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A B S T R A C T

In the evolving cybersecurity landscape, the rising frequency of Distributed Denial of Service (DDoS) attacks
requires robust defense mechanisms to safeguard network infrastructure availability and integrity. Deep
Learning (DL) models have emerged as a promising approach for DDoS attack detection and mitigation due to
their capability of automatically learning feature representations and distinguishing complex patterns within
network traffic data. However, the effectiveness of DL models in protecting against evolving attacks depends
also on the design of adaptive architectures, through the combination of appropriate models, quality data,
and thorough hyperparameter optimizations, which are scarcely performed in the literature. Also, within
adaptive architectures for DDoS detection, no method has yet addressed how to transfer knowledge between
different datasets to improve classification accuracy. In this paper, we propose an innovative approach for
DDoS detection by leveraging Convolutional Neural Networks (CNN), adaptive architectures, and transfer
learning techniques. Experimental results on publicly available datasets show that the proposed adaptive
transfer learning method effectively identifies benign and malicious activities and specific attack categories.
1. Introduction

Distributed Denial of Service (DDoS) attacks are a significant threat
to organizations worldwide (Chadd, 2018). These attacks have the
potential to paralyze networks, making them inaccessible to legiti-
mate users and causing severe disruptions in service availability and
integrity. The ability to detect and mitigate DDoS attacks has there-
fore become vital to ensuring the resilience and security of critical
infrastructure. Given the rising frequency and complexity of DDoS
attacks in the cybersecurity landscape, it is imperative to develop
effective intrusion detection systems (IDS) to ensure network infras-
tructure integrity and availability. Deep learning (DL) models have
emerged as a promising approach for detecting and mitigating such
attacks by automatically learning complex patterns from network traffic
data (Diro and Chilamkurti, 2018; Gümüşbaş et al., 2020) and various
DL models are being developed to enhance the detection of DDoS
attacks. However, mainly due to the dynamic nature of attackers’
behavior and evolving cyber threats, maintaining up-to-date models
can be a challenging task (Kolias et al., 2017). Furthermore, developing
DL models for intrusion detection faces another significant challenge
due to the limited availability of data required for effective training,
with the consequence that the scarcity of adequately sized and high-
quality training datasets hinders the widespread adoption of DL in
IDSs. To mitigate this aspect, transfer learning approaches have been
considered to train DL models by leveraging data originating from
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different sources and increasing detection accuracy (Das et al., 2022).
However, no method in the literature has yet considered the design of
DL models trained using transfer learning that can adapt to evolving
attacks by using adaptive architectures.

This paper proposes a novel methodology based on DL for DDoS
detection that leverages adaptive architectures in a transfer learning
modality, to achieve an accurate classification of benign vs. malicious
networks in evolving scenarios. Our approach employs customized CNN
models with diverse layer configurations, in addition to several publicly
available models such as VGG16, VGG19, and ResNet50. We train
the models, considering both a binary and a multi-label classification,
by adopting transfer learning techniques while adaptively optimizing
hyperparameters, introducing a dynamic and flexible approach that
enhances the robustness and efficiency of DDoS attack detection.

The remainder of the paper is structured as follows. Section 2
provides an overview of related works in the field of DL and transfer
learning-based DDoS detection and hyperparameter tuning. Section 3
presents the methodology and framework employed in our proposed
approach. Section 4 discusses the results and performance analysis of
our proposed methodology. Finally, Section 5 concludes the paper.

2. Related works

In the context of DDoS attack detection, various studies have em-
ployed DL techniques with significant success. The papers by Sabeel
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et al. (2019) and Cil et al. (2021) evaluate the effectiveness of DL
techniques to improve the detection accuracy of DDoS attacks. The
work presented in Shaaban et al. (2019) delves into the application of
the CNN models for large-scale DDoS attack detection within software-
defined networks (SDN). Furthermore, Chen et al. (2019) and Nugraha
and Murthy (2020) introduced multi-channel CNN and hybrid CNN-
LSTM (Long Short-Term Memory) models. Another study (Yeom et al.,
2022) introduced a collaborative LSTM-based DDoS detection frame-
work to address the challenges of irregular traffic patterns. These
studies showed the promising potential of CNN-based DL models for
the efficient detection of DDoS attacks.

Differently from the approaches presented above, which only con-
sider a single DL model, the method described in Elsaeidy et al. (2021)
combines the strengths of various models to enhance both the accuracy
and the robustness of detection systems. Furthermore, Wei et al. (2021)
demonstrated the effectiveness of integrating a Multilayer Perceptron
(MLP) with an Autoencoder (AE) for DDoS detection and classifica-
tion. Complementing these advancements, Hnamte and Hussain (2023)
proposes a hybrid model combining CNNs and Bidirectional Long Short-
Term Memory (BiLSTM) networks. This approach leverages CNNs’
ability in feature extraction and pattern recognition, alongside BiL-
STMs’ capability to understand sequence and temporal dependencies
in the data streams.

In exploring the complex landscape of DDoS attacks, it is essential
to recognize the heterogeneity of these threats and gain a compre-
hensive understanding of the advanced defensive mechanisms required
for protecting cloud-based infrastructures. To this purpose, the work
in Agrawal and Tapaswi (2019) highlighted the various DDoS attacks
and their corresponding defensive approaches to protect cloud infras-
tructures. Moreover, the work in Venkatesan et al. (2016) presented a
moving target defense technique, shifting proxy servers and remapping
client connections, effectively disrupting attackers’ efforts to map out
and exploit network vulnerabilities. Similarly, Kansal and Dave (2017)
introduced a method that uses load-balancing algorithms alongside
attack proxies to differentiate between malicious insiders and genuine
clients, adding an extra layer of security. Furthermore, Jia et al. (2014)
developed a cloud-enabled defense mechanism that employs selec-
tive server replication and intelligent client reassignment, effectively
turning victim servers into dynamic targets to isolate attacks.

