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Aims Myocardial infarction (MI) is a major cause of death and disability worldwide. Most metabolomics studies investigating metabolites 
predicting MI are limited by the participant number and/or the demographic diversity. We sought to identify biomarkers of incident 
MI in the COnsortium of METabolomics Studies.

Methods 
and results

We included 7897 individuals aged on average 66 years from six intercontinental cohorts with blood metabolomic profiling (n =  
1428 metabolites, of which 168 were present in at least three cohorts with over 80% prevalence) and MI information (1373 cases). 
We performed a two-stage individual patient data meta-analysis. We first assessed the associations between circulating metabolites 
and incident MI for each cohort adjusting for traditional risk factors and then performed a fixed effect inverse variance meta-analysis 
to pull the results together. Finally, we conducted a pathway enrichment analysis to identify potential pathways linked to MI. On 
meta-analysis, 56 metabolites including 21 lipids and 17 amino acids were associated with incident MI after adjusting for multiple 
testing (false discovery rate < 0.05), and 10 were novel. The largest increased risk was observed for the carbohydrate mannitol/ 
sorbitol {hazard ratio [HR] [95% confidence interval (CI)] = 1.40 [1.26–1.56], P < 0.001}, whereas the largest decrease in risk 
was found for glutamine [HR (95% CI) = 0.74 (0.67–0.82), P < 0.001]. Moreover, the identified metabolites were significantly en-
riched (corrected P < 0.05) in pathways previously linked with cardiovascular diseases, including aminoacyl-tRNA biosynthesis.

Conclusions In the most comprehensive metabolomic study of incident MI to date, 10 novel metabolites were associated with MI. Metabolite 
profiles might help to identify high-risk individuals before disease onset. Further research is needed to fully understand the mechan-
isms of action and elaborate pathway findings.
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1. Introduction
Cardiovascular diseases (CVD) are a huge public health burden accounting 
for 32% of all global deaths in 2019.1 Myocardial infarction (MI) is one of the 
main causes of CVD, causing the death of one person every 40 s in the 
USA2 and one hospital admission every 5 min in the UK.3

Besides the well-established risk factors associated with MI, such as 
obesity, diabetes, hypertension, and smoking,4 many studies suggest that 
circulating metabolites might play an important role in MI development.5,6

For instance, glycine has been recognized as a protective biomarker of 
cardiac diseases, especially coronary heart disease,7 whereas trimethyla-
mine N-oxide (TMAO) has been associated with MI by accelerating 
atherosclerosis.5,6

Metabolomics enables the comprehensive characterization of small- 
weight molecules, such as carbohydrates, amino acids, lipids, nucleo-
tides, and peptides,8–10 providing a snapshot of the individual’s meta-
bolic state at a particular time. Thus, metabolites might enable the 
identification of at-risk individuals before the disease process is well 
underway.11,12

Advances in this field have allowed the detection of metabolites whose 
deregulation may be involved in the onset and development of complex 
diseases including CVD,13,14 cancer,15 and autoimmune diseases.16

Nonetheless, most metabolomic studies are limited by the number of par-
ticipants and/or the demographic diversity, affecting the statistical power of 
the results and hampering the discovery of potential universal biomar-
kers.13,17 To address these issues, the COnsortium of METabolomics 
Studies (COMETS) was established in 2014, aggregating metabolic data 
from 47 cohorts from around the world.17

By using individual patient data (IPD) from six COMETS cohorts with MI 
and metabolomic data, we aimed to identify biomarkers associated with in-
cident MI in 7897 participants. We further explored the pathways in which 
these metabolites might be involved to better understand their mechan-
isms of action.

