∈ FK,N,D.

In particular, if K > 0, N > 2 and no upper bound on the diameter is assumed or D = π
√

N−1
K , then for

any Lipschitz function f it holds

KN

(p− 2)(N − 1)

{

(
ˆ

X

|f |p m
)

2
p

−
ˆ

X

|f |2m
}

≤
ˆ

X

|∇f |2 m,

for any 2 < p ≤ 2N/(N − 2); in other terms it holds αp,2
(X,d,m) ≥ KN

N−1 .

This last result can be seen as a solution to [75, Open Problem 21.11].
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2. Prerequisites

In what follows we say that a triple (X, d,m) is a metric measure space, m.m.s. for short, if (X, d) is a
complete and separable metric space and m is positive Radon measure over X . For this note we will only
be concerned with m.m.s. with m probability measure, that is m(X) = 1, or at most with m(X) < ∞
which will be reduced to the probability case by a constant rescaling. The space of all Borel probability
measure over X will be denoted with P(X).

A metric space is a geodesic space if and only if for each x, y ∈ X there exists γ ∈ Geo(X) so that
γ0 = x, γ1 = y, with

Geo(X) := {γ ∈ C([0, 1], X) : d(γs, γt) = (s− t)d(γ0, γ1), s, t ∈ [0, 1]}.
Recall that for complete geodesic spaces local compactness is equivalent to properness (a metric space is
proper if every closed ball is compact). We directly assume the ambient space (X, d) to be proper. Hence
from now on we assume the following: the ambient metric space (X, d) is geodesic, complete, separable
and proper and m(X) = 1.

We denote with P2(X) the space of probability measures with finite second moment endowed with the
L2-Wasserstein distance W2 defined as follows: for µ0, µ1 ∈ P2(X) we set

(2.1) W 2
2 (µ0, µ1) = inf

π

ˆ

X

d
2(x, y)π(dxdy),

where the infimum is taken over all π ∈ P(X ×X) with µ0 and µ1 as the first and the second marginal.
Assuming the space (X, d) to be geodesic, also the space (P2(X),W2) is geodesic.

Any geodesic (µt)t∈[0,1] in (P2(X),W2) can be lifted to a measure ν ∈ P(Geo(X)), so that (et) ♯ ν = µt

for all t ∈ [0, 1]. Here for any t ∈ [0, 1], et denotes the evaluation map:

et : Geo(X) → X, et(γ) := γt.

Given µ0, µ1 ∈ P2(X), we denote by OptGeo(µ0, µ1) the space of all ν ∈ P(Geo(X)) for which
(e0, e1) ♯ ν realizes the minimum in (2.1). If (X, d) is geodesic, then the set OptGeo(µ0, µ1) is non-empty
for any µ0, µ1 ∈ P2(X). It is worth also introducing the subspace of P2(X) formed by all those measures
absolutely continuous with respect to m: it is denoted by P2(X, d,m).
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2.1. Geometry of metric measure spaces. Here we briefly recall the synthetic notions of lower Ricci
curvature bounds, for more detail we refer to [7, 51, 72, 73, 75].

In order to formulate curvature properties for (X, d,m) we introduce the following distortion coeffi-
cients: given two numbers K,N ∈ R with N ≥ 1, we set for (t, θ) ∈ [0, 1]× R+,

(2.2) σ
(t)
K,N (θ) :=







































∞, if Kθ2 ≥ Nπ2,

sin(tθ
√

K/N)

sin(θ
√

K/N)
if 0 < Kθ2 < Nπ2,

t if Kθ2 < 0 and N = 0, or if Kθ2 = 0,

sinh(tθ
√

−K/N)

sinh(θ
√

−K/N)
if Kθ2 ≤ 0 and N > 0.

We also set, for N ≥ 1,K ∈ R and (t, θ) ∈ [0, 1]× R+

(2.3) τ
(t)
K,N (θ) := t1/Nσ

(t)
K,N−1(θ)

(N−1)/N .

As we will consider only the case of essentially non-branching spaces, we recall the following definition.

Definition 2.1. A metric measure space (X, d,m) is essentially non-branching if and only if for any
µ0, µ1 ∈ P2(X) which are absolutely continuous with respect to m any element of OptGeo(µ0, µ1) is
concentrated on a set of non-branching geodesics.

A set F ⊂ Geo(X) is a set of non-branching geodesics if and only if for any γ1, γ2 ∈ F , it holds:

∃ t̄ ∈ (0, 1) : γ1t = γ2t , ∀ t ∈ (0, t̄) =⇒ γ1s = γ2s , ∀s ∈ [0, 1].

Definition 2.2 (CD condition). An essentially non-branching m.m.s. (X, d,m) verifies CD(K,N) if and
only if for each pair µ0, µ1 ∈ P2(X, d,m) there exists ν ∈ OptGeo(µ0, µ1) such that

(2.4) ̺
−1/N
t (γt) ≥ τ

(1−t)
K,N (d(γ0, γ1))̺

−1/N
0 (γ0) + τ

(t)
K,N (d(γ0, γ1))̺

−1/N
1 (γ1), ν-a.e. γ ∈ Geo(X),

for all t ∈ [0, 1], where et ♯ ν = ̺tm.

For the general definition of CD(K,N) see [51, 72, 73]. It is worth recalling that if (M, g) is a
Riemannian manifold of dimension n and h ∈ C2(M) with h > 0, then the m.m.s. (M, g, h vol) verifies
CD(K,N) with N ≥ n if and only if (see Theorem 1.7 of [73])

Ricg,h,N ≥ Kg, Ricg,h,N := Ricg − (N − n)
∇2

gh
1

N−n

h
1

N−n

.

In particular if N = n the generalized Ricci tensor Ricg,h,N = Ricg makes sense only if h is constant.
In particular, if I ⊂ R is any interval, h ∈ C2(I) and L1 is the one-dimensional Lebesgue measure, the
m.m.s. (I, | · |, hL1) verifies CD(K,N) if and only if

(2.5)
(

h
1

N−1

)′′

+
K

N − 1
h

1
N−1 ≤ 0,

and verifies CD(K, 1) if and only if h is constant.
We also mention the more recent Riemannian curvature dimension condition RCD

∗ introduced in the
infinite dimensional case in [4, 2, 1] and in the finite dimensional case in [28, 5]. We refer to these papers
and references therein for a general account on the synthetic formulation of Ricci curvature lower bounds
for metric measure spaces. Here we only mention that RCD∗(K,N) condition is an enforcement of the so
called reduced curvature dimension condition, denoted by CD

∗(K,N), that has been introduced in [7]:
in particular the additional condition is that the Sobolev space W 1,2(X,m) is an Hilbert space, see [3, 4].

The reduced CD
∗(K,N) condition asks for the same inequality (2.4) of CD(K,N) but the coefficients

τ
(t)
K,N (d(γ0, γ1)) and τ

(1−t)
K,N (d(γ0, γ1)) are replaced by σ

(t)
K,N (d(γ0, γ1)) and σ

(1−t)
K,N (d(γ0, γ1)), respectively.

Hence while the distortion coefficients of the CD(K,N) condition are formally obtained imposing one
direction with linear distortion and N − 1 directions affected by curvature, the CD

∗(K,N) condition
imposes the same volume distortion in all the N directions.

It was proved in [69] that the RCD
∗(K,N) condition implies the essentially non-branching property,

so this is a fairly natural assumption in the framework of m.m.s. satisfying lower Ricci bounds.
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For both CD-CD∗ definitions there is a local version that is of some relevance for our analysis. Here
we state only the local formulation CD(K,N), the one for CD∗(K,N) being similar.

Definition 2.3 (CDloc condition). An essentially non-branching m.m.s. (X, d,m) satisfies CDloc(K,N)
if for any point x ∈ X there exists a neighborhood X(x) of x such that for each pair µ0, µ1 ∈ P2(X, d,m)
supported in X(x) there exists ν ∈ OptGeo(µ0, µ1) such that (2.4) holds true for all t ∈ [0, 1]. The
support of et ♯ ν is not necessarily contained in the neighborhood X(x).

One of the main properties of the reduced curvature dimension condition is the globalization one: under
the essentially non-branching property, CD∗

loc(K,N) and CD
∗(K,N) are equivalent (see [7, Corollary 5.4]).

Let us mention that the local-to-global property is satisfied also by the RCD
∗(K,N) condition, see [6].

We also recall few relations between CD and CD
∗. It is known by [32, Theorem 2.7] that, if (X, d,m)

is a non-branching metric measure space satisfying CD(K,N) and µ0, µ1 ∈ P(X) with µ0 absolutely
continuous with respect to m, then there exists a unique optimal map T : X → X such that (id, T ) ♯ µ0

realizes the minimum in (2.1) and the set OptGeo(µ0, µ1) contains only one element. The same proof holds
if one replaces the non-branching assumption with the more general one of essentially non-branching, see
for instance [69].

