
Doctoral Program In Computer Science

A semantic approach
for constructing knowledge graphs

extracted from tables

Doctoral dissertation of:
Sara Bonfitto

Advisor:
Prof. Marco Mesiti

The Chair of the Doctoral Program:
Prof. Roberto Sassi

A.A. 2021/2022 - Cycle XXXV

Contents

Introduction 1

1 Table understanding approaches 11
1.1 Preliminaries . 12

1.1.1 Definition of “table” and issues in automatic processing 12
1.1.2 Classes of layouts . 13
1.1.3 Generic tables vs other kinds of tables 15
1.1.4 Main ML classifiers used for table understanding 16
1.1.5 Link prediction methods . 18

1.2 Approaches for the table understanding problem 20
1.2.1 The localization and segmentation steps 20
1.2.2 The functional and structural analysis steps 23
1.2.3 The interpretation step . 29

1.3 Extracting and transforming tables . 35
1.3.1 Basic extraction and transformation tools 35
1.3.2 Transformation tools to the relational/RDF models 37
1.3.3 Programming by example approaches 40

1.4 Knowledge graph construction . 42
1.5 Concluding remarks . 43

2 Background 45
2.1 Table representation and type system . 45

2.1.1 Mixed types . 46
2.1.2 Union types . 47

2.2 Ontology and knowledge graphs . 48
2.3 Semantic description . 51

i

3 Semi-automatic type inference approach 54
3.1 Table identification . 55
3.2 Type recognizers . 56
3.3 Type inference approach . 57

3.3.1 The main model . 58
3.3.2 Training of the main model . 60

3.4 Visualization and type adjustment . 61
3.4.1 Main interfaces and error identification 62
3.4.2 Data type modification . 63
3.4.3 Identification of a mixed type . 66
3.4.4 Correlation between rows . 70

3.5 Experimental results . 74
3.5.1 Validation of real documents . 74
3.5.2 Evaluation of usability - phase 1 77

3.6 Concluding remarks . 80

4 Semantic descriptions of the table content 83
4.1 Overview of the Methodology . 84
4.2 Graph embedding . 86
4.3 Construction of the complete SD . 88

4.3.1 Construction of the initial SD . 88
4.3.2 Requirements for the complete SD 89
4.3.3 Generative algorithm of the complete SD 91

4.4 Weighting systems . 96
4.4.1 Ontology-based weighting system 96
4.4.2 KG-based weighting systems . 97

4.5 Inclusion of properties for unmatched table columns 99
4.6 Generation of the concise SD . 101
4.7 Experimental evaluation . 102

4.7.1 Validation of the GNN model . 104
4.7.2 Validation of the concise SDs . 107
4.7.3 Validation of the prediction of unmatched table columns 112

4.8 Concluding remarks . 115

5 Visual management of the semantic description and KG construction 117
5.1 Interfaces for the management of SD . 118

5.1.1 Graphical representation of SD . 118
5.1.2 Overview of the main interface . 119
5.1.3 Visual operations on the table columns 120

ii

5.1.4 Visual Operations on the graphical representation of SD 122
5.2 Generation of the knowledge graph . 125

5.2.1 Transformation functions . 125
5.2.2 Algorithm for the KG construction 129
5.2.3 Interface for completing missing information 130

5.3 Evaluation of usability - phase 2 . 133

Conclusions and Future Work 135

References 137

iii

Abstract

Knowledge graphs (KGs) are networks of real-world entities with their relationships and properties and are
more and more used as a means for the integration of heterogeneous sources of information in a common
model that facilitates the interoperability of different applications and generates a huge quantity of information
that can be exploited for machine learning predictions.

Many approaches were proposed for the construction of KGs starting from tables extracted from spreadsheets,
Web tables, or tables contained in digital documents, that entail the location and segmentation of the table
in the source document, the extraction of its components, the identification of the function of different areas
and the discrimination of relationships between attributes. However, the semantic characterization of the table
content in terms of a domain ontology and the generation of the KG are still open research problems because
of the heterogeneity of the table contents, the eventual presence of mistakes, and the lack of standardization.

The goal of this thesis is the development of an approach for supporting the user in the construction of a
knowledge graph, which is compliant with a domain ontology, starting from tabular data presenting a complex
structure and syntactic and semantic mistakes. We believe that a completely automatic approach that exploits
sophisticated machine learning (ML) techniques cannot properly be used in this context. A semi-automatic
approach can be devised in the process of data cleaning, semantic characterization of the table content, and
translation in the KG representation. Users need to be supported by easy-to-use graphical interfaces for
correcting mistakes and improving the system’s overall performances.

For these reasons, in this thesis, we have devised a three phases approach. The first phase focuses on the
semantic characterization of table columns in terms of the basic types and/or properties of a domain ontology.
In this phase, a table is extracted from a spreadsheet and different cleaning activities are carried out (like
removal of headers and footers, removal of blank and semi-blank rows, and detection of table rows that are
correlated using a declarative pattern-based language). Then, through the identification of basic types of table
columns, syntactic mistakes are identified and the user can correct them by exploiting different interfaces. This
process improves the characterization of the semantic concepts contained in the table. The second phase of
the approach focuses on the definition of a semantic description of the table content w.r.t. a domain ontology.
The description is created starting from the result of the previous phase and exploits a graph neural network
model for the identification of the relations that bind the concepts contained in the table. The third phase
focuses on the generation of the triples of the KG starting from the table content and the semantic description.
In this activity, we have developed interfaces for the identification of semantic mistakes occurring in the data
and for the specification of identifiers of the KG instances. Different experiments have been conducted for
validating the three phases of the approach proposed in the thesis and the usability of the entire system.

iv

Introduction

Knowledge graphs (KGs) [93] allow the description of real-world entities, their relationships
and properties in terms of nodes and edges of heterogeneous graphs. A KG is usually rep-
resented through Resource Description Framework (RDF) triples [102] which indicate that
an entity subject, usually identified by an IRI (International Resource Identifier), is connected
through a relation/property to an object. The object can be an entity (i.e. an IRI), or a basic
property of the subject.

Knowledge graphs can be exploited in different application contexts (recommendation, query-
ing, classification, knowledge augmentation, and data exchange [178]). They are becoming
more and more used because the graph data model is more flexible than the relational model
and facilitates the integration of different information and thus the interoperability of the ap-
plications working with them. The manual construction of KGs is considered very expensive
and many automatic and semi-automatic approaches have been proposed that rely on the
use of KGs (e.g. DBpedia, Yago, Freebase) automatically extracted from the Web and cov-
ering different domains. The use of an ontology for constraining the relationships that can
exist among the classes of a given domain and their properties is fundamental to enabling
high-precision knowledge acquisition processes [168], reducing the introduction of noises
in the KGs, and facilitating the interoperability of the applications working with the data.

One of the main sources for the generation of the KG content is tabular data. Tabular data
can be identified in pdf files, spreadsheets, and Web pages, and may be coded in different
formats (like XML, JSON, latex, CSV, TSV,...). These tables, mainly designed for being in-
terpreted by humans, are heterogeneous and do not follow any standard format or notation.
Some files present values that are organized as a relational table where column values are
homogeneous, while others are highly heterogeneous and the same column contains differ-
ent types of information at different granularity levels. Moreover, a table can contain errors
that make it harder the identification of a column type and introduce inconsistencies.

The automated processing and/or conversion of a table to other formats, principally aimed

1

Figure 1: The Table Understanding Approach

at extracting meaningful information, storing and transmitting structured information (e.g.
knowledge graphs or relational models), and integrating data from different sources are
open problems, that fall under the umbrella of Table Understanding problems. According to
[92], approaches aimed at obtaining an end-to-end solution generating machine-readable
and structured information from tables should encompass the following five logical steps
(that are also depicted in Figure 1): localization, to identify the location and structure of the
table in between all the other elements in the file/page; segmentation, to extract all table
components, i.e. cells, columns and rows, headers, stubs; functional analysis, to identify
areas of the table that have a similar function; structural analysis, to distinguish attributes
relationships; interpretation, to extract the semantic meaning of the table content.

The localization and segmentation steps were, in the nineties, mainly addressed by image
processing techniques [71] that were originally used for table detection in documents, since
tables were often found in scanned images of documents. However, with the widespread
adoption of HTML and other document formats, the table localization step evolved toward
the usage of specific tags/commands to declare table contents. These new techniques
[165, 47, 48, 153, 66] focused on distinguishing between "layout tables", which were used
for formatting purposes, and "real tables", which contained actual data. The emergence of
deep learning moved the localization and segmentation techniques towards the usage of
convolutional neural networks (CNNs) [114, 42, 110, 81, 69] and conditional random fields
(CRFs) [136] that can be particularly effective.

The functional analysis step is often preceded by a pre-processing step, aimed at iden-

2

tifying the table reading order (vertical or horizontal), by generally exploiting layout (style
and format) and/or content coherency characteristics. Once headers/data cells have been
discriminated and the table reading order has been identified, the structural analysis step
aims at understanding the relationships between headers and data cells, that is, finding
the data cell regions/blocks that each header cell describes and refers to. The structural
analysis identifies the table class layout and the occurrence of hierarchies on headers and
stubs by aggregating data cells of the same header and eventually identifying parent-child
relationships existing on headers and stubs. Some approaches use a set of rules on the
table’s boundaries, layout, and content features (e.g. [149, 66, 35]), while others use ma-
chine learning techniques to infer rules from training sets (e.g. [37, 104, 38, 70]). Some
methods view the identification of these relationships as a graph partitioning problem and
adopt CRFs [136], and support vector machines [45] approaches.

The interpretation step assigns a semantic description to the content of the table, which is
a difficult task, even when the previous localization, segmentation, functional and structural
analysis steps have been correctly carried out. Initial approaches (e.g. [92]) proposed
the relational model for the interpretation of the table content. Newer approaches (e.g.
[116, 127, 14, 40]) are considering the use of knowledge graphs expressed in terms of
a domain ontology. The KG construction process entails the following tasks: i) column
type inference, i.e. the identification of column types or ontological classes associated with
the table columns; ii) relation discovery, i.e. the uncovering of relationships among the
identified ontological classes; iii) triples generation, i.e. the creation of RDF triples from
the table rows. This last operation is not trivial because it depends on the table content.
Entity identifiers might not be present in the table as well as mandatory properties used
for identifying the entities. In these cases, user intervention (or the use of data/knowledge
augmentation techniques) is required to complete the missing data and obtain accurate
descriptions of real world-entities.

For the column type inference step, many approaches have been proposed for annotat-
ing the table columns with simple basic types (e.g. [97, 157, 72, 158, 31]) or classes and
properties of an ontology (e.g. [134, 145, 34, 89, 176, 98]). These approaches use neural
networks to make predictions on the column types relying on the use of knowledge bases.
The relation discovery step entails the identification of direct and indirect relations between
entities, and it can be seen as a link prediction problem. The most popular link prediction
approaches employ structural information, such as node similarity and centrality measures,
to yield the prediction [117]; while more recent approaches rely on graph neural networks
to improve prediction performances [111]. These last solutions represent a graph in a lower
dimensional vector space, whilst maximally preserving properties like graph topology and
ancillary data [75]. Only recently, the possibility of identifying relations passing through

3

other entities has been considered [154, 65, 163] (e.g. two actors reported in a table can
be related by means of the film in which they have played). In these approaches, a graph
model reporting all possible plausible relations involving the concepts identified in the table
is generated. Then, the edges are weighted (according to their frequencies in previously
processed tables) and a tree with minimal weight is extracted that better represents the rela-
tions among the table columns. Finally, for the last step triples generation, different kinds of
declarative mapping rules and their associated engines can be exploited for the acquisition,
transformation and normalization of the data to be included in the knowledge graph (e.g.
R2RML [50] for relational data, RML [54], SPARQL-Generate [115], and YARRRML [82]
for dealing with other formats and the heterogeneity of the data sources). However, these
approaches are mainly devised for the extraction of a single entity from a table and require
a high level of homogeneity of the table content (which is not guaranteed in our context).
Moreover, the compliance of the generated triples to the adopted domain ontology is not
assured. Once the triples are generated, techniques for knowledge fusion and knowledge
refinement [41] should be applied for improving the quality of the knowledge representation
and reduce the noise that can occur in the KGs. Another issue related to KG management is
the possibility of inferring new relationships on the represented entities and different surveys
face this problem [168, 93, 91].

Problem formulation and resolution approach
The purpose of this thesis is the development of an approach for supporting the user in the
incremental construction of a consolidated KG compliant with a domain ontology starting
from multiple tabular data. These tabular data are transformed into small KGs that can be
used for feeding the consolidated KG.

Tabular data are extracted from spreadsheets that do not follow a standard representation
format or notation. Moreover, a single column can contain data of different types (e.g. the
name of a company or the name of a person), or a cell can contain different pieces of infor-
mation (e.g. a string containing the different components of an address). In addition, syn-
tactic errors (e.g. a date written without the separators) or semantic errors (e.g. a zip code
associated with the wrong town) can occur in the table. Furthermore, a table can contain
headers, footers, blank rows and rows containing only a few data (e.g. totals) that are not
useful for the generation of a knowledge graph, and that must be identified and removed.
Lastly, information related to a single real-world entity can be organized into consecutive
rows that need to be identified as correlated rows and properly handled.

An ontology is a formal description of the elements involved in a given domain and the rela-
tionships among them. By providing a common set of terms used for describing elements

4

Figure 2: Pipeline of the three phases of the approach

and relationships, an ontology guarantees the interoperability of applications working with
data that follow its rules and constraints. In our context, an ontology consists of concepts or-
ganized according to inheritance relationships. Moreover, relations can be devised among
concepts and basic properties can be associated with concepts. A set of identifying prop-
erties can be specified for each concept that can be exploited to specify the identifier of
the concept instances. The use of an ontology in the creation of a knowledge graph from
data occurring in different data sources allows the generation of applications for the analy-
sis of data that can safely work with homogeneous data and provide meaningful prediction
results. Instances of the ontology are represented by means of a consolidated knowledge
graph containing all the data previously processed and annotated according to the consid-
ered domain ontology.

The table understanding approaches proposed in the literature are not suitable for our prob-
lem because they do not consider the variability of data types that can occur within the same
cell or column, they do not check for the existence of correlations, and they rarely consider
the presence of syntactic and semantic errors. Moreover, it is quite difficult to infer the re-
lationships existing among the concepts identified in a table. Finally, the generation of a
knowledge graph requires the existence of an identifier, usually determined by a set of iden-
tifying properties, for each new concept that can be found. However, sometimes the iden-
tifying properties can be missing from the table. Therefore, we proposed a semi-automatic
approach to support the user during the process of data acquisition, cleaning, transformation
and semantic characterization. Users are supported by easy-to-use graphical interfaces for
correcting mistakes and improving the overall performance of the system.

5

As outlined in Figure 2, our approach is structured in three phases that combine the use of
machine learning techniques with graphical user interfaces in a complex web application.
Each phase is dedicated to the management of a particular problem and relies on the output
of the previous phase. This approach is semi-automatic, which means that user interactions
are often required for solving errors and correcting wrong predictions.

The main purpose of our first phase is table identification and cleaning. Table identification
requires pointing out the table boundaries in a spreadsheet file, and removing headers,
footers, blank rows and columns. Starting from the identified table, a set of data types for
each cell and column is determined through a multi-label classification approach that uses
a decision tree and a set of functions for type recognition. The decision tree is trained by
means of synthetic data generated for a specific domain that compensates for the lack of real
data. The detection of data types is also useful for the identification of syntax errors (i.e. data
whose type is not compliant with the type established for the column) that can be fixed by the
user through a set of graphical user interfaces that allow the application of a single correction
to many rows at the same time. And finally, in this phase, for identifying correlations among
table rows, we adopt a declarative pattern-based language for specifying when a correlation
exists and we introduce specific user interfaces for correcting and changing the correlation
among table rows.

The second phase of the approach is related to the semantic characterization of table con-
tent. In this phase, a semantic description of the spreadsheet tables is provided by means
of annotations w.r.t. the considered domain ontology. The semantic description is created
starting from the concepts identified in the first phase and allows the prediction of the re-
lationships existing among them by taking into account a full heterogeneous GNN model
[164]. The model uses two convolutional layers with a graph attention mechanism [161] for
computing the embeddings. Each relation name r ∈ R has its attention mechanism and
the node embeddings are obtained as the sum of the contributions of each convolution de-
fined on the relations in which it is involved. The model is constructed on the consolidated
KG. One of the main advantages of our approach is the possibility of identifying also indi-
rect relationships among concepts, that is relationships that pass through other concepts
that are admitted by the domain ontology. The model is also used for inferring properties
on unmatched columns, that is columns without a semantic characterization that must be
associated with a concept and property of the considered ontology and inserted in the fi-
nal semantic description obtained for the table. The semantic description is also coupled
with a graphical representation that makes it easier for the user to check the automatically
generated model and correct mistakes when needed.

Once the semantic description is complete, it can be used for the automatic translation of the
spreadsheet table in an RDF representation according to the considered ontology. In this

6

phase, we provide facilities for the definition of identifiers for each concept of the semantic
description. Specifically, we provide the possibility of associating transformation functions
with ontology concepts that can be applied to the identifying properties for the generation
of an identifier. Moreover, we propose the use of a graphical language for the specification
of the transformation functions that would simplify the user activity. Then, an algorithm
that transforms the data contained in the table into an RDF graph is applied for creating
a knowledge graph in RDF that represents the table content according to the concepts,
relationships and properties identified in the semantic description.

Several experiments have been conducted for assessing the quality of the developed ap-
proach. The type recognition algorithm of the first phase has been trained and tested using
one million synthetic tables presenting different kinds of syntactic errors. The dataset has
been used also for comparing the decision tree with other methods such as Random Forests
and MLPs. The average AUROC and AUPRC scores of each method have been computed
and they did not show any statistically significant difference, therefore, since the decision
tree is the fastest to train and the most interpretable, we have chosen to use it. The usability
of the interfaces developed for the first phase have being tested through 20 volunteer stu-
dents with a set of assigned tasks. The test was successful, with the majority of users (95%)
satisfied with the developed interfaces and reporting that they did not encounter any prob-
lems during the error correction process. The prediction algorithm developed in the second
phase has been compared with two baseline methods: the multimodal approach MRGCN
[169] that extends the basic R-GCN model [146], and SeMi [65], which exploit an R-GCN
model [146] for the generation of concise SD. The obtained AUROC scores show that our
method outperforms the other methods for all the used datasets. Moreover, we have eval-
uated the quality of the produced results by considering manually generated ground truth
mappings and we obtained an average accuracy of 80%. Finally, we tested the usability
of the interfaces developed for the second phase and we obtained that 85% of the users
defined the interface as easy-to-use and intuitive.

Research contributions
The work proposed in this thesis has been initially conceived in the context of a research
project with a debt collection agency that needed to collect invoices represented as CSV/XLSX
files from different local authorities (e.g. Municipalities, Provinces, and Regions) and inte-
grate them into a KG for proceeding in the rescue of the credit and correctly classifying
the debtors as good or bad payers. The work started by studying the literature in the con-
text of table understanding and schema integration and concluded with the publication of
a survey on table understanding problems and approaches for extracting tabular data from
spreadsheets and assigning an interpretation useful for their integration into a KG [20].

7

Then, the work was focused on the realization of the first phase of our approach. Specifi-
cally, we have worked on the adoption of decision trees on an ensemble of type recognizers
for the identification of cell types and column types by taking into account the presence of
mistakes in the cell values. Even if the performances of the developed model were particu-
larly good, the need to develop a system in a commercial environment pushed us towards
the development of different web interfaces for supporting the user in fixing the predicted
types and also in fixing and completing the type assignment. In this activity, we have also
considered the use of a domain ontology for a better characterization of the table content.
Moreover, we have developed a graphical environment by means of which the user is able
to operate on the graphical representation of the semantic description and improve its qual-
ity; then, we conducted usability tests for assessing the facility of its use. The key results of
this research phase are the development of a multi-label classification approach for dealing
with the heterogeneous content of the tables, and the coupling of the predictive approach
with user interfaces for supporting the user in the verification and update of the prediction.
This is an important contribution to managing the heterogeneity of the table contents and
identifying possible errors to be fixed by the user. The obtained results appeared in [18, 19]
and were discussed at the DAFSAA Ph.D. consortium [17].

For the realization of the second part of the approach, we have studied deep learning models
and the possibility of their adoption in the context of table understanding for the identification
of plausible relationships existing among the concepts extracted in the first phase. The prob-
lem required a lot of work for the identification of the machine learning model that is more
suitable for this purpose and for tuning the parameters for improving the performances. The
key result of this research phase is the integration of a machine learning method in the pre-
diction of the kind of relationships that bind together concepts presented in a table with the
formal characterization of the requirements that a semantic description should have. The
use of embedding techniques for the presentation of the consolidated knowledge graph
allows taking into consideration different characteristics of the nodes among which the re-
lationship should be identified. Therefore, there is an improvement in the state-of-the-art
approaches that mainly rely on the relations existing among the specific nodes (so they
adopt the node identifiers). Moreover, the extensive experimental analysis proved the qual-
ity of the obtained results with respect to other approaches developed in the same context.
The results of this phase have been submitted for publication [22].

The last part of our work was devoted to the realization of the approach for translating the
table content in terms of the knowledge graph. In this context, we have proposed the use of
a graphical language for the representation of semantic description that can be visualized,
checked and updated by the user in different ways. Moreover, we have proposed a graphical
language also for the specification of the instance identifier relying on the identifying prop-

8

erties occurring in the domain ontology [24]. We are also currently working on the adoption
of the proposed methodology for the construction of biomedical knowledge graphs in the
context of the National Center for Gene Therapy and Drugs based on RNA Technology,
financed under a grant from the Italian PNRR [21].

Last, but not least result of this PhD thesis is a single web platform that integrates the dif-
ferent approaches proposed in the thesis. We are currently completing the implementation
of the last features described.

Structure of the thesis
The thesis is organized into 5 chapters.

Chapter 1 provides an overview of the research efforts for converting spreadsheet data into
useful information, that come under the umbrella of table understanding approaches. The
chapter focuses also on techniques for annotating the information extracted from tabular
data with semantics and constructing semantic models of spreadsheets. Finally, the most
recent methodologies are discussed and future research directions are outlined.

Chapter 2 reports the background information about table extraction, type system, ontology
and knowledge graphs, and semantic description that are used in the thesis. The formal
definitions of these concepts are introduced along with examples for a better understanding
of their meanings.

Chapter 3 presents our approach for cleaning and removing errors from a table and identi-
fying a data type for each column. The used ML technique is presented along with the per-
formed tests. We also describe the set of graphical user interfaces developed for supporting
the users in checking and fixing the automatically generated annotations. Furthermore, ex-
periments for the validation of the ML techniques and the obtained results are presented.
At the end of the chapter, usability tests are presented to evaluate the user experience of
the various graphical user interfaces developed in this phase of our work.

Chapter 4 introduces a new approach for generating a Semantic Description (SD) from the
content of a table. First, the concept of complete SD is introduced along with the algorithm
for its creation. Then, different weighting systems are introduced for properly weight the
complete SD. Finally, by exploiting the Steiner tree a specific semantic is extracted in the
form of a concise SD. Finally, a discussion of the performed experiments and comparisons
with other works are presented.

Finally, Chapter 5 presents the graphical representation of the semantic description used for
facilitating the user in checking its correctness. The interfaces used for the verification and

9

modification of the semantic description are then presented. Moreover, the issues and the
approach for the generation of a knowledge graph are discussed along with the algorithm
used for the transformation. Furthermore, transformation functions for the generation of
identifiers for the KG instances are described. Finally, we report the results of the usability
test performed on the presented interfaces.

10

Chapter 1

Table understanding approaches

The purpose of this chapter is to provide a comprehensive analysis of the research efforts
so far devoted to the development of an automatized system for the automatic transforma-
tion of spreadsheet data into meaningful information, also known as the table understanding
problem. The different methods will be classified according to Hurst’s table-understanding
steps and the exploited approaches and methods (ML or heuristics). Furthermore, to allow
a more exhaustive comparison, for each method, the treated table types will be evidenced
in terms of input format, table layout, and table hierarchy, together with the (private or public)
availability of datasets used for testing and development. Special emphasis will be given to
the information extracted from tabular data, and to the techniques adopted for the semantic
annotation of spreadsheets and the construction of semantic models. Since the most inter-
esting table recognition literature works published up to 2006 have been already described
in [77, 119, 120, 92, 174, 59, 48], in our survey we aim at describing the main works of the
last fifteen years. The last part of the chapter is dedicated to the construction of knowledge
graphs. Even if many of the techniques discussed in this chapter can be profitably applied
for their generation, in this part we wish to empathize the issues that arise in data integration
and the approaches for facing them.

The chapter has been realized starting from [20] and is organized as follows. Section 1.1
introduces some preliminary notions and notations that are used in the chapter. Section
1.2 discusses the approaches so far proposed according to the five logical steps of table
understanding. Section 1.3 discusses approaches for extracting and transforming tables,
whereas Section 1.4 deals with the concept of knowledge graphs and the approaches for
their construction. A concluding discussion on the presented methodologies is reported
along with some future research directions.

11

1.1 Preliminaries
Different kinds of documents (pdfs, web pages, spreadsheets, etc.) can contain tables with
different characteristics (in terms of, e.g., the way they are coded in the document, their
layout, their content, and so on). In this work, we overview both approaches that can be
applied to generic tables, that is tables contained in any kind of document, and approaches
developed for handling specific table types (e.g. relational tables, web tables, spreadsheet
tables). Section 1.1.1 presents the definition of table and the issues that need to be faced
when processing generic tables. Then, Section 1.1.2 outlines the classes that can be iden-
tified in table layouts and Section 1.1.3 provides a comparison among generic tables and
tables of the relational model, web tables and spreadsheet tables. Section 1.1.4 introduces
the main ML classifiers used for the approaches discussed in the chapter, whereas Section
1.1.5 discusses the issue of link prediction in graphs.

1.1.1 Definition of “table” and issues in automatic processing
Identifying a definition for the concept of table is quite hard because of the variety of organi-
zations, access methods, and meanings that can be associated with the information delim-
ited in a grid-based structure. According to [133] “tables have a regular repetitive structure
along one axis so that the data type is determined either by the horizontal or vertical indices”.
This definition considers a grid-based organization, useful for expressing two kinds of infor-
mation present in a table: the information that the authors wish to report (data content) and
the indexes used for interpreting and accessing the information (access key/index). Con-
versely, in [92] a table is presented as “a device used to present information to the reader by
organizing some set of meaningful elements on the page so that the relationships between
those elements, and the manner in which combinations of the elements interact, is demon-
strated to the reader”. This definition highlights the presence of relationships between the
table elements that need to be considered to correctly interpret the meaning of its content.

The aforementioned definitions, however, do not explicit the great amount of ambiguity hid-
den in the tabular organization of information, which should be considered for the correct
automatic processing of tables. Moreover, these definitions do not give enough relevance
to the context in which tables are embedded and to the assumption made by the tables’ au-
thors during their creation, which would allow associating the correct semantics to the table
content. These aspects are really relevant in providing a semantic characterization of the
information contained in tables and in posing the bases for the integration of their contents
with other kinds of information, as well as for posing and answering queries.

For grasping the problem, consider the simple table in Figure 1.1(a). Even if the structure
and the content suggest that the table contains the information of two individuals, the labels

12

name city date
Jack Milan 1/1/2000
Alice Rome 5/2/2010

(a)

9 age
12 age children

7 address Terry

(b)

children age 9
age 12

address 7 Terry Dr.

(c)

Figure 1.1: Examples of generic tables

city and date associated with the second and third columns do not permit interpreting
the meaning of their contents. Does city represent the place where these people live or
where they were born, or what else? The same considerations hold for the date column.
Contextual information is needed for assigning a precise meaning to their content.

Even if this problem can be considered trivial, the situation can be further complicated as
illustrated by the table in Figure 1.1(b). Indeed, this table complies with both Peterman’s
and Hurst’s definitions, but the lack of constraints on the location of the data and access
cells makes it hard to: i) identify the table meaning and visually comprehend both the con-
tent and the logical organization of the real world objects that the table represents; ii) bind
the table cells to the real world objects to which the cells themselves are associated. The
re-organization of the table in Figure 1.1(b) as reported in Figure 1.1(c) would simplify the
aforementioned binding. Anyhow, it is clear that a full understanding of each of the afore-
mentioned tables needs the specification of a context, in which the table should be inter-
preted, and the external knowledge to associate a precise meaning to the table contents.

Figure 1.2 proposes the general structure of a table as a grid of cells. Cells can have
different sizes and can be used for representing access indexes to the table data content.
The stub is located in the left-hand part of a table and used for indexing the content area
(especially in matrix tables). The head is located in the uppermost part of the grid and
used, like the stub, to index the content area. Both the head and the stub can be organized
hierarchically and thus provide the basis for aggregating the content data at different layers.
Therefore, row/column headers can be nested at different depth. Blocks of cells containing
related information can be identified. The content of some cells may depend on the value
of other cells, as for values in column total. The dependency can be explicitly expressed
by the presence of formulas in spreadsheets or can be implicitly specified and needs to be
extracted by considering the values occurring in the table.

1.1.2 Classes of layouts
Starting from this general organization of the table and following the notation presented in
[137], three major layout classes of tables can be usually identified: 1-Dimensional (1D),
2-Dimensional (2D), and Complex (C) tables. In 1D tables either the header or the stub is

13

Figure 1.2: General organization of a table

present. Specifically, Vertical 1D tables (1D-V) are made of a box head generally placed
at the top of the table, miss the left/right stub, and contain at least one-body line with data
content. The box-head hierarchy is usually flat; however, if it is composed of nested headers,
their labels are related to each other. The rows in the data content area are instances of the
header cells above (the table in Figure 1.1a is an example of the 1D-V table). Horizontal
1D tables (1D-H) are the rotated version of vertical 1D tables; in this case, the box-head
is missing, and the (eventually hierarchical) stub contains the headers to which all the data
cells in the column refer. In 2D tables, both stub and head are present and are usually
organized in hierarchies (see Figure 1.2 for an example). The table understanding problem
in this kind of tables is harder because it is quite difficult to discriminate among the cells that
contain stubs and heads from those with the content. The class of C tables encompasses
all the other kinds of tables that are based on a head/stub organization, but whose shape is
not so easily separable. Among them, we can mention multiple tables that are embedded in
a single table, tables whose cells are aggregations of other cells because of the presence of
formulas or because their value is, for example, the sum of the values of other cells, tables
whose entries expand over multiple cells (in different rows/columns). These complex tables
are challenging for automatic approaches and no completely automatic approach has been
proposed yet. Figure 1.3 shows an example of a complex table. As pointed out by [137],
discovering and handling this class of tables is hard as it is difficult for a system without any
prior knowledge to discriminate between headers/stubs and data contents.

14

% Comparisons
Group N positive neutral negative χ2 df p
Q1 (a) Programming Labs are useful for learning the subject

CS group 400 73 7 20
0.9 4 ns

Math group 400 70 8 22
Q1 (b) Working with data makes predictions more reliable

CS group 400 52 12 36
13.7 4 < 0.05

Math group 400 44 15 41
Q1 (c) Lessons in class are more active than web conferences

CS group 400 46 11 43
14.8 4 < 0.01

Math group 400 31 14 55

Figure 1.3: A complex table with the results of a student satisfaction surveys on lesson
organization. The table reports questions, answers by different groups (with the number
of students per group) and the p-value (p) resulting from a χ2 test of significance with df
degrees of freedom.

1.1.3 Generic tables vs other kinds of tables
When treating tables, it is important to clarify correspondences and differences between
generic tables, relational tables, web tables, and spreadsheet tables. Relational tables fol-
low the constraints for the representation of structured data [44]. Given n basic domains
Di,1≤ i≤n, a relation R is a subset of their Cartesian product (R⊆D1 ×...×Dn). The
schema S of a relation R is a set of labels {A1, . . . , An} (denoted attribute names) as-
sociated with their corresponding domains (S(R) = {(A1, D1), . . . , (An, Dn)}) that along
with the name of the relation is used for identifying the context in which the data should be
interpreted. The term relational tables is used to point out their usual tabular representation.

According to this definition, the relational model imposes a fixed, pre-defined schema for
relational tables, where all values specified for a column should belong to the same basic
domain. This restriction is not imposed in a generic table because its content is gener-
ally provided for summarizing a given concept. Moreover, cells can contain heterogeneous
contents and may have a heterogeneous structure. Content heterogeneity means that a
cell may contain different basic information units (e.g. a cell can contain the income per
month of an employee as well as the percentage of the income in the entire year and the in-
crement with respect to the previous year) and structure heterogeneity means that columns
may contain more than one information; as an example, information units can be embedded
in patterns that make easier their interpretation for readers (e.g. 1000 euro (9%-+2%)).
Finally, a single tuple of a relational table represents a single real word entity, therefore the

15

attributes are aspects of a real word entity that are bound together for its description in a
given domain. This is not the case in generic tables where the interpretation of one row
depends on its layout, and attributes of the same real-world entity can occur in different
table blocks. According to [92], a generic table corresponds to a collection of views applied
simultaneously on a set of relational tables. Therefore, different kinds of information may
be contained in the table and their specific organization is based on the will of their authors
to clarify a given concept and make its interpretation easier for readers.

The term webtable is introduced in [30] for representing quasi-relational tables. These tables
contain structured data describing a set of entities, and are thus useful for data search, ta-
ble augmentation, KB construction, and various NLP (Natural Language Processing) tasks.
However, they do not need to follow the strict constraints of the relational tables (no need
to have a key, no need to have attribute names associated with columns, and so on). Ac-
cording to our notation, web tables can be considered as generic 1D tables in which the
structure weakly follows the one prescribed by relational tables.

Spreadsheets have been specifically developed for easily creating and managing tables
with any layout. Their organization in different sheets allows the creation of several tables
both in the same and across several sheets. Moreover, formulas can be included for com-
puting values relying on the values of other cells belonging to the same table/sheet or other
tables/sheets. Finally, several formatting artefacts, textual metadata, and floating objects
(e.g., pictures and charts) can be included in a spreadsheet, which makes their automatic
processing particularly complicated.

