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Abstract
Lombardy, the first region in Italy to be hit by COVID-19 and one of the first in Western countries, was in the 
spotlight during the first wave of the pandemic in 2020 due to its high mortality rates. Simple regional 
comparisons are, however, hampered by potentially unobservable variables affecting mortality, such as the 
virus spread. To address this ‘unobserved heterogeneity’ concern, we adopt a Difference in Geographic 
Regression Discontinuity Design (DiD-GRDD), which compares 2020 vs. 2017–2019 excess mortality in 
Lombardy’s municipalities close to the administrative borders with neighbouring municipalities in other 
regions. Our study documents a one to two percentage point higher excess mortality in Lombardy limited 
to the oldest age group (81+). An exploratory mediation analysis points to the management of nursing 
homes during the pandemic as a possible critical factor explaining higher mortality in Lombardy.
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‘Why Covid Caused Such Suffering in Italy’s Wealthiest Region? Lombardy has been over-
whelmed by the pandemic, in part because of a poorly executed medical privatization program’ 
(Published Nov. 19, 2020; Updated Nov. 20, 2020)

–Peter S. Goodman and Gaia Pianigiani, The New York Times

‘Fewer deaths in Veneto offer clues for fight against virus. Divergence of fortunes with nearby 
Lombardy stems from keeping more patients away from hospitals, experts say’. (Rome, April 
5 2020)

–Miles Johnson, Financial Times

1 Introduction
Comparing mortality rates in the first year of the COVID-19 pandemic, some countries appear to 
have been hit more severely than others. Eurostat reports March (December) excess mortality rates 
for 2020 compared to 2016–2019 of 49.6% (27.1%) and 53.0% (9.4%) for Italy and Spain, 
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respectively, against 15.5% (15.7%) and −2.5% (30.8%), for France and Germany, respectively 
(Eurostat, 2024).

The Lombardy region in Italy, in particular, was the first geographic area to be heavily affected 
by COVID-19 outside China, the country from which the pandemic originated.

Although demographic factors (e.g. the age structure of the population) are often advocated to 
explain differences in COVID-19-related mortality in addition to the different spread of the virus 
(Mesas et al., 2020; Onder et al., 2020), an important question remains unanswered: are mortality 
differences partly attributable to the ways governments reacted to the pandemic?

Recent papers have tried to answer this question by reporting evidence on the effectiveness of 
single or bundles of policies, such as stay-at-home orders, lock-downs, or the use of protective 
masks, on the diffusion of the pandemic and the level of mortality (Chernozhukov et al., 2021; 
Hsiang et al., 2020). The adoption of these policies is unlikely to be exogenous and may depend 
on the spread of the virus and the capacity of the health system, e.g. the availability of Intensive 
Care Unit (ICU) beds. To put it in other words, to assess the relative merits (or demerits) of differ-
ent governments, one should compare like with like, for instance, by taking into account the level 
of diffusion of the virus in the population. However, data were not available due to non-existent or 
low COVID-19 testing, especially in the first wave of the pandemic.

In this paper, we investigate regional differences in mortality outcomes related to COVID-19, 
focusing on the Italian case. Owing to the autonomy of Italian regions in several domains, includ-
ing the management of their health systems (See Appendix A for an outline of the recent history of 
the Italian National Health Care System and a detailed explanation of regional autonomy), Italy 
can be considered an ideal ‘laboratory’ to investigate the role played by regional governments in 
the differential mortality rates experienced locally. Pisano et al. (2020), for instance, state: ‘The 
fact that different policies resulted in different outcomes across otherwise similar regions should 
have been recognized as a powerful learning opportunity from the start’.

Given the very different levels of diffusion of COVID-19 within Italy (Bertuzzo et al., 2020), we 
focus on Northern Italy, and in particular on Lombardy and its neighbouring regions. As the first 
Western region to suffer a COVID-19 outbreak, Lombardy quickly became in the spotlight of 
international media.

The immediate reaction to the first case diagnosed in the municipality of Codogno (province of 
Lodi, Lombardy) was the set up of a ‘red zone’ involving 50,000 citizens, which suspended all the 
economic activities and its residents’ movements from and to this area. This action led to a reduc-
tion in the spread of the epidemic, but it was an exception in the Italian context. Indeed, a couple of 
days later, a new outbreak was discovered in a small hospital located in the municipality of Alzano 
(province of Bergamo, Lombardy). Alzano’s hospital was not closed, and no ‘red zone’ was de-
clared in the area, with the consequence that in a few days the number of detected cases, hospital-
izations, and deaths dramatically increased. The choices to keep the Alzano hospital open and not 
to establish a ‘red zone’ nearby are among the most debated aspects of Italy’s COVID-19 crisis man-
agement. What is clear is that both the National and Lombardy governments waited several days 
before placing in quarantine the areas of Bergamo, Brescia, Cremona and the rest of the region.

In addition, during the worst period of the epidemic, when the hospitals were collapsing, 
Lombardy’s government asked nursing homes meeting special requirements to admit patients dis-
charged by hospitals. These requirements were established in the regional regulation DGR 
N. 3018/2020 (e.g. presence of 24-hour medical assistance, 24-hour nursing care, presence of geri-
atric/cardiologist/pneumologist specialists, possibility to perform laboratory investigations, possi-
bility to undergo radiological diagnostics, ability to provide oxygen therapy, ability to implement 
both individual isolation and cohort isolation for positive COVID-19 patients). Nursing homes 
host elderly people mainly affected by several illnesses which proved to be the weakest segment 
of the population during the COVID-19 crisis. First evidence shows that nursing homes were 
not fully prepared for an epidemic, with limited numbers of protective masks and other protective 
equipment for the working personnel. These hazardous choices may have had an impact on the 
increase in mortality in nursing homes (Alacevich et al., 2021).

In synthesis, the Lombardy region tackled the COVID-19 epidemic by letting the healthcare sys-
tem be subject to excessive stress.

In contrast to Lombardy’s experience, the Veneto region appeared more ready to deal with the 
COVID-19 outbreak. Veneto addressed the COVID-19 epidemic by extensive testing of 
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symptomatic and asymptomatic citizens, broad contact tracing around positive cases, quarantine 
for cases and suspected cases with daily telephone monitoring, detailed practical guidelines on 
home isolation, minimization of contacts with physicians and nurses, and limited hospital admis-
sions to patients with major healthcare needs. A similar approach to the COVID-19 epidemic was 
adopted in Emilia Romagna, which shifted to territorial and home management of patients, redu-
cing the pressure on the hospital system.

The different ways of tackling the health emergency by regional administrations may have con-
tributed to the gaps observed in regional mortality rates. Indeed, the very different levels of mortal-
ity between Lombardy and some neighbouring regions (see Figure 1), such as Veneto, Piedmont, 
and Emilia Romagna, fed harsh criticism against the presumed incapacity of Lombardy’s regional 
governance and the unpreparedness of its regional health system to deal with the pandemic. In par-
ticular, Lombardy was criticized for its hospital-centric management of the pandemic, irrespective 
of the level of severity of patients, which partly contributed to the spread of the virus and the quick 
saturation of hospitals (Castaldi et al., 2021). Veneto, on the other hand, was often praised for its 
policies based on a more diffused management of the emergency, with hospitals only representing 
the last resort for patients and the implementation of a tracking system based on high levels of 
COVID-19 testing.

However, such regional comparisons are subject to an important caveat: the diffusion of the 
pandemic was not even across regions, and in some cases for factors not under the regions’ control, 
and it is therefore not possible to observe how regions would have performed under the same con-
ditions (counterfactual). Thus, to compare like with like, we focus on municipalities located in dif-
ferent regions but close to the regions’ administrative borders and apply a Difference in 
Geographical Regression Discontinuity Design (DiD-GRDD). On the one hand, leveraging the 
time dimension through the Difference-in-Differences (DiD) component of the estimator, one 
can estimate the excess in total mortality presumably due to COVID-19. This addresses potential 
measurement issues related to the fact that deaths caused by COVID-19 were difficult to identify 
during the first pandemic wave because of low COVID-19 testing. On the other hand, exploiting 
the spatial (GRDD) component of the estimator and comparing neighbouring municipalities 
makes it likely that municipalities’ observable characteristics, but also potential unobservables 
such as the spread of the virus in the population, were similar.

Our analysis, focused on first-semester mortality, documents between one and two percentage 
points (pp, hereafter) higher excess mortality in Lombardy for the 81+ population in 2020 com-
pared to the neighbouring regions. Lombardy’s higher excess mortality in the 71–80 age bracket 
only emerges compared to Emilia Romagna. Differential mortality is not observed in younger 
age groups.

Several ‘stress tests’ for our analysis, such as a placebo analysis setting a fake border within the 
Lombardy region, a test to verify the balancing of relevant covariates at the border and the classic 
parallel trend test (carried out with an event-study analysis), confirm our main findings.

Although the estimated administrative border’s differences can be roughly interpreted as mortality 
gaps emerging because of both past administrative choices reflected in current regional features (e.g. 
Regional Health Systems) and the decisions made to tackle the pandemic (e.g. about the management 
of nursing homes) without the possibility to disentangle the specific contributions of each factor with 
the data at hand, we make an attempt at exploring the potential correlates of higher excess mortality. 
An exploratory mediation analysis considering two of the most frequently cited possible causes of the 
higher excess mortality in Lombardy, namely, the larger presence of the private sector in the health 
system and the poor management of nursing homes during the pandemic, highlights only the latter 
as a possible critical factor but only to explain differences with Emilia Romagna.

