
Frontiers in Neurology 01 frontiersin.org

Pay attention: you can fall! The 
Mini-BESTest scale and the turning 
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Background: Balance, i.e., the ability not to fall, is often poor in neurological 
patients and this impairment increases their risk of falling. The Mini-Balance 
Evaluation System Test (Mini-BESTest), a rating scale, the Timed Up and Go 
(TUG) test, and gait measures are commonly used to quantify balance. This study 
assesses the criterion validity of these measures as balance measures.

Methods: The probability of being a faller within nine months was used as the 
balance criterion. The Mini-BESTest, TUG (instrumented with inertial sensors), 
and walking test were administered before and after inpatient rehabilitation. 
Multiple and LASSO logistic regressions were used for the analysis. The diagnostic 
accuracy of the model was assessed with the area under the curve (AUC) of the 
receiver operating characteristic curve. Mobility measure validity was compared 
with the Akaike Information Criterion (AIC).

Results: Two hundred and fourteen neurological patients (stroke, peripheral 
neuropathy, or parkinsonism) were recruited. In total, 82 patients fell at least once 
in the nine-month follow-up. The Mini-BESTest (AUC  =  0.69; 95%CI: 0.62–0.76), 
the duration of the TUG turning phase (AUC  =  0.69; 0.62–0.76), and other TUG 
measures were significant faller predictors in regression models. However, only 
the turning duration (AIC  =  274.0) and Mini-BESTest (AIC  =  276.1) substantially 
improved the prediction of a baseline model, which only included fall risk factors 
from the medical history (AIC  =  281.7). The LASSO procedure selected gender, 
disease chronicity, urinary incontinence, the Mini-BESTest, and turning duration 
as optimal faller predictors.

Conclusion: The TUG turning duration and the Mini-BESTest predict the chance 
of being a faller. Their criterion validity as balance measures in neurological 
patients is substantial.
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1. Introduction

Falls are a leading cause of injury, disability, and injury-related 
death (1), and an increased risk of falling afflicts people with 
neurological impairments (2). Hence, balance, i.e., the ability not to 
fall (3), is paramount in medicine, particularly in neurology 
and rehabilitation.

Evaluating the patient’s stance, gait, and transferring ability is 
fundamental in assessing balance (1, 4). Once patients with poor 
balance are identified, treatments are available to reduce the balance 
impairment, eventually reducing their fall risk (5, 6).

Several rating scales have been developed for balance assessment. 
In these scales, clinicians rate the patient’s performance in different 
balance tasks. Scores are typically low if the patient cannot complete 
the item or when the chance of falling during testing is high (7).

The Mini-Balance Evaluation System Test (Mini-BESTest) (8) is a 
rating scale with high content and construct validity as a balance 
measure. Regarding the former, any clinician likely considers the 
Mini-BESTest items as good balance indicators. About the latter, the 
Mini-BESTest complies with the Rasch analysis requirements (9–12), 
thus returning high-quality, unidimensional balance measures.

Timed clinical and instrumental mobility tests are also used to 
assess balance.

Gait speed can predict several adverse events (including falls, 
hospitalization, and mortality), earning the “vital sign” title (13). An 
increased duration of the Timed Up and Go (TUG) test (14), in which 
the time a person takes to rise from a chair, walk a few meters, turn, 
walk back to the chair and sit down is measured, can indicate an 
increased risk of falls (1, 6).

In recent years, an instrumented version of the TUG test has been 
developed (i.e., the instrumented TUG, ITUG) (15) in which patients 
complete the TUG donning an inertial measurement unit. With these 
tools, many mobility measures can be obtained from the TUG test, 
with some of them, such as those from the turning phase, suitable for 
balance assessment (16–19).

Even if different rating scales, gait, and TUG test measures have 
shown validity as balance measures, there is still a real need to assess 
their criterion validity in greater detail. In this regard, studies using 
the risk of falling as the balance criterion standard seem 
particularly valuable.

The need for further investigations is particularly true for the 
ITUG measures, given the relatively young age of these devices. 
However, this also holds for well-referenced mobility tests since results 
have been inconsistent from study to study [e.g., (20)]. Moreover, the 
same measure can predict the risk of falling in a specific population 
but not in another (21).

The current work aims to assess if different mobility measures, 
including the Mini-BESTest, gait parameters, and measures from 
the ITUG, have satisfactory criterion validity as balance measures 
in neurological patients. The probability of becoming a faller, 
assessed prospectively within 9 months, was used as the 
balance criterion.

2. Methods

This is a longitudinal, prospective, observational study. From 
October 2018 to September 2020, participants were recruited among 
those admitted to the inpatient rehabilitation unit of Casa di Cura del 
Policlinico (Milan, Italy) because of a neurological disability. The 
local ethics committee approved the study (Comitato Etico Milano 
Area 2; 568_2018bis), and participants gave their written consent to 
participate. The current work reports the primary analysis of 
the project.

