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Abstract: Flavonoids are a broad class of secondary metabolites with multifaceted functionalities
for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant
growth and health. Furthermore, they were discovered as mediators of plant networking with the
surrounding environment, showing a surprising ability to perform as signaling compounds for a
multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome
scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial
bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect
plant physiology to improve its resilience to fluctuating environmental conditions. This review
focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in
the modulation of plant morphogenesis in response to environmental clues, as well as their role as
inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review
addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits
and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising
new drugs for the treatment of several pathologies.

Keywords: phytochemicals; root exudates; phytobiome; plant-microbe interactions; beneficial
microbes; plant secondary metabolites; abiotic stress; biotic stress; rhizosphere; microbiome

1. Flavonoids: Plant Secondary Metabolites with a Broad and Diversified Spectrum of
Activities across All Life Kingdoms

A diverse set of environmental cues triggers plant production of specialized metabo-
lites in a highly regulated spatial and temporal dynamic [1] aiming to face unfavorable
growth conditions [2]. Such phytochemicals are key players in plant defense, protection,
adaptation to abiotic and biotic stress and communication with the other members of the
phytobiome [3].

Flavonoids form one of the broadest groups of specialized metabolites and include
over 9000 derivatives [4]. Beyond the canonical C6-C3-C6 core structure of polyphenolics,
the flavonoid family encompasses in sensu lato chalcones, flavones, flavonols, anthocyanins
and proanthocyanidins [5]. This multiplicity in chemical structure is mainly due to sec-
ondary modifications by glycosylation, prenylation, methylation and acylation that affect
the bioactive role, transport and accumulation of the resulting compounds [6], a complex
set of molecules that enables plants to interact dynamically with the environment. The wide
distribution of biosynthetic genes in the plant kingdom, already observed in microalgae,
suggests that plants were equipped early during evolution with the ability to produce
flavonoids [7]. This ancestral origin may be related to flavonoids’ protective role against bi-
otic threats such as pathogenic fungi and bacteria and herbivore predation and abiotic ones
such as ultraviolet (UV) light [8]. It has been hypothesized that the evolutionary success of
embryophytes in the Paleozoic as land-colonizers was achieved by the antioxidant activity
of phenolic compounds, able to screen for UV radiation [9].

So far, flavonoids are documented to exert a wide spectrum of biological activities in
plant physiology [10] and, being differentially produced and regulated in different tissues,
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organs and cell-types, contribute to a plastic response to environmental stimuli [2]. These
phytochemicals have a role even in plant reproduction strategies: they encompass pig-
mented molecules, such as anthocyanins, that show from blue to red colors, and accumulate
in flowers and fruits to attract pollinators and animal dispersers to favor the dispersal of
seed [11].

Flavonoids are involved in many plant developmental processes [12,13] and, more
precisely, they contribute to stress-induced morphogenic responses under a variety of
abiotic conditions [14] including salinity [15], drought [16], heat [17], freezing [18], metal
toxicity [19], presence of xenobiotics [20] and UV exposure [21].

Flavonoid aglycones and glycosides are secreted in root exudates [22], acting as
communication signals that rule, for instance, plant-to-plant interactions in allelopathic
interference between different species [23] and that mediate root association with below-
ground soil microbiomes [24,25]. In the soil microbiome framework, the role played by
flavonoids in the legume-rhizobia symbiosis has been extensively investigated [26–28]. In
response to nitrogen deficiency, legumes release species-specific flavonoids as chemical
impulses to attract nitrogen-fixing rhizobia and to activate the transcription of bacterial
genes coding for Nod factors [29,30]. This, in turn, affects the plant root morphogenetic
development, culminating in root infections and nodule organogenesis [31]. Besides bacte-
ria, flavonoids are signaling compounds also for arbuscular mycorrhizal fungi, influencing
spore germination, hyphal growth and root colonization efficiency [32], in turn contribut-
ing to the plant’s nutritional balance for micronutrients such as phosphorus and iron [33].
Evidence is accumulating that flavonoids could act as a more universal signaling system
for soil microbes [34] as suggested by the huge proportion they represent in root chem-
istry: in Arabidopsis, for instance, they constitute 37% of the total secondary metabolites
released into the rhizosphere [35]. Flavonoids can be metabolized by microorganisms as
nutrients [36], can affect microbial traits involved in rhizocompetence such as motility and
chemotaxis [37,38] or operate as co-metabolites to induce highly specialized pathways
in bacteria, such as the expression of the bph operon involved in the bioremediation of
recalcitrant xenobiotics like polychlorinated biphenyls [39,40].

Flavonoids are essential components of food and edible plants and, once introduced
through the diet, they are transformed by the human microbiome in the intestine [41].
Parental and digested flavonoids exert their action locally, by sustaining the intestine
functionality in terms of detoxification from toxins and inhibition of pathogens, increasing
nutrients up-take and maintaining the intestinal barrier integrity [42]. Part of the flavonoid
molecules are released in the blood flow where they act systemically. Numerous medical
studies highlighted flavonoid therapeutic potential in the treatment of diverse pathologies,
paving the way for the development of new drugs or combinatory treatments for human
health [43,44].

This review aims to shed light on (i) the multifaceted roles played by flavonoids in
extremely diverse biological systems, (ii) their ability, as signal molecules, to facilitate
communications among organisms belonging to different life kingdoms, (iii) their plant-
beneficial effect in improving resilience to adverse environmental conditions and (iv) their
cross-reaction with animal signaling pathways, thus exerting therapeutic effect for the
medical treatment of several human acute illnesses.

The source analyses for this review encompassed the scientific literature deposited
in online databases such as the Web of Science Core Collection, PubMed, Scopus and
Google Scholar, using keywords that describe flavonoids and their involvement in biotic
and abiotic stresses (including oxidative stresses, nutrient scarcity, soil pollution and attack
by phytopathogens), allelopathy, microbiome assembly and function, root colonization,
chemotaxis, biofilm formation, rhizoremediation, insect, oviposition, feeding, quercetin,
naringenin, nutraceuticals, dietary phytochemicals, human health and disease. The data
critically discussed in the present review were retrieved from studies published in the years
from 2002 to 2022 (accounting for 98% of the cited literature).
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2. Flavonoids Tune Plant Physiology Response under Biotic and Abiotic
Stress Conditions

Due to their structural heterogeneity, flavonoids play multiple roles in mediating plant
physiology and in responding to different abiotic stresses (Figure 1).
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Figure 1. Flavonoid role in plant physiology under abiotic stress. To cope with poor nutrient
availability and a variety of abiotic stresses featured by oxidative stress, plants trigger an enhanced
synthesis of flavonoids that contributes to tune plant homeostasis and development. A schematic
representation of the main structural components and substituent positions in the flavonoid backbone
is reported in the image.