The rest of the paper unfolds as follows. Section 2 presents our empirical strategy and Section 3
describes the data used in the empirical analysis. The main results are commented on in Section 4
while several robustness checks are carried out in Section 5. Section 6 explores potential mecha-
nisms driving Lombardy’s higher excess mortality, and the last section summarizes the main find-
ings and draws conclusions. Further material is reported in the Appendices. Appendix A provides 
some background information on the Italian National Health System and the main differences 
across the regions studied in this paper. Control variables included in the empirical models are de-
scribed in Appendix B. In Appendix C, we comment on the robustness checks. Additional tables 
and figures are included in Appendix D.
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2 Difference in geographic discontinuity designs (DiD-GRDD)
Assessing the impact of different regional governments in the case of unevenly spread health 
shocks is challenging, as several confounding factors may affect the outcome of interest (mortality 
in our case). In this paper, we take advantage of the regions’ administrative borders. On the one 
hand, given the regional autonomy in the management of the healthcare system in Italy, each re-
gion implemented its healthcare governance model and was in charge of making timely decisions 
to respond to the health emergency. On the other hand, we posit that since the virus diffusion 
mainly depended on individual mobility and contacts between people (Kraemer et al., 2020), 
the spread of the pandemic should have been very similar in neighbouring municipalities located 
on each side of regional administrative borders. In other words, considering sufficiently near geo-
graphical units is assumed to control for unobservable variables related to COVID-19 mortality 
that may change across space. Thus, in our analysis, we leverage the spatial dimension. This is 
the idea behind a Geographic Regression Discontinuity (GRDD) design (Dell, 2010).

Especially in the first pandemic wave, due to low COVID-19 testing, it was not possible to exact-
ly attribute deaths to the virus. For this reason, several papers seek to estimate COVID-19 mortal-
ity using excess mortality compared to the pre-COVID-19 period (Bello & Rocco, 2022; 
Buonanno et al., 2020). Here, we apply the same approach, and in addition to the spatial dimen-
sion, we also leverage the time dimension.

The two dimensions (space and time) can be combined using a Difference in Geographic 
Regression Discontinuity Design (DiD-GRDD, hereafter). Namely, we focus on the administrative 
borders of Lombardy and assess excess mortality in 2020, compared to previous years (2017– 
2019) and its four neighbouring Italian regions (Piedmont, Emilia Romagna, Veneto, and 
Trentino Alto Adige) using municipality-level data. In the rest of the paper, we refer to the entire 
Trentino Alto Adige region although the data cover only one of the two autonomous provinces of 
the region, namely, the Autonomous Province of Trento.

In what follows, we describe the DiD-GRDD in more detail, drawing from Grembi et al. (2016), 
which introduced the difference-in-discontinuities (diff-in-disc) design. We compare mortality in 
different regions. The regional borders represent the cutoff of our RDD-like design and geodesic 
distance (correlation coefficients between geodesic and driving travel distances, calculated in mi-
nutes or kilometres, are equal to 0.944 and 0.983) our running variable. Regional governments 
change sharply at regions’ administrative borders, that is two municipalities lying on each side 

Figure 1. Weekly mortality rates. Note. Weekly mortality rates computed using ISTAT (Italian National Statistical 
Institute) data.
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of the border can be very similar in terms of economic, socio-demographic, and environmental 
characteristics affecting mortality, but they are subject to different regional governments. 
Importantly, even before COVID-19, different regions’ health systems might have been more or 
less effective, and therefore we could observe mortality differences at the border even before the 
pandemic onset. Defining the treatment variable as

Li = 1, if di > 0,
0, otherwise,



(1) 

where the subscript stands for municipality i, di is the distance from the border, the running vari-
able, and distances are positive for Lombardy’s municipalities and negative otherwise (di = 0 at the 
border). The Lombardy indicator variable Li takes on value one for positive distances and zero 
otherwise.

Let us define the potential outcome (i.e. mortality) in Lombardy as Yit(1) and the potential out-
come in the comparison region as Yit(0), respectively, where t is the year subscript. The observed 
outcome can be written as Yit = LiYit(1) + (1 − Li)Yit(0). Under the standard RDD continuity as-
sumption in the potential outcomes, the GRDD estimate would provide the ‘effect’ of Lombardy 
on mortality, i.e. the effect on mortality produced in a municipality by being under Lombardy’s 
administration. This is given by

τ̂grdd,pre = E[Yit(1) − Yit(0) |di = 0, t ≤ 2019] (2) 

in the pre-COVID-19 period, and

τ̂grdd,post = E[Yit(1) − Yit(0) |di = 0, t > 2019] (3) 

in the post-COVID-19 period.
What we want to assess through our DiD-GRDD is whether Lombardy’s mortality advantage or 

disadvantage changed in the post-COVID-19 period. Thus, we implement a difference in the two 
GRDDs, before vs. after the onset of COVID-19, namely

τ̂did−grdd = E[Yit(1) − Yit(0) |di = 0, t ≤ 2019]

− E[Yit(1) − Yit(0) |di = 0, t > 2019].
(4) 

We interpret τ̂did−grdd as the causal effect of the past and the current Lombardy regional adminis-
trations’ choices, e.g. related to the past development of the Regional Health System and the man-
agement of the pandemic emergency (nursing homes’ management, institution of ‘red zones’, 
COVID-19 testing, etc.) on COVID-19-related mortality.

Similarly to Grembi et al. (2016), for this interpretation to be legitimate, we need two assump-
tions, which are adapted to our case:

Assumption 1 All potential outcomes E[Yit(l) |di = d, t ≤ 2019] and 
E[Yit(l) |di = d, t > 2019], with l = 0, 1 are continuous in distance (d) 
at 0 (i.e. at the border).

Assumption 2 The effect of regional administrations on mortality, in the absence of 
COVID-19 would have remained constant over time (i.e. the same as in 
the pre-COVID-19 period).

The first assumption is about the continuity of potential outcomes in space, and in particular at 
the administrative borders. The second assumption is similar to the DiD parallel trend assumption 
and can be checked by looking at whether regional mortality at the border was on different trends 
in different regions before COVID-19. This is implemented via an event-study DiD-GRDD.

In analogy with RDDs, in the implementation of the DiD-GRDD, we assess the robustness of 
our estimates to varying distance bandwidths from the administrative borders. Figure 2 shows 
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the municipalities’ administrative borders (thin black lines) and regions’ borders (thicker black 
lines) in the five regions considered and highlights with different colours the set of municipalities 
used in the analysis depending on the distance bandwidths (10, 15, 20, and 25 km) from the bor-
der. Figure D1 in Appendix D shows how the sample size (i.e. the number of municipalities) 
changes when progressively increasing the bandwidths in each one of the pairwise regional 
comparisons.

We implement the DiD-GRDD model parametrically, as follows:

yit = α0 + α1postt + α2Lombardyi + α3 Lombardyi × postt��������������������������
DiD−GRD Dterm

+ f (di)

+ g(di) × Lombardyi + h(di) × postt+
+ l(di) × Lombardyi × postt + βXit + ϵit,

(5) 

where yit are age-specific total mortality rates (i.e. the number of deaths divided by the size of the 
corresponding age group multiplied by 100), postt is a dichotomous variable taking value 1 in 
2020 (i.e. the period affected by COVID-19) and 0 before (namely, the years 2017, 2018 and 
2019), Lombardyi is another dichotomous variable taking value 1 for Lombard municipalities 
and value 0 for all other municipalities; f (di), g(di), h(di), and l(di) are first-degree polynomials 
in distance in kilometres from the administrative border (i.e. the running variable). The choice 
of local linear regression (i.e. a first-degree polynomial in the running variable) is motivated by 
the small bandwidths that are used in our analysis (10, 15, 20, and 25 km). Indeed, as shown 
by Gelman and Imbens (2019), the use of high-degree polynomials can cause several issues in 
RDDs; ‘noisy estimates, sensitivity to the degree of the polynomial, and poor coverage of confi-
dence intervals’ (p. 447). Xit is a vector of control variables and ϵit is an idiosyncratic error 
term. Models are estimated separately for each age bracket. We implement a DiD-GRDD with 
a single running variable (distance) instead of multiple running variables (latitude and longitude). 
This is common practice when using administrative regions as statistical units (see, for instance, 
De Blasio & Poy, 2017). Indeed, the units of observation in our analysis are municipalities and 
there are too few units around the regional borders to implement the multiple-running variable 
version of the GRDD (cf. Dell, 2010).

Given the potential for significant measurement errors in COVID-19-related death data— 
stemming from the lack of a standardized classification method and the non-compulsory testing 
of deceased individuals—we follow the approach of earlier research (Bartoszek et al., 2020; 
Buonanno et al., 2020). Our emphasis is on age-specific total mortality rates for all causes, a metric 
accurately captured through administrative data (details in the following section). This allows us 

Figure 2. Municipalities included in the analysis coloured by distance to the border (in km). Note. This figure shows 
the location of Lombardy in Italy (subfigure on the right), and the municipalities of the five regions included in our 
analysis (subfigure on the left). These municipalities are coloured according to their distance bandwidths from the 
border (in kilometres). Lombardy’s neighbouring regions are counterclockwise: PIE: Piedmont (West), ER: Emilia 
Romagna (South), VEN: Veneto (East) and TAA: Trentino Alto Adige (North-East).

6                                                                                                                                                       Berta et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/advance-article/doi/10.1093/jrsssa/qnae091/7755170 by guest on 11 Septem
ber 2024



to minimize measurement error in the outcome variable and estimate the COVID-19-related 
deaths from the excess mortality rates at the municipality level after the onset of the pandemic cri-
sis (see Alacevich et al., 2021 for a similar approach). Mortality rates are preferred to the absolute 
number of deaths for ease of comparison between municipalities of different sizes.