In response to the prevalent challenges of scarce labeled data in
developing DL models for DDoS detection, current research emphasizes
the integration of transfer learning techniques. This kind of approach
leverages knowledge from pre-trained models, which have been trained
on extensive datasets, to enhance learning efficiency and accuracy
in tasks constrained by limited labeled data availability (Masum and
Shahriar, 2021). Such as the method described in Wu et al. (2019),
which demonstrates the effectiveness of transfer learning in IDS, lever-
aging knowledge from pre-trained models. Transfer learning has also
been applied for DDoS attack detection in IoT environments. For ex-
ample, the work by Okey et al. (2023), Zhang et al. (2021), Rodríguez
et al. (2022), Xue et al. (2022) and Vu et al. (2020) has demonstrated
the adaptation of pre-trained DL models for IDS in IoT. Furthermore,
the works presented in Yang and Shami (2022) proposed a CNN-based
transfer learning approach specifically tailored for IDS in the Internet
of Vehicles (IoV).

Although DL models have demonstrated proficiency in identifying
known cyber threats, they often face challenges in detecting new or
evolving DDoS attack patterns. To address this challenge, adaptive DL
techniques have been proposed for DDoS attack detection. As an ex-
ample, the work described in Cheng et al. (2018) introduced a method
based on multiple-kernel learning, while Kushwah and Ranga (2021)
employed an improved self-adaptive evolutionary extreme learning
approach. Furthermore, the method introduced in Agostinello et al.
(2023) consists of a DL approach for DDoS attack detection using
adaptive architectures with an optimized number of neurons.
2

Fig. 1. A comprehensive methodology framework for robust transfer learning DDoS
attack detection, encompassing (A) data preprocessing, (B) CNN model, (C) transfer
learning and fine-tuning, (D) hyperparameter optimization, and (E) model evaluation
and selection.

While DL-based approaches for DDoS detection using transfer learn-
ing or adaptive architectures have been proposed in the literature, to
the best of our knowledge, no approach has yet considered adaptive
architectures in a transfer learning modality. To address these gaps, our
paper proposes an adaptive DL approach for DDoS detection within a
transfer learning framework.

3. Methodology

This section explains our proposed framework for DDoS detection
using DL models trained using the adaptive transfer learning proce-
dure. The methodology comprises five steps: (i) data preprocessing,
(ii) CNN models, (iii) transfer learning, (iv) hyper parameter opti-
mization, and (v) model evaluation and selection. Fig. 1 outlines the
proposed methodological framework.

3.1. Data preprocessing

Data preprocessing consists of (i) data cleaning, (ii) data transfor-
mation, (iii) data dimensionality reduction, and (iv) data conversion
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Data cleaning. We initially focused on validating and correcting incon-
sistencies and errors within the dataset to ensure its integrity for model
training. First, we removed columns lacking useful values, including
socket-related features, and those filled solely with zeros. We then
eliminated duplicate rows and rows containing NaN values. Finally, we
replaced all infinite and null values with −1.

Data transformation. This task encompasses dataset transformation
aimed at ensuring consistent numerical values across diverse datasets.
Initially, we achieve this by normalizing numerical values within the
[0, 1] range through the min–max method. Additionally, categorical
features undergo label encoding, which converts categorical values
into numerical counterparts. This process utilizes two methods: a label
encoder, which converts each label into a unique numerical value, and
a one-hot encoder (OHE), which transforms labels into 𝑛-dimensional
binary vectors, where 𝑛 is the number of labels.

Data dimensionality reduction. This step aims to reduce the num-
ber of features to decrease noise, accelerate training, and achieve a
consistent number of features across diverse datasets. To execute this
reduction, we apply the PCA technique by determining the optimal
number of principal components using the maximum likelihood estima-
tion (MLE) method, a statistical approach for estimating the parameters
of a probability distribution that best describes a set of observed
data (Ogbuanya, 2021).

Data conversion. The pre-trained CNN models that we consider in
this paper, VGG16, VGG19, and ResNet50, have been trained on image
datasets. However, network traffic datasets are typically captured in
non-image formats, such as .csv or .pcap formats. To enhance the ef-
fectiveness of DDoS attack detection through the application of transfer
learning, it is important to transform this non-image network traffic
data into an image-compatible format suitable for CNNs.

We first scale the numeric features of each dataset to a range of
[0, 1] to normalize the data. Following this initial normalization, we
apply the quantile transform technique to each feature. This method
involves discretizing the normalized values into quantiles, which are
then mapped onto a new scale ranging from 0 to 255. This adjustment
aligns the data values with the standard range of pixel intensities used
in image processing, facilitating their interpretation as image pixels.
Using this quantile-scaled data, we generate images for each category
within the datasets, including various types of network attacks and
benign traffic.

Initially, these images are created with dimensions of 9 × 9 pixels
nd are encoded in three color channels (RGB), which allows us to
apture and distinguish a broad spectrum of feature variations through
olor differentiation. If the number of features is lower, we add padding
o maintain consistency. To ensure that these images are compatible
ith commonly used pre-trained models such as VGG16, VGG19, and
esNet50, we standardize the dimensions of these initial 9 × 9 images

o 224 × 224 pixels, maintaining a three-channel (RGB) format.

.2. CNN models

In our work, we consider three different customized CNN DL ar-
hitectures to evaluate the behavior under CNNs with varying depths
or one-dimensional input vectors, namely (i) Conv4, (ii) Conv8, and
iii) Conv18 and three pre-trained models, specifically VGG16, VGG19
nd ResNet50. For each architecture, we explore two variants of classi-
ication types: one conducts binary classification, distinguishing benign
rom DDoS attacks, and the other performs multi-label classification,
iding in the identification of each specific type of attack. Below, we
laborate on the configurations of these customized CNN architectures.

onv4. The customized four-layer CNN applies convolutional process-
ng to the input data, enhances the model’s non-linearity with ReLU
ctivation functions after the first and third convolutional layers, and
3

tilizes max-pooling operations to down-sample the data for improved
eature extraction.

