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Simple Summary: Radiomics aims to extract high-dimensional features from clinical images and
associate them to clinical outcomes. These associations may be further investigated with machine
learning models; however, guidelines on the most suitable method to support clinical decisions are
still missing. To improve the reliability and the accuracy of radiomic features in the prediction of a
binary variable in a lung cancer setting, we compared several machine learning classifiers and feature
selection methods on simulated data. These account for important characteristics that may vary in
real clinical datasets: sample size, outcome balancing and association strength between radiomic
features and outcome variables. We were able to suggest the most suitable classifiers for each studied
case and to evaluate the impact of method choices. Our work highlights the importance of these
choices in radiomic analyses and provides guidelines on how to select the best models for the data
at hand.

Abstract: Radiomics uses high-dimensional sets of imaging features to predict biological characteris-
tics of tumors and clinical outcomes. The choice of the algorithm used to analyze radiomic features
and perform predictions has a high impact on the results, thus the identification of adequate machine
learning methods for radiomic applications is crucial. In this study we aim to identify suitable
approaches of analysis for radiomic-based binary predictions, according to sample size, outcome
balancing and the features–outcome association strength. Simulated data were obtained reproducing
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the correlation structure among 168 radiomic features extracted from Computed Tomography images
of 270 Non-Small-Cell Lung Cancer (NSCLC) patients and the associated to lymph node status.
Performances of six classifiers combined with six feature selection (FS) methods were assessed on the
simulated data using AUC (Area Under the Receiver Operating Characteristics Curves), sensitivity,
and specificity. For all the FS methods and regardless of the association strength, the tree-based
classifiers Random Forest and Extreme Gradient Boosting obtained good performances (AUC ≥ 0.73),
showing the best trade-off between sensitivity and specificity. On small samples, performances were
generally lower than in large–medium samples and with larger variations. FS methods generally did
not improve performances. Thus, in radiomic studies, we suggest evaluating the choice of FS and
classifiers, considering specific sample size, balancing, and association strength.

Keywords: radiomics; machine learning; classification; simulation; sample size; balancing; signal;
feature selection; CT images; lung cancer

1. Introduction

Radiomics focuses on extracting and mining high-dimensional sets of quantitative
features from medical images, which are expected to provide a detailed and comprehensive
characterization of the tumor phenotype [1], being calculated on the entire volume of the
lesion. Indeed, radiomic features are also hypothesized to supply crucial information
regarding tumor physiology [2]. Radiomics uses either a set of predefined engineered
features [3] that describe the lesion shape, its gray-level intensity, and its texture or, alter-
natively, features that can be automatically “deep learned” from images [4]. Promising
associations of radiomics with the underlying biology of specific tumors and/or the clinical
outcomes, including histopathology, disease-free survival, overall-free survival, response
to therapies, and diagnosis [2,5–10] have led to a rapid expansion in this field, opening new
avenues to investigate the clinical utility of radiological medical imaging [11]. As proof of
the exceptionally increasing interest, a simple search in PubMed using “radiomics” as the
keyword identified in 2020 a number of papers around 40 times higher than in 2015.

Predictive and prognostic models characterized by high accuracy, reliability, and effi-
ciency are vital factors for radiomics to play an active role in supporting clinical decisions in
oncology [12–17]. Several statistical models have been researched and applied so far, from
simple linear regression and curve-fitting to advanced machine learning (ML) methods,
such as decision trees, support vector machines, random forests, boosted trees, or neural
networks [6,16,18–21]. Most of the published studies have assessed the predictive capabili-
ties of radiomic features [22–25]. However, fewer papers have focused on the impact of
different methods, such as feature selection and classification, on predictive modelling. In
truth, different approaches may highly influence the variability of prediction scores, thus
affecting the reproducibility of the results in other studies. The choice of the classification
method was suggested to be the major source of performance variation [6,8,26,27]. Thus,
the identification of the optimal ML methods for radiomic applications represent a crucial
step toward stable and clinically relevant radiomic biomarkers.

For lung cancer, few publications compared the performance of different methods
for the prediction of binary outcomes by using patient data [6,8,28]. However, these
studies have a limited sample size and the real underlying feature–outcome association
structure is actually unknown, thus restricting the interpretation and the selection of the
best-performing model, which may also be related to the frequency of the investigated
outcome, its strength of association and to the number of radiomic features included. These
issues can make it difficult to generalize the results for other clinical contexts. Especially
as the association with the outcome in a dataset is something not known a priori, since
it measures how much (high/low) data variability the radiomic features can explain and
thus predict the outcome expression. External validation represents a decisive test of
the model’s robustness, but has only been performed in a few cases [6]. A widely used
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strategy to account for all the aspects mentioned before, but never applied in radiomics, is
the generation of synthetic datasets using a customized simulation procedure, to achieve
adequate statistical power for detecting performance differences among models.

Starting from the first radiomic study by Aerts et al. [2], numerous further studies
were conducted to evaluate radiomic features of Computed Tomography (CT) images in a
lung cancer setting, therefore the combination of this imaging technique and cancer type is
one of the most investigated in the literature, with the most data collected so far. In our
institute, we previously obtained data on around 300 patients with Non-Small-Cell Lung
Cancer (NSCLC) to investigate the association between radiomic features of CT images
and lung cancer outcomes (lymph node involvement and survival) [29].