In model (5), the main coefficient of interest is α3, which captures the DiD-GRDD effect, i.e. the 
excess mortality of Lombardy’s municipalities compared to those of close municipalities in a 
neighbouring region in 2020 compared to previous years (2017–2019). We estimate equation 
(5) using four different samples, each one including Lombardy’s municipalities and the municipal-
ities of Piedmont, Emilia Romagna, Veneto, and Trentino Alto Adige, respectively. Moreover, we 
estimate several models applying various distance bandwidths from the regional border and for 
different age groups. Since we have panel data at the municipality level, standard errors are clus-
tered at the same level.

In order to check the plausibility of the DiD-GRDD assumptions, we estimate some placebo ver-
sions of the model in equation (5). In one spatial placebo, we only focus on mortality in Lombardy 
and we set a fictitious border at different bandwidths from the real one. In the absence of a differ-
ent regional government’s ‘treatment’, outcomes should be continuous at the fake border 
(Assumption 1). If the estimated effect in the specification of equation (5) was a genuine adminis-
trative border effect, in this placebo specification we should not find any statistical difference in 
mortality rates between municipalities on each side of the fake border. We also implement a 
time placebo in which we apply an event-study-like specification where the postt and the 
Lombardyi × postt indicators are replaced with year dummies Dt and Lombardyi × Dt indicators, 
respectively. This specification enables us to estimate a coefficient for each Lombardyi × Dt inter-
action and to check whether the parallel trend assumption holds before COVID-19 (a check of the 
credibility of Assumption 2).

The event-study DiD-GRDD specification reads as follows:

yit = α0 +
2020

t=2017
t≠2019

α1jDt + α2 × Lombardyi +
2020

t=2017
t≠2019

α3jLombardyi × Dt

����������������������������
DiD−GRD Dterms

+ f (di)

+ g(di) × Lombardyi + h(di) × postt

+ l(di) × Lombardyi × postt + βXit + ϵit,

(6) 

where the polynomials in distance are allowed to vary between the pre- and the post-2019 period, 
but not to be year-specific. We set 2019, i.e. the year before COVID-19 onset, as the reference 
(omitted) year. Thus, the non-interacted Lombardy indicator captures the differential mortality 
of Lombardy compared to the other regions in 2019. If the parallel trend assumption holds, the 
Lombardyi × Dt interaction coefficients should be zero for t = 2017, 2018, and be different 
from zero only in 2020.

3 Data
The estimation of the models described in the previous section relies on the extensive use of admin-
istrative municipality-level data. Unlike survey data, administrative data offers the advantages of 
immediate public accessibility, comprehensive population coverage, and minimal susceptibility to 
measurement errors.

Our main outcome variable is the mortality rate computed using the number of deaths (for any 
cause) in each municipality, and it is produced by the Italian National Statistical Institute (ISTAT) 
by integrating various administrative data sets produced by ISTAT, namely, the National 
Population Register (Anagrafe Nazionale della Popolazione Residente, ANPS), municipalities’ 
population registers and the Tax Register (Anagrafe tributaria).

Currently, ISTAT provides the total number of deaths for any cause, based on an individual’s 
residence, for 7,901 Italian municipalities and each single day of the year, by age and gender, 
for the period 2011–2023 (October 31st). Unfortunately, data by specific cause of death are not 
released by ISTAT at the municipality level. Data from population registers were integrated 
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with those coming from the Tax Register to recover death events that were not registered in the 
former because they came after the closure of the time window for data acquisition from the mu-
nicipalities by ISTAT.

In Appendix B, we discuss the choice of control variables and the data sources. Here, it is worth 
noting that (1) some control variables are measured in 2019 and are time-invariant; (2) the DiD 
part of the DiD-GRDD would remove time-invariant covariates (and municipality fixed effects); 
and (3) if the GRDD’s assumptions are valid, control variables should be redundant and not sig-
nificantly affect the estimates. Thus, under the validity of our DiD-GRDD, the conditional- and 
unconditional-on-covariate models should provide very close estimates. In Appendix C, we 
show that this is indeed the case, and the inclusion of control variables only improves estimates’ 
precision.

In this paper, we limit our analysis to first-semester regional comparisons, corresponding to the 
first wave of COVID-19, because starting from November 2020, a four-colour system introducing 
differential mobility restrictions according to the evolution of the pandemic was introduced in 
Italy, making the inter-regional comparisons harder to interpret (see Appendix A).

Table 1 reports the percentage mortality rates in the 81+ age group, the one that was most heav-
ily hit by COVID-19 mortality, for the four control regions with which we compare Lombardy. 
Statistics are reported for the two periods 2017–2019 and 2020, i.e. pre- and post-COVID-19, re-
spectively. Two things stand out from first-semester mortality. First, from the top part of the table, 
considering all municipalities in each region, mortality rates for any cause in the 81+ age group 
were higher in 2020 compared to the previous years in all regions. For instance, the mortality 
rate in 2020 in the 81+ age bracket was 45.4%, 3.8%, 5.5%, 15.6%, and 15.2% higher compared 
to the average of the previous three years in Lombardy, Veneto, Piedmont, Emilia Romagna, and 
Trentino Alto Adige, respectively. Moreover, the DiD contrasts show that the excess mortality was 
higher in Lombardy compared to any of the four control regions, with a difference between 1.7 
and 2.5 percentage points. Second, the bottom part of the table reports the same statistics com-
puted in the sample of municipalities within 25 km from Lombardy’s border, which are used in 
the DiD-GRDD estimation. Interestingly, although Lombardy still exhibits higher excess mortal-
ity, the differences shrink and vary between 0.6 and 1.6 percentage points. This shows that com-
paring like-with-like, i.e. municipalities with more similar characteristics, affects the estimated 
regional differences in COVID-19-related mortality. In the following section, we report 
DiD-GRDD parametric estimates of these contrasts obtained as described in Section 2. The 
DiD estimates reported in Table 1 are simple differences in unconditional means and, unlike the 
DiD-GRDD estimates, do not control for distance from the border.

Figure 3 gives a flavour of the type of comparisons that we make by using the DiD-GRDD. Each 
subgraph in the figure reports on the horizontal axis the distance from the border, which is repre-
sented by the red vertical line at zero, and on the vertical axis the percentage mortality rate. 
Municipalities to the right of the red vertical line belong to Lombardy, while those to the left be-
long to the ‘control’ regions used in the pairwise comparisons. Each graph plots a scatter of points 
for the mean 2017–2019 mortality (red points) and one for the 2020 mortality (black points). 
Each point in the scatter plot represents the average mortality rate of the municipalities included 
in a 1 km interval, and the points are interpolated by linear fits with 95% confidence intervals. The 
graphs show that the red linear fits (pre-COVID-19) are almost aligned at the border, while sig-
nificant vertical ‘jumps’ are observed for Piedmont and Emilia Romagna when considering the 
black linear fits (post-COVID-19). The size of the discontinuities illustrated in the graphs is 
only indicative of the estimated effect since our parametric estimation based on equation (5) 
does not use the mean of 2017–2019 mortality rates for the pre-COVID-19 period but observa-
tions for each year (2017, 2018, and 2019).

4 DiD-GRDD main results
As it is well known, COVID-19-related mortality is larger among older individuals (Jordan et al., 
2020; Zheng et al., 2020). Thus, we examine age-specific mortality rates by age groups 0–50, 
51–70, 71–80, and over 80 (81+), by estimating separate models for each age bracket.

Results are presented through graphs displaying the point estimate of the DiD-GRDD coeffi-
cient α3 in equation (5) and the 95% confidence interval for different bandwidth choices, i.e. 
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municipalities within 10, 15, 20, and 25 km from the Lombard administrative border. In all 
graphs, we also report the standard DiD estimates obtained by including in the estimation sample 
all municipalities in each region-pair comparison. In this case, the estimated equations include the 
same terms as in equation (5) but omit distance and all distance interactions. The DiD approach 
provides evidence of the average increase in mortality (compared to 2017–2019) in (all) Lombard 
municipalities—including those that are far away from the border—compared to those located in 
the control region. The DiD estimate may be considered a useful benchmark to grasp what we ac-
tually gain from using the more rigorous (in terms of internal validity) DiD-GRDD approach.

Figure 4 shows the results for the oldest age group (81+). Lombardy has a higher excess mor-
tality compared to all neighbouring regions than Trentino Alto Adige, for which mortality is 
not statistically different. The DiD-GRDD point estimates are quite precise and rather stable vary-
ing the bandwidths around the border as reported in Table D1. Estimates of Lombardy’s mortality 
premia range between 1.13–1.48 pp, 1.46–1.86 pp, and 1.07–1.74 pp for Piedmont, Veneto, and 
Emilia Romagna, respectively. In contrast, estimated mortality contrasts are nil compared to 
Trentino Alto Adige. All in all, Lombardy appears indeed to have experienced higher mortality 
in the 81+ population of between 1 and 1.9 pp compared to all its neighbouring regions than 
Trentino Alto Adige. The DiD-GRDD point estimates are always smaller in any considered band-
width when compared with DiD coefficients (1.07–1.86 pp with DiD-GRDD vs. 1.84–2.99 with 
DiD). By not restricting the comparison to close-to-border municipalities, the DiD estimates in-
clude in the analysis those municipalities in Lombardy which were first and heavily affected by 
COVID-19 (e.g. Alzano Lombardo). These municipalities reported higher mortality rates, espe-
cially if compared to those belonging to the control regions. This is clear when comparing 
Figure 1 with Figure D2 in Appendix D. The DiD estimates, which generally point to a more 
than 2 pp mortality premium for Lombardy, may be misleading because the estimated differences 
in mortality rates may be due to the different spread of the COVID-19 virus during the emergency 
phase. This result supports therefore our choice of relying on the more rigorous DiD-GRDD 
strategy.

