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Abstract: Positronium (Ps) is a valuable probe to investigate nanometric or sub-nanometric cavities
in non-metallic materials, where Ps can be confined. Accessible experimental measurements concern
the lifetime of trapped Ps, which is largely influenced by pick-off processes, depending on the size of
the cavity as well as on the density of the electrons belonging to the surface of the host trap. Another
relevant physical quantity is the contact density, that is the electron density at the positron position,
which is usually found to be well below the vacuum value. Here, we review the principal models that
have been formulated to account and explain for these physical properties of confined Ps. Starting
with models, treating Ps as a single particle formulated essentially to study pick-off, we go on to
describe more refined two-particle models because a two-body model is the simplest approach able to
describe any change in the contact density, observed in many materials. Finally, we consider a theory
of Ps annihilation in nanometric voids in which the exchange correlations between the electron of Ps
and the outer electrons play a fundamental role. This theory is not usually taken into account in the
literature, but it has to be considered for a correct theory of pick-off annihilation processes.

Keywords: nanoporous materials; positronium lifetime spectroscopy; exchange correlations

1. Introduction

Positronium (Ps), the bound state of an electron and a positron [1], is widely used
to characterize structural properties of materials. Indeed, its unique behaviour inside
matter allows one to obtain information about the material under investigation, using Ps as
a probe.

In order to form Ps, positrons need to be implanted inside the medium under study.
In metals, positrons annihilate without forming Ps. On the other hand, Ps formation is
possible in many different classes of materials, such as zeolites [2], porous structures [3],
amorphous and crystalline SiO2 [4], polymers [5], glassy materials [6], to quote just a few
examples. Ps formation is correlated to material-specific properties, such as the electron
density, its internal structure, ionization energy, or positron work function. After a short
slowing down in the bulk up to thermal energies [1,7], a positron may catch an electron of
the material and install as a Ps atom into regions characterized by low electron density, like
free spaces, defects, and vacancies.

If these spaces are not interconnected, Ps will remain confined inside these cavities,
even of sub-nanometric size, and there it will annihilate. This process is strongly correlated
to the local features of the medium. In a vacuum, the annihilation rate is influenced by
the so-called contact density k0 = 1/8πa3

0 (where a0 is the Bohr radius), which represents
the electron density at the positron [8]. This parameter can be experimentally determined
from the magnetic quenching of Ps. On the other hand, in matter the pick-off process
becomes dominant; with this additional channel the positron inside Ps annihilates with an
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external electron belonging to the surrounding medium. As a consequence, the lifetime
of the long-living Ps component ortho-Ps (or in short, o-Ps) may be strongly reduced with
respect to the one in the vacuum. Nevertheless, it is longer than other lifetimes derived
from different annihilation channels, and can be easily separated from them using the PALS
(Positron Annihilation Lifetime Spectroscopy) experimental technique [7]. Connecting
experimental data with theoretical models featuring the properties of Ps in small voids
allows one to get valuable information on (sub)nanometric holes present in the bulk as well
as their mean size and electron density near the surface.

The annihilation properties of ground state Ps in a vacuum depend on its internal spin
configuration. Indeed, there are two different lifetimes. A short τ2γ = λ−1

2γ = 0.125 ns for

para-Ps (or in short, p-Ps), the singlet state, and a much longer lifetime: τ3γ = λ−1
3γ = 142 ns

for o-Ps, the triplet state. The corresponding annihilation rates are denoted as λ2γ and
λ3γ [9]. Subscripts 2γ and 3γ remind us that annihilation occurs with emission of two
and three quanta, respectively. Confinement of Ps in a hole involves a change in both
the short and long components in a PALS spectrum, which mirrors the presence of a
possible statistical mixture of Ps states, and signals a possible modification both in spatial
wavefunction as well as in the spin configuration.

In this review, we analyse some theoretical modelling of Ps confined in nanoporous
matter, which has been proposed to describe the annihilation properties and to find con-
nection with experimental annihilation spectra. After a section presenting common basic
expressions for the annihilation rates, we discuss approximate models based on one or
two-body description for Ps pick-off processes. Subsequently, we re-examine the problem
of Ps confinement in materials showing (sub)nanometric holes by approaching it with a
more refined model, in which the exchange interaction of a Ps electron with surrounding
electrons is fully considered by means of the methods of symmetry-adapted perturbation
theories (SAPT) and local density approximation (LDA).

2. General Description of Ps Annihilation in Nanocavities

Considering Ps preferentially localized in low-electron regions like nanocavities, Ps
interaction with the electrons belonging to the cavity is modelled in terms of a small
perturbation which depends only on the electron density. These surrounding electrons
are responsible for the annihilations by pick-off and, in a first approximation, are not
correlated to the Ps spatial wavefunction and spin configuration. In fact, the underlying
mechanism of pick-off, mixing the fast singlet decay mode with some external electrons
during wall collisions, determines the shortening of the o-Pslifetime. Therefore, theoretical
treatments formulated in this framework consider Ps as a separate entity with respect to the
environment. Compared to the external electrons, the electron of Ps has a kind of privileged
role, discarding the request of full electron indistinguishability, which may be related to the
pick-off process. As a matter of fact, complete electron indistinguishability clearly emerges
in some materials whose PALS spectrum shows a single lifetime component (the ion
Ps− being a straightforward example of a Ps-like system characterized by a single lifetime
component). Modelling Ps annihilation taking explicitly into account spin configurations
and exchange correlation effects will be the subject of a later section.

Another important phenomenon for Ps physics, experimentally observed in many
materials [8,10], is the decrease in the contact density, that is, a lowering of the electron
density at the positron position with respect to the one in a vacuum. To describe this effect,
a relative contact density parameter kr is introduced; it is defined as the probability to find
the electron of Ps at the positron position in units of the value k0 in vacuo. This parameter
is usually related to a deformation of the Ps wavefunction inside the host cavity [11,12].

The most general expressions describing the Ps triplet/singlet measurable annihilation
rates in porous matter, as proposed in the literature [13], are built by considering in the
same way intrinsic and pick-off contributions:
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λt = kr λ3γ + λpo ,

λs = kr λ2γ + λpo .
(1)

where λt and λs are the annihilation rates for o-Psand p-Ps, respectively, while λpo is the
pick-off annihilation rate, identical in both equations, naturally being a surface process.
The intrinsic contribution is characterized by kr, the relative contact density parameter. In
the simplest implementations, every model assumes that the pick-off rate λpo is related to a
geometrical probability Pout to find Ps outside the internal free-space region which defines
the nanocavity:

λpo = Poutλ̄ , (2)

where λ̄ is defined as the spin averaged o-Psand p-Psannihilation rates in vacuum:

λ̄ =
1
4

λ2γ +
3
4

λ3γ = 2.01 ns−1 , (3)

since in vacuo the probability formation of p-Pswith respect to o-Psis 1/3. Therefore, λ̄ does
not depend on the electronic properties of the host cavity; these are accounted for in the
expression of Pout, which is a function of the geometrical parameters of the adopted model.
They are selected in order to obtain the best agreement with the pick-off annihilation rate
as given by the experiment.

Some models make the simple assumption of kr = 1 [14–16], equivalent to guess that
confinement does not influence the intrinsic Ps annihilation rates. More refined models
introduce different prescriptions concerning the correct way to tackle the problem of Ps
located in the internal or in surface regions of the hosting cavity. For instance, in [17,18], Ps
is supposed to annihilate inside the hole with intrinsic vacuum rates. Conversely, pick-off is
the dominating annihilation channel in the surface region. Within this picture, it is assumed
that kr = 1 − Pout, which in fact represents the probability that Ps is found in the internal
region of the cavity.

3. One-Particle Theoretical Models

To give a quantitative description of Ps behaviour in materials with nanoholes, one-
body models are the simplest ones. They consider Ps as a structureless single quantum
particle. Simple trapping quantum wells (finite or infinite) are introduced to account
for the interaction potentials between Ps and the surrounding. The idea of Ps trapping
was introduced for the first time by Ferrell [19], to give a reason for the unforeseen long
o-Pslifetime in liquid He. He proposed that Ps may form a nanoscopic bubble around itself,
generated by the exchange repulsion between the Ps–electron and the external electrons of
the helium atoms. The equilibrium radius of the bubble was estimated by the order of the
Ps Bohr radius aPs, which is equal to 2a0.

3.1. The Tao–Eldrup (TE) Model

In 1972, Tao proposed [20] a model relating the typical sizes of the cavity inside matter
hosting Ps with the lifetime of this last. Modified a few years later by Eldrup et al. [21],
it became the most popular one-particle model. Tao transformed Ps localization inside a
spherical volume of radius Rc into a confinement within a potential well of infinite depth
of size Rc + ∆, as depicted schematically in Figure 1.