The same flavonoid can have multiple functions and be involved in plant responses
to high salinity [45], drought stress [46], UV radiation [47], extreme temperatures [48], the
presence of heavy metals in soils [49] and nutrient scarcity [10,50]. Therefore, despite the en-
ergetically highly-consuming process of their synthesis, flavonoids’ versatility contributes
to plant terrestrialization [51] and represents an advantageous molecular resource to main-
tain plant homeostasis, especially under stress conditions [52,53]. Acting as reactive oxygen
species (ROS) scavengers is one of the main functions of these molecules, an essential
feature to mitigate the damages caused by environmental conditions that trigger oxidative
stress [54–56]. ROS-scavenging flavonoids are an essential defense to counteract oxidative
damage, such as DNA and protein oxidation and lipid peroxidation [57], supporting the
activity of plant antioxidant enzymes [58,59]. The antioxidant activity of flavonoids is
related to their polyphenolic structure and to the presence of a wide variety of attached
substituents, such as catechol groups on the B ring and hydroxyl groups [60] (Figure 1). For
these reasons, flavonoids such as quercetin and myricetin showed a stronger antioxidant
capacity than kaempferol [61]. This type of structure allows the efficient quenching of free
radicals and singlet oxygen, the chelation of metal ions such as Fe2+/3+ and Cu2+, essential
to prevent ROS generation [62] and the repression of the activity of ROS-producing enzymes
such as oxygenases and oxidases [63]. Quercetin derivatives, in particular, are involved
in detoxification under different oxidative stresses caused by intense light and drought,
because they possess the ideal structural requirements as dihydroxy-B-ring-substituted
compounds. Moreover, their biosynthesis is crucial for plant fitness [64].

In the context of food quality, growth in a condition of oxidative stress is sometimes
sought in edible plants to increase their content in beneficial antioxidant metabolites such
as flavonoids: the leafy vegetable Amaranthus tricolor, naturally endowed with antioxidant
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pigments and metabolites, enhanced its total flavonoid content and antioxidant capacity
when subjected to salinity stress by irrigation with 50–100 mM NaCl water solution [45].
Similarly, the application of short-term high light irradiation with LED lights on hydroponic
lettuce improved its nutritional quality and induced a higher accumulation of antioxidant
flavonoids and anthocyanins [65].

Exposure to excessive UV radiation is indeed one of the main triggering conditions
for oxidative stress in plants, leading to DNA breaks, cell damage and impairment of
the photosynthetic process [14,50]. To counteract UV stress, increased biosynthesis of
specific types of flavonoids is induced to limit excessive light radiation damage, acting
in synergy with antioxidant enzymes, the plant main defense strategy against ROS [66].
This is the case of UV light-induced quercetin 3-O- and luteolin 7-O-glycosides that were
observed to act as O2

− scavengers in Ligustrum vulgare exposed to UV-B radiation [67]. Also,
apigenin biosynthesis was enhanced under UV-B stress in transgenic Arabidopsis plants
expressing maize flavone synthases, leading to reduced membrane damage explained
by the role of flavonoids in the reduction of lipid peroxidation [68]. Besides showing
higher accumulation of flavonoids, stressed plants exhibit a marked up-regulation of genes
involved in their biosynthesis: in UV-B-exposed hairy roots of Isatis tinctoria L. the level of
gene transcription for chalcone synthase was 405-fold higher than the control, together with
a 16.5-fold increase in flavonoid levels [69]. In the mutant line tt4 of Arabidopsis thaliana, the
knock-out of the chalcone synthase gene leads to the inability to synthesize kaempferol,
therefore making the plant more sensitive to UV-light exposure [14].

Regarding their location in plant tissues, light-induced flavonoids such as flavonols
and anthocyanins are not present exclusively in leaf epidermal cells or external appendages
such as trichomes, where they can prevent ROS formation through a photoprotective action
as UV-shelter molecules [68,70]. Since their beneficial function is mostly related to ROS
detoxification, flavonoids are also translocated toward more internal tissues such as, for
instance, the mesophyll [71]. Here, flavonoids exert their role inside or near the target
cellular compartments where ROS are generated after severe light exposure, such as the
nucleus and the chloroplast [72]. However, flavonoids translocation mechanism to the
target organelles is still unknown [64]. In Phillyrea latifolia, for instance, in vivo observations
showed that flavonoids protected the plant against singlet oxygen generated by excessive
UV light stress in mesophyll chloroplasts [73]; they can also be transported to the vacuole,
where their coupled activity with peroxidases was shown to increase H2O2 scavenging [74].

Besides radiations, even high temperatures, often combined with drought stress [75],
can cause ROS accumulation by affecting evapotranspiration, stomatal closure and by
decreasing water content in leaves [76,77]. Flavonoid biosynthesis is an essential trait for
plant tolerance and adaptation to extreme temperatures and climatic variations. Plants
were shown to activate chemical defense mechanisms by inducing the expression of phenyl-
propanoid pathway genes (e.g., chalcone isomerase, flavone and flavonol synthase, an-
thocyanidin synthase), leading to increased concentrations of flavonoids in leaves and
photosynthetic tissues [78,79]. The up-regulation of flavonoid biosynthetic genes was seen
in wheat and rice, suggesting a role for flavonoids in defense from drought and high
temperatures [80,81]. Similarly, in the citrus Cleopatra mandarin, which is a highly suscep-
tible species to heat and water stress, a strong antioxidant response was marked by the
accumulation of apigenin and polymethoxylated flavones [82]. Furthermore, the response
to high temperatures was seen to be stress-specific in tomato (S. lycopersicum cv. Boludo);
heat stress alone preferentially led to the accumulation of flavonols, and their biosynthesis
was reduced under salt stress or under a combination of heat and salt stress, which instead
revealed higher concentrations of hydroxycinnamic acids [72].

Excessive soil salinization is often correlated with heat and drought and can cause
osmotic stress and toxic ion accumulation leading to ROS formation [22]. Increased concen-
trations of flavonol glycosides, especially quercetin, isorhamnetin, and kaempferol were
indeed observed in Ginkgo biloba and in Casuarina glauca leaves after treatment with low
concentrations of NaCl and helped to improve plant tolerance to the stress [83,84].
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Low temperatures during winter can be a source of oxidative stress in plants and
therefore cause seasonal fluctuations of flavonoid levels [85]. Sorghum, for instance, is
susceptible to frost conditions and responds by accumulating antioxidant molecules such
as 3-deoxyanthocyanidin luteolinidin in the roots [86]. To mitigate desiccation stress caused
by frost, also the resurrection plant Haberlea rhodopensis was seen to accumulate flavonoids
and anthocyanins [87]. These observations are consistent with previous studies carried out
in A. thaliana where increased flavonol content, in particular quercetin and anthocyanin
compounds in the over-expressing pap1-D line, and the expression of genes involved in
flavonoid biosynthesis were proven to be related with cold acclimation, supposedly due to
their role as protectors for freezing damages of membranes and proteins. Indeed, most of
the flavonoid knock-out mutants showed impaired freezing tolerance or the accumulation
of known or unknown flavonoids with potential compensatory effects, highlighting a
functional role for these molecules under cold stress [18].

Due to their aromatic structure and the presence of the cathecol group, some flavonoids
act as metal ion chelators, therefore avoiding the generation of oxygen radicals and lipid
peroxidation induced by phytotoxic concentrations of heavy metals in soil [66,88]. Indeed,
flavonoids were seen to form transition complexes with metals in lettuce leaves irrigated
with industrial wastewaters polluted by heavy metals such as Pb, Co, Ni and Cd [89],
preventing heavy metal ions’ participation in ROS production [54]. An analogous effect
was observed in Erica andevalensis, a heavy metal-resistant plant that grows in mine soils,
showing higher tolerance to Cd due to the defense mechanisms prompted by the flavonoid
rutin, among other phenolics [90]. Moreover, the treatment with increasing concentration
of copper generated a boost of flavonoid concentration (reaching the order of magnitude of
milligrams) in Belamcanda chinensis calli, probably to mitigate the impaired expression of
the antioxidant enzyme guaiacol peroxidase due to the elevated stress level [91].