Figure 5 shows the estimates for the 71–80 age bracket. The DiD estimates are again positive 
(0.46–0.96 pp) and always statistically significant at conventional levels in all pairwise compari-
sons. However, the DiD-GRDD differences in mortality obtained comparing only municipalities 

Table 1. First-semester age-specific mortality rates for the 81+ age group (%)

Statistics Veneto Piedmont Emilia Romagna Trentino AA

Full sample

Avg mortality pre-Covid 5.77 6.41 6.08 5.60

Avg mortality post-Covid 5.99 6.76 7.03 6.45

Avg mortality pre-Covid - Lombardy sample 5.92 5.92 5.92 5.92

Avg mortality post-Covid - Lombardy sample 8.61 8.61 8.61 8.61

DiD 2.47 2.34 1.74 1.84

DiD-GRDD sample

Avg mortality pre-Covid 5.93 6.57 6.07 5.47

Avg mortality post-Covid 6.35 7.40 7.61 6.91

Avg mortality pre-Covid - Lombardy sample 5.89 6.05 6.10 5.87

Avg mortality post-Covid - Lombardy sample 7.92 7.46 9.16 8.14

DiD 1.62 0.58 1.52 0.83

Note. Average first-semester mortality rates by sub-period (pre- and post-COVID-19, i.e. 2017–2019 and 2020, 
respectively) for the municipalities of the four comparison regions included in our analysis computed from the raw data. 
DiD rows report the unconditional DiD contrasts (mean post Lombardy-mean pre Lombardy)—(mean X post-mean X 
pre), where X stands for each comparison region. The table reports the age-specific mortality rates (%) for the 81+ age 
group computed using all municipalities in each region—in the top part of the table—and in the subsample of 
municipalities within 25 km from the Lombardy’s administrative border—in the bottom part of the table. (Our 
computations are based on ISTAT mortality data, https://www.istat.it/it/archivio/240401.).
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located near the border are always smaller, and only significant (at 10%) for the Lombardy vs. 
Emilia Romagna comparison, with an excess mortality of the former in the range of 0.5–0.6 
pp. Thus, the higher mortality of the elderly for Lombardy, compared to its neighbouring regions, 
appears to have occurred only for the oldest age group.

As shown in Figures D3 and D4 in Appendix D, excess mortality in Lombardy is generally not 
statistically different from neighbouring regions in younger age groups (namely, in the 0–50 and 
51–70 groups). Even in the few cases in which the estimates are statistically significant, the point 
estimates are small. This is consistent with younger age groups having been only marginally ex-
posed to COVID-19 related mortality (Onder et al., 2020).

Clustering the standard errors at the municipality level, our estimates account for time serial 
correlation in the error term. However, unobservables in the error term may also be correlated 
across space. For this reason, Table D2 reports the baseline estimates (for the 81+ and 71–80 
age groups and within the 25-km bandwidth) both with clustered and spatial heteroskedasticity 
and autocorrelation consistent (HAC) standard errors (Conley, 1999), which turn out to be re-
markably similar.

5 Checks of the DiD-GRDD identifying assumptions
In this section, we report some falsification checks for the DiD-GRDD identifying assumptions.

In the first check, we set a fake border within Lombardy’s regional territory and compare mu-
nicipalities on each side of this border. Since in this falsification exercise all municipalities are ruled 
by the same regional administration and subject to the same regional health system, we do not ex-
pect significant differences in mortality to emerge.

In a second check, by adopting an event-study-like setting, we test whether the excess mortality 
across the Lombardy administrative border differed also before the COVID-19 crisis outbreak, 
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which can be considered a check of the ‘parallel trend assumption’. In the case of parallel trends 
before COVID-19, we can be sure that differential changes in excess mortality were induced by 
regions’ different abilities to cope with the COVID-19 crisis rather than by pre-existing trends 
in regional administrations’ or health systems’ performances.

5.1 Event-study analysis and the parallel trend assumption
This section describes the results of the event-study DiD-GRDD analysis. For the sake of brevity, 
we only comment on the results for the 81+ age group, for which we found statistically significant 
differences in the baseline DiD-GRDD analysis.

The red horizontal line in the graph of Figure 6 indicates the DiD-GRDD coefficient (the inter-
action between Lombardyi and the year indicator) for the year preceding the COVID-19 onset (i.e. 
2019, the omitted year). In principle, in the presence of the ‘parallel trend assumption’, we could 
observe differences in mortality at the border across regions (e.g. due to the higher quality of a re-
gion’s health system compared to the other), but these differences should have remained constant 
over time. This entails that for the years 2017 and 2018, the Lombardy × Dt interactions should be 
zero (implying the same difference in mortality as of 2019) because in 2017–2019 municipalities 
were not affected by the COVID-19 health shock. In this regard, Figure 6 is quite reassuring. 
Indeed, the 2017 and 2018 estimates are often close to the red line, while the coefficient for 
2020 is significantly above it in all the cases in which the DiD-GRDD detected higher excess mor-
tality for Lombardy compared to neighbouring regions (namely, Veneto, Piedmont, and Emilia 
Romagna). In some cases, owing to the addition of new parameters to be estimated, estimates 
for 2020 are not very precise but the graph shows quite clearly that their magnitude is above 
the pre-2020 interactions. Only in the case of Trentino Alto Adige 2019 appears to be a peculiar 
year, that is Lombardy seems to have experienced lower mortality both before 2019 and after 
2019, but similar mortality to Trentino Alto Adige in 2019. For Trentino Alto Adige, therefore, 
our results are to be taken with caution, given a potential violation of the parallel trend 
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assumption. We already stressed that Trentino Alto Adige was a peculiar region also in terms of 
health expenditures given its status as a special-statute region.

All in all, the analysis in this section supports the validity of our research design and shows that 
excess mortality for Lombardy at the border, compared to its neighbouring regions, only appeared 
in 2020.

5.2 Manipulation of the running variable and spatial placebo
As well known, an important identification assumption in RDD, and consequently also in our 
DiD-GRDD, is the absence of manipulation of the running variable (distance from the border 
in our case). In principle, there is very little room for differential ‘manipulation’ of the treatment 
between the geographic areas around each shared border, especially during the COVID-19 first 
wave. In the context of our study, a potential form of manipulation of the ‘treatment’ (i.e. expos-
ure to a specific regional health system) could occur if a patient in a municipality close to the border 
had the freedom to choose the region for healthcare. However, due to the stringent national re-
strictions imposed by the sudden implementation of confinement measures starting from March 
9, 2020, in Italy, such instances should be very rare, especially during the initial wave of 
COVID-19. This would likely be limited to highly severe and critically ill patients, specifically 
those requiring transfer to an Intensive Care Unit (ICU), and only in cases where the ICU depart-
ment of the patient’s current hospital and the overall availability of ICU beds in the entire region 
are saturated. Figure D5 in Appendix D shows indeed a sudden drop in people’s mobility starting 
from the beginning of March (10th week of the year). Moreover, changes of residence during the 
pandemic were unlikely given that they entailed registering with a new general practitioner (after 
finding him/her) in the middle of a health emergency.

Another concern related to the potential manipulation of the running variable is that sorting be-
fore the onset of COVID-19 of individuals on each side of the border could be motivated by char-
acteristics of the regional health systems. We do not have data to test this kind of selection, but we 
provide some indirect evidence.

Using data from Berta et al. (2022), we estimate the difference in health expenditure—measured 
via the per-capita regional reimbursement (defined according to the Lombardy tariffs) of all the 
2016 hospitalizations of patients with residence in those municipalities lying around the regional 
border—regressing it against distance from the border, a Lombardy indicator and their interaction 
term. Figure D6 shows that using small bandwidths (10 and 15 km) in all cases but Trentino Alto 
Adige, we do not find a discontinuity in health expenditures at the border. So, there was little scope 
for population sorting along this dimension. Trentino Alto Adige is, in many respects, a peculiar 
region since it has special statute and its two provinces (Trento and Bolzano) benefit from very 
large legislative, administrative, and financial autonomy. For this reason, the comparison between 
Lombardy and Trentino Alto Adige should be taken with a grain of salt.

In any case, to correctly attribute the geographic differences in mortality detected with the 
DiD-GRDD analysis to differences in the management of the COVID-19 crisis, we must check that 
similar differences do not emerge between nearby municipalities belonging to the same region. To 
test for this potential threat to identification, we implemented a spatial placebo where we only focus 
on mortality (separately by age group) among clusters of municipalities around a fake border that is set 
within the Lombardy territory. We create a new fake border within the region at different bandwidths 
from the real one. We then estimate again our preferred specification, equation (5). The fake border is 
set by moving the real border towards the interior of the Lombardy region and retaining in the analysis 
all of Lombardy’s municipalities within a given distance bandwidth from the ‘artificial’ border. Just to 
give an example, if we set a bandwidth of 10 km, the border is moved by 20 km from the original one 
(so that we can consider municipalities within 10 km on each side of this new border). So, de facto, in 
this analysis, the fictitious border changes with the bandwidth choice.

The spatial placebo estimates in Figure 7 do not show any statistical difference between the aver-
age mortality rates of municipalities on each side of the fictitious border.