Due to the infinite strength of the confining potential, the wavefunction of Ps has to
become zero at a chosen boundary. Concerning the external electron density profile ρe,
it is described by a step function which is zero inside the hole and assumes a constant
maximum value ρe ∼ k0 (generally equal to the vacuum contact density) outside. If the Ps
wavefunction boundary coincides with the radius Rc, there is no overlap between Ps and
the electrons of the cavity. The consequence would be that Ps decay by pick-off could not
occur. To avoid this nonsense, Tao supposed the Ps boundary to be located at a layer of
thickness ∆ surrounding the hole, which is, therefore, the interacting region.
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Figure 1. Graphic explanation of TE approximation. A Ps trapped into a finite potential well (top
frame) is transformed into a particle confined into an infinite potential well (bottom frame).

With this position the ground state Ps wavefunction has the following expression:

ΨTE(R) =
1√

2π(Rc + ∆)
sin(πR/(Rc + ∆))

R
. (4)

It follows that the probability Pout is given by:

Pout ≡ 4π
∫ Rc+∆

Rc
|ΨTE(R)|2R2 dR , (5)

and the pick-off decay rate results:

λpo = λ̄

(
1 − Rc

Rc + ∆
+

1
2π

sin
2πRc

Rc + ∆

)
. (6)

This last formula gives a relationship between two geometrical quantities, Rc and ∆,
generally unknown, and the annihilation rate, which can be supplied by the experiment.
The thickness ∆ is assumed to be a universal constant whose value can be evaluated by
fitting the TE model on materials whose cavity sizes are known from different experiments.
The value ∆ = 0.166 nm was at first obtained from materials whose cavity radii were in the
range Rc = 0.32–0.38 nm and corresponding o-Pslifetimes from 2.45 to 3.2 ns. The validity
of the TE model is limited to nanometric cavities (Rc < 2.5 nm) [22] where thermal energy
is not sufficient to populate excited states of Ps confined in the well.

In the TE model, the annihilation rate is completely independent of the chemical
properties of the material and becomes a question of geometry. The interest of the chemist
community, combined with the improvement of the sensitivity of the PALS technique
led to the question of whether Ps trapped in a cavity could not only give information
about the geometry of the hole but also shed light on the chemical features of the medium
surrounding Ps. In this connection, various extensions of the TE model have been put
forward along the years, sometimes including additional parameters which have to be
determined somehow.
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3.2. Some Extensions of the TE Model

Dutta [23] introduced a potential well of finite height U0. There are various advantages
in this approach. First of all, the removal of the infinite potential barrier, which is unphysical
and would have the consequence that a Ps would disappear for a cavity radius sufficiently
small. Secondly and more important, there is no longer need for the geometrical layer ∆.
Indeed, now the Ps wavefunction can overcome the hole wall and spread into the bulk,
where the pick-off process occurs. Moreover, for both the potential and the electron density,
Dutta considers a smooth function instead of the step potential assumed in the TE model,
but at the price of introducing other parameters in the model.

The extension of the TE model for increasing void dimension, where more energy
levels appear in the potential well and the pick-off rate is thermally averaged over popu-
lated states, was proposed in [14]. On a similar basis, also the so-called rectangular TE [4]
extended the original TE model by replacing the spherical geometry with rectangular voids,
with the advantage of avoiding cumbersome calculations by keeping physical simplicity.
These two formulations can be easily adapted to various geometries of the voids and also
allow us to deal with temperature effects. Once calibrated, these models were able to
successfully fit PALS results for a broad range of void sizes, up to several hundredths of
nm, as well as to explain the temperature dependence of PALS experiments.

3.3. A Classical Modellization

Finally, we mention a model proposed by Wada and Hyodo [24] for the estimation of
the size of voids which is independent of their shape. These authors consider a cavity of
generic geometry in which Ps (with finite size) is bouncing inside. This classical scheme is
valid as long as the mean free path of Ps L̄Ps between collisions with the walls of the hole
are much larger than λPs = h/

√
4πKBT, which is the thermal Ps de Broglie wavelength,

amounting to 3.05 nm at 300 K. For a finite-size Ps, L̄Ps depends on two parameters: ∆̄,
which define its effective average size, and L̄ = 4V/A, the mean free length of the void, V
and A being the volume and the surface of the cavity, respectively (in particular, L̄ = 4V/Rc
for a spherical cavity), by means of the obvious relation L̄Ps = L̄ − ∆̄. The o-Pspick-off
rate is then simply obtained as the product of the pick-off annihilation probability per
collision with the wall of the hole PA, and the collision frequency vth/L̄Ps, with vth being
the thermal velocity:

λpo = PA
vth

L̄ − ∆̄
. (7)

For a suitable choice of the free parameter ∆̄, Equation (7) gives the same results of the
TE model for an arbitrary small value of the cavity radius. The Wada and Hyodo model
provided good agreement with the rectangular version of the former one for a cavity
of a size bigger than L̄ > 1.28 nm, therefore demonstrating that the pick-off process in
mesoporous materials is primarily correlated to the V/A ratio.

4. Two-Particle Theoretical Models

The increasing interest in the PALS experimental technique and the large production
of relative data suggest the single-particle approximation with some new modelization is
overcome. The logical path of extending theoretical TE-like models is of course to introduce
the positron and the electron in Ps separate degrees of freedom [11,25,26]. In this way, Ps is
described by a two-particle wavefunction Ψ(p, e), where p and e represent the spin–spatial
coordinates of the positron and electron, respectively, at variance with the TE wavefunction
that depends on a single spatial variable. Other treatments of the two-particle bound
system were considered, for example, with ab initio techniques [27], but in view of the
huge computational effort required they are not usually employed.

Generally speaking, the two-body approach for confined Ps can be formulated in a
manner of describing both the centre of the mass wavefunction and its internal structure.
Moreover, a two-body model is the simpler and appropriate way for determining the
contact density parameter k, which governs the annihilation processes [8,10]. Describing
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theoretically any variation of the contact density parameter k with respect to its vacuum
value k0 can be simply obtained by this general expression:

k =
∫

|Ψ(rp, re)|2δ(rp − re) d3rp d3re , (8)

where the integration spans the entire configuration space, and it is performed on the part of
the wavefunction which depends only on the spatial coordinates rp and re for the positron
and electron, respectively. The spin part of the wavefunction is usually not considered
because Ps community is generally interested and focused on o-Ps.

As usual, in any two-particle system, Ps wavefunction can be reformulated in terms
of functions of the relative coordinate r = rp − re and of the centre of mass coordinate
R = (rp + re)/2. In the cases in which the problem under study is separable, the wavefunc-
tion can be factored as

Ψ(R, r) = Φ(R) φ(r) , (9)

and the k parameter is calculated straightforwardly by the following formula:

k =
∫

|Ψ(R, 0)|2 d3R . (10)

The original multiparticle problem is reduced to a simpler one in the two-body models,
similarly as for one-body models, by introducing an effective potential for the interaction
with the material. This potential is usually obtained from a macroscopic approach, hence
naturally introducing some new free parameters that have to be experimentally established.
To determine the Ps wavefunction and to find the associated ground state, numerical
methods are usually employed on the resolution of the total hamiltonian H of the system,
which is a function of these appropriate potentials. For this purpose, two main techniques
are considered, namely the quantum Monte Carlo (QMC) and the variational method
(VM). We now review some simple two-particle models which can be solved by using the
variational approach.

4.1. The Compressed Ps Model

A simple model that retains some characteristics of the one and two-particle models is
presented in [28]. In their approach, the focus of the authors is on the relative coordinate
r instead of the more traditional centre of mass one. The vanishing boundary condition
that in TE-like models imposes the confinement acting solely on the centre of the mass
wavefunction in this proposal is instead imposed on the relative wavefunction φ(r). By
selecting a spherical symmetric cavity for simplicity, the centre of mass is considered stuck
in the centre of the hole, so that one can write the factorization φ(r) = R(r)Ylm(θ, ϕ) as
usual. Moreover, the Hydrogen-like Schrödinger equation is obtained for the variable
u(r) = rR(r):

d2u
dρ2 +

[
−1

4
+

n
ρ
− l(l + 1)

ρ2

]
= 0 , (11)

n, l, m being the well-known quantum numbers, ρ = 2κr with κ =
√

µ|E|/h̄ and n = 1/aPsκ
(µ being the reduced Ps mass, while aPs is the Ps Bohr radius = 2a0). The solution of this
equation is then looked in the familiar form u(ρ) = ρl+1e−ρ/2F(l, ρ), but the fundamental
difference as compared to the free-Ps case is that the series expansion for F has to vanish at
r = 2Rc instead of vanishing to infinity, due to the boundary condition. This is because the
maximum radial distance r has to be equal to the diameter of the trapping site 2Rc with the
assumption of the centre of mass located at the cavity centre. As a consequence, the princi-
pal quantum number n is no longer an integer, but assumes real values. After a numerical
evaluation of n, also the corresponding shift of the energy levels E can be obtained.