In the present study, we therefore explored the characterization of optimal classifica-
tion approaches applied to CT images of NSCLC patients, implementing a classification
framework on both real and synthetic data, trying to account for any possible drawbacks
related to both the underlying structure of the real dataset and the simulation algorithm
itself. The clinical outcome was the lymph node involvement, which can be treated as a
dichotomous variable (presence/absence), allowing our results to be easily extended to
any binary clinical context.

2. Materials and Methods
2.1. Dataset
Non-Small-Cell Lung Cancer (NSCLC) Patients’ Original Dataset

A retrospective study recently published by our group [29] collected and analyzed
preintervention CT images of 270 early-stage NSCLC patients (up to pT3N1) operated
on in our Institute between 2012 and 2016. The Institutional Review Board approved
the study (UID 2172) waiving the need for informed consent. Information about the
presence/absence of positive lymph nodes, pathologically assessed after surgery, was
available for all patients: 71 (26%) of them showed positive lymph nodes (pN = 1), while
the remaining 199 (74%) had a negative lymph node status (pN = 0). Further information
about the original dataset is available in Table S1. CT images were acquired on four
different scanners after contrast medium injection (portal phase). Image reconstruction
was performed with two different algorithms: Filtered Back Projection (FBP) for a total of
187 patients (69%) and Iterative Reconstruction (IR) for the remaining 83 patients (31%). A
total of 881 radiomics features were extracted from CT images with the IBEX v 1.0 β tool.
After reproducibility and stability analysis, a subset of 168 radiomic features was selected to
be included in the main analyses. More details about image acquisition, radiomic features
extraction and selection can be found in [29].

2.2. Simulated Datasets
2.2.1. Radiomic Features Simulation

Starting from the NSCLC data described above, we simulated radiomic features to
build synthetic controlled scenarios. Details on radiomic data simulation are reported
in the Supplementary Materials. Briefly, our simulation procedure was divided into two
main steps (Figure 1): (1) Simulation of 168 features without association to the outcome;
(2) Selection of balancing and signal level and the association of the simulated features and
samples to the outcome.

We applied both procedures separately to FBP and IR-derived features, since the
algorithm was found to be one of the major issues influencing the lesion texture in the
image [29]. In the first step, we simulated 168 multivariate non-normal distributions
starting from the correlation matrix, skewness and kurtosis of the real NSCLC features as
suggested by Vale and Maurelli [30]. Since the ranges of the radiomic features may vary a
lot, we translated the obtained variables to their original ranges.
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associated to the outcome, which represents an intermediate output (middle column). The second part of the procedure 
(fourth column) associates samples and features to the outcome variable and provides as the final output, different sets of 
168 features (right column). Cardinality of those sets depends on algorithm and sample balancing: sizes for balanced cases 
are reported, with sizes for unbalanced cases in parenthesis. 
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the outcome. First, we chose the sample balancing according to an equal (balanced) or 
unequal (unbalanced) distribution of the outcome classes. In the former case we randomly 
assigned 50% of the samples to the class pN = 1, in the latter only 30%. Two preliminary 
sets of data, each one consisting of 600 simulated patients’ data, were therefore created. 
We then associated the features to the outcome to generate the signal (high or low, 
according to the strength of association with the outcome) able to separate samples with 
a different outcome class. We chose three features that were found to be significantly 
associated with the positive lymph node in the original dataset [29]: ClusterShade from 
GLCM25 category calculated along a 135° direction with four voxels offset (F1), the 70th 
percentile of the intensity values in the cumulative histogram (F2), and the maximum 
diameter evaluated on the 3D lesion volume (F3). 

Four datasets including 600 simulated patients each were eventually obtained, 
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Figure 1. Simulation procedure flow chart. Input are two sets of 168 real features, derived from CT (Computer Tomography)
images reconstructed with the Filtered Back Projection (FBP) and Iterative Reconstructions (IR) algorithm, respectively (left
column). The first step of the procedure (second column) describes how to obtain simulated features not associated to the
outcome, which represents an intermediate output (middle column). The second part of the procedure (fourth column)
associates samples and features to the outcome variable and provides as the final output, different sets of 168 features (right
column). Cardinality of those sets depends on algorithm and sample balancing: sizes for balanced cases are reported, with
sizes for unbalanced cases in parenthesis.

In the second main step of the simulation procedure, we associated samples and
features to different outcome classes and we introduced the possibility to create bal-
anced/unbalanced datasets with features carrying a high or low association signal to
the outcome. First, we chose the sample balancing according to an equal (balanced) or
unequal (unbalanced) distribution of the outcome classes. In the former case we randomly
assigned 50% of the samples to the class pN = 1, in the latter only 30%. Two preliminary
sets of data, each one consisting of 600 simulated patients’ data, were therefore created. We
then associated the features to the outcome to generate the signal (high or low, according
to the strength of association with the outcome) able to separate samples with a different
outcome class. We chose three features that were found to be significantly associated with
the positive lymph node in the original dataset [29]: ClusterShade from GLCM25 category
calculated along a 135◦ direction with four voxels offset (F1), the 70th percentile of the
intensity values in the cumulative histogram (F2), and the maximum diameter evaluated
on the 3D lesion volume (F3).