5.3 Additional robustness checks
We carried out additional robustness checks. First, following Carrell et al. (2018), we assessed 
how much of the mortality differences across municipalities are accounted for by differences in 
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the covariates, e.g. socio-economic and demographic characteristics, eventually changing sharply 
across the administrative borders. This is a balancing test run on the linear predictor of mortality 
based on a regression model, which weights the covariates according to their importance in pre-
dicting mortality. Second, we re-estimated the models omitting control variables. Under the val-
idity of the DiD-GRDD, covariates should not significantly impact our estimates but only affect 
precision. Third, we checked the sensitivity of the DiD-GRDD model to the inclusion of munici-
pality fixed effects. In all cases, the results are in line with our baseline estimates and are com-
mented on in more detail in Appendix C.

A key assumption in the DiD-GRDD is that closer municipalities should be more comparable, 
e.g. in terms of virus diffusion, than two municipalities taken at random. However, recent research 
has shown that the intensity of COVID-19 circulation was partly related to commuting flows (e.g. 
Gu et al., 2022; Kuebart & Stabler, 2020; McMahon et al., 2022; Mitze & Kosfeld, 2022). In prin-
ciple, two bordering municipalities may be characterized by different commuting flows partly de-
pending on the features of the transport network. To take into account this potential confounder, 
we made two checks. In a first check, we estimated gravity models (Beine et al., 2016; Head & 
Mayer, 2014) for commuting flows measured in the 2011 Population Census using region pairs. 
The most recent available data refer to the 2011 Census; however, a simple correlation between 
the commuting flows in 2011 and 2001 at the municipality level returns a coefficient of 0.98 sug-
gesting that commuting flows are quite persistent over time. The gravity models include as control 
variables the distance between the origin and destination municipalities, the distance from the bor-
der, the population at origin, old-age and young-age dependency ratios, destination fixed effects, 
and a dummy variable for the Lombardy region, which captures potential discontinuities in com-
muting at the border. Table C1 in online Appendix C shows that the Lombardy indicator is gen-
erally non-significant in the commuting models, with few exceptions, namely, Trentino Alto Adige 
considering the largest bandwidth and Emilia-Romagna with bandwidths larger than 10 km. 
Although the one using 10 km, the smallest bandwidth, is also our preferred specification since 
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it reduces the bias due to potential unobservables and commuting flows do not appear to cause 
problems to these estimates, we tried to incorporate mobility in our baseline estimates. Indeed, 
in a second robustness check, we included in the main specification of equation (5), the predicted 
out-of-sample (i.e. using the values of the covariates in the different years) outward and inward 
commuting flows obtained from the gravity models, and their interactions with the postt indicator, 
which allow mobility to have differential effects on mortality in the presence of COVID-19. The 
results are plotted in the usual way in Figure C7 in online Appendix C. Reassuringly, the estimates 
are not significantly affected. All in all, we conclude that differences in commuting are unlikely to 
have an important impact on our estimates.

6 What did go wrong? An analysis of potential mediators
In general, it is difficult to determine all factors that may be responsible for the statistically robust 
differences in mortality that we observe at the border using only the administrative data we have. 
A thorough analysis of the mechanisms would require hospital-level or nursing home data for all 
the five regions considered, which are not publicly available.

Despite these limitations, we attempt to explore some possible mechanisms. First, we investigate 
whether, in addition to having differently managed health services, regional administrations may 
also have differently enforced mobility restrictions. In order to test this hypothesis, we carried out 
the DiD-GRDD on an indicator of people’s mobility (see Appendix B for the data description) 
measured at the municipality level. We performed a GRDD using this measure of mobility as 
the dependent variable to formally test whether the reduction (compared to the pre-pandemic 
baseline) in mobility differed at the border during the first wave of the pandemic. 
Unfortunately, mobility data are measured as index numbers, so only variations and not levels 
can be compared across locations (we cannot apply a DiD-GRDD model since the mobility indi-
cator is only available for 2020). The GRDD coefficients, reported in Table D4 in Appendix D, 
show how for most of the pairwise regional comparisons there was no statistically significant dif-
ference in changes in mobility across the border. In a few cases, for larger distance bandwidths, a 
quite small negative and marginally significant effect emerges, suggesting that Lombardy was 
more effective in restricting mobility (or that Lombardy’s population complied more with the re-
strictions). Thus, through this channel, we should have observed a lower mortality for Lombardy, 
if anything. All in all, these results point towards the exclusion of differential reductions in mobil-
ity at the border (due to differences in regional policies) as a primary cause of the larger excess mor-
tality in Lombardy.

Second, we seek to explore the possible mediating role of some structural features of 
Lombardy’s health system management of nursing homes during the first phase of the emergency. 
To this end, we use a simplified version of the DiD-GRRD model, which despite including distance 
as a control, omits the distance interactions. So, we do to avoid multicollinearity problems (be-
tween interaction terms involving the Lombardyi and postt indicators) and to retain some statis-
tical power, as in the mediation analysis we interact certain regressors (one at a time) with the 
Lombardyi, postt and Lombardyi × postt indicators. These specifications allow for the effect of 
the characteristic x on mortality to differ not only after COVID-19, and in Lombardy (compared 
to other regions), but also for the role of these features to differently change in Lombardy follow-
ing the pandemic. In the spirit of mediation analysis, we are primarily interested in the effect of 
including these additional terms on the estimates of excess mortality at the border [i.e. the coeffi-
cient α3 in equation (5)]. These differences are displayed in Figure 8, which plots the baseline 
DiD-GRDD estimates, the estimates of the DiD-GRDD ‘simplified’ model, and how the latter 
change including interactions with the variables x indicated on the horizontal axis. As for the 
x’s, we consider a dummy for hosting nursing homes in the municipality (and the number of 
beds when it is available), the number of ICU beds in public and private hospitals, and the number 
of ordinary beds in public and private hospitals. First, we observe that the baseline DiD-GRDD 
and the DiD-GRDD ‘simplified’ models lead to very similar estimates (except for Trentino Alto 
Adige, for which differences in excess mortality are lower when using the more parsimonious mod-
el). Second, only the inclusion of nursing home interaction terms appears to reduce Lombardy’s 
higher excess mortality at the border, but exclusively in the comparison with Emilia Romagna 
(by about 1 pp). Table D3 in Appendix D shows that although more municipalities in 
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Lombardy host nursing homes, focusing on the 10-km bandwidth, proportions are very similar in 
all regions but Veneto. After controlling for the interaction between the post-COVID-19 indicator 
with this potential mediating factor, Lombardy did not experience significantly higher mortality 
than Emilia Romagna in the 81+ population. Yet, estimates are not precise enough to be statistic-
ally different from our baselines.

7 Discussion and concluding remarks
The analysis in this paper shows that municipalities in Northern Italy, located near the regional bor-
ders, had different mortality rates during the first wave of the COVID-19 pandemic in 2020, de-
pending on their administrative region. This result is significant despite considering geographical 
areas that should have been broadly subject to the same virus diffusion, environmental conditions 
(humidity, wind speed, pollution levels, etc.), labour market, socio-economic conditions, demo-
graphic and epidemiological characteristics of the resident populations, and similar mobility levels 
both before and during the lockdown, but were ruled by different regional administrations.

Our DiD-GRDD-based comparison accounts for ‘baseline’ differences in mortality rates among 
the selected areas during the years preceding the pandemic (2017–2018–2019) allowing us to es-
timate the deviations in mortality rates from this baseline.

Regional administrations are shown to be potentially responsible for between 1 and 1.9 pp 
first-semester excess mortality rates at the border compared to previous years and neighbouring 
regions. Such effect, which is only observed for the 81+ age group, is statistically significant and 
similar in magnitude across different bandwidths of the DiD-GRDD estimates for all comparisons 
with the other regions than Trentino Alto Adige (for which mortality among municipalities is not 
statistically different from the one experienced in Lombardy). Results are generally robust to many 
placebo tests and robustness checks as well as to an event-study analysis confirming the validity of 
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Figure 8. Mediation analysis (81+ age bracket, municipalities within 10 km from the border). Note. Plots of the of 
the DiD-GRDD coefficients (points) and 95% confidence intervals (bars, clustered standard errors at municipality 
level) obtained with a 10-km bandwidth. The coefficients reported are respectively that of the baseline model of 
equation (5), the simplified model described in this section, and models including interactions between presence of 
nursing homes in the municipality, the number of RSA beds (whenever available) and the number of beds (ordinary 
or ICU) in private or public hospitals with the postt , the Lombardyi and the Lombardyi × postt indicators. RSA 
(Residenza Sanitaria Assistenziale) stands for nursing homes.
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the parallel trend assumption (key for DiD-GRDD) for all regional-pair comparisons but Trentino 
Alto Adige, which is a special-statute region enjoying larger autonomy from the central 
government.

Differences in elderly mortality between the Lombardy region and the bordering regions may 
derive from the structural characteristics of Lombardy’s health system or poor management of 
the pandemic during the first emergency phase. A simple mediation analysis points to differential 
management of the health emergency in nursing homes as a possible factor in explaining 
Lombardy’s higher mortality compared to Emilia Romagna during the first wave of the pandemic 
while it does not identify the larger diffusion of private health structures in Lombardy as a key fac-
tor for higher excess mortality.