A formula for the relative contact density is easily obtained as

kr =
1

n2 A2 , (12)
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where the quantity A is the normalization factor of the wavefunction, depending on the
cavity radius Rc as well as n. Within this procedure, and taking l = 0 for the ground state,
a relationship is obtained connecting Rc with both n and kr. As a matter of fact, only for
2Rc < 0.3 nm the quantum number n differs appreciably from unity, and it is observed
that the resulting relative contact density behaves opposite to the cavity radius: it tends to
increase when Rc decreases. Therefore, the findings of this simple model contrast to the
observed swollen Ps, because it demonstrates that the confinement alone inevitably leads
to a compressed state. It is clear that some other effects acting on the contact density have
to be considered in the construction of more realistic yet complicated models.

4.2. The Springs Model

A two-particle model which is exactly solvable was proposed by McMullen and
Stott [29]. In that so-called spring model, the interactions acting on the positron and on the
electron of the Ps atom are described as harmonic potentials, appropriately chosen for each
particle. Furthermore, such potentials have the role of confining the Ps within a spherical
hole in the first realization of the model. The relative hamiltonian is the following:

H = −
h̄2 ∇2

rp

2mp
−

h̄2 ∇2
re

2me
+

1
2

κ(rp − re)
2 +

1
2

k+r2
p +

1
2

k−r2
e , (13)

where for definiteness a harmonic attraction with elastic constant κ replaces the Coulomb
interaction between the electron and the positron. The other harmonic terms on the left side
describe external fields acting separately on the two particles. They can be either attractive
or repulsive depending on physical requirements. Positron attraction towards the ions of
the surrounding cavity would be described by a negative k+, while a realistic choice of k−
is expected to be positive, because of the Pauli exchange repulsion of the Ps–electron with
the outer close-shell electrons. In the centre of mass reference frame, the solution of the
Schrödinger equation associated with the bare hamiltonian (that is without the terms with
k+ and k−) is straightforward

Ψ0(r, R) =
1√
Ω

eiK·R ϕn(r) , (14)

where ϕn(r) is a spherically symmetric simple harmonic oscillator state, represented by
quantum numbers n = (nx, ny, nz).

An important question concerns the boundary condition at the vacuum limit of free-Ps.
For example, with the aim of recovering the free-Ps dipole polarizability, the authors find
that the value of κ must fulfil the condition:

κ =
e2

36a3
0

. (15)

However, other choices are possible. Indeed, if one is interested to recover the vacuum
contact density k0, the condition for κ is given by the formula κ = π2/3h̄4/(8ma4

0).
Under the choice of Equation (15) and with a suitable set of transformations, the eigen-

states of H were found, and in particular the ground state reads

ΨH(r, R) =

(
(kukv)1/4

π

)3/2

e−(
√

kuu2+
√

kvv2)/2 , (16)

where the functions u and v are given explicitly by

u =
√

2m R sin θ +

√
m
2

r cos θ

v =
√

2m R sin θ −
√

m
2

r cos θ

(17)
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while kv and ku are given by:

ku/v = 2κ + k− + k+ ±
√

4κ2 + (k+ − k−)
2 . (18)

As expected, it is found that if k− increases, the Ps–electron is more confined, leading
to a compressed Ps and to a higher contact density. On the other side, if k+ becomes
more negative, the positron is more polarized towards the medium, leading to an effect of
swelling of the Ps, and to a lower contact density. Between these limits, it is possible to find
a condition in which the two effects precisely cancel, that corresponds to the particular line
in the parameters space where kr = 1. A simple interpretation about the physical origin of
k± and of the significance of the results, is suggested by the authors in the common case
of Ps confined in a spherical cavity inside a dielectric. Image forces, attracting both the
positron and the electron towards the cavity walls, can not overcome the strong repulsive
exchange forces in the case of the Ps–electron. On the contrary, the positron is induced to
diffuse in the outer electronic shell. This description is in agreement with the findings of
another model of confined Ps due to Stepanov, which is the subject of the next subsection.

4.3. The Bubble Model

To go beyond TE like models for the study of Ps annihilation, a successful attempt
is proposed by Stepanov et al. [25,30], especially facing the case of Ps in liquids. In their
approach, Ps is described as a two-body atom confined inside a bubble created by itself.
The formation of this bubble is essentially related to two phenomena. Primarily, the in-
fluence of the exchange repulsion between electrons, as in the old proposal of Ferrel [19].
Secondarily, and with the same importance, the action of the Coulombic attractive force
between the positron–electron pair, which in fact is enhanced in the inner of the bubble due
to the absence of the dielectric screening of the surrounding material. The hamiltonian of
this Bubble Model is constructed by introducing two independent potential terms for the
positron and the electron, respectively, and adding a suitable Coulomb potential Uc for
their mutual interaction within the polarizable medium:

H = −
h̄2 ∇2

rp

2mp
−

h̄2 ∇2
re

2me
+ U+(rp) + U−(re) + Uc(rp, re, Rc, ϵ) , (19)

where ϵ is the relative dielectric permittivity of the medium, while Rc is the bubble radius.
The independent potentials U+ and U−, which constitute the main novelty of this

bubble model, are simply modelled by using the work functions for the positron ϕ+ and
for the electron ϕ−:

U+(rp) =

{
0 rp < Rc

−ϕ+ rp > Rc
U−(re) =

{
0 re < Rc

−ϕ− re > Rc
(20)

This formulation of these potentials has the following physical meaning: if the work
function is positive, which is if it requires a positive work to extract a particle from the
material, then the particle in question will be attracted towards the medium and vice versa.
The Coulomb potential Uc takes into account the polarization of the medium and, in the
not straightforward geometry of a uniform dielectric medium containing a spherical void
(the bubble), can be determined for every inter-particle distance r = |rp − re| by solving the
Poisson equation, resulting in a complicated function of Legendre polynomials.

To solve the Schrödinger equation with the above hamiltonian for obtaining the ground
state solution, a variational method is employed by starting with the trial wavefunction:

ΨStep(r, R) =
exp(−r/2a − R/2b)

8π
√

a3b3
, (21)
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with a and b variational parameters. Minimizing the energy, the best solutions for a, b are
found so that it is possible to evaluate the contact density using Equation (10). The pick-off
annihilation rate is calculated with the simple formula of Equation (2) with precisely the
probability Pbubble

out of finding the positron outside the bubble wall as

λpo = λ̄ Pbubble
out = λ̄

∫
rp>Rc

|Ψ(rp − re)|2 d3rp d3re . (22)

All the results that are extracted from the bubble model depend on the following four
parameters: Rc, ϕ+, ϕ− and ϵ, which can be determined with independent experimental
measurements. In general, the parameters ϵ and ϕ− are easily accessible, but this is hardly
true for the others, Rc and ϕ+. In the particular case of liquids, it is customary to use a
further equilibrium condition allowing one to relate Rc to the macroscopic surface tension
σ [25].

It is important to note that in the small radius limit it is straightforward to derive that
the relative contact density obeys the relation kr = k/k0 → 1/ϵ3. This relation indicates
that, among other models, the bubble model is capable of directly explaining the lowering
of the contact density. In the opposite limit of large cavities, the value of the contact density
in the vacuum is regained, as expected. Regarding the pick-off annihilation and its relation
with the bubble radius, the predicted results vary independently of the choice of ϕ+; with a
suitable choice of parameters the simple TE results can be reproduced.

A possible drawback of this theory is that, for an accurate description of polarization
effects in the medium, the variational wavefunction of Equation (21) is retained to be too
simple. On the other hand, in the description of confined Ps the idea of considering the
dielectric properties of the medium is not new. This kind of approach was already studied
in the past with powerful numerical methods, for example, by Bug et al. [26] with Quantum
Monte Carlo simulations. Surprisingly, the differences between their results and those of
the bubble model are very little, hence the physical simplicity of the present description
can be fully appreciated.

4.4. A Formal Two-Particle Model for Ps Confinement in Nanoporous Materials

So far, we have described some of the main two-particle models, which can be applied
to the study of Ps in porous materials. But from the point of view of the experimental
community, these models are not fully satisfactory. This is because they are often not able to
foretell the observed lowering of the contact density, or they are too complicated having to
rely on extensive material-specific calculations, therefore losing simplicity and immediate
physical insight.