1.1.4 Main ML classifiers used for table understanding
Many proposed approaches exploit “supervised” classifiers that rely on different algorithms
for inferring the best classification rules from labelled (training) examples, by minimizing the
loss between the (manually signed) “ground truth labels” of the training samples and their
predicted labels. Among the various classifiers, those mainly used for table recognition are
Support Vector Machines – SVMs [45], Decision Trees – DTs [27, 118], Random Forests –
RFs [26], C4.5 [138], probabilistic Naïve Bayes (NB) classifiers [80] and Conditional Random
Fields – CRFs [112]. More recent works exploit different DL models [114, 123] given their
documented capability of reaching superhuman performance in many areas.

Classification DTs or C4.5 classifiers are built by recursively identifying the most accurate
rule that splits the training set into subsets by minimizing the classification error [148]. The
difference between DTs and C4.5 classifiers relies on the way the splitting rule is chosen; DTs
use the Gini index [68], which minimizes the node impurity, while C4.5 classifiers choose the
rule maximizing the information Gain [138], which is calculated by comparing the entropy

16

of the dataset before and after the split. RFs [26] are ensembles of DTs or C4.5 classifiers,
which are formed by training several DTs, generally on bootstrapped samples; the final
prediction is given by composing the labels predicted by each tree through majority voting.
SVMs [45] are binary classifiers that find the support vectors (i.e. sample in the training
set) that delimit the decision boundary (hyper-space in case of multi-dimensional points)
that best separates the negative and the positive samples, after their projection in a linear,
polynomial, or gaussian hyperspace [83].

NB classifiers ground their prediction on the Bayes theorem and, under the assumption of
a strong (naïve) independence between features, approximate it by: p(Ck|x1, x2, ..., xn) =
1
Z
p(Ck)

∏n
i=1 p(xi|Ck) where Z = p(x) is a scaling constant factor. If the number of dif-

ferent classes is K, NB classifiers exploit the training set to estimate the parameters θk
of the distribution f(xi, θk) (e.g. gaussian, multinomial, Bernoulli) that best approximate
the class-conditional marginal densities, p(xi|Ck). By using f(xi, θk), the predicted class
Cpred

k of an unseen sample x = x1, ..., xn is the maximum a posteriori (MAP) estimate:
Cpred

k = argmaxk=1,...,Kp(Ck)
∏n

i=1 fk(xi, θk).

CRFs extend NB classifiers to predict the class (tag), Ck ∈ C = C1, ..., CK , of the elements
in a data sequence, where the dependence between consecutive samples may be exploited
to increase the amount of information available for prediction. In more detail, to use contex-
tual information from previous samples and capture nonlinear relationships between each
sample and its neighbours in the sequence, the element at the tth position in the sequence
is coded through a vector xt obtained by concatenating the sample feature-vector to its
conjunction with feature-vectors from neighbours (conjunction is generally realized by mul-
tiplying the vectors). Then, a set of J feature functions fj(xt, Ck, Ck−1, t) are defined on the
training set, to describe the coded sample, its position t in the data sequence, its relationship
with each tag Ck ∈ C and the relationship between consecutive tags Ck and Ck−1. Under
this construction, CRFs find the class Ck maximizing the posterior conditional probability
P (C1, ..., CK |xt), expressed as: P (C|xt) = 1

Z
exp

(∑K
k=1

∑J
i=1 λjfj(xt, Ck, Ck−1, t)

)
where Z is a normalization factor over all sequences. While the feature functions are prede-
fined on the training set, the training phase of CRFs estimates the best values of parameters
λj (j = 1, ..., J) through gradient descent.

Given that the table cells may be viewed as pixels in an image, and that the relationship
between table entities should be considered when mapping/matching the table cells into
an ontology or KB, in the context of table understanding the mostly used DL models are
Convolutional Neural Networks (CNN), which are composed by many layers of neurons
(hence the term "deep"), organized into consecutive 2D grids (the layers) and connected
by weighted edges. Such connections are local, meaning that each neuron in layer l is

17

generally connected to a subset of neurons (neighbourhood) in the preceding l−1 layer. The
network works by propagating the input signal (e.g. a table/column coded through a vector)
through convolutional layers (feed-forward propagation), which, on their side, process the
incoming values through weighted, nonlinear convolutions and then send the computed
values to the next layers. By interlacing convolutional layers with dropout layers, which
randomly drop some neurons during training, (batch) normalization layers, average/max-
pooling layers, which reduce the signal size by taking only the average/maximum values in
each neighbourhood, and flattening layers, which transform the signal from 2D to 1D, the
signal complexity is increased, combined, and integrated as it proceeds through the network
so that its “intelligent” reduction in size and dimension ultimately brings to a prediction in the
output layer. Since the network weights are the actors of the information process, and their
values are randomly initialized when the network is created, the learning process practically
uses a back-propagation of the errors on the training set to gradually fix the network weights
in order to minimize a loss function. The advantage of using DL models relies on their ability
to learn highly non-linear relationships from examples; moreover, the capability of learning
from examples by ensuring generalization further avoids overfitting the examples and allows
producing optimal results on unknown samples.

All the approaches that we discuss in the chapter evaluate their performance by exploiting
the well-known precision = TP/(TP+FP) and/or recall = TP/(TP+FN) and/or and
F −score = 2TP/(2TP +FP +FN) (being TP= true positives, FP= false positives, TN=
true negatives, FN= false negatives), as also highlighted by [48], the fact that different criteria
are used to define the TP, TN, FP, FN, depending on the research question specifically
answered, makes different methods practically incomparable.

1.1.5 Link prediction methods
In graph theory, link prediction is the task of determining if a relation exists between a pair
of nodes and presents many applications in social networks (for identifying the friendship
links among users) [79], in citation networks (for identifying co-authorship of co-citation),
or in biological networks (for predicting interactions between genes and proteins) [135]. In
the context of table understanding it assumes a leading role in identifying the relationships
existing among the table columns or among the concepts that the table columns represent.
It can be easily treated as a binary classification task in which a positive label is assigned if
the relation exists, otherwise, a negative label. ML-based solutions for link prediction have
been the subject of many research efforts. Most of these approaches [117],[75],[93] consist
of mapping nodes and edges of the graph in a lower dimensional vector space to feed
traditional (i.e. very well-known in the literature and successfully applied to euclidean data)
ML models.

18

In Liu et al. [117], several structural features like in-degree, Pagerank, clustering coefficient,
or average neighbour degree are computed to obtain a vectorial representation of nodes to
allow to SVM and Logistic Regression models to learn the data. This approach requires
a manual feature engineering step based on the structural information of the graph. For
removing these limitations, several embedding techniques that perform automatic feature
learning on graphs have been proposed in the last few years. These methods are based on
the encoder-decoder model [75] and they differ in the way they define the encoder, similarity,
and loss functions. Popular methods are those based on matrix factorization, random walks,
and translation models [93]. However, these solutions i) can work only on the structure of
the graph without considering node attributes; ii) present an encoder that is just a lookup on
an embedding matrix, so they cannot be used on unseen nodes.

Recently, graph neural networks (GNNs), a branch of DL on no euclidean data, emerged as
very powerful solutions to solve ML tasks on graphs [170]. GNNs are deep neural network
models that work naturally on graph-structured data and perform automatic feature learning
on graphs using the structural information and the node attributes if any. Their encoder is a
complex function that depends on the graph structure so it can be used on unseen nodes.
The main idea behind their computation is the generalization of the operation of convolu-
tion from grid data to graph data. They generate a node v’s representation by aggregating
neighbours’ features xu, where u ∈ N(v), and combining them with its features xv. Dif-
ferent kinds of “aggregation” and “combinations” steps can be considered to build different
convolutional GNNs layers like GCN [101] or GAT [161].

The majority of current GNNs work with homogeneous graphs. Only a few works try to
extend the convolution on heterogeneous ones, which characterizes many real-world ap-
plications with different types of nodes and edges, like KGs. For instance, R-GCN [146]
models relational data keeping a distinct linear projection weight for each edge type; while
HetGNN [175] adopts different RNNs for different node types to integrate multi-modal fea-
tures. Though these methods have shown to be empirically better than homogeneous ones,
they typically not fully utilized the heterogeneous graphs’ properties, using either node type
or edge type alone to determine GNN weight matrices.

When it comes down to multi-relational link prediction in KGs, methods that take node basic
properties (i.e. literals) into account have received little attention thus far. Only recently, a
few approaches [109, 171] highlighted the importance of node properties for the link pre-
diction task. The majority of methods using node properties can only handle literals of a
certain datatype; however, literals can be multi-modal (e.g. textual, numerical), requiring
models that can handle multiple types of data. MRGCN [169] processes multi-modal liter-
als as node features of an R-GCN but it does not take into account heterogeneous nodes
so all the nodes must exhibit the same property datatypes.

19

1.2 Approaches for the table understanding problem
Different steps have been introduced in [92] for facing the table understanding problem and
generating structured information from spreadsheets that is machine readable. The steps
identified by Hurst consist in: localization, segmentation, functional and structural analysis,
and interpretation. Even if in the literature several approaches do not clearly make a dis-
tinction among them, the analysis of the most interesting and used techniques developed
for pursuing each of them can be the starting point for developing new solutions.

1.2.1 The localization and segmentation steps
The localization step consists in the identification of the grid structure composing a “genuine”
table within a document, while the following segmentation step regards the processing of the
localized table area, to split it into its atomic elements, the cells, which may be characterized
by different sizes or content types.

In the nineties, tables were localized in the imaged documents, that is postscript (ps), tiff, gif,
or raster image formats. Therefore, classical image processing techniques (Hough trans-
form, edge detectors, corner detectors – [71]) were applied to identify grids. From the be-
ginning of the new digital era (2000), new structured formats (like pdf, HTML, LaTeX, and
XML), which substituted image formats, made the table localization step apparently easier,
due to the usage of specific tags/commands to declare table contents. However, since ta-
bles have been also used to organize the layout of pages (especially for web pages), in the
past 20 years the main issue of table localization has shifted to the discrimination between
a real (genuine) table from a layout (fake) table. Among the works for genuine table local-
ization [165, 47, 48, 153, 66], those presented by [47, 48] rely on the observation that, in
many randomly sample documents, the lines belonging to genuine tables (Tlines) show
a symmetric white space distribution, while text lines or fake table lines (Flines) are char-
acterized by skewed, not symmetric distributions. Starting from this observation, lines were
coded in terms of their white-space distribution and then were exploited in DTs for performing
a discrimination of Tlines. Tline, sometimes simply extracted by taking lines in between
HTML tags <TABLE> [165], are then used to compose candidate table regions, which are
coded through spatial and content-based coherency features [165, 48, 66], and are then
used to train DTs, SVMs [165], kNNs [48], or NBs [66] for recognizing genuine tables.

In spreadsheets, multiple tables may occur in a single sheet. Therefore, [103, 107] regard
table localization and segmentation as the problem of identifying multiple tables in the same
sheet, and propose finding the “optimal” partition of a graph, where nodes represent cells
and edges define the cells “similarity”. Since the functional and structural analysis of each
segmented table is also faced, an overview of the approach is described in Section 1.2.2.

20

Of note, in the past five years the emerging DL field has produced promising table local-
ization and segmentation results [147, 85, 56], through convolutional [85, 56] layers and
recurrent neural networks [147] trained either on the imaged document or on other formats.
As an example, based on the analogy between table cells and pixels, [56] codes spread-
sheet cells through a vector of 20 features describing their content and layout, and then
localizes all the tables using a specific CNN model [114, 42, 110, 81, 69] for object de-
tection and segmentation. The model obtained is characterized by a modular architecture
where the first layers extract region proposals, while the topmost layers validate and refine
the incoming proposals. Among the different table localization and segmentation methods,
the one presented by [136] is to date the mostly used and/or improved [36, 37, 167, 99, 4],
given its effective results.

By using CRFs (Section 1.1.4), which are particularly suited for classifying structured data,
authors simultaneously perform the first three steps of table understanding (localization,
segmentation, and functional analysis). They firstly defined proper line classes for recogniz-
ing lines from different parts of hierarchical tables (e.g. TITLE, SUPERHEADER, TABLEHEADER,
SECTIONHEADER, and DATAROW, SECTIONDATAROW, ...), lines from text (NONTABLE), or sep-
arating lines (BLANKLINE), and then coded each line through a vector of Boolean features
describing the content of the line itself and its conjunction with neighbouring lines (see Sec-
tion 1.1.4). After training the CRFs with such line representation, when a new document
must be processed, all its lines are coded as described above and they are classified by the
trained CRFs.

Example 1 Figure 1.4 shows the data coding procedure applied to train CRFs and the train-
ing/test phase. Precisely, the lines of a document in the training sets are first annotated with
a label representing the characteristics of the row (e.g. title, header, row, etc.), and a binary
vector representing the results of Boolean (layout or content-based) expressions (e.g. “line
contains > 70% bold characters”, “> 70% of characters are digits”). Each Boolean line
vector is concatenated with the one associated with the previous line and with the next line.
The data coding procedure so far described is used to code all the training corpus. After
labelling all the coded training lines (see Figure 1.4-bottom, left to right) the CRFs training
algorithm is run, which considers the coded training line, its label and also the labels of the
preceding line and produces a trained CRF model that will be used to classify the lines of
novel (unlabelled) documents. An unlabelled document is firstly encoded by exploiting the
same coding procedure we have just described. Then, the CRF model applied to it produces
the predicted annotations. 2

At the end of these steps, a physical representation of the table is devised. In the past,
classical image processing techniques identified the lines splitting the cells and encoded
the table in terms of the relative position of the cells. These techniques did not take into

21

Figure 1.4: The CRF document classification framework

account the existence of malformed tags and table hierarchies [159], while the ones that
process recent document formats use specific tags to delimit the cells. After the creation of
this hierarchical structure, the the physical representation is encoded in JSON.

Table 1.5 sums up the most interesting state-of-the-art techniques focusing on table lo-
calization (L) and segmentation (S) discussed so far and the functional (F) and structural
analysis (ST) that will be discussed in the next section. For each approach: column “refer-
ence” reports the corresponding paper; column “input formats”, the processed input format
(ASCII, image, HTML, XML, pdf, or Excel); column “approach”, the usage of either (i) a
set of empirical rules (H), or (ii) supervised machine learners (ML), or (iii) a genetic pro-

22

paper input step approach method table tables/ dataset
format layout hierarchy

[67] HTML S H positional, content 1D, 2D single/N.A. private
[60] HTML S+F+ST H positional 1D, 2D, C many/yes private
[124, 125] XML all H position, layout, style 1D, 2D many/yes private
[103] Excel S+ ST GenProg spatial, content 1D, 2D many/yes private
[47, 48] HTML S+F+ST ML DT 1D, 2D, C single/yes N/A
[167] HTML L+S ML CRF 1D many/N.A. private
[153] HTML L ML SVM, Parse tree kernel 1D, 2D many/N.A. private
[46] ASCII L ML DT 1D, 2D many/N.A. private
[4] HTML,Excel L+S ML CRF 1D, 2D many/N.A. both
[36, 37] Excel L+S+F ML CRF+SVM 1D, 2D, C many/yes private
[66] HTML L+S ML NB, SVM, kNN, DT 1D, 2D many/yes private
[128] HTML S ML NB 1D, 2D - private
[147] image L+S ML Recurrent Net 1D, 2D,C many/N.A. public
[85] pdf L+S ML CNN 1D, 2D,C many/N.A. private
[56] Excel L ML CNN 1D, 2D, C many/N.A. public
[137] HTML F+ST H coherence rules 1D, 2D,C N.A./yes private
[99] HTML F+ST H coherence rules 2D N.A./yes private
[2, 3, 49] Excel F+ST H spatial, content 2D N.A./yes private
[149] Excel F+ST H spatial, content 1D, 2D,C N.A./yes public
[106] Excel ST H spatial, content 1D, 2D N.A./yes private
[35] HTML F+ST H rectangle order, aggregation 1D-V N.A./yes private
[136] HTML F ML CRF 1D-V N.A./no private
[53, 122] Excel F+ST ML SLR 1D, 2D, C N.A./yes public
[38] HTML F+ST ML logistic regression, DT, SVM 1D, 2D, C N.A./yes private
[104, 105] Excel F ML CART, RFs, C4.5, SVM 1D, 2D N.A./yes public
[70] Excel ST ML DTs, RFs, NB , SVMs 1D, 2D N.A./yes public
[126] HTML F+ST KB probabilistic inference 1D, 2D, C N.A./yes private
[61] HTML F+ST KB maximizes probability 1D-H N.A./no public

Figure 1.5: Approaches for location, segmentation and functional and structural analysis.

gramming (genProg) techniques, or (iv) the semantics of cell contents and/or the pairwise
relationships between concepts as retrieved by KBs; column “method” reports the specific
methods used by the approach, which regard either (i) the rationale behind the Hrules, or (ii)
the exploited ML classifiers, recalled in Section 1.1.4, or (iii) the algorithms used by KB ap-
proaches for merging the pairwise semantic relationships into relationships among group of
cells; column “layout” recalls the processed layouts, as described in Section 1.1.2; column
“table/hierarchy” reports, in case of L+S methods, if only a single table or many tables can
be identified in a given document, whereas, in the case of F+ST methods, if the technique
is able to identify hierarchies on headers/stubs; finally, column “dataset” specifies whether
the used test datasets are publicly available or private.

1.2.2 The functional and structural analysis steps
The functional analysis step is devoted to the identification of the role of cells as data cells,
and header cells, which provide a “description” of the data contained in data cells. This
step is often preceded by a preprocessing step, aimed at identifying the table reading or-

23

der (vertical or horizontal), by generally exploiting layout (style and format) and/or content
coherency characteristics. Once headers/data cells have been discriminated and the table
reading order has been identified, the structural analysis step aims at understanding the re-
lationships between headers and data cells, that is, finding the data cell regions/blocks that
each header cell describes and refers. Structural analysis identifies the table class layout
and the occurrence of hierarchies on headers and stubs by aggregating data cells of the
same header, and by eventually identifying parent-child relationships existing on them.

Even if the functional and structural analysis have been described by [92] as two separate
steps, most works do not make a clear distinction between them. For this reason, the dis-
crimination between headers and data cells, which is the aim of functional analysis, is often
realized by discovering and exploiting the table reading order and the relationships between
cells. Therefore, the steps aimed at functional and structural analysis are often intertwined,
so it is difficult to categorize them.

Observing the methods summarized in Table 1.5 it can be noted that the surveyed ap-
proaches mainly exploit ML techniques, different types of coherence-based heuristics, and/or
some form of semantic descriptions. In particular, methods such as those described in
[124, 125, 149] exploit specific heuristics for functional and structural analysis, which are
based on knowledge about the domain in which the table is used and also on the terms that
are usually employed for representing the access indexes.

In [149] a method based on rules is proposed. This rules may be expressed and applied
through rule engines with the purpose of taking into account the boundary features of the
tables (presence of horizontal/vertical lines that separate cells), layout features (the text
formatting style and background colours of the cells, the alignment of texts), content features
(the presence of areas of the tables that contain values of the same type), and so on.

More general methods use the aforementioned features for computing measures of visual
and content coherency and/or similarity [121, 48, 137, 99, 66, 35] along rows and columns.
Such methods may be iteratively applied by following a top-down hierarchical process, as
the one described in [99], where coherence is initially used to find the table reading order
(vertical or horizontal) that maximizes the layout coherence (i.e. cells presenting the same
tags for the visualization of their content).

Next, depending on the previously detected table reading order, maximization of coherency
measures based on formatting style and/or content and/or semantics are used to distinguish
between the column/row headers and data cells. The iterative application of the coherence
maximization procedure allows identifying all the components of hierarchical tables. The
opposite rule - and coherence - based approach is exploited in [137], where authors firstly
use the cell content and style to classify them into A(ttribute)-cells, which describe the con-

24

ceptual nature of the instances in a table, and I(nstance)-cells, that represent the actual
data cells or the instances of the concepts represented by a certain A-cell. Next, the max-
imisation of row/column coherence, which is computed by accounting for the cell similarities
in each row/column, allows defining the table orientation (vertical/horizontal). The retrieved
orientation is then used to split the table into minimal regions, each consisting of cells with
the same functional type and belonging to the same logical unit. Finally, an iterative bottom-
up process starts, which aggregates all "coherent" minimal regions, therefore expanding
them until all the logical units are fully reconstructed and, therefore, the logical structure of
the whole table is finally uncovered. A similar hierarchical aggregation approach is defined
by [35], which starts with the identification of minimal rectangles and then aggregates them
by heuristics that provide a rectangle ordering scheme.

Though useful, methods based on coherency and/or other types of heuristics often become
tortuous as an increasing number of rules are added to correctly perform the functional anal-
ysis of 2D hierarchical and/or complex tables. Instead, methods based on ML techniques,
such as DTs, RFs, NB, SVMs [136, 48, 36, 37, 104, 104, 38, 70] infer rules by analyzing
the training sets. Based on this consideration, [48] exploits hybrid functional and structural
table analysis methods, where functional analysis is performed by coding the relationships
of the cells through coherency measures, which are used as input to classifiers (SVM, DTs,
NB); moreover, heuristics on spatial and content-coherence allow defining the parent-child
relationships, therefore characterizing the structural relationships.

SVM classifiers, together with CART trees, Random Forests (RFs), and C4.5 classifiers are
also used for functional analysis by [105, 104], where cells are described by the classical
layout (style, font, spatial) and content features and by Excel reference features. Of note,
these works apply a pre-processing feature selection phase1 before training, which is un-
common in other literature works. After classification, spatial and content-based heuristics
(described by [106]) are first used to simultaneously repair classification errors and form
“cell clusters" (that is rectangular areas composed of cells with the same functional types);
then, other spatial and content-heuristics merge the cell clusters and infer the structural
relationships between them. To avoid tortuous heuristics, [107, 103] extend the structural
analysis proposed in [106] by viewing the identification of the structural relationships be-
tween cells clusters as a graph partitioning problem, where the optimal partition is found
by maximizing a “fitness” function through genetic programming (the fitness of a partition
expresses the spatial and content coherency between cells cluster related by structural re-
lationships such as header/content, or content/content, or content/header). Probably the

1Feature selection techniques extract an informative feature set by discarding features with low discrimi-
native power. To assess the features’ discriminative power, several techniques may be used (e.g. statistical
tests, information gain, Pearson correlation with the cell label, or feature importance).

25

most successful example of ML method for functional analysis is the CRF based method
presented by [136] and extended by [36, 37, 4], with the aim of retrieving a table hierarchy
where either relationship between couples of cells are expressed by (parent, child) pairs
[36, 37] or by similarities in the visual attributes of table cells [4]. After using CRFs to de-
tect tables and segment their cells, [36, 37] further clean classification errors by coding all
the possible (parent, child) pairs through layout, positional, and content similarity features,
and then filter out unfeasible pairs by applying the SVM classifier, trained to recognize true
pairs. Once the pairs are recognized, loops are heuristically removed and the tree hierarchy
and relational structure representing the functional and structural role of each cell is con-
structed. A human-in-the-loop [86], incremental, user-interactive labelling and training ML
strategy has been proposed by [38]. Starting from the consideration that, in many complex
Excel tables, it is difficult for any user to define all the required functional and structural cell
classes in advance, the authors propose to adopt an incremental labelling and learning sys-
tem. More precisely, logistic regression classifiers, DTs, and SVMs are initially trained on
an initial user-defined set of labelled cells.

After training, the classifiers are used to classify the functional and structural properties of
the cells in novel tables, and the user is then asked to check and correct the obtained result,
by eventually introducing novel functional and structural cell classes, which are again used to
improve the trained classifiers’ “knowledge". Such iterative training, testing and user-check
procedure continues until the user is satisfied.

Example 2 Figure 1.6 shows an example of a human-in-the-loop incremental training pro-
cess. It starts by coding and labelling the cells in tables from a training corpus; the fea-
ture vectors, labelled according to their functional/structural role, are then used to train
any classifier; the trained classifier is used to label the “unknown” cells in a novel cor-
pus; the user checks and corrects the classifier’s labels, so that novel correctly labelled
examples may be added to the training set, and the cycle continues until users’ satisfac-
tion. Figure 1.7, by contrast, shows the functional and structural analysis system presented
in [105, 104, 106, 103, 107] that exploits a classifier (SV, DT, or C4.5) to initially predict
the cell functional role. Next, heuristics are used to check and correct the predicted cell
labels, and the table is then represented as a graph where nodes are arranged and linked
according to the predicted labels, spatial, layout and content similarities. A genetic algo-
rithm is applied to the so obtained graph in order to identify the optimal graph partition, that
is the partition maximizing the intra-subgraph coherency while maximizing the inter-graph
coherency-based distance. 2

The advantage of using ML methods relies on their ability to learn the structural relation-
ships among different cells (header cells, data cells, cells in stubs, and so on...), which
characterize all tables in a corpus. Based on this consideration, an ML approach exploiting

26

Figure 1.6: The incremental human-in-the-loop procedure proposed by [38].

a Statistical Relational Learning (SRL) approach has been presented in [53, 122], which
uses a probabilistic query-based classifier, using first-order logic as a representation lan-
guage. The algorithm first constructs features by mining frequent queries, then selects the
most representative features by using a stochastic local search procedure [87]. After coding
each cell with the selected feature set, a maximum “a posteriori” estimation allows classify-
ing each cell as a header or data cell and identifying the parent-child structural relationships
between header cells and their data cell.

In [126] tables are modeled as a graph, where table cells are nodes of the graphs and the
edges linking them are initially weighted by the strength of the semantic relationships be-
tween cells as retrieved from KBs or Linked Open Data [15]. This model can be exploited
both for the functional/structural analysis and for the interpretation of the table content in
terms of a KB. Using probabilistic inference approaches similar to the message-passing
schema of deep belief networks [108] the strengths (semantic relationships) are then “prop-
agated” between the graph nodes until convergence, that is, until the functional role of each
cell, the structural relationships between couples of cells, and the semantic interpretation of
such relationships are fully defined.

Semantic analysis may be also used to simultaneously enrich the functional analysis with the
table’s structural relationships and the interpretation of its content. As an example, TAIPAN

27

Figure 1.7: The system presented in [105, 104, 106, 103, 107]

[61], which is unfortunately restricted to vertical 1D tables, exploits KBs to first understand
when a semantic relationship exists between any pair of cells in the table. Next, the column
that contains the highest number of cells included in a pairwise relationship is selected as the
“subject column" (that essentially is the column containing the headers). By exploiting the
identified relationships, TAIPAN further expresses the table as a relational model, therefore
providing also an interpretation of the table (interpretation step, Section 1.2.3).

The final point that should be highlighted is that functional and structural analysis may also
be applied for dynamic error checks in spreadsheet files. In this context, [62, 2, 3, 49] inter-
estingly view each Excel spreadsheet as composed of “units” (i.e. consecutive parts of rows
and cells associated with a label). Each value in a spreadsheet (except blanks) potentially
defines a unit, and the unit of any cell is intuitively determined by its headers [62]. Based
on this definition, authors analyze Excel tables by exploiting spatial and content heuristics
to both discriminate between headers and data cells and to uncover their relationships. The
results of the functional and structural analysis allow applying a unit-based grammar for
checking the consistency of each cell and its unit. Note that, since the exploited heuristics
also contain rules based on the string content of cells (e.g. cells containing the string “to-
tal”, and “sum” are signed as headers when they are located in the topmost row or leftmost
column), the method also provides a first table interpretation.

28

1.2.3 The interpretation step
The interpretation step assigns a semantic description to the content of the table in terms
of a well-known data model like the relational model or an ontology. In this way the se-
mantics of the table is well-described and its content can be uniquely interpreted in a given
domain and facilitate the interoperability of the applications working with the data. This task
is however difficult to realize, because of the following aspects, which are mainly due to
the heterogeneity of both table contents and table structures. First, different notations can
be exploited for representing the same kind of information, e.g. the negative number −10
can be represented as (10) in statistical tables, and the gender could be simply identified
by “M/F” or by a prefix “Mr./Miss.”. Second, when numeric tables are treated, the units of
measure are sometimes omitted, e.g. the number 10 is used to express distance in terms
of kilometres or millions of users/products depending on the context, or as shortcuts for
expressing millions of dollars, or billions of euros. The problem is further exacerbated by
the presence of different conventions for the representation of the same column names (e.g.
address, location, residence) or values (e.g. Barack Obama, B. Obama, Obama B.), and by
the fact that some columns often contain different values, e.g. a column containing name,
surname, zip code and address of an individual. The aforementioned examples highlight
that an automatic table interpretation must consider a lot of parameters, which are often
unspecified in the table content itself. In practice, the information contained in other parts
of the document where the table is located, together with the knowledge retrievable from
external KB, should be taken into account.

Since the problem of identifying a semantic description from heterogeneous data sources is
at the base of data integration [55] and exchange [8], many approaches for reconciling the
syntactic and semantic heterogeneity of data sources have been proposed, which mainly
exploit schema matching or schema mapping methodologies [11]. More precisely, consider-
ing the presence of correspondences between the schema in the source representation and
the target schema, schema matching methods find the matches between the source proper-
ties and the target properties, while schema mapping techniques find the mapping rules for
transforming the information in the source according to the target schema. Among schema
matching techniques, ontology-matching methods [52, 154] have been extensively investi-
gated, where the target schema is an ontology containing different classes that can be also
hierarchical organized. Conversely, KB-mapping approaches (e.g. [127, 14, 40, 179]) map
cell/tuple values of the table to KB instances, and then exploit both probabilistic graphical
models and iterative algorithms to explore the correlation between different matching tasks
for disambiguation. More recent ML-based techniques (e.g. [57, 155, 34]) do not exploit
any schema matching and interpret the table by using black-box DL models that are trained
on annotated corpora. In the remainder, we discuss these three kinds of approaches.

29

Ontology-matching approaches. One of the first schema matching techniques devel-
oped for discovering complex matching, that is matches among a combination of attributes in
the source schema to a combination of properties in the target schema, has been proposed
in [52]. These correspondences are detected through a set of special-purpose searchers,
ranging from data overlap to equation discovery and ML techniques.

The possibility of identifying relationships passing through other entities has been consid-
ered in [154, 65] (e.g. given two actors, they can be related by means of the film in which
they have played). In [154], the authors propose an approach for annotating sources of in-
formation with a semantic model that represents the implicit meaning of data by specifying
the concepts and relationships existing among the source data relying on a domain ontology
O. The semantic model is a graph that contains both nodes representing the table columns
and the concepts of the domain ontology identified in the source. Moreover, edges repre-
sent the relationships existing among the identified concepts in the given source. Each time
a new incoming table T is considered, they set up an approach for determining the semantic
model of T relying on the semantic models of the already considered data sources. Their
approach consists of four steps: i) using the sample data extracted from T , learn the se-
mantic types of its columns (by means of the approach proposed in [140] for learning from
examples how to assign ontology classes to the source attributes); ii) construct a graph
from the known semantic models, augmented with nodes and linked induced directly or in-
directly by the structure of the domain ontology; iii) identify the candidate mappings from
the table columns to the nodes of the graph; iv) build the candidate semantic models and
rank them.

Moreover, by means of their graphical environment, the user can interact with the system
for modifying the model and these modifications will improve future schema matching.

Example 3 The top part of Figure 1.8 reports the semantic models that have been already
associated with two sources (source1 and source2) in the approach proposed by [154].
The semantic models exploit the classes (the ovals in the figure) and properties (labels as-
sociated with the edges) already included in a domain ontology for capturing the intended
meaning of the sources. The authors leverage attribute relationships existing in the devel-
oped semantic models to hypothesize attribute relationships between the attribute in a novel
source (source3 in the figure) that needs to be included. The proposed approach is orga-
nized in 4 steps: i) the semantic types of the attributes in source3 are learned; 2) a graph
is constructed by integrating the semantic models (i.e. in our case source1 and source2)
augmented with nodes and paths connecting nodes of the graph; 3) the candidate map-
pings from the source attributes to the node of the graph are computed; 4) the candidate
semantic models are generated for the candidate mappings and ranked. The bottom right
corner of Figure 1.8 reports the semantic model generated through these steps. 2

30

Figure 1.8: Semantic annotation of a table (proposed by [154]).

In [65], the authors extend the work proposed in [154] in several directions. First, instead
of using the semantic models associated with different data sources, they propose to use
directly the domain ontology for identifying the semantic model of the new source. As in
[154], they use an approach for associating the concepts to the table columns and for the
creation of a graph that contains all the possible relations in which these concepts can be
involved. Then, by weighting the edges with a weight that depends on the specificity of the
relations (with respect to the ontology hierarchy) they identify a minimal graph that can be
used as a semantic model of the source. At this point, they consider a GNN model (based on
R-GCN) that is constructed on a consolidated knowledge graph for inferring relations that are
commonly present between pairs of concepts in KG. In this way, they avoid using complex
semantic models for representing different kinds of relationships among data and exploit the
vector representation of a consolidated knowledge graph for automatically learning latent
features of their entities and relationships by exploiting the local neighborhood structures.

KB-mapping Approaches. Several approaches have been proposed that consider both
the values of the table cells and the table schema for the annotation with the semantic
classes and relationships. According to [34], most of the approaches can be classified as
joint inference models and interactive approaches.

31

In [162], annotations are added to a web table [30, 29] to describe binary relations among
columns by considering triples (arg1, predicate, arg2) extracted without supervision from
the Web and by exploiting a maximum-likelihood model for identifying the predicate that
most likely occur in the considered pair of columns. The authors discuss the issues in
identifying useful triples from the Web that can be applied in this context (low recall) and
that their approach is able to identify a few relations among the considered columns.

A probabilistic graphical model is proposed in [116] that highlights different matching and
searches for value assignments of the variables that maximize the joint probability. The
model is used for simultaneously choosing entities for cells, types for columns and relation-
ships for column pairs extracted from the YAGO KB [141].

A similar approach is described by [127] where a probabilistic graphical model is proposed
that captures more semantics than the one proposed by [116], including relations between
column headers and between row entities that are extracted by querying DBpedia. Start-
ing from a Markov network graph in which table columns and the cell values represent
the variable nodes and the edges between them represent their interactions, through their
probabilistic model they identify the most likely relations existing among columns by taking
into account also cross-columns’ relationships. Moreover, the approach does not consider
numeric values, but only strings.