Our results confirm and integrate earlier evidence that the management of nursing homes might 
have played a key role in the exceptional mortality observed in Lombardy (Alacevich et al., 2021). 
Ancidoni et al. (2020), using data from a survey run by the ISS (Institute Superiore di Sanità) in 
March 2020, document higher mortality rates in the nursing homes in Lombardy (7.5%) compared 
to the neighbouring regions (1.2% in Veneto, 3.3% in Piedmont, 4.2% in Emilia Romagna, and 
6.4% in the Autonomous Province of Trento). A high mortality in nursing homes was also observed 
in other countries during the first wave of COVID-19 (Schultze et al., 2022). Although it is not pos-
sible with our municipality-level data to delve into which aspects of nursing homes’ management 
contributed to higher mortality, an article by Notarnicola et al. (2021) provides important insights. 
The authors use a qualitative survey to investigate regional differences in policies adopted by nurs-
ing homes during the pandemic and report some differences in the ways health emergency was 
tackled, especially since May 2020. A striking difference between Lombardy and the other regions 
was the lack of measures for the management of residents in home care and positive cases and for 
workforce management (safety and training). A first reaction to an unprecedented pandemic out-
break required an immediate ability to act under scarce information, to be able to implement and 
quickly scale successful and effective decision-making strategies. Examples of such policies are the 
coordination of human and economic resources across different parts of the health care system, es-
pecially in nursing and care homes, implementation of testing facilities, support to primary care 
physicians, implementation of dual track systems in hospitals to preserve non-COVID patients 
in response to the crisis. This proved to be difficult in Lombardy during the first COVID-19 wave.
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All the data used in the paper are publicly available as reported in Table B1. Data to reproduce re-
sults in Table D4 and Figure D5 in Appendix concerning mobility of residents were provided by the 
GSM Association of Mobile Network Operators (GSMA) to the European Commission, Joint 
Research Centre in the framework of the Data4Good initiative and cannot be shared publicly.

Appendix A: The Italian National Healthcare Service and Heterogeneity 
Across Regions
The Italian National Healthcare Service (INHS) was established in 1978 with the aim of providing 
free-of-charge, uniform, and comprehensive care, replacing the existing system based on health 
insurance funds. The INHS is a typical Beveridge system, financed through general taxation, which 
guarantees equitable access and a uniform provision of healthcare services to all citizens without 
any discrimination.

Over the last 40 years, two major reforms were introduced, one in 1992–1993 and one in 1998– 
1999, aimed at containing costs and increasing the responsibility and autonomy of regional au-
thorities (France et al., 2005). INHS is currently structured in three main levels: (i) the national 
state with the Ministry of Health; (ii) the regions with their health departments (21 regional gov-
ernments, namely 19 Regions and two Autonomous Provinces); and (iii) the Local Health 
Authorities (LHAs), interacting with municipalities. LHAs are vertically integrated organizations 
funded by regions and are responsible for a wide range of hospital and community services in a 
given geographical area. LHAs directly manage most public hospitals, coordinate primary care, 
and territorial services, assess the appropriateness of health services and their distribution, and im-
prove the integration of social and health services. Regions are allowed to adopt different strat-
egies and governance models, allowing them significant autonomy in organizing their 
healthcare system under a balanced-budget constraint and the requirement of delivering the 
core and essential health benefit package (Livelli Essenziali di Assistenza, LEA), to all citizens 
free-of-charge or upon a co-payment. The LEAs are set by the central government to preserve a 
core uniform set of services, throughout the country. The recent reforms aimed at making the pub-
lic sector more efficient, effective, and accountable. However, this process produced a large het-
erogeneity across regions that developed financial, administrative, and political responsibility 
for the provision of health care, often employing different governance models and management 
tools (see Neri, 2011; Tediosi et al., 2009, among others).

In this paper, we focus on Lombardy, the epicentre of the first wave of the COVID-19 crisis and 
its neighbouring Italian regions, namely, from northwest to north-east, Piedmont, Emilia 
Romagna, Veneto, and Trentino Alto Adige. Altogether, the five regions we consider in this paper 
account for over 40% of the Italian population (Table A1, column A) and an average income 
above the country’s average. According to the Italian National Statistical Institute (ISTAT) 
data, in 2019 in Italy, the per capita GDP was 29,700€, whereas among the five regions considered 
it ranged from a maximum of 39,700€ of Lombardy to a minimum of 31,700€ of Piedmont. 
Although relatively homogeneous from an economic point of view, they are heterogeneous con-
cerning the governance of the healthcare system.

Complementing (Nuti et al., 2016) taxonomy of the Italian governance models with Bobini et al. 
(2020), which is based on interviews with some key informants, Lombardy emerges as a stand-alone 
healthcare system in the Italian context. Lombardy is the only region that opted for the ‘choice and 
competition’ model, stressing the role of patients’ choices to boost competition by splitting purchas-
ers and providers, including private institutions. It is based on the assumption that, upon fulfilling 
the rules and standards set by the regional government, the market will regulate itself, promoting 
competition between public and private health service providers. It combines elements of the ‘pay 
for performance’ (P4P) model, as general managers of LHAs are rewarded according to the achieve-
ments of targets negotiated with the regional administration, though the variability of managers’ re-
wards and performance results is low, with limited public information on hospitals’ performances. 
Lombardy does not use a regional public ranking, which limits information available to citizens and 
the possibility of hospitals learning from their relative performance (Berta et al., 2013).

The other four Italian regions bordering Lombardy opted for models of governance with a rele-
vant role of the regional government to plan activities and set standards to be implemented by 
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LHAs overlooking the service providers. In these regions, the presence of private providers is limited, 
with the percentage of beds in acute care supplied by accredited private institutions well below 
Lombardy and the national average. Some specificity, however, applies. The Piedmont RHS is better 
described by a ‘command and control’ model, following the recovery plan introduced in 2010 to 
have access to the national bail-out fund. Although the central government specifies financial targets, 
there is no systematic benchmarking of clinical results nor public disclosure of performance data. 
Following the recovery process, the number of LHAs was reduced to 12, with an average coverage 
of 360.7 thousand people, which is still one of the lowest in Italy, with 3 AOUs and 3 AOs. Veneto, 
Emilia Romagna, and Trento Autonomous Province (the province in the Trentino Alto Adige region 
sharing the border with Lombardy) have adopted a mixed governance model that combines ‘hier-
archy and targets’ with ‘transparent public ranking’ and P4P, however, specificities apply according 
to the governance models and the staff’s managerial skills. Trento’s RHS is relatively simple, due to 
the small size of the resident population, and with a local tradition of sound management.

In Emilia Romagna’s RHS, the Department of Health is supported by a regional health agency 
for technical and scientific matters, is responsible for the overall planning and coordination of ac-
tivities, and leaves large discretionality to public service providers, including 8 LHSs, 4 AOUs and 
3 IRCCS. Emilia Romagna was one of the first regions to increase the population coverage of 
LHAs, which currently count over 550 thousand residents. The peculiarity of Emilia 
Romagna’s RHS is the strong interconnection with local administrative authorities, including mu-
nicipalities, in a typical network model (Rhodes, 1997).

The existing differences among the RHS, aimed at increasing the overall efficiency of the INHS, 
may represent a critical issue when facing an unprecedented pandemic such as COVID-19. 
Autonomy and independence in the organization and delivery of healthcare services may be a 
problem when the response to an epidemic outbreak requires strong coordination among the dif-
ferent actors regardless of their local context. Such a scattered picture may also be reflected in sub-
sequent substantial differences in the strategies adopted by the different regional governments to 
face the COVID-19 emergency (OECD, 2020).

During the first wave, When responding to the health emergency at the onset of the COVID-19 
epidemic, Veneto largely relied on home care assistance, limiting hospital admissions to the most 
severe cases, and started early testing of healthcare workers operating in the community and in 
hospitals. In Emilia Romagna, the network model of the RHS helped, allowing it to adapt prompt-
ly, relying on home care assistance and active surveillance systems, on GPs with phone calls to pa-
tients to monitor their symptoms, and strengthening primary care assistance, as suggested also in 
OECD (2021). On the contrary, Lombardy chose a hospital-centred approach at the expense of 
community-based services, with intensive use of emergency rooms as a consequence of reduced 
territorial services provided by GPs and GPs on out-of-hours services. This might have contributed 
to exacerbating the stress on the health system generated by COVID-19 (Usuelli, 2020). The dra-
matic inflow of patients quickly saturated the intensive care units, forcing doctors to decide how to 
allocate resources (Rosenbaum, 2020). In the hospital setting, the virus was spread not only by 
patients but also by healthcare workers, who could not always rely on appropriate personal pro-
tective equipment, risking their lives while doing their job (Gibertoni et al., 2021).

As for the second COVID-19 wave (starting from October 2020), the Italian government imple-
mented several progressive restrictions, initially applied homogeneously over the country, and 
then after November 6, 2020 adopted a colour-labelled scheme with four different colours (coded 
as white, yellow, orange, and red with increasing levels of restrictions to mobility and economic 
activities), which were imposed on a regional basis to reflect existing regional heterogeneity in 
the virus transmission and hospital stress. For all details regarding the adopted measures, see 
https://www.agenas.gov.it/covid19/web/index.php. Regional restrictions were automatically as-
signed centrally depending on the value of the reproduction number (Rt).

As described in detail in Manica et al. (2021), according to these measures, a stay-home mandate 
between 10 pm and 5 am (except for work, health, and other certified reasons) was implemented in 
yellow and orange regions, while the stay-home mandate plus a ban on movements between mu-
nicipalities and to/from other regions was in place in the red ones. For what concerns retail and 
service shopping, malls were closed during weekends and holidays (except for essential retail 
and services) in both yellow and orange regions while all shops not selling essential goods were 
always closed (again except for essential retail and services) in red ones. Bars serving food, cafes, 
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and restaurants were allowed to be open until 6 pm while take-away activity was only allowed 
between 6 pm and 10 pm in yellow regions. In orange and red regions, only take-away activity 
until 10 pm was allowed. Distance learning in high schools and universities was mandatory in yel-
low and orange regions, including the second and third grades of lower secondary schools in red 
ones. For all colour-labelled restrictions, public transport was reduced to 50% of its capacity (ex-
cept for school service) and indoor recreational and cultural venues were closed. Gyms, pools, and 
leisure venues were closed except for outdoor sport centres in yellow and orange regions while in 
red regions, individual outdoor training only was allowed (except for sport events of national 
interest like the national football league).