2. Methods
2.1 Study populations
For the primary analysis of metabolites associated with incident MI, 
we included participants from six population-based cohorts from the 
USA and Europe, namely, the Atherosclerosis Risk in Communities 
(ARIC) study, Edinburgh Type 2 Diabetes Study (ET2DS), 
GenoDiabMar (GDM), Health, Aging and Body Composition (HABC), 
TwinsUK, and the Women’s Health Initiative (WHI). Secondary 
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analyses of metabolites associated with prevalent MI included partici-
pants from ARIC, ET2DS, GDM, HABC, TwinsUK, and Cooperative 
Health Research in the Region of Augsburg (KORA). Participants with 
available metabolomic data, covariates, and incident and prevalent MI 
data were included. Other COMETS cohorts could not be included 
in this study as they were lacking MI assessment and/or the metabolo-
mic profile had not been performed by Metabolon Inc., the Broad 
Institute, or Nightingale Health. A flowchart of the study design is pre-
sented in Figure 1.

A brief description of the included COMETS cohorts is presented below 
and in Table 1. 

• ARIC: Prospective cohort recruited from four US communities to in-
vestigate the aetiology of atherosclerosis and its clinical outcomes.18

• ET2DS: Longitudinal cohort of older men and women based in 
Lothian, Scotland, designed to investigate the role of risk factors for 
vascular complications of type 2 diabetes.19

• GDM: Prospective study that aims to provide data on demographic, 
biochemical, and clinical changes in type 2 diabetic patients attending 
real medical outpatient consultations.20

• HABC: Prospective cohort focused on risk factors for the decline of 
function in initially well-functioning older persons, particularly change 
in body composition with age.21

Figure 1 Flowchart overview containing the available data, steps conducted, and main results. ARIC, Atherosclerosis Risk in Communities; BMI, body mass 
index; ET2DS, Edinburgh Type 2 Diabetes Study; FRD, false discovery rate; GDM, GenoDiabMar; HABC, Health, Aging and Body Composition; KORA, 
Cooperative Health Research in the Region of Augsburg; WHI, Women’s Health Initiative.
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• KORA: A population-based adult cohort that consists of interviews, 
medical and laboratory examinations, biological sample collection, 
and multiple omic data generation and management.25

• TwinsUK: The largest most clinically characterized adult twin registry 
in the UK, recruited as volunteers without selecting for particular dis-
eases or traits.23

• WHI: A large and complex clinical investigation of strategies for the 
prevention and control of some of the most common causes of mor-
bidity and mortality among postmenopausal women, including cancer, 
CVD, and osteoporotic fractures.13,24

2.2 Metabolomics
A summary of the metabolomics methodology used for each cohort is de-
picted in Table 1. Serum samples from ARIC, ET2DS, GDM, KORA, and 
TwinsUK and samples of ethylenediaminetetraacetic acid (EDTA) plasma 
from HABC, TwinsUK, and WHI were held at −80°C.17 Serum metabo-
lites were detected and quantified in ARIC, KORA, and TwinsUK at 
Metabolon Inc. using untargeted gas chromatography/liquid 
chromatography-mass spectrometry (GC/LC-MS) methods, in ET2DS 
and GDM at Nightingale Health using a nuclear magnetic resonance 
(NMR) method. EDTA plasma metabolites were detected and quantified 
in HABC and WHI at the Broad Institute using LC-MS. Metabolites were 
harmonized across platforms by manual curation by matching chemical 
structure, and the Human Metabolon Database and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) identifiers. A total of 1442 unique named 
and known metabolites were measured across seven participating studies. 
For the primary analysis, we included 1428 metabolites, from which 168 
were present in at least three studies and detected in at least 80% of par-
ticipants from each cohort. For the secondary analysis, measurements of 
1344 metabolites were available (from which 187 were present in at least 
three studies and detected in at least 80% of participants from each co-
hort). In this study, our focus is to explore the metabolites significantly as-
sociated with incident MI and the pathways in which are enriched. The 
prevalent analysis aimed to explore the overlap of metabolites associated 
with incident and prevalent MI.

2.3 Assessment of MI and co-variables
Specific information about how each cohort defined MI is shown in 
Supplementary material online, Text S1. In summary, MI was assessed based 
on one or more of the following: 

• Diagnosed by a doctor (based on clinical evidence such as chest pain, 
electrocardiogram, and cardiac enzymes).

• Self-reported questionnaires.
• Hospital/GP records.
• Death certificates including the adjudication.