Remark 2.4 (CD∗(K,N) Vs CDloc(K,N)). Results of [7] imply the following chain of implications: if
(X, d,m) is a proper, essentially non-branching, metric measure space, then

CDloc(K,N) ⇐⇒ CD
∗
loc(K,N) ⇐⇒ CD

∗(K,N),

providedK,N ∈ R withN > 1 orN = 1 andK ≥ 0. Let us remark that on the other hand CD
∗(K, 1) does

not imply CDloc(K, 1) for K < 0: indeed it is possible to check that (X, d,m) = ([0, 1], |·|, c sinh(·)L1) sat-
isfies CD∗(−1, 1) but not CDloc(−1, 1) which would require the density to be constant. Hence CD∗(K,N)
and CDloc(K,N) are equivalent if 1 < N < ∞ or N = 1 and K ≥ 0, but for N = 1 and K < 0 the
CDloc(K,N) condition is strictly stronger than CD

∗(K,N).
Note also that many results presented in [7] are for metric measure spaces verifying CD(K−, N) (and

its local version), that is they verify the CD(K ′, N) condition for all K ′ < K. Thanks to uniqueness
of geodesics in (P2(X),W2) guaranteed by the essentially non-branching assumption, CD(K−, N) is
equivalent to CD(K,N).

As a final comment we also mention that, for K > 0, CD∗(K,N) implies CD(K∗, N) where K∗ =
K(N − 1)/N . For a deeper analysis on the interplay between CD

∗ and CD we refer to [16, 18].

2.2. Measured Gromov-Hausdorff convergence and stability of RCD
∗(K,N). Let us first recall

the notion of measured Gromov-Hausdorff convergence, mGH for short. Since in this work we will apply
it to compact m.m. spaces endowed with probability measures having full support, we will restrict to
this framework for simplicity (for a more general treatment see for instance [35]).

Definition 2.5. A sequence (Xj , dj,mj) of compact m.m. spaces with mj(Xj) = 1 and supp(mj) = Xj

is said to converge in the measured Gromov-Hausdorff topology (mGH for short) to a compact m.m.
space (X∞, d∞,m∞) with m∞(X) = 1 and supp(m∞) = X∞ if and only if there exists a separable metric
space (Z, dZ) and isometric embeddings {ιj : (X, dj) → (Z, dZ)}i∈N̄ such that for every ε > 0 there exists
j0 such that for every j > j0

ι∞(X∞) ⊂ BZ
ε [ιj(Xj)] and ιj(Xj) ⊂ BZ

ε [ι∞(X∞)],

where BZ
ε [A] := {z ∈ Z : dZ(z, A) < ε} for every subset A ⊂ Z, and

ˆ

Z

ϕ ((ιj)♯(mj)) →
ˆ

Z

ϕ ((ι∞)♯(m∞)) ∀ϕ ∈ Cb(Z),

where Cb(Z) denotes the set of real valued bounded continuous functions in Z.

The following theorem summarizes the compactness/stability properties we will use in the proof of
the almost rigidity result (notice these hold more generally for every K ∈ R by replacing mGH with
pointed -mGH convergence).

Theorem 2.6 (Metrizability and Compactness). Let K > 0, N > 1 be fixed. Then the mGH convergence
restricted to (isomorphism classes of) RCD∗(K,N) spaces is metrizable by a distance function dmGH . Fur-
thermore every sequence (Xj , dj ,mj) of RCD

∗(K,N) spaces admits a subsequence which mGH-converges
to a limit RCD∗(K,N) space.
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The compactness follows by the standard argument of Gromov, indeed for fixed K > 0, N > 1, the
spaces have uniformly bounded diameter, moreover the measures of RCD∗(K,N) spaces are uniformly
doubling, hence the spaces are uniformly totally bounded and thus compact in the GH-topology; the
weak compactness of the measures follows using the doubling condition again and the fact that they
are normalized. For the stability of the RCD

∗(K,N) condition under mGH convergence see for instance
[7, 28, 35]. The metrizability of mGH convergence restricted to a class of uniformly doubling normalized
m.m. spaces having uniform diameter bounds is also well known, see for instance [35].

2.3. Warped product. Given two geodesic m.m.s. (B, dB,mb) and (F, dF ,mF ) and a Lipschitz function
f : B → R+ one can define a length function on the product B × F : for any absolutely continuous curve
γ : [0, 1] → B × F with γ = (α, β), define

L(γ) :=

ˆ 1

0

(

|α̇|2(t) + (f ◦ α)2(t)|β̇|2(t)
)1/2

dt

and define accordingly the pseudo-distance

|(p, x), (q, y)| := inf {L(γ) : γ0 = (p, x), γ1 = (q, y)} .
Then the warped product of B with F is defined as

B ×f F :=
(

B × F /∼ , |·, ·|
)

,

where (p, x) ∼ (q, y) if and only if |(p, x), (q, y)| = 0. One can also associate a measure and obtain the
following object

B ×N
f F := (B ×f F,mC), mC := fN

mB ⊗mF .

Then B ×N
f F will be a metric measure space called measured warped product. For a general picture on

the curvature properties of warped products, we refer to [43].

2.4. Localization method. The next theorem represents the key technical tool of the present paper.
The roots of such a result, known in literature as localization technique, can be traced back to a work
of Payne-Weinberger [64] further developed in the Euclidean space by Gromov-Milman [38], Lovász-
Simonovits [53] and Kannan-Lovász-Simonovits [42]. The basic idea consists in reducing an n-dimensional
problem to a one dimensional one via tools of convex geometry. Recently Klartag [45] found an L1-optimal
transportation approach leading to a generalization of these ideas to Riemannian manifolds; the authors
[17], via a careful analysis avoiding any smoothness assumption, generalized this approach to metric
measure spaces.

Theorem 2.7. Let (X, d,m) be an essentially non-branching metric measure space with m(X) = 1
satisfying CDloc(K,N) for some K,N ∈ R and N ∈ [1,∞). Let f : X → R be m-integrable such that
´

X
f m = 0 and assume the existence of x0 ∈ X such that

´

X
|f(x)| d(x, x0)m(dx) <∞.

Then the space X can be written as the disjoint union of two sets Z and T with T admitting a partition
{Xq}q∈Q, where each Xq is the image of a geodesic; moreover there exists a family of probability measures
{mq}q∈Q ⊂ P(X) with the following properties:

• For any m-measurable set B ⊂ T it holds

m(B) =

ˆ

Q

mq(B) q(dq),

where q is a probability measure over Q ⊂ X.

• For q-almost every q ∈ Q, the set Xq is a geodesic with strictly positive length and mq is supported
on it. Moreover q 7→ mq is a CD(K,N) disintegration, that is mq = g(q, ·) ♯

(

hq · L1
)

, with

(2.6) hq((1− s)t0 + st1)
1

N−1 ≥ σ
(1−s)
K,N−1(t1 − t0)hq(t0)

1
N−1 + σ

(s)
K,N−1(t1 − t0)hq(t1)

1
N−1 ,

for all s ∈ [0, 1] and for all t0, t1 ∈ Dom (g(q, ·)) with t0 < t1, where g(q, ·) is the isometry with
range Xq. If N = 1, for q-a.e. q ∈ Q the density hq is constant.

• For q-almost every q ∈ Q, it holds
´

Xq
f mq = 0 and f = 0 m-a.e. in Z.
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Remark 2.8. Inequality (2.6) is the weak formulation of the following differential inequality on hq,t0,t1 :

(2.7)

(

h
1

N−1

q,t0,t1

)′′

+ (t1 − t0)
2 K

N − 1
h

1
N−1

q,t0,t1 ≤ 0,

for all t0 < t1 ∈ Dom(g(q, ·)), where hq,t0,t1(s) := hq((1 − s)t0 + st1). It is easy to observe that the
differential inequality (2.7) on hq,t0,t1 is equivalent to the following differential inequality on hq:

(

h
1

N−1

q

)′′

+
K

N − 1
h

1
N−1

q ≤ 0,

that is precisely (2.5). Then Theorem 2.7 can be alternatively stated as follows.
If (X, d,m) is an essentially non-branching m.m.s. verifying CDloc(K,N) and ϕ : X → R is a 1-
Lipschitz function, then the corresponding decomposition of the space in maximal rays {Xq}q∈Q produces
a disintegration {mq}q∈Q of m so that for q-a.e. q ∈ Q,

the m.m.s. (Dom (g(q, ·)), | · |, hqL1) verifies CD(K,N).

Accordingly, from now on we will say that the disintegration q 7→ mq is a CD(K,N) disintegration.

Few comments on Theorem 2.7 are in order. From (2.6) it follows that

(2.8) {t ∈ Dom(g(q, ·)) : hq(t) > 0} is convex and t 7→ hq(t) is locally Lipschitz continuous.

The measure q is the quotient measure associated to the partition {Xq}q∈Q of T and Q its quotient set,
see [17] for details.

3. Sharp Brunn-Minkowski inequality

In this section we prove sharp Brunn-Minkowski inequality for m.m.s. satisfying CDloc(K,N). It
follows from Remark 2.4 that the same result holds under CD

∗(K,N) for any K,N ∈ R, provided
N ∈ (1,∞) or N = 1 and K ≥ 0. See also Remark 1.1. The same will hold for all the inequalities proved
in the paper.

Theorem 3.1. Let (X, d,m) with m(X) < ∞ verify CDloc(K,N) for some N,K ∈ R and N ∈ [1,∞).
Assume moreover (X, d,m) to be essentially non-branching. Then it satisfies the following sharp Brunn-
Minkowski inequality: for any A0, A1 ⊂ X

(3.1) m(At)
1/N ≥ τ

(1−t)
K,N (θ)m(A0)

1/N + τ
(t)
K,N (θ)m(A1)

1/N ,

where At is the set of t-intermediate points between A0 and A1, that is

At = et

(

{γ ∈ Geo(X) : γ0 ∈ A0, γ1 ∈ A1}
)

,

and θ the minimal/maximal length of geodesics from A0 to A1:

θ :=

{

inf(x0,x1)∈A0×A1
d(x0, x1), if K ≥ 0,

sup(x0,x1)∈A0×A1
d(x0, x1), if K < 0.