The role of flavonoids in plant physiology and homeostasis is not only related to the
prevention of oxidative damage but also to other fundamental aspects for plant fitness
such as the modulation of auxin transport and the influence on bioavailability of soil
nutrients [92,93].

Flavonoids regulate plant morphogenic response to stresses through the modifica-
tion of the transport of auxins, important phytohormones that coordinate root formation
and elongation, phototropic and gravitropic responses [76,94,95]. Numerous studies high-
lighted that, depending on the substitution groups, flavonoids could exert a negative role
in polar auxin transport (PAT), such as kaempferol and quercetin [63,96], or the opposite
effect of promoting PAT and root elongation, such as scutellarin [97]. The role of flavonoid
in auxin-mediated morphogenic responses was also observed in halotropism, where the
accumulation of light-induced flavonoids generated root bending in the perennial grass Poa
trivialis L. [98], and in cotton axillary buds where decreased flavonoid content generated
enhanced auxin efflux and the outgrowth of new shoot branches [99]. Flavonoids appear to
directly modulate membrane trafficking of PIN proteins, the auxin efflux facilitators: exoge-
nous supply of 1 nM naringenin restored PIN1 localization in the root tip in the Arabidopsis
tt4 mutant, lacking flavonoid biosynthesis and showing altered auxin transport [100].

The extreme versatility of flavonoids in plant physiology extends to the enhancement
of nutrient acquisition in plants due to their involvement in metal chelation and complex-
ation and to their role as reducing agents. Often, essential macro- and micro-nutrients,
such as N, P, Fe and Mn, are poorly bioavailable for the plant that, among other strategies,
secretes flavonoids to enhance their mobilization and solubility [101]. In fact, aside from
their well-known role as chemoattractors and nod genes inducers in Rhizobium-legume
symbiosis [102,103], flavonoid biosynthesis was reported to be upregulated under nitrogen
deficiency in tea and tomato plants as a stress response [104,105]. Flavonoid exudation
also increased in apple trees subjected to phosphorus depletion, in order to cope with
the nutritional stress by prompting either Fe reduction or chelation and consequently P
solubilization [106].
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3. Flavonoids Mediate Plant-Plant Interactions

Allelopathy is generally used to indicate a phytotoxic interference of a plant on the
growth of another plant belonging to the same species (autotoxicity) or to a different one
(allelopathy in sensu stricto), in the same soil niche [107] (Figure 2).
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Figure 2. Plant intra- and inter-kingdom interactions mediated by flavonoids. The main aboveground
and underground multitrophic interactions, that are orchestrated by flavonoids, are illustrated
in the figure. The release of these phytochemicals in the soil modulates allelopathic interactions
with neighbor plants and the symbiotic relationship with rhizobia and arbuscular mycorrhizal
fungi (AMF). It also mediates rhizocompetence traits of plant growth promoting rhizobacteria
(PGPR), exerts antimicrobial and antifungal functions against phytopatogens and stimulates the
bacterial catabolism for xenobiotics degradation. Furthermore, flavonoids can tune interactions with
beneficial and opportunistic insects. Recently, flavonoids have been proposed as nutraceutical and
prebiotics for human health. The image was partially realized using graphic contents from Biorender
(https://biorender.com/ (accessed on 2 October 2022)).

The process is mediated by a complex network of biochemical signals, due to the release
of root or leaf exudates by the allelopathic plant and volatile molecules or leachate from
plant litter decomposition. In soil, these allelochemicals range from 10−5 to 10−6 M [108]
and, despite these low concentrations, they lead to the delay and/or suppression of germi-
nation, growth and development of neighboring sensitive plants [23]. As an example, the
invasive tree black cherry (Prunus serotina) releases seasons-variable phytotoxic compounds
from the leaves. Among them, the monoterpene linalool did not show a germination
inhibitory effect but affected the root length and the seedling growth of pine plantlets in
European forests [109]. Several reports indicated that young seedlings are more prone to
the phytotoxic effect of allelochemicals rather than germinating seeds, as observed also for
radish and maize plantlets exposed in soil to ground leaves of Fallopia japonica and bohemia,
one of the most invasive species in Europe [110].

https://biorender.com/
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Perennial legumes, like clover and alfalfa, showed both autotoxic and allelopathic
features [111] that were speculated as arising from their evolutionary establishment in
extremely dry and nutrient-poor Mediterranean soils. Under these adverse conditions,
plants adopted allelopathic strategies to improve their survival chances by preventing
the growth of young seedlings near mature plants [112]. The alfalfa saponin medica-
genic acid, assayed at 500 ppm, exerted strong phytotoxicity on germination and seedling
growth. The knowledge of this autotoxicity has an influence on agronomical decisions on
alfalfa replanting in fields in which alfalfa allelochemicals of previous plantation could
persist [113]. Furthermore, allelopathy explains weeds fitness in invasive ranges, enhancing
the competitive ability against native plant species, competing for resources, light, space,
and nutrients [114,115]. It is estimated that weeds contribute to 28% reduction of crop
yield [116], with severe economic losses [117].

The role of flavonoids as allelopathic molecules has been largely acknowledged [118–120].
Often, unique compounds are specifically synthesized, as in the case of the barley-produced
saponarin, a newly identified flavonoid, to suppress Bromus diandricus spread [121]. Accord-
ing to the “novel weapon hypothesis” flavonoids accumulation may drive the establishment
success of invasive plants and, in particular, allelopathic actions exerted specifically by
molecules belonging to the flavonols family may represent a signature of tree-invasive
species [122].

Recently, allelopathy was exploited to develop agronomic practices for weed inte-
grated management by planting allelopathic crops, thus reducing the use of agrochem-
icals [123,124], or by using identified flavonoid allelochemicals, such as coumarin, and
bioherbicides [113]. Coumarin supplements (10 µM) can significantly alter Arabidopsis root
architecture, by reducing up to 50% primary root length and significantly increasing the
number of lateral roots [125]. Modifications in root anatomy are a well-described mecha-
nism in allelopathic responses: exposition to allelochemicals can trigger toxic responses
mediated by proteolytic activities and eventually culminate in organ and tissue cell death,
thus affecting plant growth [107].

To develop sustainable bio-herbicides, allelopathic plants may be used as a source of
phytochemicals to cope with weed invasiveness. Methanolic extracts (20%) of Artemisia
santolinifolia, for instance, were shown to cause severe oxidative stress and permanent
wilting in major weeds, and this effect seemed to be due to a higher content of phenols and
flavonoids (rutin and quercetin) in plant extracts [126].

In Africa, smallholder farmers cultivate Desmodium uncinatum as intercropping plant
to prevent the attachment and germination of the parasitic weed Striga [127], an effect that
was found to be mediated by several (iso)flavonoid glycosides released in the legume root
exudates [128]. In this case, flavonoids orchestrated a complex network of biological events
that culminated in Striga suicidal germination, whereas uncinanone B promoted weed seed
germination, uncinanone C and several di-C-glycosylflavones prevented the propagule
attachment to host roots [129].

The allelopathic efficacy seems to rely on the concentration [130] and persistence
of allelochemicals in soil water solution, that is affected by environmental factors, soil
edaphic properties and plant-related growth stages [131]. White clover stands release at rel-
atively high concentration different aglycones such as formononetin (~4500 µmol/kg plant
dry weight), medicarpin (~950 µmol/kg plant dry weight), and kaempferol with phytoin-
hibitory activity and this latter, among others, persisted for days in field soil (~1200 nmol/kg
dry soil) [132]. Similarly, allelopathic rice cultivars accumulated two flavone glycosides
in root tissues and, once exudated, they were rapidly converted in aglycone forms, more
resistant to microbial degradation and less mobile in paddy soil, thus enhancing their
suppressive effect against rice paddies-infesting weeds such as Echinochloa crus-galli [133].