The study’s inclusion and exclusion criteria are listed below.
Inclusion criteria:

 - Age > 18 years;
 - Hemiparesis secondary to a stroke (ischaemic or haemorrhagic), 

peripheral neuropathy of the lower limbs, Parkinson’s disease, or 
vascular parkinsonism;

 - Consent to participate in the study.

Exclusion criteria

 - Concomitance of two neurological diagnoses (e.g., hemiparesis 
and Parkinson’s disease);

 - The inability to complete the TUG test and the 10 m walking test 
without touching assistance on admission and discharge;

 - A TUG duration longer than 30 s on discharge;
 - Severe visual impairment or hearing loss;
 - Rare neurological diseases.

The study only included stroke, peripheral neuropathies, and 
parkinsonism [and excluded rarer diseases also known to cause a 
balance and gait impairment, such as neuromuscular disorders (22)] 
since they represent three widespread and prototypical motor 
syndromes affecting gait and gross motor functions. In plain words, 
these three motor syndromes are common causes of increased risk 
of falling.

In detail, hemiparetic walking was represented by stroke patients, 
ataxic gait by peripheral neuropathies, and the gait disorder of the 
rigid-akinetic syndromes by Parkinson’s disease and 
vascular parkinsonism.

All hemiparetic patients included here had a clinical stroke 
diagnosis with brain imaging (i.e., CT scan or MRI) compatible with 
intracerebral hemorrhage or ischaemic stroke (23). All these 
participants suffered persisting focal neurological deficits (i.e., 
hemiparesis) at the time of their inclusion in the study (23).

The criteria by Postuma et  al. (24) were used for diagnosing 
Parkinson’s disease. Vascular parkinsonism was diagnosed in case of 
significant signs of vascular encephalopathy in the brain CT or MRI 
scan associated with a clinical diagnosis of rigid-akinetic syndrome, 
i.e., in the case of parkinsonian features, presumably of vascular 
origin (25). Based on the above, patients with atypical, degenerative 
parkinsonism were excluded [e.g., (26)].
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The peripheral neuropathy of the lower limb was diagnosed after 
a nerve conduction study. The peripheral neuropathy in the patients 
included here was axonal, sensory-motor, and length-dependent (18, 
27). Diabetes was among the polyneuropathy most-frequent risk 
factors (18).

All patients completed 5 to 6 weeks of physiotherapy (two 
sessions/day, 45 min each, 5 days/week) and occupational therapy 
(one session/day, 45 min each, 3 days/week). The rehabilitation 
program followed recommendations for reducing the fall risk [e.g., 
(28); details can be found in (18)].

The study’s sample size was calculated as follows: in line with 
previous reports on the risk of falling in neurological patients [e.g., 
(29)], it was estimated that about 50% of participants would fall within 
1 year. Based on this estimate, considering that each participant was 
followed up for 9 months and that the logistic regression was used for 
the primary analysis, we planned to recruit at least 213 patients. In this 
way, it was reasonable to expect at least 80 fallers in the nine-month 
study, a total number of cases that permits simultaneously assessing 
up to seven predictors in the logistic regression models (30). In 
estimating the maximum number of predictors simultaneously 
testable in a (logistic) regression model (here, seven plus the regression 
intercept), the “10 events per variable” rule of thumb was applied (31).

The STROBE checklist for reporting cohort studies was 
followed (32).

2.1. Falls recording

Falls, i.e., events “during which a person inadvertently comes to 
rest on the ground or other lower level” (1), were recorded 9 months 
after the rehabilitation discharge.

Participants received a monthly paper calendar and were asked to 
annotate on this calendar if a fall occurred and the day it happened 
(33). Moreover, research staff contacted all participants at the end of 
the first, second, third, sixth, and ninth months from discharge to 
maximize compliance.

Participants were classified into non-fallers, fallers, and recurrent 
fallers according to the number of falls they experienced in the 
observation period. In particular, fallers fell just once, and recurrent 
fallers were those with two or more falls in the follow-up period (34).

2.2. Participants’ gait and mobility testing

The Mini-BESTest (8), the 10 m walking test (35), and the ITUG 
(15) were administered to each participant at rehabilitation admission 
and discharge.

The three-meter variant of the TUG test (14) was performed here 
(turning point marked by a traffic cone) and recorded with an inertial 
measurement unit (mHT-mHealth Technologies, Bologna, Italy) 
secured to the participant’s back (15, 17, 18).

The Mini-BESTest balance measure (36) was expressed in logits 
(the higher, the better the balance), the measurement unit from the 
Rasch analysis.

The patient’s disability was measured with the Functional 
Independence Measure (FIM) (37) in both assessment sessions 
(motor and cognitive domains). Finally, additional participants’ 
information was collected on admission only, including age, gender, 
and diagnosis.

Details on the measures collected here are given in 
Supplementary appendix 1.

2.3. Statistical analysis

The criterion validity of the Mini-BESTest, gait, and ITUG 
measures was assessed by testing their ability to predict the probability 
of being a faller within 9 months after discharge. Multiple logistic 
regression and the Least Absolute Shrinkage and Selection Operator 
(LASSO) logistic regression were used.