Before starting the proof of Theorem 3.1 we recall the classical result of Borell [11] and Brascamp-Lieb
[12] characterizing one-dimensional measures satisfying Brunn-Minkowski inequality.

Lemma 3.2. Let η be a Borel measure defined on R admitting the following representation: η = h · L1.
The following are equivalent:

i) The density h is (K,N)-concave on its convex support, that is
(

h
1

N−1

)′′

+
K

N − 1
h

1
N−1 ≤ 0,

in the weak sense, see (2.6).
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ii) For any A0, A1 subsets of R

η(At) ≥ τ
(1−t)
K,N (θ) η(A0)

1/N + τ
(t)
K,N (θ) η(A1)

1/N ,

where At := {(1 − t)x + ty : x ∈ A0, y ∈ A1} and θ is the minimal/maximal length of geodesics
from A0 to A1:

θ :=

{

ess inf(x0,x1)∈A0×A1
d(x0, x1), if K ≥ 0,

ess sup(x0,x1)∈A0×A1
d(x0, x1), if K < 0.

For reader’s convenience we include here a proof that i) implies ii), which is the implication we will
use later.

Proof. Consider the N -entropy: for any µ = ρ · η

SN (µ|η) := −
ˆ

ρ−1/N (x)µ(dx).

Observe that ii) is implied by displacement convexity of SN with respect to the L2-Wasserstein distance
over (R, | · |). Just consider µ0 := η(A0)

−1ηxA0
and µ1 := η(A1)

−1ηxA1
and use Jensen’s inequality.

Consider therefore a geodesic curve

[0, 1] ∋ t 7→ ρt η ∈ W2(R, | · |), Tt ♯ ρ0η = ρt η,

where Tt = Id(1 − t) + tT and T is the (µ0-essentially) unique monotone rearrangement such that
T ♯ µ0 = µ1. Thanks to approximate differentiability of T , one can use change of variable formula

ρt(Tt(x))h(Tt(x)) |(1 − t) + tT ′|(x) = ρ0(x)h(x)

and obtain the following chain of equalities:
ˆ

supp(µt)

ρt(x)
N−1

N η(dx) =

ˆ

supp(µt)

ρt(x)
N−1

N h(x) dx

=

ˆ

supp(µ0)

ρt(Tt(x))
N−1

N h(Tt(x))|(1 − t) + tT ′| dx

=

ˆ

supp(µ0)

ρ0(x)
N−1

N

(h(Tt(x))

h(x)

)
1
N |(1− t) + tT ′|(x) 1

N η(dx).

Hence the claim has became to prove that t 7→ Jt(x)
1
N is concave, where Jt is the Jacobian of Tt with

respect to η and

Jt(x) = JG
t (x) · JW

t (x), JG
t (x) = |(1− t) + tT ′|(x), JW

t (x) =
h(Tt(x))

h(x)
,

where JG is the geometric Jacobian and JW the weighted Jacobian. Since t 7→ JG
t (x) is linear, using

Hölder’s inequality the claim follows straightforwardly from the (K,N)-convexity of h. �

We can now move to the proof of Theorem 3.1.

Proof of Theorem 3.1. First of all notice that up to replacing m with the normalized measure 1
m(X) m we

can assume that m(X) = 1. Let A0, A1 ⊂ X be two given Borel sets of positive m-measure.

Step 1. Consider the function f := χA0
/m(A0) − χA1

/m(A1) and observe that
´

X
f m = 0. From

Theorem 2.7, the space X can be written as the disjoint union of two sets Z and T with T admitting a
partition {Xq}q∈Q and a corresponding disintegration of mxT , {mq}q∈Q such that:

mxT =

ˆ

Q

mq q(dq),

where q is the quotient measure, for q-almost every q ∈ Q, the set Xq is a geodesic, mq is supported on
it and q 7→ mq is a CD(K,N) disintegration. Finally, for q-almost every q ∈ Q, it holds

´

Xq
f mq = 0

and f = 0 m-a.e. in Z. We can also consider the trivial disintegration of m restricted to Z where each
equivalence class is a single point:

mxZ=

ˆ

Z

δzm(dz),
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where δz stands for the Dirac delta in z. Then define q̂ := q+mxZ and m̂q = mq if q ∈ Q and m̂q = δq if
q ∈ Z. Since Q∩Z = ∅, the previous definitions are well posed and we have the following decomposition
of m on the whole space

m =

ˆ

Q∪Z

m̂q q̂(dq).

Step 2. Use the following notation A0,q := A0 ∩ Xq, A1,q := A1 ∩ Xq and the set of t-intermediate
points between A0,q and A1,q in Xq is denoted with At,q ⊂ Xq. Then from Lemma 3.2, for q̂-a.e. q ∈ Q

mq(At,q) ≥
(

τ
(1−t)
K,N (θ)mq(A0,q)

1/N + τ
(t)
K,N (θ)mq(A1,q)

1/N
)N

.

Since
´

fmq = 0 implies
mq(A0,q)
m(A0)

=
mq(A1,q)
m(A1)

, it follows that

(3.2) mq(At,q) ≥
mq(A0,q)

m(A0)

(

τ
(1−t)
K,N (θ)m(A0)

1/N + τ
(t)
K,N (θ)m(A1)

1/N
)N

.

We now show that (3.2) holds also for q̂-a.e. (or equivalently m-a.e.) q ∈ Z. Note that in this case mq

has to be replaced by δq. Since by construction 0 = f = χA0
/m(A0)−χA1

/m(A1) on Z, then necessarily

m
(

Z \
(

(A0 ∩ A1) ∪ (X \ (A0 ∪ A1)
))

= 0.

It follows that if Z does not have m-measure zero, we have two possibilities:

m (Z ∩ (X \ (A0 ∪ A1))) > 0, or m(A0) = m(A1) and m (Z ∩ (A0 ∩ A1)) > 0.

Therefore, if m(Z) > 0, for q̂-a.e. (or equivalently m-a.e.) q ∈ Z we have two possibilities:

q ∈ X \ (A0 ∪ A1) , or q ∈ A0 ∩ A1.

Interpreting the intermediate points as the point itself, in the first case (3.2) (with mq replaced by δq)
holds trivially (i.e. we get 0 ≥ 0). In the second case it reduces to show that

(

τ
(1−t)
K,N (θ) + τ

(t)
K,N (θ)

)N

≤ 1.

For K ≥ 0, since we are in the case m(A0 ∩ A1) > 0, it follows that θ = 0 and therefore τ
(t)
K,N (θ) = t,

proving the previous inequality. For K < 0, recalling that K → σ
(t)
K,N (θ) is non-decreasing (see [7],

Remark 2.2 ), by Hölder’s inequality

(

τ
(1−t)
K,N (θ) + τ

(t)
K,N (θ)

)N

≤ (1− t+ t) ·
(

σ
(1−t)
K,N−1(θ) + σ

(t)
K,N−1(θ)

)N−1

≤ 1,

as desired. We have therefore proved that

(3.3) m̂q(At,q) ≥
m̂q(A0,q)

m(A0)

(

τ
(1−t)
K,N (θ)m(A0)

1/N + τ
(t)
K,N (θ)m(A1)

1/N
)N

,

for q̂-a.e. q ∈ Q ∪ Z. Taking the integral of (3.3) in q ∈ Q ∪ Z one obtains that

m(At) =

ˆ

Q∪Z

m̂q(At ∩Xq) q̂(dq)

≥
ˆ

Q∪Z

m̂q(At,q) q̂(dq)

≥
(

τ
(1−t)
K,N (θ)m(A0)

1/N + τ
(t)
K,N (θ)m(A1)

1/N
)N
ˆ

Q∪Z

m̂q(A0,q)

m(A0)
q̂(dq)

=
(

τ
(1−t)
K,N (θ)m(A0)

1/N + τ
(t)
K,N (θ)m(A1)

1/N
)N

,

and the claim follows. �



SHARP GEOMETRIC AND FUNCTIONAL INEQUALITIES FOR CD
∗(K,N) SPACES 13

4. p-Spectral gap

Given a metric space (X, d), we denote with Lip(X) (respectively Lipc(X)) the vector space of real
valued Lipschitz functions (resp. with compact support). For a Lipschitz function f : X → R the local
Lipschitz constant |∇f | is defined by

|∇f |(x) = lim sup
y→x

|f(x)− f(y)|
d(x, y)

if x is not isolated, 0 otherwise.

For a m.m.s. (X, d,m), for every p ∈ (1,∞) we define the first eigenvalue λ1,p(X, d,m) of the p-
Laplacian by

(4.1) λ1,p(X,d,m) := inf

{

´

X
|∇f |p m
´

X |f |p m : f ∈ Lip(X) ∩ Lp(X,m), f 6= 0,

ˆ

X

f |f |p−2
m = 0

}

.

