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A B S T R A C T

Maize, a crucial crop globally cultivated across vast regions, especially in sub-Saharan Africa, Asia, and
Latin America, occupies 197 million hectares as of 2021. Various statistical and machine learning models,
including mixed-effect models, random coefficients models, random forests, and deep learning architectures,
have been devised to predict maize yield. These models consider factors such as genotype, environment,
genotype-environment interaction, and field management. However, the existing models often fall short of
fully exploiting the complex network of causal relationships among these factors and the hierarchical structure
inherent in agronomic data. This study introduces an innovative approach integrating random effects into
Bayesian networks (BNs), leveraging their capacity to model causal and probabilistic relationships through
directed acyclic graphs. Rooted in the linear mixed-effects models framework and tailored for hierarchical
data, this novel approach demonstrates enhanced BN learning. Application to a real-world agronomic trial
produces a model with improved interpretability, unveiling new causal connections. Notably, the proposed
method significantly reduces the error rate in maize yield prediction from 28% to 17%. These results advocate
for the preference of BNs in constructing practical decision support tools for hierarchical agronomic data,
facilitating causal inference.
1. Introduction

The global economy relies on agriculture as a vital source of in-
come and employment as well as food, ensuring food quality and
safety, environmental preservation, fostering comprehensive rural de-
velopment, and upholding social cohesion in rural areas. Given the
projected global population growth, which is expected to reach 9.7
billion by 2050 (Pew Research Center, 2019), it is estimated that
global agricultural production must increase by 60% (Alexandratos and
Bruinsma, 2012) to meet the increase in demand. With these premises,
improving crop management systems is essential to match future needs.
Maize is one of the most widely cultivated crops in sub-Saharan Africa,
Asia and Latin America, with a total area of 197 M ha (FAO et al.,
2021). It provides almost all the caloric intake in the Americas (285
kcal/capita/day) and in Africa (374 kcal/capita/day; FAOSTAT, 2019).
Predicting the grain yield of this cultivar provides valuable information
about the expected crop output before harvest, enabling more effective
management practices. To achieve accurate predictions, it is essential
to consider the interplay between genotype, environment, and field
management. Widely adopted statistical models for this task include
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linear mixed-effect and random coefficient models that use genome-
wide association study (GWAS) to study the causal effects of genotype,
environmental variables and their interactions (Zorić et al., 2022;
Ndlovu et al., 2022; Tolley et al., 2023; Rotili et al., 2020).

More recently, machine learning models such as random forests
(Yang et al., 2022; Leroux et al., 2019), naive Bayes and SVM (Mu-
pangwa et al., 2020) have been applied to maize crop yield prediction
using multi-temporal UAV remote sensing data. Deep learning ar-
chitectures such as Long Short-Term Memory (LTSM; Zhang et al.,
2021; Krishna et al., 2023) and Convolutional Neural Network (CNN;
Yang et al., 2021) have also been explored. Despite their predictive
performance, which rests on their ability to encode complex non-
linear relationships, these models are not causal. Outside of randomized
experiments, they are particularly vulnerable to confounding (Pearl,
2009), that is, learning spurious associations as causal relationships
due to unobserved variables acting as common causes of treatment and
outcome and or due to selection bias. They also often disregard the
hierarchical structure that is typical of the data collected in agronomic
studies, which is highly informative.
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In general, studies encompassing heterogeneous collections of re-
lated data sets (RDs) in which the relationships between the covariates
and the outcome of interest may differ (say, in slope or variance;
Gelman and Hill, 2007) are widespread in many fields, from clinical
trials to environmental science (Spiegelhalter et al., 2004; Qian et al.,
2010). Hierarchical (multilevel) models are commonly adopted to pool
information across different subsets of the data while accounting for
their specific features (Gelman et al., 2014). However, heterogeneity is
not the only challenge in fitting a model on such data: the variables
involved are typically related by a complex network of causal relation-
ships, making their joint distribution challenging to learn (especially)
from small data sets.

In this work, we chose to learn a Bayesian Network (BN) from RDs
focused on the agronomic performance of maize. BNs can be learned
and used as causal network models whose arcs represent cause–effect
elationships and which can be used for causal inference following
he work of Judea Pearl (Pearl, 2009). In the case of RDs, learning
Ns is also related to transfer learning (Pan and Yang, 2010), which is
ot widely documented in the literature. Transfer learning has mainly
ocused on applications involving deep learning, with very few publica-
ions involving BNs. Notably, recent work by Yan et al. (2023) proposed
structure learning approach based on conditional independence tests

or operational adjustments in a flotation process characterized by a
mall data set with a limited sample size. To induce transfer learning,
hey considered the results of the independence tests performed on
ariables 𝑋𝑖 and 𝑋𝑗 in both the source and target data sets, which
iffered in terms of sample size. Other authors have suggested using
rder-search algorithms to learn BN structures, introducing a structural
ias term to facilitate the transfer of information between data sets
nd achieve more robust networks (Oyen and Lane, 2015). BNs and
tructural equation models have proven successful in the agronomic
ector, optimizing various management practices such as phytosanitary
reatments (Lu et al., 2020), irrigation management strategies (Ilić
t al., 2022) and soil management (Hill et al., 2017), to minimize
nvironmental impact and mitigate climate change. However, in the
gronomic literature, transfer learning has predominantly focused on
rop disease classification using deep learning techniques like convolu-
ional neural networks (Coulibaly et al., 2019; Paymode and Malode,
022), with little research involving BNs. A thorough exploration of
he literature reveals various statistical methods for predicting maize
rain yield, summarised in Table 1. We limited ourselves to statistical
pproaches in keeping with our focus on modelling frameworks that
upport causal reasoning.

We learned the structure and the parameters of a Conditional Gaus-
ian Bayesian Network (CGBN) from a real-world agronomic data set
ith a hierarchical structure. To account for the high heterogeneity

hat characterizes such data, we developed a novel approach that
ntegrates random effects into the local distributions in the BN, building
n Scutari et al. (2022). Random effects are the salient feature of linear
mixed-effects models (LME; Pinheiro and Bates, 2000). LME models are
hierarchical models that extend the classical linear regression model
by adding a second set of coefficients called ‘‘random effects’’, which
are jointly distributed as a multivariate normal. The other coefficients
are called ‘‘fixed effects’’. The coefficients associated with the random
effects have mean zero, and they naturally represent the deviations of
the effects of the parents in individual data sets from their average
effects across data sets, represented by the fixed effects.