To try to overcome these drawbacks, for the description of Ps confined in nanopores
in [11,12] a formal two-particle model inspired by the generality of the TE–like approach
is proposed, and by the consideration of specific chemical properties for the surrounding
material. This model starts from a fundamental observation over the confining potential
acting on Ps. As a matter of fact, the confinement is a net result of two different and
independent contributions, which act separately on the Ps constituent particles, the positron,
and the electron. Regarding the positron, theoretical models [31–33] and experimental
observations, for example, in silica [34], find a positive value for the positron work function.
This suggests that the positron may be attracted toward the material; therefore, it is not
subject to a strict confinement. On the other side, the Ps–electron is affected by a repulsive
Coulomb interaction at short distances with bulk electrons, and moreover to strong Pauli
exchange forces [11,19,35]. Therefore, the Ps–electron tends to prevent a large overlap
between the Ps itself and bulk electrons, inducing the known confinement behaviour. This
picture can be practically supported by the observations in scattering experiments of Ps
over noble gas atoms or molecules. In fact, in spite of the differences in mass and charge,
the total Ps cross-section is found to be practically identical to that of a bare electron. This
clearly indicates that electron exchange forces dominate short-range interactions [36,37].
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This interpretation of the Ps-confining behaviour can be formalized as follows, obtain-
ing a model that is able to describe correctly the lowering of the contact density. By com-
paring experimental data on this quantity and on the pick-off annihilation rate with the
findings of this model, promising results can be obtained enlightening the underlying
connections between these quantities with the size of the cavity and the positron work
function, which is of immense importance for the experimental community.

For definiteness, we consider a spherical cavity of radius Rc centred on the axes origin
and, as usual, define relative r = rp − re and centre of mass coordinates R = (rp + re)/2.
The Hamiltonian of the confined positron–electron system assumes the following form:

H = − h̄2

4m
∇2

R − h̄2

m
∇2

r −
e2

|r| + Vcon f + Vbulk , (23)

where m is the electron/positron mass. The interaction with the surrounding medium is
described by the two potentials Vcon f and Vbulk. In particular, the confining potential acting
only on the Ps–electron can be taken as an infinite well:

Vcon f (r, R) =

{
0 if |re| < Rc

∞ if |re| > Rc
(24)

where re = R − r/2 is the electron position. The condition expressed in Equation (24)
defines a proper geometrical domain in the R, r space, out of which the two-particle
wavefunction is constrained to be simply zero.

The interaction potential due to the bulk is acting only on the positron and, in the first
approximation, it is equal to the opposite of the work function, with the value taken deep
inside the bulk for definiteness, while in the inner of the confining cavity it is considered
zero. Moreover, following the TE modelling prescription, the presence of a surface layer of
thickness ∆ surrounding the cavity has to be taken into account. This layer represents the
spatial region between the outermost accessible position to the Ps–electron and the zone of
the external medium where the properties of a free positron are predominant. The explicit
form of the potential reads

Vbulk(r, R) =

{
0 if |rp| < Rc + ∆

−ϕ+ if |rp| > Rc + ∆
(25)

where ϕ+ is the (positive) work function. The form of this potential is in fact a generalization
of what is usually derived with DFT theories and calculations in metals [33]. Reasonable
values of ∆ are of the order of the bond length between atoms, hence in the range 0.1–0.2 nm.
Because it can be seen that with different choices of ∆ the results of the model undergo
negligible differences, it is possible to fix this parameter at the commonly accepted value of
∆ = 0.166 nm following [20].

For a solution of the time-independent Schrödinger equation with the hamiltonian
of Equation (23), it must observed that the centre of mass is not forced to be confined
inside the cavity, but can be also be located outside the cavity with R > Rc, even if the
electron is strictly confined with |re| < Rc. As usual, the two-particle wavefunction can
be represented in a factored form. Avoiding the introduction of additional geometrical
parameters, a convenient choice is a plane wave-like factor for the centre of mass motion,
while the relative-motion part φ̃ takes into account the following confinement:

Ψ(r, R) ≃ 1√
Ṽ

eiK·R φ̃(r, R) , (26)

where Ṽ is a suitable normalization volume. Here, the function φ̃(r, R) depends parametri-
cally on R by spherical symmetry while retaining the coupling between the coordinates
(relative and centre of mass) in the geometrical domain defining the confinement effects.
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Suitable formulas for φ̃ can be easily determined in some limiting situations; the main ones
are in the centre of the hole and deep inside the bulk. Then, general expressions for φ̃ can
be approximatively constructed on different R intervals as a piecewise continuous function.

Indeed, if R lies deep inside the cavity, it is expected that the ground state φ̃ resembles
the normalized hydrogen-like vacuum solution:

φ̃(r, R → 0) ≃ φ0(r, θ, ϕ) = (2/
√

4π) a−3/2
Ps e−r/aPs (27)

where aPs is the Ps Bohr radius. As R approaches the cavity wall, this wavefunction must
slowly change towards a different outermost function φ̃(r, R ∼ Rc) ≃ φwall(r), which is
strongly deformed and polarized with respect to simpler functions satisfying spherical
symmetry [12]. This is due to the electron position constraint, which resets the two-particle
wave function outside the geometrical domain determined by Equation (24).

To illustrate an example of the effects of the two potentials over the ground state rela-
tive wavefunction φ̃, in Figure 2 we plot the radial probability distribution
P(r) = |r φ̃(r, R)|2 where r is the positron–electron relative distance, in the specific case in
which the electron is located near the wall (with |re| ∼= Rc), and where the wavefunction is
essentially the outermost part φwall(r). The calculation is performed for a cavity of radius
Rc = 0.17 nm to make the confining effect well evident, and for two different positron work
functions. In the figure, the black dashed line represents the free-Ps 1S relative distribution,
while the blue line represents the effect of the confining potential (at zero positron work
function). In this case, one has a squeezing in the radial distribution, with a consequent
enhancing of the contact density value with respect to the free case, similarly to the findings
of the compressed Ps model [28]. The red line shows the effect of the positron work function
in the bulk potential, which is opposite to the above behaviour: the stronger attractive
potential acting on the positron due to the higher value of the positron work function tends
to swell the wavefunction, with a consequent lowering of the contact density.

As shown in [11], from the need of a unique value of the wavefunction in r = 0, one
has φwall(0) = limr→0 B φ0(r), with a suitable normalization coefficient B, which can be
determined as a function of ϕ+ and ∆. As expected, it turns out that B < 1 due to a lower
value of the relative wavefunction with respect to that in vacuum near the wall, because of
stretching of the external part towards the medium. Note that in the limit of free-Ps one has
of course B = 1, and the normalization volume Ṽ turns out to be approximatively equal to
4πR3

c /3 [11].
Now, without lacking of generality and under the hypothesis that the bulk polarization

effects on the Ps wavefunction are important only within a shell of thickness aPs below the
cavity wall (it is unlikely that polarization effects operate over a larger range), a simple
piecewise representation for φ̃(r, R) can be built in the following form:

φ̃(r, R) ≃
{

φ0(r, θ, ϕ) if 0 ≤ R < Rc − aPs

φwall(r, θ, ϕ) if R ≥ Rc − aPs
(28)

Having written the two-particle wavefunction in the separable form of Equation (26),
the contact density can be calculated directly as in Equation (10):

k =
1
Ṽ

∫ Rc

0
|φ̃(0, R)|2 d3R , (29)

where, by using Equation (28) one has

|φ̃(0, R)|2 =

{
k0 if 0 < R ≤ Rc − aPs

B2 k0 if Rc − aPs < R ≤ Rc
(30)
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and, finally, by solving the integral

k = k0 (4π/3Ṽ) [(1 − B2) (Rc − aPs)
3 + B2R3

c ] , (31)

where k0 = 1/πa3
Ps is the free-Ps contact density. Being the normalization coefficient

B < 1, this result demonstrates that the contact density is effectively lower with respect the
free-Ps value. This is a fundamental consequence of the fact that, although the electron is
taken strictly confined in the cavity, the positron can effectively explore the external region,
especially if the electron is located near the wall. Therefore, this model is able to connect
the lowering of the contact density with the geometrical properties of the wavefunction
with different confinement requirements for the two particles.

𝑃(𝑟)

𝑟/𝑎0
Figure 2. The radial distribution function P(r) of the positron–electron relative distance r (normalized
on a0), for a cavity of Rc = 0.17 nm. The black dashed line is the 1S solution for the free-Ps, the blue
line corresponds to the vanishing bulk potential ϕ+ = 0 eV, and the red line shows the effect of a
nonzero bulk potential ϕ+ = 3 eV.

The pick-off rate can be derived from a generalization of the formula of Equation (2) [10]:

λpo ≃ λ̄
ρe

k0
P+

out , (32)

where ρe is the bulk electron density, assumed uniform, and generally lower than k0,
and where P+

out is the probability of finding the positron in the volume Vext external to
the cavity:

P+
out =

∫
Vext

∣∣Ψ+(rp)
∣∣2 d3rp , (33)

where Ψ+(rp) is the positron wavefunction. Within this model, the positron wavefunction
square modulus can be obtained by integrating over R the relative wavefunction |φ̃(r, R)|2,
taking into account the two conditions |re| < Rc for the confined electron and |rp| > Rc
imposed by the volume Vext.