Overall, 12 variables were assessed as potential faller predictors, 
including five features from the medical history:

 1. age (years),
 2. gender (male vs. female),
 3. acute vs. chronic condition,
 4. cognitive impairment (present vs. absent) and
 5. urinary incontinence (present vs. absent).

Acute patients were those transferred to rehabilitation from an 
acute hospital. Chronic ones were admitted from the community (19). 
Cognitive impairment was diagnosed from the total score of the FIM 
cognitive domain (no impairment if the cognitive domain total score 
was ≥33). Urinary incontinence was also derived from the FIM scale 
(no incontinence if item 7 was ≥6).

Four gait and mobility measures were tested as predictors:

 6. GS: gait speed (m/s),
 7. WR: walk ratio (cm/number of steps/min),
 8. MB: Mini-BESTest interval measure (logits) and
 9. TUG: the total duration (s) of the TUG test.

Finally, three measures from the ITUG test were assessed:

 10. STW: duration (s) of the sit-to-walk phase,
 11. Turn: duration (s) of the first turning phase,
 12. ω: peak angular velocity (°/s) along the vertical axis during the 

first turning phase.

All predictors, except variables 1–3 from the medical history, 
came from the discharge assessment.

2.3.1. Criterion validity assessment
First, a multiple logistic regression model was arranged with 

variables 1–5 as predictors and faller status as the response variable. 
This model, nicknamed “h” since it only contains variables from 
medical history, was the reference model.

Next, balance and gait measures were added to model h. The 
following models, called “h+,” were evaluated:

 1. h + GS, i.e., containing all the variables included in model h 
plus gait speed (GS);

 2. h + WR;
 3. h + MB;
 4. h + TUG;
 5. h + STW;
 6. h + Turn;
 7. h + ω.
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A mobility measure had criterion validity if (i) it was a significant 
predictor of the faller status per the likelihood ratio test and (ii) the 
AIC of its h + model was smaller than the one of model h, with a 
difference >2 in absolute value (38).

The AIC difference was also calculated to compare the criterion 
validity of the different balance and gait measures. AIC differences <2 
indicate that the two models are equally good. Differences >4 suggest 
that the model with the smallest AIC is sensibly better than the 
candidate model.

The diagnostic accuracy of model h and models h + was assessed 
by calculating the area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve. The AUC’s 95% confidence 
intervals (95% CI) were calculated with bootstrap (104 replicates).

LASSO logistic regression was used to investigate criterion validity 
further (39). The variables subdued to the LASSO regression were all 
the variables from model h plus the mobility measures from 
h + models whose AIC difference to model h was >2.

If the mobility measures were selected as predictors by the LASSO 
procedure, this was considered confirmatory evidence of criterion 
validity. Note that this analysis assessed gait and mobility measures 
simultaneously rather than separately, as done previously.

A secondary analysis was run with recurrent faller as the response 
variable (i.e., participants who have fallen at least twice vs. non-fallers 
or fallen only once). For sample size reasons, only the LASSO logistic 
regression was used for this analysis.

Finally, simple logistic regression was employed to provide 
reasonable cut-offs for the clinical application of the measures with 
good criterion validity. In detail, three probabilities of being a faller 
(i.e., 0.25, 0.50, and 0.75) are used to identify as many balance 
measure cut-offs and define four ranges of balance impairment. 
Patients whose balance measure (upper cut-off, say of the Mini-
BESTest interval measure) is associated with a probability of being a 
faller <0.25 are considered to suffer a mild balance impairment. 
Those whose balance measure is associated with a faller probability 
between 0.25 and 0.50 are considered to have a moderate balance 
impairment. Finally, those with a severe and markedly severe balance 
impairment have a balance measure associated with a faller 
probability between 0.50 and 0.75 and >0.75, respectively. A 
sensitivity and specificity analysis was eventually calculated on the 
measurement cut-offs.

Like any regression, logistic regression is susceptible to extreme 
observations. In the current study, the duration of the turning and 
sit-to-walk phases presented some “far-outs” (40), and their 
distribution was right-skewed, similar to other TUG duration 
measures [e.g., (41, 42)]. Regarding the far-out observations, these 
were defined according to Tukey (40) as the observations more 
extreme than the third (or first) quartile plus (or minus) three times 
the interquartile range. Because of far-outs and skewness, turning and 
sit-to-walk durations were ln-transformed before entering the 
regression models, a solution that effectively worked out this 
statistical issue.

The median and the first to third quartile (1st–3rd Q) were used 
as central tendency and dispersion measures, respectively. The 
Wilcoxon test was used to test paired comparisons (e.g., change in the 
mobility measures before and after rehabilitation).

R version 4.2.0 was used for statistics and graphics. See 
Supplementary appendix 1 for details on the LASSO 
logistic regression.

3. Results

Of the 353 patients included in the study, 214 were retained for 
the primary analysis (Figure  1). Most participants (57.0%) had 
hemiparesis secondary to a stroke, followed by patients with peripheral 
neuropathy (24.3%; Table 1).