Four datasets including 600 simulated patients each were eventually obtained, ac-
cording to the combination of balancing (balanced/unbalanced) and signal (high/low)
(Figure 1).

2.2.2. Construction of Simulated Datasets

We first split the four main datasets into a training set (2/3 of the samples,
N = 400 patients) and validation set (1/3 of the samples, N = 200 patients). Keeping
the division between the training and validation set, we built eight additional datasets
with lower dimensionality (four with N = 300 and four with N = 100) by simple ran-
dom sampling, taking into account the original proportions between FBP and IR groups
(Table 1). The balanced (50–50%) and unbalanced (70–30%) proportions between pN = 0
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and pN = 1 were guaranteed by subsampling the two classes separately both in the training
and validation sets.

Table 1. Summary of the simulated samples included in the analysis as combinations of three sample
sizes (N = 600, 300 and 100), balanced/unbalanced and high/low signal *.

Sample Size Balanced Samples
(50% pN = 0, 50% pN = 1)

FBP IR Total (test + validation set)

PN0 PN1 PN0 PN1 PN0 PN1 All PN

Large 200 200 100 100 300 300 600

Medium 100 100 50 50 150 150 300

Small 34 33 16 17 50 50 100

Sample Size Unbalanced Samples
(70% pN = 0, 30% pN = 1)

Large 280 120 140 60 420 180 600

Medium 140 60 70 30 210 90 300

Small 47 20 23 10 70 30 100
FBP = Filtered Back Projection; IR = Iterative Reconstruction; PN0 = no pathological node; PN1 = any pathological
node. * The six samples here described are replicated with the same numbers for the two hypotheses of high
signal and low signal, giving a total number of twelve simulated samples included in the analysis.

2.3. Feature Selection and Classifier Methods

Six different ML classifiers, combined with five feature selection (FS) methods or no
feature selection step, were investigated (Table 2) and applied to the twelve simulated
scenarios, with the final aim to correctly classify samples associated to a binary outcome
variable. Details on FS and classifier methods are reported in the Supplementary Materials.

Table 2. List of applied feature selection methods (FS) and classifiers with acronyms used in the text.

FS Acronym FS Method Classifier
Acronym Classifier

No FS No feature selection step PR Penalized Regression
HC + WLCX Hierarchical clustering + Wilcoxon RF Random Forest

PCA (Delta) + WLCX Principal Component Analysis
clustering with Delta plot stop criterion + Wilcoxon XGBoost Extreme Gradient Boosting

PCA (Proportion) + WLCX Principal Component Analysis
clustering with proportion stop criterion + Wilcoxon LSR Logistic Step-wise

Regression

MRMR Minimum Redundancy
Maximum Relevance KNN K-Nearest Neighbor

RELF Relief SVM Support Vector Machine

2.4. Classification of Simulated and Real Datasets
2.4.1. Classification Framework

We designed a systematic classification framework which consists of canonical steps
including: preprocessing, cross-validation, performance evaluation and classification.
Finally, we characterized the model with the optimal prediction metrics on the validation
set and we summarized the performance of each classifier and FS method across the
different scenarios. The main steps of the classification framework are visualized in
Figure S1 and detailed in the Supplementary Materials. All the models were implemented
using the package “caret” [31] of software R (version 4.0.3).
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2.4.2. Application to Simulated and NSCLC Data

We applied the proposed classification framework to the twelve simulated scenarios
as well as to the original NSCLC data. In order to summarize the overall performances
of FS methods and classifiers, we calculated the mean values and standard deviations of
the Area Under the Receiver Operating Characteristics Curves (AUC), sensitivity (SE) and
specificity (SP) among all scenarios for each classifier. In a second step, we also conditioned
these measures to the signal strength. We used the same approach to study the stability of
the FS methods. We also performed a Wilcoxon two-independent sample (α = 0.05) test to
compare the average AUC with and without the FS step.

For four out of the six different classifiers it was possible to retrieve a list of the top
twenty features, obtained according to a selection criterion or measure of importance.
According to this ranking, we observed if the three “control” features, associated with
the clinical outcome by design, were correctly selected by each combination of the FS and
ML models.

To evaluate the results of our simulation study on real data, we also applied our
pipeline to the original data of 270 patients affected by NSCLC. To obtain an application of
our models, independent from the previously published results [29], we performed a new
random split of the dataset in the training (n = 175) and validation (n = 95) sets. Since the
real dataset was characterized by an unbalanced proportion of positive lymph nodes (30%),
a SMOTE (Synthetic Minority Over-sampling) [32] oversampling technique was applied.
We applied the pipeline to evaluate the best classifier and FS method in the prediction of a
binary variable represented by the classes pN = 0 and pN = 1.

3. Results
3.1. Data Simulation Step

To identify the main issues that should be tackled when simulating radiomic features,
we first carried out some descriptive analyses of our real data on NSCLC patients.

We separately explored radiomic features obtained from CT images reconstructed
with FBP (168 features) and IR (168 features) algorithms. We observed that only 107 features
of the total 336 features derived from both algorithms (32%), were normally distributed.
Additionally, as expected, the correlation among features was high and we were able to
keep a similar correlation structure in the simulated data, although with a lower overall
correlation (Figure S2).