On the other hand, co-variables used to adjust the models were de-
scribed identically across the cohorts. How these were defined is indicated 
in Supplementary material online, Text S1.

2.4 Statistical analysis
We conducted a two-step IPD meta-analysis. In the first step, we per-
formed analyses separately by study cohort. Outliers defined as values 
four standard deviations (SDs) from the mean were excluded. To obtain 
normal distributions, metabolite measures were transformed to rankits 
by performing quantile normalization on rank-transformed raw metabolite 
values. Power calculation was performed using the ‘dmetar’ package imple-
mented in R. For each metabolite included in the primary analysis, Cox pro-
portional hazard models for incident MI were fit adjusting for age, sex, race/ 
ethnicity, body mass index (BMI), education level, smoking status, physical 
activity level, and alcohol consumption status, all at the baseline visit. In the 
second step, we meta-analysed the results from each cohort using fixed ef-
fect inverse variance meta-analyses (using the package ‘meta’ in R) for me-
tabolites present in three or more studies. Heterogeneity between studies 
and percentage of variability of between-study heterogeneity not due to 

the sampling error were computed using Cochran’s Q test and I2 index, 
respectively.

Sensitivity analyses were conducted by (i) running Han–Eskin random ef-
fect meta-analyses26; (ii) further adjusting for prevalent type 2 diabetes, 
prevalent hypertension, and prevalent dyslipidaemia; (iii) excluding cohorts 
where MI was assessed through self-reported questionnaires (e.g. 
TwinsUK and ET2DS); and (iv) stratifying by race (White individuals and 
Black individuals).

Secondary analyses were conducted to assess the associations between 
metabolites and prevalent MI using two-step IPD meta-analysis. Logistic re-
gression models were first run in each cohort on rankit transformed me-
tabolite measures adjusting for the same covariates, and then a fixed effect 
inverse variance meta-analysis was performed.

We adjusted for multiple testing using Benjamini and Hochberg27 false 
discovery rate (FDR <0.05). If not indicated otherwise, all reported 
P-values are FDR-adjusted. Analyses were undertaken and reported ac-
cording to the STrengthening the Reporting of OBservational studies in 
Epidemiology (STROBE) guidelines (see Supplementary material online, 
Text S2). We define that a metabolite is novel when, to our knowledge, 
such a metabolite has never been associated with any cardiac disease 
before.

2.5 Metabolomic pathway analysis
To explore the metabolomic pathways enriched for MI-related metabo-
lites, we used MetaboAnalyst 5.0.28 Over-representation analysis was per-
formed using a hyper-geometric test to identify groups of compounds that 
are represented more than expected in each pathway by chance, and path-
way topology analysis was performed based on relative betweenness cen-
trality focusing on our entire metabolomic network. Metabolites 
significantly associated with incident MI (FDR < 0.05) were mapped to 
the Homo sapiens KEGG pathways. Metabolomic pathways with FDR <  
0.05 were considered statistically significant.

2.6 Ethical approval
Approval was granted by the COMETS steering committee. Ethical ap-
proval for each study was obtained by the ethical research boards pertain-
ing to each study.

3. Results
The descriptive characteristics of the study participants are shown in 
Table 2. We included 7897 individuals [average age = 66 years (SD =  
7.1)] with blood metabolomic profiling (n = 1428 metabolites) and incident 
MI assessment from six cohorts including ARIC, ET2DS, GDM, HABC, 
TwinsUK, and WHI. All included participants were free from MI at baseline. 
There were 1373 incident MI cases across the six cohorts [average follow- 
up time = 9.4 years (SD = 7.1); average follow-up time per cohort is pre-
sented in Table 2]. For the secondary analysis, we included 373 prevalent MI 
cases and 9719 prevalent MI controls from the ARIC, ET2DS, GDM, 
HABC, TwinsUK, and KORA cohorts (descriptive characteristics are 
shown in Table 2).