During the nine-month follow-up, 166 falls were recorded from 82 
patients. Forty-two participants were recurrent fallers. Most falls caused 
no injury, while 38 were injurious falls. Of these, 25 caused a contusion, 
and seven a contused lacerated wound. Five resulted in a limb fracture, 
including a hip fracture, and one in a subdural haematoma.

A full description of the sample is given in Supplementary appendix 2.

3.1. Criterion validity analysis: fallers 
identification

The AUC of model h was 0.66 (95% CI: 0.59–0.74), pointing out 
some ability of this model to distinguish fallers from non-fallers. The 
AUC of h + models was also larger than 0.5 and negligibly higher than 
that of model h (Table 2).

When h+ models were contrasted with model h (likelihood ratio 
test), the Mini-BESTest (p = 0.006), TUG (p = 0.040), and turning 
duration (p = 0.002) and the peak angular velocity during turning 
(p = 0.023) were significant faller predictors.

Figure 2 shows the AIC of model h and h+ models. Considered 
altogether, significance testing and the AIC analysis indicated that 
turning duration and the Mini-BESTest were the mobility measures 
with the highest criterion validity for fall risk assessment.

The LASSO logistic regression substantially confirmed these 
findings. The Mini-BESTest measure and the turning duration were 
the only mobility measures selected as predictors of being a faller by 
the LASSO procedure, alongside gender, chronicity, and urinary 
incontinence (Figure 3A).

The AUC of this model was 0.69 (95%CI: 0.62–0.76).
According to the LASSO logistic regression, the chance of being 

a faller was higher for female patients than male patients, chronic than 
acute patients, and patients with urinary incontinence. Participants 
with low Mini-BESTest scores and high turn duration had a higher 
probability of becoming a faller.

3.2. Criterion validity analysis: identification 
of recurrent fallers

Figure 3B shows the results of the LASSO logistic regression with 
recurrent faller status as the response variable.

The LASSO procedure only selected chronicity, cognitive 
impairment, and the Mini-BESTest measure as optimal predictors 
(AUC: 0.71; 95%CI: 0.62–0.79).

3.3. Will my patient fall? Tentative cut-offs 
for fall risk assessment

Figures 4A,B show the relationship, from simple logistic regression, 
between the Mini-BESTest measure and the probability of being a faller 
and a recurrent faller, respectively. For application in the clinic, the 
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probability of being a faller was used to split the Mini-BESTest 
measures into four ranges, defining four levels of balance deficit.

Figure 4C shows the relationship between the (back-transformed) 
duration of the TUG turning phase and the probability of being a 
faller. Again, four levels of balance impairment were distinguished 
from faller probability.

The Mini-BESTest cut-off separating mild and moderate balance 
deficit (i.e., 2.94 logits; the test is positive if the Mini-BESTest measure is 
below this threshold) had a sensitivity of 0.92 (specificity: 0.20; Table 3) 
for faller identification, thus identifying with a good approximation those 
subjects less at risk of falling due to a balance disorder. The 0.06 logits 
cut-off, which marks the limit between a moderate and severe balance 
deficit, had a specificity of 0.86 (sensitivity: 0.29).

For the turning duration, the cut-off between a mild and moderate 
balance impairment (1.91 s, back-transformed; the test is positive if 
the turning duration is above this threshold) had a sensitivity of 0.96 
(specificity: 0.16). The 3.80 s cut-off had a specificity of 0.87 
(sensitivity: 0.24; Table 3).

4. Discussion

The current study shows that the Mini-BESTest scale and the 
duration of the turning phase of the TUG test measured with an inertial 
measurement unit have substantial criterion validity as balance measures.

Both these measures predict the patient’s probability of being a 
faller within 9 months. In addition, the Mini-BESTest (but not the 
turn duration) is also valid for predicting the chance of being a 
recurrent faller.

Assessing criterion validity involves assessing the degree to which 
the measures adequately reflect those from a criterion standard (43). 
In the current study, fall risk is supposed to be the criterion standard 
for balance.

Relating balance directly to falls is well-aligned with the balance 
construct definition and with previous studies evaluating the criterion 
validity of balance measures.

Balance has been defined as a person’s ability not to fall (3). 
Therefore, a fall indicates, by definition, that a person has a decreased 
“ability not to fall” and hence a poor balance. Furthermore, when a 
person is about to fall during a motor task, it indicates that the “ability 
not to fall” is reduced. In this regard, the lowest balance level is 
indicated in some items of the Performance Oriented Mobility 
Assessment – Balance (POMAB), the Berg balance scale, and the 
Mini-BESTest (likely the most used balance scales) by a fall or a near-
fall (7).

Finally, the current work aligns with studies in which the criterion 
validity of other balance tests has been evaluated by testing their 
ability to predict falls [e.g., (33, 44)]. Some authors have stated that a 
measure of balance that identifies individuals prone to falling has 
predictive (i.e., criterion) validity (45).