The hierarchical estimation in BNs learned from RDs was initially
introduced by Azzimonti et al. (2019), who proposed a novel ap-
proach to tackle this challenge for discrete BNs using a hierarchical
multinomial-Dirichlet model. That approach outperforms a traditional
multinomial-Dirichlet model and is competitive with random forests,
but as the number of domains increases, the estimation becomes more
complex, necessitating the use of approximations such as variational or
2

Markov chain Monte Carlo inference. (
The remainder of the paper is structured as follows. In Section 2, we
briefly describe the data set (Section 2.1), we introduce the background
of BN (Section 2.2), we introduce the local distributions and the struc-
ture learning approach used to learn the BN (Section 2.3) and we how
we evaluated its performance (Section 2.4). In Section 3, we present
and evaluate the BN, and in Section 4, we discuss its performance
before suggesting possible future research directions.

2. Materials and methods

2.1. Background of Bayesian network

Bayesian networks (BNs; Koller and Friedman, 2009) provide a
powerful tool to learn and model highly structured relationships be-
tween variables. A BN is a graphical model defined on a set of random
variables 𝐗 = {𝑋1,… , 𝑋𝐾} and a directed acyclic graph (DAG)  that
escribes their relationships: nodes correspond to random variables,
nd the absence of arcs between them implies the conditional indepen-
ence or the lack of direct causal effects (Pearl, 2009). In particular, a
ariable 𝑋𝑖 is independent of all other non-parent variables in  given
he set of variables associated with its parents 𝑝𝑎(𝑋𝑖). A DAG  then
nduces the following factorization:

(𝐗 ∣ , 𝛩) =
𝐾
∏

𝑖=1
𝑃 (𝑋𝑖 ∣ 𝑝𝑎(𝑋𝑖), 𝛩𝑋𝑖

), (1)

here 𝛩𝑋𝑖
are the parameters of the conditional distribution of 𝑋𝑖 ∣

𝑎(𝑋𝑖). In Eq. (1), the joint multivariate distribution of 𝐗 is reduced to a
ollection of univariate conditional probability distributions, the local
istributions of the individual nodes 𝑋𝑖. If all sets 𝑝𝑎(𝑋𝑖) are small, (1)
s very effective in replacing the high-dimensional estimation of 𝛩 with
collection of low-dimensional estimation problems for the individual
𝑋𝑖

. Another consequence of (1) is the existence of the Markov blanket
f each node 𝑋𝑖, the set of nodes that makes 𝑋𝑖 conditionally inde-
endent from the rest of the BN. It comprises the parents, the children
nd the spouses of 𝑋𝑖, and includes all the knowledge needed to do
nference on 𝑋𝑖, from estimation to hypothesis testing to prediction.

The process of learning a BN from data can be divided into two
teps:

(, 𝛩 ∣ )
⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

BN learning

= 𝑃 ( ∣ )
⏟⏞⏟⏞⏟

structure learning

⋅ 𝑃 (𝛩 ∣ ,)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

parameter learning

.

tructure learning aims to find the dependence structure represented
y the DAG given the data . Several algorithms are described in
he literature for this task. Constraint-based algorithms such as the PC
lgorithm (Spirtes et al., 2000) use a sequence of independence tests
ith increasingly large conditioning sets to find which pairs of variables

hould be connected by an arc (or not), and then they identify arc
irections based on the difference in conditional independence patterns
etween v-structures (of the form 𝑋𝑗 → 𝑋𝑖 ← 𝑋𝑘, with no arc between
𝑗 and 𝑋𝑘) and other patterns of arcs. Score-based algorithms instead
se heuristics (like hill climbing; Russell and Norvig, 2009) or exact
ethods (as in Cussens, 2012) that optimize a network score reflecting

he goodness of fit of candidate DAGs to select an optimal one. Param-
ter learning provides an estimate of 𝛩 through the parameters in the
𝑋𝑖

conditional to the learned DAG.
Structure learning algorithms are distribution-agnostic, but the

hoice of the conditional independence tests and the network scores
epend on the types of distributions we assume for the 𝑋𝑖. The three
ost common choices are discrete BNs, in which the 𝑋𝑖 are multinomial

andom variables; Gaussian BNs (GBNs), in which the 𝑋𝑖 are univariate
ormal random variables linked by linear dependence relationships;
nd conditional Gaussian BNs (CGBNs), in the 𝑋𝑖 are either multinomial
andom variables (if discrete) or mixtures of normal random variables

if continuous). Common scores for all these choices are the Bayesian
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Table 1
Statistical methods used for maize grain yield prediction from 2018 to 2023 in the literature. We reported the data structure, the variables and the method used, and whether
the method is causal. Abbreviations used: greenness index (GI), modified simple ratio (MSR), normalized difference vegetation index (NDVI), spectral polygon vegetation index
(SPVI), ratio vegetation index (RVI), chlorophyll index (CInir), soil-adjusted vegetation index (SAVI), triangular vegetation index (TVI), enhanced vegetation index (EVI), wide
dynamic range vegetation index (WDRVI), temperature, hours of sunshine (RAD), Rainfall, Standardized Precipitation Evapotranspiration index (SPEI), Peters and Clark Momentary
Conditional Independence (PCMCI), Linear mixed model (LMM), Linear regression (LM), Hierarchical linear model (HLM), Multiple linear regression (MLR), Principal component
analysis (PCA), Polynomial regression model (PRM), Generalized linear model (GLM), and Bayesian network (BN).