Flavonoids’ mechanism of action in allelopathy is far from clear [63], although it is
believed to be related to the interference with ATP production and to auxin transport and
degradation, resulting in dramatic alteration of the root morphogenic program of target
plants [134]. Exposition of Arabidopsis roots to 4 mg/mL of the invasive Conyza canadensis
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plant extract led a decrease in root tip vitality and a ROS burst, coupled to the induction of
stress-responsive genes, pathways and detoxifying machinery [135]. The death of the root
system of neighboring plants was observed in knapweed Centaurea maculosa-infested fields
and this effect was caused by the dramatic wave of ROS induced by the (-)-catechin released
by the weed [136], revealing a potential pro-oxidant function of flavonoids in allelopathic
interactions [137]. Administration of (-)-catechin triggered programmed cell death that
expanded from the root region to the stele, presumably by eliciting a ROS-induced calcium
wave that alters cell ionic homeostasis, unbalancing cellular pH [136].

4. Flavonoids as Weapons against Phytopathogenic Attacks

Plants and their associated microorganisms coevolved as a unique meta-organism
defined as the plant holobiont [138,139]. The interplay between plant and microorganisms,
in particular those colonizing the rhizosphere and the endosphere, is specifically mediated
by exuded metabolites and chemical signals exchanged as a form of communication and
essential in maintaining the holobiont health status and performance [140]. Flavonoids
constitute a conspicuous percentage of root-exuded secondary metabolites and are among
the most studied molecules involved in plant-microorganism interactions [33,36] (Figure 2).
Flavonoids play a crucial role in orchestrating plant defense upon phytopathogen at-
tacks since they can interfere with the mechanisms that drive bacterial and fungal viru-
lence [141,142]: they are antimicrobial and antifungal agents and act as priming agents of
plant defense responses to react rapidly upon infection perception [142,143] (Figure 3).
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Figure 3. Flavonoid-mediated plant defense strategies against biotic stress caused by phytopathogen
attacks. The attack by microbial phytopathogens induces plant defense responses (represented
by the thunder symbol), including an enhanced flavonoid production and exudation. Flavonoids
play numerous roles in plant defense against biotic stresses: they are quorum-sensing inhibitors,
pro-oxidants and some of them are defined as phytoalexins and phytoanticipins defense compounds.
These features confer flavonoids with antibacterial and antifungal activities that are mediated by a
diverse array of mechanisms, some of which are reported in the figure. The down-oriented arrow (↓)
represents an inhibitory effect, whereas the up-oriented arrow (↑) represents an induction effect.

Indeed, they can act as quorum-sensing inhibitors (QSI) by multiple mechanisms, in-
cluding the reduction of signal molecules biosynthesis, the inhibition of cell-to-cell signaling
and biofilm formation, and the competition for receptor binding sites by mimicking signal
molecules [144,145]. Naringenin and quercetin, for instance, interfere with QS by downreg-
ulating the expression of genes involved in the production of acyl-homoserine lactones,
typical signal molecules during P. aeruginosa infections [146–148] and by hindering the cor-
rect functioning of QS receptors, specifically due to the presence of two -OH groups on the
flavonoid A-ring. This specific molecular structure has an antagonist role toward pathogen
autoinducers (AIs), compounds that coordinate the expression of genes for virulence and
survival and prevent DNA binding of the AIs-receptor complexes, hence down-regulating



Microorganisms 2022, 10, 2479 9 of 30

the expression of pathogenic factors [149]. Another example of QS inhibition observed in a
phytopathogenic strain was the suppression of the QS-regulated toxoflavin production in
Burkholderia glumae, causal agent of rice grain rot and wilt, mediated by two apigenin deriva-
tives [150,151]. By using a B. glumae biosensor strain, engineered to trigger β-galactosidase
activity upon toxoflavin expression [152], it was observed that the inhibitory activity of
the apigenin derivatives on the strain occurred at low concentrations, 6.76 and 7.87 µM
respectively [150].

Other exemplary flavonoid antimicrobials were found in the root exudates of Scutel-
laria baicalensis, namely wogonin and baicalein. The former was effective in vivo in plants
infected by the rice fungal pathogen Magnaporthe oryzae at the concentration of 500 µg/mL,
whereas the latter showed inhibitory effects in vitro against phytopathogenic bacteria
such as Acidovorax avenae and Ralstonia solanacearum at MIC 19 µg/mL (MIC, minimum
inhibitory concentration) [153]. Furthermore, the enhanced production of phenolics, includ-
ing quercetin-3-O-glucoside, explained a cultivar-dependent resistance against Plasmopara
viticola in grapevine compared to a sensitive cultivar [154]. Quercetin-3-galactoside is also
able to counteract in vitro Botrytis cinerea pathogenic traits by reducing spore germination
at the early phase of infection and by inhibiting germ tube elongation, thus potentially
reducing the pathogen penetration ability [155].

The role of flavonoids in sustaining plant defense is also expressed by their action as
(i) phytoalexins, namely de novo-synthesized and pathogen-elicited defense molecules with
antibacterial and antifungal activity, and (ii) as phytoanticipins, constitutive molecules that
are produced and accumulated before pathogen exposure, that can be rapidly employed
by the plant when needing a swift defense response [156,157]. Isoflavonoids and their
derivative pterocarpans, such as medicarpin and pisatin, produced respectively by alfalfa
and pea plants, are known phytoalexins, active against fungal pathogens as inhibitors of
mycelial growth or inducers of hypersensitive response (HR)-mediated cell death [158–160].
Conversely, flavonols showed a putative phytoanticipin role in mildew-infected black-
berry [161]: despite a low concentration in infected plants, they can safeguard protection
from the pathogen. This is explained by the fact that, upon pathogen infection, pre-existing
phytoanticipin flavonoids can be transformed into active phytoalexins [161,162]. Some
exemplary cases are daidzein, a soy phytoanticipin that, once elicited by pathogenic mi-
crobes, is transformed by prenylation into glyceollin pterocarpans [163]. Similarly, the
active aglycone form of maackiain is obtained by hydrolysis of the conjugated compound
and released by infected red clover plants [164].

Flavonoid pro-oxidant activity represents a further weapon against phytopathogens [165]:
pretreatment with 250 µg/mL quercetin [166] or 100 µM naringenin [167] induced H2O2
production in Arabidopsis plants, causing oxidative burst and callose deposition in host
cells, magnifying the defense response against Pseudomonas syringae pv. tomato DC3000.
The addition of catalase or of glutathione caused the reverse effect to that observed with
flavonoid pretreatments, making the plant more susceptible and therefore implying the
need for H2O2 accumulation in plant resistance to P. syringae infection [166]. However, the
mechanisms through which flavonoid pro-oxidant activity can increase plant resistance to
pathogens have not yet been clarified and further investigations are needed to unveil their
correlation with plant defense responses.