FIGURE 1

Study flow diagram. Regarding the two patients with a dual diagnosis, one had undefined peripheral neuropathy plus myopathy, and the second 
suffered hemiparesis due to a stroke and Parkinson’s disease. Eleven patients were affected by an uncommon polyneuropathy (e.g., chronic 
inflammatory demyelinating polyneuropathy, genetic demyelinating neuropathies), and one patient had a rare stroke (stroke in Behcet’s disease). Due 
to unexpected problems with the inertial sensors (e.g., the sensors were not fully charged), instrumented TUG (ITUG) measures were unavailable for 16 
patients. Three patients were excluded because of an operator error during the 10  m walking test (10  mWT). The primary analysis consisted of logistic 
regression modeling with faller vs. non-faller as the response variable.
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Supplementary appendix 3 reports an excursus on the validity of 
mobility measures when used as balance measures.

4.1. Balance measures in the clinic: 
predicting the risk of falling

The ability to predict falls of some of the mobility measures 
evaluated here has already been studied (21), meaning it seems 

essential to clarify what our work adds to the present state 
of knowledge.

First, only neurological patients with mobility impairment have 
been recruited here. While deeply investigated in community-dwelling 
(including independent) participants of older age, falls are less studied 
in more severely impaired patients (5).

Moreover, unsurprisingly, a test that works well in community-
dwelling, independent persons may not work well when applied to 
disabled individuals. For example, the TUG test does not discriminate 

TABLE 1 Participants’ clinical characteristics.

Age, years, median (1st–3rd Q) 76.2 (66.7–81.2)

Gender, N (%) Males 124 (57.9)

Females 90 (42.1)

Condition, N (%) Acute 102 (47.7)

Chronic 112 (52.3)

Diagnosis, N (%) Hemiparesis 122 (57.0)

PNLL 52 (24.3)

PD 21 (9.8)

VP 19 (8.9)

Cognitive impairment, N (%) Present 80 (37.4)

Absent 134 (62.6)

Assistive device, N (%) Yes 101 (47.2)

No 113 (52.8)

Urinary incontinence, N (%) Present 33 (15.4)

Absent 181 (84.6)

Motor FIM, score, median (1st–3rd Q) Admission 67 (51–75) p < 0.001

Discharge 81 (75–86)

Mini-BESTest, logits, median (1st–3rd Q) Admission 0.17 (−0.53–1.32) p < 0.001

Discharge 1.32 (0.17–2.31)

Gait speed, m/s, median (1st–3rd Q) Admission 0.76 (0.58–1.02) p < 0.001

Discharge 0.96 (0.74–1.17)

Step length, m, median (1st–3rd Q) Admission 0.46 (0.38–0.55) p < 0.001

Discharge 0.50 (0.43–0.60)

Cadence, steps/s, median (1st–3rd Q) Admission 1.73 (1.52–1.93) p < 0.001

Discharge 1.90 (1.70–2.06)

Walk ratio, cm/steps/min, median (1st–3rd Q) Admission 0.46 (0.38–0.52) p = 0.136

Discharge 0.45 (0.39–0.52)

Total TUG duration, s, median (1st–3rd Q) Admission 17.3 (12.7–23.0) p < 0.001

Discharge 13.7 (10.9–17.9)

Sit-to-Walk duration, s, median (1st–3rd Q) Admission 1.32 (1.18–1.58) p < 0.001

Discharge 1.27 (1.13–1.48)

Turn duration, s, median (1st–3rd Q) Admission 3.12 (2.26–3.98) p < 0.001

Discharge 2.76 (2.16–3.34)

Turn peak angular velocity, °/s, median (1st–3rd Q) Admission 89.5 (71.6–114.5) p < 0.001

Discharge 104.6 (83.6–127.7)

The FIM motor score and the mobility measures were collected on admission and discharge from inpatient rehabilitation. The presence of cognitive impairment, using an assistive device for 
independent walking, and urinary incontinence are from the evaluation at discharge. 1st–3rd Q: first to third quartile; N: number of p-values from the Wilcoxon signed rank test with 
continuity correction are in the rightmost column. The Wilcoxon test was used to assess a change in the mobility and disability measures between admission and discharge. Mini-BESTest 
measures are expressed in logits. As a total raw score, the median value of the Mini-BESTest measures corresponded to 14 (0.17 logits) at admission and 19 (1.32 logits) at discharge.
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fallers from non-fallers in high-functioning elderly. On the contrary, 
it is more valuable in lower-functioning older people (21).

Patients suffering from a neurological disorder, like those studied 
here, are “by definition” at an increased risk of falling (2). However, in 
the clinic, it is crucial to discriminate the patients at a very high risk 
of falling from those at a relatively lower risk. This practical question 
prompted the current study.

The definition of the four levels of balance impairment (Figure 4) 
and the sensitivity and specificity analysis of meaningful cut-offs for 
the Mini-BESTest and the turning duration try to answer this question.

For both the Mini-BESTest and the turn duration, the cut-off 
that demarcates a mild from a moderate balance impairment has 
a high sensitivity (>0.90) and poor specificity for identifying a 
faller. In contrast, the cut-off between moderate and severe 
balance deficit has high specificity (>0.85) but low sensitivity. 
Therefore, these cut-offs could work as “SnOUT” and “SpIN” 
tests, respectively (46).