3.1 Metabolites associated with incident MI
For our primary analysis including 1373 incident MI cases and 6524 con-
trols, assuming a modest effect size of 0.12 [corresponding to hazard ratio 
(HR) = 1.127 or HR = 0.887], our study has over 90% power for a given 
metabolite adjusting for multiple testing (P < 3.5 ∗ 10−5). We 
meta-analysed 1428 metabolites, of which 168 were present in at least 
80% of the participants from at least three studies. In total, 56 metabolites 
were significantly associated with incident MI after adjusting for multiple 
testing (FDR < 0.05) (Figure 1; see Supplementary material online, 
Table S1). Out of the 56 metabolites, 42 had a direct association, and 14 
had an inverse association with incident MI (Figure 2). Moreover, 21 
were lipids, primarily lysophospholipids (n = 5), long-chain polyunsaturated 
fatty acids (n = 3), phosphatidylethanolamine (n = 2), and products of the 

2746                                                                                                                                                                                                     A. Nogal et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/cardiovascres/article/119/17/2743/7273623 by U
ni M

Ilano user on 04 Septem
ber 2024

http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvad147#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvad147#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvad147#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvad147#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvad147#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvad147#supplementary-data


primary bile acid metabolism (n = 2), and 17 were amino acids including 
products of tryptophan metabolism (n = 4), glycine, serine, and threonine 
(n = 4) and glutamate metabolism (n = 2). There were also 4 nucleotides, 4 
carbohydrates, 3 xenobiotics, 3 energy-producing metabolites, 3 co- 
factors/vitamins, and 1 peptide (Figure 2). Out of the 21 associated lipids, 
3-methyladipate and 1-palmitoyl-2-linoleoyl-glycerol (16:0/18:2) were as-
sociated with a higher risk with HR estimates ranging from 1.28 [95% con-
fidence interval (CI) = 1.13–1.44, P < 0.001] to 1.21 (95% CI = 1.08–1.35, 
P = 4.29 × 10−3), respectively (Figure 2). Among the amino acids, 4-hydro-
xyphenylacetate and cystathionine had the largest increase in risk present-
ing HR estimates of 1.24 (95% CI = 1.11–1.38, P = 1.11 × 10−3) and 1.2 
(95% CI = 1.07–1.35, P = 7.58 × 10−3), respectively (Figure 2). Likewise, 
overall, the highest increase of risk was observed for the carbohydrates 
mannitol/sorbitol [HR (95% CI) = 1.40 (1.26–1.56), P < 0.001] and glucur-
onate [HR (95% CI) = 1.37 (1.26–1.5), P < 0.001], whereas the metabolites 
associated with reduced risk of incident MI included the amino acid glutam-
ine [HR (95% CI) = 0.74 (0.67–0.82), P < 0.001], the nucleotide uridine 
[HR (95% CI) = 0.82 (0.76–0.88), P < 0.001], and the co-factor 1-methyl-
nicotinamide [HR (95% CI) = 0.84 (0.76–0.94), P = 7.37 × 10−3], among 
others (Figure 2). The list of metabolites previously associated with any car-
diac diseases and the super- and sub-pathways for incident MI-associated 
metabolites are presented in Supplementary material online, Table S2.

Of note, the obtained heterogeneity estimated for the associated meta-
bolites was only significant (Q P < 0.05) for seven metabolites with also I2 

values indicating considerable variability of between-study heterogeneity 
(I2 > 70%).29 However, most identified metabolites presented not relevant 
or moderate between-study heterogeneity (I2 < 60%).29

3.2 Sensitivity analyses
Results were consistent when running Han–Eskin random effect inverse 
variance meta-analyses26 (see Supplementary material online, Table S3). 
Results were also consistent when the meta-analysis was performed ex-
cluding cohorts in which MI was assessed by self-reported questionnaires 
(i.e. TwinsUK and ET2DS) (see Supplementary material online, Table S4). 
When we further adjusted for prevalent type 2 diabetes, hypertension, 
and dyslipidaemia, 38 metabolites remained associated (see 
Supplementary material online, Table S5). Interestingly, the metabolites 
that did not reach the significance level after adjustment for co-morbidities 
have been previously linked with those commodities (see Supplementary 
material online, Table S2). Finally, we investigated whether there were 
demographic differences in the associations between the identified meta-
bolites and MI by conducting a meta-analysis stratified by race. Out of 
the 56 metabolites, 41 remained significantly associated in White indivi-
duals, whereas 18 were significantly associated in Black individuals, with 3 
of them, namely, dimethylglycine, glycine, and glycoursodeoxycholate, pre-
senting a significant association only in individuals with an African ancestry 
(see Supplementary material online, Table S6).
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Table 1 Location and analytical information about the cohorts comprising COMETS