Another probabilistic graphical model is proposed in [14] in which this assumption is weak-
ened but assigns a higher likelihood to entity sets that tend to co-occur in Wikipedia docu-
ments. The incompleteness of the KB in terms of coverage of the values in the table is also
considered by [40], where the authors further include the need to considering the presence
of dirty data in the table since it makes it much harder the identification of a matching with
the KB. To face these problems, [40] introduces the Katara system that first discovers dif-
ferent table patterns containing the types of columns and the relationships between them.
More than one table pattern is discovered because the same cell values can be associated
with different concepts and the pattern. Moreover, the pattern can be partial because some
values are not described in the KB. Then, by posing specific questions to the user, the sys-
tem is able to identify the best table pattern, introduce new facts in the KB to be used in the
next matching activities, and also correct mistakes when inconsistencies are identified. The
system relies on a probabilistic model for the identification of the top-k table patterns and
for choosing the best one.

Example 4 Figure 1.9 shows the approach proposed in Katara for interpreting the content
of the table reported on the left-hand side (the example is extracted from [40]). By exploiting
a KB, Katara is able to identify table patterns between a table and a KB by checking the ex-
istence of correspondences between the cell values and the KB instances. A table pattern

32

Figure 1.9: Annotating table columns by exploiting the Katara system [40].

is a labelled graph (like the one reported on the right-hand side of the figure) in which nodes
represent attributes (with the associated type) and direct edges represent the relationship
existing between the attributes. Depending on the considered table, several candidate table
patterns can be identified, and the selected one is determined through a pattern validation
mechanism. This mechanism depends on the cardinality and size of the candidate patterns.
When the size is small, the system asks a group of users to pick the right table pattern for
the processed table. When the size of the candidate table patterns is large, they are decom-
posed into smaller patterns to formulate simpler questions, which crowd workers can easily
answer. Each tuple of the table is finally annotated with "validated by the KB", "validated
by the KB exploiting the user answers" or "erroneous". Indeed, users can identify mistakes
occurring in the table and fix them. All the users’ interactions are then used in subsequent
activities of table interpretation. 2

TableMiner+ [179] and T2K Match [144] are two iterative approaches. A bootstrapping pat-
tern is first adopted by TableMiner+ to learn an initial interpretation with a sample of table
data and the interpretation is refined by means of the remaining data and by taking into
account the relationships existing among columns. The author considers both an external
KB and information around the table (e.g. header, footers or the caption associated with
the table). Finally, the approach distinguishes between columns for which named entities
can be identified in the KB and literal columns containing data values of entities. In T2K
the authors use an iterative schema and entity matching approach by means of which the
algorithm can benefit from entity correspondences for finding schema correspondences and
vice-versa that improve its effectiveness and efficiency in dealing many web tables against
a cross-domain KB.

DL-base Approaches By following the success of semantic embedding techniques like
word2vec [123] developed in the context of DL, a few approaches have been proposed for
learning semantic table annotations. [57] uses the contextual semantics of an entity in the
KB for disambiguation in cell-to-entity matching, whereas [155] accelerates searching and

33

dealing with the missing linkage in the column to class matching with probabilistic graphical
models as the one adopted by [116]. [34] proposes an approach for the semantic annotation
of table columns assuming that names and table structures are unknown. Given a column
of the table, the approach first retrieves the column’s candidate entities from a KB and then
adopts the classes of the matched entities as a set of candidate classes for annotation. For
each class, a customized binary CNN classifier which is able to learn both inter-cell and
intra-cell locality features is trained and applied to predict whether embedded cells of the
column are of this class. A key issue that is faced in this paper is the annotation of text
phrases (e.g. “Apple”, “MS”, “Google”) by considering the context. In the case of the exam-
ple, the approach allows the identification of the annotation “IT Company” instead of “Fruit”
and “Operating System” because the term “Google” allows the identification of the proper
context. The ColNet approach has been extended in [33] to leverage inter-column seman-
tics through a hybrid neural network (HNN). Sherlock [89] uses a deep feed-forward neural
network to make type predictions based on different kinds of features (column statistics,
paragraph and word embedding, and character embedding) of column values. SATO [176]
extends the Sherlock approach by including a topic modelling module and a structured pre-
diction module for dealing with the low prediction accuracy for underrepresented types and
for taking into account the context in which the table columns are located. Finally, C2 [98]
exploits a Maximum Likelihood approach on the actual cell values of a column. By taking
into account different sources of structured data (data table lakes like Wikipedia tables, and
knowledge graphs like DBpedia) to maximize the likelihood of a concept. These techniques
are robust to noise in data and superior to traditional approaches.

In the context of semantic web, several KBs, e.g. WebTable [30], YAGO [141], DBpedia
[9], and Freebase [16], have been defined for the semantic annotation. Moreover, these
KBs have been used for the creation of benchmarks adopted for training the proposed
prediction models. T2D [144] contains 779 tables (with around 400 entity columns en-
compassing topics like persons, species, and organizations), with around 26’000 DBpedia
matches, and 420 DB property matches. [116] contains around 400 manually annotated
tables from Wikipedia with 428 entity columns and 5’600 DBpedia entity matches. [57]
contains 485’000 tables from Wikipedia with around 4.5M DBpedia entity matches. IMDB
contains over 7’000 tables from IMDB movie web pages and Musicbrainz contains 1’400 ta-
bles from MusicBrainz web pages annotated with Freebase [179]. [88] proposes Viznet that
contains 31 million datasets mined from open data repositories and used in the context of
column-to-type matching of tables in the Sherlock system [89]. Sherlock provides a total of
11’700 crowdsourced annotations from 390 human participants. [96] proposes NumDB, a
dataset of 389 tables generated from DBpedia where the primary emphasis is on assigning
semantic labels to numerical values in tables.

34

1.3 Extracting and transforming tables
While the aforementioned table understanding approaches are ultimately aimed at automat-
ically understanding the semantic content of the tables (e.g., for answering user queries or
for exchanging information), some other table understanding approaches and/or program-
ming languages have been proposed, that allow an “understanding” of the table specifi-
cally aimed at data repair, extraction and layout transformation (Section 1.3.1) or at table
coding into a relational or Resource Description Framework[102] (RDF) format (Section
1.3.2). Since the latter methods need knowledge about the functional and structural table
relationships, they either apply some of the functional and structural analysis techniques
described in Section 1.2.2, or they define programming languages to allow users to pro-
gram such relationships. In the second case, since programming may be difficult for some
users, programming-by-examples approaches have been proposed (Section 1.3.3), which
automatically codes programs that allow reproducing users’ examples.

1.3.1 Basic extraction and transformation tools
Tables often contain errors, missing values or require layout transformations that, due to the
great amount of data, are not easy and require a lot of effort from the user in the identification
and correction of the variety of occurring errors. Systems like OpenRefine, Potter’s Wheel
[139] and Wrangler [97] have been developed for supporting the user in cleaning dirty values
and generating new tabular representations.

OpenRefine (https://openrefine.org/) is a tool that allows users to load data, clean
the errors occurring within it, apply transformations, and reconcile and match data. The
system has a clustering feature useful to fix issues occurring in a group of data through the
graphical interface. Some user-defined heuristics can be applied for tuning the clustering
algorithm, and data transformations between formats are also allowed by using a set of
operations such as replace string commands, filter functions, and split functions. Though
useful, the system works only on data in a proper tabular format.

Potter’s Wheel [139] is an interactive data cleaning system that combines the application
of data transformations with discrepancy detection. More precisely, based on the assump-
tion that each data value in a table (where a data value may, e.g., be a string with the list
of values in a table-column) is composed of “sub-components” (in case the data value is
a table-column, the sub-components may, e.g., be the column cells) corresponding to dif-
ferent constrained domains, Potter’s Wheel uses a visual interface to allow users defining
custom domains and their constraints, which are input to the discrepancy detector, and ex-
amples of required table transformations, which are input to the transformation engine. The
discrepancy detector uses the provided domains and constraints to learn both the parsing

35

algorithms that allow dividing each data value into sub-components and the discrepancy
check algorithms, tailored to each domain, for checking discrepancies between the parsed
values and their domain constraints. Once trained, the discrepancy detector runs in the
background and continues parsing novel user input to check for discrepancies. Simulta-
neously, the transformation engine applies a program-by-example approach (see Section
1.3.3, to learn the automatic algorithms for reproducing the data transformation examples
and apply them to the data). Thanks to the visual interface, Potter’s Wheel continuously
shows the automatically transformed data and the results of the discrepancy checks, so
that the user may decide to modify and/or improve them by defining different/more domain
constraints and/or transformation examples.

Wrangler [97, 157] is a visual-interactive system that, similarly to Potter’s Wheel, learns
domains, domain constraints, and table transformation rules from user examples, and con-
tinuously shows the transformed tables to allow an interactive user-guided refinement of
the transformed table and of the transformation rules. However, Wrangler extends Potter’s
Wheel language with additional operators for common data cleaning tasks; moreover, it al-
lows a more interesting human-machine interaction, since it uses the graphic interface and
an “inference engine” to suggest a series of applicable transformations. The “inference en-
gine” has three components and uses as an input the user interactions, the data descriptors
(e.g. column data types), and the historical usage statistics. The first component uses user
interactions to infer the transformation parameters (row, column, text selection). The second
component generates a list of transform suggestions. The third component rank-orders the
suggestions depending on their data type and the previous user choices.

All the aforementioned systems exploit a graphic interface to give feedback to the users and
to help them during the process of error detection, error fixing and data transformation. How-
ever, Potter’s Wheel allows users to define arbitrary domains to enhance the discrepancy
detector algorithm. OpenRefine does not always allow the specification of transformations
through the graphic interface and sometime the knowledge of a command language is re-
quired. Differently from OpenRefine, both Wrangler and Potter’s Wheel exploit the user’s
interactions; Wrangler uses them to provide suggestions for further transformations, while
Potter’s Wheel uses them to improve discrepancy detection.

Example 5 Figure 1.10 shows the application of the steps identified by [97] for the transfor-
mation of the table reported in the top left corner into the final one. By means of its graphical
facilities, the system enables the user to preview the effects of the application of different
transformation operations on the current version of the table and to select the one that will
easily lead to the final format.

Starting from the first version of the table reported in the top-left part, the user selects row

36

Figure 1.10: Application of the transformation operations proposed in [97].

number 5. The system suggests two options (remove all the empty rows occurring in the
document or remove the fifth one only) and the user chooses the first one. In step 2, the user
selects a string in row number 2, and the system suggests using the extract operator to
copy the selected string into a new column. At this point, the inference engine also suggests
applying the same modification to all the strings in the same column that occur after the "by"
particle. In the third step the user chooses, among the list of suggestions, the option “fill
column extract by copying values from above” whose effect is reported in the table in the
right lower corner of the figure. At this point (step 4) the user selects the three rows that
wishes to remove from the table. Finally, in step 5, the user requires the application of the
unfold operation to create a cross-tabulation. This operation moves the information from
data values to column names. Therefore, the basic operations made available by the system
are proposed to the users by means of graphical interfaces and the inference engine. In any
case, the final decision of the operation to apply is left to the user.

1.3.2 Transformation tools to the relational/RDF models
Beyond the table localization, segmentation, and functional and structural analysis, several
methods designed algorithms for expressing the inferred structural relationships as rela-
tional models (JSON or XML formats) or RDF formats. TranSheet [90] and TabbyXL [150]
introduce languages for the specification of the transformations needed to simultaneously
define the table’s functional and structural relationships and then convert them into a re-

37

lational format. Moreover, Senbazuru [37] and HaExcel [49] automatically extrapolate the
table functional and structural relationships by applying some of the algorithms described
in Section 1.2.2 and then exploit rule-based algorithms to define and combine the relational
tuples representing the structural relationships.

Specifically, TranSheet [90] uses a “formula-based” (hierarchical) language for the definition
of: (i) value mappings, which group one or more data cells by labelling it with a unique atomic
label, and (ii) structured mapping, which map a set of atomic labels into a unique structured
label. Such labelling procedure allows defining hierarchical structural relationships, which
are then transformed into a relational format. With TabbyXL [150], users may define func-
tional and structural relationships by using either the standard DROOLS language [142], or
CRL [151], a specifically developed rule-based language for implementing programs aimed
at: (i) cell cleansing issues (merging, splitting, updating data), (ii) role analysis, to recover
entities and labels as functional data items presented in tables (marking all the cells having
the same role or located in the same functional region with a fixed value), (iii) structural
analysis (entity-label association), (iv) interpretation (labelling with a category).

Differently from the aforementioned approaches, Senbazuru [37] automatically infers the ta-
ble functional and structural relationships through CRFs (Section 1.1.4); next, based on the
retrieved structural information, a tuple builder generates a set of annotated relational tuples,
which associates each header to a data value and annotates such tuple with the header at-
tribute; finally, the relation constructor assembles the tuples into a relational table. HaExcel
[49] exploits the Fun algorithm [129] to automatically extract the functional dependencies in
a spreadsheet file and then determines the relational schema, with candidate foreign and
primary keys, by using a standard inference procedure from the relational database the-
ory. In the last step, a Relational Intermediate Direct Graph is generated. The nodes of
the graph represent the schema and the directed edges represent foreign keys between
those schemas. The graph represents the relational schema of the used spreadsheet. The
advantage of HaExcel as well as Senbazuru’s, is that the functional and structural relation-
ships, and consequently the data and layout transformations, are automatically determined.
By contrast, the TabbyXL and TranSheet approaches require a higher effort by users, since
the set of rules for data transformation must be explicitly coded.

Example 6 Figure 1.11 reports the Senbazuru data extraction process for extracting from a
spreadsheet a relational table with the average grade of exchanging and regular students of
a CS department that passed exams and the number of those that did not pass exams. The
frame finder component of the system identifies the stub (with its hierarchical organization),
the content, and the column header highlighted in Figure 1.11(a): Senbazuru automatically
extracts a potential hierarchy from the stub as reported in Figure 1.11(b) and, when needed,
supports the user in its modification through a drag-and-drop interface (Figure 1.11(c)). Sen-

38

Figure 1.11: Extraction phase in Senbazuru [37].

bazuru uses a tuple builder to generate a relational tuple for every single value in the content
area. The value is indexed through the column header and each stub value in the identi-
fied hierarchy. An example of a relational tuple is reported in Figure 1.11(d) for the value
highlighted with a green box in Figure 1.11(a). Finally, these relational tuples are collected
into a relational table (Figure 1.11(e)) by clustering together attributes in different tuples into
consistent columns (e.g., the first column of Figure 1.11(e) reports the student gender). 2

Despite these approaches that transform the content of generic tables in the relational for-
mat, few techniques have been proposed for generating RDF triples. R2RML [50] is a W3C
mapping language that supports users in the specification of mapping rules between rela-
tional tables and a target ontology in order to publish data in RDF format. The use of this
language is not really easy because the user needs to learn its syntax and understand how
to map the source schema to the target ontology. RDOTE [160], RDF123 [76] and WLWrap
[113] are tools that have been developed for supporting the users in this activity. RDOTE
offers graphical facilities for specifying mapping rules, whereas RDF123 and WLWrap have
been specifically tailored for working with spreadsheets.

39

1.3.3 Programming by example approaches
Since the data extraction and transformation tasks are tedious, error-prone, time-consuming,
and often require expert programmers for their development, in the past decade programming-
by-examples approaches, which automatically synthesize programs by examples, have
been proposed. The general approach used by these systems [74], ProgFromEx [73],
FlashRelate [10], and Foofah [95] is to infer the set of transformation rules (program) from a
set of user-provided examples composed of (input) tables and their corresponding and de-
sired transformed (output) version. Given such examples, the synthesized program should
be able to similarly transform spreadsheets having the same structure into relational tables.
While such examples are mostly composed of some of the (input) tables and their trans-
formed desired (output) version, some other methods, e.g. [10], do not need the whole
transformed output table, but only some representative input-tuple to output-tuple transfor-
mations. The transformations carried out by the programs synthesized by the aforemen-
tioned systems can affect different aspects of the tables: the layout; the syntax; and the
data semantics. A table layout transformation changes the arrangement of the cells, a syn-
tax transformation reformats their content, (e.g. string splitting), while a semantic transfor-
mation involves manipulating strings that need to be interpreted as more than a sequence
of characters. ProgFromEx and FlashRelate are limited to layout transformations, Foofah
provides also syntactic transformations and [74] faces all the aspects.

The ProgFromEx approach infers a table program using two different types of components:
filter programs and associative programs. A filter program selects a subset of cells of an
input table according to a condition; if the mapping condition is verified, the cell content is
copied to the output table. An associative program defines a mapping from the coordinates
of the cells in the input table to those the output table. The map is defined starting from
a filter program that is then altered to obtain the desired table. To define a transformation
program, ProgFromEx selects a set of filter components from a fixed set of candidate map
rules using the input and output examples. The filter is selected if, when applied to the
input table, it produces the output table. The set of selected filters is then used as the initial
component of the associative programs.

Instead of using input and output tables, FlashRelate needs only some “positive” and “neg-
ative” examples showing how the layout of some tuples in the input table needs to be trans-
formed to create a novel layout in the output table. Given the positive example, which rep-
resents the desired transformation, the regular expression learning algorithm presented in
[7] is firstly used to infer the rules, which are then translated into the Flare language, for
generating the initial layout. Negative examples (i.e. unwanted, wrong transformations) are
then used to infer the rules for detecting transformation errors.

40

Figure 1.12: Generation of a synthetic program through Foofah [95].

After defining a Domain Specific Language (DSL) for tabular data transformation, [74] de-
fines an algorithm for processing user-provided examples to infer synthesized programs for
layout, syntactic, and semantic transformations of tabular data. Though different programs
are inferred for each transformation, the algorithm for inferring them always uses a "gener-
ate and intersect" strategy. More precisely, the generation step processes each example
to generate a set of Direct Acyclic Graphs (DAGs), each representing one of the possible
expressions for mapping the input example to the output example. After obtaining different
sets of DAGs for all the examples, in the intersection step, “similar" DAGs are merged into
a unique partition, that represent a unique transformation. To choose the most representa-
tive transformation among all the transformations in a partition, authors heuristically define
rules for ranking the transformations relying on their computational efficiency, so that the
most efficient transformations are selected from each partition, and are then used to create
the final layout, syntactic, or semantic synthesized program (coded through the DSL).

Foofah exploits the user-provided example table, v0, and the desired transformed table, vn,
to initially compose a state-graph, G=(V,A), were two nodes, vt−1 and vt, and the edge,
e(vt−1, vt), connecting vt−1 to vt represent the change of state (from vt−1 to vt) when trans-
formation e is applied. Starting from v0 the graph G is firstly built so as to represent all the
possible table transformations applicable to v0, and to the resulting tables, until vn is ob-

41

tained2. Since the paths from v0 to vn are many, the best walk, that is the best sequence of
transformation which constitutes the inferred program, must be chosen. To this aim, after
opportunely pruning G to reduce the number of available choices, inspired by the graph-
based search A* algorithm [78], Foofah starts from v0 and applies a greedy approach to
choose, at each step, when the walk is at table vt and must choose to which neighbouring
node to move (i.e. the transformation to apply) the transformed table at the minimum edit
distance, which is the minimum total cost of table edit operations needed to transform vt
into vt+1. When the walk reaches vn, after opportunely pruning the walk, the consecutive
traversed edges form the program.

Example 7 Figure 1.12 shows the approach for the generation of the synthetic program in
Foofah. The system takes in input a sample of the initial spreadsheet and a sample of the
desired final table. The proposed approach allows the identification of the path in the top part
of Figure 1.12, where each basic transformation operation allows obtaining the transformed
table reported in the bottom part of the figure. So in this case, a synthetic program of four
operations is generated (the operations on the yellow path). 2

1.4 Knowledge graph construction
Knowledge graphs (KGs) can be defined as a multi-relational graph of data for conveying
real-world knowledge, where nodes represent entities and edges represent different types
of relations [93]. KGs are becoming more and more relevant for the transformation of huge
amounts of multidisciplinary and heterogeneous data extracted from a plenitude of hetero-
geneous sources into a more reusable network of entities. On top of this, different kinds
of services can be offered to the user (recommendation systems, question answering, se-
mantic search, decision making) by taking into account the relationships existing among
the involved entities. When KGs are built relying on a given ontology, the quality of the
source is higher because interoperability can be easier guaranteed [130]. An ontology is a
formal description of the concepts used in a domain, the properties and the relationships of
each concept, and restrictions on facts. In our context, many kinds of relationships can ex-
ist among ontology concepts that can be organized in an inheritance hierarchy. Moreover,
we consider the possibility that mandatory properties can be specified for each ontology
concept and this information can be exploited for the generation of the instances’ identifiers.

The term “knowledge graphs” (KG) is often associated with the term “knowledge base” (KB)
and many articles discuss and contrast them. A recent article on KGs [84] describes them
as graphs of data intended to accumulate and convey knowledge of the real world, whose

2Each transformation is obtained by applying the operators defined in Potter’s Wheel, some of which, e.g.
“split” and “merge” operators, allow applying syntactic transformations to the input.

42

nodes represent entities of interest and whose edges represent potentially different relations
between these entities. Similarly, the paper [58] defines a KG as a dataset having formal
semantics that can contain different kinds of knowledge such as rules, facts, axioms, defi-
nitions, statements, and primitives. In several cases the two terms are used as synonyms
or do not provide a clear distinction, however, a KB can be seen as a system that contains
a KG and a reasoning engine [58].

RDF is the standard language for the representation of KGs by means of triples. A triple
indicates that two entities (subject and object) are connected through a relation/property.
The use of IRI (International Resource Identifier) for the identification of entities allows the
integration of information from different sources. Moreover, by means of RDFS (Resource
Description Framework Schema)[28] and OWL (Web Ontology Language)[152], the pre-
defined vocabularies can be described at schema level for the representation of abstract
relations, like classes (concepts), instances (objects), subsets, and properties. RDFS and
OWL are the main description languages for an ontology.

KG construction is a challenging activity and many surveys present the issues and ap-
proaches that can be exploited for their generation ([168, 93, 91]). Early approaches rely
on the manual creation of the KG by means of domain experts or through the collaboration
of an open group of volunteers. The obtained KGs are of good quality with few or no noisy
facts, but with high human efforts. Many approaches are currently under investigation for
the automatic construction of KGs through the application of algorithms for enhancing the
existing ones and for the automatic construction of new customized KGs by extracting and
integrating knowledge from several kinds of data sources. Even if the quality can be re-
duced, its coverage and completeness are much higher. In order to reduce the noise that
can occur in the KGs, different approaches have been proposed for knowledge extraction,
knowledge fusion, and knowledge refinement [41]. Approaches for knowledge extraction
aim to acquire useful entities, attributes and relationships from several data sources and to
represent them in a normalized form. Fusion techniques are then applied to the generated
triples for identifying multiple representations of the same real-world entities and for solving
consistency issues among contradicting triples. Then, different refinement methods, like
entity classification, link prediction, and anomaly detection can improve the quality of the
constructed KG.

1.5 Concluding remarks
In this chapter, we have revised some of the most representative table understanding meth-
ods published after 2006. The analysis has primarily highlighted an increasing interest re-
cently devoted to the table content interpretation. Anyhow, for all the investigated Hurst’s

43

steps there has been a radical shift in the way the problems are approached mainly due
to the change of the source formats (e.g. from ASCII or image formats to structured doc-
uments) and to the increasing success of DL methods, which seem robust with respect to
weakly labelled, noisy, heterogeneous, incomplete, and ambiguous data.

Though a great deal of research work has been devoted to the problem of table understand-
ing, some issues, reported below, are still open.

Many techniques have been proposed for the different steps of table understanding and
common evaluation metrics have been employed for assessing their effectiveness. How-
ever, each technique assesses the computed results using specific evaluation criteria. More-
over, several methods either exploit private document collections, or randomly extract them
from public datasets without publishing the list of the sampled documents, or crawl them
from the web, without making the crawled data available or specifying the parameters used
for the crawler. This raises the urgent need of generating a common benchmark for the
objective comparison of techniques developed for different table understanding steps. In
the context of table interpretation, the recent creation of the “Semantic Web Challenge on
Tabular Data to Knowledge Graph Matching (SemTab)” [94] is the first commonly available
benchmark for comparing semantic annotation approaches.

Even if some ML methods have been recently presented to learn from user examples by
ensuring the generalizability required to avoid overfitting, most of them do not yet deal with
weakly labelled or dirty data. Moreover, only a few works exploit an incremental learning
approach, where the user advice and corrections are used to generate novel training data,
and/or transfer learning techniques, where the knowledge of models trained for similar tasks
in a different domain is “transferred” to a novel domain where the labelled collections are
limited. The use of these ML techniques in the context of table understanding are promising.

DL techniques are becoming more and more effective in several contexts. However, with
regard to the problem of table understanding, where the generation of an exhaustive training
set covering all the sample variability is often difficult, user-interaction systems such as
the recently proposed [19], which provide a visual user-machine-interaction interface for
allowing users to check and fix the semantic models computed by ML automatic annotations,
are advisable since the user checks may be used to improve the model adaptability to novel
contexts, and to increase its robustness to dirty data.

44

Chapter 2

Background

The purpose of this chapter is to introduce notations and notions that will be exploited
throughout the thesis. Specifically, we introduce the concept of table that is extracted from a
spreadsheet and the type system that we can use for the initial annotation of table columns
and values. Then, we introduce the representation of an ontology and the knowledge graph
that can be defined starting from it. Functions and procedures that will be exploited on the
knowledge graphs are also introduced. Finally, we define and discuss the characteristics of
the semantic description of a table. A semantic description is a graph that is used for the
representation of the mapping between the table columns and the concepts of the ontology.

The chapter is organized as follows. Section 2.1 defines the table extracted from a spread-
sheet and the type system used in the next chapters. Section 2.2 defines the concept of
knowledge graph and ontology, which is used for the definition of a semantic description of
a table, as detailed in Section 2.3

2.1 Table representation and type system
A table T extracted from a spreadsheet is a triple ⟨Col, Rows,Ann⟩, where Col denotes
the list of column names [col1,. . . ,colj, . . . , colm] (when available, otherwise the symbol ?
is used to denote its absence), and Rows = {row1, . . . , rown} is the set of table rows
(each row rowi, 1 ≤ i ≤ n, is a list of values rowi = [vali,1, . . . , vali,j, . . . , vali,m], one
value for each column identified in the column schema).

For associating a type to each value and column of a table we consider the type system
D which is formed by simple types, mixed types and union types. Simple types, denoted
S, can be either basic types (e.g. integer, Boolean, decimal, date) or domain-specific

45

types (e.g. Social Security Number (SSN), VAT, currency, email, municipality
name, province or metropolitan area, region, zip code). On top of the simple types,
we consider mixed types, namedM, which are record-types associated with a set of pat-
terns, and union types, denoted U , for representing the occurrence of values of different
types in the same column.

The peculiarity of the extracted table, differently from relational tables, is that for each vi,j
and for each coli more than one data type can be identified. We denote with type(vi,j) the
data type associated with the value vi,j and with type(coli), 1 ≤ i ≤ n the data types that
can occur in a single column of the table T .

2.1.1 Mixed types
Mixed types are record-types that are associated with patterns. Indeed, in our tables, it
is quite common to identify strings from which the same record structure can be extracted
even if they are organized and expressed differently. For this reason, a set of patterns is
associated with the record-type for extracting its components from the string.

A pattern is a sequence [co, {t1}, ⟨c1, Occ(c1)⟩, . . . , {tn}, ⟨ch, Occ(ch)⟩], where co, . . . , ch
are terminal symbols, t0, t1, . . . , tn are data types1 or the symbol void and Occ(c1), . . . ,
Occ(ch) are the occurrences of each terminal symbol that should not be considered termi-
nals. The void symbol is introduced for skipping string parts whose content should not be
maintained (e.g. the serial number of invoices).

Terminal symbols are non-empty strings (except for c0 and ch which can be empty) that
are used for separating values of simple types. A terminal symbol can be a blank space
(represented as /b), a hyphen, a parenthesis and so on, empty strings are denoted through
Λ. The number of occurrences of each terminal symbol is required when it also appears in
the previous non-terminal values. The case is described in the following example.

Example 8 Consider the string “Mary Ann Smith”. We need to create a pattern for splitting
the string in the person’s name (i.e. “Mary Ann”) and the person’s surname (i.e. “Smith”).
However, if we simply consider the blank space as a separator, we are not able to correctly
split the string into two parts. For this reason, we consider the number of occurrences of
the blank space to identify the correct occurrence of the terminal symbol. In this case, the
pattern would be [Λ, {name}, ⟨/b, 1⟩, {surname}, ⟨Λ, 0⟩]. 2

Thus, patterns are rules for extracting the same record-based value from heterogeneous
strings expressing the same kind of information.

1To distinguish terminal symbols from types, types are delimited by brackets.

46

Figure 2.1: Mixed types and pattern examples

Example 9 Consider the strings in Figure 2.1 (A):

(1) "3293, Abbey Road (London)" (2) "Num. 92 of Victoria Av. − Manchester"

Both strings present the same record-type rec(streetNumber, streetName, cityName),
however, the representation format of string (1) is very different from string (2). The identi-
fication of a pattern for each string allows the extraction of the sub-components in different
positions. Figure 2.1 (B) reports the two patterns that we have developed:

[Λ, {streetNumber}, ⟨’,’,0⟩,{streetName},⟨’(’,0⟩,{cityName}, ⟨’)’,0⟩,]
[’Num.’, {streetNumber},⟨’of ’, 0⟩,{streetName},⟨’−’, 0⟩,{cityName}, ⟨Λ, 0⟩]

All the patterns are applied on the strings of the column, and when one of them can extract
the sub-components of the correct type (as shown in Figure 2.1 (C)), the values are shown
according to the record-type (in this specific case as three columns). 2

We can now introduce the definition of mixed type. Let m be a system/user-defined name
of the mixed type; t1, . . . , th ∈ S be a set of simple types; and {p1, . . . , pk} be a set of
patterns; a mixed type is a triple ⟨m, rec(t1, . . . , th), {p1, . . . , pk}⟩.

2.1.2 Union types
Union types are used for representing the occurrence of instances of different types in the
same column. Formally, let {t̄1, . . . , t̄l} ⊆ S ∪ M be a set of simple or mixed types,
union(t̄1, . . . , t̄l) is a union of data of different types. The components of a union type can
be simple types, mixed types or a combination of both.

Example 10 The column SSN/VAT in Figure 2.2 (A) contains occurrences of two simple
data types: SSN (Social Security Number) and VAT (Value Added Tax), thus the type for
the entire column is union(SSN,VAT). By contrast, union(mixed_1, companyName) is
the type of column Name/Company, where mixed_1 is ⟨mixed_1, rec(name, surname),

47

Figure 2.2: Union type and union of mixed types columns

[Λ, {name}, ⟨/b, 0⟩, {surname}, ⟨Λ, 0⟩]⟩. Figure 2.2 (B) shows a column containing occur-
rences of mixed types that follow different patterns. Three patterns can be identified:

• mix1:[Λ, {streetNumber}, ⟨’,’,0⟩,{streetName},⟨’(’,0⟩,{cityName}, ⟨’)’,0⟩]

• mix2: [Λ, {streetName}, ⟨’;Num.’, 0⟩,{streetNumber},⟨’− ’, 0⟩,{
countryInitials}, ⟨Λ, 0⟩]

• mix3: [Λ, {streetNumber}, ⟨/b, 0⟩, {streetName}, ⟨’, ’, 0⟩,{ZIP}, ⟨Λ, 0⟩]

Therefore, type(Address) is union(mix1, mix2, mix3). 2

2.2 Ontology and knowledge graphs
A domain ontology O [156] contains a set of concepts C = {C1, . . . , Cn} and relationships
R = {(C1, r, C2)|C1, C2 ∈ C, r ∈ R}, where R is the set of relation names. Concepts
can be organized in an inheritance hierarchy: C1 ⊑ C2 denotes that C1 is a sub-concept
of C2 (and also that C2 is more general than C1). Each concept can have associated basic
properties taken from a set P = {(p1, D1), . . . , (pm, Dm)}, where D = {D1, D2, . . .}
is the set of basic types whose values can be used for the corresponding properties and
{p1, . . . , pn} ⊆ P are the property names; the properties of concept C are denoted P(C)
and include those specifically specified for C and those inherited from the more general
concepts. Some properties can be used for uniquely identifying an instance of a concept.
Each concept has a property id that is used for representing the identifier of its instances.

Example 11 Figure 2.3 shows an excerpt of the DBpedia2 for the representation of films,

2www.dbpedia.org

48

Figure 2.3: Excerpt of the dbpedia ontology

TV series, the locations where they were filmed, and their casts. Light blue circles repre-
sent concepts (e.g. Person, City, Film), light green arrows denote the subclass relation-
ships (Film and TVShow are subclasses of CreativeWork), and straight arrows denote
relationships among concepts (e.g. directedBy). Pairs (name : Di) represent prop-
erty names with their domains and are reported closer to the corresponding concepts (e.g.
CreativeWork has the properties genre, language and title of type string). 2

Given concept C, we introduce the following functions: ancestors, dist, closure, and
classes. ancestorO(C) is the set of concepts C̄ in O such that C ⊑ C̄ (i.e. the concept
C itself and all its ancestors according to the ⊑ relationship); given C ⊑ C̄, dist(C, C̄)
is the length of the path in the inheritance relationships between the two concepts, that
is dist(C,C) = 0, dist(C, C̄) = k, when there exist k distinct concepts in O such that
C ⊑ C1... ⊑ Ck ⊑ C̄; closure∆O(C) represents the set of relationships in which the con-
cept C or one of its ancestors is involved directly (∆ = 1) or using paths of length ∆.
closure∆O(C) is inductively defined as follows:

• closure1O(C) = {(C1, r, C2)|C1 ∈ ancestorO(C), (C1, r, C2) ∈ R}∪
{(C1, r, C2)|C2 ∈ ancestorO(C), (C1, r, C2) ∈ R};

• closure∆O(C)=closure∆−1
O (C) ∪

{(C2, r2, C3)|(C2, r2, C3) ∈ R \ closure∆−1
O (C),

∃(C1, r, C2)(or (C2, r, C1))∈closure∆−1
O (C)s.t.C1 ̸=C3} ∪

{(C3, r2, C2)|(C3, r2, C2) ∈ R \ closure∆−1
O (C),

∃(C1, r, C2)(or (C2, r, C1))∈closure∆−1
O (C)s.t.C1 ̸=C3}

49

Figure 2.4: Closure of the concept Director at ∆ = 1 and at ∆ = 2

Example 12 Figure 2.4 shows closure2O(Director) in the ontology in Figure 2.3. Black
edges and light blue nodes denote the direct relations with Director, whereas grey ar-
rows and the yellow nodes represent the relations at ∆ = 2. For the sake of readability,
inheritance relations are reported with a thick light green arrow, but they do not belong to
the closure. Note that Creative Work, Production Company, and City are introduced
because a relation exists with the concept Person (a generalization of Director). 2

Through the closure function, we can include in the semantic descriptions also instances
of concepts for which none of their properties present values in the considered tabular data.
However, their introduction could be relevant for the identification of relations among the
concepts and also for identifying semantic annotations for unmatched columns.