4.1. p-spectral gap for m.m.s. over (R, | · |): the model spaces. Consider the following family of
probability measures

Fs
K,N,D := {µ ∈ P(R) : supp(µ) ⊂ [0, D], µ = hµL1, hµ verifies (2.6) and is continuous if N ∈ (1,∞),

hµ ≡ const if N = 1},(4.2)

where D ∈ (0,∞) and the corresponding synthetic first non-negative eigenvalue of the p-Laplacian

sλ1,pK,N,D := inf
µ∈Fs

K,N,D

inf

{

´

R
|u′|p µ

´

R
|u|p µ : u ∈ Lip(R) ∩ Lp(µ),

ˆ

R

u|u|p−2µ = 0, u 6= 0

}

.

The term synthetic refers to µ ∈ Fs
K,N,D meaning that the Ricci curvature bound is satisfied in its

synthetic formulation: if µ = h · L1, then h verifies (2.6).

The first goal of this section is to prove that sλ1,pK,N,D coincides with its smooth counterpart λ1,pK,N,D

defined by

(4.3) λ1,pK,N,D := inf
µ∈FK,N,D

inf

{

´

R
|u′|p µ

´

R
|u|p µ : u ∈ Lip(R) ∩ Lp(µ),

ˆ

R

u|u|p−2µ = 0, u 6= 0

}

,

where now FK,N,D denotes the set of µ ∈ P(R) such that supp(µ) ⊂ [0, D] and µ = h · L1 with
h ∈ C2((0, D)) satisfying

(4.4)
(

h
1

N−1

)′′

+
K

N − 1
h

1
N−1 ≤ 0.

It is easily verified that FK,N,D ⊂ Fs
K,N,D.

In order to prove that sλ1,pK,N,D = λ1,pK,N,D the following approximation result, proved in [17, Lemma

6.2] will play a key role. In order to state it let us recall that a standard mollifier in R is a non negative
C∞(R) function ψ with compact support in [0, 1] such that

´

R
ψ = 1.

Lemma 4.1. Let D ∈ (0,∞) and let h : [0, D] → [0,∞) be a continuous function. Fix N ∈ (1,∞) and
for ε > 0 define

(4.5) hε(t) := [h
1

N−1 ∗ ψε(t)]
N−1 :=

[
ˆ

R

h(t− s)
1

N−1ψε(s) ds

]N−1

=

[
ˆ

R

h(s)
1

N−1ψε(t− s) ds

]N−1

,

where ψε(x) =
1
εψ(x/ε) and ψ is a standard mollifier function. The following properties hold:

(1) hε is a non-negative C∞ function with support in [−ε,D + ε];

(2) hε → h uniformly as ε ↓ 0, in particular hε → h in L1.

(3) If h satisfies the convexity condition (2.6) corresponding to the above fixed N > 1 and some
K ∈ R then also hε does. In particular hε satisfies the differential inequality (4.4).

Proposition 4.2. For every p ∈ (1,+∞), N ∈ [1,∞), K ∈ R, D ∈ (0,∞) it holds sλ1,pK,N,D = λ1,pK,N,D.
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Proof. First of all observe that for N = 1 clearly we have FK,N,D = Fs
K,N,D since the density hµ has to

be constant. We can then assume without loss of generality that N ∈ (1,∞).

Since FK,N,D ⊂ Fs
K,N,D then clearly sλ1,pK,N,D ≤ λ1,pK,N,D.

Assume by contradiction the inequality is strict. Then there exists a measure µ = h · L1 ∈ Fs
K,N,D and

δ > 0 such that

λ1,p(R,|·|,µ) ≤ λ1,pK,N,D − 2δ.

Therefore, by the very definition of λ1,p(R,|·|,µ), there exists u ∈ Lip(R), such that u 6= 0,
´

R
u|u|p−2 h ds = 0

and

(4.6)

ˆ

R

|u′(s)|p h(s) ds ≤
(

λ1,pK,N,D − 3

2
δ
)

ˆ

R

|u(s)|p h(s) ds.

Now, Lemma 4.1 gives a sequence hk ∈ C∞(R) such that

(4.7) supp(hk) ⊂
[

− 1

k
,D +

1

k

]

, µk := hk · L1 ∈ FK,N,D+ 2
k
, hk → h uniformly on [0, D].

Called now uk := u − ck ∈ Lip(R) ∩ Lp(R, hkL1) where ck ∈ R are such that
´

R
uk|uk|p−2 hk ds = 0,

thanks to (4.7) it holds ck → 0 and thus
ˆ

R

|uk(s)|p hk(s) ds →
ˆ

R

|u(s)|p h(s) ds and

ˆ

R

|u′k(s)|p hk(s) ds →
ˆ

R

|u′(s)|p h(s) ds.

Therefore (4.6), combined with the continuity of ε 7→ λ1,pK,N,D+ε (see Theorem 4.3 below), implies that
for k large enough one has

ˆ

R

|u′k(s)|p hk(s) ds ≤ (λ1,pK,N,D − δ)

ˆ

R

|uk(s)|p hk(s) ds ≤
(

λ1,p
K,N,D+ 2

k

− δ

2

)

ˆ

R

|uk(s)|p hk(s) ds,

contradicting the definition of λ1,p
K,N,D+ 2

k

given in (4.3). �

The next goal of the section is to understand the quantity λ1,pK,N,D. Since now the density of the
reference probability measure is smooth, we enter into a more classical framework where a number of
people contributed. The sharp p-spectral gap in case K > 0 and without upper bounds on the diameter
was obtained by Matei [54]. The case K = 0 and the diameter is bounded above was obtained in the
sharp form by Valtorta [74]. Finally the case K < 0 and diameter bounded above was obtained in the
sharp form by Naber-Valtorta [61]. Actually, as explained in their paper, the arguments in [61] hold
in the general case K ∈ R, N ∈ [1,∞), provided one identifies the correct model space. As usual, to
describe the model space one has to examine separately the cases K < 0, K = 0 and K > 0; in order to
unify the presentation let us denote with tanK,N (t) the following function:

(4.8) tanK,N (t) :=











√

−K/(N − 1) tanh(
√

−K/(N − 1)t) if K < 0,

0 if K = 0
√

K/(N − 1) tan(
√

K/(N − 1)t) if K > 0.

Now, for each K ∈ R, N ∈ [1,∞), D ∈ (0,∞), let λ̂1,pK,N,D denote the first positive eigenvalue on

[−D/2, D/2] of the eigenvalue problem

(4.9)
d

dt

(

ẇ(p−1)
)

+ (N − 1) tanK,N (t) ẇ(p−1) + λ̂1,pK,N,Dw
(p−1) = 0.

It is possible to show (see [61]) that λ̂1,pK,N,D is the unique value of λ̂ such that the solution of






φ̇ =
(

λ̂
p−1

)1/p

+ N−1
p−1 tanK,N (t) cos

(p−1)
p (φ) sinp(φ)

φ(0) = 0

satisfies φ(D/2) = πp/2, where πp, cosp and sinp are defined as follows.
For every p ∈ (1,∞) the positive number πp is defined by

πp :=

ˆ 1

−1

ds

(1− sp)1/p
=

2π

p sin(π/p)
.
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The C1(R) function sinp : R → [−1, 1] is defined implicitly on [−πp/2, 3πp/2] by:






t =
´ sinp(t)

0
ds

(1−sp)1/p
if t ∈

[

−πp

2 ,
πp

2

]

sinp(t) = sinp(πp − t) if t ∈
[

πp

2 ,
3πp

2

]

and is periodic on R. Set also by definition cosp(t) = d
dt sinp(t). The usual fundamental trigonometric

identity can be generalized by | sinp(t)|p + | cosp(t)|p = 1, and so it is easily seen that cos
(p−1)
p ∈ C1(R).

Clearly, if p = 2 one finds the usual quantities: π2 = π, sin2 = sin and cos2 = cos.

Theorem 4.3 ([54, 74, 61]). Let K ∈ R, N ∈ [1,∞) and D ∈ (0,∞). Then the following hold

(1) λ1,pK,N,D = λ̂1,pK,N,D, where λ1,pK,N,D was defined in (4.3) and λ̂1,pK,N,D in (4.9).

(2) For every fixed p ∈ (1,∞), the map K,N,D 7→ λ1,pK,N,D is continuous.

(3) If K > 0 then for every D ∈ (0, π
√

N − 1/K]

λ1,pK,N,D ≥ λ1,p
K,N,π

√
N−1/K

and equality holds if and only if D = π
√

N − 1/K. If moreover N ∈ N, then

λ1,p
K,N,π

√
N−1/K

= λ1,p(SN (
√

N − 1/K)),

i.e. λ1,p
K,N,π

√
N−1/K

coincides with the first eigenvalue of the p-laplacian on the round sphere of

radius
√

N − 1/K.

(4) If K = 0 then λ1,p0,N,D = (p− 1)
(πp

D

)p
.

For K 6= 0 and p 6= 2, it is not easy to give an explicit expression of the lower bound λ1,pK,N,D. At least

one can give some lower bounds, for instance recently Li and Wang [48] obtained that

(4.10) λ1,pK,N,D ≥ 1

(p− 1)p−1

(

NK

N − 1

)p/2

for K > 0, p ≥ 2.

4.2. p-spectral gap for CDloc(K,N) spaces.

Theorem 4.4. Let (X, d,m) be a metric measure space satisfying CDloc(K,N), for some K,N ∈ R with
N ≥ 1, and assume moreover it is essentially non-branching. Let D ∈ (0,∞) be the diameter of X and
fix p ∈ (1,∞). Then for any Lipschitz function f ∈ Lp(X,m) with

´

X
f |f |p−2

m(dx) = 0 it holds

(4.11) λ1,pK,N,D

ˆ

X

|f(x)|p m(dx) ≤
ˆ

X

|∇f |p(x)m(dx).