In this paper, a 1D CNN architecture with 4 layers is designed to
eet our task’s demands. Illustrated in Fig. 2, the model begins with

n input layer (𝑁, 1), followed by Conv1D operations (𝐶𝑜𝑛𝑣𝑖) using 𝐹
ilters, 𝐾-sized kernels, and relu activation. After the convolution oper-
tion, global average pooling actively reduces the spatial dimensions.
o prevent overfitting and improve generalization, dropout and reg-
larization techniques (L1/L2) are incorporated into the architecture.
ropout layers with rates between 0.1 and 0.5 are inserted after each
onv1D layer, and regularization is applied to the convolutional layers.
dense layer with output dimension 𝐻 and relu activation is next. The

inal layer is a dense layer with 𝑂 output classes and softmax activation.

onv8. Building upon Conv4, we extend our model with 8 convolu-
ion layers. This expansion enables us to capture more complex and
bstract patterns within the data. The architecture depicted in Fig. 2
ncludes added layers that facilitate a deeper feature extraction process,
mpowering the model to excel in tasks that demand a higher level of
omplexity and feature representation.

onv18. We extend Conv4 and Conv8 by incorporating 18 convolution
ayers. This model, with its increased depth, captures an even larger
ierarchy of features in the dataset representations (see Fig. 2).

.3. Transfer learning and fine-tuning

In this paper, we utilize transfer learning, accompanied by fine-
uning, to improve model adaptability and convergence, enabling effi-
ient knowledge transfer from a source dataset to a target dataset. Fine
uning is applied to models pre-trained on large datasets to effectively
dapt and perform well even when tuned with comparatively smaller
atasets. In this way, we leverage the learned features from the large
ataset, applying them to a smaller, possibly more specific dataset, to
nhance learning efficiency and performance.

In our methodology, the optimization process begins with training
he source model, which is formalized as follows:
∗
𝑠 = argmin

𝛩𝑠

(𝑀𝑠(𝛩𝑠), 𝑆). (1)

q. (1) describes the process of iteratively updating the parameters 𝛩𝑠
f the source model 𝑀𝑠 to minimize the loss function  over the source
ataset 𝑆. The best parameters, 𝛩∗

𝑠 are achieved at the end of this
raining phase and serve as the initial settings for the subsequent deep
uning phase applied to the target model. This sequential approach
nsures that the source model’s insights are not discarded but rather
nhanced to suit the new data context represented by dataset 𝑇 . Thus,
he transition from the source model to the target model involves an
nitial parameter transfer followed by fine-tuning, as outlined in Eq. (2).

∗
𝑡 = argmin

𝛩𝑡

(𝑀𝑡(𝛩𝑡), 𝑇 ). (2)

ere, 𝑇 represents the target dataset, and  is the loss function specif-
cally adapted to the target’s requirements. In Eq. (2), the fine-tuning
tarts from the parameter set 𝛩∗

𝑠 , thus leveraging the pre-trained state
o accelerate and refine the learning process on 𝑇 . This method is
articularly effective for scenarios where the source and target datasets
re related but distinct enough to require fine-tuning, such as in domain
daptation tasks.

Specifically, for binary classification scenarios, we employ a binary
ross-entropy loss:

(𝑦, 𝑦′) = −[𝑦 ⋅ log(𝑦′) + (1 − 𝑦) ⋅ log(1 − 𝑦′)]
]

, (3)

here 𝑦 is the ground truth label (0 for benign, 1 for DDoS) and
′ is the predicted probability of DDoS by the model. In multi-class
lassification, we have employed a categorical cross-entropy loss:

(𝑦, 𝑦′) = −
∑

[𝑦 ⋅ log(𝑦′)]
]

, (4)
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Fig. 2. Overview of custom 1D CNN models: (A) Conv4, (B) Conv8, and (C) Conv18. These models feature ReLU activation in their internal layers to introduce non-linearity and
use either Softmax (for multi-class classification) or Sigmoid (for binary classification) in the output layer. Designed to manage varying complexities, the models range from 4 to
18 convolutional layers, optimizing them for efficient feature extraction from a 1D input dataset. Tailored for both simple and complex DDoS attack classifications, the models are
defined by the kernel (K), stride (S), and feature map size (F) and have undergone hyperparameter optimization.
where (𝑦, 𝑦′) is the categorical cross-entropy loss, 𝑦 is a one-hot
encoded vector representing the true class labels, and 𝑦′ is a vector of
predicted class probabilities produced by the model.

3.4. Hyperparameter optimization

Hyperparameters play a critical role in determining the model’s
performance and effectiveness. The following hyperparameters were
selected and tuned for optimal results: learning rate, batch size, dropout
rate, regularization parameters (L1 and L2), and number of layers. The
rationale behind the selection of these hyper-parameters stems from
their significant impact on the model’s performance and generaliza-
tion ability. By tuning these hyperparameters, we aim to achieve the
best trade-off between accuracy, computational efficiency, and model
robustness. Additionally, we consider the specific requirements of DDoS
detection in cybersecurity, including the diverse range of attack scenar-
ios and the distinct characteristics of network traffic, when determining
the optimal hyperparameter values.