Differences in adopted colours among the five selected regions during the second wave may be 
summarized as follows: Lombardy and Piedmont were classified as red zones up to November 28, 
orange afterwards up until December 13, and yellow before Christmas; Emilia Romagna spent the 
first week (up to November 14) in yellow then moved to orange for 14 days (December, 5) and 
went back to yellow afterwards; Trento Autonomous Province and Veneto remained yellow all 
the time. During the Christmas period up to the end of the year, restrictions have been applied uni-
formly in all regions. Because of this heterogeneity in mobility restrictions, which might have af-
fected both virus spread and mortality, we limit our empirical analysis to the first COVID-19 
wave, i.e. the first semester of 2020.

Appendix B: Control Variables
A rich body of work is becoming available as to the main determinants of COVID-19 diffusion and 
mortality. We start from this evidence to select (conditional on availability) the covariates to be 
included in our empirical analysis.

The extant literature has identified a clear demographic profile for COVID-19 victims (Jordan 
et al., 2020; Zheng et al., 2020). COVID-19 counts victims particularly among the oldest, and pro-
portionally hits fewer females than males. Underlying health conditions such as respiratory and 
Cardiovascular disease, diabetes, hypertension, and cancer are important predictors of 
COVID-19 related mortality (Robilotti et al., 2020).

Environmental factors, such as air pollution, and weather conditions, such as temperature and 
humidity, have been found to be associated with mortality (Becchetti et al., 2022; Ma et al., 2020; 
Wu et al., 2020).

Restrictions in economic activity and individual mobility (lockdowns) contribute to reducing the 
diffusion of the virus and mortality. This has been observed, inter alia, for China, Italy, and Spain 
(Ciminelli & Garcia-Mandicó, 2020; Lau et al., 2020; Qiu et al., 2020; Tobías, 2020), which were 
among the first countries to be hit by the pandemic and to implement lockdowns. However, evidence 
is not limited to these countries. Evidence on Europe has been reported in Flaxman et al. (2020).

Recent studies also demonstrate how hospital resources’ availability had an impact on 
COVID-19 mortality. In particular, geographic areas with fewer intensive care unit (ICU) beds, 
nurses, and general medicine/surgical beds were statistically significantly associated with more 
deaths in the USA and the UK (Lin, 2021; Wood et al., 2020).

Moreover, previous Influenza-like illness in COVID-19 hospitalized patients and previous influ-
enza vaccination in 2019 were associated with larger COVID-19 incidence and reduced rate of 
COVID-19, respectively (see Ceccarelli et al., 2020; Green et al., 2021 among others).

In addition, recent evidence from Sweden using individual-level registry data demonstrates that 
gender (being male), individual income, education, married status (being single), and being an im-
migrant from a low- or middle-income country all independently predict a higher risk of death 
from COVID-19 (Drefahl et al., 2020). Similar evidence of a disproportionate impact of 
COVID-19 on immigrant communities has been reported in USA (Clark et al., 2020).

Finally, a strand of the enormous COVID-19 literature currently available found that mobility 
habits represented one of the variables that explain the number of COVID-19 infections jointly 
with other factors and some environmental variables (i.e. PM pollution and temperature) 
(Cartenì et al., 2020). So, Governments’ emergency measures aimed at human-mobility contain-
ment have been proven to have a direct impact on the number of COVID-19 related deaths 
(Hadjidemetriou et al., 2020) and should be taken into account when studying COVID-19 
mortality.
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B.1 Description of Control Variables
We include in the Xit vector of equations (5) and (6) several controls at the municipality level that 
are likely to be associated with, or potential determinants of, mortality. In short, we collected data 
on the following groups of variables (data sources are reported in Table B1): 

Demographic and socioeconomic characteristics: population structure by age and gender; per-
centage of immigrants; population size; population density; average taxable income;

Infrastructure variables: distance to the closest airport, distance to the closest care home, dis-
tance from the closest early declared ‘red zones’ (February-March 2020);

Healthcare system variables: number of (ordinary and ICU) beds per capita in public hospitals, 
number of (ordinary and ICU) beds per capita in private hospitals; closest distance from clos-
est ICU in private/public hospital (two separate variables); closest distance from private/pub-
lic hospital (two separate variables);

Table B1. Control variables description and sources

Description Year Source

Percentage of population in age class 51–60 2017–2020 ISTAT

Percentage of population in age class 61–70 2017–2020 ISTAT

Percentage of population in age class 71–80 2017–2020 ISTAT

Percentage of population in age class 81+ 2017–2020 ISTAT

Percentage of migrant citizens 2017–2020 ISTAT

Population density 2017–2020 ISTAT

Hospitalization rate for COPD 2017–2020 AGENAS

Hospitalization rate for influenza 2017–2020 AGENAS

Relative Humidity 2017–2020 Copernicus Climate Service

Temperature at 2mt 2017–2020 Copernicus Climate Service

Total precipitations 2017–2020 Copernicus Climate Service

Wind Speed 2017–2020 Copernicus Climate Service

Particulate matter 2.5 2017–2020 Copernicus Atmosphere Service

Number of beds (per capita) in public hospital 2017–2019 Ministry of Health

Number of beds (per capita) in ICU in public hospital 2017–2019 Ministry of Health

Number of beds (per capita) in private hospital 2017–2019 Ministry of Health

Per capita taxable income 2017–2019 ISTAT

Number of nursing homes 2019 Regional Healthcare Directorate

Distance from airport Time invariant Google Maps

Distance from nursing homes Time invariant Google Maps

Distance from red zone Time invariant Google Maps

Size ICU in private hospitals 2017–2019 Ministry of Health

Size ICU in public hospitals 2017–2019 Ministry of Health

Size private hospitals 2017–2019 Ministry of Health

Size public hospitals 2017–2019 Ministry of Health

Distance from ICU in private hospital Time invariant Google Maps

Distance from ICU in public hospital Time invariant Google Maps

Distance from private hospital Time invariant Google Maps

Distance from public hospital Time invariant Google Maps

Mobility index (inward, outward, internal) 2020 Mobile Network Operators

Note. This table reports the description, year in which they are measured and the sources of the control variables included 
in the DiD-GRDD regression models. ISTAT is the Italian National Statistical Office (Istituto Nazionale di Statistica) and 
AGENAS is the National Agency for the Regional Health Services (Agenzia Nazionale per i Servizi Sanitari Regionali.
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Environmental and climate variables: air quality (PM2.5 yearly average concentrations 
from 2014 to 2018), as derived from Copernicus Atmosphere Monitoring Service 
‘Reanalysis’ product (Inness et al., 2019); weather/climate conditions (yearly average 
wind speed and components, temperature, relative humidity, surface pressure, precipita-
tion, solar radiation), as derived from Copernicus Climate Service ‘ERA5’ product 
(Hersbach et al., 2020);

Pulmonary diseases: Chronic obstructive pulmonary disease (COPD) gross municipality rate; 
Influenza gross municipality rate (obtained by National Outcomes Plan, PNE https://pne. 
agenas.it);

In addition to the explanatory variables included in the model, we used data on citizens’ mobility 
to test the validity of the identifying assumptions of the proposed GRDD model in 2020, which 
requires mobility to be balanced at the border and to explore potential mechanisms. Mobility 
data are aggregated data provided by Mobile Network Operators gathering information on col-
lective mobility behaviours aggregated at the municipality level. Given that mobile phone sub-
scribers represent about 65% of the population in the EU, mobile data provide reliable 
information to capture the aggregate mobility patterns of the population (Iacus et al., 2021). 
The mobility indicators provide a daily time series of mobility according to the direction of move-
ments as internal (within the same municipality), inward (to a municipality), outward (from a mu-
nicipality), and total. More information about the Mobility Indicators and their application to the 
European Commission JRC’s live anomaly detection system to spot potential new outbreaks can 
be found in Santamaria et al. (2020) and Iacus et al. (2021).

Table B1 reports the definition for all variables, timing, and sources, and Tables B2 sample de-
scriptive statistics.

Appendix C: Additional Robustness Checks
C.1 Balancing of Covariates at the Border and the Effect on Mortality
In this section, we implement the test proposed by Carrell et al. (2018) to check for the bal-
ancing of covariates that are likely to be important predictors of mortality rates. We first es-
timate predicted mortality through linear regressions of observed mortality rates on the 
control variables described in Appendix B, and then estimate equation (5) excluding the con-
trol variables, using predicted mortality rates instead of the observed mortality rates as the 
dependent variables. The results are shown in Figures C1 and C2 in Appendix C for the 
age groups 81+ and 71–80, respectively. The DiD-GRDD coefficients shown in the graphs 
are much smaller than those of our baseline estimates, generally very close to zero, and stat-
istically non-significant. This confirms that different covariates alone are not able to explain 
differences in mortality at the border, especially when one focuses on quite narrow band-
widths, for which the assumption of municipalities’ similar observable and unobservable 
characteristics is more credible.

As a further check, we estimated the DiD-GRDD model for the 81+ age group excluding control 
variables. Consistent with a substantial balancing of controls across the borders, DiD-GRDD co-
efficients (shown in Figure C3 and C4) are remarkably similar to our baseline estimates.