In other terms it holds λ1,p(X,d,m) ≥ λ1,pK,N,D. Notice that for D = π
√

(N − 1)/K and N ∈ N, it follows that

λ1,p(X,d,m) ≥ λ1,p(SN ((N − 1)/K)).

Proof. Since the space (X, d) is bounded, then the CDloc(K,N) condition implies that m(X) <∞. Noting
that the inequality (4.11) is invariant under multiplication of m by a positive constant, we can assume
without loss of generality that m(X) = 1. Observing that the function

(4.12) f̃ := f |f |p−2 ∈ Lip(X)

verifies the hypothesis of Theorem 2.7, we can write X = Y ∪ T with

f̃(x) = 0, m-a.e. y ∈ Y, mxT =

ˆ

Q

mq q(dq),

with mq = g(q, ·) ♯
(

hq · L1
)

, where the density hq verifies (2.6) for q-a.e. q ∈ Q and

0 =

ˆ

X

f̃(z)mq(dz) =

ˆ

Dom(g(q,·))

f̃(g(q, t))·hq(t)L1(dt) =

ˆ

Dom(g(q,·))

f(g(q, t)) |f(g(q, t))|p−2·hq(t)L1(dt)
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for q-a.e. q ∈ Q. Now consider the map t 7→ fq(t) := f(g(q, t)) and note that it is Lipschitz. Since

diam (Dom (g(q, ·))) ≤ D, from the definition of Fs
K,N,D and of λ1,pK,N,D we deduce that

λ1,pK,N,D

ˆ

R

|fq(t)|phq(t)L1(dt) ≤
ˆ

R

|f ′
q(t)|phq(t)L1(dt).

Noticing that |f ′
q(t)| ≤ |∇f |(g(q, t)) one obtains that

λ1,pK,N,D

ˆ

X

|f(x)|p m(dx) = λ1,pK,N,D

ˆ

T

|f(x)|p m(dx)

= λ1,pK,N,D

ˆ

Q

(
ˆ

X

|f(x)|p mq(dx)

)

q(dq)

= λ1,pK,N,D

ˆ

Q

(

ˆ

Dom (g(q,·))

|fq(t)|p hq(t)L1(dt)

)

q(dq)

≤
ˆ

Q

(

ˆ

Dom (g(q,·))

|f ′
q(t)|p hq(t)L1(dt)

)

q(dq)

≤
ˆ

Q

(
ˆ

X

|∇f |p(x) (g(q, ·)) ♯
(

hq(t)L1
)

(dx)

)

q(dq)

=

ˆ

X

|∇f |p(x)m(dx),

and the claim follows. �

4.3. Almost rigidity for the p-spectral gap.

Theorem 4.5 (Almost equality in the p-spectral gap implies almost maximal diameter). Let N > 1,
and p ∈ (1,∞) be fixed. Then for every ε > 0 there exists δ = δ(ε,N, p) such that the following holds.

Let (X, d,m) be an essentially non-branching metric measure space satisfying CD
∗(N − 1− δ,N + δ).

If λ1,p(X,d,m) ≤ λ1,pN−1,N,π + δ, then diam (X) ≥ π − ε.

Proof. As above, without loss of generality we can assume m(X) = 1. Assume by contradiction that
there exists ε0 > 0 such that for every δ > 0 we can find an essentially non-branching metric measure
space (X, d,m) satisfying CD

∗(N − 1 − δ,N + δ), with m(X) = 1, such that diam (X) ≤ π − ε0 but

λ1,p(X,d,m) ≤ λ1,pN−1,N,π + δ.

The very definition of λ1,p(X,d,m) implies that there exists a function f ∈ Lip(X), with
´

X
f |f |p−2

m = 0

and
´

X
|f |p m(dx) = 1, such that

(4.13)

ˆ

X

|∇f |p(x)m(dx) ≤ λ1,p(X,d,m) + δ ≤ λ1,pN−1,N,π + 2δ.

On the other hand, Theorem 4.3 ensures that there exists η > 0 such that

λ1,pN−1,N,D ≥ λ1,pN−1,N,π + 2η, ∀D ∈ [0, π − ε0].

Moreover, the continuity of K,N,D 7→ λ1,pK,N,D guarantees that, for every D0 ∈ (0, 1) there exists δ0 =

δ0(N,D0) such that

λ1,pN−1−δ,N+δ,D ≥ λ1,pN−1,N,D − η ∀δ ∈ [0, δ0], ∀D ∈ [D0, 2π].

Since clearly by definition we have that λ1,pK,N,D ≥ λ1,p0,N,D for every K > 0, N ≥ 1, p ∈ (1,∞), Theorem
4.3 gives that

lim
D↓0

λ1,pN−1−δ,N+δ,D ≥ lim
D↓0

λ1,p0,N+δ,D = +∞

uniformly for δ ∈ [0, δ0(N)]. The combination of the last two estimates yields

(4.14) λ1,pN−1−δ,N+δ,D ≥ λ1,pN−1,N,π + η ∀D ∈ [0, π − ε0], ∀δ ∈ [0, δ0(N)].
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By repeating the proof of Theorem 4.4, and observing that by construction it holds diam (Dom (g(q, ·)) ≤
π − ε0, we then obtain

ˆ

X

|∇f |p(x)m(dx) =

ˆ

Q

(
ˆ

X

|∇f |p(x) (g(q, ·)) ♯
(

hq(t)L1
)

(dx)

)

q(dq)

≥
ˆ

Q

(

ˆ

Dom(g(q,·))

|f ′
q(t)|p hq(t)L1(dt)

)

q(dq)

≥
ˆ

Q

λ1,pN−1−δ,N+δ,diam(Dom (g(q,·))

(

ˆ

Dom(g(q,·))

|fq(t)|p hq(t)L1(dt)

)

q(dq)

≥ (λ1,pN−1,N,π + η)

ˆ

Q

(

ˆ

Dom(g(q,·))

|fq(t)|p hq(t)L1(dt)

)

q(dq)

= λ1,pN−1,N,π + η.

Contradicting (4.13), once chosen δ < η/2. �

Corollary 4.6 (Almost equality in the p-spectral gap implies mGH-closeness to a spherical suspension).
Let N ≥ 2, and p ∈ (1,∞) be fixed. Then for every ε > 0 there exists δ = δ(ε,N, p) > 0 such that the
following holds.

Let (X, d,m) be an RCD
∗(N − 1− δ,N + δ) space. If

λ1,p(X,d,m) ≤ λ1,pN−1,N,π + δ,

then there exists an RCD
∗(N − 2, N − 1) space (Y, dY ,mY ) such that

dmGH

(

(X, d,m), [0, π]×N−1
sin Y

)

≤ ε.

Proof. Fix N ∈ [2,∞), p ∈ (1,∞) and assume by contradiction there exist ε0 > 0 and a sequence

(Xj , dj ,mj) of RCD
∗(N − 1− 1

j , N + 1
j ) spaces such that λ1,p(X,d,m) ≤ λ1,pN−1,N,π + 1

j , but

(4.15) dmGH(Xj , [0, π]×N−1
sin Y ) ≥ ε0 for every j ∈ N

and every RCD
∗(N − 2, N − 1) space (Y, dY ,mY ) with mY (Y ) = 1. Observe that Theorem 4.5 yields

(4.16) diam ((Xj , dj)) → π.

By the compactness/stability property of RCD∗(K,N) spaces recalled in Theorem 2.6 we get that, up
to subsequences, the spaces Xj mGH-converge to a limit RCD

∗(N − 1, N) space (X∞, d∞,m∞). Since
the diameter is continuous under mGH convergence of uniformly bounded spaces, (4.16) implies that
diam ((X∞, d∞)) = π. But then by the Maximal Diameter Theorem [43] we get that (X∞, d∞,m∞) is

isomorphic to a spherical suspension [0, π]×N−1
sin Y for some RCD

∗(N − 2, N − 1) space (Y, dY ,mY ) with
mY (Y ) = 1. Clearly this contradicts (4.15) and the thesis follows. �

Corollary 4.7 (p-Obata Theorem). Let (X, d,m) be an RCD
∗(N − 1, N) space for some N ≥ 2, and let

1 < p <∞. If

λ1,p(X,d,m) = λ1,pN−1,N,π (= λ1,p(SN ), if N ∈ N),

then (X, d,m) is a spherical suspension, i.e. there exists an RCD
∗(N − 2, N − 1) space (Y, dY ,mY ) such

that (X, d,m) is isomorphic to [0, π]×N−1
sin Y .

Proof. Theorem 4.5 implies that diam ((X, d)) = π and the thesis then follows by the Maximal Diameter
Theorem [43]. �

Remark 4.8. The Obata’s Theorem for p = 2 in RCD
∗(N − 1, N) spaces has been recently obtained by

Ketterer [43] by different methods (see also [41]); the approach proposed here has the double advantage
of length and of being valid for every p ∈ (1,∞).
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5. The case p = 1 and the Cheeger constant

It is well known (see for instance [40, 76]) that an alternative way of defining λ1,p(X,d,m) which extends

also to p = 1 is the following. For every p ∈ [1,∞) and every f ∈ Lp(X) let

cp(f) := inf
c∈R

(
ˆ

X

|f − c|p m
)1/p

.