When it comes to hyperparameter optimization, several techniques
can be employed, including random search, grid search, Bayesian op-
timization, and hyperband. Hyperband improves on random search by
efficiently prioritizing configurations using explore–exploit principles,
allocating resources more effectively to find the best settings. In this
paper, we have used the hyperband keras library for hyperparameter
tuning. We opted for this approach due to its well-balanced trade-off
between time, resource utilization, and performance.
4

In this paper, we have employed a four-step approach for fine-
tuning and hyperparameter optimization in our models. (i) Model def-
inition. We select and define the specific DL architecture tailored to
our dataset, establishing the foundation for our optimization process.
(ii) Hyperparameter selection. We identify the hyperparameters for tun-
ing, specific to the chosen DL architecture. (iii) Search space definition.
We establish the search space for each hyperparameter by specify-
ing their possible range or values, (iv) Search algorithm specification.
We apply the hyperband search algorithm to efficiently navigate the
hyperparameter space.

We executed the algorithm specified in Algorithm 1 by utilizing
the defined search space. In this context, units refer to the number of
neurons in a given layer of our neural network model.

4. Experimental results

4.1. Databases used and preprocessing

To evaluate the performance of our proposed adaptive transfer
learning models, we selected four well-known datasets in cyber se-
curity: KDDCup’99 (Bay et al., 2000), UNSW-NB15 (Moustafa and
Slay, 2015), CSE-CIC-IDS2018 (Sharafaldin et al., 2018), and CIC-
DDoS2019 (Sharafaldin et al., 2019). These datasets are widely recog-
nized as industry benchmarks in the domain of cybersecurity
(Gümüşbaş et al., 2020; Sharafaldin et al., 2017). They encompass
a wide spectrum of attack scenarios, providing us with the means
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Algorithm 1: Adaptive hyperparameter optimization for DDoS
ttack detection
Input: Preprocessed dataset 𝐝𝐟
utput: Optimized model with the best hyperparameter combinations
nitialization: Initialize the model;
efine Search Space and Tuner: Hyperband tuner;
yperparameter Tuning: Perform hyperparameter tuning;
or 𝑖 in specified epoch range do

for batch size (𝑏𝑠) from 16 to 512 do
for dropout rate (𝑑𝑟) from 0.1 to 0.5 do

Learning Rate Variation: If learning rate (𝐿𝑅) is between
0.001 and 0.1;

Test different learning rates within the specified range;
Unit Variation: For each number of units [32, 64, 128, 256,

512];
Experiment with different unit configurations;

Hyperband Search: Apply Hyperband search algorithm to
identify best model configuration;

Best Hyperparameter Combination: Retrieve the best hyperparameter
combination that resulted in the highest performance;
rain Model with Best Hyperparameters: Retrain the model using the
identified best hyperparameter combination;
ave Optimized DL Model: Store the optimized model for future use;

to effectively train DL models to detect a variety of attack types.
Specifically, we chose UNSW-NB15 for its realistic network traffic
patterns, KDDCup’99 for its comprehensive set of network intrusions,
CSE-CIC-IDS2018 for its modern attack and traffic types, and CIC-
DDoS2019 for its detailed DDoS attack scenarios. This diversity allows
us to evaluate the robustness and efficacy of models across different
types of network environments and attack vectors. In the following, we
delve into detailed explanations of these datasets and the corresponding
preprocessing.

KDDCup’99 dataset (Bay et al., 2000). The KDDCup’99 dataset was
specifically created for the KDDcup 1999 competition which aimed
to develop effective methods for detecting unauthorized access and
malicious activities in computer networks. This dataset includes an
extensive collection of network connection records, approximately 5
million entries. This dataset comprehensively includes both normal
connections and 22 types of cyber-attacks, classified into four major
categories. These attacks consist of DoS-based (back, LAND, ping of
death, teardrop, Neptune, and smurf attacks), U2R (buffer overflow,
load module, perl, and rootkit attacks), R2L (ftp-write, guess-password,
imap, multihop, PHF, spy, warezclient, and warezmaster attacks), and
probe-based (port sweep, IP sweep, NMAP, and Satan attacks). Each
network connection record is characterized by 42 features (Aggarwal
and Sharma, 2015).

We performed data preprocessing for this dataset following the
procedures outlined in Section 3. Initially, we converted the categor-
ical data into numeric values. Next, we normalized the entire dataset
using the min–max normalization method to scale the data within a
standardized range of 0 to 1. To enhance data quality, we identified
and removed duplicate rows, NaN values, missing values, and columns
containing only zero values. After conducting normalization and data
quality enhancement procedures, the dataset consists of 494,020 rows
and 42 features.

UNSW-NB15 dataset (Moustafa and Slay, 2015). This dataset contains
9 unique attack types and 49 features. The attack categories consist of
Analysis, Fuzzers, Backdoors, DoS, Exploits, Reconnaissance, Generic,
Shellcode, and Worms. These attack types cover a wide range of cyber
threats, enabling a thorough assessment of IDS. After preprocessing, we
retained 642,566 rows and 45 features for further analysis.

CSE-CIC IDS2018 dataset (Sharafaldin et al., 2018). The dataset
records network traffic in a controlled lab environment, capturing both
5

benign traffic and seven distinct cyberattack scenarios. The attacking
infrastructure involves 50 machines, while the victim organization con-
sists of 5 departments, comprising 420 machines and 50 servers. The
dataset consists of captured network traffic and system logs from each
machine (Sharafaldin et al., 2018). This dataset encompasses diverse
attack scenarios, including DoS, DDoS, port scanning, and malicious
code activities. To support ML algorithms, the dataset creators have
specifically processed a version tailored for this purpose. This processed
version is accessible as a set of CSV files, incorporating 80 features
extracted from the captured traffic using CICFlowMeter-V3. This paper
focuses specifically on segments of the dataset related to DDoS and
benign traffic. The dataset contains information about seven types of
DDoS attacks: GoldenEye, Slowloris, Hulk, SlowHTTPTest, LOIC-HTTP,
HOIC, LOIC-UDP, and benign network traffic.