5. Flavonoid Exudation Affects the Structure and Function of
Root-Associated Microbiomes

Flavonoids interactions with rhizosphere/endosphere microbiomes are efficient means
exploited by the plant to communicate with soil microorganisms and to recruit beneficial
plant growth-promoting (PGP) bacteria [6,168]. These bacteria largely contribute to the
holobiont fitness by alleviating nutritional shortages, by producing phytohormones and
volatile organic compounds to enhance plant development [169–171] and by repressing
attacks from plant pathogens acting as biocontrol agents [38,172]. One of the most studied
interactions between plants and beneficial microbes is mycorrhization, where arbuscular
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mycorrhizal fungi (AMF) colonize roots and improve plant fitness by alleviating biotic
and abiotic stress factors [173]. The role of flavonoids in mycorrhizal symbioses is not
only associated to the enhancement of hyphal growth and spore germination [32,173];
interestingly, mycorrhiza helper bacteria (MHB), closely associated to specific AMF, can
produce Nod factors and induce root exudation of flavonoids that act as signals to attract
AMF, thus facilitating root colonization [174,175].

In general, PGP activities are related to the ability of bacteria to colonize and persist on
plant roots, which is defined as rhizocompetence [176–178] (Table 1). An important feature
in rhizocompetence is possessing the catabolic enzymes to use root exudates like flavonoids
as nutritional sources, outcompeting other bacterial species [179,180] (Figure 2). Some
beneficial soil bacteria belonging to the genera Bacillus and Pseudomonas and endophytic
fungi like Paraconiothyrium variabile, for example, are known to effectively metabolize
flavonoids [6,181]. The strain Pseudomonas putida PLM2 was seen to degrade quercetin via
aerobic dehydroxylation, but it could also use other flavonoids such as naringin, narin-
genin, daidzein and apigenin as carbon sources [182]. Other flavonoid-influenced rhi-
zocompetence traits are bacterial motility, chemotaxis toward root exudates and biofilm
formation for accommodation on root surfaces [183,184]. Naringenin-mediated chemotaxis
of Aeromonas sp. H1 toward Arabidopsis roots, marked also by the over-expression of genes
for flagellar biosynthesis, was essential to protect plants from the deleterious effect of
drought stress [185]. Similarly, phloretin and apigenin enhanced Pseudomonas fluorescens
2P24 growth and swarming motility in vitro [37]. Biofilm formation was enhanced by
rutin in Bacillus subtilis [186] and by apigenin in the N2-fixing bacterium Gluconacetobacter
diazotrophicus, both associated to rice plants, thus potentially improving plant growth and
defense from pathogens through an indirect mechanism [187].
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Table 1. Impact of flavonoids on growth and rhizocompetence traits of plant growth-promoting
bacteria (PGPB) through in vitro experiments.

Bacteria Rhizocompetence Traits Flavonoids Concentration Main Effects Reference

Aeromonas sp. H1
• Chemotaxis
• Biofilm formation

Naringenin, kaempferol,
quercetin 100 µM

• Induction of chemotactic
movement

• Biofilm formation
• Up-regulation of flagellar

biosynthetic genes

[185]

Gluconacetobacter
diazotrophicus • Biofilm formation Apigenin 20–100 µM

• Dose-dependent induction
of biofilm formation,
without impacting bacterial
growth

[187]

Bacillus licheniformis,
Bacillus subtilis,
Acinetobacter junii Pb1

• Chemotaxis
Chrysopogon zizanioides (L.)
Roberty-exuded
flavonoids

n.d. *
• Chemoattraction toward

the flavonoids exuded by
Pb(II)-stressed plants

[188]

Rhodococcus
erythropolis U23A • Chemotaxis

Concentrated
A. thaliana root exudates
containing flavonoids

n.d. *
(flavanone approx.
0.5–1 mM)

• Chemoattraction toward
Arabidopsis root exudates [189]

Pseudomonas
fluorescens 2P24

• Swarming motility
• Production of cellulose

and curli fibers
Apigenin, phloretin 100 µM

• Increased swarming
motility

• Up-regulation of
flagellar-related genes

• Up-regulation of cellulose
and curli synthetic genes,
crucial in EPS production

[37]

Herbaspirillum
seropedicae SmR1

• Swimming motility
• Maize root colonization Naringenin 100 µM

• Promotion of maize root
colonization in early phase
(first 36 h)

• Down-regulation of
flagellar-related genes and
reduced motility possibly
due to proximity to the root
surface

[190]

Bacillus subtilis CIM

• Chemotaxis
• Motility (swimming,

swarming and twitching)
• Growth promotion
• Biofilm formation

Rutin 1 pM

• Chemoattraction
• Enhancement of swimming,

swarming and twitching
motility

• Higher bacterial growth
(CFUs) on
rutin-supplemented growth
medium

• Induction of biofilm
formation

[186]

Azorhizobium caulinodans
ORS571,
Herbaspirillum
seropedicae

• Root colonization
through lateral root
cracks in Arabidopsis
thaliana

Naringenin, daidzein 50 µM

• Promotion of endophytic
root colonization
performed by
nitrogen-fixing bacteria
through a Nod
factors-independent
mechanism

[191]

Azorhizobium
caulinodans,
Azospirillum brasilense

• Root colonization
through lateral root
cracks in rice

Naringenin 50 µM

• Promotion of endophytic
root colonization
performed by
nitrogen-fixing bacteria
through a Nod
factors-independent
mechanism

[192]

Pseudomonas putida PML2
• Use of flavonoids as

carbon sources
Naringenin,
quercetin 10 mM

• Growth on both flavonoids
as unique carbon sources

• Almost complete depletion
of 0.1 mM quercetin added
to the medium

• Elucidation of quercetin
degradation pathway in P.
putida

[182]

Acinetobacter
calcoaceticus MTC 127

• Use of flavonoids as
carbon sources (+)-Catechin 3 mM

• Growth on catechin as
unique carbon source

• Elucidation of catechin
degradation pathway in A.
calcoaceticus

[193]

Paraburkholderia
xenovorans LB400

• Use of flavonoids as
carbon sources

Morusin, morusinol,
kuwanon C 100 µg/mL

• Utilization of the tested
flavonoids as sole carbon
sources

[194]

Rhizobacteria consortium
(Pseudomonas sp. +
Stenotrophomonas sp.)

• Use of flavonoids as
carbon sources

Flavone, flavanone,
isoflavone,
7-hydroxyflavanone,
7-hydroxyflavone,
6-hydroxyflavone

200 µM
• Utilization of the tested

flavonoids as sole carbon
sources

[195]

* Not defined: the specific concentration of flavonoids was not specified because a mixture of root exudates was
used for the assay.
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Concomitantly, plant colonization by PGP bacteria was shown to alter plant flavonoid
production, especially under stress conditions [196]. Indeed, a consortium of three PGP
microorganisms, including a Pseudomonas strain, Mesorhizobium sp. and Trichoderma en-
hanced H2O2 synthesis in Cicer arietinum to counteract Sclerotium rolfsii attack. In parallel,
the beneficial consortium increased accumulation of the flavonols quercetin, myricetin
and kaempferol in chickpea plants to protect plant cell membrane from oxidative modi-
fications [197]. Similar increase in total flavonoids content was reported in maize plants
challenged by high salinity stress [198,199] and in drought-exposed pennyroyal [200]
treated with beneficial bacteria.