Given a set of concepts {C1, . . . , Cn}, function classes∆O({C1, . . . , Cn}) identifies all the
concepts that are involved in relationships obtained by the application of the closure∆O on
each of the concepts in {C1, . . . , Cn}. By denoting with A|i the ith component of the triples
in the set A, classes are defined as follows:

classes∆O({C1, . . . , Cn}) =
n⋃

i=1

closure∆O(Ci)|1 ∪ closure∆O(Ci)|3

A knowledge graph is a heterogeneous graph KG where nodes represent instances of the
ontology concepts and edges represent relationships among them. Basic properties can
be associated with the concepts. Formally, a knowledge graph KG is an n-ple KG =
(V,E,R, Prop), where, V = {v1, . . . , vn} is a set of nodes, E is a set of triples (i.e.
E ⊆ V ×R×V), R is the set of relation names, and Prop ⊆ V ×2P×D are the properties
with the corresponding values associated with the concepts. With I(C)we denote the nodes

50

Figure 2.5: A KG sample adhering to the constraints imposed by our ontology

in KG that represent a given concept C, and with E(r), r ∈ R, the triples involving the
relation r. Moreover, given a property p ∈ P (C), I|p(C) denotes the nodes in I(C) that
present the property p. We denote with | · | the cardinality of a set.

Example 13 Figure 2.5 shows an excerpt of the knowledge graph KG corresponding to
the ontology introduced in Figure 2.3. It represents information about the film “Titanic”, the
actors starring in it, the director, the production company and the locations. The id property
associated with each concept is reported in the circle representing the concept and should
contain the IRI. For the sake of readability, in our examples, we report a human-readable
string that identifies the node. 2

2.3 Semantic description
A semantic description for a table T is a graph SD containing two kinds of nodes. Nodes
that represent the columns in T and nodes representing meta-instances of the concept of the
ontology. A meta-instance is a generic instance of the ontology concept and more than one
can appear within SD. In order to distinguish among the different meta-instances, the in-
dex/superscript j is used for the node identifier (j = 0means the first instance of the concept
and can be omitted). Formally, a semantic description for a table T = ⟨Col, Rows,Ann⟩
is a graph SD = (UCs, UT , ER, ET), where:

• UCs is a set of nodes representing meta-instances of the concepts in C; uj
C ∈ UCs

denotes a vertex corresponding to the jth occurrence of the concept C;

• UT is a set of nodes corresponding to the columns in T (|UT | ≤ |Col|);

51

Figure 2.6: Example of SD generated on top of a table.

• ER⊆UCs×R×UCs represents the relationships among concepts in UCs;

• ET ⊆UCs×P ×UT denotes the properties associated with the columns of T .

Example 14 Figure 2.6 shows a semantic description SD for a table that contains details
about a list of films, such as the production company, its founding year and headquarter
city, the name and birth date of the starring actor and the name of the director. Without
the semantic description, we are not able to establish if the location is the headquarter of
the production company, the place of birth of the director or the one of the actor. Through
the links between the concepts, the kinds of relationships that bind the concepts of the ta-
ble are made explicit. Note that the meta node u0

Film has been introduced that is missing
in the table but it is mandatory (according to the used ontology) for creating a connection
between the three main concepts (production company, actor, and director). From a formal
point of view, SD is a graph with the meta-nodes u0

PC, u
0
City, u

0
Film, u

0
Director, u

0
Actor (where

PC stands for Production Company), and 6 terminal nodes uT0, uT1, ..., uT5 representing
the columns of the table (the number represents the position of the column in the table).
Edges ((u0

PC, tradingName), uT0) and ((u0
Director, birthName), uT3) are samples of ter-

minal edges in ET , whereas ((u0
PC, headquarter), u

0
City) and ((u0

Actor, starring), u
0
Film)

are samples of relations in ER. 2

Meta-instances occurring in SD can be classified into specific or variable nodes. Specific
nodes are associated with identifying properties occurring in the table. Therefore, they

52

correspond to a single real-world entity. Suppose, for example, that year and title are
identifying properties for the concept Film. If values are provided for these two properties
in a table, a single instance of the concept Film can be identified. The variable nodes, by
contrast, are not associated with identifying properties in the table. For example, consider
the concept Date and suppose that only the property year is specified for it. In this case,
a specific date cannot be identified, because the day and month are missing.

53

Chapter 3

Semi-automatic type inference approach

Spreadsheets are largely used and are a fundamental tool for organizing and classifying
data of different types into a logical format. Users model the data in the most convenient
way for their business and the consequence is that a common representation format is
missing and the possibility of the integration of their content with other resources is hard to
realize. A spreadsheet can contain data that are not in a tabular form, such as titles, descrip-
tions, aggregated columns, and footers; moreover, the content can be allocated within each
cell in arbitrary ways. For example, a domicile address can be divided into three columns
containing street name, odonym and zip code, or it can be inserted in a single cell.

In this chapter, we describe our approach for identifying and extracting a table within a
spreadsheet, removing the extra information, and inferring a data type for each data cell
and column. Since each value and each column of the table can be assigned to more than
one data type, we model the problem as a multi-label classification approach and exploit
a simple extension of decision trees with pre-defined thresholds that automatically identify
possible types that can be assigned to a column. The model has been trained through
the use of synthetic data based on real spreadsheets. This process has also the effect
of identifying cells presenting errors because their values are not compliant with the type
identified for the corresponding column. Furthermore, we describe the graphical interfaces
that we have developed for supporting the user in the adjustment of the inferred types.

The chapter is organized as follows: Section 3.1 outlines the approach for the extraction
of a table from a spreadsheet. Section 3.2 introduces simple type recognizers that are
exploited in Section 3.3 for predicting the type of cells and columns. Section 3.4 presents
our graphical user interfaces. Experimental results are discussed in Section 3.5. Finally,
Section 3.6 reports some concluding remarks on this phase of our work.

54

Figure 3.1: Table extraction

3.1 Table identification
In our scenario, data are organized in spreadsheets (according to CSV, TSV, and Excel for-
mats). Within each spreadsheet a table can be located, it is usually formed by the list of col-
umn names (table schema), and the rows containing values for each column. Sometimes, a
group of data rows are separated by blank rows, in some cases for aesthetic reasons while
in others for grouping data representing the same concept. Moreover, semi-blank rows can
be used for reporting grand totals or remarks about an invoice.

Figure 3.1 shows the table extraction process. Starting from a raw table, depicted in (1),
the table highlighted in (2) is extracted. Therefore, headers, footers, and empty columns
(when occurring) are removed. Moreover, as shown in (3), blank and semi-blank rows are
deleted because their content is not relevant in our context. Even when blank rows are used
to separate groups of rows having a common semantic, this additional information belongs
only to human knowledge and it is hard to identify, use and understand it, in an automatic
and machine-readable way. For the localization of the table, we consider the density of the
information contained in the table w.r.t. external data. For removing blank and semi-blank
rows, predefined thresholds are used on the minimal number of non-empty cells in each
row w.r.t. the number of columns. The final table obtained, reported in (4), contains only
the essential data and is structured in rows, columns (whose content is addressed by the

55

column schema), and cells. The distinction between table headers and cells is determined
by the position of the rows (when the headers are present they are in the first row) and the
use of dictionaries containing the headers of the already processed spreadsheets.

3.2 Type recognizers
For identifying the values v that adhere to the constraints of a given type, each simple type
t ∈ S is associated with a different type recognizer. A recognizer Rect for a type t is a
function that, given a value v, determines if v is a valid instance of t or not. Two categories
of type recognizers have been devised:

• Exact recognizers: a set of well-defined rules for identifying a data type that returns
a Boolean result, true if the given value is an instance of the type identified by the
recognizer, false otherwise. This type of recognizer can introduce false negatives
(e.g. the type year can be recognized as a zip code).

• Approximate recognizers: beside considering well-structured values, these recogniz-
ers are tolerant to malformed values. In this case, the answer is a probability that
can be interpreted as true above a given threshold and false below it. The ap-
proximate recognizers have been introduced for managing conversion problems and
typing errors occurring in the data (e.g. if a VAT is shorter than usual because dur-
ing a format conversion a set of 0 at the beginning has been removed). Using these
types of recognizers, it is possible to introduce false positive elements since a value
can erroneously be recognized as a valid instance of a type.

Both approaches present the problem of false positives or negatives. These problems can
be minimized by checking the frequency of that type in the column and by setting a threshold
to determine whether the recognition is correct. Depending on the application domain and
the data types, we adopt the exact or approximate approach for each recognizer. Four types
of recognizers have been identified:

• set: this kind of recognizer can be used when the instances of a type t are finite and
enumerable. In this case, vi,j belongs to a type t when vi,j belongs to the set of valid
values for t. This kind of recognizer has been applied for the types country, region,
municipality, zip code, Boolean, gender, name, surname

• regular: these recognizers are used when the type instances can be determined
through regular expressions. For example, for the recognition of Italian vehicle plates,
more than 20 regular expressions have been developed for the identification of the dif-
ferent variations (e.g. "^[a-zA-Z]{2}\\s?[0-9]{3}\s?[a-zA-z]{2}\$" is an
example of the regular expressions that we have developed).

56

• common: this category is referred to the common types that can be recognized using
a pre-defined package, usually there are several packages available online for their
recognition. Specifically, we have adopted python code for checking emails, SSN,
VAT, addresses, integer, decimal, year, empty strings.

• custom: the recognition of data types can be extended by defining a custom recog-
nizer, however, in our use case it was not necessary.

During the recognition of the type of a value vi,j , the occurrence of a value of another type
in the same row is sometimes considered and exploited to increase the strength of the
prediction. For some types, t1, t2 ∈ S , the occurrence of a value of t1 along with a value
of t2 is used for identifying the third value (e.g. the occurrence of street name and city can
lead to the identification of a zip code).

Recognizers have been also generated for the identification of some mixed types. For ex-
tracting name and surname from a value vi,j , the value is split in a list of terms [w1

i,j, . . . , w
s
i,j]

by considering the blank space and some usual terminal symbols. Then, a recogniser based
on sets is used by considering a collection of common names and surnames. For the recog-
nition of the address components, we have used the libpostal library1 which is frequently
used in the context of Natural Language Processing and exploits the OpenStreetMap (OSM)
database of location names. Finally, a recognizer that exploits a collection of patterns ex-
tracted from common strings used in our domain has been developed. A value vi,j is com-
pared with each of the available patterns and whenever a single match is identified, vi,j is
considered an instance of the mixed type associated with the pattern.

3.3 Type inference approach
Due to the abundance of the simple types of our type system and the errors that can occur
in real data, a value vi,j of a table ⟨S, V ⟩ can belong simultaneously to different types or
none of them. This requires the use of an ML approach for inferring the most likely type for
a single value vi,j and also for the entire column. We have compared different ML models
and ended up using decision trees for the identification of the type of a single value vi,j . The
developed technique is a simple multi-label classification approach for inferring the types
to be associated with the column. Indeed, in our type system, a column can be associated
with a union type and therefore the same column can contain values of different types. In
the remainder, we first present the adopted model for inferring the type of each single vi,j
and the type of the corresponding column and compare it with other ML models. Then, we
discuss the approach adopted for training the model.

1https://github.com/openvenues/libpostal

57

Figure 3.2: Recognizers compute the DT features for each value of a column k of the table

3.3.1 The main model
To determine the type to be associated with every single value and each column of the table,
we adopted an ensemble of recognizers that feed their results into a decision tree.

The entire set R of type recognizers Rec1, Rec2, . . . RecR defined for the type system is
applied to each value vi,j of a given column k, generating a vector of R Boolean values
for each vi,j , as shown in Figure 3.2. The Boolean results are inserted into a vector that
represents the feature embedding for the value vi,j .

Pri,j = ⟨Pri,j,1,Pri,j,2, . . . ,Pri,j,R⟩ (3.1)

Moreover, each type recognizer Recr computes its average value Prj,r across a given col-
umn k, as shown in Figure 3.3, formally:

Prj,r =
1

n

n∑
i=1

Recr (vi,j) =
1

n

n∑
i=1

Pri,j,r (3.2)

The generated result is a vector of average values of the recognizers for the column k:

Prk = ⟨Prk,1,Prk,2, . . . ,Prk,R⟩ (3.3)

In this way for each value vi,j we can construct a vector Pri,jconc = ⟨Prj,Pri,j⟩ simply concate-
nating the vectors of Eq. 3.1 and Eq. 3.3. The list of vectors Pri,jconc is the input for training
the Decision Tree to predict the type of the value vi,j , as shown in Figure 3.4.

58

Figure 3.3: Each recognizer RecR evaluates the average value for the entire column

Starting from the types predicted for each value contained in the column j, named Typevali,j

(1 ≤ i ≤ n), we express as PType(j), the set of potential types. This set contains pairs
(t, ot), where ot is the number of occurrences of type t in column j. Then, by considering
a predefined threshold σ, representing the minimal allowed frequency of value types in a
column, the type of the column j is determined as follows:

Typecolj = {t|(t, ot) ∈ PType(j) ∧ ot∑
(t̄,ō)∈PType(j) ō

≥ σ} (3.4)

Typecolj can contain a single type or the members of the union type to be associated with
the column j. The values whose type does not belong to this set and are not empty, are
marked as errors for this column and the user can check and fix them using the graphical
user interfaces discussed in the next section.

Example 15 Consider the column 3 (date of birth) of the CSV in Figure 3.5 that con-
tains the values ⟨’01-01-92’, ’16-04-99’, ’12-07-75’, ’22-04-61’, ”, ’300579’, ’17-04-1988’, ”⟩
and suppose we wish to identify the type of v1,3 = ’01-01-92’ and v6,3 = ’300579’. For the
sake of simplicity, consider the presence of only the following type recognizers: Recstring,
Recdate, Recnumber. In this case Pr1,3 = ⟨1, 1, 0⟩ and Pr6,3 = ⟨1, 0, 1⟩. Moreover, Pr3 =
⟨0.428, 0.428, 0.142⟩ by taking into account that the number of rows is 7. Supposing a

59

Figure 3.4: Type prediction with decision tree

Figure 3.5: Example of table

threshold σ = 0.4, the decision tree for v1,3 returns date, whereas for v6,3 returns error.
Consider now the vector ⟨date, date, date, date, empty, error, date, empty⟩ of types
predicted for column 3. The type for column 3 is date with the presence of an error. 2

3.3.2 Training of the main model
The data set available in our application context contains errors and is not labelled (manual
labelling of these data would require too much time) and the quantity of the data themselves
is too low for training even simple models (the available documents are around 200). For
these reasons, we decided to generate synthetic ⟨S̄, V̄ ⟩ tables similar to the original ones.
For creating these tables, a dataset has been realized for each simple type we are inter-
ested in. Then, we generated documents with a structure similar to the original ones and
presenting values extracted from these datasets. The generated documents have a variable
number of columns and rows for simulating the real ones. Specifically, in each row, data
are correlated as in a real one: for example, the ZIP code, as well as the first digits of the
SSN, are generated using the geographical area in the same row. For making more realistic

60

the generated documents, also empty values and errors have been added to the synthetic
tables. Empty values have been included by randomly replacing some values (e.g. "-", "_",
"." and other kinds of spaces and tabs) with empty. Some of the values automatically gen-
erated have been replaced with the wrong values for the column type. For instance, values
of type surname can be placed in a column presenting values of type ZIP. However, we
avoided the introduction of errors in columns presenting too similar values (like ZIP code
and integer) to avoid misclassifications. Each value is finally labelled with its type, the label
empty in case of empty values, or the label error in case of error.

To identify the validity of the decision tree for the prediction task of this setting, we have
considered also a Random Forest composed of 500 decision trees, each one using the
same parameters of the single decision tree, and an MLP composed of 3 dense layers (64,
32 and 1 neurons respectively), with activation ReLU except for the last layer which uses a
Sigmoid activation. The optimizer used for the MLP model was Nadam. Python Scikit-learn
[132] libraries have been used to implement DTs and random forests. Keras/TensorFlow [1]
have been used for implementing MLP.

To train the considered models, we generated 1 million synthetic tables randomly split 8
times in 100.000 documents for training and 200.000 for the validation set. It must be noted
that since these tables are generated synthetically using a simulation, they cannot be con-
sidered independent and identically distributed, but just an approximation. The Decision
Tree was trained using a maximal depth of 20, using the Gini criterion and with class imbal-
ance aware weights.

The average AUPRC and AUROC scores of the models were, respectively 0.98 and 0.995
on the validation set. The scores were then compared using a Wilcoxon signed-rank test,
with a p-value threshold of 0.05. The test did not display any statistically significant difference
between the different compared methods (i.e. Decision Trees, Random Forests and MLPs).
Since the decision tree is the fastest to train and the most interpretable, we have chosen it.

3.4 Visualization and type adjustment
The approach so far presented is liable to errors, mainly because the application domain
is very complex, and thus there can be syntactic errors that can not be automatically cor-
rected. Moreover, the identification of the sub-components of mixed types following peculiar
patterns can be problematic, and, since the ML approach is probabilistic, some predictions
can be wrong. Finally, data related to the same subject can be divided into subsequent rows,
such as in Figure 3.5, where the society “Collier Inc.” is legally represented by the physical
person “Danielle Gray” whose data are reported in the above row, therefore, information
related to the same concept can be spread in different rows of the table.

61

Figure 3.6: Extracted table with associated types

For these reasons, different Graphical User Interfaces (GUIs) have been developed for sup-
porting the user in handling and fixing the results obtained through the ML algorithms. The
interfaces can be classified according to their functionalities in four types. The first one is
used for presenting the result of the ML algorithm and for supporting the user in identify-
ing errors occurring in the table. The second one allows the editing of values and types
of each column and the application of modifications. The third kind of interface is used for
the identification and management of mixed types, i.e. the assignment of a semantic de-
scription for each sub-component of a string, and the application of the description to similar
values. Finally, the last kind of interfaces provides the user with a set of utilities for defining
correlations among consecutive rows. In the remainder, we describe their characteristics.

3.4.1 Main interfaces and error identification
Figure 3.6 shows the main interface we have developed for reporting the result of the appli-
cation of the ML approach described in Section 3.3 to the table reported in figure 3.5. Each
cell and column is associated with the predicted data type.

In the resulting table, the first line reports the column schema and it is followed by a drop-
down menu containing the inferred types for each column. If more than one type is reported
in a single column, this means that each type is a member of a union type; different back-
ground colours are used to distinguish their instances, such as in the second column of
the table in Figure 3.6 where the occurrences of SSN and VAT are distinguished using two
different shades of green. Similarly, the presence of mixed types is represented using differ-
ent text colours for each component of the pattern, while terminal symbols are hidden. If a
column presents data of the same type, the background remains white, if a value is missing,

62

Figure 3.7: Error panel in the Web application

the cell background colour is yellow. The usage of different colours can help the users in
the process of checking the type predictions and the empty values (in some cases a value
should be provided) and performing error corrections. A cell is considered an error when
the type of the contained value is not compliant with the types identified for the column; in
this case, the cell background colour and the column type background are marked in red.
Facilities are provided for showing only rows presenting values in a column of a given type
(this is important for checking that values are correctly typed). Moreover, it is possible to
remove rows from the table.

When the number of rows contained in a document is high, it can be difficult to detect all
the red cells; for this reason, we provide an error panel, on the right part of the screen, that
summarizes the issues that need to be solved. An example of the panel is shown in Figure
3.7. When the user clicks the check buttons on one of the tabs that are present in the
panel, only the rows presenting the error are shown in the main interface. Once the errors
are removed from the rows, the corresponding tab is removed from the panel.

3.4.2 Data type modification
Since our ML approach can produce false positives or negatives (e.g. a ZIP code that has
been labelled as Integer), we decided to develop GUIs for supporting the user in modify-
ing the predicted types and easily applying the modification to the entire column or subset
of cells. In the modification process, the user should be supported in the specification of
domain-specific types instead of the basic ones that can be obtained through the ML al-
gorithms. Indeed, users can easily identify the types of columns and, in their modification
activity, can introduce further knowledge to our Web application. The user is also supported
in the modification of the value of a cell when it contains errors. Consider for example the
red cell in the date of birth column in Figure 3.6. It contains a value not compliant with

63

Figure 3.8: Editing of multiple rows interface

the column data type since the separators of the date are missing. In this case, the user
must edit the value contained in the cell by adding separators between the day, the month
and the year; moreover, it might want to add the complete year instead of the short form.
This edit operation can be done directly in the cell. Once it is complete, the system executes
again the ML technique to determine the new data type.

For performing bulk modifications on the values, the interface in Figure 3.8 was developed.
For each column, the interface reports the unique occurrences of the column, with the num-
ber of occurrences. Similar strings are clustered together relying on the edit distance and
then reported closer in the list of strings visualized in the interface. In this way, it is eas-
ier to visually detect the errors and correct them with the aim of obtaining a homogeneous
representation of the same kind of information. The user can edit the single value, and the
proposed modification is applied to all the occurrences (note that when corrections lead to
a value already present in one table row, the two rows are collapsed). Moreover, the user
can edit the case of the text (i.e. from lower to upper). For example, by modifying the value
“United Kingdom” in “England”, the five occurrences are modified accordingly.

64

Figure 3.9: Data types editing

The interface in Figure 3.9 has been developed for easily changing the type of an entire
column or a subset of its values when data types are not correctly identified. The interface
can be activated on a single cell, which becomes the current target of the modification,
or it can be activated on the entire column. Through this interface, the inferred data type
can be modified into a new type, or into a concept and a property of the domain ontology.
This interface can be also used for modifying mixed types to be extracted from a string.
The interface is organized into 5 areas. In (1) the hierarchy of concepts available in the
considered domain is reported along with basic types (collected in the button General).
The user can select one of the available concepts, and the corresponding properties are
reported in (2) (when the General button is pressed, the basic types are reported). In (3),
when the interface is activated on a target cell, a single type is reported (the value type),
otherwise, the components of the union types specified for the column are reported. In this
way, it is possible to change the type for each component of the union type. In (4) it is
reported the target value or the column name and it is highlighted with the current type for
the column. The user can remove the current labelling (by clicking on the x button reported
on the top right corner of the string) and apply a new concept and property. In (5) values of
the same type present in the column are reported and the user can select those to which
the type modification should be applied (all the values are the default behaviour). The user

65

can also decide to select the “text” checkbox reported in (6) to unify undesired union types,
such as decimal and integer, and to treat the whole column as an instance of a single type.
Then, the user can select the new type to be assigned to all values.

Example 16 Two errors (false negatives) occur in the ZIP code column in Figure 3.6.
Through the interface in Figure 3.9, the user can navigate to Type_2, choose the concept
Address and the property ZIP and substitute the error with it. Moreover, Type_1 can be
modified to the same concept and property leading to a single type for the column. 2

The possibility to modify types according to the concepts contained in the domain ontology
can also introduce some issues that need to be properly managed.

Example 17 Consider the column Name/Company in Figure 3.6 that the ML algorithm has
typed union(mixed_1, text), where rec(name, surname) is the structure associated with
mixed_1. The value Legal Rep. Danielle Gray is of type text and can be changed with
the mixed type mixed_2 whose structure is rec(Person.name, Person.surname). So, a
more complex type than the one expected is generated. 2

To face this issue, a re-writing system based on rules [51] has been developed for the sim-
plification of the type expression after the modifications applied by the user. The re-writing
rules express correspondence between simple types and concept properties of the domain
ontology occurring in the same table column. Once applied the re-writing rules, the union-
type components presenting the same structures are compacted. The union type is finally
transformed into a simple type when a single component is identified. In the previous exam-
ple, the application of the re-writing system leads to the type mixed with a record structure
rec(Person.name, Person.surname) and two patterns for the extraction of values.

3.4.3 Identification of a mixed type
The identification of sub-components of a mixed type is quite hard to be handled automati-
cally, especially when errors and variability in the pattern might occur.

Example 18 Consider the column address in Figure 3.6. The ML algorithm was able to
identify the type mixed_1 for some of its values, whereas the others are marked of type
text. From the textual values, two different mixed types can be manually detected through
the interfaces described in this section. 2

Figure 3.10 shows the main interface for extracting a value of a mixed type from a string.
The interface is organized into four areas, (1) and (2) are equivalent to the one presented
in Figure 3.9 and report the concepts with their properties. In (3), by contrast, the string on
which the interface has been invoked is shown. Once the user has selected the property of
a concept (in this case the municipality of an Address), he can highlight the part of the

66

Figure 3.10: Definition of a mixed type

string of such a type. This behaviour applied to all the components will lead to the situation
reported in the area (3). In this way, we identify the terminal and non-terminal symbols
that form our pattern. The non-labelled items are considered terminal symbols, while the
labelled items are exploited for the generation of the pattern. Note that the void symbol can
be applied for skipping variable parts of the string. Once the labelling is complete, the user
can check if the generated pattern can be applied to other strings occurring in the same
column (4) that adhere to the same pattern. When the user tries to apply the labelling to
other strings, the interface in Figure 3.11 is shown. The top part of the figure reports the
labelled string, whereas the left panel reports strings that do not present the same pattern
and the right panel contains the strings that have been re-written according to the identified
pattern. The user can check the correctness of the applied pattern in the right panel and
move to the left panel those that have been erroneously annotated. Moreover, he/she can
take note of the strings in the left panel because they require the specification of a different
pattern or the identification of a different type.

Algorithm 1 is applied for checking if a string is valid for the identified pattern. In the al-

67

Algorithm 1 Check a pattern on a string
Input w← string to be checked

P ← [c0, {t1}, ⟨c1, Occ(c1)⟩,{tn}, ⟨cn, Occ(cn)⟩]
i← 0
result←[]

1: if c0 ̸= empty then
2: i← |c0|
3: if w0,i ̸= c0 then
4: return []
5: for s← 1 to n− 1 do
6: f ←indexAt (w, cs, i, Occ(cs))
7: if f ̸= 0 ∧ wf,f+|cs| = cs then
8: if typeOf (wi,f) = ts then
9: result.append(⟨wi,f , ts⟩)

10: else return []
11: else return []
12: i← f + |cs|
13: if cn ̸= empty then
14: f ←indexAt (w, cn, i, Occ(cs))
15: else
16: f ← |w|
17: if typeOf (wi,f) = tn∧ wf,|w| = cn then
18: result.append(⟨wi,f , tn⟩)
19: else
20: return []
21: return result

22: function indexAt(w, lookFor, occ, start)
23: p← 0
24: localStart← start
25: for i← 0 to occ+ 1 do
26: p← w.indexOf(lookfor, localStart)
27: localStart← p + 1
28: return position

68

Figure 3.11: Application of a pattern to other strings in the same column

gorithm, the notation wi,j is used for identifying the sub-string of w contained within the
position i and j, and |w| is the length of the string w. Moreover, the algorithm exploits the
indexAt function that simply identifies the initial position of occth occurrence of the string
lookForwithin the string w starting from the position start. The position 0 is returned when
lookFor is not identified.

The algorithm first checks the presence of the possible first terminal (c0). If it occurs, the
index i (used to identify the initial position of the next non-terminal) is set to the length of c0,
otherwise, i is set to 0 (the initial value). Then, for the rest of the pairs [{ts}, ⟨cs, Occ(cs)⟩]
where 1 ≤ s ≤ n − 1, the algorithm identifies the position f of the occurrence Occ(cs) of
the terminal cs. This means that the string wi,f is the non-terminal that should be of type

69

Figure 3.12: Pattern definition for column Address

ts. When this is true, the pair ⟨wi,f , ts⟩ is included in the result. Otherwise, the empty list is
returned. At the end of the loop, the last type tn should be checked (by taking into account
the eventual presence of terminal cn). Its management is similar to the general case, but
we have to consider the possibility that it is not present. The algorithm returns the list of
sub-strings of w with their associated type. The algorithm is not tolerant to errors or slight
modifications of the terminals. However, in our scenario, terminals are quite regular and
when a string follows a different pattern, the process here described can be applied again.

Example 19 The remaining text and the mixed type automatically identified by the ML ap-
proach in the column Address are labelled as reported in Figure 3.12. The terminal symbols
of the second row are hidden from the visualization since the labelling was already made,
while the terminal symbol of the second row (the comma) is shown since the screenshot
was taken during the labelling process. 2

It should be noted that in this example we intentionally added several strings that are or-
ganized in several ways for illustrative purposes. However, usually, we find just one or two
patterns in the same column, and therefore the usage of the mixed types identification pro-
cess is limited. At the end of the definition of the new mixed type, the terminal symbols are
hidden from the data visualization.

3.4.4 Correlation between rows
As outlined in our problem formulation, it might be possible that correlations can be identified
among different instances of the concepts identified in our domain and that such correlations
can occur in one or more rows of our extracted table. The correlation can be induced by the
presence of strings, sub-strings or the position of rows in the extracted table. Several kinds
of correlations expressed in different ways can be identified in a single document.

Example 20 Figure 3.13 shows some examples of correlations. A correlation can be iden-
tified between the first row (case (1)) and the second one; in this case, the debtor Mary

70

Figure 3.13: A subset of possible correlations among rows

White has a co-debtor that should be considered. The presence of a correlation can be
identified by the existence of the word “co-debtor” in the cell of the second row. Moreover,
the remaining cells of the second row are empty, and finally, the SSN of the first and second
rows are the same. In case (2) the second row is correlated with the first one; the company
“Collier Inc” has a legal representative whose information is inserted in the above row. The
correlation can be identified by the presence of “Legal Representative” in the first cell of the
first row. Finally, in case (3) the correlation occurs in a single row. In this case, the first full
name represents the heir of the person that follows. The keyword contained within the cell
and the absence of an SSN are essential for the identification of the correlation. 2

As shown in the example, correlations can be expressed in different forms and it is not pos-
sible to determine a unique way to parse them. It should be noted that the existence of
a correlation alters the homogeneity of the column’s data types, therefore it is necessary
to identify it and adjust the data so that they are compliant with the rest of the structure
of the spreadsheet. We made a distinction between correlations between two consecutive
rows and correlations that occur within the same row. For identifying a correlation between
consecutive rows, we defined a declarative pattern-based language that allows the user to
define rules to express their knowledge about the existence of a relationship. These rules
are specified through a GUI, they can be grouped in sets and applied before the process-
ing of each spreadsheet. When two consecutive rows match a rule, then a correlation is
identified. More precisely, each rule is identified by a unique name name, and is applied
to consecutive rows, the current row, ri, and the next row, ri+1. A rule is composed of
the conjunction of basic conditions, that check for the existence of a relationship, and an
action, that expresses the way the information from the two rows should be joined when the
condition is verified. The following two basic condition can be specified:

• r[k] op v (named basic condition) requiring that the k-th cell in the row
r ∈ {current, next} is compared according to the operator op with a value v, where

71

Figure 3.14: Correlation rule specification

op ∈ {=, ̸=, startwith, endwith};

• current[k] = next[k′] (named equijoin condition) imposing that the k-th cell of
current row is equal to the k′-th cell of next row.

action is specified by a tuple (conc, rel) determining the way in which ri and ri+1 should
be concatenated (conc ∈ {natural, inverse}) and the kind of relationship that exists
among the two rows. In our application domain, we identified a set of relationships, like
extra, representing further information about the invoice; LR, when the row contains the
legal representative of the invoice; heir when the invoice is titled to a subject that is dead
and one of his/her heirs should be contacted, co-debtor when a debt is shared among
more than one person and so on.

Example 21 In the case of Figure 3.13 (1), the information about the co-debtor is reported in
the second row. For its identification, the rule contains two conditions: one on the presence
of the string Co-debtor and one on the equijoin between the SSNs’. If a pair of rows satisfy
the condition, the second row is concatenated after the first one (normal order). 2

It is possible to define a correlation among two rows on the fly, by clicking on the operations

72

Figure 3.15: Definition of a correlation on the fly

on tuples loaded in the interface (the link icon). In the example of Figure 3.6, we did not apply
a group of correlation rules before processing the file. Therefore, we specify the correlation
using the interface of Figure 3.15. When the user wishes to determine a correlation, he/she
can click on the link icon in correspondence with the current row, and then he/she can
specify the type of the correlation. As a result, the rows are concatenated together and the
not empty columns of the concatenated row are added at the end of the main row. Moreover,
a new column containing the name of the correlation is added between the two rows. At this
point, in the example of Figure 3.6, the prefix “Legal Repr.” of the correlated row is no longer
useful, therefore the user can apply semantic labelling only on the name and the surname
of the legal representative using the interface of Figure 3.10; this operation would remove
the prefix, implicitly labelled as void, from the visualization.

The interface of Figure 3.14 cannot be used for the definition of a correlation on the same
row. Therefore, we exploit the interface of Figure 3.10 through which the user can manage
the correlations occurring on a single row. Indeed, we treat the text containing the informa-
tion about the correlation as a mixed type. To do that, we extended the domain ontology and
introduced the concept of “correlation”, which contains the types of relationships. Then, we
use it as depicted in Figure 3.16 with respect to example (3) of Figure 3.13. At this stage,
no additional columns is added, however, the correlated person will be treated in Phase 2.

73

Figure 3.16: Definition of a correlation on the same row

3.5 Experimental results
Besides the experiments with 1 million synthetic data that we have already described and
whose purpose was to evaluate the type prediction capabilities of the ML algorithm, we
have considered also other experiments for assessing the quality of the proposed solution.
On one hand we have evaluated the behaviour of the approach on real documents made
available from the debt agency and, on the other hand, we have evaluated the usability of
the proposed interfaces. In the remainder of the section, we discuss the obtained results.