Furthermore, for the calculation of λpo, it is necessary to give an evaluation of the
electron density ρe in the external region where the positron can be found. This quantity
is usually hard to estimate because it can specifically depend on the physical properties
of the material. As suggested by the analysis carried out in [19], the interaction between
the positron and the electrons basically happens with electrons in the outer atomic shells,
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essentially s and p electrons in molecular solids, which are among the most-studied cases.
For simplicity, it can be assumed that these electrons can be treated approximatively
as an uniform density spread over the molecular volume. A method to obtain suitable
expressions for molecular volumes is proposed in [11]: it consists in representing each atom
belonging to the molecule as a sphere with the so-called Van der Waals radius. This permits
the evaluation of the effective electron density ρe for each material under study, and, finally,
determines λpo which, together with the contact density information, can be compared
with experimental data, as effectively performed in [11].

5. Electron Exchange Correlation Effects

As discussed in Section 2, in the theoretical analysis of Ps confinement in porous
materials, it is customary to assume that the interaction of Ps with the electrons belonging
to the cavity can be treated as a small perturbation. However, this simple tenet does not
always turn out to be suitable. But, on the other hand, a more refined description of these
interactions can be made very complicated by the physical requirement of full electron
indistinguishability. This consideration suggests that it is not fully justified to treat Ps
in terms of a separate object with respect to the surrounding material, and where the Ps
electron has a different status with respect to the outer electrons, especially because of the
obvious direct relation with the pick-off annihilation.

In this section, we propose a method to cope with this problem by providing a
theoretical framework in which we introduce perturbatively in a natural way the elec-
tron indistinguishability in the description of Ps interaction with the surroundings elec-
trons. This can be accomplished by explicitly taking into account spin configurations and
positron–electron correlations, and by performing a perturbative calculation of annihilation
rates [38,39]. To understand the need of this theory, we primarily concentrate on a particular
aspect of the problem called “over-counting”, which is encountered in the description of
pick-off annihilation processes in cavities. After this discussion, to the aim of deriving
formal expressions of the total annihilation and pick-off rates for different Ps configurations,
we resort to application of the so-called symmetry-adapted perturbation theory (SAPT) [40],
a tool especially developed to account for electron indistinguishability. Furthermore, we
also consider the use of the local density approximation (LDA) as a method to describe the
properties of the electron system. With this modelization, it is possible to explain both
the pick-off processes and the lowering of the contact density. Moreover, it is possible to
provide a relatively simple method for analysing the full spectrum of a PALS experiment.

5.1. Pick-off and Over-Counting

Let us reconsider the general expressions describing o-Psand p-Psmeasurable annihila-
tion rates, discussed in Section 2:

λt = kr λ3γ + λpo ,

λs = kr λ2γ + λpo .
(34)

where λpo = Poutλ̄. The relative contact density kr is usually associated with possible
modifications of the Ps internal structure, while the pick-off annihilation rate λpo is assumed
equal for both the annihilation rates λt and λs, depending only on some geometrical
probability of finding the positron outside the cavity [11,12,25].

The fact that o-Psand p-Pscondivide the same λpo means that the pick-off annihilation
processes are not influenced by the spin configuration of the electron of Ps in the layer
surrounding the cavity, a common assumption present in the literature and in models
discussed in previous sections. In this picture, exchange correlation effects (due to the
Pauli exclusion principle) between the electron of Ps and the outer electrons of any spin
configuration do not have any “shielding” effect on the Ps behaviour. As a consequence,
the positron is free to annihilate with all the electrons present in the surrounding material,
independently from their spin, and this corresponds to an over-counting of annihilation
processes inside the surface region. On the contrary, if a shielding effect is considered,
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the external electron spin distribution will be imbalanced due to strong repulsive Pauli
exchange forces with the Ps–electron, which will tend to push away electrons with the
same spin. Hence, the positron will most likely annihilate only with those electrons having
opposite spin with respect to the Ps–electron.

The assumption of no shielding effect never received full justification, nor was it
properly discussed from a theoretical point of view. The observation that spin exchange
effects can lead to different pick-off annihilation rates for o-Psand p-Pshas been remarked
in [41], but never further investigated. On the other hand, for an experimental point of
view it represents a minor problem since the over-counting has in fact a negligible effect
on the total annihilation rate of the o-Pssystem, which is the longest component of PALS
spectra and, therefore, is easily measurable, because usually λpo ≫ λt. But this statement
is not true for p-Ps, because pick-off and intrinsic annihilation rates may be comparable.

The question of whether the over-counting can be legitimate or not, given its strong
connection to electron indistinguishability, can find an answer only in the framework of
many-body quantum mechanics. A schematic treatment of the many-body Ps environment
system will be given in the following subsections. As a main result, we will show that
in fact pick-off is indeed different for o-Psand p-Ps. It is important to to remark that this
contention does not contrast with Equation (34), since these equations can be rephrased in
the following different form:

λt = λ3γ +
[
(kr − 1) λ3γ + λpo

]
λs = λ2γ +

[
(kr − 1) λ2γ + λpo

]
.

(35)

Here, the term in square brackets represents the the pick-off, which is the overall contri-
bution to the annihilation due to the external electrons. In the following, we will derive a
formula that has exactly the same form.

5.2. Elements of the Theoretical Treatment for the Ps Environment System

A description of the quantum state of Ps (an electron–positron pair) trapped into a void
must be focused on with the following considerations. In the inner part of the free-space
region of the cavity, Ps can be considered an isolated bound state. Moving towards the
outer part, it transforms slowly into a so-called spur state (sometimes called quasi-Ps) [42],
essentially a positron which interacts with the full many-body electron environment. It is
clear that the complexity of modelling this description arises from the fact that in the inner
scenario one deals with a separate Ps–electron, while in the outer one we have to consider
the complete electron indistinguishability.

The transition between these two limiting situations can be described with a suitable
theoretical treatment, formulated by taking inspiration from methods used in both physics
and chemistry, in particular by writing the global ground state wavefunction ψ(0) of the
different subsystems (in our case Ps and the environment) in a factored form. Generally
speaking, the interaction V̂ between these subsystems can be considered usually small
compared with the proper interaction internal to the separated noninteracting subsystems.
Hence, some sort of perturbative treatment for determining the energy contribution is natu-
rally suggested [43]. To take into account correctly the electronic antisymmetry problem,
a wide range of symmetry-adapted perturbation theories (SAPT) were proposed in the
literature [40]. An accurate review of SAPT theories is beyond the scope of the present
discussion, and can be found, for example, in [44].

In all SAPT formulations, the first-order correction to the energy of a composite system
can be determined as

E(1) =

〈
ψ(0)

∣∣∣V̂∣∣∣Aψ(0)
〉

〈
ψ(0)|Aψ(0)

〉 , (36)

where V̂ is a suitable interacting potential operator, while A is an antisymmetrizer operator,
defined by:
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A =
1

N! ∑
p
(−1)pP . (37)

In this formula, P represents the permutation operator of N electrons, while (−1)p repre-
sents the parity of the permutation. Note that with this definition, A is idempotent, that is
A2 = A. The factor

〈
ψ(0)|Aψ(0)

〉
=
〈

ψ(0)A|Aψ(0)
〉

at the denominator of Equation (36)
is the so-called intermediate-normalization condition [44].

A general formulation of a Hamiltonian for a system consisting of a Ps atom weakly
interacting with an N–electron environment can be schematized as a sum of a free-Ps
Hamiltonian Ĥ(0)

Ps , a Hamiltonian for the surrounding material Ĥb and the interaction
potential acting between the two subsystems:

Ĥ = Ĥ(0)
Ps (rp, re) + Ĥb(r1, r2, · · · , rN) +

N

∑
i=1

V̂int(rp, re, ri) , (38)

where V̂int(rp, re, ri) = V̂C(re, ri)− V̂C(rp, ri). The symbols V̂C(rx, ry) indicate the general
expression of the Coulomb potential between the particles symbolized by x and y, having
spatial coordinates rx and ry, respectively. Regarding the spin coordinates σ of the particles,
for the sake of simplicity in writing, in the following we will denote with p = (rp, σp) and
e = (re, σe) the complete spin–spatial coordinates of the positron and of the Ps–electron,
respectively, while with simple numbers we refer to the spin–spatial coordinates of the N
other electrons (see, for example, the later Equation (40).

For the well-known description of Ps in porous materials, the most important feature
of the interactions is the confining effect. This can be well formalized by an effective
potential V̂eff(rp, re), involving only the spatial coordinates of the Ps atom components.
For example, in the simple case of the TE model discussed in Section 3.1, this potential
is considered an infinite quantum well V̂eff(rp, re) = V̂∞(R), hence only acting on the Ps
centre of mass R. It is useful to include V̂eff in the definition of an effective Ps hamiltonian
as ĤPs = Ĥ(0)

Ps + V̂eff, so that Equation (38) can be rewritten as

Ĥ = ĤPs(rp, re) + Ĥb(r1, r2, · · · , rN) + V̂ , (39)

with an interaction potential V̂ given by

V̂ =

[
N

∑
i=1

V̂int(rp, re, ri)− V̂eff(rp, re)

]
.