We performed the preprocessing and discovered and removed du-
plicate rows in the dataset, eliminating 3,708,162 redundant entries.
Additionally, we removed 17 columns, which comprised socket-related
features and only zero values. After conducting normalization and data
quality enhancement procedures, the dataset consists of 7,384,563 rows
and 66 features. Fig. 3 presents samples of the converted images from
each class, ranging from Class C0 to C7. Class C0 represents benign
traffic, while classes C1 to C7 represent different types of attack traffic.

CIC-DDoS2019 dataset (Sharafaldin et al., 2019). The dataset offers
comprehensive data on various DDoS attack vectors, including UDP
flood, TCP SYN flood, and HTTP flood. These specifics facilitate a
nuanced analysis of distinct attack characteristics. The CIC-DDoS2019
dataset encompasses 18 types of attacks, including both reflection- and
exploitation-based attacks such as DrDoS-LDAP, DrDoS-MSSQL, DrDoS-
NetBIOS, DrDoS-NMP, DrDoS-SSDP, DrDoS-UDP, UDP-lag, WebDDoS,
Syn, TFTP, DrDoS-DNS, DrDoS-NTP, Portmap, NetBIOS, LDAP, MSSQL,
UDP, and UDPLag. To streamline the dataset for multi-class classifi-
cation, we merged similar attacks based on their attack techniques,
network behaviors, and naming conventions. For instance, different
types of UDP-based attacks — DrDoS-UDP, UDP, UDP-lag, and UDPLag
— were grouped due to their shared characteristic of overwhelming
the target with excessive requests. This merging process, which aligns
with existing practices in the literature (Akgun et al., 2022) simplifies
the dataset without compromising the integrity of the attack patterns,
thereby enhancing the manageability and training efficiency of models.

Consequently, the dataset now profiles 12 distinct attack types:
TFTP, UDP, NTP, SSDP, SYN, MSSQL, SNMP, DNS, BENIGN, LDAP, Net-
BIOS, Portmap, and WebDDoS. Table 1 details the dataset’s cardinality,
while Fig. 4 illustrates samples of the converted images from each class
in these datasets.

During preprocessing, we removed 59,936,580 rows and 20
columns filled predominantly with zero values and socket-related fea-
tures, which lacked variability, reducing the dataset to 10 million rows
and 66 columns.

4.2. Model evaluation and selection

The following evaluation metrics were applied in this study.

• Error (ERR). The proportion of incorrect classifications to total
observations

𝐸𝑅𝑅 = 𝐹𝑃 + 𝐹𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

. (5)

• Accuracy (ACC). The percentage of exact predictions out of the
total instances.

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

= 1 − 𝐸𝑅𝑅. (6)

• Precision (PR). Also known as false negative rate (FNR), it is
the ratio of correct positive predictions (TP) to the total positive
predictions of the model.

𝑃𝑅 = 𝑇𝑃 . (7)

𝑇𝑃 + 𝐹𝑃
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Table 1
Traffic types and their cardinality from the preprocessed CIC-DDoS2019, CSE-CIC-IDS2018, UNSW-NB15, and KDDcup’99 datasets.

CIC-DDoS2019 CSE-CIC-IDS2018 UNSW-NB15 KDDCup’99

Traffic type Cardinality Traffic type Cardinality Traffic type Cardinality Traffic type Cardinality

TFTP 4,396,770 Benign 6,412,040 Benign 321,283 Benign 97,280
UDP 2,510,574 DoS attacks-GoldenEye 41,406 Generic 215,481 DoS 391,457
NTP 1,112,902 DoS attacks Slowloris 9,908 Exploits 44,525 U2R 52
SSDP 891,220 DDoS attacks-LOIC-HTTP 575,364 DoS 16,353 R2L 1,124
SYN 687,524 DDoS attacks-LOIC-UDP 1,730 Reconnaissance 13,987 Probe 4,107
MSSQL 484,070 DDoS attacks-HOIC 198,861 Fuzzers 24,246 – –
SNMP 114,179 DDOS attacks-slowHTTP Test 55 Analysis 2,677 – –
DNS 113,252 DoS attacks-HULK 145,199 Backdoor 2,329 – –
BENIGN 99,154 – – Shellcode 1,511 – –
LDAP 48,469 – – Worms 174 – –
NetBIOS 31,052 – – – – – –
Portmap 1,638 – – – – – –
WebDDoS 414 – – – – – –

Total 10,491,218 Total 7,384,563 Total 642,566 Total 494,020
Fig. 3. Representative samples showcasing converted images from each category, ranging from Class 0 to Class 7, derived from the CSE-CIC-IDS2018 dataset. The classes include:
Benign Traffic (C0), DDoS Attacks - LOIC-HTTP (C1), DDoS Attack - HOIC (C2), DoS Attacks - Hulk (C3), DoS Attacks - GoldenEye (C4), DoS Attacks - Slowloris (C5), DDoS Attack
- LOIC-UDP (C6), and DoS Attacks - SlowHTTPTest (C7).
• Recall (REC). Also known as detection rate (DR) or true positive
rate (TPR), it is the percentage of correct positive predictions (TP)
on the total of positive instances.

𝑅𝐸𝐶 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

. (8)

• F-Score (FS). Also known as f1-score, it is the harmonic mean of
the precision and recall metrics. It is especially useful when class
distribution is imbalanced:

𝐹𝑆 = 2 ⋅ REC ⋅ PR
REC + PR . (9)

4.3. Results and discussion

In this section, we evaluate the performance of our adaptive transfer
learning approach across different datasets DL models, including CNN
architectures, along with fine-tuning pre-trained models for DDoS at-
tack detection. We thoroughly examine the results of the capabilities
of both DL and transfer learning models in DDoS attack detection. The
experiments were performed using Google Colab Pro, with GPU enabled
and RAM set to ‘‘high’’. For data preprocessing and experimentation, we
used Python with libraries PIL, Dask, Pandas, Keras, and Sci-Kit Learn.
We partitioned the dataset into three segments: 40% for training, 20%
for validation, and the remaining 40% for testing.