3.5.1 Validation of real documents
The trained model on synthetic data has been used for inferring the type of 50 different real
CSV documents provided by the debt agency with at least 100 rows and between 8 to 70
columns. The minimum threshold for inferring union types has been set at 20%. A table has
been extracted from each of them and the type of values and columns has been inferred as
described in Section 3.3.1. Two experiments have been done on the obtained tables.

In the first experiment, the tables have been manually checked for determining:

• correct columns: If the predicted type matches the content of the column;

74

Figure 3.17: Number of documents for which the frequencies of the correct columns (series
A) and the correct and compatible columns (series B) with respect to the total number of
columns fall in the range [0.5, 1] with a step of 0.05.

• compatible columns: If the predicted type is correct but is not the most appropriate
one (e.g. a street number is predicted of type integer);

• incorrect columns: otherwise, e.g. if the predicted type does not match the column
content (e.g. the type is SSN but it also contains VAT).

The frequency of the “correct columns" and “correct and compatible" columns with respect to
the total number of columns has been computed. We then defined ten ranges of frequencies
that are used for classifying the documents. Fig. 3.17 reports the number of documents
whose frequencies (“correct columns" and “correct and compatible") fall in the range [0.5, 1]
with a step of 0.05. The figure points out that for 33 documents we were able to infer correct
and compatible types for more than 80% of the columns (by considering only correct types,
the number of documents is 28). Moreover, for only 4 documents we were able to infer
correct and compatible types for less than 65% of the columns. By looking more carefully at
these last documents, the low performances are due to the high number of mixed types that
are not included in our type system. Indeed, in these cases, the algorithm fails to correctly
identify the subcomponents. Concerning the compatibility errors, usually, they occur for the
streetNumber type (the values are identified as integers). All the mistakes identified in
these documents have been fixed by means of the interfaces described in Section 3.4. We
remark that the fixing process is quite easy and fast. Indeed, in the case of the CSV file with
the highest number of errors, we fixed it in less than 5 minutes.

The second experiment uses the same set of CSVs. For each CSV we considered the
result obtained with the ML approach and the result obtained with manual labelling of each
column and cell. In these experiments, we evaluate the accuracy of the data type inference

75

Actual values

DT1 error

Pr
ed

ic
te

d
va

lu
es DT1 TP FP

error FN TN
DT2 FN FP

Table 3.1: Confusion matrix: the prediction for a data type DT1 is compared with the pres-
ence of errors or another data type DT2. TP: true positive, TN: true negative, FP: false
positive, FN: false negative.

approach. The manual editing does not affect the values of the CSV, it works only on the
data types identified for each column and cell.

Table 3.1 reports the confusion matrix for evaluating the actual values (i.e. the types iden-
tified in the manually edited table) with respect to the predicted type (i.e. the same type
D1, an error or another data type DT2). In the matrix, a true positive is obtained when
the predicted type coincides with the manually labelled one (a false negative, otherwise);
whenever the cell has been manually labelled with an error, a false positive is obtained in-
dependently from the predicted type. This confusion matrix is different from the standard
ones because it has an extra row for handling the presence of an error and thus discriminate
the presence of a true negative. Note also that what we evaluate is the ability of the system
to automatically predict the cell type, so user intervention for identifying the presence of an
error and correcting it is not taken into account.

Since we consider the data type of each cell and not the type of the column, the evaluation
of union types is done by considering the same confusion matrix as simple types. In the
case of mixed types, a data type is true positive if all the components of the predicted type
are equal to the corresponding manually labelled components. If a single component is
different, it is classified as a false negative. Figure 3.18 shows the obtained accuracy for
each type of column. Specifically, we have considered basic single types (simple or mixed
types), union of basic types, and union of mixed types (when at least one of the components
is a mixed type). The average accuracy is higher than 80% in the considered columns. The
accuracy is better for columns presenting basic types or union of basic types, whereas it
decreases in presence of columns with mixed types (or union of mixed types).

We evaluated also the compatibility between the ML predictions and the manually labelled
data. We defined a compatibility mapping between the data types that the ML approach is
able to identify and the types that the user can use to label the cells. For each mismatched
cell, we evaluated the compatibility. As a result, we obtained slightly better performance (an

76

Figure 3.18: Accuracy of each data type category

increase of 10% in accuracy), which could be improved using different data domains.

The accuracy has been selected for evaluating the performance of our approach because
of the scarcity of false positives in our data set. Indeed, the precision, in this case, would
result in a too-high evaluation. The lack of false positives is due to the approach we have
followed in the construction of the ground truth. Indeed, the only way to have a false positive
is when an error occurs in the data and the ML approach does not identify it.

Finally, we checked the existence of a correlation between the number of columns occurring
in the table and the accuracy of our prediction mechanism by exploiting the Pearson corre-
lation coefficient. A moderate statistical evidence of such a correlation has been identified.

3.5.2 Evaluation of usability - phase 1
We organized a usability test of the Web application. The aim of this test is to evaluate if the
users can smoothly interact with the application and use the provided tools, what level of
knowledge in computer science is needed, and check the existence of critical aspects that
should be fixed or improvements to be applied. This test is composed of three parts: first, the
user watches a video that introduces him/her to the problem and shows the system usage.
Then, two tasks are assigned to be carried out on specific files. Finally, the user should fill
out a questionnaire about the experience he/she had with the system. The questionnaire
is composed of three parts: i) personal information (age, gender, level of instruction) and
technical abilities (computer skills in general, knowledge of operating systems, skills in the
use of spreadsheets, ...); ii) users’ opinions about the assigned tasks and their complexity

77

goal time success failure
1 mixed type 6 min Definition of a mixed type and appli-

cation of the labelling to other strings
through the “apply” function

Lack of the pattern definition or applica-
tion of a new procedure every time

2 errors 6 min Detection and correction of the errors
on values/types through the error panel

The errors are not corrected and the er-
ror panel is not exploited

3 bulk editing 4 min Rows are updated in a single operation Rows are updated one at a time
4 correlations 4 min Identification of the rows correlation,

verification of their cell data types
The correlations are not defined or the
correlated row types are wrong

Table 3.2: Tasks identified for the usability test

iii) users’ opinions about the functionalities of the proposed tool. These questions have
been rated using a Likert scale (from “strongly disagree” to “strongly agree”).

We selected 20 participants, 12 males and 8 females, 60% of them were between 21 the
ages of and 23 years old, 20% between 24 and 26 years old and the remaining ones were
more than 26. Most of the users were recruited among personnel and students of the depart-
ment of computer science of the University of Milan and therefore they have good technical
skills. However, they are not involved in this project and they have little knowledge of the
application domain. Only a small part of the participants (50%) feels confident in using Ex-
cel. Most of the students are currently attending to their bachelor’s degree, therefore they
have only a high school diploma. Users have an average knowledge of different operative
systems and they use a computer or a laptop mostly for working or studying.

Table 3.2 reports the tasks that we have identified for checking the main functionalities of
our system. Each task requires the processing of a spreadsheet that is specifically created
for the purpose of the task and whose content can be easily understood also by non-expert
of the domain. Even if the spreadsheets correspond to real documents of our domain, their
content has been anonymized for preserving user privacy. For each task, Table 3.2 reports
the main goal, the time required for completing the task and when the task can be considered
successfully completed or when it is completely a failure. In order to reduce the user efforts
in completing the tasks, we decided to assign to each participant task 1 and task 4, or task
2 and task 3. In this way, the maximum time required is 10 minutes (without considering the
time required for watching the instructional video).

All the individuals were able to complete at least a part of the assigned tasks within 10
minutes. Some of them (30%) were not able to finish the assigned task because of time
limits. However, the average time required has been of 8 minutes. A good fraction (70% of
the users) thought that the assigned tasks were easy and enough intuitive.

78

For task 1, most of the individuals (85%) were able to specify a mixed type through the
interface. All of them used the “apply” button to label all the mixed types in a single column.
The main reason for the failure of this task was the choice of the wrong interface (they
selected the interface for the modification of column type instead of the one for modifying
the cell type). For task 2, 75% of the individuals used the error panel and the general
impression about its usefulness is very positive (from partially to strongly agree). The users
that did not exploit the error panel, tried to increase the number of rows per page in order to
identify the errors. In these cases, the identification and correction of the errors required an
additional time of up to 3 minutes. Concerning this task, only 28% of users had trouble in
distinguishing errors occurring on the data type (i.e. the component of a union type was not
identified by the ML algorithm because it was under the considered threshold) from errors
occurring on the data (i.e. a date is written without separators). For task 3, most of the
individuals (86%) were able to use the bulk editing functionality and all of them thought it
sped up the editing process. The remaining part did not notice the error occurring within the
data (usually an additional letter in the name of a city) and they corrected it by editing the
data type. Finally, for task 4 all the individuals were able to detect and define the correlations
but only 75% of them modified the name of the correlation, while the others used the default
one (the first of the list). The reason is due to the excessive use of the horizontal scroll bar
for the visualization of the columns associated with the correlated tuples which reduce the
visibility of the table components.

Figure 3.19 shows the box plots of the average execution time for each task. Each task
required an average time between 3.5 and 5 minutes. The most time-consuming tasks are
task 2 and task 4 which also include most of the cases in which users were not able to
complete the assignment. Task 1 was the one that required less time than the others since
most of the participants used the “apply” button to label the data.

The 95% of the users agreed that the application is easy-to-use and intuitive and the 85%
declared that they did not have problems during the error correction process. The greater
difficulties were related to the understanding of the specific domain; most of the users did
not know the meaning of the concepts of the domain ontology and tried to identify the most
suitable one. Moreover, the application provides a lot of functionalities and the user needs
time to gain confidence in the system.

Even if the users did not provide suggestions concerning improvements of the GUI, all of
them believe that to gain full confidence with the application, a one-day experience should
be considered. More in general, the users agreed that the Web application could be easily
used by other users having the same level of knowledge in the field of computer science.

79

Figure 3.19: Average execution time of each task during the usability tests.

3.6 Concluding remarks
Type inference is a well-known problem in computer science and many approaches have
been defined ([92], [165], [112], [38], [154]). The peculiarity of our context is the presence
of mistakes in the set of values for which we wish to identify a type and the presence of
types that share values (e.g. the year type is included in the integer type) making the type
assignment problem more complicated.

To face these issues, in this chapter we have proposed a semi-automatic approach for de-
termining the types of values and columns contained in a table extracted from a spreadsheet
that relies on the adoption of a decision tree on top of several basic type recognizers. This
approach is used for deciding the most likely type to be assigned to the values contained
in a table column. The approach takes into account also the possibility of assigning more
than one type to the same column (in the spirit of union types).

Our approach is useful in the interpretation step of the table understanding problem when
the values of a single column can assume different types and can present wrong values.
Due to the variability of the data that need to be handled and the lack of a significant corpus
on which an ML technique can be trained (especially for the Italian language), we have
proposed an approach that combines a decision tree trained on synthetic data for inferring
the type of values and columns and the use of GUIs for correcting mistakes.

Once the automatic approach has identified the possible set of types, the user is supported
with GUIs in fixing the issues identified by the machine learning approach. In particular, the
purposes of our interfaces are, on one hand, to allow modifications on a single sample and
to propagate them to all the column values presenting the same characteristics, and on the

80

other hand, to fix types and values. The user can also specify semantic types for single
cells on entire columns; indeed, he has specific knowledge of the domain and, therefore,
his annotations should be trusted. For example, a document value can be labelled as the
balance of an invoice. This information, which is gathered during the manual fixing of the
values contained in the table, is of paramount importance in the subsequent phase of semi-
automatic semantic characterization of the table content.

The approach has been tested on a collection of documents made available by a debt col-
lection agency that needs to handle every day these kinds of document that is highly het-
erogeneous and contains many mistakes. Our experiments proved the feasibility of the
approach and the utility of the developed interfaces for easily fixing mistakes and extracting
types from many columns presenting heterogeneous information.

Moreover, a usability test has been run on the developed application. As a result, we con-
cluded that the 95% of the users believe the application is easy-to-use and intuitive. How-
ever, during the tests, some problems concerning the error correction task of a data type
have arisen. In particular, 15% of the users had trouble in distinguishing the panel as-
sociated with a column and the one associated with a cell, and 25% of the users did not
exploit the error panel. As a solution, a button could be included in the modal for editing
a column containing a mixed type to be used to open the correct interface for labelling the
sub-components. Concerning the error panel, "help" buttons can be included for explaining
to the user the steps that he/she has to do for completing the activity.

The work discussed in this chapter can be extended in several directions. By means of
the graphical interfaces described in Section 3.4 it is possible to define new patterns and
include them in the ML process described in Section 3.3.1. This is an interesting research
direction in the spirit of incremental learning and thus being able to adapt the model without
the entire re-training. Then, we wish to include other recognizers in our system that are
approximate. They would be particularly useful for dealing with many errors. At the cur-
rent stage, we have considered approximate recognizers for ZIP and VAT values that try to
slightly modify these values (by padding some zeros at the beginning of the string) before
checking the validity. They have been particularly useful and their systematic use can im-
prove the performance of the type inference approach. In addition, the recently proposed
boosted trees [43] that use a combination of decision trees and boosting algorithms to im-
prove the accuracy of predictions and reduce the risk of overfitting might be considered.
XGBoost (eXtreme Gradient Boosting)2 is a popular implementation of this approach. One
of the key features of XGBoost is its ability to handle large datasets efficiently and the ability
to handle missing values in the dataset. Furthermore, we observe that we applied a basic

2https://xgboost.readthedocs.io/en/stable/tutorials/model.html

81

multi-label approach to predict column types, and we plan to adopt more refined multi-label
techniques to significantly improve predictions of union types [177]. Finally, the approach
described in this chapter relies on the use of synthetic data that have been generated for
the specific domain for training the ML approach. Whenever a different domain needs to be
considered, specifically tailored synthetic data should be considered. As a future work, we
wish to consider the possibility of using data generative approaches [131] for the creation
of positive and negative examples that can be used for training the algorithms.

82

Chapter 4

Semantic descriptions of the table
content

By exploiting the facilities described in Chapter 3, the table extracted from a spreadsheet
has been cleaned and removed from syntactic errors. Moreover, by means of the interac-
tion with the user, the basic types, identified by the machine learning approach, have been
translated into properties of the ontology concepts, thus providing a better characterization
of the table content. However, in our approach, we do not force the user to provide a se-
mantic characterization for all the table columns, some columns can be left "unmatched"
and we will try to characterize them with the methodology introduced in this chapter.

The purpose of this chapter is to determine a semantic characterization of the table content
in terms of the domain ontology. This is obtained by generating a semantic description (SD)
of the table content (as described in Section 2.3 of Chapter 2) starting from the content of a
table T that exploits: i) the concepts initially identified in T through the approach described
in the previous chapter; ii) a domain ontology O for the construction of a complete SD
containing all possible direct and indirect relations involving the concepts initially identified
in the table T ; iii) different weighting systems for identifying the best relations among those
included in the complete SD. The weighting system takes into account the specificity of the
relations occurring in SD with respect to the domain ontology O (inherited relations are less
relevant than specific ones) and the weights generated using a GNN. The model is trained
on the consolidated knowledge graph KGC that adheres to the constraints imposed by the
ontology O and contains instances already known valid in the considered domain.

The chapter is organized as follows. Section 4.1 presents our methodology for the cre-
ation of SD. Section 4.2 presents the approach used for the creation of a GNN model that

83

Figure 4.1: Pipeline of our methodology for the generation of SD.

learns the KGC and the kinds of predictions that can be derived, Section 4.3 discusses
the creation of the complete SD starting from the initial annotation. Section 4.4 presents
the weighting system that can be exploited for tagging the complete SD. Section 4.5 deals
with the unmatched columns of Table T and proposes an extension of the complete SD for
identifying properties associated with them. Section 4.6 discusses the creation of the con-
cise SD. Section 4.7 discusses our experiments and compares our work with the previous
one and, finally, Section 4.8 draws our concluding remarks.

4.1 Overview of the Methodology
A pipeline of our proposed methodology is shown in Figure 4.1. The SD construction can
be divided into four steps. In the first step, we take into account the annotations obtained for
the table columns to build an initial semantic description. The complete semantic descrip-
tion (second step) is obtained by considering direct and indirect relationships among the
identified entities in the domain ontology. The third step consists in weighting the identified
relationships according to the ontology and the link strengths obtained from the embedding
function. In the last step, we generate a concise SD by applying the Steiner tree algorithm

84

Figure 4.2: Starting point for the construction of the semantic description of a table.

on the complete SD and thus obtaining a minimal cover tree of the columns that have been
associated with concepts of the domain ontology.

For the sake of simplicity, in this chapter, we present simpler tables with respect to those
considered in the previous chapter. Specifically, columns with a mixed type are substituted
with their components. This transformation allows dealing with columns with simpler val-
ues. Moreover, we do not deal with union types. Actually, when columns with union types
are present, the methodology presented in this chapter can be applied to groups of tuples
presenting the same type leading to the creation of SD1, . . . , SDn semantic descriptions
(where n is the number of combinations of union types occurring in the table). Then, these
descriptions can be merged together in a single SD containing the union types. The pres-
ence of union types is made evident from the presence of more edges incident in terminal
nodes ofSD requiring to extract values of different types. In the next chapter, we will present
a graphical representation of SD that supports the presence of union and mixed types. This
representation will be used by the user for checking the result of the automatic approach
and deciding the modification to be applied.

In the presentation of the methodology, we will refer to the excerpt of the DBpedia ontology
proposed in Figure 2.3 of Chapter 2, because it has a complex structure which includes
hierarchies and multiple labelled edges among the entities, and the initial annotation of the
table in Figure 4.2. The figure shows the result that can be obtained from Phase 1 and is
the starting point of the methodology presented in this chapter.

85

4.2 Graph embedding
Graph embedding is an ML approach for transforming a graph into a lower dimensional
vector space whilst maximally preserving properties like graph topology and ancillary data
[75]. Initial methods based on GNNs [101] considered homogeneous nodes and edges,
whereas new approaches are specifically tailored for heterogeneous graphs [146]. In our
case, the embedding of KGC is computed using a full heterogeneous GNN model [164] in
which the basic property values are treated as nodes of the graph.

This model can handle both heterogeneous nodes and edges through two hidden layers
with a graph attention mechanism [161] for computing the embedding. These layers are
implemented as hetero convolutional layers (HeteroConv). Each relation name r ∈ R has
its attention mechanism and the node embedding is obtained as the sum of the contributions
of each convolution defined on the relations in which it is involved. The graph attention
mechanism has been introduced since many real-world KGs can contain relationships from
multiple sources of varying quality (e.g. interactions extracted from unstructured texts are
less reliable than manually curated ones).

Concepts and properties are considered graph nodes. The constant value 1 is used as a
node feature for each concept to capture its structural information, whereas properties are
treated as nodes and specific features for each basic type are extracted. Table 4.1 resumes
the property features we considered for each basic type. Besides the specific value, the
minimal and maximal value that the property of that type can assume is computed for the
int, double, gYear, and date types. For the values of the string type we computed their
length, number of white spaces, open brackets, and punctuation marks. We also performed
language detection to distinguish English texts from others. All these features can help
the model understand the difference between the relations. For instance, most locations
have parenthesis in their string values. These node feature vectors are also used as initial
representations of tabular data (i.e. the table rows, after the annotation process).

The function embKG(·) associates each node and edge of KGC with its embedding. The
computed embedding depends on the GNN structure and on the weights associated with
the connections between the neurons. The model takes into account the characteristics
of KGC (i.e. the list of all node and edge types, the network topology, the node feature
and the adjacency matrix divided by node and edge types). These weights are updated via
backpropagation until the loss function L [25] is minimized.

Once the embedding is generated, it is used for two prediction tasks. First, for identifying
the relation that might exist between two nodes of SD. For this purpose, a scoring function
SKG (e.g. DistMult [172]) is adopted.

86

Property type Features Property type Features
int/double The integer/double value

min/max value
int/gYear Distance from 1970

min/max value
string length

num whitespaces,
num brackets
num punctuation
isEng

date distance from the epoch
day of the week
month of the year
min/max value

Table 4.1: Property features that are extracted for each basic type.

For each edge (u1, r, u2) ∈ ER∪ET of a SD, SKG is computed, relying on the embedding
of the nodes u1, u2 and the relation r, and the sigmoid function σ, as follows:

SKG((u1, r, u2)) = σ(embKG(u1) · embKG(r) · embKG(u2))

The second prediction task, denoted PropertyKG, consists in identifying the property p that
should be assigned between a node uc ∈ UCs and ut ∈ UT among those belonging to the
set P ⊆ P (C) by taking into account the value of ut. The scores for the triples uc, p, ut for
each p ∈ P can be computed through the function SKG and the triple corresponding to the
highest score returned. Formally, PropertyKG(uc, ut, P) = argmaxp∈P (SKG((uc, p, ut)))

Figure 4.3 shows the proposed heterogeneous GNN architecture. Two HeteroConv layers
with a graph attention mechanism act as an encoder to generate node embeddings, and
then DistMult followed by a sigmoid function generates the link scores. The first HeteroConv
is followed by a ReLu function [5]. The second HeteroConv layer has two neurons because
we want to solve a link prediction task (i.e. a binary classification task with two possible out-
comes), while the first has a configurable hidden dimension. The ReLu function has been
selected among other possible activation functions because it is non-linear and it provides
a good approximation for the GNN result. We also chose the GAT architecture because,
differently from other architectures, it uses an attention mechanism and it is the most con-
solidated approach. We suggest using a number of hidden neurons that is not much bigger
than the number of features. In contrast to Feed Forward or Convolutional Neural Networks,
it is typically discouraged to add more than two or three graph convolutional layers to a GNN
because, due to the small world property that characterizes a large fraction of complex net-
works [166], it would end up aggregating node features with those of all the other nodes,
causing a problem known as over-smoothing [32].

The computational complexity of our model is O(
∑

r∈R |E(r)| · (fs(r) + ft(r))), where
|E(r)| is the cardinality of the set of triples with relation r in KGC , and fs(r) and ft(r) are
the number of features for the node types that are the source and target of the relation r.

87

IN
PU

T
LA

YE
R

H
ET

ER
O

 C
O

N
V

(G
AT

)

H
ET

ER
O

 C
O

N
V

(G
AT

)

D

IS
TM

U
LT

SI

G
M

O
ID

 OUTPUT

ENCODER
NODE EMBEDDINGS

DECODER
LINK PREDICTION

Figure 4.3: Heterogenous GNN architecture. Two HeteroConv layers with graph attention
mechanism act as an encoder to generate node embeddings, and then DistMult followed
by a sigmoid function generates the link weights.

It is noticeable that it is not computationally more expensive than well-established machine
learning models such as Logistic Regression, which employs O(m ·f), where m is the total
number of edges and f is the number of features.

4.3 Construction of the complete SD
In this section, we discuss our approach for the generation of a complete SD of a table T
according to the ontology O.

4.3.1 Construction of the initial SD
In the first step, we take into account the annotations obtained for the table columns. For
each column col that has been annotated with a pair (C, p), we check in UCs whether a
node UCs exists in SD (i.e. another column has been annotated with the same concept
C). If it does not exist or it exists and p is an identifying property for the concept C, then:
i) a new node uh+1

c is created in UCs (where h is the number of nodes associated with
concept C); ii) a new node uh

t is created in UT ; and, iii) the edge (uh
c , p, u

h
t) is included

in ET . Otherwise (i.e. the node uc already exists and p is not identifying), a new node
ut is created in UT , and the edge (uc, p, ut) is included in ET . Note that, non-identifying
properties are always added to the node corresponding to the last processed concept. For
example, suppose we have two nodes u1

C and u2
C associated with the same concept C,

and p1, p2, p3, p4 are properties for the concept C, and p1 and p3 are identifying properties,
then p2 is associated with the node u1

C , whereas p4 is associated with the node u2
C . Once

completed this activity, we check the presence of two nodes uCi
and uCj

, such that Ci ⊑ Cj

(with the same degree of repetition h). In such case, uCj
can be removed and its edges

88

Figure 4.4: Initial SD for our running example

moved to uCi
. Thus, only the most specific concepts are maintained in SD.

Example 22 Figure 4.4 shows the initial SD obtained from the annotations in Figure 4.2.
UCs contains the nodes u0

City, u0
ProductionCompany, u0

Director, u
0
Actor whereas UT contains the

nodes uproduction, ulocation, ufilm_director, ucast, ubirthdate. Among them, u0
ProductionCompany

and u0
Director are variable meta-instances because in our context a production company is

identified through the tradingName and foundingYear properties and a director through
the birthName and birthDate properties. Note that the relations among the concepts are
missing and SD does not report whether location is the headquarters of the production
company, the place of birth of the director, or the place where an actor lives. 2

4.3.2 Requirements for the complete SD
The initial SD contains meta-instances uC1 , . . . , uCn for which properties in the table have
been identified. Starting from the associated concepts, the functions classes∆O and closure∆O
(presented in Section 2.2 of Chapter 2) can identify the concepts and relationships that could
be potentially taken into account for the introduction of nodes and edges in the complete
SD. Before presenting the algorithm that we have developed for this purpose, we introduce
and explain some requirements that are at the base of the algorithm.

Requirement 1 The meta-instances contained in SD represent the most specific concepts
among those contained in classes∆O({C1, . . . , Cn}). 2

This requirement points out that the inheritance relationships among classes are resolved
by including in SD only nodes corresponding to the most specific class of the inheritance
hierarchy among those in classes∆O({C1, . . . , Cn}) with only the exception of the nodes
belonging to the initial SD (that cannot be specialized). This requirement has the purpose
to reduce the nodes to include in SD and associate to the introduced nodes all the direct
and inherited relationships of the ontology. The exception is only for the nodes that occur in
the initial SD because they are established in advance and validated by the user.

89

(a)

(b)

Figure 4.5: Basic cases in the management of inherited relationships

To better explain this requirement, consider the use-case in Figure 4.5a which is tailored
for the management of meta-instances of the same concept (but applies in general). Sup-
pose that in the initial SD we have two nodes (the blue ones in the figure) representing
the films Titanic and The Beach. Relying on the ontology O, these concepts are re-
lated to the concept Actor by means of the relation starring in which the parent concept
CreativeWork is involved (these nodes are colored in yellow because they are induced
by the ontology but do not belong to SD). In this case, a single node uActor is included in
SD and the starring relation is included in both films (right part of the figure). Since no
column of the table is associated with uActor, this is a variable node, that is it can refer to the
same actor or two distinct actors that were starring in one (or both) films. The behaviour is
similar in the second situation reported in Figure 4.5b, but in this case an identifying prop-
erty is present for Actor. Even if the generated SD is similar to the previous case, uActor
is a specific node and thus its interpretation is that the actor is starring in both films.

Requirement 2 When multiple nodes represent the same concept, relations among them
should be rationalized. 2

The need for this requirement is explained through the use-case in Figure 4.6. In this case,
specific properties are present for two actors and two films. Therefore, the new SD will con-
tain the relationship between all pairs of meta-instances with the same degree (i.e. Actor0
with Film0 and Actor1 with Film1). This is an arbitrary choice whose purpose is to limit the
explosion of combinations of relationships among the involved meta-instances. When the

90

Figure 4.6: Distribution of meta-instances among duplicated concepts

number of nodes representing actors and films is not equal, the last node corresponding to
the minimal number of occurrences should be associated with all the remaining unmatching
nodes. This means that, if we have 3 nodes representing actors and 5 nodes represent-
ing films, we create the relations Actor0 with Film0, Actor1 with Film1, and Actor2 with
Film2, Film3, and Film4.

Requirement 3 Self-relations in closure∆O({C1, . . . , Cn}) should be included only among
distinct meta-instances. 2

In our environment, self-relationships (i.e. relationships involving instances of the same
concept) are introduced only when SD contains different meta-instances of the same con-
cept (e.g. the relation spouse is included only when there are at least two instances of the
concept Person). There are two reasons for this behaviour. First, the presence of two in-
stances means that the table contains information for two distinct real-world entities. Then,
self-relationships on the same meta-instance would be eliminated by the algorithm for the
construction of the concise SD.

4.3.3 Generative algorithm of the complete SD
Algorithm 2 starts from the initial SD and generates the complete version that adheres
to the requirements previously outlined. For each uh

C of the initial SD, it determines the
relationships at a distance ∆ in which concept C can be involved by means of the function
closure∆O . Let (C1, r, C2) be one of these relations (the behaviour of the algorithm is the
same for all relations). The algorithm determines the list of nodes in SD that can be a
source of the relation (denoted Us) and those that can be the target of the relation (denoted
Ut). These nodes can be already included in SD or they can be introduced relying on the
function createListNodes(that will be discussed shortly). The pairs (uj

Cs
, uk

Ct
) ∈ Us × Ut

are the potential pairs of nodes for which the relation r could be introduced.

A complex condition (line 10) is evaluated that relies on the maximum number of occur-
rences of concept Cs and Ct (denoted respectively J and K). First, uj

Cs
and uk

Ct
should be

91

Algorithm 2 Inclusion of nodes and edges in SD

Input: SD = (UCs, UT , ER, ET) the initial semantic description
O the domain ontology, ∆ path length (default 1)

Output: SD updated with further nodes and edges relying on O
1: Uini

Cs := UCs

2: Cl := classes∆O(U
ini
Cs)

3: for uh
C ∈ Uini

Cs do
4: for (C1, r, C2) ∈ closure∆O(C) do
5: Us := createListNodes(uh

C , C1, C1 = C2, Cl)
6: Ut := createListNodes(uh

C , C2, C1 = C2, Cl)
7: for (uj

Cs
, uk

Ct
) ∈ Us × Ut do

8: Let J/K be max number of occurrences of concept Cs/Ct in UCs

9: if (uj
Cs
̸= uk

Ct
∧ (uj

Cs
, r, uk

t) ̸∈ ER ∧ (uk
Ct
, r, uj

Cs
) ̸∈ ER ∧ (Cs = Ct ∨ j = k∨

10: (J ≤ K∧j = J − 1∧k > j) ∨ (J > K∧k = K − 1∧j > k)) then
11: ER := ER ∪ {(uj

Cs
, r, uk

Ct
)}

12: return SD

13: function createListNodes(uh
C , C1, selfLoop, Cl)

14: list := []
15: if C ⊑ C1 then
16: if (selfLoop) then list := [u0

C̄0
, . . . , uJ

C̄J
] where C̄j ⊑ C1, 0 ≤ j ≤ J

17: else list := [uh
C] end if

18: else
19: if u0

C1
̸∈ UCs then

20: if ∀uC̄ ∈ UCs, C1 ̸⊑ C̄ ∧ C̄ ̸⊑ C1 then
21: UCs := UCs ∪ {u0

C1
}

22: list := [u0
C1

]
23: else
24: for all C̄ ⊑ C1 s.t. C̄ ∈ Cl do
25: if u0

C̄
̸∈ UCs then UCs := UCs ∪ {u0

C̄
}

26: list := list+ [u0
C̄
, . . . , uK

C̄
] where K occurrences of C̄ in UCs

27: for uk
C̄
∈ UCs s.t. C1 ⊑ C̄ ∧ uk

C̄
̸∈ Uini

Cs do
28: Rename uk

C̄
as uk

C1

29: list := list+ [uk
C1

]

30: else
31: list := [u0

C1
, . . . , uK

C1
] where K occurrences of C1 in UCs

32: return list

distinct nodes and the relation r is not already included in SD (in any direction). Then, one
of the following conditions should be verified:1

1The conditions 2, 3, and 4 are introduced for guaranteeing Requirement 2.

92

1. Cs = Ct, (i.e. a self-relation is considered, and according to Requirement 3, the
relation should be included among all the meta-instances of the same concept).

2. j = k, the relation r should be included between nodes representing the same num-
ber of occurrences.

3. The occurrences of Cs are less than those of Ct (i.e. J < K), the current uj
Cs

is
the last occurrence (i.e. j = J − 1), and the occurrence of uk

Ct
is higher than j (i.e.

k > j).

4. The occurrences of Cs are greater than those of Ct (i.e. J > K), the current uk
Ct

is
the last occurrence (i.e. k = K − 1), and the occurrence of uj

Cs
is higher than k (i.e.

j > k).

When one of these conditions holds, the edge (uj
Cs
, r, uk

Ct
) is included in SD.

Function createListNodesis used for creating the list of meta-instances to be associated
with the source/target of a relation (C1, r, C2). The behaviour of the function is the same
for the source and target concept, and in the remainder, we describe the treatment of the
source concept. Function createListNodesconsiders the current node uh

C of the initial SD,
the source concept C1, a Boolean value indicating when the relation is a self-relation, and
the set of all possible concepts that can be introduced for the current table T . If the class
C of the current node inherits from C1 (line 19), the list of nodes to include depends on the
kind of relation. When it is a self-relation (line 20), all the nodes in SD that inherit from
C1 are included in the list. Otherwise (line 21) only the current node uh

C is included in the
list. Through this case, we have handled the situation in which the current node uh

C can be
directly associated as the source of the relationships. When the condition at line 19 is not
verified, the algorithm looks for other nodes in SD that can be associated as a source for
the relation. It first checks whether at least a node already exists in the SD of class C1. In
the positive case, all the instances of C1 are included in the list (line 35). In the negative
case, the algorithm checks (line 24) whether other nodes exist in the SD which are bound
through the inheritance relation with C1 (either C1 inherits from the concept of this node, or
the concept of this node inherits from C1). If a node with such a property is not identified,
a new node for the concept C1 is introduced in the SD and included in the list. Otherwise,
(line 28), the two following disjoint cases should be handled.

• SD contains nodes whose concepts inherit from C1. In this case, it means that a
more specific class than C1 is already included in SD. Therefore, for guaranteeing
Requirement 1, the algorithm looks for sub-concepts C̄ of C1 that can be potentially
included in SD (belonging to Cl). If a node is not already included in SD for C̄, it is
added. In any case, all the instances of C̄ in SD are included in the list of sources.

93

Figure 4.7: Complete SD obtained through Algorithm 2

• SD contains nodes uC̄ such that C1 inherits from C̄ and these nodes do not belong
to the initial SD. In this case, the concept C̄ is substituted with C1 (which is more
specific) and the node is introduced in the list of source nodes. Note that only new
introduced nodes can be specialized because they are introduced by our algorithm.

At the end (line 41), the list of sources is returned to the main algorithm.