It was hypothesized that, when subjected to biotic and abiotic stress conditions, the
plant exudates secondary metabolites to actively recruit beneficial microorganisms in
order to respond and minimize the stress [86], exploiting a mechanism known as “cry-for-
help” [201,202] (Figure 4).
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Figure 4. Role of flavonoids in the plant “cry-for-help” strategy to cope with environmental stresses.
Modification of root chemistry is part of the physiological responses that plants adopt to cope
with environmental stresses (represented by the thunder symbol). This phenomenon is known as
“cry-for-help” and it induces, among others, the exudation of flavonoids in the rhizosphere. These
phytochemicals play multiple roles in the recruitment of soil microorganisms, which can establish
beneficial interactions with the host plant and contribute to the holobiont fitness, mitigating the stress
deleterious effects. Flavonoids can be exploited as nutrients, induce efficient colonization of the root
system and act as inducers for the expression of catabolic genes for the degradation of xenobiotic
compounds. In turn, beneficial microbes colonizing the rhizosphere and the endosphere can affect
the root exudation pattern (dashed arrow), favoring the establishment of suitable conditions for their
growth in these niches.

This rescue strategy is crucial when plants are exposed to phytotoxic xenobiotics such
as, for instance, polychlorinated biphenyls [203]. Under these circumstances, plants tune
their exudation profile to favor the recruitment of microbes endowed with the degrading
enzymatic machinery to transform recalcitrant substances in more bioavailable and less
phytotoxic compounds [204,205]. An increasing body of evidence indicates that flavonoids,
due to a similarity in the chemical structure, are crucial in stimulating the microbial-
degrading metabolism of PCBs (Figure 5) by acting as growth substrates, co-metabolites or
inducers of the bph operon [206–208], that comprises the catabolic genes for biphenyl aerobic
oxidation and encodes for the dioxygenases necessary for its mineralization [209,210].
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Figure 5. Flavonoids-mediated enhancement of the PCB degrading metabolism. The PCB-degrading
strain Pseudomonas strain JAB1 was placed in close contact with flavone, which is able to induce its
degradative metabolism [211] as visible by the yellow coloration assumed by the grown colonies,
possibly due to the presence of a degradation intermediate [212]. The red dots represent the sites
in which the solvent (control) or the flavonoid flavone were plated, according to the protocol for
chemotaxis described by Reyes-Darias and colleagues [213]. Picure by Elisa Ghitti and Eleonora Rolli.

Therefore, the flavonoid-mediated plant-microbe crosstalk paves the way for rhizore-
mediation approaches for polluted soils clean-up [40,214]. The PCB-degrading bacterium
Rhodococcus erythropolis U23A, grown co-metabolically with a different combination of car-
bon sources and flavonoids such as flavanone, flavone and isoflavone, showed the ability to
degrade 4-chlorobiphenyl to 4-chlorobenzoate with a higher efficiency than in the presence
of biphenyl [189]. This effect was directly dependent on the flavonoid-driven induction
of bph genes [215], a feature observed also with flavanone and catechin in Pseudomonas
alcaliphila JAB1 [211]. A microcosm experiment revealed that the addition of naringin to the
soil had an impact on bacterial community structure, promoting the growth of Burkholderia
spp., and led to an enhanced degradation of numerous PCB congeners [216].

Flavonoids exert similar functions on another wide class of pollutants, namely poly-
cyclic aromatic hydrocarbons (PAH): PAH-degrading bacteria isolated from cucurbits used
flavonoids like morin as unique carbon sources, suggesting a relation in the metabolic
pathways and the putative promotion of PAH degradation induced by flavonoids [217].

A deeper understanding of the mechanisms involved in beneficial plant-bacteria inter-
actions mediated by flavonoids may be crucial in implementing sustainable strategies aimed
at increasing plant growth and productivity [36], accelerating phyto-rhizoremediation [218],
improving plant protection from pathogens and, more generally, the holobiont resistance
to stresses [219].

6. Flavonoids Modulate Behavior and Life History Traits of Insect Herbivores, Natural
Enemies and Pollinators

Flavonoids are known to modulate plant interactions with insects, including herbi-
vores, natural enemies (i.e., predators and parasitoids) and pollinators [220,221] (Figure 2).
Together with other plant pigments (e.g., betalains and carotenoids), these phytochemicals
confer color, fragrance and taste to flowers, fruits and seeds, attracting not only insects,
but also birds and mammals, which provide important ecosystem services i.e., pollination
and seed/fruit dispersal [222]. For instance, quercetin preference by the honeybee Apis
mellifera has been verified in free-flight semi-field assays [223]. Mutations in the flavonoid
biosynthetic pathway showed a shift of pollinators’ preference [224]. Loss-of-function
mutations of the transcriptional factor ANTHOCYANIN2 (AN2) in Petunia axillaris resulted,
indeed, in white-colored and moth-visited flowers, whereas P. integrifolia flowers with
functional AN2 alleles harbored anthocyanin-colored petals and were efficiently pollinated
by bees and butterflies [224].

Flavonoids have a crucial role in plant protection and defense against phytopathogenic
insects by modifying the plant palatability, reducing its digestibility, decreasing its nutri-
tional value, but also attracting useful predators of insect herbivores. They can behave as
toxins, binding the insect digestive enzymes, and thus interfere with the host development,
reproduction and molting, affecting ultimately the fitness. They can inhibit ecdysone-
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dependent pathway and acetylcholinesterase, impairing molting, or hinder the activity
of glutathione S-transferases enzymes, involved in insecticide detoxification [50,63,225].
High flavonoid levels in tomato reduced the plant attractiveness and the feeding activity of
the whitefly Bemisia tabaci, which in turn decreased the spread of the whitefly-transmitted
virus responsible for an economically important disease (i.e., tomato yellow leaf curl dis-
ease, TYLCD) [226]. Feeding tests verified the repellence or feeding deterrent effect of
different flavonoids in several insect and nematode species [227,228], supporting their
use as biopesticides as alternatives to traditional synthetic molecules [229]. Quercetin, for
instance, is a repellent and insecticidal compound for different plant-feeder insects like
aphids [230]. However, its ingestion activates detoxification enzymes in useful insects like
honeybees, extending their longevity and enhancing pesticide tolerance, hence highlight-
ing a beneficial role of quercetin for pollinators [231,232]. In this context, an interesting
perspective relies on the use of agricultural wastes as flavonoids’ source material under the
frame of a circular economy approach, once field experiments and evaluations on features
such as environmental fate and target specificity would have ensured their safe use [229].
Flavonoids can have indeed a harmful effect on nontarget beneficial species, as observed
on the zoophytophagous generalist predator Orius sauteri, a biological control agent of
whiteflies, which showed a reduced oviposition, nymphal survival, and development on
flavonoids-producing tomatoes [233]. Several studies also reported the phagostimulant
or neutral activity of flavonoids in dependence of the insect species considered and of
the molecule and dosage selected [228,234]. For instance, quercetin and pinocembrin at
low concentration (0.01–1 µg/cm2) have phagostimulant effects on S. frugiperda on treated
lettuce foliage [228], whereas at higher concentrations (10, 50, 100 µg/cm2) the effects
of these two molecules were different. Pinocembrin showed an antifeeding effect for all
the high concentrations, whereas quercetin had a neutral activity at concentrations of
10 and 50 µg/cm2, becoming antifeedant at a concentration of 100 µg/cm2 (although with
lower effects than pinocembrin) [228]. A recent review summarizes a literature search on
insect-quercetin interactions to suggest the use of this flavanol to reduce herbivory without
damaging natural enemies and pollinators: harmful and nonharmful effects were reported
on different insect species, considering different application dosages and behavior and
life history traits [230]. However, authors highlighted the need for field experiments to
substantiate the results [230].