Data structure Variables Method Causal Multi-response Reference

Period: 2001–2019
N◦ locations: 5
N◦ trials: 130

FAO maturity groups
Precipitation,
Air temperature
Solar radiation ,
Stress degree days

LMM No No Zorić et al. (2022)

Period: 2011–2015
N◦ locations: 3
N◦ trials: 13

Soil condition,
Genotype data

LMM,
PCA

No No Ndlovu et al. (2022)

Period: 2014–2017
N◦ locations: 108
N◦ plots: 59,416

PAR, Temperature,
Humidity,
Surface pressure
Wind speed,
Precipitation
Soil characteristics,
Genotypic data

LMM, No No Tolley et al. (2023)

Period: 2014–2016
N◦ locations: 9

Soil type,
Sowing data,
Hybrids
Plant density,
Row configuration

LMM No No Rotili et al. (2020)

Period: 2016–2017
N◦ locations: 3
N◦ fields: 18

NDVI, NDVIG,
NDVIre

LM,
GLM

No No Schwalbert et al. (2018)

Period: 2000–2016 Temperature,
Precipitation
Vapour pressure,
Shortwave radiant flux
Soil water content, NDVI

MLR No No Kern et al. (2018)

Period: 1981–2016
N◦ locations: 12
N◦ counties: 1051

Vapour pressure,
Temperature
Precipitation, EVI

PRM No No Li et al. (2019)

Period: 2014–2018
N◦ locations: 23
N◦ fields: 94,000

Hybrids,
Plant height,
Tassel height

LMM No No Anderson II et al. (2019)

Period: 1986/87, 2015/16 Temperature,
Precipitation
Heat Magnitude Day,
SPEI

PCMCI Yes Yes Simanjuntak et al. (2023)

Period: 2016–2019
N◦ locations: 10

GI, MSR,
NDVI,
SPVI,
RVI, CInir,
SAVI, TVI,
EVI, WDRVI,
Temperature,
RAD, Rainfall

HLM No No Zhu et al. (2021)

Period: 2000–2018
N◦ locations: 9
N◦ fields: 11

Extreme degree days,
Growing degree days,
Precipitation

Causal
forest

Yes Yes Kluger et al. (2022)

Period: 3-year Temperature,
Precipitation

BN Yes Yes Chamorro et al. (2023)
g
p
t
t
c

information criterion (BIC; Schwarz, 1978) or the marginal likelihood
of  given  (Heckerman and Geiger, 1995). As for the conditional
ndependence tests, we refer the reader to Edwards (2000), which
overs various options for all types of BNs.

Parameter learning uses maximum-likelihood estimates or Bayesian
osterior estimates with non-informative priors for all types of BNs
Koller and Friedman, 2009). All the conditional independence tests,
he network scores and the parameter estimators in the literature
eferenced above can be computed efficiently thanks to (1) because
hey factorise following the local distributions.
3

2.2. The data set: Agronomic performance of maize

This study uses the data from Millet et al. (2019b), whose authors
are well-known in plant science research. They conducted a randomised
enome-wide association study to assess the genetic variability of plant
erformance under different year-to-year and site-to-site climatic condi-
ions. The original analysis of these data in Millet et al. (2016) confirms
he quality of this experimental design in terms of controlling both
onfounding and various sources of noise. Overall, 29 field experiments
were arranged in Europe, nine sites, and in Chile, one site: each of
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them was defined by a combination of year, site and water regime
(watered or rain-fed), and 244 varieties of maize (Zea mays L.) were
studied. Each experiment was designed as alpha-lattice design (Patter-
son and Williams, 1976), with two replicates of the watered regime and
three for the rain-fed regime. The data were collected at experimental
sites in France, Germany, Italy, Hungary, Romania, and Chile between
2011 and 2013. After filtering out incomplete observations, the study
analysed eight sites, each with a different sample size: Gaillac (France,
𝑛 = 2437), Nerac (France, 𝑛 = 1716), Karlsruhe (Germany, 𝑛 =
2626), Campagnola (Italy, 𝑛 = 1260), Debrecen (Hungary, 𝑛 = 2181),
Martonvasar (Hungary, 𝑛 = 1260), Craiova (Romania, 𝑛 = 1055), and
Graneris (Chile, 𝑛 = 760). Many weather variables were measured
for each site, such as air temperature, relative humidity (RH), wind
speed and light; they were measured every hour at 2 m height. Soil
water potential was measured daily at 30, 60, and 90 cm depths. For
this analysis, we decided to use only air temperature and RH because
they are the more basic variables that can describe plant growth.
Since weather variables were measured for each site instead of for
each plot, we decided to aggregate the weather data in order to have
the average temperature (◦C), the diurnal temperature range, the average
elative humidity (%) and the diurnal relative humidity range (%) for each

site and year for three different periods, which correspond to the main
phenological stages of maize: seeding, germination, and emergence of
the seeds, the vegetative phase, where leaves emerge (May to June),
the flower development, pollen shedding, grain development (July to
August), maturation of the grain, and harvest (September to October).
Furthermore, random noise with a mean of 0 and a standard deviation
of 0.1 was added to each weather observation to simulate the sensor’s
measurement error and avoid blocks of identical measurements in each
individual site.

At the end of the experiment, the phenological variables listed
below were measured for each plot at each site:

• The grain yield adjusted at 15% grain moisture, in ton per hectare
(t/ha).

• The grain weight of individual grains (mg).
• The anthesis, male flowering (pollen shed), in thermal time cumu-

lated since emergence (d20 ◦C).
• The sinking, female flowering (silking emergence), in thermal time

cumulated since emergence (d20 ◦C).
• The plant height from ground level to the base of the flag leaf

(highest) leaf (cm).
• The tassel height, plant height including tassel, from ground level

to the highest point of the tassel (cm).
• The ear height, ear insertion height, from ground level to the ligule

of the highest ear leaf (cm).

2.3. Learning algorithm

We learned the structure of the BN, denoted 𝐿𝑀𝐸 , following the
steps in Algorithm 1.

For the hill-climbing algorithm, we used the implementation in
the 𝑏𝑛𝑙𝑒𝑎𝑟𝑛 R package (Scutari, 2010) and the BIC score. We pro-
vided a list of arcs to be excluded (blacklist) or included (whitelist)
by hill-climbing to avoid evaluating unrealistic relationships (such
as the Average temperature of July–Aug → Average temperature of
May–June).

Firstly, we regressed the grain yield against all the available vari-
ables for all combinations of site and variety. We used the residuals’
mean and variance from the regression for each combination of site
and variety to cluster them using the agglomerative Ward clustering
algorithm (Murtagh and Legendre, 2014) from the 𝑠𝑡𝑎𝑡𝑠 R package. The
resulting discrete variable was added to the data used to identify the
4

RDs.
Algorithm 1: Structure learning 𝐿𝑀𝐸 .
Data: data set , 𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡, and a 𝑤ℎ𝑖𝑡𝑒𝑙𝑖𝑠𝑡
Result: The DAG 𝑚𝑎𝑥 that maximises BIC(𝑚𝑎𝑥 ,).