As shown in Table 2, we define the search space for hyperpa-
rameter learning rates as [1e−3, 1e−4, 1e−5], to find the value that
6

Table 2
Defined hyperparameters and search space ranges for hyperparameter tuning
strategies.

Hyperparameters Hyperparameter values/search space

Activation function ReLU, Tanh, Sigmoid
Units 32, 64, 128, 512
Dropout rate 0.1 – 0.5
Learning rate [1e−3, 1e−4, 1e-5]
Epoch [10, 20, 30, 40]
Batch size 16 – 512
Regularization L1, L2

ensures efficient convergence without causing overshooting or slow
convergence. For batch size, common values range from 16 to 512,
and finding the optimal batch size can impact training speed and
weight updates. We tune the dropout rate between 0.1 and 0.5 to
prevent overfitting while preserving useful information. Moreover, we
test different activation functions, ReLU, Sigmoid, or Tanh, to identify
the one that allows the model to capture non-linear relationships. We
adjust the number of hidden layers and neurons in each layer to find the
optimal balance between model complexity and generalization ability.
We considered layer configurations [32, 64, 128] or [64, 128, 256, 512]
and evaluated their impact on performance. We also considered L1 and
L2 regularization techniques to find the best trade-off between reducing
over-fitting and model performance.
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Fig. 4. Representative samples showcasing converted images from each category ranging from Class 0 to Class 11, including benign traffic from the CIC-DDoS2019 dataset. The
classifications are as follows: Benign (C0), NTP (C1), TFTP (C2), Syn (C3), UDP (C4), MSSQL (C5), DNS (C6), LDAP (C7), DrDoS_SNMP (C8), NetBIOS (C9), SSDP (C10), and
WebDDoS (C11).
Table 3
Accuracy results of transfer learning source model for binary and multiclass
classification.

Variants Accuracy

Dataset Conv4 Conv8 Conv18

Binary

CIC-DDoS2019 99.90 99.94 99.88
CSE-CIC-IDS2018 99.82 99.81 99.73
UNSW-NB15 98.78 98.71 98.35
KDDCup’99 99.42 99.67 99.59

Multi

CIC-DDoS2019 91.99 91.84 91.76
CSE-CIC-IDS2018 99.84 99.82 96.98
UNSW-NB15 97.51 97.55 97.61
KDDCup’99 95.12 95.95 95.95

4.4. Customized CNN and pre-trained models transfer learning results

CNN customized model. We trained the custom CNN models us-
ing the Adam optimizer. The loss functions were categorical cross-
entropy for multiclass classification and binary cross-entropy for binary
classification.

Conv4 achieved an accuracy of 99.90%, Conv8 recorded 99.94%,
and Conv18 reached 99.88% in identifying benign versus DDoS attack
traffic within the CIC-DDoS2019 dataset. For multi-class classifica-
tion of specific attack types, Conv4 and Conv8 demonstrated accu-
racies of 99.84% and 99.82%, respectively, on the CSE-CIC-IDS2018
dataset, while Conv18 achieved 97.61% on the UNSW-NB15 dataset
(see Table 3).

To explore the transferability and adaptability of models trained
on specific networks or datasets to new and diverse environments, we
assess their performance by applying them to various target datasets.
The target datasets used in this evaluation CSE-CIC-IDS2018, CIC-
DDoS2019, KDDCup’99, and UNSW-NB15 enable a comprehensive as-
sessment of the models’ adaptability across diverse network environ-
ments.
7

Table 4
Accuracy evaluation of models in detecting benign to attack traffic detection tasks
transferred to various target datasets.

Dataset Dataset Target dataset

CIC-
DDoS2019

CSE-CIC-
IDS2018

UNSW-NB15 KDDCup’99

CI
CD

Do
S

20
19

Conv4 99.81 99.78 99.73
Conv8 99.92 99.67 99.88
Conv18 99.99 99.92 99.94

CS
E-

CI
C-

ID
S2

01
8 Conv4 99.67 99.32 99.48

Conv8 99.81 99.46 99.74
Conv18 99.88 99.46 99.78

U
N

SW
-

N
B1

5

Conv4 98.82 99.21 98.24
Conv8 98.88 99.23 98.46
Conv18 98.73 99.42 98.33

KD
D

cu
p9

9

Conv4 96.25 99.04 95.24
Conv8 97.02 98.33 96.34
Conv18 96.66 98.13 98.46

Initially trained on the CIC-DDoS2019 dataset, the source model
demonstrated robust adaptability across various target datasets. In
binary classification tasks, the Conv18 model, transferred from CIC-
DDoS2019 to the CSE-CIC-IDS2018 dataset, achieved an impressive
99.99% accuracy in distinguishing benign from DDoS network traffic.
Refer to Table 4 for detailed results.

The proposed model exhibits a consistent adaptation across source
to target dataset transfers, demonstrating minimal differences in binary
classification performance. This underscores the model’s robust adapt-
ability across various datasets. Additionally, the model achieves better
results compared to single-domain training. These findings explicitly
confirm that our approach permits the achievement of greater accuracy
relative to single-domain training.
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Table 5
Accuracy evaluation of models in multiclass attack detection tasks transferred to various
target datasets.