The association with the lymph node status, carried out as the second step of the
simulation procedure, was computed by modelling the association for the three selected
features F1, F2 and F3 as low or high. The feature distributions in the positive and negative
classes were separated by specific factors, large enough to significantly associate all (high
signal) or some (low signal) of them to the positive lymph node status (Table S2).

3.2. Classification Performances on Balanced Samples

The predictive performance of the six ML algorithms combined with the six FS meth-
ods in the validation set is reported in Figure 2 for the balanced scenarios.

When the association signal was high, almost all the classification algorithms and FS
methods presented good performances (Figure 2, panel A), generally with a slight decrease
in the AUC values when the sample size was diminished. Nevertheless, RF (Random
Forest) and XGBoost (Extreme Gradient Boosting) maintained excellent performances for
all the sample sizes. AUC values for those methods, across FS, ranged from 0.94 to 0.99
for the large sample, from 0.84 to 0.95 for the medium, and from 0.70 to 0.87 for the small
sample, respectively. When no FS step was performed, PR (Penalized Regression) also
obtained a comparable high performance in the large and medium datasets (AUC = 0.99
and 0.97, respectively).
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Figure 2. Heatmap representing the predictive performance (AUC) of feature selection (rows) and classification (columns)
methods in the validation set for: (a) simulated samples with a high signal; (b) simulated samples with a low signal.
HC + WLCX = Hierarchical clustering + Wilcoxon; KNN = K-Nearest Neighbor; LSR = Logistic Step-wise Regression;
MRMR = Minimum Redundancy Maximum Relevance; PCA (Delta) = Principal Component Analysis clustering with
Delta plot stop criterion + Wilcoxon; PCA (Proportion) = Principal Component Analysis clustering with proportion stop
criterion + Wilcoxon; PR = Penalized Regression; RF = Random Forest; RELF = Relief; XGBoost = Extreme Gradient Boosting;
SVM = Support Vector Machine.

Noticeable differences in classification performances arose instead for the balanced
samples with a low association to the outcome (Figure 2, panel B). In particular, for large
and medium samples, RF and XGBoost were still the methods with the best performances
when combined with FS methods different from RELF (Relief) and MRMR (Minimum
Redundancy Maximum Relevance): the AUC ranged from 0.79 to 0.83 for both large and
medium samples. For the small sample, the best performances were observed for PR with
no FS step (AUC = 0.72) or HC + WLCX (Hierarchical clustering + Wilcoxon) (AUC = 0.71).
In all the other cases, classifiers returned similarly poor performances, regardless of the FS
method, with the AUC generally between 0.40 and 0.70 for all the sample sizes.
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The ability of each approach to correctly select the features with a real, but low,
association with the outcome is represented in Supplementary Figure S3, Panel A. For the
large and medium sample, RF and XGBoost, combined with FS methods different from
RELF and MRMR, were able to select the three features associated to the outcome among
the top 20 more relevant features. For the small sample, all the considered classification
methods were able to identify two out of the three associated features when combined
with PCA (Delta) + WLCX (Principal Component Analysis clustering with Delta plot
stop criterion + Wilcoxon). With this FS method, PR was able to identify all three of the
associated features as the most important in both large and medium samples. Looking at
FS methods, RELF was the worst in recovering important features in the large and medium
samples, while high variability was observed in the small sample.

3.3. Classification Performances on Unbalanced Samples

Since the main concern for unbalanced samples is a good estimate of the less repre-
sented class, for the unbalanced samples we measured performances of classifiers and FS
methods with sensitivity (SE) and specificity (SP), in addition to AUC.

We first compared results obtained for unbalanced samples with and without SMOTE
correction and observed that SE was improved overall after the correction [32]
(Figures S4–S6). Thus, we applied the SMOTE technique to all the unbalanced scenar-
ios and reported SE and SP obtained according to different sample sizes and the strength
of association for unbalanced samples (Figure 3).
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Columns report results for the different sample sizes. Colors are used to distinguish classification algorithms, shapes for 
feature selection methods. 

Figure 3. Sensitivity and Specificity for unbalanced datasets. Performances of the classification and feature selection
methods applied to the unbalanced cases are displayed for a high signal (upper panels) and a low signal (lower panels).
Columns report results for the different sample sizes. Colors are used to distinguish classification algorithms, shapes for
feature selection methods.

When the association signal was high, all the classification and FS methods clustered in
the top right panel (SE and SP ≥ 0.50) for medium and large samples, with small differences
among FS methods and the highest SE and SP for the classification methods RF, XGBoost
and PR. The lowest performance was observed for the KNN (K-Nearest Neighbor) method,
with the highest SE and SP (about 0.75) obtained with the PCA (Delta) + WLCX method.
High SP and lower SE were obtained by SVM (Support Vector Machine) and LSR (Logistic
Step-Wise Regression), suggesting that they are not able to well classify the less represented
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classes. Finally, for the small sample size there was a high variability of SE and SP across
FS and classification methods, with the best performances observed for RF and XGBoost.

Regarding the low signal scenarios, higher SP (≥0.5) was generally achieved for the
medium and large scenarios, while the maximum SE was markedly lower than in the high
signal scenarios (≤0.75). XGBoost and RF performances were confirmed as the optimal
predictive models for large and medium samples, while SVM and PR maintained an SP as
good as for the high signal, but SE drastically dropped below 0.5, while KNN had a medium
performance. XGBoost without feature selection provided the best trade-off between SE
and SP for the small dataset, although the total results showed a wide variability.