By neglecting the interaction potential, the Hamiltonian of the above Equation (39)
becomes separable. Its ground state can be expressed as the product of a Ps wavefunction
Ψjm times the antisymmetric ground state ϕ of the N–electron system:

ψ
(0)
jm (p, e, 1, · · · , N) = Ψjm(p, e) ϕ(1, 2, · · · , N) , (40)

where the indexes j, m indicate the Ps spin S and spin projection Sz quantum numbers
(j = 1 for o-Psand j = 0 for p-Ps). This wavefunction is by construction antisymmetric with
respect to the exchange of any two electrons 1, . . . , N in the material, following the relation

ϕ(1 · · · i · · · j · · · N) = −ϕ(1 · · · j · · · i · · · N) ∀i, j , (41)

but it is not antisymmetric with respect to the exchange with Ps electron.
It is useful now to introduce some physical quantities, well known in the framework

of the theory of many-body systems. The first is the external electron density, which can be
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derived from the square modulus of the N–electron normalized wavefunction and can be
expressed by

n(r) = N ∑
σ1

∫
|ϕ(r, σ1, 2, · · · , N)|2 d2 . . . dN . (42)

Here and in the following, we use the compact notation
∫

di = ∑σi

∫
d3ri to represent both

spin summation and spatial integration.
Other important quantities are the so-called reduced density matrices (RDM), which

are powerful concepts used in many body physics offering a convenient way for the
description of the internal structure of the system of N indistinguishable particles. The first,
and simplest, RDM is the one-body reduced density matrix (1RDM), defined as

Γ(1)(x; y) = N
∫

ϕ(x, 2, · · · , N)ϕ∗(y, 2, · · · , N) d2 · · · dN , (43)

where (as defined before) x and y denote the couple of spin–spatial coordinates (rx, σx)
and (ry, σy). Similarly, the second useful quantity is the two-body reduced density matrix
(2RDM), defined as

Γ(2)(x, x′; y, y′) =

(
N
2

) ∫
ϕ(x, x′, 3, · · · , N)ϕ∗(y, y′, 3, · · · , N) d3 · · · dN . (44)

Both 1RDM and 2RDM can be written as a sum of spin components (4 in the case of 1RDM
and 16 in the case of 2RDM) depending only on spatial variables, by a suitable expansion
over a complete set of spin functions. Moreover, by integration over spin variables both
1RDM and 2RDM define a corresponding spatial counterpart (more details in [38]).

Note that the diagonal part of the spatial 1RDM turns out to be exactly the electron
density defined in Equation (42):

n(r) = Γ(1)(r; r) = n↑(r) + n↓(r) , (45)

where it is possible to show that this density can be explicitly separated in the two local
spin up(down) density n↑(n↓). On the other hand, the analogous diagonal part of the
spatial 2RDM, Γ(2)(rx, ry; rx, ry) = P(rx, ry), corresponds to the pair distribution function
proportional to the conditional probability of having an electron in ry given another one
in rx. Assuming, reasonably, that the correlation between two electrons vanishes at long
distances, in this limit one has naturally that P(rx, ry) satisfies the following condition:

P(rx, ry) ≈ n(rx)n(ry) when |rx − ry| → ∞ . (46)

Regarding the opposite limit, in real systems the probability of having two electrons
spatially very close to each other is strongly suppressed by the Pauli exclusion principle,
and by the strong Coulomb repulsion.

Let us observe that when Ps approaches the outer part of the cavity, its wavefunction
will begin to “overlap” with that of the electronic external system. Hence, exchange
correlation effects can play a relevant role. Then, it is useful to introduce a suitable real
parameter S to quantify this overlap. After calculation, it turns out that S is given by the
following Formula [38]:

S =
∫

Ψ∗
jm(p, e)Ψjm(p, 1) Γ(1)(e; 1) dp de d1 . (47)

As a matter of fact, assuming a Ps atom confined in a void region, the interaction with the
outer electrons will take place only in a very limited surface domain. Therefore, the support
of the integral in this exchange overlap Equation (47) is small by construction, and in
particular one has S < 1.
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5.3. Perturbative Approach to Annihilation Rates

In the literature and within a hamiltonian framework, annihilation phenomena can be
treated in a simpler way by introducing an effective absorption potential −ih̄λ̂/2, where λ̂
is a suitable loss rate operator [45]. It is easy to see that this potential leads to an exponential
decay of the positron (or Ps) wavefunction, then accounting for particle loss with a rate
that can be related with that determined via PALS experiments. This description of the
annihilation process is obviously connected to the imaginary part of the energy of the
system. In particular, in the perturbative description, from the imaginary part of the first-
order correction to the energy one can derive a first-order correction to the annihilation
rate. This correction can be calculated in the SAPT framework by using Equation (36),
depending only on the knowledge of the unperturbed ground state of the system.

We start by splitting the loss rate operator into two different parts. The first part is
λ̂e, which is related only to the intrinsic annihilation of the positron with the Ps–electron e.
The second part is ∑N

i=1 λ̂i, which is related to pick-off annihilations of the positron with
the system of the other N electrons. With this position, the Hamiltonian operator (39) is
reformulated as:

Ĥ = ĤPs(rp, re)− i
h̄
2

λ̂e + Ĥb(r1, · · · , rN) +

[
V̂ − i

h̄
2

N

∑
i=1

λ̂i

]
. (48)

The expression of the pick-off annihilation operator is given explicitly by [13]:

λ̂i = 8πa3
0 δ3(rp − ri)

[
1 − Σp,i

2
λ2γ +

1 + Σp,i

2
λ3γ

]
, (49)

where 8πa3
0 is the inverse contact density of Ps in vacuum (1/k0), rp and ri are positron

and electrons coordinates, respectively, and Σp,i is the spin exchange operator. With this
definition, it is clear that λ̂ is a contact operator, being a linear superposition of delta functions
of the positron–electron distance. The spin exchange operator Σ guarantees that the singlet
Ps antisymmetric spin state annihilates via 2γ emission, while the triplet symmetric spin
state annihilates via 3γ emission. This form of λ̂i gives the correct annihilation rates for
p-Psand o-Psstates in vacuum.

The total Ps annihilation rate can be straightforwardly calculated as the sum of two
contributions:

λ = λ(0) + λ(1) . (50)

The zero-order term λ(0) is the intrinsic annihilation rate and has the explicit form

λ(0) =
〈

ψ
(0)
jm

∣∣∣λ̂e

∣∣∣ψ(0)
jm

〉
= 8πa3

0

∫
dp
∣∣Ψjm(p, p)

∣∣2 ×{λ2γ if j = 0 (p-Ps)

λ3γ if j = 1 (o-Ps)

(51)

which of course does not depend on the external electrons. The first-order correction λ(1)

represents the (perturbative) pick-off contribution and is determined by using Equation (36):

λ(1) =

〈
ψ
(0)
jm

∣∣∣∑N
i=1 λ̂i

∣∣∣Aψ
(0)
jm

〉
〈

ψ
(0)
jm |Aψ

(0)
jm

〉 . (52)

Calculation of the normalization factor using the definition given in Equation (37), gives
the following result: 〈

ψ
(0)
jm |Aψ

(0)
jm

〉
=

N
N + 1

, (53)
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where the factor N depends only on the exchange overlap S as N = 1 − S. The factor
(N + 1) at the denominator represents the total number of permutations of the Ps electron
with the N electron system.

Regarding the physical meaning of these formulas, it is important to observe that
the antisimmetrized wavefunction

∣∣∣Aψ
(0)
jm

〉
describes in a natural way positron–electron

correlation factors for all surrounding electrons by definition through suitable expressions
of the two-particle Ps wavefunction Ψjm(p, e). On the contrary, the correlation between the
Ps–electron with the external electrons is not explicitly considered in this formulation, since
its contribution to annihilation is negligible.