For every p ∈ (1,∞) it holds that [40, Corollary 2.11]

λ1,p(X,d,m) = inf

{
ˆ

X

|∇f |p m : f ∈ Lip ∩ Lp(X), cp(f) = ‖f‖Lp = 1

}

.

It is then natural to set

(5.1) λ1,1(X,d,m) = inf

{
ˆ

X

|∇f |m : f ∈ Lip ∩ L1(X), c1(f) = ‖f‖L1 = 1

}

.

Assuming that m(X) = 1, recall that a number Mf ∈ R is a median for f if and only if

m({f ≥Mf}) ≥
1

2
and m({f ≤Mf}) ≥

1

2
.

It is not difficult to check that (see for instance [19, Section VI]) for every f ∈ L1(X) there exists a
median of f , and moreover

ˆ

X

|f −Mf |m = c1(f)

holds for every median Mf of f . This link between c1(f) and Mf is useful to prove the equivalence

between the Cheeger constant and λ1,1(X,d,m). Recall that the Cheeger constant h(X,d,m) is defined by

h(X,d,m) := inf

{

m
+(E)

m(E)
: E ⊂ X is Borel and m(E) ∈ (0, 1/2]

}

,

where

m
+(E) := lim inf

ε↓0

m(Eε)−m(E)

ε

is the (outer) Minkowski content. As usual Eε := {x ∈ X : ∃y ∈ E such that d(x, y) < ε} is the
ε-neighborhood of E with respect to the metric d. The next result, due to Maz’ya [55] and Federer-
Fleming [29] (see also [10] for a careful derivation, [56, Lemma 2.2] and [40, Proposition 2.13] for the
present formulation), rewrites Cheeger’s isoperimetric inequality in functional form.

Proposition 5.1. Assume that (X, d,m) is a m.m.s with m({x}) = 0 for every x ∈ X, i.e. m is atomless.
Then

h(X,d,m) = λ1,1(X,d,m).

It is then clear that the comparison and almost rigidity theorems for λ1,1 will be based on the corre-
sponding isoperimetric ones obtained by the authors in [17]. To this aim in the next subsection we briefly
recall the model Cheeger constant for the comparison.

5.1. The model Cheeger constant hK,N,D. If K > 0 and N ∈ N, by the Lévy-Gromov isoperimetric
inequality we know that, for N -dimensional smooth manifolds having Ricci curvature bounded below by
K, the Cheeger constant i is bounded below by the one of the N -dimensional round sphere of the suitable
radius. In other words the model Cheeger constant is the one of SN . For N ≥ 1,K ∈ R arbitrary real
numbers the situation is more complicated, and just recently E. Milman [57] discovered what is the model
Cheeger constant (more precisely he discovered the model isoperimetric profile, which in turn implies the
model Cheeger constant). In this short section we recall its definition.

Given δ > 0, set

sδ(t) :=











sin(
√
δt)/

√
δ δ > 0

t δ = 0

sinh(
√
−δt)/

√
−δ δ < 0

, cδ(t) :=











cos(
√
δt) δ > 0

1 δ = 0

cosh(
√
−δt) δ < 0

.
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Given a continuous function f : R → R with f(0) ≥ 0, we denote by f+ : R → R+ the function
coinciding with f between its first non-positive and first positive roots, and vanishing everywhere else,
i.e. f+ := fχ[ξ−,ξ+] with ξ− = sup{ξ ≤ 0; f(ξ) = 0} and ξ+ = inf{ξ > 0; f(ξ) = 0}.

Given H,K ∈ R and N ∈ [1,∞), set δ := K/(N − 1) and define the following (Jacobian) function of
t ∈ R:

JH,K,N (t) :=















χ{t=0} N = 1,K > 0

χ{Ht≥0} N = 1,K ≤ 0
(

cδ(t) +
H

N−1sδ(t)
)N−1

+
N ∈ (1,∞)

.

As last piece of notation, given a non-negative integrable function f on a closed interval L ⊂ R, we denote
with µf,L the probability measure supported in L with density (with respect to the Lebesgue measure)
proportional to f there. In order to simplify a bit the notation we will write h(L,f) in place of h(L, |·|,µf,L).
The model Cheeger constant for spaces having Ricci curvature bounded below by K ∈ R, dimension
bounded above by N ≥ 1 and diameter at most D ∈ (0,∞] is then defined by

(5.2) hK,N,D := inf
H∈R,a∈[0,D]

h([−a,D−a],JH,K,N ).

The formula above has the advantage of considering all the possible cases in just one equation, but
probably it is also instructive to isolate the different cases in a more explicit way. Indeed one can check
[57, Section 4] that:

• Case 1: K > 0 and D <
√

N−1
K π,

hK,N,D = inf
ξ∈
[

0,
√

N−1

K π−D
]

h(
[ξ,ξ+D],sin(

√

K
N−1

t)N−1

).

• Case 2: K > 0 and D ≥
√

N−1
K π,

hK,N,D = h(
[0,
√

N−1

K π],sin(
√

K
N−1

t)N−1

).

• Case 3: K = 0 and D <∞,

hK,N,D = min

{

infξ≥0 h([ξ,ξ+D],tN−1) ,
h([0,D],1)

}

=
N

D
inf

ξ≥0,v∈(0,1/2)

(

min(v, 1− v)(ξ + 1)N +max(v, 1 − v)ξN
)

N−1

N

v [(ξ + 1)N − ξN ]
.

• Case 4: K < 0, D <∞:

hK,N,D = min















infξ≥0 h(
[ξ,ξ+D], sinh(

√

−K
N−1

t)N−1

) ,

h(
[0,D],exp(

√
−K(N−1)t)

) ,

infξ∈R h(
[ξ,ξ+D], cosh(

√

−K
N−1

t)N−1

)















.

• In all the remaining cases, the model Cheeger constant trivializes: hK,N.D = 0.

5.2. Sharp comparison and almost rigidity for λ1,1 = h.

Theorem 5.2. Let (X, d,m) be an essentially non-branching CDloc(K,N)-space for some K ∈ R, N ∈
[1,∞), with m(X) = 1 and having diameter D ∈ (0,+∞]. Then

(5.3) h(X,d,m) ≥ hK,N,D.

Moreover, for K > 0 the following holds: for every N > 1 and ε > 0 there exists δ̄ = δ̄(K,N, ε) such
that, for every δ ∈ [0, δ̄], if (X, d,m) is an essentially non-branching CD

∗(K − δ,N + δ)-space such that

(5.4) h(X,d,m) ≤ h
K,N,π

√
(N−1)/K

+ δ (= h(SN (
√

(N − 1)/K)) + δ, if N ∈ N),

then diam(X) ≥ π
√

(N − 1)/K − ε.
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Proof. Recall that the isoperimetric profile of (X, d,m) is the largest function I(X,d,m) : [0, 1] → R+ such

that for every Borel subset E ⊂ X it holds m
+(E) ≥ I(X,d,m)(m(E)). As discovered in [57] (see also

[17, Section 2.5] for the present notation), for every K ∈ R, N ∈ [1,∞), D ∈ (0,∞] there exists a model
isoperimetric profile IK,N,D : [0, 1] → R+; it is straightforward to check that

h(X,d,m) = inf
v∈(0,1/2)

I(X,d,m)(v)

v
and hK,N,D = inf

v∈(0,1/2)

IK,N,D(v)

v
.

Since in our previous paper [17, Theorem 1.2] we proved that for every v > 0 it holds

(5.5) I(X,d,m)(v) ≥ IK,N,D(v),

the first claim (5.3) follows.
In order to prove the second part of the theorem, note (5.4) implies that there exists v̄ ∈ (0, 1/2) such
that

I(X,d,m)(v̄)

v̄
≤ h(X,d,m) + δ ≤ h

K,N,π
√

(N−1)/K
+ 2δ ≤

I
K,N,π

√
(N−1)/K

(v̄)

v̄
+ 2δ.

Multiplying by v̄, we get

I(X,d,m)(v̄) ≤ I
K,N,π

√
(N−1)/K

(v̄) + 2δv̄ ≤ I
K,N,π

√
(N−1)/K

(v̄) + δ.

The thesis then follows by direct application of [17, Theorem 1.5].
�

Before stating the result let us observe that if (X, d,m) is an RCD
∗(K,N) space for some K > 0 then,

called d
′ :=

√

K
N−1 d, we have that (X, d′,m) is RCD∗(N − 1, N); in other words, if the Ricci lower bound

is K > 0 then up to scaling we can assume it is actually equal to N − 1.
Arguing as in the proof of Corollaries 4.6-4.7 we get the following result.

Corollary 5.3. For every N ∈ [2,∞), ε > 0 there exists δ̄ = δ̄(N, ε) > 0 such that the following hold.
For every δ ∈ [0, δ̄], if (X, d,m) is an RCD

∗(N − 1− δ,N + δ)-space with m(X) = 1, satisfying

h(X,d,m) ≤ hN−1,N,π + δ (= h(SN ) + δ, if N ∈ N),

then there exists an RCD
∗(N − 2, N − 1) space (Y, dY ,mY ) with mY (Y ) = 1 such that

dmGH(X, [0, π]×N−1
sin Y ) ≤ ε.

In particular, if (X, d,m) is an RCD
∗(N − 1, N)-space satisfying h(X,d,m) = hN−1,N,π = h(SN ), then it

is isomorphic to a spherical suspension; i.e. there exists an RCD
∗(N − 2, N − 1) space (Y, dY ,mY ) with

mY (Y ) = 1 such that (X, d,m) is isomorphic to [0, π]×N−1
sin Y .