In addition, these cut-offs could be of great interest for setting 
therapeutic goals. For example, improving the patients’ balance above 
2.94 Mini-BESTest logits through rehabilitation could be considered 
a clinically important goal since falling is substantially less probable 
beyond this threshold.

The same reasoning applies to the 1.91 s turning duration threshold.

The current study is not the first to evaluate the Mini-BESTest 
ability to predict falls. However, in several studies, falls have been 
collected retrospectively [e.g., (47–50)]. The results of our study align 
well with other studies in which the Mini-BESTest was anchored to 
prospective falls, confirming this scale has a sensible capacity in fall 
risk assessment [e.g., (51)].

A novelty of our work is that the ability in fall risk evaluation of 
measurements from inertial sensors, like the Turning duration, has 
also been considered. Research that assesses the risk of falling from 
movement measures obtained with these devices is still a young 
field. For example, a recent meta-analysis showed that using sensor 
measures during walking and sit-to-stand actions can discriminate 
between fallers and non-fallers but the same meta-analysis 
concluded that their discrimination accuracy remains 
undetermined (52).

In addition, it should be stressed that similar to the Mini-BESTest, 
retrospective (i.e., history of falls) rather than prospective falls (as 
done here) are often used as the criterion standard (53). In this regard, 
it is noteworthy that using fall history as the standard for classification 
has been criticized by some scholars in fall risk assessment studies (54).

Finally, the findings concerning the walk ratio are noteworthy as 
among the seven gait and mobility measures, the walk ratio performed 
worse in terms of faller risk assessment. As with any negative result, 

TABLE 2 Validity analysis of the gait and mobility measures: multiple logistic regression.

Model b eb p-values AUC (95% CI) AIC

h 0.66 (0.59–0.74) 281.7

Age, years 0.00 1.00

Gender, male −0.57 0.56

Condition, chronic 0.76 2.15

Cognitive impairment, yes 0.31 1.36

Urinary incontinence, yes 0.65 1.92

h + GS 0.67 (0.60–0.74) 280.2

Gait speed, m/s −0.98 0.37 0.063

h + WR 0.67 (0.59–0.74) 283.3

Walk ratio, cm/steps/min 0.97 2.64 0.565

h + MB 0.69 (0.62–0.76) 276.1

Mini-BESTest, logits −0.29 0.75 0.006

h + TUG 0.68 (0.61–0.75) 279.4

TUG duration, s 0.06 1.06 0.040

h + STW 0.67 (0.60–0.74) 280.4

STW duration, s 1.31 3.72 0.069

h + Turn 0.69 (0.62–0.76) 274.0

Turn duration, s 1.45 4.24 0.002

h + ω 0.68 (0.60–0.75) 278.5

Peak angular velocity, °/s −0.01 0.99 0.023

Coefficients (b) and exponentiated coefficients (eb) from the multiple logistic regression models. h: model h, the model only includes fall risk factors from the medical history. h+: models 
including the fall risk factors from the medical history (i.e., the same variables included in model h) plus a single gait or mobility measure. For example, in h + GS the gait speed (GS) is added 
to the risk factors from model h. WR, walk ratio; MB, Mini-BESTest; TUG, total duration of the TUG test; STW, sit-to-walk duration; Turn, TUG turning duration; ω, peak of the vertical 
angular velocity during turning. Only the estimate of the mobility measure is reported for the h + models. p-value: type 1 error probability of the likelihood ratio test comparing model h with 
one of the seven h + models. p-values < 0.05 indicate that adding the mobility measure to the fall risk factors from the history increases the model’s predictive accuracy. Therefore, the added 
mobility measure is a significant faller predictor. The area under the curve (AUC) and the Akaike information criterion (AIC) of the h and h + models are also reported. 95% CI: 95% 
confidence intervals of the AUC.
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FIGURE 2

Comparing the criterion validity of the gait and mobility measures. The figure shows the Akaike information criterion (AIC) of model h and the seven 
h  +  models. Model h (white column) includes only fall risk factors from the medical history. For graphical reasons, Turn abbreviates model “h  +  Turn,” 
MB model “h  +  MB” and so on. Turn: duration of the TUG turning phase; MB: Mini-BESTest; ω: peak angular velocity along the vertical axis during the 
TUG turning phase; TUG: total TUG duration; GS: gait speed; STW: sit-to-walk duration; WR: walk ratio. Mobility measures from clinical tests and ITUG 
are given in blue and green, respectively. The uppermost horizontal dashed line marks the AIC of model h. The second and the third horizontal dashed 
lines mark −2 and −4 from the model h’s AIC. The response variable was the faller status (faller vs. non-faller) in all models.