1. Run a linear regression on grain yield and extract the
residuals 𝜖𝑖.

2. For each Site × Variety combination, compute the mean and
the standard deviation of 𝜖𝑖.

3. Perform hierarchical clustering on the means and standard
deviations of the residuals from each site-variety
combination.

4. Add a new variable with the cluster labels to .
5. Compute the score of ,  = BIC(,) and set 𝑚𝑎𝑥 = 

and 𝑚𝑎𝑥 = .
6. Hill-climbing : repeat as long as 𝑚𝑎𝑥 increase:

(a) Add, delete or reverse all possible arc in 𝑚𝑎𝑥 resulting
in a DAG.

i. compute BIC of the modified DAG ∗,
𝐺∗ = BIC(∗,);

ii. if 𝐺∗ > 𝑚𝑎𝑥 and 𝐺∗ >  set  = ∗ and
 = ∗ .

(b) Update 𝑚𝑎𝑥 with the new value of ∗ .

7. Return the DAG .

Following the approach and the notation described in Scutari et al.
(2022), we assumed that each RD is generated by a GBN and that
all GBNs share a common underlying network structure but different
parameter values. To ensure the partial pooling of information between
RDs, the clusters are made a common parent for all phenological
variables and incorporated into the local distributions as a random
effect. Therefore, we modelled the local distributions for those variables
as a linear mixed-effect model using the 𝑙𝑚𝑒4 R package (Bates et al.,
2015):

𝑋𝑖,𝑗 = (𝜇𝑖,𝑗 + 𝑏𝑖,𝑗,0) +𝜫𝑋𝑖
(𝛽𝑖 + 𝑏𝑖,𝑗 ) + 𝜖𝑖,𝑗 , (2)

(

𝑏𝑖,𝑗,0
𝑏𝑖,𝑗

)

∼ 𝑁(𝟎, 𝜮̃𝑖),

(𝜖𝑖,1,… , 𝜖𝑖,𝑗 ,…)𝑇 ∼ 𝑁(𝟎, 𝜎2𝑖 𝑰𝑛𝑗 )

where bold letters indicate matrices. The only exception was grain
yield because it also required a model for variances, which have
been implemented using 𝑛𝑙𝑚𝑒 R package (Heisterkamp et al., 2017) as
follows:

𝑋𝑖,𝑗 = (𝜇𝑖,𝑗 + 𝑏𝑖,𝑗,0) +𝜫𝑋𝑖
𝛽𝑖 + 𝜖𝑖,𝑗 , (3)

𝑏𝑖,𝑗,0 ∼ 𝑁(0, 𝜎2𝑏,𝑖),

𝑁(0, (𝜎2𝑖,1, 𝜎
2
𝑖,2,… , 𝜎2𝑖,𝑗 ,…)𝑰𝑛𝑗 ),

(𝜖𝑖,1,… , 𝜖𝑖,𝑗 ,…)𝑇 ∼ 𝑁(𝟎, (𝜎2𝑖,1,… , 𝜎2𝑖,𝑗 ,…)𝑰𝑛𝑗 ),

𝜎2𝑖,𝑗 (𝜈) = |𝜈|2𝜃𝑗 .

In both (2) and (3), the notation is as follows:

• 𝑗 = 1,… , 𝐽 are the clusters identifying the RDs;
• 𝜫𝑋𝑖

is the design matrix associated to the parents of 𝑋𝑖;
• 𝑏𝑖,𝑗,0 is the random intercept;
• 𝑏𝑖,𝑗 is the random slope parameter for the 𝑗th cluster;
• 𝜮̃𝑖 is the 𝑛𝑗 × 𝑛𝑗 block of 𝜮𝑖 associated with the 𝑗th cluster;
• 𝜎2𝑖,𝑗𝑰𝑛𝑗 is the 𝑛𝑗 × 𝑛𝑗 matrix arising from the assumption that

residuals are homoscedastic in (2);
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Fig. 1. Structure of the BN 𝐿𝑀𝐸 learned with Algorithm 1. The nodes represent: the average temperature May–June (T1), the average temperature Sept–Oct (T3), the diurnal
temperature range May–June (T4), the diurnal temperature range July–Aug (T5), the diurnal temperature range Sept–Oct (T6), the average RH May–June (RH1), the average RH
July–Aug (RH2), the average RH Sept–Oct (RH3), the diurnal RH range May–June (RH4), the diurnal RH range July–Aug (RH5), the diurnal RH range Sept–Oct (RH6), Silking
(Si), TH (Tassel height), PH (Plant height), EH (Ear height) and F (Clusters).
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• 𝜇𝑖,𝑗 is the intercept;
• and 𝛽𝑖 are the fixed effects.

n (3), we assumed the variance of residuals to be heteroscedastic and
ollowing a power function, where 𝜈 is the variance covariate and 𝜃𝑗
s the variance function coefficient that changes for every level of the
ommon discrete parent.

We modelled the weather variables using only fixed effects for
implicity:

𝑖 = 𝜇𝑖 +𝜫𝑋𝑖
𝛽𝑖 + 𝜖𝑖, 𝜖𝑖 ∼ 𝑁(0, 𝜎2𝑖 𝑰𝑛). (4)

We prevented the clusters from being their parent with the black-
list because the resulting arcs are not of interest from an agronomic
perspective.

From these assumptions, the BN 𝐿𝑀𝐸 we learned from the data
as a global distribution that is a mixture of multivariate normal
istributions like a CGBN.

.4. Predictive and imputation accuracy

The most important variable in this analysis was grain yield because
t is one of the key quantities used to evaluate an agronomic season. To
ssess the predictive ability of 𝐿𝑀𝐸 , we evaluated the Mean Absolute
ercentage Error (MAPE) of:

• the predictive accuracy of grain yield predictions in the scenarios
listed in Table A.2, which are meant to study the potential effect
of measuring a reduced set of variables in future years;

• the imputation accuracy for the grain yield in each site–variety
combination, which we removed in turn and imputed from the
rest.

s a term of comparison, we used a CGBN learned from the data
𝐶𝐺𝐵𝑁 ) and compared its performance with that of 𝐿𝑀𝐸 . We im-
lemented both prediction and imputation using likelihood weighting
Koller and Friedman, 2009; Darwiche, 2009).
5

To validate the learning strategy in Algorithm 1, we performed 50
eplications of hold-out cross-validation where 20% of the site–variety
ombinations were sampled and set aside to be used as a test set. The
emaining 80% was used as a training set to learn 𝐿𝑀𝐸 and 𝐶𝐺𝐵𝑁 .
e computed the predictions for each phenological node 𝑋𝑖 (except

or grain yield) from its Markov blanket and used these predictions
o predict the grain yield in turn. We used the kernel densities of the
redicted values and the resulting credible intervals with coverage 0.80
o assess the variability in prediction.