6. Sharp Log-Sobolev and Talagrand inequalities

6.1. Sharp Log-Sobolev in diameter-curvature-dimensional form. Recall that a m.m.s. (X, d,m)
supports the Log-Sobolev inequality with constant α > 0 if for any Lipschitz function f : X → [0,∞)
with

´

X f m = 1 it holds

(6.1) 2α

ˆ

X

f log f m ≤
ˆ

{f>0}

|∇f |2
f

m.

The largest constant α, such that (6.1) holds for any Lipschitz function f : X → [0,∞) with
´

X
f m = 1,

will be called Log-Sobolev constant of (X, d,m) and denoted with αLS
(X,d,m).

As before we will reduce to the one-dimensional case. Given K ∈ R, N ≥ 1, D ∈ (0,+∞] we denote
with αLS

K,N,D > 0 the maximal constant α such that

(6.2) 2α

ˆ

R

f log f µ ≤
ˆ

{f>0}

|f ′|2
f

µ, ∀µ ∈ Fs
K,N,D,

for every Lipschitz f : R → [0,∞) with
´

f µ = 1.
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Remark 6.1. If K > 0 and D = π
√

N−1
K , it is known that the corresponding optimal Log-Sobolev

constant is KN
N−1 (see the discussion below). It is an interesting open problem, that we don’t address here,

to give an explicit expression of the quantity αLS
K,N,D for general K ∈ R, N ≥ 1, D ∈ (0,∞).

Theorem 6.2. Let (X, d,m) be a metric measure space with diameter D ∈ (0,∞) and satisfying
CDloc(K,N) for some K ∈ R, N ∈ [1,∞). Assume moreover it is essentially non-branching. Then
for any Lipschitz function f : X → [0,∞) with

´

X
f m = 1 it holds

2αLS
K,N,D

ˆ

X

f log f m ≤
ˆ

{f>0}

|∇f |2
f

m.

In other terms it holds αLS
(X,d,m) ≥ αLS

K,N,D.

Proof. Since CDloc(K,N) implies that the measure is locally doubling, the finiteness of the diameter im-
plies that m(X) <∞. Observing that the Log-Sobolev inequality (6.1) is invariant under a multiplication
of m by a constant, we can then assume without loss of generality that m(X) = 1. Consider any Lipschitz

function with
´

X f m = 1 and apply Theorem 2.7 to f̂ := 1− f . Hence we can write X = Y ∪ T with

f(y) = 1, m-a.e. y ∈ Y, mxT =

ˆ

Q

mq q(dq),

with mq = g(q, ·) ♯
(

hq · L1
)

, the density hq verifies (2.6) for q-a.e. q ∈ Q and

1 =

ˆ

X

f(z)mq(dz) =

ˆ

Dom (g(q,·))

f(g(q, t)) · hq(t)L1(dt)

for q-a.e. q ∈ Q. Now consider the map t 7→ fq(t) := f(g(q, t)) and note that it is Lipschitz. Since
diam (Dom (g(q, ·))) ≤ D, from the definition of Fs

K,N,D and of αLS
K,N,D we deduce that

2αLS
K,N,D

ˆ

R

fq(t) log(fq(t))hq(t)L1(dt) ≤
ˆ

{fq(·)>0}

|f ′
q(t)|2
fq(t)

hq(t)L1(dt).

Noticing that |f ′
q(t)| ≤ |∇f |(g(q, t)) and that f log f vanishes over Y , one obtains that

2αLS
K,N,D

ˆ

X

f log f m(dx) = 2αLS
K,N,D

ˆ

T

f log f m(dx)

= 2αLS
K,N,D

ˆ

Q

(
ˆ

X

f log f mq(dx)

)

q(dq)

= 2αLS
K,N,D

ˆ

Q

(

ˆ

Dom (g(q,·))

fq(t) log(fq(t))hq(t)L1(dt)

)

q(dq)

≤
ˆ

Q

(

ˆ

Dom (g(q,·))∩{fq(·)>0}

|f ′
q(t)|2
fq(t)

hq(t)L1(dt)

)

q(dq)

≤
ˆ

Q

(

ˆ

{f>0}

|∇f |2
f

(g(q, ·)) ♯
(

hq(t)L1
)

(dx)

)

q(dq)

≤
ˆ

{f>0}

|∇f |2
f

m(dx),

and the claim follows. �

If K > 0, by Bonnet-Myers diameter bound, we know that if (X, d,m) satisfies CDloc(K,N) then

diam (X) ≤ π
√

N−1
K . Recalling definition (6.2), we then set αLS

K,N := αLS

K,N,π
√

N−1

K

for the Log-Sobolev

constant without an upper diameter bound. By applying the regularization of the measures hL1 ∈
Fs

K,N,π
√

N−1

K

discussed in Lemma 4.1 and arguing analogously to the proof of Proposition 4.2, we get

that in the definition of αLS
K,N it is equivalent to take the inf among measures in F

K,N,π
√

N−1

K

, defined

in (4.4). But now if µ ∈ F
K,N,π

√
N−1

K

is a probability measure on R with smooth density satisfying the
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CDloc(K,N) condition for K > 0, it is known that the sharp Log-Sobolev constant is αLS
K,N = KN

N−1 (see

for instance [8, Proposition 6.6]). More precisely, as proved by Mueller-Weissler [60], for every K > 0 and

N ≥ 1, the sharp constant is attained by the usual model probability measure on the interval
[

0,
√

N−1
K π

]

proportional to sin
(

√

K
N−1 t

)N−1
; notice that for N ∈ N it corresponds to the round sphere of radius

√

N−1
K . We then have the following corollary.

Corollary 6.3 (Sharp Log-Sobolev under CD∗(K,N),K > 0, N > 1). Let (X, d,m) be a metric measure
space satisfying CD

∗(K,N) for some K > 0, N > 1, and assume moreover it is essentially non-branching.
Then for any Lipschitz function f : X → [0,∞) with

´

X f m = 1 it holds

2KN

N − 1

ˆ

X

f log f m ≤
ˆ

{f>0}

|∇f |2
f

m.

In other terms it holds αLS
(X,d,m) ≥ KN

N−1 .

Let us mention that, since the reduction to a 1-D problem is done via an L1-optimal transportation
argument, Corollary 6.3 can be seen as a solution to [75, Open Problem 21.6].

6.2. From Sharp Log-Sobolev to Sharp Talagrand. First of all let us recall that the relative entropy
functional Entm : P(X) → [0,+∞] with respect to a given m ∈ P(X) is defined to be

Entm(µ) =

ˆ

X

̺ log ̺m, if µ = ̺m

and +∞ otherwise.
Otto-Villani [62] proved that for smooth Riemannian manifolds the Log-Sobolev inequality with con-

stant α > 0 implies the Talagrand inequality with constant 2
α preserving sharpness. The result was then

generalized to arbitrary metric measure spaces by Gigli-Ledoux [34], so that we can state:

Theorem 6.4 (From Log-Sobolev to Talagrand, [62, 34]). Let (X, d,m) be a metric measure space
supporting the Log-Sobolev inequality with constant α > 0. Then it also supports the Talagrand inequality
with constant 2

α , i.e. it holds

W 2
2 (µ,m) ≤ 2

α
Entm(µ)

for all µ ∈ P(X).

Combining Theorem 6.2 with Theorem 6.4 we get Theorem 1.10 which improves the Talagrand constant
2/K, which is sharp for CD(K,∞) spaces, by a factor N − 1/N in case the dimension is bounded above
by N . This constant is sharp for CDloc(K,N) spaces, indeed it is sharp already in the smooth setting
[75, Remark 22.43]. Since both our proof of the sharp Log-Sobolev inequality and the proof of Theorem
6.4 are essentially optimal transport based, this be seen as an answer to [75, Open Problem 22.44].

Remark 6.5 (Sharpness and estimates of the best constants). Recall that for weighted smooth manifolds,
the Log-Sobolev inequality implies the Talagrand inequality which in turns implies the Poincaré inequality
every step without any loss in the constants [75, Theorem 22.17]. Since when we compute the comparison

Log-Sobolev constant αLS
K,N,D and the comparison first eigenvalue λ1,2K,N,D, we work with the smooth

measures FK,N,D on R, we always have the estimate

(6.3) αLS
K,N,D ≤ λ1,2K,N,D.

Notice that, for K > 0 and D =
√

N−1
K π they actually coincide:

(6.4)
KN

N − 1
= αLS

K,N,
√

N−1

K π
= λ1,2

K,N,
√

N−1

K π
.

An interesting question we do not address here is if this is always the case, i.e. if in (6.3) equality holds

for every K ∈ R, N ≥ 1, D ∈ (0,∞). Since the value of λ1,2K,N,D is known in many cases, it would have as
a consequence the determination of the explicit value of the best constant in both the Log-Sobolev and
the Talagrand inequalities in the curvature-dimension-diameter forms. This would also imply rigidity
and almost-rigidity statements attached to the Log-Sobolev and Talagrand inequalities, as proven here
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for the Poincaré inequality. Let us note that for the almost rigidity to hold for both the Log-Sobolev
and Talagrand inequalities it would be enough to prove that for every ε > 0 there exists δ > 0 such that

αLS
K,N,D ≥ αLS

K,N,
√

N−1

K π
+ δ = KN

N−1 + δ, if D ∈
[

0,
√

N−1
K ε− δ

]

.