FIGURE 3

Faller and recurrent faller optimal predictors: results of the LASSO logistic regression. The variables simultaneously tested in the LASSO logistic 
regression models were: age, gender (M: male), condition (Chr: chronic disease), cognitive impairment (Cimp), urinary incontinence (UI), the TUG test 
total duration (TUG), the Mini-BESTest (MB) and the turn duration of the TUG test (Turn). White bars: fall risk factors from the medical history; blue bars: 
mobility measures from clinical tests; green bars: ITUG measures. The bars mark the predictors selected by the LASSO procedure, while variables 
without bars are those whose coefficients were shrunk to zero by the LASSO. Upward bars indicate positive predictors’ coefficients (i.e., variables 
positively associated with the faller or recurrent faller risk). Downward bars indicate otherwise. For example, M decreased the risk of being a faller, while 
Chr increased this risk. According to the LASSO logistic regression, the predictors of the optimal model for faller risk assessment (A) were: male gender, 
chronicity, urinary incontinence, the Mini-BESTest logit measure, and the turn duration. Optimal predictors for recurrent faller (B) were chronicity, 
cognitive impairment, and the Mini-BESTest.
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we feel that more research is needed before concluding that the walk 
ratio has no criterion validity for balance assessment.

The walk ratio could work in fall risk assessments when other 
versions of the walking test are administered [e.g., fast walking (55)]. 
Interestingly, and potentially in line with the current findings, it has 
been shown that a reduced walk ratio is associated with fall risk in 
people with high gait speed (>1.0 m/s) but not in impaired persons 
walking at a lower speed (<1.0 m/s) (56).

A peculiar feature of the walk ratio is that it is constant at different 
walking speeds, indicating that gait speed is increased by raising both 
step length and cadence. Therefore, when the walk ratio decreases, 
which is generally the case here, an actual motor control law 
is violated.

Although disappointing, that a parameter with strong 
physiological and pathophysiological validity, such as the walk ratio, 
does not work well in the clinic is not an unusual finding. Regarding 
the fall risk assessment, this seems to be  the case with dynamic 

posturography. In dynamic posturography, patients stand on moving 
platforms: the face validity of this task for assessing balance is 
unquestionable. However, surprisingly enough, dynamic 
posturography could not predict falls (57).

Not only the walk ratio but also gait speed performed poorly in 
the current study. This is an unexpected finding (58), given the 
recommendations of some authoritative studies (1, 2). In summary, 
gait parameters seemed to perform less well than other mobility 
measures in fall risk assessment.

4.2. Study’s limitations and future 
developments

First, the diagnostic accuracy of the models tested here is limited. 
Even if the AUCs of the ROC curves are significantly larger than 0.5, 

FIGURE 4

Fall risk assessment from the Mini-BESTest and the turn duration. (A) The relationship between the Mini-BESTest logit measure and the probability of 
being a faller within 9 months. (B) The relationship between the Mini-BESTest and the probability of being a recurrent faller. (C) The relationship 
between the turn duration and the faller probability. The curves are derived from simple logistic regression models. As expected from the main 
analyses, the Mini-BESTest has been confirmed as a significant predictor of the chance of being a faller (likelihood ratio test, p  <  0.001) and a recurrent 
faller (p  =  0.003). Turning duration significantly predicted the chance of being a faller (p  <  0.001). Turn duration was ln-transformed for modeling and is 
plotted here back-transformed. Faller probability (0.25, 0.50, and 0.75) can be used to define four ranges of balance impairment delimited in the three 
plots by the vertical dashed lines. For example, it is proposed that a person measuring more than 2.94 logits on the Mini-BESTest (i.e., scoring ≥25) 
suffers a mild balance impairment since their risk of falling is <0.25. A person measuring between 0.06 and 2.94 logits suffers a moderate balance 
impairment and so on for a severe and very severe balance deficit. The same reasoning applies to the turn duration. The numerals “4,” “14,” and “25” in 
panel (A) correspond to the Mini-BESTest total ordinal score immediately above the logit thresholds.
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these are 0.7 at most. However, these AUC values align with previous 
reports on fall risk assessment [e.g., (21, 33, 59)].

Caveats should be  put forward regarding the sensitivity and 
specificity analysis of the Mini-BESTest and turn duration cut-offs. 
Tests with high sensitivity but insufficient specificity could work 
suboptimally to “rule out” a condition. The same applies when tests 
with high specificity, but reduced sensitivity, are used to “rule in” a 
condition (46). Altogether, these facts strengthen the idea that the 
current work should be considered a metrology study about validity 
rather than a diagnostic one.

As reported in the Methods section, the diseases included in the 
sample represented three primary motor syndromes: hemiparesis, 
parkinsonism, and sensory ataxia. This classification is reasonable for 
syndrome-level disciplines such as Physical and Rehabilitation 
Medicine in the first place. However, we have to admit that it could 
be limited for the neurologist.

Future development of this line of research could consider the 
patients’ neurological profiling in greater detail. In this context, it is 
also noteworthy that disease-specific scales such as the National 
Institutes of Health Stroke Scale (NIHSS) or the Unified Parkinson’s 
Disease Rating Scale (UPDRS) could have a fall risk prediction value 
that has not been considered here.