Flavonoids can also regulate insect oviposition [63]. Quercetin glycosides are ovipo-
sition cues for the monarch butterflies [235], whereas quercetin, taxifolin, and naringenin
(the last one to a lesser extent) can stimulate oviposition in the predatory ladybird beetle
Coleomegilla maculata [236]. Interestingly, quercetin can also orient C. maculata to oviposition
sites when conspecifics are present, underlining the possible exploitation of this phytochem-
ical in mass-rearing facilities [237]. Conversely, oviposition can be negatively influenced by
the presence of flavonoids [230]. Flavone, rutin, quercetin, myricetin, fisetin, quercitrin, and
partially purified flavonoids from Calotropis procera (a popular medicinal plant of Africa
and Asia tropics), reduced egg laying of the adzuki bean weevil Callosobruchus chinensis in
a dose-dependent manner [238]. Quercetin also deterred oviposition of the melon fruit fly
Bactrocera cucurbitae and its presence on test substrates could outcome in a lower number of
ovipunctures under multiple-choice conditions, as also exerted by rutin [239]. A decrease
in flavonoid content in tomato infested by B. tabaci positively modulated the oviposition
preference of the insect [240].

Even if many efforts have been performed to elucidate insect-flavonoid interactions,
also focusing on specific molecules [220,230], future in-depth work should consider more
insect species and different flavonoid compounds, considering a multitrophic level of in-
vestigation (i.e., among plant, herbivore, natural enemy, pollinator, and generally nontarget
species) and clarifying the molecular mechanisms that underlie these interactions.
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7. Flavonoids as Nutraceuticals and Prebiotics for Human Health

Flavonoids and their metabolites can improve human health by acting as phytochemi-
cals [241], nonessential molecules consumed through food or dietary complements, that
modulate signaling pathways and decrease inflammation, immune response and oxida-
tive stress processes [43]. This review will treat this topic highlighting flavonoids’ role as
inter-kingdom signaling molecules also in the context of human pathologies: other works
have dedicated valuable efforts to elucidate the medical and nutraceutical potential of these
compounds [41,242–246].

Flavonoids were shown to exert a variety of nutraceutical features such as antioxida-
tive, anti-diabetic, anti-proliferative, anti-carcinogenic, anti-microbial and immunomod-
ulatory abilities [44]. Due to these abilities, flavonoid supplements have been largely
investigated in studies for prevention or drug efficacy evaluation in several pathologies
including cancer, atherosclerosis, stroke, neuroinflammatory diseases, age-related neurode-
generation, diabetes, human herpes virus (HHV) infections and recently also COVID-19
respiratory disease [43,60,247,248] (Figure 2). Interestingly, one of the main effects of these
illnesses is oxidative stress, which induces harmful damages on membranes, lipids, pro-
teins, lipoproteins and DNA in humans [249], similar to the dangerous effects previously
described in plants. The role of flavonoids as conventional hydrogen-donating antioxidants
has been extensively reviewed and leads to a paradigm shift in their acknowledged func-
tions in human disorders [43]. According to an emerging scenario, these phytochemicals
may exert their beneficial activities in human health mainly by interfering with signaling
pathways [242].

Diet is the main source of flavonoids for humans, since they are common constituents
of fruits, vegetables and legumes [250]. Berries are known to contain a wide range of an-
tioxidant flavonoids as anthocyanidins, the flavone luteolin and numerous flavonols [251].
Isoflavonoids, like genistein and daidzein, are the main class present in legumes due to
their role in nodule formation in the symbioses with rhizobia [252], and flavanones as
hesperidin and naringenin can be found in citrus species and grapes [253–255]. Flavonoids
are also present in fruit and vegetable food wastes, making them profitable resources to
obtain useful biomolecules for the formulation of functional foods and nutraceuticals in
a circular economy approach [256]. Fourteen different flavonoids have been identified in
tomato seeds extract, including quercetin, kaempferol and isorhamnetin glucosides [257],
and rutin and naringenin were found to be the main constituents of total phenolics in
tomato peel fiber [258].

Once introduced through the diet, flavonoids are absorbed and digested in the intes-
tine by enzymes expressed by intestinal epithelial cells and by the gut microbiota, giving
rise to more absorbable aglycones and a mixture of smaller phenolics with varying degrees
of hydroxylation, glucuronidation, sulfation and methylation [259,260]. Parent flavonoids
and their metabolic products can exert their biological function locally in the gastrointesti-
nal tract or can pass to the systemic circulation to reach the peripheral body districts where
they perform systemically beneficial actions [261]. At the intestine level flavonoids and
their metabolites exert a prebiotic effect for the host’s immune system and gut health [244].
Through an unknown mechanism, dietary flavonoids can support the growth of probiotic
bacteria such as Bifidobacteriaceae and Lactobacillaceae and inhibit pathogens such as E. coli
and Helicobacter pylori, thus improving gut health and immune modulation by reducing
endotoxin production, sustaining nutrients absorption and intestinal barrier functional-
ity [262,263]. Presumably by inhibiting the gyrase, a topoisomerase involved in bacterial
DNA replication [264], 50 µg/mL quercetin was found to inhibit the growth of Ruminococcus
gauvreauii [265], a gallbladder bile-inhabiting bacterium [266] whose abundance has been
associated to altered gut composition in patients affected by coronary artery disease [267].
Depending on their structure and dose, flavonoids can affect the structure of the gut micro-
biome, by stimulating the abundance of specific genera [42], providing an analogy to the
mechanism driving the plant microbiome structuring. Rutin and quercetin supplements at
100 µg/mL stimulated the growth in vitro of Bifidobacterium bifidum, although at the same
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concentration quercetin and hesperidin inhibited the growth of Bifidobacterium adolescentis,
showing contrasting effects depending also on bacterial species and strains [268].

Furthermore, flavonoids can perform other beneficial roles in the gastrointestinal tract.
Indeed, diets rich in specific flavonoid families such as anthocyanidins, flavonols, flavones,
and isoflavones showed a positive trend for a decreased risk in developing colorectal
cancer [269], presumably by inhibiting pro-oncogenic signaling pathways [270].

At a systemic level in the body districts, apigenin, quercetin, chrysin, luteolin, kaempferol
and fisetin are flavonoids described for their beneficial role in human health and their mode
of action seems to rely on the suppression of inflammatory markers such as interleukins
and down-regulation of inflammatory pathways mediators such as NF-kB, that responds
early to harmful cellular stimuli, and MAPK cascades, including p38-, JNK-, and ERK-
mediated signaling [41]. Myricetin is an isoflavonoid present in different edible parts
of the plant and in fruits such as oranges, berries and teas [271]. Several in vitro studies
highlighted myricetin as a potential chemotherapeutic agent able to interfere with dysreg-
ulated signaling pathways in cancer progression, invasion and metastasis by regulating
ER stress, NF-kB, mTOR and telomerase [272]. In human papillary thyroid cancer, 100 µM
myricetin treatments induced cytotoxicity and DNA condensation, finally causing cell
death of SNU-790 cells by disrupting the mitochondrial membrane potential and regulating
caspase cascades [273]. Myricetin-mediated cytotoxicity was observed in triple-negative
breast cancer cells due to oxidative stress: autoxidation of 50 µM myricetin in the growth
medium led to extracellular H2O2 formation and triggered intracellular ROS production,
ultimately causing DNA damage [274]. Naringenin, as well, has been demonstrated to
be effective against a wide range of tumor types by suppressing cancer progression pro-
grams [275]. Genistein, an isoflavonoid present in soy-derived foods, was hypothesized
to reduce SARS-CoV-2 infectivity by inhibiting the virus strategy for entrance in human
epithelium [276]. Numerous in vitro studies also highlighted the role of flavonoids in the
treatment of HHVs infections and in preventing the associated neurological diseases [60].
Flavonoids isolated from Morus alba L. showed antiviral activities toward the widespread
herpes simplex virus type 1 (HSV-1) through different mechanisms that led to inhibited
viral proliferation: morusin interfered with the expression of the glycoprotein necessary
for cellular binding and infection and reduced the virus-induced ROS content [277], and
kuwanon C, T, U, and E hindered HSV-1 replication machinery [278].