Example 23 Figure 4.7 shows the SD obtained from the one in Figure 4.4 by applying
Algorithm 2. Two colors are used for representing the level of specificity of the relations
between two meta-instances. The obtained graph contains all the possible relations that
might exist in the considered domain for the reported concepts. Note that the city can be
both the production company’s headquarter, the place where an actor or a director was born,
and the place where a film was developed. 2

The following lemma introduces some properties of the complete SD obtained through the
algorithm.

Lemma 4.3.1 Let SD = (UCs, UT , ER, ET) be the graph obtained by Algorithm 2. The
following properties hold on SD.

1. Two distinct nodes u1
C , u

2
C ∈ UCs are associated with the same concept C if there

94

Figure 4.8: Weights to assign in presence of ⊑ relationships

exist two distinct nodes uT1 , uT2 ∈ UT s.t. (u1
C , p, uT1), (u

2
C , p, uT2) ∈ UT and p is an

identifying property for the concept C.

2. for each iC ∈ UCs, C ∈ classes∆O(U
ini
Cs).

3. for each self-relation r that involves a node uC ∈ UCs, an edge (uh
C , r, u

k
C) is included

in ER only if h ̸= k. 2

Proof The first point of the lemma claims that distinct nodes associated with the same
concept occur in SD produced by Algorithm 2 only when they are associated with dis-
tinct columns of the table T . According to the algorithm for the construction of the initial
SD, two nodes associated with the same concept C are introduced when table columns
present different identifiers (or different identifying columns). We have to prove that no fur-
ther nodes associated with the concept C are introduced by the application of Algorithm 2.
However, new nodes are introduced by the createListNodesfunction only when process-
ing a triple (C1, r, C2) and no nodes of SD is associated with the concept C1 (or C2) or
one of its descendant (block of instructions between line 21 and 26). Therefore, the first
claim holds for each step of Algorithm 2 and thus holds in general. The second claim is a
direct consequence of the structure of Algorithm 2. Indeed, nodes uC ∈ UCs are introduced
because they belong to Uini

Cs or because they are associated to a concept with which C is
related according to a relation r at a distance ∆. However, this is actually the definition of
classes∆O(U

ini
Cs). The last claim of the Lemma follows from the condition at line 9 of Algo-

rithm 2 for the construction of triples. A triple is introduced only if the starting and ending
nodes of the triple are distinct, not yet included in ER, and (for the matter of this claim)
they represent the same concept. Therefore, self-relationships on the same node are not
allowed in the complete semantic description. 2

95

Figure 4.9: Different weights assigned to multiple instances of the same concept

4.4 Weighting systems
Starting from the complete SD we have just obtained, we need to choose the one that is
the most likely according to the organization of the ontology and the current instances of the
consolidated knowledge graph. For this reason, we introduce different weighting systems
through which the relations on the complete SD can be properly weighted.

4.4.1 Ontology-based weighting system
Relations occurring in SD should be properly weighted by taking into account their speci-
ficity in the ontology specification. Indeed, relations can be declared for the concept they
represent or can be inherited from more general concepts. By taking into account this prin-
ciple, a weight of 1 is associated with all the edges in ET because they are specified in
the initial SD (and we consider them as validated) and thus their weight should be minimal.
Moreover, a weight is assigned to the edges in ER compliant with the following requirement.

Requirement 4 Weights on relations should depend on their specificity: inhered relations
present higher weights when the linked concepts do not contain properties in the table. 2

This requirement is explained by means of the following use cases. Figure 4.8 shows a node
in SD associated with the concept Film for which one of its properties is associated with a
table column. By means of the closure function, the edges and the nodes reported in the
figure can be identified relying on the inheritance relationship (for the sake of simplicity we
consider only the one reported in the figure). The relation producedBy directly involve Film,
so the weight can be 1. By contrast, The relations author and takesPlaceIn are related to
the parent concept CreativeWork and thus should be penalized. A further penalty should
be applied to the secretary relation because it is related to the ancestor concept Work.
The penalty should be proportional to the distance.

Requirement 5 When several instances of the same relation outcome from one node of
SD, different weights should be applied. Lower weights should be assigned to relations
involving meta instances with the same index. 2

96

In our setting, SD can contain several meta-instances representing the same concept.
Through this requirement, we wish to assign higher weights to relations among different
occurrences as described in Figure 4.9. In this use-case, the weight of starring between
Actor0 and Film1 should be penalized.

Definition 1 (Ontology-based weighting system) Let ϵ be a penalty on the specificity of
the relationships and γ the penalty for relations between meta-instances with different in-
stances. Let SD = (UCs, UT , ER, ET) be the result of Algorithm 2 relying on the ontology
O. The weight function weightO is defined as follows. For each eT ∈ ET ,

weightO(eT) = 1

For each eR = (ijCs
, r, ikCt

) ∈ ER, let (C1, r, C2) ∈ R be the specification of r in O, and
d1 = dist(C1, Cs), d2 = dist(C2, Ct) the corresponding distances:

weightO(eR) =


1 if d1 = d2 = 0, j = k

1 +max(d1, d2) · ϵ if d1 + d2 > 0, j = k

weight((i0Cs
, r, i0Ct

), C1, C2) + γ if j ̸= k, (C1, r, C2) ∈ R
2

Example 24 Consider the SD in Figure 4.9. The relation starring is specified in O as
(Actor, starring, CreativeWork). The triple (Actor0, starring, Film0) receives the
weight 1 + ϵ because Film is a direct sub concept of Creative Work. An extra weight γ
is associated with (Actor0, starring, Film1) to show a preference to the first relation. 2

4.4.2 KG-based weighting systems
The weighting system proposed in the previous section does not take into account the con-
solidated knowledge graph KGC . For this reason, we introduce other two weighting sys-
tems that rely on the functions introduced in Section 4.2.

Definition 2 (KG-based weighting system) Let SD = (UCs, UT , ER, ET) be the result
of Algorithm 2 and SKG be the scoring function introduced in Section 4.2. For each e ∈
ER ∪ ET , the weight function weightKG is defined as follows:

weightKG(e) =

{
1− SKG(e) if e ∈ ER

1 if e ∈ ET 2

This weight function relies only on the information obtained through the embedding of KG.
It is a values between 0 (low probability of the presence of the edge e) and 1 (high probability
of the presence of the edge e).

97

Figure 4.10: Complete SD with weights

Another weighting system that we consider is the one that combines the two previous weight-
ing systems. The idea is to mitigate the contribution of the weight assigned by the ontology
by considering the probability of its occurrence relying on the current status of KG.

Definition 3 (Combined weighting system) A combined weighting system can be obtained
through the combination of previous ones. For each e ∈ ER ∪ ET ,

weightComb(e) =

{
weightO(e) · weightKG(e) if e ∈ ER

1 if e ∈ ET
2

Example 25 Figure 4.10 shows the triples of weights that are assigned to the relations on
the graph reported in Figure 4.7 by exploiting the three weighting systems that we have
proposed in our running example. The first component (yellow box) contains the ontology-
based weight, the second component (green box) contains the KG-based weight, whereas
the last component (red box) the combined weight. Since quite often relations present the
same ontology-based weight (this is due to the organization of the relation through the inher-
itance relation), the use of the KG-base weighting system allows us to give more relevance
to those with the highest frequency. 2

98

4.5 Inclusion of properties for unmatched table columns
As outlined at the beginning of the chapter, some columns of the table might not be as-
sociated with meta-instances in SD. However, at the current stage, SD contains all the
concepts that can be related to concepts identified in table T (at a distance ∆). There-
fore, one of the properties of these concepts could be associated with the column when its
domain is compatible with the one in SD.

By exploiting our embedding system that includes also the basic properties with atomic
values, we provide an approach for trying to detect the property that can be associated with
unmatched columns that take into account the following requirements.

Requirement 6 In case SD contains distinct node-instances associated with the same
concept C, an unmatched column of T can be associated to at most one of them. 2

Our predicting model is not able to discriminate when the same property (e.g. birthDate)
can be associated with one or another node instance of SD associated with the same
concept (e.g. Person0 or Person1). In this case, a single property is introduced. Among
the possible instance nodes, we choose the one whose identifier (or identifying property) is
positioned closer to the unmatched column. However, when the distance is the same, an
arbitrary choice is made.

Requirement 7 In the complete SD, an unmatched column can be associated with many
properties, but the weights on the edges should be all distinct and guarantee that just a
single property will be included in the concise SD. 2

This requirement has the purpose to treat the unmatched columns, for which a property can
be potentially detected, in the same way as the other columns, for which a property has
been identified in the initial SD (i.e. they can be associated with exactly a single class).
To guarantee this requirement, a very high weight should be associated with the identified
properties. Otherwise, our technique for the minimization of the complete SD would erro-
neously introduce more than one property that is associated with the unmatched column
and thus alter the structure of the concise SD.

The following weighting function is used for determining the weight of unmatched columns.

Definition 4 (Weight for unmatched columns) Let ut be a node in SD corresponding to
an unmatched column in T . Let pi be a property of uk

c ∈ SD among the N properties of the
instance nodes of SD that can be associated with ut. The weight to assign to (uc, pi, ut) is:

weightunmatched((uc, pi, ut)) = 1000 ∗ |EC |+ (2− SKG(u
h
C , pi, ut)) +

i

1000 ∗ |EC | 2

99

Figure 4.11: Possible properties for the unmatched column of T

In the formula of the weighting function, we can identify three parts. First, a value higher than
all the weights can be associated with relations in SD. This value is constant for SD and
guarantees that only one of the edges (uc, _, ut) can be chosen through our minimization
approach for the generation of the concise SD. Then, a value that depends on embeddings
(SKG) and is higher than the one included in the initial SD for basic properties. This value
is lower when the score is higher. Finally, a very small addendum is included that depends
on the position of the identified property and guarantees that all the edges incident in ut

present different weights and would not alter the choice of a specific property.

Starting from our requirements and the definition of the weighting function, we can now
sketch the algorithm for treating unmatched columns of T . For each node uh

C ∈ UCs and
for each node ut ∈ UT such that (uh

C , _, ut) ̸∈ ET , we consider the properties P ⊆ P (C)
that are compatible with the column corresponding to ut. A property p ∈ P is compatible
with ut when their basic types are identical, the values assumed in T are in the range of pos-
sible values specified for p, and p is not yet associated with an outgoing edge from uh

C . The
function PropertiesKG (introduced in Section 4.2) is then applied to the properties in P for
determining the one with the highest priority (p̄ = PropertiesKG(u

h
C , ut, P)) for each uh

C

and the triple (uh
C , p, ut) is included in the set Matching when the value SKG(u

h
C , p̄, ut) is

above the minimal prediction threshold θ. The set Matching should be scanned for identi-
fying triples of the form (uh

C , p, ut) and (uk
C , p, ut)with h ̸= k, and only one of the two should

be maintained (to guarantee Requirement 6). At this point, the set Matching contains the
triples corresponding to the properties p1, . . . , pN that can be potentially associated with the
unmatched column ut. Therefore, SD is extended with the edges (uh

C , p1, ut)...(u
h
C , pN , ut)

and each edge is weighted with the function weightunmatched of Definition 4.

Example 26 In the running example, the second column does not have a semantic annota-
tion. By taking into account the identified basic type, it is possible to look for the compatible
properties that are associated with the meta-instances occurring in the complete SD. Figure
4.11 shows the compatible properties and the weights that are assigned according to the

100

weighting system so far discussed. For each meta-instance, we select only one property.
Moreover, we exploit the minimum and maximum values used as features of the model and
we prune those that are not in the range (e.g. children). 2

4.6 Generation of the concise SD
Starting from the complete SD whose edges have been weighted according to one of the
proposed weighting systems, we now wish to extract a concise SD representing the actual
relations that hold among the table columns.

In literature, the problem of extracting the concise SD from the complete one has been
modelled as the Steiner tree problem [65, 154]. Specifically, given an undirected graph
G = (V,E) with non-negative edge weights and a subset of nodes U (U ⊆ V) denoted
terminal nodes, the Steiner tree problem in graphs consists in the identification of a tree of
minimum weight that contains all the terminal nodes U (but may include additional nodes).
Even if this problem is NP -hard, there exist approximation algorithms able to create sub-
optimal trees in polynomial time.

In our setting, the terminal nodes are those in UT that are bound to meta-instances, and we
wish to keep in the tree only the relations with the lower weights obtained through one of
the weighting systems previously described independently from the direction of navigation.

Example 27 Figure 4.12 shows the Steiner tree obtained from SD in Figure 4.10. All the
paths that end in one of the table columns with the minimal cost are considered by the algo-
rithm and those that can be included in a minimal spanning tree are included in the concise
SD. Note that, in the unmatched column only one of the incident properties is selected. In
this specific case, the obtained SD coincides with the expected semantic description. 2

101

Figure 4.12: Concise SD

4.7 Experimental evaluation
The purpose of our experiments are i) the validation of the GNN model compared to the
baseline approaches; ii) a discussion of the characteristics of the generated concise SDs
and the possibility of identifying unmatched columns occurring in the initial SD. The exper-
iments reported in this chapter can be reproduced using the code published in the GitHub
repository 2. On the first point, we chose to evaluate the GNN models on the link prediction
task, as their final goal is to emit in output a weighting system for links, using the area under
the receiver operating characteristic curve (AUROC) as the evaluation metric.

Whereas for the second point, we propose a new approach to check the effectiveness of the
generated concise SDs by comparing them with the corresponding human-curated ground
truth, using precision and recall on the set of triples in the semantic descriptions as the
evaluation metrics.

The next subsections describe and discuss in depth the results we obtained.

Implementation details. The entire approach described in this chapter has been imple-
mented in Python. The consolidated knowledge graph KGC is stored in n-triple format
and the ontology is stored in turtle format. The manipulation of these triples is done by
means of the Python Library RDFlib3, which allows the representation of semantic triples in
a graph, and the usage of SPARQL language for queryingO and KGC . A graph database
(AllegroGraph,4 has also been used in place of the n-triple file for testing purposes since

2https://github.com/SaraBonfitto/SAGA_tab
3https://rdflib.readthedocs.io/en/stable/
4https://franz.com/agraph/support/documentation/current/python/api.html

102

Datasets Ontology Consolidated Knowledge Graph
|C| |R| |P | |P|

|C| |V | |type(E)| |E| |Prop| |Prop|
|V |

Movie-set [9] 11 15 26 2.5 19,294 14 27,728 590,736 2.64
Area-set [18] 11 27 94 8.4 53,549 12 76,153 164,564 3.07
PP-set [65] 33 72 40 1.2 12,598 6 12,562 42,114 3.34

Table 4.2: Data sets considered for the evaluation of the developed approach

hyperparameter value hyperparameter value
number of layers 2 hidden dimension 4

optimizer Adam [100] learning rate 0.01
weight decay 5e− 4 number of epochs 500

Table 4.3: Hyperparameters of HeteroGNN model for the link prediction task.

the SPARQL queries performed on the KGC can be very slow using the RDFlib Library).
Finally, the complete semantic description has been represented as a multiedge-directed
graph using the NetworkX library 5 and their Steiner tree function has been exploited. The
training and testing of the GNN model, described in Section 4.2, has been implemented
by exploiting the library Pytorch Geometric (PyG) [63]. We reported the hyperparameter
configuration of our model in Table 4.3. The implementation of our approach, the code to
reproduce the experiments, and the datasets are available on a GitHub repository.

Datasets. For our experiments the following three datasets have been considered.

• Movie-set. The dataset was extracted from DBPedia [9] and contains information
about movies, TV series, and actors and is a superset of our running example.

• Area-set. The dataset is made available by [18] and contains information about
invoices to be rescued from different debtors of a debt collector agency.

• Public procurements (PP-set). The dataset was collected by [65] and is about
public procurements, it contains tenders that are bid by business entities and are
related to an offer.

These three real-world heterogeneous graph datasets are characterized by the presence
of consolidated knowledge graphs KGC = (V,E,R, Prop) that adhere to the constraints
imposed by the ontology O=(C,R,P ,R, P,⊑). Table 4.2 reports their characteristics.

5https://networkx.org/documentation/stable/reference/classes/multidigraph.html

103

method GNN layer node features nodes edges
HeteroGNN HeteroGAT yes heterogeneous heterogeneous
MRGCN R-GCN yes homogeneous heterogeneous
SeMi R-GCN no homogeneous heterogeneous

Table 4.4: GNN models compared in terms of GNN layer, use of node features (i.e. proper-
ties), representation of nodes and edges.

4.7.1 Validation of the GNN model
We have validated our GNN model against some baseline models by describing i) a compar-
ison of their prediction performances on the multi-relation link prediction task on the three
datasets; ii) an empirical evaluation of their execution time that use node properties; iii) the
results on the new proposed property detection (i.e. link classification) task. After present-
ing the characteristics of the baseline methods, we discuss the experimental results.

Baselines. HeteroGNN has been compared with two baseline methods: MRGCN [169],
which is a multimodal approach that extends the basic R-GCN model [146], and SeMi [65],
which exploit an R-GCN model [146] for the generation of concise SD. Both approaches
exploit R-GCN as an encoder and DistMult as a decoder function. The implementations of
the models consider the settings in their original papers in terms of hyperparameters and
neural architectures. Table 4.4 summarizes their main characteristics.

• MRGCN [169]. The initial nodes’ embeddings are obtained by concatenating the iden-
tity vectors, which are used to capture the structural information, with nodes’ feature
embeddings learned using dedicated neural encoders. In this way, they obtain mul-
timodal node embeddings, which are fed to R-GCN. Despite being able to handle
heterogeneous properties (e.g. string, dates, or numerical information), the method
does not consider heterogeneous representation for nodes.

• SeMi [65]. It can handle multi-relational data but it does not take into account het-
erogeneous nodes (i.e. the representation of all the nodes is the same in terms of
feature types and dimensions) and the node features.

Multi-relational link prediction. For performance evaluation on the link prediction task,
since the outputs are the results of the application of a sigmoid function on link scores,
AUROC score is used to compare their performance. Another reason to choose the AUROC
score is the robustness of ROC curves and their associated areas to class imbalance, a
problem that affects the link prediction domain. Yang et al. [173] suggest avoiding using
accuracy, precision and recall, and fixed threshold metrics such as top K predictive rate.

104

birthName children awards education almaMater
0

1000

2000

3000

4000

5000

6000

7000

8000

(a)

0 20 40 60 80 100
epochs

0

25

50

75

100

125

150

175

200

se
co

nd
s

heterognn
mrgcn

(b)

Figure 4.13: (a) Histogram of the distribution of possible relations between an Actor and
a string property in Movie-set. Five unbalanced classes can be assigned. (b)Training
time (in seconds) of HeteroGNN and MRGCN models for multi-relational link prediction task
on Movie dataset, in function of the number of epochs. HeteroGNN takes about half of the
execution time of MRGCN.

We perform a random link split for each edge type with 20% of the edges assigned to the
test set and negative sampling on both train and test sets. In this way, the performance
of the models can be evaluated also on a negative set (i.e. a set of triples that does not
exist in the KG). The random selection of a subset of edges from the original complete set is
one of the most common methods to perform test set sampling. Despite this strategy may
conduct in over-optimistic results, there are evaluation measures (e.g. AUROC) for which
subsampling negatives from the test set has no negative effects.

Table 4.5 reports the AUROC scores on the test set for the considered methods. For our
model, we report the results both using node properties and not using them. HeteroGNN
outperforms the other methods for all the datasets. SeMi has very low performances due to
the rich heterogeneity of the KGs; however, it is not equivalent to flipping a coin because we
are studying which kind of relationships exist between two entities, not only if the relation
exists. Whereas MRGCN achieves better results than our model without node properties on
the two most heterogeneous datasets (i.e. datasets with a large number of different kinds
of properties and relations), showing the importance of node features.

Property detection. Property detection is a link classification task in which we assign the
correct label to a link, that exists for sure, between an entity and a property in a KG. Given
two certain entities and property types, different kinds of relation labels between them can
exist. As an example, Figure 4.13a reports the distribution of the properties that can exist

105

Datasets SeMi MRGCN HeteroGNNStruct HeteroGNN
Movie-set 0.55 0.67 0.757 0.84
Area-set 0.5 0.77 0.69 0.91
PP-set 0.51 0.67 0.626 0.81

Table 4.5: AUROC scores on the three datasets.

Datasets HeteroGNN
Movie-set 0.8661
Area-set 0.98
PP-set 0.8448

Table 4.6: AUROC of HeteroGNN for property detection

between an Actor and a string value in Movie-set. We can observe that we can assign
5 possible unbalanced classes to a link between an Actor and a string property.

We evaluate the prediction performance of our model on property detection tasks using a
link prediction setting. As described in Section 4.2, we detect properties by assigning the
label of the relation that achieves the best link prediction scores, among the possible ones
relatable to a certain entity. Therefore, the AUROC score can be computed on the triples
in which properties are involved to estimate the overall goodness of the predictions (i.e.
without treating each link classification task between an entity and its properties distinctly).
Link splitting and negative sampling are computed in the same way as on the multi-relational
link prediction task. Note that since we evaluated property detection in a link prediction
setting with balanced negative samples, the AUROC score does not suffer the possible
class imbalance on the different link classification problems.

The AUROC scores on the test set of the three datasets have been computed for our model
on the property detection task and reported in Table 4.6. The results highlight the feasibility
of this kind of approach for the property detection task. We achieve an AUROC score of
0.98 for the dataset Area-set mainly because it has a number of properties very higher
w.r.t than the other two datasets, and so a lot more examples to learn.

Execution time for the training phase. Figure 4.13b reports the execution time of the
training phase of HeteroGNN and MRGCN for the multi-relational link prediction task on the
heterogeneous graph with the biggest number of properties (movie-set). HeteroGNN
takes about half of the execution time of MRGCN on the first 100 epochs. The reason is
related to the limited number of features (five features) that we consider, while MRGCN adopts
dedicated neural encoders for the embedding of node features.

106

SELECT ?director ?actor
WHERE{
?film rdf:type dbo:Film.
?film dbo:directedby ?director.
?actor dbo:starring ?film.
?director rdf:type dbo:Director.
?actor rdf:type dbo:Actor.}

(a)

director actor
J. Cameron L. DiCaprio
J. Cameron K. Winslet
R. Zemeckis T. Hanks

P. Weir R. Williams

(b) (c)

Figure 4.14: (a) SPARQL query for the generation of a table; (b) extract of the table gener-
ated; (c) ground truth SD

4.7.2 Validation of the concise SDs
The evaluation of the effectiveness of the concise SD obtained through our approach is
not easy to demonstrate because it depends on the intent of the table designer. Even if the
table designer had a specific intent in the creation of a table, when we observe it externally
several intents can be identified because of the presence of many kinds of relations that can
exist among the concepts. Consider for example the case in which the table designer has
created a table for representing the fact that a film is "directed by" a director. However, when
we observe the table, we might also point out that the director is "the author" of the film, or
the director "editing"/"cinematography" of the film. This variability makes more difficult the
evaluation of the effectiveness of the proposed approach by only considering the table. For
this reason, we decided to take into account the query according to which the table has
been generated and to set up the following procedure to compare the different approaches:

1. Different kinds of queries are developed for extracting tables with 10 tuples from the
consolidated knowledge graph. These queries have the purpose to identify differ-
ent kinds of relations that can exist between the instances of the ontology and the
specificity of the relations between involved instances.

2. From the queries, concise SDs can be extracted that constitute the ground truth de-
scriptions of the tables.

3. The content of the consolidated knowledge graph is reduced by 30% before applying
any approach. In this way, the generated tables might contain also instances already
occurring in the knowledge graph but also instances and relations that were never
seen before.

4. the semantic description inferred by the approach is compared with the corresponding
ground truth for determining the precision and the recall of the approach. Precision

107

and recall are computed as in [154, 65]:

precision =
rel(sm) ∩ rel(sm′)

rel(sm′)
(4.1)

recall =
rel(sm) ∩ rel(sm′)

rel(sm)
(4.2)

where sm is the SD obtained through the approach, sm′ is the ground truth SD, and
rel(sm) is the set of triples contained in sm.

For example, Figure 4.14a contains the SPARQL query for identifying the director and star-
ring of films. Figure 4.14b contains an excerpt of the table obtained by the evaluation of the
query on our KGC and Figure 4.14c the corresponding ground truth SD.

The described procedure has been applied for testing the performance of our approach on
the following three categories of experiments with respect to the approach proposed in [65]
(the code of this approach is freely available). For each category of experiments, we have
generated 20 tables with a variable number of columns and taken the average precision
and recall of the considered approaches with respect to the corresponding ground truth
SDs. Table 4.7 summarizes the obtained results. The table reports for each category of
experiments, the number of meta-instances initially identified in the considered tables, the
number of distinct concepts, and the average precision and recall obtained through the SeMi
approach and ours.

Identification of relations between two instances. The purpose of these experiments
are the identification of the relations that are pointed out in a table when the table contains
two concepts (with a variable number of columns presenting concept properties).

In this category of examples, we have considered distinct concepts that can be: directly
connected in our ontology (e.g. an Actor and a Film); indirectly connected (e.g. an Actor
and a Director); belonging to an inheritance relationship (e.g. a Person and a Film to
be contrasted with an Actor and a CreativeWork). Moreover, we have considered tables
presenting two instances of the same concept (e.g. two Actors or two Films). As shown
in Table 4.7 our approach outperforms the SeMi approach.

Figure 4.15 shows the SDs that we obtained starting from the use case proposed in Figure
4.14. Figure 4.15a shows the result obtained by using only the KG-based weighting system.
Therefore, in this case, erroneously, the spouse relation is predicted. Figure 4.15b shows
the obtained result when the combined weighting system is used. In this case the spouse
relation (which is inherited from Person) is properly weighted and the relations passing
through the concept Film are selected. Finally, Figure 4.15c shows the result obtained by

108

Exp Cat. initial SDs Precision (average) Recall (average)
meta-nodes concepts HeteroGNN SeMi HeteroGNN SeMi

Exp 1 2 1 0.91 0.16 0.72 0.16
2 0.66 0.06 0.33 0.33

Exp 2 3 3 0.77 0.13 0.83 0.33
2 0.83 0.14 0.83 0.5

Exp 3 4 3 0.6 0.16 0.66 0.22
2 0.36 0.08 0.36 0.11

Table 4.7: Evaluation results of the generated SDs.

the SeMi approach. In this case, a more general concept is identified that binds together
an Actor and a Director. Note also that the createdBy relation is inferred between
CreativeWork and Director instances.

Figure 4.16 shows an example in which our approach does not work as expected. The ta-
ble in Figure 4.16a was conceived with the aim of introducing an instance of the concept
Director between them (as shown by the ground truth SD in Figure 4.16b). However,
according to the current instance of KGC also the SD in Figure 4.16c, which is gener-
ated through our method, is plausible. Therefore, our SD is an alternative model for the
considered scenario.

Identification of relations among three instances. The purpose of this category of ex-
periments is to verify the stability of the approach when the number of meta-instances in-
creases. Different kinds of tables have been considered: tables involving distinct concepts
directly related in the ontology (e.g. an Actor, a Film and a ProductionCompany); ta-
bles involving distinct concepts indirectly related in the ontology (e.g. two Actors and a

(a) (b) (c)

Figure 4.15: SDs obtained from the use-case in Figure 4.14 by using (a) our KG-based
weighting system; (b) our combined weighted system; (c) the SeMi approach

109

film1 film2
E.T. Schindler’s List

Frankenstein Silent Movie
Larry Crowne That Thing You Do!

(a) (b) (c)

Figure 4.16: (a) Table with two Films; (b) ground truth SD; (c) concise SD

ProductionCompany); tables involving instances of concepts of the same inheritance hi-
erarchy (e.g. a Person, an Actor, and a Film). As reported in Table 4.7 our approach still
outperforms the SeMi approach and also guarantees a precision greater than 0.77.

Figure 4.17a represents the result of our approach on three different instance nodes: TvShow,
Director and Person (which actually corresponds to the ground truth). The proposed
relations are those that directly connect the three concepts at the ontological level. By con-
trast, Figure 4.17b shows the SD obtained through SeMi. In this case, SeMi introduces
the node CreativeWork (which is a superclass of TvShow) and the nodes Film0 and
ProductionCompany0 that do not appear to be relevant in this context.

Identification of relations among four instances. This category of experiments has the
purpose of further checking the stability of the approach when dealing with much more com-
plex tables. The considered tables extend those used with three concepts by introducing
a new concept, an instance of a concept already present in the table, or an instance of a
concept that is a specialization/generalization of a concept already included. Even if the
performances of this category of experiments reported in Table 4.7 are still better than the

(a) (b)

Figure 4.17: Example of SD with three concepts: (a) Ground truth/generated SD; (b) SD
obtained by SeMi

110

(a) (b) (c)

Figure 4.18: Example of SD with four concepts: (a) Ground truth; (b) our generated SD;
(c) the one obtained by SeMi

ones obtained through the SeMi approach, we have to note a decrease in performances.
We think that this behaviour is due to the use of the Steiner tree that tends to include in
the concise SD shorter paths among those possible. However, this impression should be
further investigated.

Our running example is a successful case of identification of the SD for a table presenting
four concepts. Figure 4.18 shows an example in which our approach does not work properly.
Indeed, starting from the ground truth SD reported in Figure 4.18a, the one in Figure 4.18b
is obtained by our approach. The relations to the nodes Actor0 and Actor1 are both
named foundedBy. Their relations are preferred to the starring ones because that relation
was more probable for the GNN. However, also the SD obtained by SeMi (Figure 4.18c)
introduces some errors. In our case, the lower weight of the GNN makes the tree algorithm
choose the wrong path. In SeMi case, the problem is mainly due to structural problems,
indeed, super-concepts are used instead of the ones used in the initial SD.

Discussion. Our experiments pointed out that our approach presents better performances
with respect to SeMi. In particular, HeteroGNN gives more satisfying predictions when the
initial table contains super-concepts and when the size of the graph increases. In several
cases, SeMi retrieves more tuples than required (indeed its recalls are higher than the pre-
cision’s), it often uses super-concepts instead of the specific ones, and sometimes the final
SD loses some concepts that were present in the initial SD.

In HeteroGNN the most problematic use cases are those presenting many instances of the
same concept. In these cases, HeteroGNN is not always able to distinguish the relations
between the two concepts and chooses the same relation for all the instances (as shown in
the example in Figure 4.18).

111

Exp Cat. Initial SDs Properties Precision
meta-nodes total missing average

Exp 1 2 6 2 0.76
Exp 2 3 8 3 0.81
Exp 3 4 6 2 0.67

Table 4.8: Evaluation results of the inferred missing semantic properties.

4.7.3 Validation of the prediction of unmatched table columns
We have finally tested the behaviour of our system when the initial SD contains unmatched
columns and we wish to introduce them through the approach described in Section 4.5.

For this purpose we have considered the same categories of experiments discussed in the
previous section and enhanced the queries for extracting tables with:

• columns that contain extra properties of the concepts already included in the table
(i.e. further details of the concepts that belong to the initial SD);

• columns that contain other properties, associated with concepts introduced in the
complete SD.

The newly introduced table columns have been tagged with ? for clarifying that the corre-
sponding ontological property should be predicted. Therefore, the meta-instances of the
ground truth SDs obtained are the same as the previous experiments but the number of
nodes corresponding to table columns is higher and we need to properly associate them
with concepts of the ontology.

Example 28 Figure 4.19 shows an example of extra properties. The initial query is the one
reported in Figure 4.14a for creating a table with pairs of actors and directors. The new
query has been enhanced for retrieving the date of birth and the children of the director and
the awards of the actor. By contrast, Figure 4.20 shows an example of the introduction of
other properties starting from the query that associates two films. In this case, the query
introduces the name and foundation year of the binding production company. These new
introduced columns are marked with ?. 2

Table 4.8 reports the average precision of the experiments that we have conducted that have
been classified according to the number of meta-nodes occurring in the initial SD. For each
category of experiments, we have considered 20 tables containing both extra properties of
the concept contained in the initial SD and other properties (not contained in the initial
SD). In the table, we do not report the recall because for each ? property we select only
one property and concept. From the reported prevision values, we can note that the preci-

112

SELECT ?director ?dirBdate ?children ?actor ?awards
WHERE{
?film rdf:type dbo:Film.
?film dbo:directedby ?director.
?actor dbo:starring ?film.
?director rdf:type dbo:Director.
?actor rdf:type dbo:Actor.
?actor dbo:awards ?awards.
?director dbo:children ?children.
?director dbo:birthDate ?dirBdate.}

(a)
director ? ? actor ?

J. Cameron 16/08/1954 2 L. DiCaprio 51
J. Cameron 16/08/1954 2 K. Winslet 59
R. Zemeckis 14/05/1952 4 T. Hanks 53

P. Weir 21/8/1944 2 R. Williams 16

(b)

Figure 4.19: (a) SPARQL query for the generation of extra properties; (b) excerpt of the
table generated

sion decreases when we introduce four meta-nodes and this is due to the increase of the
possible properties that can be associated with the unmatched columns. The best perfor-
mance is obtained with three nodes since it is easier to find a path among these classes.
The insertion of a fourth node makes the process harder because there are more possible
relations to consider. Moreover, from the detailed results emerges that the approach works
better when extra properties are considered. Indeed, in this case, some of the properties
of instance nodes have already been associated and thus the set of possible properties per
concept is reduced. Finally, we can also note that the data type of the properties is also af-
fecting the predictions. Better performances are obtained when trying to predict unmatched
columns of type date or decimal, while predictions are worse when the type is integer or
string. The reason for this behaviour is related, once again, to the number of possible prop-
erties. Usually, the string and integer types are used with a wide variety of data, such as
names, addresses, zip codes, years, and so on, while dates and decimals can be used in
fewer cases.

Example 29 Consider the situation in Figure 4.19. The first unmatched column is of type
date and can be associated with birthDate of the director or birthDate of the ac-
tor. The third and fifth unmatched columns are of type int and can be interpreted as
the following properties of the complete SD: children of an Actor or a Director,

113

SELECT ?film0 ?film1 ?tName ?year
WHERE{
?film0 rdf:type dbo:Film.
?film1 rdf:type dbo:Film.
?film0 dbo:producedBy ?prodCompany.
?film1 dbo:producedBy ?prodCompany.
?prodCompany dbo:foundingYear ?year.
?prodCompany dbo:tradingName ?tName.
FILTER(bound(?film0) && ?film0 != ?film1)}

(a)
film0 film1 ? ?