In terms of AUC, predictive performances of classifiers and FS methods in the valida-
tion set are reported in Figure S7. The overall results are generally comparable to those
previously described for balanced samples.

The ability of each approach to correctly select the features with a real, but low,
association with the outcome is represented in Figure S3, Panel B. With feature selection
methods different from RELF and MRMR, RF and XGBoost (the latter only in combination
with a preselection method) were able to select in the group of the top 20 more relevant
features, the three features that were indeed simulated as associated with the outcome for
the large samples. For the medium and small samples, all the considered classification
methods, except LSR, were able to identify two out of the three associated features when
combined with PCA (Delta) + WLCX. With this FS method, PR applied to the large sample
identified the three features associated to the outcome as the most important ones. Looking
at FS methods, RELF was the worst in recovering important features in the large and small
samples, while high variability was observed in the medium sample.

3.4. Overall Comparison of Feature Selection and Classification Methods

The overall performances of classification algorithms and FS methods are represented
in Table 3. Independently from the signal strength, the classifiers giving the best results in
terms of mean AUC, SE and SP are RF and XGBoost, while the lowest performance can be
attributed to SVM/KNN according to mean values of AUC (0.63/0.63), SE (0.44/0.43) and
SP (0.68/0.65) (Table 3).

Table 3. Mean AUC for each classifier across different sample sizes, balancing, signal intensity and feature selection methods
in the validation set. Best mean AUC, Sensitivity and Specificity values are in bold.

Method AUC Mean AUC SD Sensitivity
Mean

Sensitivity
SD

Specificity
Mean

Specificity
SD

Classification methods

KNN 0.63 0.12 0.43 0.21 0.65 0.21
LSR 0.64 0.11 0.45 0.22 0.74 0.14
PR 0.67 0.12 0.45 0.24 0.78 0.15
RF 0.78 0.16 0.58 0.24 0.82 0.15

SVM 0.63 0.12 0.44 0.29 0.68 0.3
XGBoost 0.79 0.16 0.62 0.23 0.81 0.13

Feature selection methods

No FS 0.72 0.12 0.56 0.24 0.76 0.15
HC + WLCX 0.71 0.12 0.54 0.21 0.74 0.21

MRMR 0.63 0.11 0.41 0.22 0.73 0.14
PCA (Delta) + WLCX 0.72 0.16 0.51 0.24 0.76 0.15

PCA (Proportion) + WLCX 0.71 0.12 0.52 0.29 0.76 0.30
RELF 0.67 0.16 0.44 0.23 0.74 0.13

AUC = Area Under the receiver operating characteristics Curve; SD = Standard Deviation; KNN = K-Nearest Neighbor; LSR = Lo-
gistic Step-wise Regression; PR = Penalized Regression; RF = Random Forest; SVM = Support Vector Machine; XGBoost = Extreme
Gradient Boosting; FS = Feature Selection; HC + WLCX = Hierarchical clustering + Wilcoxon; MRMR = Minimum Redundancy Max-
imum Relevance; PCA (Delta) + WLCX = Principal Component Analysis clustering with Delta plot stop criterion + Wilcoxon; PCA
(Proportion) + WLCX = Principal Component Analysis clustering with proportion stop criterion +Wilcoxon; RELF = Relief.
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Performances of different FS methods are more similar across different scenarios.
Overall, independently from the signal strength, the method giving slightly better results
in terms of mean AUC, SE and SP was the no FS method, while the lowest performance can
be attributed to MRMR/RELF according to mean values of AUC (0.63/0.67), SE (0.41/0.44)
and SP (0.14/0.13) (Table 4). Overall, no FS reported a borderline better AUC than all the
other FS methods combined (AUC = 0.72 vs. 0.68, p-value = 0.08). This difference becomes
significant when only classification methods including a selection step are considered (PR,
RF and XGBoost; AUC = 0.81 vs. 0.73 for no FS and all the other FS methods combined,
p-value = 0.0007). Interestingly, opposite results were observed for the SVM and KNN
methods, that do not include an FS step (AUC were, respectively, 0.58 and 0.65 for no FS
compared to any FS, p-value = 0.007). These latter results were less strong, but the trend
was confirmed, even when the two worst FS methods (MRMR and RELF) were excluded.

Table 4. Discriminative performance of combinations of feature selection and classification methods
applied to real data.