Despite being under the spotlight for their wide potentials in therapeutic use, flavonoid
administration still lacks in vivo, preclinical and clinical studies for their validation in
the treatment of human diseases. There is, therefore, a huge need for clinical research
to assess flavonoids’ efficacy in human health. Furthermore, the elaboration of uniform
guidelines in the design and reporting of flavonoid studies is advocated, in order to translate
clinical evidence and research findings in valuable recommendations for patients [279].
In a pharmacological perspective, it will be crucial to understand the structure-activity
relationship, considering that several flavonoids exert diversified, multiple effects on
different pathways. Thus, a precision medicine approach is necessary to identify the
mechanisms of action, eventual off-target effects, investigate the most active flavonoid
molecules, and use them in combination therapies. This knowledge will be essential to
understand the significant inter-individual variability observed in dietary flavonoid benefit
supplementations [280].

So far, flavonoids are extracted from natural plant resources through separation tech-
niques [281,282]. Recently, much progress has been made through a synthetic chemistry
approach to investigate the structure-activity of flavonoid moieties [283], to promote syn-
thetic units that control a precise interaction site within the biological system [284,285], and
to modify the flavonoid backbone to achieve new functionalities [286], paving the way
toward the discovery of new drugs [287].

A major drawback in flavonoid medical application is linked to their poor bioavailabil-
ity and low solubility in oral formulations, which makes it necessary to develop valuable
delivery systems to the target cells [272]. Nanocarriers may solve this issue, by protecting
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encapsulated flavonoids from oxidation or degradation, and increasing their stability, solu-
bility and bioavailability to the target tissue [44,288]. A diverse set of nano-drug delivery
systems (lipidic, polymeric, micelles, nanoemulsions and nanoparticles) has been devel-
oped for naringenin encapsulation to overcome its medical application issues due to the
molecule instability and low bioavailability [289,290].

8. Concluding Remarks

Although their primary ancestral role in evolution seems to be correlated with protec-
tion against the excess of radiant energy, flavonoid biosynthesis is triggered by a broader
array of abiotic stresses and their main function is to cope with stress-induced ROS oxida-
tive burst. Despite obvious differences between plants and animals in stress responses,
ROS trigger very conserved signaling cascades and induce common damages in both
systems [291,292], explaining the wide ability of flavonoids to act as ROS scavengers in
plants and to modulate inflammation-signaling cascades in animal and human in vitro
models [43].

Besides ROS protection, flavonoids showed additional beneficial functions, such as,
(i) the influence on phytohormone homeostasis and stress-induced morphogenesis, which
contribute to tune the plant plastic response to adverse environmental conditions [293],
(ii) the soil detoxification from xenobiotics, and (iii) the microbiome modeling in the
“cry-for-help” mechanism [204]. These metabolites can act also as signaling molecules,
endowing plants with the ability to perceive the environment and to communicate with the
biotic components belonging to other species, genera, families and kingdoms [36]. These
multi-kingdom communication dynamics affect high biodiversity hotspots such as the
rhizosphere as well as the human gut, where dietary flavonoids are metabolized [294].

Although plant secondary metabolites have been described for their ability to perform
activities across different kingdoms such as, for instance, plant defense against weeds and
pathogens [295], so far only flavonoids have shown such a large variety of functionalities
and conserved beneficial effects in plant, animal and human systems and the ability to
mediate interactions with prokaryotic and eukaryotic cells.

In the vision of phytochemicals application in agriculture to sustain crop growth,
phytoprotection and yields, flavonoids are élite molecules. Quercetin, for instance, is a
potent flavonoid with a diverse set of functions in plants [225]. Preliminary pot experi-
ments suggest its potential as biofertilizer: spray inoculation of quercetin on wheat leaves
increased physiological parameters related to chlorophyll content and fluorescence, and
induced the accumulation of phenolics that are correlated with increased resistance to
abiotic stress in a dose-dependent manner [296]. Seed priming with quercetin alleviated
chromium toxicity in Trigonella seedlings, enhancing flavonoids accumulation in plant
tissues, potentially quenching ROS induced by the metal contamination [297]. Another
promising flavonoid for field application is naringenin, although its involvement in plant
defense is poorly elucidated. A preliminary study in tobacco highlights that naringenin is
endowed with a low-medium antifungal activity against Phytophtora nicotianae, although it
induces the expression of salicylic acid responses to counteract the pathogen attack [298].

A main issue for flavonoid applications in agriculture is their stability in soil that
depends, among other factors, on the specific molecule and the degradative activity of soil
microbiomes. Flavonoids are considered rather stable compounds, although apigenin and
kaempferol half-life in soil is estimated within only 4 and 14 days respectively. Neverthe-
less, these lifetimes of permanence in soil are limiting factors for flavonoid exploitation as
biofertilizers or biopesticides because of the requirement for more frequent applications
to maintain these phytochemicals at effective concentrations. The adoption of delivery
systems based on encapsulation could contribute to increase flavonoid stability and a sus-
tained release in soil. Nanoliposomes were adopted to encapsulate quercetin to efficiently
target the phytochemical inside leaf cells through osmosis or endocytosis, overcoming
its low solubility which is considered as an important factor limiting the phytopathogen
control effect. Nanoliposome-quercetin, indeed, could inhibit the expression of plant hsp70
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proteins that are generally induced under stress and which are host factors hijacked by
viruses to assemble their replication complex, thus acting as an outperforming antiviral
agent even under field conditions [299]. On the other hand, soil-dissolved organic carbon
(DOC) strongly reduces flavonoids’ lifetime in soil. It is estimated that ~70% of flavonoid
signaling potential is attenuated by sequestration to DOC through a metal-mediated oxida-
tive reaction that leads to dimerization [300]. This phenomenon occurs with a variety of
plant sources and mainly implicates Mn3+, a metal that is abundant in litter decomposi-
tion [300,301]. Flavonoids are also degraded aerobically by diverse soil microbes through
monooxygenase enzymatic activities, as observed in Herbaspirillum seropedicae mutated
in the fdeE gene which lost the capacity to use naringenin as a carbon source [302]. This
knowledge could be the picklock to design a holobiont-metabolic network utilizing plant
with a specific flavonoid exudation profile [303] coupled to information about the lifespan
of these metabolites under different soil conditions. This approach would pave the way
to engineer beneficial plant-microbe interactions, reduce phytopathogen outgrowth and
propose effective soil amendments [24]. In this vision, further research is needed to increase
knowledge about flavonoid bioactivity toward microorganisms, their concentration of
use, environmental fate, degradative kinetics and influence on soil microbiota. These data
are crucial for an environmentally safe application of flavonoids in agricultural practices.
A similar concern arises also for flavonoids utilization in medical treatments. Despite
mounting evidence on their protective role in several human pathologies, basic research
and clinical trials are needed to assess, respectively, their mechanism of action and their
efficacy and safety for drug development.
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