Dataset Model Target dataset

CIC-
DDoS2019

CSE-CIC-
IDS2018

UNSW-NB15 KDDCup’99

CI
C-

DD
oS

20
19

Conv4 99.83 98.04 96.98
Conv8 99.91 98.23 98.76
Conv18 99.92 99.42 98.88

CS
E-

CI
C-

ID
S2

01
8 Conv4 89.92 99.34 99.84

Conv8 89.52 99.42 99.91
Conv18 93.62 99.84 99.96

U
N

SW
-

N
B1

5

Conv4 83.42 92.34 94.24
Conv8 86.78 93.64 94.46
Conv18 88.92 93.86 94.33

KD
D

cu
p9

9

Conv4 85.25 95.04 96.84
Conv8 85.54 95.33 96.04
Conv18 85.66 95.13 96.81

In multiclass classification, the transfer of the Conv18 model from
IC-DDoS2019 to CSE-CIC-IDS2018 yielded a performance of 99.92%,
hile the reverse transfer achieved 93.62%, as detailed in Table 5.
omparing the present results to prior findings reveals a consistently
igh accuracy level of the models when transferred from CIC-DDoS2019
o other datasets, in both binary and multiclass tasks. These results
uggest the model’s effective adaptation to the target dataset’s char-
cteristics, particularly as dataset features increase.

In transferring a model from a dataset with fewer features and
nstances to a larger and more complex target dataset, we observed
ecreased accuracy values in specific attack type identification. For
nstance, Conv4 achieved a score of 83.42% when transferred from
NSW-NB15 to the CIC-DDoS2019 dataset. This can be attributed to

ignificant dissimilarities in dataset characteristics, such as size and
omplexity, leading to challenges in the model’s adaptation to diverse
atterns. Conversely, when transferring a model trained on a larger and
ore complex dataset to a smaller and less complex target dataset,
e observed improved accuracy. For instance, Conv18, when trans-

erred from CIC-DDoS2019 to the KDDCup’99 dataset, demonstrated
nhanced performance metrics.

The model’s effectiveness largely arises from its robust capability to
nalyze and utilize feature patterns from the extensive source dataset.
his capability enables it to adapt to the structurally simpler target
ataset efficiently. Such flexibility demonstrates the model’s capability
o transfer knowledge effectively, especially from a well-labeled, larger
ataset to a smaller one. This feature is precious for reducing the
ecessity of extensive data labeling while maintaining high accuracy
n predictions on the target dataset.
re-trained models. In this experiment, we employed a transfer learn-

ng approach to leverage the capabilities of pre-trained ImageNet CNN
rchitectures, specifically VGG16, VGG19, and ResNet50. The approach
nvolved the transformation of network traffic data into image repre-
entations, a process visually illustrated in Fig. 3.

For the CSE-CIC-IDS2018 dataset, a subset of 41,883 images were
elected, which depicted characteristics of either benign or malicious
raffic. We then extended our analysis to distinguish between multiple
ypes of DDoS attacks in addition to benign traffic. This required a
ore comprehensive set of images to adequately represent each class,

esulting in the use of 269,616 images.
In the case of the CIC-DDoS2019 dataset, we had 78,368 images

overing 12 different attack classes for training, testing, and validation.
ample images from this dataset are displayed in Fig. 4. In addition, we
sed 12,154 images from the KDDCup’99 dataset and 5629 images from
he UNSW-NB15 dataset. In our experiment, we tailored pre-trained
odels for binary and multiclass DDoS attack detection. Additionally,

s part of our comprehensive model optimization, we applied major
8

Table 6
Performance metrics on various datasets and VGG16, VGG19, and ResNet50 pre-trained
models for binary classification.

Dataset Model Accuracy % Recall Precision F1-score

CIC-DDoS 2019
VGG16 99.99 99.98 99.99 99.98
VGG19 99.99 99.96 99.97 99.98
ResNet50 99.94 99.96 99.98 99.97

CSE-CIC-IDS2018
VGG16 99.99 99.99 99.98 99.98
VGG19 100.00 100.00 100.00 100.00
ResNet50 99.98 99.98 99.78 99.82

UNSW-NB15
VGG16 98.36 97.68 98.70 98.86
VGG19 98.64 98.68 98.68 98.67
ResNet50 98.60 98.62 98.67 98.65

KDD Cup’99
VGG16 99.69 99.98 99.99 99.98
VGG19 99.90 99.96 99.97 99.98
ResNet50 99.56 99.96 99.98 99.97

Table 7
Performance metrics on various datasets and VGG16, VGG19, and ResNet50 pre-trained
models for multi-class classification.

Dataset Model Accuracy % Recall Precision F1-score

CIC-DDoS 2019
VGG16 92.19 92.56 92.30 92.28
VGG19 92.65 92.29 92.24 92.91
ResNet50 91.71 91.21 91.82 91.03

CSE-CIC-IDS2018
VGG16 99.21 99.21 99.21 99.21
VGG19 99.97 99.98 99.98 99.98
ResNet50 99.81 99.82 99.79 99.80

UNSW-NB15
VGG16 97.58 97.92 98.68 98.42
VGG19 97.59 97.63 97.63 97.63
ResNet50 97.36 97.23 97.04 97.64

KDD Cup’99
VGG16 97.46 97.23 97.49 97.98
VGG19 98.99 98.96 98.97 98.98
ResNet50 98.94 98.96 98.98 98.97

hyperparameter adjustments across all models, including the frozen
layer ranges in our framework.

The results presented in Table 6 demonstrate the binary classifica-
tion efficacy of the VGG16, VGG19, and ResNet50 models in differen-
tiating between benign and DDoS attack traffic. Notably, the VGG19
model achieves a score of 100% in accuracy, recall, precision, and
F1-score on the CSE-CIC-IDS2018 dataset. Within the CIC-DDoS2019
dataset, VGG16, VGG19, and ResNet50 all demonstrate high accuracy,
with scores of 99.99%, 99.99%, and 99.94%, respectively. For the
KDDCup’99 and UNSW-NB15 datasets, VGG19 outperforms the oth-
ers, achieving accuracy rates of 99.90% and 98.64%. These findings
highlight VGG19’s superior binary classification capabilities, especially
in precisely identifying benign versus DDoS network attack traffic in
various network scenarios.