Feature Selection Classification AUC (CI 95%) Sensitivity Specificity

No FS PR 0.60 (0.46, 0.73) 0.50 0.61

RF 0.62 (0.49, 0.75) 0.50 0.63

XGBoost 0.64 (0.51, 0.76) 0.50 0.70

KNN 0.57 (0.45, 0.67) 0.54 0.59

SVM 0.52 (0.38, 0.65) 0.50 0.57

HC + WLCX PR 0.63 (0.50, 0.76) 0.46 0.63

RF 0.67 (0.54, 0.79) 0.50 0.70

XGBoost 0.64 (0.51, 0.76) 0.54 0.65

LSR 0.57 (0.43, 0.71) 0.50 0.61

KNN 0.55 (0.44, 0.67) 0.37 0.73

SVM 0.55 (0.42, 0.68) 0.62 0.59

PCA (Delta) + WLCX PR 0.60 (0.47, 0.72) 0.58 0.63

RF 0.65 (0.52, 0.78) 0.67 0.61

XGBoost 0.69 (0.57, 0.8) 0.67 0.62

LSR 0.59 (0.46, 0.72) 0.50 0.64

KNN 0.58 (0.45, 0.70) 0.54 0.59

SVM 0.58 (0.45, 0.70) 0.62 0.57

PCA (Proportion) + WLCX PR 0.57 (0.44, 0.71) 0.42 0.65

RF 0.64 (0.50, 0.77) 0.54 0.65

XGBoost 0.69 (0.55, 0.81) 0.54 0.65

LSR 0.58 (0.43, 0.72) 0.50 0.68

KNN 0.58 (0.46, 0.69) 0.45 0.70

SVM 0.60 (0.48, 0.72) 0.66 0.59

MRMR PR 0.55 (0.42, 0.68) 0.42 0.63

RF 0.64 (0.50, 0.77) 0.46 0.72

XGBoost 0.66 (0.52, 0.78) 0.54 0.65

LSR 0.54 (0.40, 0.67) 0.42 0.68

KNN 0.50 (0.39, 0.61) 0.33 0.67

SVM 0.61 (0.48, 0.73) 0.62 0.63
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Table 4. Cont.

Feature Selection Classification AUC (CI 95%) Sensitivity Specificity

RELF PR 0.70 (0.57, 0.83) 0.21 0.94

RF 0.60 (0.47, 0.73) 0.50 0.69

XGBoost 0.67 (0.53, 0.79) 0.46 0.79

LSR 0.69 (0.55, 0.82) 0.62 0.69

KNN 0.45 (0.35, 0.56) 0.29 0.61

SVM 0.75 (0.63, 0.86) 0.54 0.87
AUC = Area Under the receiver operating characteristics Curve; CI = Confidence Intervals;
HC + WLCX = Hierarchical clustering + Wilcoxon; KNN = K-Nearest Neighbor; LSR = Logistic Step-
wise Regression; MRMR = Minimum Redundancy Maximum Relevance; PCA (Delta) + WLCX = Principal
Component Analysis clustering with Delta plot stop criterion + Wilcoxon; PCA (Proportion) + WLCX = Principal
Component Analysis clustering with proportion stop criterion + Wilcoxon; PR = Penalized Regression;
RF = Random Forest; RELF = Relief; XGBoost = Extreme Gradient Boosting; SVM = Support Vector Machine.

3.5. Application to NSCLC Real Data

To validate the relevance of our optimization strategy based on simulated data, we
applied the methods on our previously published real dataset [29] (described in Supple-
mentary Table S1). The results of model performances are reported in Table 4. Overall,
the best performances of tree-based methods (XGBoost and RF) were confirmed by AUCs
between 0.67 and 0.69 coupled with the following feature selection methods: HC + WLCX
(for RF), HC + PCA (Proportion) and HC + PCA (Delta) (for XGBoost). Good performances
were also provided by XGBoost (AUC = 0.67) and LSR (AUC = 0.69) with RELF as the
feature selection method. The AUC was slightly lower when no FS was applied. In accor-
dance with previous results about medium unbalanced datasets, SP was higher than SE up
to a maximum of 0.94 in PR + RELF, whereas, with some exceptions in RELF, SE generally
ranged from 0.33 to 0.67.

4. Discussion

In our work we constructed an adequate synthetic dataset, starting from real radiomics
data, to study binary classification performances of six different ML algorithms in combina-
tion with several FS methods. Using this strategy, we showed that the tree-based methods
RF and XGBoost generally performed better than other classifiers, regardless of sample size,
strength of the radiomic features–outcome association and sample balancing. The lowest
performances were instead observed for the SVM and KNN methods. The performances
of the tree-based classifiers for medium and large samples (300 and 600 patients) were
very high when the association signal was high (AUC ≥ 0.84) and remained good when
the association signal was low (AUC ≥ 0.73 for almost all the FS methods). With a high
signal, PR also, with no FS step, obtained a comparable AUC in the large and medium
datasets. It should be highlighted that PR has the advantages of a small computational
time and higher interpretability: the latter is especially relevant in clinical application,
where an interpretable model could be replicated on external validation datasets. On
the contrary, RF, and especially XGBoost, have higher computational times and a less
immediate interpretation of the results, since they give less emphasis to the biological and
clinical significance of the possible association between specific image characteristics and
the outcome. Therefore, in an optimal scenario (i.e., high association signal and hundreds
of patients) PR provides the best trade-off between performance and resource costs. When
the strength of the association between radiomic features and the outcome is unknown,
as generally happens in clinical applications, it is possible to compare results of PR with
those of the tree-based methods: if results are similar, we may hypothesize a medium–high
association signal. This happened, for instance, in our original study [29] and in the present
reanalysis of this NSCLC patient dataset. Indeed, for our previous publication [29] we
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chose to present the results obtained with PR, which showed similar performances to
tree-based methods.