For the sake of definiteness, from now on we will concentrate on a particular compo-
nent of o-Ps, by fixing {jm} = {11}. Anyway, a similar calculation can be performed for
any Ps angular quantum numbers. By rewriting Equation (52) by putting N on the left side
and using the antisymmetric property of ϕ, it possible to show in general that the overall
correction to the annihilation rate can be written as the sum of three different contributions:

Nλ(1) = λsym + λex + λcorr , (54)

whose explicit expression can be found in [38]. The cumbersome calculation involves
the electron density and the 1RDM and 2RDM representations over spin components,
as defined in Equations (42)–(45). with the assumption of uniform spin distribution for the
system of external electrons, implying n↑(r) = n↓(r) = 1

2 n(r).
The first term λsym represents the direct contribution to the annihilation with external

electrons, and retains exactly the same expression for o-Psand p-Ps, i.e., it is fully symmetric
with respect to Ps spin configuration, similarly to what was discussed previously about
the pick-off annihilation rate (see Equation (34)). As a matter of fact, λsym turns out to be
proportional to the averaged annihilation rate λ̄ defined in Equation (3). The second and
last terms λex and λcorr in Equation (54) are exchange contributions to annihilation. In the
calculation of λex, the annihilation operator was directly acting on the Ps spin wavefunction,
so that one obtains in fact diverse final expressions for the different spin configurations
o-Psand p-Ps. This exchange contribution λex can be expressed in a simple form using the
definition of the one-body reduced density matrix (1RDM) of Equation (43). In the case of
o-Ps, it is proportional to λ3γ, while for p-Psit is proportional to λ2γ. Finally, the last term
in Equation (54) is an exchange–correlation contribution to annihilation, and it is related to
the two-body reduced density matrix Γ(2) of the system and to the Ps spin configuration.

Now, having established the formal basic expression for the annihilation rates, we
discuss this achievement to provide more physical insight. Regarding the system interacting
with Ps, we made the only reasonable assumption of uniform spin distribution, a condition
affirming the absence of a local spin polarization in the unperturbed ground state of the
electronic system near the cavity region. On the other side, no assumption on the form of ϕ
has been carried out, so that the result obtained in Equation (54) about the annihilation rate
is completely general. But to obtain more manageable results it is necessary to introduce
further approximations.

In particular, we consider the so-called local density approximation (LDA). Under
the LDA framework, the properties of an electronic system with a density profile n(r) are
locally modelled in the same manner of those of a free electron gas with the same density.
Within this framework, it can be shown that the 1RDM has an analytical expression [46],
essentially proportional to the density profile:

Γ(1)(x; y) = δσxσy

n(Rxy)

2
B
(
kF(Rxy) |rxy|

)
, (55)

where kF(Rxy) =
(
3π2n(Rxy)

)1/3 is a “local” Fermi momentum and

B(x) = 3
sin(x)− x cos(x)

x3 . (56)
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In these equations, we used the notation Rxy = (rx + ry)/2 and rxy = rx − ry, which are
the average and the relative position of the two particles x and y, respectively. But in
the general case, a similar simple result does not hold for 2RDM because this quantity
strongly depends on the system under examination. This fact is particularly relevant for
the calculation of λcorr. However, it is possible to demonstrate that for ordinary values
of n(r) this quantity is in fact a higher order contribution to the annihilation rates [38].
Therefore, given that we are considering only first-order corrections to annihilation rates,
we can neglect λcorr from now on.

The exchange overlap S and all the corrections to the annihilation rates can in principle
be determined by using the definitions just introduced, in the case in which the electron
density function n(r) and the Ps spatial wavefunction can be expressed in an explicit form.
We note that the theory presented here can be developed starting from any given Ps and
electron bulk wavefunctions, in particular accommodating any suitable choice of the spatial
part of the Ps wavefunction and any form of positron–electron correlation factors, as usually
carried out in the literature [31,47]

5.4. Calculation of Pick-Off Annihilation Rate

In order to find a suitable expression of the spatial Ps wavefunction Ψ(rp, re), it is
necessary to particularize the form of the hamiltonian, in particular by choosing some
suitable effective potential V̂eff acting on the two particles, as discussed in previous sub-
sections. To quote an example and for the sake of simplicity, with the objective of a direct
comparison with the well-studied TE model, we select a spherical cavity geometry of radius
Rc, and suppose that Ψ can be written in a simple factored form:

Ψ(rp, re) = ψ(rpe)ΨTE(Rpe) , (57)

depending on the relative rpe and centre of mass Rpe coordinates, with usual definitions. As
discussed in Section 3, the confining effect acting on Ps centre of mass is taken into account
by using an infinite potential barrier located at a distance Rc + ∆ from the cavity centre [20].
Therefore, the centre of mass ground–state wavefunction is the same as in Equation (4):

ΨTE(Rpe) =
1√

2π(Rc + ∆)

sin
(
πRpe/(Rc + ∆)

)
Rpe

. (58)

Moreover, since we are neglecting all Coulomb potentials except those intrinsic of the
bound Ps atom, the radial part of the relative wavefunction is assumed to be the same as to
the unperturbed Ps, which is a hydrogen-like 1S orbital:

ψ(rpe) =
√

k0 e−rpe/aPs , (59)

(as already considered in Section 4.4).
On the other hand, giving a precise expression for the electron density function n(r)

can be very complicated by the fact that it is necessary to take into account all the relevant
interactions which are naturally present in the system. While it is expected that electron–
electron repulsion adds a negligible contribution to annihilation, the opposite is in fact true
for positron–electron attraction, hence leading to an enhancement of the electron density
at the positron position, which can induce an increase in the annihilation rate [48]. For
simplicity, we can just define an effective electron density ρe interacting with Ps in the
interaction region limited by the shell layer [39], and write

n(r) =

{
ρe if r ≥ Rc

0 if r < Rc
(60)

which is also the exact prescription of the TE model.
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Using Equations (57) and (60), and the LDA expressions in Equations (55) and (56),
the symmetric contribution λsym to the annihilation and the exchange overlap S are easily
calculated (see [38]). The important exchange correction terms λex appropriate for the
different Ps spin configurations are obtained as follows. The exchange correction λ

3γ
ex for

o-Psturns out to be given by the expression

λ
3γ
ex = −

λ3γ ρe

2
√

k0

∫
Rpe>Rc

d3rp d3re Ψ∗
TE(Rpe)ΨTE(rp)ψ(rpe)B(kF rpe) , (61)

proportional to the intrinsic annihilation rate λ3γ as expected. For p-Psthe exchange
correction, λ

2γ
ex is simply obtained by interchanging λ3γ ↔ λ2γ in the previous expression.

Finally, by collecting all these first-order corrections under the scheme of Equation (54),
using N = 1 − S and adding the unperturbed intrinsic annihilation, we obtain the formal
expressions for the total annihilation rates of o-Psand p-Psin the elegant form [38,39]:

λt =

[
λ3γ − λ

3γ
ex

1 − S

]
+

λsym

1 − S
,

λs =

[
λ2γ − λ

2γ
ex

1 − S

]
+

λsym

1 − S
.

(62)

These expressions clearly demonstrate that a difference in pick-off annihilation rates be-
tween Ps spin configurations can be solely ascribed to exchange contributions.

This compact result was obtained by using some simplifying approximations, but
to derive reliable results susceptible to physical interpretation, it must be noted that the
spatial integrals appearing in the definitions of the various terms in the formula have
no analytical expression, and one needs to use numerical methods. However, by using
simple geometrical considerations some insights about the qualitative behaviour of the
annihilation rates can be derived. First, we note that the greatest contribution to spatial
integrals between electrons variables comes when their positions are sufficiently near to
the positron position, in a sphere roughly the size of Ps. Taking again as a reference the TE
picture, this size is generally small compared to the range Rc + ∆, which coincides with
the range of the possible positions of the centre of mass wavefunction ΨTE(R). Hence, we
can approximate all the occurrences of the centre of mass positions in the integrals with a
single dependence on R. Now, by observing that n(R) has a step behaviour (Equation (60)),
it is useful to define the quantity P′

out as the probability of finding the Ps centre of mass in
the interaction region outside Rc. In spherical coordinates

P′
out ≡ 4π

∫ Rc+∆

Rc
|ΨTE(R)|2R2 dR

= 1 − Rc

Rc + ∆
+

1
2π

sin
2πRc

Rc + ∆
,

(63)

which is again the well-known expression derived in the framework of the TE model
because P′

out is similar to the Pout used there. By using the above discussed approximation
in all the integrals defining the annihilation contributions, we obtain the annihilation rates
for o-Psand p-Psin the explicit form similar to that presented in Section 5.1, exhibiting two
separate contributions due to the pick-off processes:

λt =

[
1 − P′

out A[ν]

1 − P′
outC[ν]

]
λ3γ +

[
ρe

k0

P′
out

1 − P′
outC[ν]

]
λ̄ ,

λs =

[
1 − P′

out A[ν]

1 − P′
outC[ν]

]
λ2γ +

[
ρe

k0

P′
out

1 − P′
outC[ν]

]
λ̄ ,

(64)
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where we have inserted two auxiliary functions A and C of the variable ν = 2kFa0, which
depend on ρe through kF [38,39]. Their values range from 0 to 1 as a function of the electron
density ρe.