Cohort Name Name 
abbreviation

Continent Platform Analytical 
technology

Targeted/ 
untargeted

Description

Atherosclerosis Risk in 

Communities Study

ARIC North 

America

Metabolon GC/LC-MS Untargeted Prospective cohort recruited from four US 

communities to investigate the aetiology of 

atherosclerosis and its clinical outcomes18

Edinburgh Type 2 

Diabetes Study

ET2DS Europe Nightingale NMR Targeted Longitudinal cohort of older men and women 

based in Lothian, Scotland, designed to 

investigate the role of risk factors for vascular 
complications of type 2 diabetes19

GenoDiabMar GDM Europe Nightingale NMR Targeted Prospective study that aims to provide data on 

demographic, biochemical, and clinical changes 
in type 2 diabetic patients attending real medical 

outpatient consultations20

Health, Aging and Body 
Composition

HABC North 
America

Broad 
Institute

LC-MS Untargeted Interdisciplinary cohort focused on risk factors for 
the decline of function in initially 

well-functioning older persons, particularly 

change in body composition with age21

Cooperative Health 

Research in the 

Region of Augsburg

KORA Europe Metabolon GC/LC-MS Untargeted A population-based adult cohort and initiated as 

part of the World Health Organization 

Multinational Monitoring of Trends and 
Determinants in Cardiovascular Diseases 

(MONICA) project since 198422

TwinsUK TwinsUK Europe Metabolon GC/LC-MS Untargeted The largest most clinically characterized adult twin 
registry in the UK, recruited as volunteers 

without selecting for particular diseases or 

traits23,25

Women’s Health 

Initiative

WHI North 

America

Broad 

Institute

LC-MS Untargeted A large and complex clinical investigation of 

strategies for the prevention of some of the 

most common causes of morbidity and 
mortality among postmenopausal women, 

including cancer, cardiovascular disease, and 

osteoporotic fractures.13,24
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3.3 Metabolites associated with prevalent MI
As a secondary analysis, we further investigated whether the 56 metabo-
lites associated with incident MI were also correlated with prevalent MI 
(Figure 1). On meta-analyses, 11 metabolites, including tryptophan, malate, 
allantoin, and 1-linoleoyl-GPC (18:2), were nominally associated with 
prevalent MI with concordant directional effects in both incident and 
prevalent analyses, and three [xenobiotic 2-hydroxyhippurate (salicylu-
rate), lactate, and glucoronate] were associated after correcting for 
multiple testing [2-hydroxyhippurate: odds ratio (OR) (95% CI) = 1.9 
(1.5–2.42), P < 0.001; lactate: OR (95% CI) = 1.36 (1.2–1.54), P < 0.001; 
and glucuronate: OR (95% CI) = 1.51 (1.19–1.93), P = 0.03] (see 
Supplementary material online, Table S7).