For small datasets (N = 100), predictive performances generally decreased and, as ex-
pected, they varied within a wide range even with the same classifier. When the association
signal was high, the tree-based methods RF and XGBoost still achieved good performances,
while PR worked well on small balanced datasets with a low signal. XGBoost accounted
better for unbalanced datasets, returning the best performances, and may be indicated
as the preferable method for unbalanced, small samples. For simplicity, we collected the
suggested methods according to sample, balancing and signal strength in Table 5. Sample
size is an important factor, especially in radiomic-based studies. It has been demonstrated
that ML methods require at least some hundreds of samples to achieve a low mean-square-
error in prediction [33]. Therefore, it would always be preferable to have a medium/large
sample size for radiomic studies, especially in cases of low association between radiomic
features and outcome. As suggested by our results, in this case it would be difficult to
achieve a good model performance and to correctly identify the most important features
contributing to the outcome classification.

Table 5. Suggested guidelines for the choice of the classifier, according to sample size, balancing and
association strength.

Sample Size Balancing
Association

High Low

Large (600) Balanced
Unbalanced

PR
PR

RF *
RF *

Medium (300) Balanced
Unbalanced

PR
PR

RF *
RF *

Small (100) Balanced
Unbalanced

RF *
XGBoost

PR
XGBoost

* Preferred over XGBoost for lower computational time and less hyperparameters to be tuned.

Previous studies found RF as the best classifier in a similar context of CT lung cancer
images [6,26], while others identified other methods, like Naïve Bayes [8], elastic net and
SVM [28] as the most accurate. Inconsistent results in the literature are not surprising
as they may depend on different sample sizes, unbalanced classes, and on the strength
of the association signal. Wu et al. (2016) [8] for instance, compared models trained on
an unbalanced dataset of 203 samples (25% squamous carcinoma, 75% adenocarcinoma)
and found a slightly lower performance in RF; different from Zhang et al. (2017) [26]
who applied SMOTE correction on a dataset of 112 patients. Considering the general low
performance results among ML approaches investigated by Wu et al. (2016) [8] and Delzell
et al. (2019) [28], a low signal association could be linked to this behavior, where the target
variable was different with respect to [6] and [26] in which survival analysis was applied.
We were able to quantify the strength of the association signal thanks to data simulation,
but it is generally unknown in studies on real data. The large variability of results observed
in different studies further highlighted that, as previously reported [6,8,26,27], several
aspects should be taken into account when choosing the classifier.

Classical ML algorithms generally assume a balanced representation of samples in
each class [34] and are biased towards the majority class when representation is unbal-
anced. This typically occurs in clinical contexts, where the minority class is often the
most important to classify. This makes it extremely important, for unbalanced samples,
to evaluate the performance of the classifiers not only in terms of accuracy (AUC), but
also in terms of SE and SP. First, we strongly recommend using a resampling technique
when using ML approaches in unbalanced samples, especially when high SE is clinically
significant. Indeed, we obtained higher values of SE for all the scenarios when the SMOTE
correction [32] was applied in comparison to the analysis on non-resampled patients. Re-
gardless of the association signal, RF and XGBoost obtained the best trade-off between SE
and SP for medium and large samples, suggesting that these methods are also preferable
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for unbalanced studies (see Table 5). The importance of accounting for unbalanced data
was not pointed out enough, or not even mentioned, in recent radiomic guidelines [35].
Most radiomic studies indeed applied ML techniques and calculated only the accuracy of
the prediction, without evaluating their impact on the classification of the less-represented
class, even when it is the one of main clinical interest [36]. The correct application of
resampling and the choice of the most appropriate ML classifier may partially overcome
the impact of unbalanced datasets. It remains the role of clinicians to identify which would
be the minimum necessary performance of a classifier, both in terms of SE and SP for each
specific context.

The results obtained in this study on the choice of the most suitable classifier indicate
that, when datasets are complex as in the radiomic field, more algorithms and more
techniques related to ML should be explored before proceeding with the classification:
some non-linear ML algorithms, such as tree-based ones, may produce more accurate
predictions than logistic or penalized regression, for example if the outcome variable does
not depend linearly on other features.

Preselection is strongly recommended in radiomic studies to overcome feature re-
dundancy and high correlation among radiomic data [35]. Nevertheless, we observed
that preselection techniques did not generally improve predictive performances on our
simulated data when a method that already included an FS step was applied (RF, XGBoost
and PR). Moreover, in large–medium scenarios RF, XGBoost, and PR without feature selec-
tion were able to retain the three features associated to the outcome, among the 20 most
important ones. On the contrary, KNN, and SVM performances increased after preselecting
features. Looking at specific FS methods, the lowest performances were observed with the
RELF and MRMR methods, especially on samples characterized by a low association with
the target. Moreover, RELF had a poor ability to recover the three features associated to the
outcome, behavior that could be attributed to the univariate nature of the algorithm, which
does account for redundancy among features. PCA (Delta) + WLCX seem to offer a small
benefit among other FS methods.

Previous studies investigating the performance of FS methods, identified PCA [26],
RELF [8], linear combination or correlation [28,37], and WLCX [6] as the preferable methods
in the context of CT lung cancer patients. Only one study [26] applied classifiers without
a preselection FS step and obtained comparable results to other FS methods for RF, as
observed in our study. Generally, FS methods seemed to have a small impact on the
classification performance and their choice had less influence on the model accuracy, as
previously pointed out [6,8,25,27]. When we applied FS and classification methods to our
original dataset, we found similar performances after preselection techniques compared
to no preselection. A possible explanation is that the FS steps may acquire increasing
importance with the increase of correlation among radiomic features. Indeed, through our
simulation process, we were able to maintain a similar correlation structure with respect
to the original one, but with lower overall correlations among the features. In summary,
we suggest carefully considering the application of an FS method when using classifiers
already including a selection step, and possibly to apply only a small feature reduction to
decrease the overall correlation among features. FS should be otherwise mandatory for
other classification methods such as KNN and SVM.