Mamma Mia! My Big Fat Greek Wedding 2 Playtone Inc. 1998
Splash King Arthur (film) Touchstone Pictures 1984
Gigli Boyz n the Hood Columbia Pictures 1924

Kill Bill: Vol1 Kill Bill: Vol2 A band Apart 1991

(b)

Figure 4.20: (a) SPARQL query for the generation of other properties; (b) excerpt of the
table generated

year of Film, foundingYear of Company, postalCode of City and numberSeason or
numberEpisodes of TelevisionShow. However, the properties year, foundingYear,
numberEpisodes and postalCode for the third column are not in the range and therefore
are excluded; for the fifth column, the properties year, foundingYear, numberSeason
and children are also excluded. The remaining properties associated with the third col-
umn are children and numberSeasons. Then, by the application of the Steiner tree, the
property children of Director is chosen for this column. Concerning the fifth column, the
remaining properties are numberEpisodes (since the years between 1900 and 2000 can
be abbreviated to only two digits), awards and foundingYear. The Steiner tree application
leads to the selection of the property awards of Film for this column.

Consider now the situation described in Figure 4.20. There are two unmatched columns of
two different types. Using the ranges for the last column, only two properties are compatible
(i.e. year and foundingYear of Film). Concerning the third column, the prediction is more
complex since the ontology contains a high number of properties of type string and the range
values are not useful in this specific case. Therefore, the inference is done mainly using
the weights of the model. The possible relations obtained using the weighting function are
language of Film, knownFor and tradingName for ProductionCompany, birthName
and cityName. The application of the Steiner tree leads to the selection of the property
language for this column, which is not correct. The reason is that the language is a property

114

of a Filmwhich is already used in SD and has a less expensive path. Concerning the fourth
column, the compatible properties are postalCode and foundingYear. In this case, the
property foundingYear is selected by the Steiner tree which is the correct one. 2

4.8 Concluding remarks
The approach we have proposed in this chapter moves in the same direction as [154] for the
generation of a complete SD and of [65] for the use of an embedding of the consolidated
knowledge graph, however, we introduced innovations from different perspectives. First, we
better formalize the problem and introduce requirements for the generation of the complete
SD. This has the advantage of producing a better characterization of the proposed solution
and obtaining more accurate descriptions of the table content. Then, the embedding of the
consolidated knowledge graph has been realized by taking into account also the basic prop-
erties associated with concepts and adopting a GNN approach designed in order to cope
with heterogeneous nodes and edges. Our GNN design introduces an attention mecha-
nism on node-level features and allows recovering the properties of unmatched columns
(i.e. columns for which the column type inference approach was not able to associate an
ontological concept) by exploiting the embedding of the basic properties of the consolidated
knowledge graph. Furthermore, the embedding model is also used for determining prop-
erties for unmatched columns (i.e. columns for which the column type inference approach
was not able to associate an ontological concept) by exploiting the embedding of the basic
properties of the consolidated knowledge graph.

Several experiments have been conducted for assessing the quality of the proposed solu-
tion in three different domains. For the evaluation of our GNN approach, we considered [65]
and [169] as baseline approaches. By considering the nodes’ properties, the AUROC of our
approach outperforms the baseline approaches and presents a better execution time. The
comparison of our SDs with those proposed by [65] suggests that [65] has low precision
and recall especially when the table is annotated with more general concepts of the ontol-
ogy. Moreover, the amount of inferred triples is usually higher and less accurate than ours.
Finally, [65] tends to use more general concepts in place of those that should be present,
therefore, our approach presents better performances with respect to SeMi in particular
when the initial table contains super-concepts and when the size of the graph increases.

Even if the proposed experiments are really promising, we think further experiments should
be conducted for validating the proposed methodology. First, we need to consider other
datasets presenting a higher number of instances and that strictly follow the constraints im-
posed by the ontology. At the current stage, many datasets are available but they do not
properly adhere to the used ontology. Since we are planning to use the approach in the

115

biological context, we need to maintain strict adherence to the ontology in order to guaran-
tee the correctness of the predictions that will be realized on the data. Moreover, further
experiments should be conducted on the assignment of a property to unmatched columns.
At the current stage, the variability of the performances (especially with the other properties)
requires further investigation.

116

Chapter 5

Visual management of the semantic
description and KG construction

The automatic approach proposed in Chapter 4 infers the SD of a table by considering the
consolidated knowledge graph and the domain ontology. The proposed approach might
introduce wrong relations among instance nodes or some columns of the table could still be
unmatched. In these situations, user intervention is required for concluding and checking
the correspondence of SD with the table content and for the translation of the table content
in terms of the knowledge graph.

In this chapter, we discuss the user interfaces developed for supporting the user in these
two activities. For completing and checking SD, a graphical representation of SD is pro-
posed. The user can thus graphically explore SD and easily check if the labelling is correct,
add missing instance nodes, apply modifications if needed, and define relationships among
instance nodes. All these operations are executed on the graphical representation of SD.
Moreover, specific interfaces are made available for changing columns assignment to the
properties of the ontological concepts and for treating unmatched columns.

Once the creation of SD is completed, the knowledge representation of the table content
should be generated (what we have named KG(T)). However, this operation can be ap-
plied only when the required identifying properties are present in SD and values are speci-
fied in the table content. Therefore, specific interfaces have been developed for supporting
the user in the definition of an identifier for each concept. The aim is to support the user in
reducing his/her efforts in this activity.

This chapter is organized as follows. Section 5.1 describes the user interfaces developed

117

for supporting the user in checking and correcting SD. Section 5.2 shows the transforma-
tion functions that can be used, the algorithm for translating the table content in a knowledge
graph and the interfaces for fixing and completing the content of the table organized accord-
ing to SD. Finally, Section 5.3 shows the usability analysis that we have conducted on the
interfaces for the management of the graphical representation of SD.

5.1 Interfaces for the management of SD
Starting from the graphical representation of SD, in this section, the interfaces for its manip-
ulation are described. Their purpose is to facilitate the correction of the errors introduced by
the automatic techniques discussed in Chapter 4 and to add missing semantic information.

5.1.1 Graphical representation of SD
Figure 5.1 shows an example of the graphical representation that we have developed for
SD = (UCs, UT , ER, ET) (see Section 4.3 in Chapter 4). Green nodes are used for rep-
resenting instance-nodes (i.e. nodes in UCs), whereas light blue nodes are used for repre-
senting terminal nodes corresponding to the table columns (i.e. nodes in UT) as illustrated
through the orange arrows. Edges between instance-nodes (i.e. ER) and edges between
instance nodes and terminal nodes (i.e. ET) are represented in the same way (labelled
arrows) because their meaning is easily understandable from the context. The label on the
edges is the relation/property name.

For each light blue node in the graph, if the column has a single basic type (e.g. the zip
column in Figure 5.1), a single incoming edge is present. Multiple incoming edges can be
present when the light blue node represents a mixed or union-type column. For example, the
Address column is of type mixed and three incoming edges are present (for representing the
properties streetName, streetNumber, and municipality). Moreover, the SSN/VAT
column is an example of column of type union and two incoming edges are present (one
representing the SSN property of the instance-node u0

Person and the other representing the
VAT identifier of the instance-node u0

Company. We have decided to maintain this simplified
representation for keeping simple the illustration. Isolated nodes (i.e. terminal nodes without
incoming edges) are not included in our graph representation.

The open-source JavaScript library Cytoscape.js developed by [64] has been used for the
generation of an interactive graph representation of SD. The graph is drawn in a canvas
where nodes can be added, deleted or moved anywhere. Moreover, operations can be
invoked on the nodes/edges through the right button of the mouse. This flexibility and inter-
activity with the user are crucial in our context for guaranteeing the manipulation of SD by
the user.

118

Figure 5.1: Graphical representation of SD and correspondence with table columns

5.1.2 Overview of the main interface
The main interface for the management of SD is shown in Figure 5.2. The graphical rep-
resentation of SD is reported in the central canvas (2). The green nodes are laid out in the
top part of the canvas, whereas, light blue nodes are in the lower part of the canvas. The
left panel (1) contains buttons corresponding to the table columns. We exploit a double rep-
resentation of the table columns (buttons in the left panel and light blue nodes in the central
panel) because buttons are used for checking the correctness of the semantic values as-
sociated with each column and for adding missing annotations to the unmatched columns.
Moreover, the edges in the graphical representation are used for verifying the connections
among the components and modifying or adding new ones.

The buttons in the left panel can be coloured in three ways: green: it means that the asso-
ciated column has been already included in SD; pink: it means that the associated column
is not yet included in SD (note that unmatched columns are not represented in the graphi-
cal representation); grey: it is a special placeholder introduced in presence of a correlation
among rows in the original table for separating the columns of the main row from those that
represent the correlated row. By clicking on the arrow positioned on the left side of the but-
ton it is possible to show the data type associated with that column (single type or union of
types). By right-clicking on the button itself it is possible to specify a new semantic concept
and a property of the domain ontology for each data type of the column.

119

Figure 5.2: Graphical user interface of phase 2

With respect to the graph representation, the position of the nodes in the central canvas
can be changed by the user. Moreover, on each node and edge, it is possible to perform
different kinds of operations. These operations will be detailed in the next sections.

5.1.3 Visual operations on the table columns
Table 5.1 shows the operations that can be invoked on the table columns reported in the left
panel for supporting the user in the correction of errors or in the definition of new nodes.

Operation 1 in Table 5.1 can be invoked on unmatched columns (i.e. pink buttons). This
operation is used to include the column content in the SD representation. This operation
is specified in two steps. First, we have to identify the properties that represent the column
content in the ontology concepts. Then, we have to identify the instance nodes in SD (or
new nodes that need to be added in SD) to which the properties can be associated with.

Example 30 Consider the unmatched tax column in Figure 5.2. When Operation 1 is
invoked on it, the interface in Figure 5.3 is shown to the user. This interface is very similar
to the ones presented in Chapter 3 but differs from it because only the data type can be

Operation Description
1 Association of properties allows the specification of properties to unmatched columns
2 Modification of properties allows changing the current association of properties for a column
3 Removal of properties removes the semantic concept associated with the column

Table 5.1: Operations on the table columns

120

Figure 5.3: Interface for the definition of a semantic type

modified (the definition of a new component of a union type or of a mixed type is not possible
anymore). In this case, the concept Credit on the left bar and the property taxes can be
exploited as the semantic annotation of the column. 2

The interface in Figure 5.2 might present a tab above the green area which shows the
different types identified in the column that needs to be semantically annotated. Once the
specification of the concept and property is terminated, whenever the chosen concept is
already present inSD, the interface in Figure 5.4 is shown for determining the instance node
to which the properties should be bound. Regardless of the number of instances, after the
introduction of a new concept, the system checks the relations existing between the newly
inserted element and the other concepts in the ontology. If a single relation is present, it is
automatically added to SD, even if the insertion of a third node is required (e.g. between
Person and Credit there is a relation that involves the presence of Invoice, therefore
the node Invoice is added).

Example 31 In the case of the tax column, the column penalty has been already associ-
ated with the instance-node u0

Credit. So, the user should choose if the same instance-node
can be used or if a new one should be defined. Since taxes and penalties refer the same
instance-node, the node already included in SD is selected. At this point, the graphical
representation of SD is updated and the button colour becomes green. 2

121

Figure 5.4: Interface for associating the new property to the correct node instance

Operation 2 is used for changing the already associated semantic annotation to a column
(i.e. it can be invoked on a green button). Besides changing the semantic annotation
through an interface similar to the one discussed for an unmatched column, this operation
also allows changing the instance-node to which the properties are associated (if needed).

Example 32 Consider the columns SSN_correlated, Name/Company_correlated and
date of birth_correlated in Figure 5.2. They are associated with the instance-node
u1
Person. However, they should not be associated with the invoice subject but with the legal

representative of the invoice. Therefore, by using Operation 2, an interface like the one pre-
sented in Figure 5.3 is shown to the user where the semantic annotation is already present.
The user then directly accesses the interface for the specification of the node instances
(Figure 5.4) and requires the introduction of a new instance of the concept Person. 2

By invoking Operation 3 on a green button, the existing semantic annotation is removed
along with the corresponding nodes in the graphical representation.

5.1.4 Visual Operations on the graphical representation of SD
Table 5.2 shows the operations that can be executed on the graphical representation of
SD. Some of them (1 and 2) can be invoked on light blue nodes and produce the same
effect as the corresponding operations that can be applied to the buttons on the left sidebar.
Operation 3 can be invoked on an instance-node and allows the introduction of a new link
with another instance-node. The inserted links must be coherent with the domain ontology

122

Operation On Description
1 edit property node the properties of a blue node can be modified
2 delete node a node can be removed
3 insert relation node a new relation between nodes can be inserted
4 update edge the source or the destination of a node can be modified
5 delete edge an edge can be removed

Table 5.2: Operations on the graphical representation of SD

Figure 5.5: Link definition among concepts

so that, for each pair of nodes, only existing relations in the correct direction can be added.

Example 33 Consider the unmatched columns tax and penalty that have been associ-
ated with the instance-node u0

Credit. This instance-node should be linked with the instance-
node u0

invoice. This binding is realized by means of the interface in Figure 5.5. The interface
shows the lists of relation names (ingoing and outgoing) that can be exploited for the nodes
of this concept by taking into account the instance nodes in the current SD and the con-
straints of the domain ontology. The user can select the correct relation and insert it in the
graphical representation of SD that is updated accordingly. 2

Operation 4 of Table 5.2 can be invoked on a node of the graphical representation of SD
with the aim of modifying the name of the relation between two nodes or one of the nodes
connected by the link. Finally, Operation 5 allows the deletion of an edge occurring in SD.

The following example shows how to complete the semantic description of the table of our
running example before starting the translation of the table into a KG representation.

123

Figure 5.6: Result after the definition of the missing concepts

Example 34 Once the operations described in previous examples are executed, the cur-
rent SD is organized in three separated sub-graphs: i) the original one, ii) the one having
Invoice_1 as the root node; and iii) the one having Person_2 as the root node. In
order to guarantee the completeness of SD, the graph should be connected. By means
of Operation 3, the original graph and the graph having Invoice_1 as the root node are
connected together through the edge with label holder. Using again Operation 3 start-
ing from Person_2, the subgraph is connected to the graph obtained in the previous step
through a link having the correlation name as a label. The obtained result is reported in
Figure 5.6. In detail, starting from the node representing Person_2 we open the interface
in Figure 5.5 and we choose the incoming link from Invoice_1 to the person through the
legal_representative link. This interface can be opened from each node, whose type
is reported in the header of the modal (1). For each node, the interface produces the list of
the incoming (2) and outgoing links with respect to the node from which the interface has
been opened. By querying the domain ontology, we determine all the possible classes (3)
and corresponding relations with other classes (4) and we insert them in a list of items. The
user can choose both an incoming link and an outgoing link or just one of them. At the end
of this process, if the new node does not exist, it is added to the SD, and an edge having
the chosen label is inserted. When all the edges have been defined, the complete graph
shown in Figure 5.6 is obtained. 2

124

5.2 Generation of the knowledge graph
Once the concise SD is completed, the next step is the translation of table T into a knowl-
edge graphKG(T) that contains the content ofT represented according to the concepts/pro-
perties of the domain ontology. The translation is applied only if mandatory properties and
values are contained in the current T .

In this section, we describe the transformation functions that can be exploited for the gener-
ation of node identifiers by considering the identifying properties associated with the ontol-
ogy concepts. Moreover, we describe the translation algorithm that checks the presence of
mandatory elements in the table. Whenever they are missing, specific user interfaces have
been developed for supporting the user in this activity.

5.2.1 Transformation functions
In order to ensure an identifier for each concept and by taking into account that in many
knowledge graphs (e.g. DBpedia, Yago, GeoNames) the instance identifier is realized using
identifying properties of the concept, we propose the association of transformation functions
with the ontology concepts. These functions are specified by the user by taking into account
the characteristics of the ontology and allow the definition of human-readable identifiers
relying on the values of the identifying properties. The transformation functions are simply
python functions that take as input an associative array with the values of the identifying
properties and produce a string that is exploited as an identifier. They are invoked each
time the instance extracted from a table does not present an identifier.

The transformation functions are usually straightforward to specify and thus we propose a
visual language by means of which the user can graphically define and test the behaviour of
the function. The language that we propose is inspired by the Scratch language ([143]) with
the aim of generating strings that represent identifiers. Our purpose is not the generation of
a complicated, complete, and general-purpose visual language, but of a simple approach
for creating the identifiers of concept instances. If the user needs to develop more complex
logic that cannot be generated by means of the graphical language, he/she can directly write
the code in python. This code will be made available and executable directly by the system.

Our visual language is composed of the set of graphical blocks reported in Table 5.3. Four
kinds of blocks can be distinguished: the operation blocks, which are further divided into
logic blocks, for the specification of an if statement for producing different identifiers de-
pending on the value of the current identifying properties, binary blocks, for the manipula-
tion of strings (extracting first/last characters from a string, extracting a substring, generating
auto-increment strings) or for generating a terminal string (i.e. a string that should be present
in all the identifiers), and the comparison blocks for expressing simple and composite logical

125

Graphical symbols Type Description

operation

this conditional block returns the string
created in one of the two blocks (the
then or else branches) depending on
the evaluation of the conditional block

comparison
this block is used to define a compare
the two parameters according to the
comparison operator

comparison comparison operators for the condition
block

logical logical operators that can be used in a
confrontation or in an operation block

binary these operators take as input a string
and a range and return a substring

custom

these blocks are used for generating
sequences of values of different types
(integer, dates) starting from an initial
value to the limit

custom block for the specification of a string

Table 5.3: Graphical representation of the visual blocks

expressions for the if statement; and variable blocks for representing the identifying prop-
erties of a concept that should be used for the generation of the identifiers. The variable
blocks are instantiated with the values of the properties in the consolidated KG.

There are two shapes used for the representation of the blocks: rectangular and hexagonal.
The hexagons are used to denote a logical operator or a condition that can be used in a
control flow. The rectangles are used for the definition of functions for the manipulation of
strings as well as the custom blocks. The input blocks have a rectangular shape, except for
the fixed values that are oval (e.g. a function that accepts as input only two possible values).

126

Figure 5.7: Definition of a transformation function for the identifier of a Person

The visual blocks if-else/if-then-else are used for defining different identifiers depend-
ing on a given condition. The condition can be defined through the comparison blocks and
allows three possible inputs: two elements (variables, binary functions or custom values)
and a comparison operator (greater than, equal, less than) or logical (and, or) operators.
The condition can also be inserted in the not block.

The following data blocks have been developed: head(str, n) returns the first n charac-
ter of str, tail(str, n) returns the last n character of str and substring(str, n,m) returns
the characters between the position n and m of str. Among the custom operators, auto-
increment generates identifiers by taking into account the type of the identifier (integer,
string) and allows to start from an initial value and to use a step for the generation of the
subsequent identifiers. For example, if the type is integer, the start value is 3 and the step
is 2, the sequence 3, 5, 7, ... will be generated. By contrast, if the type is char, the start
value is D and the step is 3, the sequence D,G, J, ... will be generated. Finally, the custom
block can be used by the user for the insertion of a custom text.

Through the interface in Figure 5.7 for visual coding, the user can specify how to combine
the identifying attributes of a concept to obtain a unique identifier for each entity instance.
The interface is organized as follows: the left part (1) contains the following groups:

• classes: it is used to contain all the classes occurring in the ontology. When one is
selected, the set of its identifying properties is reported in part (2) of the interface.

• operations: it contains the visual blocks that can be exploited for defining the logic of

127

Figure 5.8: Definition of an identifier using a binary operator

the transformation functions organized according to the data and logic operations.

• custom: contains a blank block that can be used for specifying strings to be included
in all the identifiers, and the auto-increment function that can be used if there is a
need for a synthetic identifier.

The content of the top part of the interface in Figure 5.7 (2) varies depending on the group
selected from the left panel. If a class is selected, then the corresponding identifying prop-
erties are reported. The constructors of the possible operations are reported when the
operation group is selected, and finally, the custom block and auto-increment blocks are re-
ported when custom is selected. The blocks contained in (2) can be dragged and dropped
in the visual coding area (3) for representing the transformation logic. In this area, all kinds
of blocks can be dragged and dropped next to each other and among a block inserted in
the area and the next one, the concatenation function is used. A preview of the obtained
identifier is shown in (4). In the case of Figure 5.7, the identifier for the concept Person is
generated through the concatenation of the name and surname properties separated by an
underscore and, within the parentheses, the dateOfBirth property. Further expressions
can be realized with our visual language as shown in the next example.

Example 35 Suppose We wish to create an identifier for the instances of Person. By
means of the interface in Figure 5.8, the identifier is defined by using the first letters of
the properties name and surname, followed by the dateofbirth property. This result is
obtained through the binary function element that is used to extract the first letters.

128

Figure 5.9: Definition of an identifier using a condition

Suppose now that the previous identifier should be applied only to people that were born
before the first of January 1998, whereas the identifier is only the concatenation of the name
and surname. In this case, the expression reported in Figure 5.9 should be specified that
uses the if-then-else block and the concatenation of terminal and variable symbol. 2

In some cases, for the identification of a concept, we might wish to exploit serial values as
shown in the following example.

Example 36 Suppose we wish to create a synthetic identifier for the Invoice concept.
This identifier should be a string starting with Invoice_ followed by an integer number that
starts from 2 and has a step of 2. Figure 5.10 shows the specification of this kind of identifier.
In the visual coding we have used the auto increment block specific for integer. 2

5.2.2 Algorithm for the KG construction
Once SD is completed and the identifiers have been defined, Algorithm 3 is invoked for
translating the table T into a knowledge graph KG(T) that contains the content of T rep-
resented according to the concepts/properties of the domain ontology. The translation is
applied only if mandatory properties and values are contained in the current T . 2

Algorithm 3 first checks for each meta-instance uh
C in SD the occurrence of the "_id"

property (line 5). Whenever it is not present, it is included in SD and a transformation
function is associated with the node (if specified in the ontology). Then, the algorithm checks
the presence of all mandatory properties for uh

C (line 9). If one of them is missing, uh
C

is enhanced with the mandatory properties and is included in the set of variable nodes

129

Figure 5.10: Definition of a transformation function for the identifier of an Invoice

V arNodes. The presence of meta-nodes in V arNodes does not allow the generation of
KG(T) and a message is returned (line 28).

Whenever V arNodes is empty (line 15), the second part of the algorithm is activated whose
purpose is the generation of the triples for basic properties and relation for each tuple of the
table T . In this part of the algorithm, we use the notation tuple[⟨n, p⟩] for representing
the access to the value contained in the current tuple that corresponds to the property p
associated with the node n in SD. In this second part, for each terminal node ut in SD
that should be included in the knowledge graph (i.e. it is associated with an instance-node
of SD), we check the presence of a transformation function for the instance-node uh

C (to
which ut is associated with) and whenever it is present, it is applied for the generation of the
value to be included in KG(T). Otherwise, the value specified in the current tuple is used.
Moreover, we check that a value is associated with the property in the tuple if the property
is mandatory. If this test fails, it means that a mandatory property is missing and that the
generation of KG(T) should be interrupted (line 19), otherwise, a triple, representing the
value of the property p on the current row of the table can be included in the set Triples
(line 20). Once completed the triples for the basic properties, the triples for the relations in
SD can be included in Triples (lines 22-24). Once all the tuples in T are processed, the
set Triples can be returned and it contains KG(T) (line 26).

5.2.3 Interface for completing missing information
In case of interruption of the process for the generation of KG(T), the interface in Fig-
ure 5.11 is shown to the user. In this interface, the missing mandatory properties are in-

130

Algorithm 3 Generation of the knowledge graph KG(T)

Input: SD = (UCs, UT , ER, ET) the concise semantic description
O the domain ontology
T the table

Output: KG(T), the representation of T as a knowledge graph
1: V arNodes := ∅
2: Triples := ∅
3: Tran := ∅
4: for uh

C ∈ UCs do
5: if (uh

C , _id, ut) ̸∈ ET then
6: ET := ET ∪ {(uh

C , _id, ut)}
7: if A transformation function TC exists for C then Tran := Tran ∪ {(uh

C , TC)}
8: if Mandatory properties specified for C are missing in uh

C then
9: Let p1, . . . , pk be the missing identifying properties

10: ET := ET ∪
⋃k

i=1{(uh
C , pi, u

i
t)}

11: V arNodes := V arNodes ∪ {uh
C}

12: if V arNodes = ∅ then
13: for tuple ∈ T do
14: for ut ∈ Ut s.t. (uh

C , p, ut) ∈ ET and p ̸= ”_id” do
15: if Tran(uh

C) is defined then
16: idc := Tran(uh

C)(tuple, u
h
C)

17: else
18: idc := tuple[⟨uh

C , ”_id”⟩]
19: if (p is mandatory and tuple[⟨ut, p⟩] is null) then return "not ready"
20: Triples := Triples ∪ {(idc, p, tuple[⟨ut, p⟩])}
21: for (uh

Cs
, r, uh

Cd
) ∈ ER do

22: Triples := Triples ∪ {(tuple[⟨uh
Cs

, ”_id”⟩], r, tuple[⟨uh
Cd

, ”_id”⟩])}
23: return Triples
24: else
25: return "not ready"

cluded in the table T along with the _id fields with the values eventually generated by the
transformation functions (in this case the identifiers are automatically generated).

At this point, the user can check the generated values and complete the missing information.
Even if the approach has not yet been included in our approach, the user can exploit some
techniques for data augmentation in knowledge graph [39] for the specification of missing
information by taking into account the consolidated knowledge graph KGC or other sources
of information. In this way, the user effort can be significantly reduced. Moreover, conditional
fixing rules can be specified in the same spirit as those proposed in [23] in the context of
IoT data.

131

Figure 5.11: Interface for supplying missing information in a table

This interface can also be used also for pointing out semantic errors that can occur in the
initial table T or that violate the constraints that can be induced through the domain ontology
(besides the structural ones that have been taken into account in the realization of SD).
Several are the semantic errors that can occur in the data and should be pointed out. For
example, a table row can report that the actress Kate Winslet is married to the film director
Edward Abel Smith and another table row that she is married to Sam Mendes. This is a
semantic mistake because a person cannot be married to multiple individuals and the error
needs to be fixed. Moreover, table rows can violate the constraints that are specified in the
ontology like constraints on the number of occurrences of certain relations (e.g. a least one
episode for each TelevisionShow series) and constraints on the correspondence among
properties (e.g. the total import of an invoice should correspond to the sum of the prices of
the items it contains). Last but not least, there can be incorrect or incomplete data, such as
outdated information, or incomplete data sources.

The graphical representation of these errors and specific tools that depends on the kind of
identified problem can be realized to support the user in fixing the data contained in the initial
table and produce data of better quality. In some cases, a cell needs only simple editing, in
others, a column should be added or removed from the table. For example, if a person is
married to two different people, a possible solution is the insertion of a column containing
the divorce date from the first marriage (in the case of Kate Winslet, she is currently married
to Edward Abel Smith, after the divorce from Sam Mendes). In case of missing identifying
properties, columns should be added for the specification of their values.

Once the missing information has been introduced and the semantic errors have been fixed,
the obtained tabular data constitute a new version of the initial table of better quality. In terms
of the 5-star deployment scheme for Linked Open Data [12], we can say that the three-phase
approach described in this thesis is able to transform a dataset rated with two stars into a

132

four/five star rating. Indeed, semantic annotations are included in the initial CSV/TSV file and
an identifier is assigned to each instance and semantic relationships among the represented
concepts. The result is represented in RDF and can be queried through SPARQL. We also
remark that the consolidated knowledge graph can always be considered as five stars rating
LOD since there is the possibility of inferring new links out of existing facts, and the users
can discover more relationships within their linked data.

5.3 Evaluation of usability - phase 2
This section summarizes the results of the usability tests carried out on the interfaces for
the management of the semantic description presented in this chapter. The same group of
users described in Section 3.5.2 have been involved in conducting the tasks of Table 5.4.

For each task, Table 5.4 reports the main goal, the time required for completing the task,
and when the task can be considered successfully completed or when it is completely a
failure. All the users have been involved in the first two tasks, while the remaining tasks are
executed only by those who had to manage the correlations in Phase 1 (Task 4 of Table 3.2
in Section 3.5.2).

All the individuals who had to deal with mixed types during the first phase were able to
complete the first two tasks. The majority of them (90%) completed the job in just 10 minutes
while others (10%) had some trouble remembering the procedures to complete Task 2.

For what concerns the last two tasks, some users (20%) needed to watch again the videos to
apply the required procedures to complete the assignment correctly. The additional time re-
quired for watching videos has not been counted in the total time to complete the tasks. The
fact that all users, eventually after watching the introductory videos again, have completed
the tasks correctly highlights a possible difficulty for a novice user to learn the various pro-
cedures rather than to apply them. The enrichment of contextual help with additional short
explanatory videos could improve the user experience of a novice user.

Finally, 25% of the individuals who worked on Task 4 had some problems in finding the
correct correlation among the list of possible edges. This suggests that the interface can
be improved by adding a search bar on the top of the edge list, increasing the dimension or
by grouping the links in categories.

The 85% of the users agreed that the interface is easy-to-use and intuitive whereas the
remaining ones expressed a neutral position. The greatest uncertainties concerned the
management of the operations that can be executed on the graphical representation of SD.
In particular, a small part of users has shown difficulty in recognizing or applying operations
such as the insertion of new concepts or the insertion or removal of links between concepts.

133

goal time success failure
1 management

of unmatched
columns

7 min The user specifies a concept and a
property for each unmatched column.

One or more columns have not been
associated with a concept and prop-
erty of the domain ontology

2 connections
among con-
cepts

5 min The user identifies the correctness of
the existing links, adds the missing
ones and modifies the wrong ones

The final SD is not complete or the
links are wrong

3 new instance 4 min the user is able to define a new instance
for a correlated person

the user uses the same instance for
both people

4 correlation 6 min the user specifies the correlation links the user does not to identify the cor-
relations

Table 5.4: Tasks identified for the usability test of phase 2

Half of the users declared that they had to remove an edge because it was not correct.
Only the 16% of the users could not connect all the nodes of the graph because they did
not have enough knowledge about the application domain (e.g. they did not know that a
company can be the holder of an invoice). Among the users that dealt with the correlations,
60% defined a new instance of the concept Person, while the others thought that the single
instance was enough for the representation. All the users who worked with the correlations
agreed that the process of creating the correlation is easy, while the opinion related to the
new instances of a concept was positive for 50% of the users.

In conclusion, the usability test of phase 2 suggests that some aspects of the application
can be improved but the overall opinion is that the system is easily usable. We believe
that the results were less successful with respect to the results obtained in phase 1 mainly
because i) the tasks were executed at the end of a long test session that required a high
level of attention, we believe that the users’ attention was lower with respect to phase 1; ii)
in this phase, the knowledge of the application domain required to the user is more detailed
than the one required in phase 1 (in phase 1 there are simple and well-known data types,
such as names and dates, while in the second phase there are links among the concepts,
correlations and specific data); and iii) the users were not familiar with the ontology and
semantic descriptions.

134

Conclusions and Future Work

The aim of my PhD research activity was the definition of a semi-automatic approach for the
construction of a knowledge graph starting from tabular data that adhere to the constraints
contained in a domain ontology. The central research questions for this research were:

• How to semi-automatically extract coherent semantic information from heterogeneous
spreadsheets?

• How to define a semantic description that characterizes the spreadsheet content?

• How to generate a KG from the extracted (and semantically annotated) data?

To address these research questions, we proposed a three-phase approach and developed
a Web application implementing it. The approach is used for identifying a tabular structure
within a spreadsheet, correcting syntactic errors, providing a semantic characterization, and
transforming the table content into a knowledge graph.

The first phase allows the identification of a table within the spreadsheet, removes the unde-
sired elements (i.e. headers containing descriptions, footers aggregating data), associates
a data type to each element of the extracted table and highlights syntactic errors. This is
obtained using a machine learning technique that relies on a type system. For each type of
the type system, we defined a typing recognizer able to extract values of such type from the
table. A multi-label classification approach is then employed for inferring a set of types for
each column. Each element whose type is not compliant with the one established for the
column is considered an error.

The second phase focuses on the creation of a semantic description SD of the table con-
tent that relies on the concepts identified in the first phase to try to identify the relationships
existing among them. In the creation of the semantic description we consider all possible
relationships that can directly or indirectly exist among the identified concepts and we in-
clude them in a graph, named complete SD. Then, the complete SD is enhanced with
possible unmatched columns that were not annotated in the first phase. The obtained com-

135

plete SD is finally weighted according to a weighting system that takes into account the
specificity of the relations identified in the ontology and the similarity existing among the
nodes of a consolidated Knowledge graph. The similarity is computed in a vectorial repre-
sentation of the knowledge graph obtained through a relational graph convolutional neural
network specifically tailored for inferring relationships among nodes. The approach consid-
ers the embedding in the vectorial space also of the basic properties of the instances of the
knowledge graph leading to a better performance of the system when predicting the prop-
erty for unmatched columns. The last step is the extraction of the concise SD that contains
the minimal cover tree that can exist among the identified concepts and that minimizes the
weights on the paths leading to the table columns. This operation is realized by means of
the Steiner tree algorithm. The choice of the minimal cover tree is due to the simplicity of
the obtained model that identifies the most likely relationships according to the considered
consolidated knowledge graph.

The purpose of the third phase is to create a KG using the table content and the semantic
description defined in the previous phase. The translation requires the existence of identi-
fying properties for each meta-node of SD representing a class, therefore constraints have
been identified for blocking the translation until all of them are satisfied.

For the realization of the three phases of our approach, we have exploited machine learn-
ing techniques that have been coupled with sophisticated user interfaces for supporting the
user in checking and adapting the automatic predictions. We believe that interaction with the
users is essential in this kind of activity for guaranteeing the development of semantic de-
scriptions of good quality. Both the experiments for checking the precision of the developed
approaches and for checking the usability of the graphical interfaces are quite promising
and support the idea to create a commercial version of the developed approach.

Several are the directions in which the thesis work can be extended.

The knowledge graph extracted from a table can be integrated into the consolidated knowl-
edge graph. This is an interesting direction and many issues should be faced starting from
the identification of similar (or duplicated) instances, the fusion of the entities and the exten-
sion of the consolidated knowledge graph with new information inferred from the fusion with
the knowledge graph extracted from the table. Even if this is a quite well-known problem
in data integration [55], the possibility of using graph embedding techniques (like the ones
used in this thesis) appears very promising for obtaining better results.