We are aware that predictive accuracy is not an adequate perfor-
ance measure for a causal model, which is why we also validated

t using expert knowledge from the literature in Section 4. However,
t allows for comparisons with other machine learning models that
annot be assessed causally, and it can be used to evaluate specific loss
unctions for 𝐿𝑀𝐸 in different application settings. A visual summary
f the above data analysis is reported as a mechanistic diagram as
upplementary Material.

. Results

The complete BNs 𝐿𝑀𝐸 and 𝐶𝐺𝐵𝑁 learned from the data are
hown in the Supplemental Material. Here, we show only the subgraph
round the variable grain yield for each BN in Figs. 1 and 2. Following
ection 2.3, we identified 60 site–variety clusters (with only 5 contain-
ng fewer than 100 observations) and used them as a discrete variable
et to be the parent of the phenological nodes.

The structure of 𝐿𝑀𝐸 is more complex than that of 𝐶𝐺𝐵𝑁 : 𝐿𝑀𝐸
as 118 arcs compared to the 92 of 𝐶𝐺𝐵𝑁 , and the average Markov
lanket size reflects that (17 for 𝐿𝑀𝐸 , 12 for 𝐶𝐺𝐵𝑁 ). Notably, we
iscovered more relationships for the phenological nodes, particularly
or the grain yield variable (Table A.3), which had eight more parents
han in 𝐶𝐺𝐵𝑁 .

The predictive accuracy for each of the scenarios reported in Ta-
le A.2 is shown in Fig. 3 for both 𝐿𝑀𝐸 and 𝐶𝐺𝐵𝑁 . Overall, 𝐿𝑀𝐸
utperformed 𝐶𝐺𝐵𝑁 in terms of MAPE. The exception was in a few
ases, specifically scenarios 7 to 11, 19, 20 and from 21 to 24, where
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Fig. 2. Structure of the BN 𝐶𝐺𝐵𝑁 . The nodes represent: the average temperature May–June (T1), the average temperature July–Aug (T2), the diurnal temperature range May–June
(T4), the diurnal RH range May–June (RH4), the diurnal RH range Sept–Oct (RH6), TH (Tassel height) and F (Clusters).
Fig. 3. Prediction accuracy of the learned BNs, 𝐿𝑀𝐸 (blue line) and 𝐶𝐺𝐵𝑁 (orange line), in terms of grain yield Mean Absolute Percentage Error (MAPE) of each scenario of
vidence propagation (definitions of the scenarios are reported in Table A.2). Lower values are better.
𝐶𝐺𝐵𝑁 demonstrated a lower MAPE than 𝐿𝑀𝐸 , albeit with a differ-
nce in MAPE of only 0.06. In contrast, when 𝐿𝑀𝐸 outperformed
𝐶𝐺𝐵𝑁 , the difference in MAPE was 0.14. This trend was particu-
larly evident in scenarios 27 to 32, where an increasing usage of
weather/phenological variables was provided. As expected, the scenar-
ios with the lowest MAPE utilized the Markov Blanket (scenario 31)
and the parents of grain yield (scenario 32).

The MAPE for the imputation of different site–variety combinations
is shown in Fig. 4. We observe that 𝐿𝑀𝐸 and 𝐶𝐺𝐵𝑁 perform similarly
or all combinations except those involving the sites of Craiova (num-
ered 250–500) and Campagnola (numbered 1250–1500), for which

has a higher MAPE than  .
6

𝐶𝐺𝐵𝑁 𝐿𝑀𝐸
The kernel densities of grain yield for the first nine runs of cross-
validation are shown in Fig. 5, full results are reported as Supple-
mentary Materials. The densities for the training set exhibit somewhat
heavier tails than those for the predicted values. Furthermore, the
predictive densities have narrower credible intervals than those from
the training set, particularly on the lower tail, and are more often
positively skewed. The mean values are nearly identical for both, at
approximately 7 t/ha, with a 0.8 credible interval [4 t/ha, 11 t/ha].

Finally, we employed a stepwise parent elimination algorithm to
search for non-significant effects in each of the local distributions of
the phenological variables. The BIC values consistently indicated that,
within  , the best set of effects were those selected by our method.
𝐿𝑀𝐸
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Fig. 4. Imputation accuracy of the learned BNs, 𝐿𝑀𝐸 (blue points) and 𝐶𝐺𝐵𝑁 (red points), in terms of grain yield Mean Absolute Percentage Error (MAPE) of each site–variety
combination, shown sequentially for brevity. Lower values are better.

Fig. 5. Kernel densities of the grain yield in the training set are represented by the solid curve, while the dashed curve depicts the kernel densities of the predicted grain yield
obtained through likelihood-weighted approximation during cross-validation. The kernel density-based credible interval at 80% for the grain yield in the training set is indicated
by the red line and for the predicted grain yield by the blue line. The mean is reported with a solid line for the grain yield of the training set and a dashed line for the predicted
grain yield.
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The only exception was the variable ‘‘tassel height’’, for which the
BIC was lower when the ‘‘diurnal RH range July–August’’ variable was
omitted. The same procedure was applied with the removal of random
effects from the local distributions. In this case, the set of effects
selected by our method still yielded the best BIC values. Furthermore,
we compared the BIC values for local distributions with and without
the random effects. Generally, the presence of random effects improved
goodness of fit, except for the variables ‘‘tassel height’’ and ‘‘silking’’,
which exhibited better BIC values in the absence of random effects. All
BIC results are reported in Tables A.4 and A.5. The BIC values of the
first row correspond to the set of parents of the local distribution found
with our method, and the other rows correspond to the BIC value found
after each parent elimination.