3.4 Pathways behind the metabolites 
associated with incident MI
To identify the potential biological pathways involved in incident MI, we as-
sessed the enriched pathways for the 56 metabolites (Figure 1). These meta-
bolites included 41 pathways, 12 of which had a significant nominal P-value, 
including the citrate cycle [trichloroacetic acid (TCA) cycle] (nominal P =  
0.016) and the primary bile acid biosynthesis (nominal P = 0.024) (see 
Supplementary material online, Table S8). Of these 12, 4 pathways were sig-
nificantly enriched (FDR < 0.05), namely, aminoacyl-tRNA biosynthesis (P <  
0.001), alanine, aspartate, and glutamate metabolism (P = 0.018), glyoxylate 
and dicarboxylate metabolism (P = 0.02), and glycine, serine, and threonine 
metabolism (P = 0.02) (Figure 3). Specifically, 9 amino acids were involved 
in the 1st pathway, 3 amino acids and the energy-producing metabolites fu-
marate and succinate in the 2nd pathway, 4 amino acids and the energy- 
producing metabolite malate in the 3rd pathway, and 5 amino acids in the 
4th pathway (see Supplementary material online, Table S8). There were 14 
unique metabolites involved in these four pathways. Glycine and serine are 
intermediates/products of aminoacyl-tRNA biosynthesis; glycine, serine, 
and threonine metabolism; and glyoxylate and dicarboxylate metabolism, 
whereas glutamine and glutamate are present in all the pathways but the gly-
cine, serine, and threonine metabolism.

4. Discussion
In this comprehensive study investigating biomarkers of incident MI by lever-
aging IPD from six intercontinental cohorts with 7897 participants from di-
verse race/ethnic backgrounds, we identified 56 metabolites, mainly lipids 
and amino acids, significantly associated with incident MI. We report 10 novel 
biomarkers of incident MI, including 8 lipids (3 lysophospholipids, 1 phospha-
tidylethanolamine, 1 diacylglycerol, 1 intermediate of the primary bile acid me-
tabolism, 1 dicarboxylate fatty acid, and 1 glycerolipid), 1 xenobiotic (involved 
in xanthine metabolism), and 1 nucleotide (involved in purine metabolism). Of 
these, 6 have underlying mechanisms of action leading to MI onset which are 
independent of hypertension, type 2 diabetes, and dyslipidaemia, known as risk 
factors for MI.14,30–32 We also confirm previous associations, including the 
protective association of nonessential amino acids (e.g. glutamine, glycine, 
and serine),7,33 and the detrimental effect of the well-known branched-chain 
amino acid isoleucine on cardiac diseases,34 thus demonstrating the robustness 
of our approach. Our stratified analyses revealed that dimethylglycine, glycine, 
and glycoursodeoxycholate were associated with incident MI only in Black in-
dividuals, highlighting the role of ethnicity in the aetiology of MI. We also show 
that the metabolites that might lead to the MI onset differ from the metabolites 
deregulated once the disease is well established, highlighting the importance of 
survival analyses to identify preventive biomarkers. Finally, we report the path-
ways in which the identified amino acids are enriched, shedding light on the me-
chanisms by which these metabolites may be implicated in MI onset. Of note, 
most of the identified metabolites are lipids, and enrichment of lipid metabol-
ism pathways was observed, but these did not attain statistical significance due 
to the involvement of many metabolites and thus the need for a large overlap 
with the lipid-associated MI to be considered significant. This complexity un-
derscores the intricate nature of lipid metabolism pathways, and the multiple 
roles lipids play in the onset of MI.
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Figure 2 Metabolites significantly associated with incident myocardial infarction. The bar height represents the hazard ratio (HR) value.  Novel metabolites 
are highlighted in bold. Each metabolite super-pathway and sub-pathway is also indicated. AA, amino acid; CH, carbohydrate; C/V, co-factors/vitamins; ENE, 
energy; LIP, lipid; Met, metabolite; NT, nucleotide; XEN, xenobiotic.
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4.1 Lysophospholipids
Among the lipids, lysophospholipids represent the largest subgroup found to be 
associated with incident MI. Specifically, we identified 5 metabolites belonging to 
this sub-pathway, with 3 of them, namely, 1-oleoyl-GPE (18:1), 1-palmitoyl-GPE 
(16:0), and 1-stearoyl-GPE (18:0), associated with an increased risk of MI and 
two of them, 1-linoleoyl-GPC (18:2) and 1-arachidonoyl-GPC (20:4), asso-
ciated with decreased risk of MI. Of these, 1-palmitoyl-GPE (16:0), 
1-arachidonoyl-GPC (20:4), and 1-stearoyl-GPE (18:0) are novel biomarkers 
of MI. Lysophospholipids are a group of bioactive molecules with diverse bio-
logical roles, including activation of specific G-protein-coupled receptors, and 
have been associated with atherosclerosis, coronary heart disease, and hyper-
tension.35 Nonetheless, their effects on CVD are controversial as both benefi-
cial and detrimental effects have been reported. For instance, they might 
possess cardioprotective effects, but, also, they might stimulate platelet aggres-
sion, enhancing ischaemia in MI.35 This fact along with the opposing results 
found between these metabolites and MI might indicate that lysophospholipids’ 
function might vary depending on their subclasses.