The semantic description we have proposed in the thesis to characterize the table content
could be also exploited for the characterization of a SPARQL query. Therefore, starting from
a SPARQL query (eventually presenting basic conditions on properties), the query can be
translated into a graph (like the SD graph). Then, by exploiting the domain ontology, the

136

graph can be enhanced with related concepts and relationships in order to obtain a better
formulation of the query that can be used for approximate retrieval in the consolidated knowl-
edge graph. This is an interesting research direction for providing approximate answers to
the users’ queries that take into account alternative relationships according to which the
required data can be bound. In this direction, it would be interesting to consider the issues
that might arise when dealing with graph-structured data and how to process the query by
considering the embedding of the consolidated knowledge graph.

The graph embedding techniques used in the thesis on knowledge graphs do not take into
account the inheritance hierarchy that can be induced by the associated domain ontology.
Another interesting research direction is to expand existing approaches for graph embedding
to take into account this peculiarity. In this way, instances that represent concepts that
belong to the inheritance hierarchy should be represented closer than instances that are
not directly related. The development of a more accurate graph embedding approach would
produce better predictions in our context.

An interesting research problem that is tightly connected with the issue faced in this thesis
is the identification of the ontology to be used for the semantic description of a given table.
Indeed, several ontologies are currently available and specifically focused on the represen-
tation of a given type of data and the need arises to identify the ontology presenting the
highest similarity with the structure and content of tabular data. This problem has gained a
lot of attention in the research community as a classification problem and many approaches
have been devised especially for semi-structured data (like XML) [13, 6]. The proposed
approaches try to extract structural information from the data and develop syntactic and se-
mantic structural similarity measures for identifying the best schema that can be used for
the characterization of the considered data. However, the lack of structural information that
characterizes tabular data makes this problem particularly challenging and deserves further
investigation.

137

Bibliography

[1] M. Abadi and et al. TensorFlow: Large-scale machine learning on heterogeneous
systems. https://www.tensorflow.org/, 2015.

[2] R. Abraham and M. Erwig. Header and unit inference for spreadsheets through spa-
tial analyses. In IEEE Symposium on Visual Languages-Human Centric Computing,
pages 165–172. IEEE, 2004.

[3] R. Abraham and M. Erwig. Ucheck: A spreadsheet type checker for end users. Jour-
nal of Visual Languages and Computing, 18:71–95, 02 2007.

[4] M. Adelfio and H. Samet. Schema extraction for tabular data on the web. Proc. of the
VLDB Endowment, 6:421–432, 04 2013.

[5] A. F. Agarap. Deep learning using rectified linear units (relu). CoRR, 2073, 2018.

[6] A. Algergawy, M. Mesiti, R. Nayak, and G. Saake. XML data clustering: An overview.
ACM Comput. Surv., 43(4):25:1–25:41, 2011.

[7] D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87 – 106, 1987.

[8] M. Arenas, P. Barcelo, L. Libkin, and F. Murlak. Relational and XML Data Exchange.
Morgan and Claypool Publishers, 2010.

[9] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A
nucleus for a web of open data. In The Semantic Web, pages 722–735. Springer,
2007.

[10] D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn. Flashrelate: Extracting relational data
from semi-structured spreadsheets using examples. SIGPLAN Not., 50(6):218–228,
2015.

138

[11] Z. Bellahsene, A. Bonifati, and E. Rahm. Schema Matching and Mapping. Springer,
2011.

[12] T. Berners-Lee. 5 star linked data. W3C rec.: https://www.w3.org/2011/gld/wiki/5_-
Star_Linked_Data, 2006.

[13] E. Bertino, G. Guerrini, and M. Mesiti. Measuring the structural similarity among XML
documents and dtds. J. Intell. Inf. Syst., 30(1):55–92, 2008.

[14] C. S. Bhagavatula, T. Noraset, and D. Downey. Tabel: Entity linking in web tables. In
Int’l Semantic Web Conf., pages 425–441. Springer, 2015.

[15] C. Bizer. The emerging web of linked data. IEEE Intelligent Systems, 24(5):87–92,
2009.

[16] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: A collabo-
ratively created graph database for structuring human knowledge. In Int’l Conf. on
Management of Data, page 1247–1250. ACM, 2008.

[17] S. Bonfitto. Semantic integration of heterogeneous and complex spreadsheet tables.
In Database Systems for Advanced Applications: 26th Int’l Int’l, DASFAA 2021, Taipei,
Taiwan, April 11–14, 2021, Proceedings, Part III, page 643–646, Berlin, Heidelberg,
2021. Springer-Verlag.

[18] S. Bonfitto, L. Cappelletti, E. Casiraghi, P. Perlasca, F. Trovato, G. Valentini, and
M. Mesiti. A web tool for the semantic integration of heterogeneous and complex
spreadsheet tables. In Proc. of the 29th Italian Symposium on Advanced Database
Systems, volume 2994 of CEUR Workshop Proceedings, pages 116–127, SEBD
2021, Pizzo Calabro (VV), Italy, September 5-9, 2021, 2021. CEUR-WS.org.

[19] S. Bonfitto, L. Cappelletti, F. Trovato, G. Valentini, and M. Mesiti. Semi-automatic col-
umn type inference for CSV table understanding. In Proc. of 47th Int’l Conf. on Cur-
rent Trends in Theory and Practice of Computer Science, SOFSEM, volume 12607 of
Lecture Notes in Computer Science, pages 535–549, Bolzano, Italy, 2021. Springer.

[20] S. Bonfitto, E. Casiraghi, and M. Mesiti. Table understanding approaches for extract-
ing knowledge from heterogeneous tables. WIREs Data Mining Knowl. Discov., 11(4),
2021.

[21] S. Bonfitto, M. Dileo, E. Casiraghi, S. Gaito, G. Valentini, and M. Mesiti. A semi-
automatic approach for feeding bio-medical kgs. In Poster in 5th Advanced School in
Computer Science and Engineering: AI for Better Medicine, 2023.

139

[22] S. Bonfitto, M. Dileo, S. Gaito, E. Casiraghi, and M. Mesiti. A semantic approach for
constructing knowledge graphs extracted from tables. Submitted for journal publica-
tion, 2023.

[23] S. Bonfitto, F. Hachem, E. G. Belay, S. Valtolina, and M. Mesiti. On the bulk ingestion
of iot devices from heterogeneous iot brokers. In IEEE Int’l Congress on Internet of
Things (ICIOT), pages 189–195, 2019.

[24] S. Bonfitto, P. Perlasca, and M. Mesiti. Easy-to-use interfaces for supporting the user
in the semantic annotation of web tables. In EDBT/ICDT 2023, 2023.

[25] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translat-
ing embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26:2787–2795, 2013.

[26] L. Breiman. Random forests. Mach. Learn., 45:5–32, 2001.

[27] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and regression
trees. statistics/probability series, 1984.

[28] D. Brickley and R. Guha. Rdf schema 1.1, 2014. https://www.w3.org/TR/rdf-schema/.

[29] M. Cafarella, A. Halevy, H. Lee, J. Madhavan, C. Yu, D. Z. Wang, and E. Wu. Ten
years of webtables. Proc. VLDB Endow., 11(12):2140–2149, 2018.

[30] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables: Exploring
the power of tables on the web. Proc. VLDB Endow., 1(1):538–549, Aug. 2008.

[31] T. Ceritli, C. K. I. Williams, and J. Geddes. ptype: probabilistic type inference. Data
Mining and Knowledge Discovery, 34(3):870–904, Mar 2020.

[32] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view, 2019.

[33] J. Chen, E. Jimenez-Ruiz, I. Horrocks, and C. Sutton. Learning semantic annotations
for tabular data. In Proc. of the 28 Int’l Joint Conf. on Artificial Intelligence, IJCAI-19,
pages 2088–2094, Macao, China, 7 2019. Int’l Joint Conf. on Artificial Intelligence
Organization.

[34] J. Chen, E. Jiménez-Ruiz, I. Horrocks, and C. Sutton. Colnet: Embedding the seman-
tics of web tables for column type prediction. In AAAI Conf. on Artificial Intelligence,
volume 33, pages 29–36, 2019.

[35] X. Chen, L. Chiticariu, M. Danilevsky, A. Evfimievski, and P. Sen. A rectangle mining

140

method for understanding the semantics of financial tables. In Int’l Conf. on Document
Analysis and Recognition (ICDAR), volume 1, pages 268–273. IEEE, 2017.

[36] Z. Chen and M. Cafarella. Automatic web spreadsheet data extraction. In Int’l Work-
shop on Semantic Search Over the Web. ACM, 2013.

[37] Z. Chen, M. Cafarella, J. Chen, D. Prevo, and J. Zhuang. Senbazuru: A prototype
spreadsheet database management system. Proc. VLDB Endow., 6(12):1202–1205,
2013.

[38] Z. Chen, S. Dadiomov, R. Wesley, G. Xiao, D. Cory, M. Cafarella, and J. Mackinlay.
Spreadsheet property detection with rule-assisted active learning. In ACM Conf. on
Information and Knowledge Management, pages 999–1008, 11 2017.

[39] Z. Chen, Y. Wang, B. Zhao, J. Cheng, X. Zhao, and Z. Duan. Knowledge graph
completion: A review. IEEE Access, 8:192435–192456, 2020.

[40] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye. Katara: A
data cleaning system powered by knowledge bases and crowdsourcing. In SIGMOD
Int’l Conf. on Management of Data, page 1247–1261. ACM, 2015.

[41] P. Cimiano and H. Paulheim. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semant. Web, 8(3):489–508, jan 2017.

[42] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for im-
age classification. In Conf. on computer vision and pattern recognition, pages 3642–
3649. IEEE, 2012.

[43] Y. Coadou. Boosted decision trees and applications. In EPJ Web of conferences,
volume 55, page 02004. EDP Sciences, 2013.

[44] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, June 1970.

[45] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

[46] A. "Costa e Silva". Parts that add up to a whole: a framework for the analysis of tables.
PhD thesis, University of Edinburgh, 2010.

[47] A. Costa e Silva, A. Jorge, and L. Torgo. Automatic selection of table areas in doc-
uments for information extraction. In Progress in Artificial Intelligence, volume 2902,
pages 460–465, 12 2003.

141

[48] A. Costa e Silva, A. M. Jorge, and L. Torgo. Design of an end-to-end method to extract
information from tables. Int’l Journal of Document Analysis and Recognition (IJDAR),
8:144–171, 2006.

[49] J. Cunha, M. Erwig, J. Mendes, and J. Saraiva. Model inference for spreadsheets.
Automated Software Engineering, 23:361–392, 09 2014.

[50] S. Das, S. Sundara, and R. Cyganiak. R2rml: Rdb to rdf mapping language. W3C
rec.: www.w3.org/TR/r2rml/, 2012.

[51] N. Dershowitz and D. A. Plaisted. Chapter 9 - rewriting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, Handbook of Automated
Reasoning, pages 535–610. North-Holland, Amsterdam, 2001.

[52] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. Imap: Discovering com-
plex semantic matches between database schemas. In Int’l Conf. on Management of
Data, page 383–394. ACM, 2004.

[53] N. Di Mauro, S. Ferilli, and F. Esposito. Learning to recognize critical cells in document
tables. In Digital Libraries and Archives, pages 105–116. Springer, 2013.

[54] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. Van de
Walle. RML: a generic language for integrated RDF mappings of heterogeneous
data. In Proc. of the 7th Workshop on Linked Data on the Web, volume 1184 of
CEUR Workshop Proc., 2014.

[55] A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. Morgan Kaufmann
Publishers, 2012.

[56] H. Dong, S. Liu, S. Han, Z. Fu, and D. Zhang. Tablesense: Spreadsheet table de-
tection with convolutional neural networks. In AAAI Int’l on Artificial Intelligence, vol-
ume 33, pages 69–76, 2019.

[57] V. Efthymiou, O. Hassanzadeh, M. Rodriguez-Muro, and V. Christophides. Matching
web tables with knowledge base entities: From entity lookups to entity embeddings.
In Int’l Semantic Web Conf., pages 260–277. Springer, 2017.

[58] L. Ehrlinger and W. Wöß. Towards a definition of knowledge graphs. SEMANTiCS
(Posters, Demos, SuCCESS), 48(1-4):2, 2016.

[59] D. W. Embley, M. Hurst, D. Lopresti, and G. Nagy. Table-processing paradigms: a
research survey. Int’l Journal of Document Analysis and Recognition (IJDAR), 8(2-
3):66–86, 2006.

142

[60] D. W. Embley, M. S. Krishnamoorthy, G. Nagy, and S. C. Seth. Converting heteroge-
neous statistical tables on the web to searchable databases. Int’l Journal on Docu-
ment Analysis and Recognition (IJDAR), 19:119–138, 2016.

[61] I. Ermilov and A.-C. N. Ngomo. Taipan: Automatic property mapping for tabular data.
In Int. Conf. Knowledge Engineering and Knowledge Management, page 163–179,
2016.

[62] M. Erwig and M. Burnett. Adding apples and oranges. In Int’l Symposium on Practical
Aspects of Declarative Languages, pages 173–191. Springer, 2002.

[63] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geomet-
ric. In ICLR Workshop on Representation Learning on Graphs and Manifolds, New
Orleans, Louisiana, USA, 2019. ICLR.

[64] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader. Cytoscape.js:
a graph theory library for visualisation and analysis. Bioinformatics, 32(2):309–311,
09 2015.

[65] G. Futia, A. Vetrò, and J. C. De Martin. Semi: A semantic modeling machine to build
knowledge graphs with graph neural networks. SoftwareX, 12:100516, 2020.

[66] M. Galkin, D. Mouromtsev, and S. Auer. Identifying web tables: Supporting a ne-
glected type of content on the web. In Int.l Conf. Knowledge Engineering and Se-
mantic Web, pages 48–62, 10 2015.

[67] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak. Towards domain-
independent information extraction from web tables. In Int’l Conf. on World Wide Web,
page 71–80. ACM, 2007.

[68] C. Gini. On the measure of concentration with special reference to income and statis-
tics. Colorado College Publication, General Series, 208:73–79, 1936.

[69] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Conf. on computer vision and pattern
recognition, pages 580–587. IEEE, 2014.

[70] J. Gonsior, J. Rehak, M. Thiele, E. Koci, M. Günther, and W. Lehner. Active learning
for spreadsheet cell classification. In Workshops of the EDBT/ICDT Joint Int’l, volume
2578 of CEUR Workshop Proc., 2020.

[71] R. C. Gonzales and R. E. Woods. Digital image processing, 2002.

143

[72] Google. Openrefine: A free, open source, powerful tool for working with messy data,
2020. https://openrefine.org/.

[73] H. Gulwani. Spreadsheet table transformations from examples. Commun. ACM,
2011.

[74] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using exam-
ples. Commun. ACM, 55(8):97–105, Aug. 2012.

[75] W. L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial Intel-
ligence and Machine Learning, 14(3):1–159, 2020.

[76] L. Han, T. Finin, C. Parr, J. Sachs, and A. Joshi. Rdf123: from spreadsheets to rdf.
Semantic Web, 5318:451–466, 10 2008.

[77] J. Handley. Document recognition. Electronic Imaging Technology, pages 289–316,
1999.

[78] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

[79] M. A. Hasan and M. J. Zaki. A survey of link prediction in social networks. Social
network data analytics, pages 243–275, 2011.

[80] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data
mining, inference, and prediction. Springer Science & Business Media, 2009.

[81] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In IEEE int’l Conf. on
computer vision, pages 2961–2969, 2017.

[82] P. Heyvaert, B. De Meester, A. Dimou, and R. Verborgh. Declarative rules for linked
data generation at your fingertips! In The Semantic Web: ESWC 2018 Satellite
Events, pages 213–217. Springer, 2018.

[83] M. Hofmann. Support vector machines-kernels and the kernel trick. Notes, 26(3),
2006.

[84] A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G. D. Melo, C. Gutierrez, S. Kirrane,
J. E. L. Gayo, R. Navigli, S. Neumaier, A.-C. N. Ngomo, A. Polleres, S. M. Rashid,
A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab, and A. Zimmermann. Knowledge
graphs. ACM Comput. Surv., 54(4), jul 2021.

[85] M. Holeček, A. Hoskovec, P. Baudiš, and P. Klinger. Table understanding in struc-

144

tured documents. In Int’l Conf. on Document Analysis and Recognition Workshops,
volume 5, pages 158–164, 2019.

[86] A. Holzinger. Interactive machine learning for health informatics: when do we need
the human-in-the-loop? Brain Informatics, 3(2):119–131, 2016.

[87] H. H. Hoos and T. Stützle. Stochastic local search: Foundations and applications.
Elsevier, 2004.

[88] K. Hu, N. Gaikwad, M. Bakker, M. Hulsebos, E. Zgraggen, C. Hidalgo, T. Kraska,
G. Li, A. Satyanarayan, and Ç. Demiralp. Viznet: Towards a large-scale visualization
learning and benchmarking repository. In Int’l Conf. on Human Factors in Computing
Systems (CHI). ACM, 2019.

[89] M. Hulsebos, K. Hu, M. Bakker, E. Zgraggen, A. Satyanarayan, T. Kraska, c. Demiralp,
and C. Hidalgo. Sherlock: A deep learning approach to semantic data type detection.
In SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. ACM, 2019.

[90] V. Hung, B. Benatallah, and R. Saint-Paul. Spreadsheet-based complex data trans-
formation. In ACM Int’l Conf. on Information and Knowledge Management, page
1749–1754. ACM, 2011.

[91] A. Hur, N. K. Janjua, and M. Ahmed. A survey on state-of-the-art techniques for
knowledge graphs construction and challenges ahead. In Proc. of Int’l Conf. on Artifi-
cial Intelligence and Knowledge Engineering (AIKE), pages 99–103, California, USA,
2021. IEEE.

[92] M. Hurst. The Interpretation of Tables in Texts. PhD thesis, Uni. of Edinburgh, 2000.

[93] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. Yu. A survey on knowledge graphs:
representation, acquisition, and applications. IEEE Transactions on Neural Networks
and Learning Systems, 33:494–514, Feb. 2022.

[94] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen, and K. Srinivas. Semtab
2019: Resources to benchmark tabular data to knowledge graph matching systems.
In The Semantic Web, pages 514–530. Springer, 2020.

[95] Z. Jin, M. R. Anderson, M. Cafarella, and H. V. Jagadish. Foofah: Transforming data
by example. In Int’l Conf. on Management of Data, page 683–698. ACM, 2017.

[96] E. Kacprzak, J. M. Giménez-García, A. Piscopo, L. Koesten, L.-D. Ibáñez, J. Ten-
nison, and E. Simperl. Making sense of numerical data - semantic labelling of web
tables. In Knowledge Engineering and Knowledge Management, pages 163–178.
Springer, 2018.

145

[97] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive visual speci-
fication of data transformation scripts. In ACM Human Factors in Computing Systems
(CHI), page 3363–3372, 2011.

[98] U. Khurana and S. Galhotra. Semantic concept annotation for tabular data. In Proc. of
the 30th ACM Int’l Conf. on Information and Knowledge Management, page 844–853,
New York, NY, USA, 2021. ACM.

[99] Y.-S. Kim and K.-H. Lee. Extracting logical structures from html tables. Computer
Standards and Interfaces, 30(5):296 – 308, 2008.

[100] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014.

[101] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks, 2017.

[102] G. Klyne and J. J. Carroll. Resource description framework (rdf): Concepts and ab-
stract syntax, 2004. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[103] E. Koci, D. Kuban, N. Luettig, D. Olwig, M. Thiele, J. Gonsior, W. Lehner, and
O. Romero. Xlindy: Interactive recognition and information extraction in spread-
sheets. In Symposium on Document Engineering. ACM, 2019.

[104] E. Koci, M. Thiele, O. Romero, and W. Lehner. Cell classification for layout recognition
in spreadsheets. In Int’l Conf. on Knowledge Discovery, Knowledge Engineering, and
Knowledge Management, pages 78–100. Springer, 2016.

[105] E. Koci, M. Thiele, O. Romero, and W. Lehner. A machine learning approach for layout
inference in spreadsheets. In Int’l Joint Conf. on Knowledge Discovery, Knowledge
Engineering and Knowledge Management, page 77–88. SCITEPRESS, 2016.

[106] E. Koci, M. Thiele, O. Romero, and W. Lehner. Table identification and reconstruction
in spreadsheets. In Int’l Conf. on Advanced Information Systems Engineering, pages
527–541. Springer, 2017.

[107] E. Koci, M. Thiele, O. Romero, and W. Lehner. A genetic-based search for adaptive
table recognition in spreadsheets. In Int’l Conf. on Document Analysis and Recogni-
tion, pages 1274–1279, 2019.

[108] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

[109] A. Kristiadi, M. A. Khan, D. Lukovnikov, J. Lehmann, and A. Fischer. Incorporating
literals into knowledge graph embeddings, 2018.

146

[110] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[111] A. Kumar, S. S. Singh, K. Singh, and B. Biswas. Link prediction techniques, applica-
tions, and performance: A survey. Physica A-statistical Mechanics and Its Applica-
tions, 553:124289, 2020.

[112] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Int’l Conf. on Machine
Learning, page 282–289. Morgan Kaufmann Publishers, 2001.

[113] A. Langegger and W. Wöß. Xlwrap – querying and integrating arbitrary spreadsheets
with sparql. In The Semantic Web, pages 359–374. Springer, 2009.

[114] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

[115] M. Lefrançois, A. Zimmermann, and N. Bakerally. A sparql extension for generating
rdf from heterogeneous formats. In The Semantic Web, pages 35–50. Springer, 2017.

[116] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and searching web tables
using entities, types and relationships. Proc. VLDB Endow., 3(1–2):1338–1347, 2010.

[117] Q. Liu, S. Tang, X. Zhang, X. Zhao, B. Y. Zhao, and H. Zheng. Network growth and
link prediction through an empirical lens. Proc. of the 2016 Internet Measurement
Conf., 1:1–15, 2016.

[118] W.-Y. Loh. Classification and regression trees. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 1(1):14–23, 2011.

[119] D. Lopresti and G. Nagy. Automated table processing: An (opinionated) survey. In
IAPR Workshop on Graphics Recognition, pages 109–134, 1999.

[120] D. Lopresti and G. Nagy. A tabular survey of automated table processing. In Int’l
Workshop on Graphics Recognition, pages 93–120. Springer, 1999.

[121] H. Masuda, S. Tsukamoto, S. Yasutomi, and H. Nakagawa. Recognition of html table
structure. In Int’l Joint Conf. on Natural Language Processing, pages 183–188, 2004.

[122] N. D. Mauro, F. Esposito, and S. Ferilli. Finding critical cells in web tables with srl:
Trying to uncover the devil’s tease. In 12th Int’l Conf. on Document Analysis and
Recognition, pages 882–886, 2013.

147

[123] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representa-
tions of words and phrases and their compositionality. In Advances in Neural Infor-
mation Processing Systems, 10 2013.

[124] N. Milosevic, C. Gregson, R. Hernandez, and G. Nenadic. Disentangling the structure
of tables in scientific literature. In Int’l Conf. on Applications of Natural Language to
Information Systems, volume 9612, pages 162–174, 06 2016.

[125] N. Milosevic, C. Gregson, R. Hernandez, and G. Nenadic. A framework for information
extraction from tables in biomedical literature. Int’l Journal on Document Analysis and
Recognition (IJDAR), 02 2019.

[126] V. Mulwad, T. Finin, and A. Joshi. A Domain Independent Framework for Extracting
Linked Semantic Data from Tables, pages 16–33. Springer, 07 2012.

[127] V. Mulwad, T. Finin, and A. Joshi. Semantic message passing for generating linked
data from tables. In The Semantic Web Conference, pages 363–378, Berlin, Heidel-
berg, 2013. Springer.

[128] G. Nagy, D. Embley, M. Krishnamoorthy, and S. Seth. Clustering header categories
extracted from web tables. Proc. Int’l Society for Optical Engineering, 9402, 02 2015.

[129] N. Novelli and R. Cicchetti. Fun: An efficient algorithm for mining functional and
embedded dependencies. In Int’l Conf. on Database Theory, pages 189–203, 2001.

[130] L. Obrst. Ontologies for semantically interoperable systems. In Proc. of Int’l Conf. on
Information and Knowledge Management, page 366–369, New Orleans, Louisiana,
USA, 2003. ACM.

[131] J. Pearl, M. Glymour, and N. Jewell. Causal Inference in Statistics: A Primer. Wiley,
2016.

[132] F. Pedregosa and et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[133] C. Peterman, C. H. Chang, and H. Alam. A system for table understanding. In Sym-
posium on document image understanding technology, pages 55–62, 1997.

[134] M. Pham, S. Alse, C. A. Knoblock, and P. Szekely. Semantic labeling: A domain-
independent approach. In The Semantic Web Conf., pages 446–462, Cham, Ger-
many, 2016. Springer.

[135] S. Y. Philip, J. Han, and C. Faloutsos. Link mining: Models, algorithms, and applica-
tions. Springer, 2010.

148

[136] D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table extraction using conditional ran-
dom fields. In Int’l ACM Conf. on Research and development in information retrieval,
pages 235–242, 2003.

[137] A. Pivk, P. Cimiano, Y. Sure, M. Gams, V. Rajkovič, and R. Studer. Transforming arbi-
trary tables into logical form with tartar. Data and Knowledge Engineering, 60(3):567
– 595, 2007.

[138] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[139] V. Raman and J. Hellerstein. Potter’s wheel: An interactive data cleaning system. In
Int’l Conf. Very Large Data Bases, page 381–390, 09 2001.

[140] S. K. Ramnandan, A. Mittal, C. A. Knoblock, and P. Szekely. Assigning semantic
labels to data sources. In European Semantic Web Conf., pages 403–417. Springer,
2015.

[141] T. Rebele, F. Suchanek, J. Hoffart, J. Biega, E. Kuzey, and G. Weikum. Yago: A
multilingual knowledge base from wikipedia, wordnet, and geonames. In Int’l Conf.
on Semantic Web, pages 177–185, 10 2016.

[142] RedHat. Drools: A business rules management system (brms) solution., 2020.
https://https://www.drools.org/.

[143] M. Resnik. Scrach, 2006. https://scratch.mit.edu/.

[144] D. Ritze, O. Lehmberg, and C. Bizer. Matching html tables to dbpedia. In Int’l Conf.
on Web Intelligence, Mining and Semantics. ACM, 2015.

[145] N. Rümmele, Y. Tyshetskiy, and A. Collins. Evaluating approaches for supervised
semantic labeling. In Workshop on Linked Data on the Web co-located with The Web
Conf., volume 2073 of CEUR, Lyon, France, 2018. TheWebConf Workshop.

[146] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling. Modeling
relational data with graph convolutional networks, 2017.

[147] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed. Deepdesrt: Deep learning
for detection and structure recognition of tables in document images. In IAPR Int’l
Conf. on document analysis and recognition (ICDAR), volume 1, pages 1162–1167.
IEEE, 2017.

[148] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From The-
ory to Algorithms. Cambridge University Press, 2014.

149

[149] A. Shigarov. Table understanding using a rule engine. Expert Systems with Applica-
tions, 42:929–937, 02 2015.

[150] A. Shigarov, V. Khristyuk, A. Mikhailov, and V. Paramonov. Tabbyxl: Rule-based
spreadsheet data extraction and transformation. SoftwareX, pages 59–75, 10 2019.

[151] M. A. Shigarov A. Rule-based spreadsheet data transformation from arbitrary to re-
lational tables. Information Systems, pages 123–136, 8 2017.

[152] M. K. Smith, C. Welty, and D. L. McGuinness. Owl web ontology language, 2004.
https://www.w3.org/TR/owl-guide/.

[153] J. Son, J. Lee, S. Park, H. Song, S. Lee, and S. Park. Discriminating meaningful
web tables from decorative tables using a composite kernel. In Int’l Conf. on Web
Intelligence and Intelligent Agent Technology, volume 1, pages 368–371, 2008.

[154] M. Taheriyan, C. A. Knoblock, P. Szekely, and J. L. Ambite. Learning the semantics
of structured data sources. Journal of Web Semantics, 37-38:152 – 169, 2016.

[155] K. Takeoka, M. Oyamada, S. Nakadai, and T. Okadome. Meimei: An efficient proba-
bilistic approach for semantically annotating tables. In AAAI Conf. on Artificial Intelli-
gence, volume 33, pages 281–288, 2019.

[156] D. Taniar and J. Rahayu. Web Semantics & Ontology. IGI Global research collection.
Idea Group Pub., 2006.

[157] Trifacta. Trifacta wrangler, 2020. https://www.trifacta.com/.

[158] I. Valera and Z. Ghahramani. Automatic discovery of the statistical types of variables
in a dataset. In Proc. of Machine Learning Research, volume 70, pages 3521–3529,
2017.

[159] G. J. J. van den Burg, A. Nazábal, and C. Sutton. Wrangling messy csv files by detect-
ing row and type patterns. Data Mining and Knowledge Discovery, 33(6):1799–1820,
2019.

[160] K. N. Vavliakis, T. K. Grollios, and P. A. Mitkas. Rdote - transforming relational
databases into semantic web data. In Int’l Conf. on ISWC - Posters and Demon-
strations Track - Volume 658, page 121–124. CEUR-WS.org, 2010.

[161] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph
attention networks, 2017.

[162] P. Venetis, A. Halevy, J. Madhavan, M. Paşca, W. Shen, F. Wu, G. Miao, and C. Wu.
Recovering semantics of tables on the web. Proc. VLDB Endow., 4(9):528–538, 2011.

150

[163] B. Vu, C. Knoblock, and J. Pujara. Learning semantic models of data sources
using probabilistic graphical models. In The World Wide Web Conference, page
1944–1953, San Francisco, California, USA, 2019. ACM.

[164] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu. Heterogeneous graph
attention network. In The World Wide Web Conference, page 2022–2032, New York,
NY, USA, 2019. ACM.

[165] Y. Wang and J. Hu. A machine learning based approach for table detection on the
web. In Int’l Conf. on World Wide Web, page 242–250. ACM, 2002.

[166] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’networks, volume
393, pages 440–442. Nature Publishing Group, New York, USA, 1998.

[167] X. Wei, B. Croft, and A. McCallum. Table extraction for answer retrieval. Information
retrieval, 9(5):589–611, 2006.

[168] G. Weikum, X. L. Dong, S. Razniewski, F. Suchanek, et al. Machine knowledge:
Creation and curation of comprehensive knowledge bases. Foundations and Trends®
in Databases, 10(2-4):108–490, 2021.

[169] W. Wilcke, P. Bloem, V. de Boer, and R. van’t Veer. End-to-end learning on multimodal
knowledge graphs. Under Submission, 2021.

[170] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive sur-
vey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 32(1):4–24, 2021.

[171] R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun. Representation learning of knowledge
graphs with entity descriptions. In Proc. of the AAAI Conf. on Artificial Intelligence,
volume 30, Phoenix, USA, 2016. PKP.

[172] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations for
learning and inference in knowledge bases, 2014.

[173] Y. Yang, R. N. Lichtenwalter, and N. V. Chawla. Evaluating link prediction methods.
Knowledge and Information Systems, 45(3):751–782, oct 2014.

[174] R. Zanibbi, D. Blostein, and J. R. Cordy. A survey of table recognition. Document
Analysis and Recognition, 7(1):1–16, 2004.

[175] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla. Heterogeneous graph
neural network. In Proceedings of the 25th ACM SIGKDD Int’l Int’l on Knowledge

151

Discovery and Data Mining, KDD ’19, page 793–803, New York, NY, USA, 2019.
Association for Computing Machinery.

[176] D. Zhang, M. Hulsebos, Y. Suhara, c. Demiralp, J. Li, and W.-C. Tan. Sato: Contextual
semantic type detection in tables. Proc. VLDB Endow., 13(12):1835–1848, jul 2020.

[177] M. Zhang and Z. Zhou. A review on multi-label learning algorithms. IEEE Transactions
on Knowledge and Data Engineering, 26(8):1819–1837, 2014.

[178] S. Zhang and K. Balog. Web table extraction, retrieval, and augmentation: A survey.
ACM Trans. Intell. Syst. Technol., 11(2), jan 2020.

[179] Z. Zhang. Effective and efficient semantic table interpretation using tableminer+. Se-
mantic Web, 8(6):921–957, 2017.

152

	Introduction
	Table understanding approaches
	Preliminaries
	Definition of ``table'' and issues in automatic processing
	Classes of layouts
	Generic tables vs other kinds of tables
	Main ML classifiers used for table understanding
	Link prediction methods

	Approaches for the table understanding problem
	The localization and segmentation steps
	The functional and structural analysis steps
	The interpretation step

	Extracting and transforming tables
	Basic extraction and transformation tools
	Transformation tools to the relational/RDF models
	Programming by example approaches

	Knowledge graph construction
	Concluding remarks

	Background
	Table representation and type system
	Mixed types
	Union types

	Ontology and knowledge graphs
	Semantic description

	Semi-automatic type inference approach
	Table identification
	Type recognizers
	Type inference approach
	The main model
	Training of the main model

	Visualization and type adjustment
	Main interfaces and error identification
	Data type modification
	Identification of a mixed type
	Correlation between rows

	Experimental results
	Validation of real documents
	Evaluation of usability - phase 1

	Concluding remarks

	Semantic descriptions of the table content
	Overview of the Methodology
	Graph embedding
	Construction of the complete SD
	Construction of the initial SD
	Requirements for the complete SD
	Generative algorithm of the complete SD

	Weighting systems
	Ontology-based weighting system
	KG-based weighting systems

	Inclusion of properties for unmatched table columns
	Generation of the concise SD
	Experimental evaluation
	Validation of the GNN model
	Validation of the concise SDs
	Validation of the prediction of unmatched table columns

	Concluding remarks

	Visual management of the semantic description and KG construction
	Interfaces for the management of SD
	Graphical representation of SD
	Overview of the main interface
	Visual operations on the table columns
	Visual Operations on the graphical representation of SD

	Generation of the knowledge graph
	Transformation functions
	Algorithm for the KG construction
	Interface for completing missing information

	Evaluation of usability - phase 2

	Conclusions and Future Work
	References