We also feel it important to stress that while we generally refer 
here to fall risk assessment in “neurological patients,” our findings 
apply only to the three motor syndromes studied here. Future works 
are needed to assess the falling risk in rare and selected neurological 
diseases (e.g., demyelinating polyneuropathies, atypical 
parkinsonisms, neuromuscular disorders).

Regarding the patients recruited, we excluded those needing more 
than 30 s to complete the TUG test. However, in some patients, the 
TUG test duration can be longer, with studies reporting TUG test 
durations of two or more minutes [e.g., (60)]. Taking this into account, 
the current work did not consider those persons with a motor 
impairment of extreme severity, which could be those with the highest 
falling risk.

Clinical and methodological reasons prompted the approach used 
in this study. First, it is obvious that a TUG test duration >30 s already 
flags a clinically severe mobility impairment. In this regard, it should 

be stressed that 30 s is approximately three times the upper limit of the 
“healthy” 3 m TUG test duration (60). As rehabilitation clinicians, 
we believe that when the gait and balance impairment is so severe, 
there is likely little added value from a timed or even instrumented 
test. In these cases, scales, even relatively simple and classical ones 
such as the Performance Oriented Mobility Assessment’s balance 
domain (61), can fruitfully serve the job.

From a methodological point of view, software algorithms have 
been used here to automatically split the TUG test into different 
phases and obtain measures from them. While the dependability of 
these algorithms has been demonstrated (15), it should also be noted 
that automatic algorithms can fail, for example, in selected 
populations such as frail individuals (62). In this regard, it seems 
reasonable that the more gait and mobility are pathological (e.g., the 
slower the patient), the more challenging it will be for the algorithms 
to recognize mobility patterns and thresholds for TUG 
test segmentation.

As another methodological point, defining no upper limitation to 
the TUG test duration would allow the inclusion of persons with a 
TUG test duration of 60 s or even longer. Even when participants 
suffering from a severe mobility impairment can be found (60), they 
are likely a minority. In addition, people who can walk without 
physical assistance (see the second exclusion criterion) with such a 
long TUG test duration would be even rarer. Including these persons 
would increase the chance of including far-outs in the dataset, a 
statistical issue carefully considered in the primary analysis (see the 
Methods section).

As reported above, the fact that gait speed does not predict falls is 
an unexpected finding given its importance in the patients’ assessment 
(13). In a sense, gait speed is an omnibus measure since it is the 
product of step length and step cadence (i.e., step frequency). It can 
be hypothesized that if even just one of these two component measures 
is corrupted by a significant measurement error (63), gait speed 
accuracy in fall risk evaluation would also be compromised. Based on 
this consideration and the results reported here, assessing the criterion 
validity in fall prediction and balance assessment of step length and 
step cadence separately is a reasonable continuation of the current line 
of research.

TABLE 3 Sensitivity and specificity analysis of the cut-offs proposed for fall risk assessment.

MB Turning duration

Cut-off: 0.06 logits (14) Cut-off: 3.80 s

Fallers Non-fallers Fallers Non-fallers

Positives 24 18 Positives 20 17

Negatives 58 114 Negatives 62 115

Sn: 0.29; Sp: 0.86 Sn: 0.24; Sp: 0.87

Cut-off: 2.94 logits (25) Cut-off: 1.91 s

Fallers Non-fallers Fallers Non-fallers

Positives 75 106 Positives 79 111

Negatives 7 26 Negatives 3 21

Sn: 0.92; Sp: 0.20 Sn: 0.96; Sp: 0.16

MB, Mini-BESTest scale; Sn, sensitivity; Sp, specificity. For the MB scale, the cut-offs are provided as interval measures expressed in logits and total ordinal scores (in brackets). Turning 
duration cut-offs are provided back-transformed as in Figure 4. Participants are classified as fallers or non-fallers and as positive or negative to tests. Hence, fallers testing positive are true 
positives, non-fallers testing negative are true negatives, fallers testing negative are false negatives, and non-fallers testing positive are false positives. The MB scale and the Turning duration are 
used as tests to detect the patient who will fall, i.e., the test is considered positive when the measure flags a person as a future faller. Therefore, the MB is positive if its measure (or ordinal score) 
is below the cut-off value. The turning duration is positive if above the cut-off.
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4.3. Conclusion

The conclusions of this study are as follows: (i) the Mini-BESTest 
scale and the turn duration of the TUG test predict the probability of 
a neurological patient falling at least once in 9 months; (ii) the Mini-
BESTest, but not the turn duration, also predicts the patient’s 
probability of becoming a recurrent faller (i.e., falling two or more 
times); and (iii) the criterion validity of the TUG turning duration as 
a balance measure is high, and that of the Mini-BESTest is even higher.

Adopting the “seeing to foresee, foreseeing to provide” motto, 
correctly predicting the risk of falling allows adequate fall prevention 
through information on behaviour and pharmacological and 
non-pharmacological interventions. In this line of reasoning, an obvious 
next step in the current line of research is developing algorithms 
simultaneously including all the relevant variables for fall risk assessment 
to obtain an instrument to accurately define the risk of falling at a single-
person level.
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