4.2 Intermediates of bile acid metabolism
Here, we report for the first time that incident MI cases have higher circu-
lating levels of the secondary bile acid glycochenodeoxycholate compared 
to controls. Bile acids can act as signalling molecules involved in inflamma-
tory processes and host metabolism.36 Several CVD metabolomics studies 
have highlighted the negative role of bile acids on CVD morbidity/mortal-
ity.37,38 Glycochenodeoxycholate is a bile acid-lycine conjugate produced 
by the gut microbiota.39 Studies have reported glycochenodeoxycholate 
is toxic and can induce hepatocyte apoptosis, which might lead to liver dis-
ease.40 Likewise, liver and cardiac diseases co-exist through complex cardio 
hepatic interactions.41 Our results may suggest that high levels of this bile 
acid can have detrimental effects on MI by causing alterations in the liver, 
and the gut microbiota might be targeted to modulate its levels.

4.3 Nucleotide metabolism intermediates
We are the first to report the association between allantoin and MI. 
Allantoin is involved in purine metabolism and is formed from the oxidation 
of urate by various reactive oxygen species.42 Allantoin has been reported 
as a potential marker of oxidative stress in humans,42 possibly explaining 

the observed positive association with MI. Moreover, we show the associa-
tions of pseudouridine and uridine, intermediates of the pyrimidine metab-
olism, and also urate, involved in the purine metabolism, with incident MI. 
This confirms previous findings and points out the important role of the 
nucleotide metabolism intermediates in cardiovascular risk.38 For instance, 
hyperuricaemia has been shown to be strongly positively associated with 
carotid and coronary vascular disease and stroke.43

4.4 Co-factors involved in the nicotinate and 
nicotinamide metabolism
We identified 3 co-factors associated with incident MI, from 
which 1-methylnicotinamide and N1-methyl-2-pyridone-5-carboxamide 
were intermediates of the nicotinate and nicotinamide metabolism. 
1-Methylnicotinamide presented an important protective effect in MI, which 
is concordant with their shown antithrombotic action in rats.44 On the con-
trary, N1-methyl-2-pyridone-5-carboxamide was negatively associated with 
MI, and to our knowledge, no studies have previously reported such an as-
sociation with incident MI. Nonetheless, Surendran and colleagues45 stated 
changes in its plasma levels during myocardial ischaemia-reperfusion injury. 
N1-Methyl-2-pyridone-5-carboxamide has been reported as a uremic 
toxin.46 These are organic compounds that accumulate in the bloodstream, 
as they cannot be eliminated from the body, reaching diverse organs, includ-
ing the heart,47 and they are a risk factor for the progression of chronic kid-
ney disease. Likewise, patients with chronic kidney disease have an increased 
risk for CVD, for instance, these molecules can lead to vascular damage by 
enhancing the expression of cytokines and pro-inflammatory molecules.47

4.5 Amino acids
Pathway enrichment analysis revealed that 11 incident MI-associated amino 
acids are enriched in pathways previously associated with CVD. Firstly, the 
aminoacyl-tRNA biosynthesis pathway has been reported to be closely re-
lated to angiogenesis and cardiomyopathy.48 Likewise, the glyoxylate and 
dicarboxylate metabolism is another commonly disturbed pathway found 
in different CVD.49 Eventually, the metabolism of glycine, serine, and threo-
nine has been linked with benefits in atherosclerosis,50 being concordant 
with the found negative associations of glycine, serine, and threonine 
with incident MI. Of note, these pathways share most of the included me-
tabolites and are characterized for being sensitive to the amino acids avail-
ability,48 suggesting that deregulation of the matched amino acids might 
lead to different cardiovascular complications, including MI, and emphasizes 
the importance of a balanced amino acid profile.