The main advantage of this final formulation is that in this way geometrical effects
appear well separated from electron exchange contributions. As a matter of fact, only in
the definition of the probability P′

out, which depends on the cavity radius Rc and on the
thickness of the interacting region ∆, are contained the geometrical parameters On the
other hand, the effects due to electron exchange define the appropriate analytical form by
which the parameters k0, ρe and the same P′

out appear.
Within this formulation, by comparing with Equation (34) it turns out that the intrinsic

relative contact density assumes the explicit expression

kr =

[
1 − P′

out A[ν]

1 − P′
outC[ν]

]
, (65)

which justifies the well-known lowering of the contact density observed for Ps in nanocav-
ities. The meaning of kr is that of a useful indicator of the degree of dissociation for a
Ps atom interacting with the medium. In other words, it signals the separability of the
Ps–electron. The overlap of Ps with surrounding electrons lowers kr with respect to its
maximum value (kr = 1 for Ps in vacuum), and in particular kr tends to vanish as the
original Ps state loses its identity. In the limit case of kr = 0, no distinction between
o-Psand p-Pspick-off annihilation rates is possible, because all electrons (the Ps–electron
and the external ones) have to be taken on equal footings. It is of paramount importance
to note that, in this picture, the lowering of the contact density is essentially due to the
electron indistinguishability. By no means it can be related to a spatial deformation of the
Ps wavefunction, contrary to what is proposed and discussed in other models presented in
previous sections.

As a final observation, it is interesting to compare directly Equation (64) with the
annihilation formulas presented in Section 5.1 and with the TE results. The equivalence
between the symmetric contributes to pick-off annihilation rates as predicted by the simple
formula of Equation (34) and by the result in Equation (64) is simply obtained by setting:

Pout =
ρe

k0

P′
out

1 − P′
outC[ν]

. (66)

Applying this condition, we can rewrite the fundamental Equation (64) as

λt =

[
1 − k0

ρe
A[ν]Pout

]
λ3γ + Poutλ̄ ,

λs =

[
1 − k0

ρe
A[ν]Pout

]
λ2γ + Poutλ̄ ,

(67)

which shows a clear similarity to Equation (34) and of course can be interpreted directly as
in Equation (35). Since this formulation is an equivalent version of the TE model, when Ps
is in the outer shell of thickness ∆ ≃ 0.166 nm, the intrinsic relative contact density in the
surface region can be simply derived by assuming Pout = 1 obtaining

kout = 1 − k0

ρe
A[ν] . (68)

Under the limiting situation in which the probability of having an external electron at the
positron position assumes the same value as in free-Ps (i.e., when ρe → k0), kout can be
explicitly calculated as [38]:

lim
ρe→k0

kout = 1 − 0.472 = 0.527 . (69)
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This result is very close to the expectation value of the relative contact density of one electron
in the negative ion Ps− [49]. As a matter of fact, this result can be expected and is not
surprising because it is well known that in the usual picture of Ps− only one electron is
closely bound to the positron [50]. Moreover, a one–half factor in the contact density comes
from the normalization of the total antisymmetric wavefunction. This interesting result
suggests an intuitive simplified picture in which in the internal cavity region Ps behaves
similarly to being in vacuum, whereas inside the interaction region in the external shell of
thickness ∆ Ps resembles a Ps− .

As another observation, it is possible to note that in the case of low electron density
values, the range of the shielding effect, i.e., the tendency to Ps electron to repel external
electrons with the same spin, will be enhanced and, in particular for ρe = ρ0 ≈ 0.3k0, the
intrinsic contact density is found to vanish in the surface region:

kout = 1 − k0

ρe
A[ν]

∣∣∣∣
ρe=ρ0

= 0 , (70)

so that Equation (67) become

λt|ρ0
= [1 − Pout]λ3γ + Poutλ̄ ,

λs|ρ0
= [1 − Pout]λ2γ + Poutλ̄ ,

(71)

which are of the same form of the general formulas discussed in Section 2. This final
expression can give a justification to the assumptions that are employed in the family of
models discussed in that section.

6. Conclusions

The main objective of this review is to analyse the various theories proposed for
describing the features of Ps in the cavities present in solid media. This is motivated by
the increase in the interest to use Ps as a valuable probe to characterize the structure of
many kinds of materials, using PALS as the main technique. In order to gain information
on the structural properties of the medium from PALS data, we need a satisfactory theory
of Ps formation and annihilation in condensed matter. Any model giving a quantitative
description of Ps trapped in the cavities of a material should be able to correctly explain
the pick-off process, that is, the annihilation with an external electron belonging to the
surrounding medium rather than the Ps electron.

Most of the models presently used to describe Ps trapped in sub-nanometric holes
follow the TE assumption, which considers Ps as a featureless single quantum particle
inside an infinite potential well. A quantitative relationship between the cavity size and
the pick-off decay rate λpo is obtained. Temperature effects as well as different geometries
for the void have extended the initial formulation.

After having reviewed the various available models dealing with Ps caged inside
(sub)nanometric voids, we pointed out that some of the annihilation features are still
missing a suitable theoretical framework. The most important one, usually observed in
many structures allowing Ps formation, is the intrinsic relative contact density, which is
generally lowered with respect to the value in vacuum. This quantity, which represents the
probability to find the electron of Ps at the positron position, is a fundamental measurable
quantity of interest. In order to describe the intrinsic contact density, it is necessary to know
the Ps internal structure. For this purpose various two-particle models were proposed,
which consider separate degrees of freedom for the two particles forming Ps. These
models introduce some effective potentials to describe the interaction of the Ps atom with
the medium.

In particular, the fundamental aspect of all models is picturing Ps as affected by the
confining potential of the cavity. The confining effects can be attributed, for example, to an
infinite wall potential, to harmonic potentials and, especially in the case of liquids, to the



Int. J. Mol. Sci. 2024, 25, 3692 23 of 25

formation of a bubble around the Ps with a dielectric screening. A proposal which combines
the general approach of the TE model with specific chemical features of the medium is to
consider directly the confining effect due to Pauli exchange forces, which can be ascribed to
the Ps–electron only. On the other hand, the positron can be attracted toward the bulk due
to the positive value of the positron work function as exhibited by many materials. This
effect tends to pull the positron apart from the electron of Ps, so giving a partial justification
for the lowering of the contact density. The solution of this model effectively demonstrates
the lowering of various confining solid media supporting the experimental results.

Nevertheless, the presence of several unknown parameters and, in some cases, the ex-
treme conditions which are necessary to account for the lowering of the contact density were
unsatisfactory. As a consequence, the problem of Ps trapping in materials showing small voids
has been tackled by means of a different approach, by considering the exchange interaction
with the external electrons surrounding Ps. In the literature, the usual point of view is to
assume small interactions. In other words, Ps is considered as weakly interacting with the
local environment. It follows that a possible way forward for this study is to use a pertur-
bative approach, even if the request of full electron indistinguishability adds a complication.
Therefore, an appropriate theoretical framework can be set up by using the symmetry adapted
perturbation theory (SAPT), in which Ps is considered a separate “entity” and the Ps electron
has a kind of special role in comparison with the external electrons.

Using this theory, we showed that some concepts, which in the literature have been
the objects of different interpretations, can be unequivocally clarified. In particular, we put
into a new light the meaning of the relative contact density kr, always correlated only to
the spatial part of the wavefunction for trapped Ps, and critically discussed the form of the
pick-off annihilation rate, usually considered identical for both o-Psand p-Ps. In practice, we
showed that the Ps electron exerts a spin-shielding action which implies different pick-off
decay rates for the two Ps sublevels. This feature has been generally misunderstood and,
to the best of our knowledge, never considered in the previous works. We showed also that
it is possible to recover a symmetric quasi-analytic form for the two pick-off decay rates by
explicitly taking the observed lowering of the relative contact density into account.

The final model contains only three parameters: the radius Rc of the (spherical) void,
the thickness of the interaction layer ∆, and the magnitude of the external electron density
as probed by the positron ρe. They are summarized in Equation (62), which gives the
total annihilation rates for p-Psand o-Ps. The model supplies a simple justification of the
lowering of the relative contact density without introducing any potential able to pull apart
the two particles forming Ps, as evidenced by using the same unperturbed expression for
the Ps relative wavefunction as in vacuum. The fact that kr → 0 for sufficiently small values
of Rc or for high values of the external electron density simply derives from a higher overlap
with the surrounding electrons and does not depend on the spatial deformation of the Ps
wavefunction, as generally admitted in previous models. Put in other terms, the concept of
Ps itself becomes meaningless when the electrons cannot be any longer distinguished.

As a final comment, we point out that, although we used a simple expression for the
Ps wavefunction, it is straightforward to extend our results to any one-particle and two-
particles models which describe Ps trapped in cavities, as well as to effective theories mod-
elling electron–positron spatial correlations, as sometimes found in the literature [31,47].

This review suggests that the proposed final model needs to be tested and validated
by further studies. In this connection, PALS and magnetic quenching experiments, also in
the presence of external pressures [51], should be most useful since they entail a reduction
in the unknown free parameters.
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