7. Sharp Sobolev Inequalities

Recall that (X, d,m) supports a (p, q)-Sobolev inequality with constant αp,q if for any Lipschitz function
f : X → R it holds

(7.1)
αp,q

p− q

{

(
ˆ

X

|f |p m
)

q
p

−
ˆ

X

|f |q m
}

≤
ˆ

X

|∇f |q m.

The largest constant αp,q such that (7.1) holds for any Lipschitz function f will be called the (p, q)-Sobolev
constant of (X, d,m) and will be denoted by αp,q

(X,d,m).

Again we consider the one-dimensional case and givenK ∈ R, N ≥ 1 and D ∈ (0,∞] we define sαp,q
K,N,D

to be the maximal constant α such that

α

p− q

{

(
ˆ

X

|f |p µ
)

q
p

−
ˆ

X

|f |q µ
}

≤
ˆ

X

|∇f |q µ, ∀ µ ∈ Fs
K,N,D,

for every Lipschitz function f : R → R. Restricting the maximization to µ ∈ FK,N,D, we obtain the
constant αp,q

K,N,D. Using the approximation Lemma 4.1 and reasoning as in Proposition 4.2 one obtains
that

sαp,q
K,N,D = αp,q

K,N,D.

Theorem 7.1. Let (X, d,m) be a metric measure space with diameter D ∈ (0,∞) and satisfying
CDloc(K,N) for some K ∈ R, N ∈ [1,∞). Assume moreover it is essentially non-branching. Then
for any Lipschitz function it holds

αp,q
K,N,D

p− q

{

(
ˆ

X

|f(x)|p m(dx)

)

q
p

−
ˆ

X

|f(x)|q m(dx)

}

≤
ˆ

X

|∇f(x)|q m(dx),

In other terms, it holds αp,q
(X,d,m) ≥ αp,q

K,N,D.

Proof. First of all note that CDloc(K,N) coupled with the finiteness of the diameter implies m(X) <∞.
Step 1: The case p > q.

With a slight abuse of notation q will denote both the exponent in the Sobolev embedding and the index
in the disintegration, there should be no confusion since the clearly different roles. Fix any Lipschitz

function f and consider the function f̂(x) := 1 − c|f(x)|p, with c := 1/(
´

|f |pm). Therefore
´

f̂ m = 0
and we can invoke Theorem 2.7. Hence X = Y ∪ T with

f̂(y) = 0, m-a.e. y ∈ Y, mxT =

ˆ

Q

mq q(dq),

with mq = g(q, ·) ♯
(

hq · L1
)

, the density hq verifies (2.6) for q-a.e. q ∈ Q and

0 =

ˆ

X

f̂(z)mq(dz) =

ˆ

Dom (g(q,·))

f̂(g(q, t)) · hq(t)L1(dt)

for q-a.e. q ∈ Q.
Now consider the map t 7→ fq(t) := f(g(q, t)) and note that it is Lipschitz. Since diam (Dom (g(q, ·))) ≤

D, from the definition of Fs
K,N,D and of αp,q

K,N,D we deduce that

(
ˆ

R

|fq(t)|phq(t)L1(dt)

)

q
p

≤
ˆ

R

|fq(t)|qhq(t)L1(dt) +
p− q

αp,q
K,N,D

ˆ

R

|f ′(t)|qhq(t)L1(dt).

Since for q-a.e. q ∈ Q it holds
´

f̂ mq = 0, it follows that
ˆ

X

|f(x)|p mq(dx) =
1

c
=

ˆ

X

|f(x)|p m(dx).
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Therefore the previous inequality reads as

1 ≤
(

1
´

|f(x)|p m(dx)

)

q
p

(

ˆ

X

|fq|q mq +
p− q

αp,q
K,N,D

ˆ

X

|f ′|q mq

)

.

Noticing that |f ′
q(t)| ≤ |∇f |(g(q, t)), integrating over Q one obtains that

(7.2) m(T ) ≤
(

1
´

|f(x)|p m(dx)

)

q
p
ˆ

T

|f(x)|q m(dx) +
p− q

αp,q
K,N,D

ˆ

T

|∇f(x)|q m(dx).

To complete the argument one should prove that for each y ∈ Y

1 ≤
(

1
´

|f |p m

)

q
p

(

|f(y)|q + p− q

αp,q
K,N,D

|∇f(y)|q
)

.

As for m-a.e. y ∈ Y one has |f(y)|p =
´

X
|f |p m, this last inequality holds trivially. Integrating this last

inequality over Y and adding it to (7.2), we obtain the claim.

Step 2: The case p < q. It follows repeating the previous localization argument and writing the
Sobolev inequality in the following form

(
ˆ

X

|f(x)|p m(dx)

)

q
p

≥
ˆ

X

|f(x)|q m(dx) − q − p

α

ˆ

X

|∇f(x)|q m(dx).

�

As already observed, if K > 0 then diam (X) ≤ π
√

(N − 1)/K and therefore one can define

αp,q
K,N := αp,q

K,N,π
√

(N−1)/K
,

the (p, q)-Sobolev inequality with no diameter upper bound. If µ ∈ F
K,N,π

√
(N−1)/K

with K > 0, it is

known that the sharp (p, 2)-Sobolev constant, verifies (see for instance [46, Theorem 3.1])

αp,2
K,N ≥ KN

N − 1
, for 1 ≤ p ≤ 2N

N − 2
.

Moreover, for N ∈ N, it is attained on the round sphere of radius
√

N−1
K . We then have the following

corollary.

Corollary 7.2. Let (X, d,m) be a metric measure space satisfying CD
∗(K,N) for some K > 0, N ∈

(2,∞), and assume moreover it is essentially non-branching. Then for any Lipschitz function f it holds

KN

(p− 2)(N − 1)

{

(
ˆ

X

|f |p m
)

2
p

−
ˆ

X

|f |2m
}

≤
ˆ

X

|∇f |2 m,

for any 2 < p ≤ 2N/(N − 2). In other terms it holds αp,2
(X,d,m) ≥ KN

N−1 .

Corollary 7.2 can be seen as a solution to [75, Open Problem 21.11].

Appendix

All the inequalities we have presented here rely on the general scheme of applying one-dimensional
localization to a big family of inequalities, called 4-functions inequalities (see for instance the work of
Kannan-Lovász-Simonovits [42]).

The argument goes as follows. Suppose we are interested in proving that for f1, f2, f3, f4 integrable
functions and α, β > 0 it holds

(7.3)

(
ˆ

X

f1m

)α(ˆ

X

f2m

)β

≤
(
ˆ

X

f3m

)α(ˆ

X

f4m

)β

.

Then consider the one-dimensional localization induced by g := f3 − cf1, with c = (
´

f3m)/(
´

f1m):

mxT =

ˆ

Q

mqq(dq),
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where X = T ∪ Y and on Y it holds g(x) = 0 for m-a.e. x ∈ Y . Then it is sufficient to prove that

(
ˆ

X

f1 mq

)α(ˆ

X

f2 mq

)β

≤
(
ˆ

X

f3mq

)α(ˆ

X

f4 mq

)β

, q− a.e. q ∈ Q

f2(x) ≤ cα/βf4(x), m− a.e. x ∈ Y.

Indeed from the localization it follows that
´

gmq = 0 for q-a.e. q ∈ Q and therefore
ˆ

X

f2(x)mq(dx) ≤ cα/β
ˆ

X

f4(x)mq(dq), q− a.e. q ∈ Q.

Integrating over Q and adding the integral over Y , (7.3) follows.
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[64] L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains Arch. Rational Mech. Anal., 5,

(1960), 286–292.
[65] A. Petrunin, Alexandrov meets Lott-Sturm-Villani, Münster J. Math., 4, (2011), 53–64.
[66] A. Profeta, The Sharp Sobolev Inequality on Metric Measure Spaces with Lower Ricci Curvature Bounds, Potential

Anal., 43, (3), (2015), 513–529.



SHARP GEOMETRIC AND FUNCTIONAL INEQUALITIES FOR CD
∗(K,N) SPACES 27
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Università di Pavia

E-mail address: fabio.cavalletti@unipv.it

ETH - Zurich

E-mail address: andrea.mondino@math.uzh.ch


	1. Introduction
	1.1. Brunn-Minkowski inequality
	1.2. p-Spectral gap
	1.3. Log-Sobolev and Talagrand inequality
	1.4. Sobolev inequality

	Acknowledgements
	2. Prerequisites
	2.1. Geometry of metric measure spaces
	2.2. Measured Gromov-Hausdorff convergence and stability of RCD*(K,N)
	2.3. Warped product
	2.4. Localization method

	3. Sharp Brunn-Minkowski inequality
	4. p-Spectral gap
	4.1. p-spectral gap for m.m.s. over (R, ||): the model spaces
	4.2. p-spectral gap for CDloc(K,N) spaces
	4.3. Almost rigidity for the p-spectral gap

	5. The case p=1 and the Cheeger constant
	5.1. The model Cheeger constant hK,N,D
	5.2. Sharp comparison and almost rigidity for 1,1=h

	6. Sharp Log-Sobolev and Talagrand inequalities
	6.1. Sharp Log-Sobolev in diameter-curvature-dimensional form
	6.2. From Sharp Log-Sobolev to Sharp Talagrand

	7. Sharp Sobolev Inequalities
	Appendix
	References