Our study has some limitations. Firstly, the number of healthy partici-
pants is 5.7-fold larger than the number of incident MI cases, although we 
have been able to identify 56 metabolites whose levels significantly differ be-
tween MI cases and controls. Secondly, the clinical definition of MI varies in 
each cohort depending on the protocol for data collection. This may intro-
duce a procedural bias. However, when we ran a sensitivity analysis by ex-
cluding cohorts where MI was assessed by self-reported questionnaires, the 
results remained consistent. Thirdly, metabolomics profiling was conducted 
using different metabolomic platforms, raising some caveats: (i) a different, 
somehow overlapping, set of metabolites was measured by each platform, 
and we are only including metabolites present in at least three cohorts; (ii) 
we quantile normalized metabolites to meta-analyse results across studies 
using different metabolomic platforms. However, ranks do not have prac-
tical significance and could be influenced by the sample size; (iii) metabolite 
sampling and detection times could not be unified as each cohort applies 
used a different metabolomics methodology. Fourth, though metabolite 
concentrations might be influenced by medications (e.g. statins),51 we 
were unable to adjust for drug usage as the data were not available across 
the studies. Statins are the main therapy for the worldwide prevention of 
CVD, including MI.52,53 They inhibit the rate-limiting step in cholesterol syn-
thesis, thereby lowering serum cholesterol levels and reducing MI risk.54

Statins can also reduce MI risk via cholesterol-independent mechanisms, 
for instance, by inhibiting the isoprenoid synthesis.55 Hence, statin usage 
and adherence could be confounding our results, and this should be 

Figure 3 Enrichment pathway analysis results indicating the significant 
pathways (FDR < 0.05) among the identified metabolites associated with 
incident myocardial infarction.
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addressed in future studies. Fifth, our study sample was predominantly 
White, and some MI-associated metabolites might have not reached the sig-
nificance level in Black individuals due to lack of power. Future studies 
should further investigate race–metabolite interactions56 to better under-
stand the role of race in the metabolite–MI association. Finally, it is import-
ant to note that these results do not necessarily imply causality.

Notwithstanding the above limitations, our study benefits from a two- 
step meta-analysis using IPD, which has been recognized as a ‘gold stand-
ard’ to evidence synthesis,57 and a high number of participants, which in-
creases the power of our statistical analyses and minimizes the chances 
of obtaining false positives. Also, sensitivity analyses were run stratifying 
by race, allowing us to investigate the influence of demographic diversity 
in the identified associations. Furthermore, measurements of a wide range 
of metabolites, belonging to different pathways and sub-pathways, were 
available for each cohort allowing us to obtain a wide picture of the role 
played by metabolomics in MI. Different platforms were used for the me-
tabolite measurements, reducing the inclusion of measurement errors or 
misidentified metabolites given by a certain platform. Moreover, despite 
using distinct platforms and manners to define MI, the significance of the 
identified metabolites was concordant across cohorts. Finally, the pro-
spective nature of the current study permitted us to investigate how dis-
tinct metabolomic profiles are associated with incident MI.

In conclusion, these findings shed light on novel metabolic preventive 
biomarkers of MI and the involved pathways and might help to identify 
high-risk individuals before the disease onset and pave the way towards 
the development of novel preventative strategies. Nonetheless, more re-
search needs to be conducted to confirm the identified metabolites as bio-
markers and to fully understand underlying the mechanisms of action.
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Translational perspective
In the largest meta-analyses covering six international cohorts, we identify 10 novel and 46 known metabolites associated with incident MI that can be 
used to identify at-risk individuals before disease onset. Our results improve our understanding of the molecular changes that take place in MI devel-
opment and provide potential novel targets for clinical prediction and a deeper understanding of causal mechanisms.
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