4. Discussion

In this paper, we used a Bayesian network (BN) to analyse the
results of a multi-site agronomic experiment comprising eight different
sites in Europe and Chile. Our goal was to obtain a network model that
can be used for causal inference, thus providing an ideal foundation
to develop decision support systems to manage maize crops. To do
that effectively, we modified the BN’s structure learning to encode
the data’s hierarchical structure, thus addressing the violation of the
exchangeability assumption that characterizes the RDs.

The data we used consisted of weather variables and phenological
variables of maize measured from 2011 to 2013. In our study, we
selected a subset of variables based on their agronomic relevance
in addition to the weather variables for temperature and humidity.
The latter was measured daily for each site, so we calculated their
mean for specific time-slices corresponding to the key phenological
phases of maize, namely seeding, germination, emergence (May–June);
vegetation stage, tasselling, silking, ear formation (July–August); and
grain filling, maturation and harvest (September–October). The reason
for this choice was to capture the effect of each weather variable on
the phenological variables. Based on strong prior knowledge, specific
arcs were prohibited due to their lack of causal meaning. For example,
it is not plausible for a weather variable from a later time slice to
affect another in an earlier time slice. We applied the same logical
reasoning to the connections between phenological variables recorded
in different time slices. For instance, the arc from grain yield to silking
was prohibited, as it is causally impossible for the grain yield to cause
female flowering (silking). Moreover, all arcs that made the cluster
variable a child of other variables were prohibited.

We compared the structures of the BN incorporating random effects
(𝐿𝑀𝐸) to the baseline including only fixed effects (𝐶𝐺𝐵𝑁 ): the former
contains 26 additional arcs compared to the latter, with a significant
difference in the case of grain yield, which had eight more parents.
We further assessed the predictive accuracy of phenological variables
in both 𝐿𝑀𝐸 and 𝐶𝐺𝐵𝑁 using the Diebold–Mariano test (Diebold
and Mariano, 2002). This statistical evaluation allowed us to deter-
mine that the predictive accuracy improvement observed in 𝐿𝑀𝐸 was
tatistically significant for all of the variables (𝑝-value < 0.05, results
ot shown). We are aware that predictive accuracy is not an adequate
easure of performance for a causal model, which is better assessed
sing expert knowledge as we do below, but it provides a term of
omparison for our model in the wider context of machine learning
odels, which cannot be assessed causally.

Regarding grain yield, plant height emerged as a new parent: its
ole as a reliable predictor for maize grain yield is well-documented
n the literature (Yin et al., 2011; Pugh et al., 2018). Additionally,
ts ease of measurement using remote sensing makes it a suitable
andidate for predicting maize grain yield (Han et al., 2018; Chu
t al., 2018). Supporting evidence comes from the work of Anderson
t al. (2019), who studied 280 hybrids conducted in 1500 plots using
nmanned aerial systems and found a positive correlation between
8

lant height and maize grain yield. Another new parent identified in o
he analysis is silking. Existing evidence also supports this finding,
s Malik et al. (2005) demonstrated a significant negative correlation
etween silking and grain yield. They posited that this negative re-
ationship could be attributed to late female flowering, resulting in a
ess favourable photoperiod and low temperature induced by changing
easons. Considering variables related to temperature and relative hu-
idity (RH), they are all the parents of grain yield in 𝐿𝑀𝐸 but not

n 𝐶𝐺𝐵𝑁 , where only diurnal RH range May–June (RH4), diurnal RH
ange Sept–Oct (RH6), average temperature May–June (T1), average
emperature July–Aug (T2), diurnal temperature range May–June (T4)
here present. This is plausible since environmental conditions are
ssential for maize growth: for instance, evidence shows that high hu-
idity during flowering promotes the maize yield (Butts-Wilmsmeyer

t al., 2019). Temperature plays a crucial role in influencing maize
ield, particularly during the reproductive phase, where sub-optimal
r supra-optimal values can have a significant impact. For instance,
emperatures ranging from 33 ◦C to 36 ◦C during the pre-and post-
lowering stages can result in a reduction of grain yield by 10% to 45%
Neiff et al., 2016). In a review by Waqas et al. (2021), the detrimental
ffects of thermal stress on maize growth were thoroughly examined
rom both an agronomic and a physiological perspective. They empha-
ized that high temperatures, especially during the flowering period,
an have various adverse consequences on floret number, silk number,
nd grain development. Furthermore, the process of fertilization and
rain-filling may also be compromised under such conditions. On the
ther hand, low temperatures below 10 ◦C can also be detrimental,
egatively impacting the normal growth process of maize. Such cold
emperatures can limit germination, adversely affect root morphology,
nd decrease the efficiency of photosystem II. These combined factors
emonstrate the sensitivity of maize to temperature fluctuations, which
an significantly influence its growth and overall productivity.

We applied hierarchical clustering to the mean and the variance of
he residuals from a simple linear regression of the grain yield, which
as selected due to its agronomic relevance against all other variables

o avoid making any assumptions about the possible parent grain yield.
fter grouping the residuals by site–variety combination, hierarchical
lustering produced 60 relatively-balanced clusters: they were included
n the data as discrete variable that was set as a common parent of the
henological variables in a setup similar to a conditional Gaussian BN
s described in Section 2.3. We decided to use the clusters, rather than
ust the site of origin or the maize variety as individual variables, for
wo reasons:

• When using either the site or the maize variety as a common
discrete parent variable, we found the dispersion of residuals
in the local distribution, particularly that of grain yield, to be
non-homogeneous.

• Combining the site of origin and the maize variety without clus-
tering their combinations produces a variable with approximately
2000 possible values, which would make BN structure learning
computationally prohibitive.

s a result, we improved the model’s computational feasibility and
redictive accuracy. Using clustering as a pre-processing step has been
roposed in the literature to find suitable scenarios in risk assessment
nalysis (Pettet et al., 2017) or to reduce the dimension of the estima-
ion problem, learning the structure of one subgraph for each cluster
Gu and Zhou, 2020). Rodriguez-Sanchez et al. (2022) also proposed a
ulti-partition clustering that produces a set of categorical variables

hat encode clusters. These partitions represent a distinct clustering
olution and were used as parents, leading to a more interpretable and
lexible way to find clusters.