C.2 Omitted Variables and Municipality Fixed Effects
One potential caveat with the specification of equation (5) is that we do not control for 
municipality-level time-invariant unobservable variables through municipality fixed effects.

However, if the assumptions underlying the DiD-GRDD are correct nearby municipalities are 
comparable in terms of observable and unobservable variables, then the municipality fixed effects 
should not significantly affect the estimates. In a DID setting using a balanced panel, Wooldridge 
(2021) demonstrates that a simple OLS model including the post and treatment indicators produ-
ces the same estimates as the Two-Way Fixed Effects (TWFE) model. In our case, the DiD-GRDD 
model in equation (5) also includes polynomial-in-distance interactions with the above indicators. 
This is indeed confirmed by Figures C5 and C6.
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Figure C1. Balancing of covariates test for age 81+ population. Note. Plots of the coefficients (points) and 95% 
confidence intervals (bars, clustered standard errors at municipality level) of the DiD-GRDD estimates obtained with 
different distance bandwidths (in km) from the administrative border (indicated in the horizontal axis) using as 
dependent variables predicted mortality rates from a linear regression on the covariates (Carrell et al., 2018).
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Figure C2. Balancing of covariates test for age 71–80 population. Note. Plots of the coefficients (points) and 95% 
confidence intervals (bars, clustered standard errors at municipality level) of the DiD-GRDD estimates obtained with 
different distance bandwidths (in km) from the administrative border (indicated in the horizontal axis) using as 
dependent variables predicted mortality rates from a linear regression on the covariates (Carrell et al., 2018).
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Figure C3. Sensitivity to excluding covariates—81+ population. Note. Plots of the coefficients (points) and 95% 
confidence intervals (bars, clustered standard errors at municipality level) of the DiD-GRDD estimates with and 
without covariates obtained with different distance bandwidths (in km) from the administrative border indicated on 
the horizontal axis.
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Figure C4. Sensitivity to excluding covariates—71–80 population. Note. Plots of the coefficients (points) and 95% 
confidence intervals (bars, clustered standard errors at municipality level) of the DiD-GRDD estimates with and 
without covariates obtained with different distance bandwidths (in km) from the administrative border indicated on 
the horizontal axis.
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Figure C5. Sensitivity to the inclusion of municipality fixed effects (FE) for the 81+ population. Note. Plots of the 
coefficients (points) and 95% confidence intervals (bars, clustered standard errors at municipality level) of the 
DiD-GRDD estimates with fixed effects obtained from different distance bandwidths (in km) from the administrative 
border indicated on the horizontal axis.
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Figure C6. Sensitivity to the inclusion of municipality fixed effects (FE) for the 71–80 population. Note. Plots of the 
coefficients (points) and 95% confidence intervals (bars, clustered standard errors at municipality level) of the 
DiD-GRDD estimates with fixed effects obtained with different distance bandwidths (in km) from the administrative 
border indicated on the horizontal axis.
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C.3 Commuting Flows
Table C1 shows the estimates of a gravity model,

Cij = α + α0popi + α1distij + α3di + α4youngdepi + α5olddepi + α6Lombardyi + Dj, (7) 

where Cij is the number of commuters from municipality i to municipality j; popi is the population 
of the origin municipality i; distij is the geodesic distance between i and j; di is distance from the 
Lombardy’s border; youngdepi is municipality i’s young dependency ratio in the population 
(population aged 0–14 over the population 15–64); olddepi is municipality i’s old dependency ra-
tio in the population (population aged 65 and more over the population 15–64); Lombardyi is an 
indicator for Lombardy’s municipalities; Dj are destination municipalities fixed effects (absorbing 
all destination municipalities covariates). The model is estimated using the Poisson Pseudo 
Maximum Likelihood Estimator (PPML). Estimates are weighted by the population in the muni-
cipality of origin, and standard errors are clustered at the municipality of origin.

The model is estimated using data from the 2011 Italian Population Census (ISTAT), which pro-
vides the commuting flows and the control variables. We estimate commuting models using pairs 
of regions, each pair includes Lombardy.

Table C1 shows that commuters’ flows generally do not show a discontinuity at the border. 
Exceptions are Trentino Alto Adige, with the largest bandwidth, and Emilia Romagna, with band-
widths larger than 10 km. Since 10 km is also our preferred bandwidth, since it increases the like-
lihood that unobservables are balanced at the border, this evidence is not very problematic.

However, as a further robustness check, we re-estimated the baseline model in equation (5) augment-
ing it with the predicted (out-of-sample) commuters’ inflows and outflows estimated from the gravity 
models just described for 2011 commuter flows, along with their interaction terms with the postt indi-
cator, which allows for the impact of commuting on mortality to differ between the pre- and the post- 
pandemic periods. The estimates are plotted in Figure C7and confirm the results of our baseline model.

Figure C7. DiD-GRDD estimates including predicted inflows and outflows of commuters. Note. Plots of the coefficients 
(points) and bootstrapped 95% confidence intervals with 1,000 replicates (bars, observations clustered at municipality 
level) of the DiD-GRDD estimates obtained with different distance bandwidths (in km) from the administrative border 
indicated on the horizontal axis, including the DiD estimates on all municipalities. The baseline model in equation (5) is 
augmented with commuters’ outflows and inflows, predicted out-of-sample from the gravity models estimated on 2011 
Population Census data (Table C1), and their interactions with the post-COVID-19 indicator. Confidence intervals are 
bootstrapped since commuters’ inflows and outflows are predicted from a gravity model.
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Table D3. Percentage of municipalities with nursing homes at different kilometres from the border in each 
comparison Region vs. Lombardy (in parentheses)

Distance Piedmont Veneto Trentino Alto Adige Emilia Romagna

10 km 49.65 36.01 48.01 47.79

(50.35) (64.00) (52.00) (52.21)

15 km 48.13 35.82 44.44 46.58

(51.87) (64.18) (55.56) (53.42)

20 km 48.93 38.37 36.54 46.02

(51.07) (61.63) (63.46) (53.98)

25 km 49.65 37.62 38.1 46.02

(50.35) (62.38) (61.90) (53.96)

Table D2. Spatial correlation: HAC standard errors

Regional Method age 81+ age 71–80

comparison (SE) coef. SE t-stat coef. SE t-stat

Piedmont Clustered 0.684 (0.507) 1.350 0.056 (0.187) 0.299

Spatial HAC 0.684 (0.577) 1.186 0.056 (0.191) 0.293

Trentino Alto Adige Clustered −0.818 (0.955) −0.857 0.209 (0.331) 0.631

Spatial HAC −0.818 (1.208) −0.678 0.209 (0.428) 0.488

Veneto Clustered 1.355 (0.527) 2.571 0.298 (0.180) 1.650

Spatial HAC 1.355 (0.538) 2.519 0.298 (0.174) 1.709

Emilia Romagna Clustered 1.179 (0.613) 1.922 0.344 (0.207) 1.663

Spatial HAC 1.179 (0.567) 2.079 0.344 (0.211) 1.626

Note. The table reports the baseline estimates of the DiD-GRDD model with the 25-km bandwidth and compares 
(municipality level) cluster-robust with Conley’s Spatial HAC standard errors (Conley, 1999). SE stands for standard 
error. ∗, ∗∗, ∗∗∗ refer to coefficients statistically significant at the 10%, 5%, 1% level, respectively.

Table D4. GRDD estimates using municipality outward mobility index as dependent variable

Region 10 km 15 km 20 km 25 km

Lombardy vs Veneto −0.000 0.001 0.001* 0.001*

(0.000) (0.000) (0.000) (0.000)

Lombardy vs Piedmont 0.000 0.000 −0.000 −0.000

(0.000) (0.000) (0.000) (0.000)

Lombardy vs Emilia Romagna −0.001 −0.000 −0.000 −0.000

(0.000) (0.000) (0.000) (0.000)

Lombardy vs Trentino Alto Adige 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Note. This table shows the estimates of a GRDD model using the outward mobility indicator during lockdown 
(aggregated and anonymized measure obtained from GSMA mobile positioning data) as dependent variable. The GRDD 
model includes a treatment variable (dummy variable for Lombardy against other control regions), and distance from the 
border as running variable. Only the GRDD coefficient of interest is reported in the table. Standard errors (in parentheses) 
are clustered by municipality. ∗, ∗∗, ∗∗∗ refer to coefficients statistically significant at the 10%, 5%, 1% level, respectively.
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Figure D1. Number of municipalities by bandwidth (in km). Note. The Figure shows the sample sizes (number of 
municipalities) in each pairwise regional comparison obtained by changing the distance bandwidth from Lombardy’s 
administrative borders.

Figure D2. Weekly mortality rates (per 100,000 individuals)—10-km and 25-km bandwidths. Note. Weekly mortality 
rates computed using ISTAT (Italian National Statistical Institute) data only on the municipalities within 10 km or 25  
km from Lombardy’s administrative borders.
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Figure D3. Lombardy’s excess mortality compared to neighbouring regions—age 0–50 population. Note. Plots of 
the coefficients (points) and 95% confidence intervals (bars, clustered standard errors at municipality level) of the 
DiD-GRDD estimates obtained with different distance bandwidths (in km.) from the administrative border indicated 
on the horizontal axis.

Figure D4. Lombardy’s excess mortality compared to neighbouring regions—age 51–70 population. Note. Plots of 
the coefficients (points) and 95% confidence intervals (bars, clustered standard errors at municipality level) of the 
DiD-GRDD estimates obtained with different distance bandwidths (in km) from the administrative border indicated 
on the horizontal axis.
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