The performance metrics detailed in Table 7 present a compre-
hensive evaluation of adaptive pre-trained models, including VGG16,
VGG19, and ResNet50, applied to multi-class classification tasks across
diverse datasets. Notably, VGG19 outperforms other models in multi-
class classification efficiency. On the CSE-CIC-IDS2018 dataset, VGG19
achieves an accuracy of 99.97%. In the CIC-DDoS2019 dataset, it
leads with an accuracy of 92.65%. For the KDDCup’99 dataset, VGG19
excels with 98.99% accuracy, slightly ahead of ResNet50, which scores
98.94%. Similarly, on the UNSW-NB15 dataset, VGG19 maintains
strong performance, achieving an accuracy of 97.59%. These outcomes
underscore the adaptability and superior effectiveness of VGG19 in
handling multi-class classification challenges.

The VGG19 model consistently outperforms others across a range of
datasets, demonstrating its adaptability in capturing complex patterns
effectively. We found that VGG19’s relatively simpler and shallower
architecture is particularly effective in capturing essential textural fea-

tures from the image-formatted data. Its use of uniformly small filter
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Table 8
Comparison of proposed approach metrics with state-of-the-art methods by dataset and class variants.

Dataset Class variants References Model Accuracy (%)

CIC-DDoS2019

Binary Doriguzzi-Corin et al. (2020) CNN 99.87
Our model VGG19 99.99

Multi-class Chartuni and Márquez (2021) DNN 81.77
Agostinello et al. (2023) CNN 77.29
Our model Conv18 93.62

CSE-CIC-IDS2018

Binary Okey et al. (2023) VGG16 98.80
Our model VGG19 100.00

Multi-class Agostinello et al. (2023) CNN 99.88
Our model Conv18 99.92

UNSW-NB15

Binary Du et al. (2023) CNN-LSTM 94.43
Our model Conv18 99.92

Multi-class Almogren (2020) DBN 96.34
Our model Conv18 99.84

KDDCup’99

Binary Du et al. (2023) CNN-LSTM 97.40
Our model ResNet50 99.32

Multi-class Wu et al. (2019) TL-ConvNet 93.86
Our model VGG19 98.99
sizes might allow it to efficiently identify crucial, surface-level discrim-
inative features. Although ResNet50 shows good performance, espe-
cially in the KDDCup’99 and UNSW-NB15 datasets, they also require
more extensive training data to achieve optimal performance.

In binary classification tasks, transferred pre-trained models VGG19
using the CSE-CIC-IDS2018 dataset have scored higher accuracy re-
sults than traditional DL models. However, in multi-class classification,
transferred custom CNN models, such as Conv18, demonstrate a dis-
tinct advantage. Moreover, the impact of transfer learning on model
performance is particularly notable in the domains of IDS and DDoS
attack detection.

To evaluate the efficacy of our proposed model, we conducted a
thorough comparison with state-of-the-art DL and transfer learning
models, across similar datasets. Our proposed Conv18 model achieved
99.92% accuracy in network attack identification, compared to a
VGG-16 IDS that reached a 98.8% accuracy on the CSE-CIC-IDS2018
dataset, as reported by Okey et al. (2023). Additionally, the pre-trained
VGG19 model exhibited 100% accuracy in distinguishing benign from
DDoS network traffic in the CSE-CIC-IDS2018 dataset. The models
presented in Agostinello et al. (2023) and Chartuni and Márquez
(2021) achieved accuracy rates of 77.29% and 81.77%, respectively,
on the CIC-DDoS2019 dataset for attack type classification. In con-
trast, our model surpassed these results, achieving an accuracy of
93.62%. Additionally, in Wu et al. (2019), the TL-ConvNet model for
the KDDCup’99 dataset demonstrated an accuracy of 93.86%, while
our adaptive pretrained VGG19 model achieved a significantly higher
accuracy of 98.99%. Furthermore, the Deep Belief Network (DBN)
model by Almogren (2020) achieved a 96.34% accuracy for the UNSW-
NB15 dataset, with our Conv18 model achieving 99.84% accuracy in
detecting specific attack types. As detailed in Table 8, these findings
indicate that our model performs well in comparison to existing ap-
proaches, particularly in DDoS attack detection and specific attack
types identification, demonstrating the effectiveness of our employed
adaptive transfer learning techniques.

5. Conclusions

DDoS attacks pose significant challenges to organizations world-
wide, with their disruptive impact on network infrastructure availabil-
ity and integrity. Building attack detection systems based on DL holds
the promise of achieving high accuracy in detecting attack patterns in
network traffic data. However, a major difficulty in developing DL-
based IDS is the scarcity of large, labeled datasets that accurately
represent today’s network environments. In this paper, we proposed
9

an adaptive transfer learning framework with fine-tuning and hyper-
parameter optimization. We employed custom CNN models (Conv4,
Conv8, and Conv18), along with pretrained models (VGG16, VGG19,
and ResNet50), trained on cybersecurity benchmark datasets, including
KDDCup’99, UNSW-NB15, CSE-CIC-IDS2018, and CIC-DDoS2019.

Our experiments compared the performance of models trained with
and without transfer learning in network traffic classification. The pre-
trained VGG19 model excelled in binary classification, effectively sep-
arating benign from malicious network traffic. Our custom-transferred
Conv18 model achieved better accuracy, precision, recall, and F1-
measure in detecting attack types, particularly in multi-label classifi-
cation scenarios. Comparison of the current results with prior findings
reveals a consistently high accuracy level of the models when trans-
ferred from the CIC-DDoS2019 dataset to others, in both binary and
multiclass tasks. These results suggest the models’ effective adaptation
to the characteristics of the target dataset, especially as the number of
dataset features increases. This shows that transfer learning proves to
be a valuable approach to enhancing DDoS attack detection, even with
limited labeled data.

Future work will enhance the practicality and robustness of DL
and transfer learning models by prioritizing diverse dataset evalua-
tion, defense against adversarial attacks, real-time implementation, and
scalability.
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