As discussed in Section 2.3, we assumed that the local distributions

f phenological variables are linear mixed-effect regression models to
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allow for the partial pooling of information across clusters: this model
balances the individual cluster-specific estimates with the overall trend
observed in the data, leading to more stable and reliable estimates
(Scutari et al., 2022). We assumed different local distributions for
grain yield and the weather variables. For grain yield, we introduced
a power function to model the variance after observing a skewed
residual distribution during the exploratory data analysis. Moreover,
we modelled grain yield with a random intercept as the only random
effect; in contrast, all other phenological variables have both random
coefficients and intercepts. For the weather variables, we used a linear
regression model containing only fixed effects as the local distribution.
We made this decision based on visual inspection, which revealed that
the weather variables appeared disconnected from the clusters. This
observation implies that the values of these variables were independent
of both the site of origin and the variety of maize.

These assumptions reduced the prediction error for grain yield from
28% to approximately 17% when its Markov blanket or its parents
were used as predictors, as shown in Fig. 3. In two specific intervals,
our model exhibits a higher Mean Absolute Percentage Error (MAPE)
compared to the baseline model. These intervals are scenarios 7 to
11 and scenarios 19 to 24. In the first interval (7–11), our model’s
performance is affected as we gradually introduce variables related
to relative humidity (RH). The second interval (19–24) corresponds
to the gradual inclusion of phenotypic variables. The reason for our
model’s higher MAPE in these ranges could indicate that simply con-
sidering phenotypic and humidity variables is insufficient for using our
model as a reliable Decision Support System (DSS). However, a notable
trend emerges when we combine temperature and humidity variables
(scenarios 13–18) and subsequently add phenotypic variables (24–32).
During these scenarios, the MAPE of our model significantly improves
compared to the baseline. Interestingly, this improvement does not
occur with temperature alone, where our model’s MAPE remains lower
than the baseline. This suggests that introducing temperature as a new
variable enhances the model’s performance. This observation aligns
with the causal and biological context since temperature plays a pivotal
role in influencing the phenological stages of plants. Hence, incorpo-
rating temperature as a factor results in more accurate predictions.
Furthermore, we assessed whether the incorporation of random effects
in the structure learning procedure enhanced the local distributions,
not just in terms of structure but also in terms of model specification
using a backward algorithm that removes variables from the local
distribution and tests the BIC, results are reported in Tables A.4 and
A.5 in Appendix A. Millet et al. (2019a) used the same data set for
grain yield prediction, employing grain weight and grain number as
predictors. Their approach included modelling grain numbers through
a factorial regression model with predictors such as specific intercepted
radiation, soil water potential, night temperature, hybrids, and exper-
imental location. Their cross-validation analysis involved testing new
hybrids already evaluated in previous experiments and vice versa. The
correlation between the observed and predicted grain yield ranged
from 0.43 to 0.85 per experiment and 0.71 to 0.97 per hybrid. For
new hybrids in tested experiments, correlation results ranged from
0.21 to 0.71 per experiment and 0.66 to 0.96 per hybrid. Our study
employed a different cross-validation scheme than Millet et al. (2019a)
to exclude simultaneous sites and varieties from the training set. This
led to correlations between observed and predicted values ranging from
0.86 to 0.90, with an average of 0.88. We designed our sampling
scheme based on clustering to group together sites and varieties with
similar grain yield characteristics. Consequently, our model was tested
by randomly removing site–variety combinations, simulating scenarios
where an agronomist queries the model for grain yield predictions of
sites and varieties akin to those used in model training for enhanced
robustness assessment.

Our findings indicated that random effects have a favourable impact
on both structure learning and model specification. They contribute to
9

a more accurate explanation of the data without introducing undue p
complexity. However, exceptions were observed for ‘‘tassel height’’
and ‘‘silking’’, which were best modelled without random effects. This
suggests that the maxima identified with our method might be local
maxima rather than global ones. Additionally, it implies that the es-
timation of their local distributions did not benefit from the partial
pooling information provided by random effects.

Our findings confirm that a CGBN incorporating mixed-effects mod-
els to exploit the hierarchical structure of the data provides better
accuracy than a standard CGBN. Considering that it is a causal model as
well, we argue that it can serve as an effective decision support system,
particularly in domains with inherent hierarchical structures, such as
the agronomic field (Burchfield et al., 2019; Li et al., 2020).

Even though our proposed method exhibits low prediction error, it
has limitations. Firstly, the clustering pre-processing is based only on
grain yield regression to simplify the model and to reduce the compu-
tational cost of learning it. To address this, future work will expand the
clustering approach to specific clusters for each phenological variable,
enabling a more detailed analysis. Another limitation is the time it
took to learn it: approximately 13 h of linear time. To mitigate this,
we may explore different approaches to model hierarchical data, such
as the Integrated Nested Laplace Approximation (INLA; Rue et al.,
2017). Moreover, in this study, we used the hill-climbing algorithm
for structure learning because it compares favourably in terms of speed
and structural accuracy (Scutari et al., 2019) and because our focus
was on incorporating mixed effects. Hence, we wanted to avoid hyper-
parameter tuning issues common with more complex structure learning
algorithms. Other algorithms, however, may very well be more suitable
for this particular type of data, and we will explore them in future work.
In particular, reformulating structure learning to share information on
the covariance structure of the data between iterations and variables
has the potential to vastly reduce computational complexity without
impacting accuracy.

5. Conclusions and Future works

Maize stands as a crucial crop for both food and feed production.
Predicting its yield can enhance farm practices and refine crop manage-
ment systems. In agricultural datasets, a common hierarchical structure
can be leveraged for predictive purposes; therefore, models that harness
this structure tend to yield highly accurate predictions. In this study, we
introduced a novel approach to learning Bayesian Networks integrating
random effects into local distributions, obtaining such conclusions:

• The variables encoding the provenance of the field (Site) exhibit
a dispersion of residuals in the local distribution.

• Introducing a group variable by performing hierarchical cluster-
ing based on the mean and variance of residuals from a complete
linear regression of maize grain yield, conditioned on the Site–
variety combination, can reduce the dimension of the Cartesian
product of Site–Variety combinations.

• The application of this method led to a reduction in prediction
errors compared to the baseline model.

• The reduction in errors was attributed to the partial pooling of
information provided by the random effects.