Recently published studies [38,39] highlighted the need for safeguards in radiomics
analysis, such as checking for multicollinearity and volume-confounding effects. Our
classification framework may be integrated with other preprocessing steps to take into
account adjustments for clinical variables, including the tumor volume, and other safeguard
analyses, as applications of harmonization methods [40–42].

Other clinical variables, such as gender, side and sites may affect the outcomes of
cancer patients and should be taken into account in the analysis of clinical studies, as we
did in our previous clinical publication on these patients [29]. Moreover, as explorative
analysis, we investigated whether significant differences in these relevant clinical variables
were presented among radiomic features. In particular our data showed that, among the
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three features simulated to be highly associated with the lymph node status, only F3 was
significantly different according to gender and site.

Strengths of our study include the wide numbers of scenarios considered for eval-
uating the choice of FS and classifiers in different contexts, that would not be feasible
when a single dataset is considered. Moreover, with simulated data we knew a priori
which features were associated to the outcome with a predefined low or high signal. To
our knowledge this gave us the opportunity to evaluate for the first time, not only the
accuracy of the models in terms of AUC, but also to identify which approaches were most
able to correctly identify the true associations, thus overcoming model overfitting. As
reported by Zhovannik et al. [43], radiomic features may depend on image acquisition
settings, and therefore variations in the features may cause a reduction in prediction perfor-
mance. A preliminary selection with ANOVA was performed on our original dataset [29]
to choose features that were not significantly affected by the use of different scanners and
reconstruction algorithms. Indeed, we applied our analysis on homogeneous data, by
selecting the 168 radiomic features that resulted as independent from the abovementioned
parameters (see our previous study in [29]). Thus, the introduction of uncontrolled sources
of variability, that may be present in other studies with a heterogeneous acquisition of
radiomic data, can be avoided.

Finally, among limitations, our simulated data were generated by a specific dataset of
CT images of early-stage NSCLC patients, which may partially reduce the reproducibility
of the results for other imaging techniques and tumor types. Further studies are suitable
to investigate whether similar recommendations could be applicable in other contexts.
Second, both patients from the training and validation sets were simulated by the same
sample of patients and may therefore be more similar to each other than would be expected
in external datasets. For this reason, our performance results on the validation set may be
generally higher than they would be if external validation were considered. However, as
this consideration applies to all the scenarios, FS and classification methods, it does not
affect the comparison among the various approaches and the recommendations arising
from our study.

As a final consideration, it must be highlighted that the present NSCLC dataset was
adequate for the purpose of deriving a useful indication for radiomic studies in this partic-
ular clinical scenario and, more importantly, of implementing and refining a methodology
applicable to different radiomic databases and clinical endpoints. In this regard, to improve
clinical significance for the specific early-stage NSCLC pathology investigated here, the
analysis could be extended to also include radiomic features extracted from PET images in
addition to those obtained from CT images. Promising results were obtained from previous
studies investigating the prognostic role of PET and PET/CT radiomic features in a NSCLC
population undergoing surgery [44], as well as in locally advanced NSCLC disease [45] and
pleomorphic lung carcinoma [46]. Similarly, PET/CT radiomic features could play a role in
the molecular characterization of lung pathology [47]. More in general, the integration of
multiple -omics data originating from different image modalities and other clinical exam-
inations appears to be the proper way towards clinical implementation of personalized
medicine [48], a scenario which cannot exclude the investigation of the optimal way to
implement and fully exploit the potentialities of artificial intelligence approaches.

5. Conclusions

Our analysis showed that the choice of FS and classification methods in radiomic
studies can consistently influence the results.

We strongly suggest carefully evaluating their choice, taking into account the specific
sample size, balancing (balanced/unbalanced), and the hypothesized strength of the asso-
ciation. The tree-based methods RF and XGBoost generally obtained the best performances
in all scenarios, but PR may be preferable for medium/large samples with a high signal due
to its easier interpretability and computational simplicity. FS methods may be generally
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avoided when RF, XGBoost, and PR methods are used, while they should be used before
applying KNN and SVM classifiers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13123088/s1, Supplementary Methods, Figure S1: Classification procedure flowchart,
Figure S2: Correlation among radiomic features, Figure S3: Number of features correctly selected
as associated with the outcome, Figure S4: Sensitivity and specificity for unbalanced datasets
with and without SMOTE correction for large dataset, Figure S5: Sensitivity and specificity for
unbalanced datasets with and without SMOTE correction for medium dataset, Figure S6: Sensitivity
and specificity for unbalanced datasets with a without SMOTE correction for small dataset, Figure S7:
Heatmap representing the predictive performance (AUC) in the validation set for unbalanced SMOTE
samples, Table S1: Baseline characteristics of the original study population, Table S2: Wilcoxon p-
values for the association of features F1, F2 and F3 with outcome. References [29–32,49–51] are cited
in the supplementary materials
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