We propose its applicability as a valuable decision support system,
articularly in fields marked by inherent hierarchical structures like
gronomy.From an agricultural engineering point of view, crop yield
redictions provide good management of agricultural practices, opti-
ally scheduling the irrigation system and phytosanitary treatments,

eading farming systems resilient to climate change and economic
osses. Future work, as we explained in the discussion section, will
onsider performing precise clustering for each phenotypical variable.
dditionally, introducing alternative estimation methods, such as INLA,
ould reduce computational demands and empower experts to ac-
ively engage in the learning process within the Bayesian framework.
oreover, such methods could be used to take into account the spa-

ial component of the datasets since INLA is typically used for such

urposes.
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Table A.2
Prediction scenarios for the grain yield of maize, identified by the set of variables used as predictors: the average temperature May–June (T1), the average temperature July–Aug
(T2), the average temperature Sept–Oct (T3), the diurnal temperature range May–June (T4), the diurnal temperature range July–Aug (T5), the diurnal temperature range Sept–Oct
(T6), the average RH May–June (RH1), the average RH July–Aug (RH2), the average RH Sept–Oct (RH3), the diurnal RH range May–June (RH4), the diurnal RH range July–Aug
(RH5), the diurnal RH range Sept–Oct (RH6), Silking (Si), GW (Grain weight), An (Anthesis), TH (Tassel height), PH (Plant height) and EH (Ear height).

Scenario T1 T2 T3 T4 T5 T6 RH1 RH2 RH3 RH4 RH5 RH6 Si GW TH PH An EH

1 ✓

2 ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓ ✓ ✓

7 ✓

8 ✓ ✓

9 ✓ ✓ ✓

10 ✓ ✓ ✓ ✓

11 ✓ ✓ ✓ ✓ ✓

12 ✓ ✓ ✓ ✓ ✓ ✓

13 ✓ ✓

14 ✓ ✓ ✓ ✓

15 ✓ ✓ ✓ ✓ ✓ ✓

16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

19 ✓

20 ✓ ✓

21 ✓ ✓ ✓

22 ✓ ✓ ✓ ✓

23 ✓ ✓ ✓ ✓ ✓

24 ✓ ✓ ✓ ✓ ✓ ✓

25 ✓ ✓ ✓

26 ✓ ✓ ✓ ✓ ✓ ✓

27 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

28 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

29 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

30 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

31 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

32 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Appendix A. More details about scenarios, structure learning and
validation tests

See Tables A.2–A.5.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
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at https://doi.org/10.1016/j.engappai.2024.107867.
Table A.3
New relationships found in 𝐿𝑀𝐸 . Variables: the average temperature May–June (T1),
the average temperature July–Aug (T2), the average temperature Sept-Oct (T3), the
diurnal temperature range May–June (T4), the diurnal temperature range July–Aug
(T5), the diurnal temperature range Sept–Oct (T6), the average RH May–June (RH1),
the average RH July-Aug (RH2), the average RH Sept–Oct (RH3), the diurnal RH range
May–June (RH4), the diurnal RH range July–Aug (RH5), the diurnal RH range Sept–Oct
(RH6), Silking (Si), GW (Grain weight), An (Anthesis), TH (Tassel height), PH (Plant
height) and EH (Ear height).

Parent Child Parent Child

PH → GY T5 → Si
PH → EH T5 → TH
EH → Si T5 → PH
Si → GY T6 → GW
T1 → EH RH1 → GY
T1 → PH RH2 → GY
T2 → An RH3 → GY
T2 → TH RH4 → TH
T3 → GY RH4 → PH
T4 → GW RH5 → GY
T4 → Si RH5 → EH
T4 → TH RH5 → PH
T5 → GY RH6 → GW

Table A.4
The BIC score values for the variables with random effects in 𝐿𝑀𝐸 . The columns
correspond to Silking (Si), GW (Grain weight), An (Anthesis), TH (Tassel height), PH
(Plant height), EH (Ear height) and GY (Grain yield).

EH PH TH An Si GW GY

108 448.0 128 945.4 98 210.88 72 373.64 64 279.80 127 634.6 42 664.90
108 581.7 128 988.4 131 629.19 73 127.37 67 958.98 129 620.1 42 788.77
108 913.9 130 979.4 98 721.24 72 466.75 64 423.46 130 956.2 43 600.06
109 422.9 129 204.0 98 306.37 73 802.03 78 577.20 129 137.0 42 817.61

(continued on next page)
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Table A.4 (continued).
EH PH TH An Si GW GY

109 076.0 128 987.3 98 975.48 73 569.12 64 617.86 128 784.5 47 312.45
108 793.3 128 996.4 99 125.48 74 726.54 64 740.27 129 580.9 42 683.18
– 130 634.3 98 957.10 73 009.51 65 812.12 127 641.1 44 288.90
– – 98 134.49 74 775.35 65 272.43 129 603.5 43 055.93
– – – 75 937.24 64 331.62 130 433.6 42 733.74
– – – – 64 426.97 128 022.4 43 319.44
– – – – – 129 434.5 43 919.43
– – – – – – 43 890.76
– – – – – – 44 146.02
– – – – – – 42 899.58
– – – – – – 42 926.77

Table A.5
The BIC score values for the variables without random effects in 𝐿𝑀𝐸 . The columns
orrespond to Silking (Si), GW (Grain weight), An (Anthesis), TH (Tassel height), PH
Plant height), EH (Ear height) and GY (Grain yield).
EH PH TH An Si GW GY

109 382.7 129 069.7 97 997.56 72 921.13 63 953.28 128 026.4 50 158.96
109 517.0 129 130.9 132 132.71 73 968.06 67 636.88 129 661.0 50 252.83
110 087.1 131 885.7 99 046.89 73 012.02 64 104.01 131 334.4 50 586.06
109 464.6 129 540.4 98 415.05 74 703.04 78 859.63 129 263.1 50 196.68
109 928.2 129 201.7 99 377.01 74 227.08 64 271.16 130 586.0 53 345.75
109 577.8 129 234.8 99 329.96 75 441.82 64 386.79 131 320.9 50 161.03
– 131 600.8 99 481.83 73 857.10 65 460.04 128 286.2 51 321.11
– – 98 304.39 75 487.06 65 002.78 130 356.2 50 378.48
– – – 76 760.46 64 166.55 132 314.7 50 178.26
– – – – 64 281.80 128 579.4 50 610.04
– – – – – 130 592.4 51 098.38
– – – – – – 51 108.30
– – – – – – 50 974.64
– – – – – – 50 306.71
– – – – – – 50 364.45
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