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A B S T R A C T

Background: Both quantitative flow ratio (QFR) and fractional flow reserve derived from computed tomography
(FFRCT) have shown significant correlations with invasive wire-based fractional flow reserve. However, the
correlation between QFR and FFRCT is not fully investigated in patients with complex coronary artery disease
(CAD). The aim of this study is to investigate the correlation and agreement between QFR and FFRCT in patients
with de novo three-vessel disease and/or left main CAD.
Methods: This is a post-hoc sub-analysis of the international, multicenter, and randomized SYNTAX III REVO-
LUTION trial, in which both invasive coronary angiography and coronary computed tomography angiography
were prospectively obtained prior to the heart team discussion. QFR was performed in an independent core
laboratory and compared with FFRCT analyzed by HeartFlow™. The correlation and agreement between QFR and
FFRCT were assessed per vessel. Furthermore, independent factors of diagnostic discordance between QFR and
FFRCT were evaluated.
Results: Out of 223 patients, 40 patients were excluded from this analysis due to the unavailability of FFRCT and/or
QFR, and a total of 469 vessels (183 patients) were analyzed. Therewas a strong correlation betweenQFR and FFRCT

(R ¼ 0.759; p < 0.001), and the Bland-Altman analysis demonstrated a mean difference of �0.005 and a standard
deviation of 0.116. An independent predictor of diagnostic concordance between QFR and FFRCT was the lesion
location in right coronary artery (RCA) (odds ratio 0.395; 95% confidence interval 0.174–0.894; P ¼ 0.026).
Conclusion: In patients with complex CAD, QFR and FFRCT were strongly correlated. The location of the lesion in
RCA was associated with the highest diagnostic concordance between QFR and FFRCT.
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1. Introduction

Physiological assessment of coronary artery disease (CAD) has
become one of the most important factors in decision making for
myocardial revascularization.1 There are two important binary decision
points in the evaluation and management of patients with known or
suspected CAD: first, to perform invasive coronary angiography (ICA),
and second, to revascularize an identified coronary stenosis.2 In the Eu-
ropean Society of Cardiology (ESC) and American College of Car-
diology/American Heart Association guidelines, fractional flow reserve
(FFR) to guide revascularization as is a Class Ia recommendation3,4.
Furthermore, the current ESC guidelines for chronic coronary syndrome
(CCS) recommend the use of invasive FFR for localization of ischemia in
multivessel CAD patients with angina symptoms even in cases, in which
pre-procedural documentation of ischemia by non-invasive tests, such as
echocardiography, stress echocardiography, myocardial perfusion im-
aging, or stress magnetic resonance imaging are available.5

Image derived physiological assessment, such as fractional flow
reserve derived from computed tomography angiography (FFRCT) and
quantitative flow ratio (QFR), has also been developed. Non-invasive
FFRCT may provide anatomic information and functional evaluation of
ischemia prior to ICA. A number of trials have demonstrated that the
correlation between FFRCT and invasive FFR is high6,7,.8 Furthermore,
FFRCT has demonstrated its feasibility and accuracy even in patients with
complex CAD.9 Once ICA has been performed, QFR, which is a novel
physiological assessment technique for the rapid computation of FFR,
could be used.10 QFR estimates the trans-stenotic pressure drop according
to 3-dimensional (3D) quantitative coronary angiography (QCA) and
virtual hyperemic flow derived from contrast frame count without real
drug-induced hyperemia.11 QFR improves the diagnostic accuracy by
identifying hemodynamically significant lesions compared with the
assessment of coronary stenosis on 2-dimensional QCA.12,13 In addition,
among patients with complex CAD, the diagnostic performance of QFR to
predict binary wire-based ischemia has also been demonstrated.14

A previous study has demonstrated that FFRCT and QFR were strongly
correlated with invasive FFR in CCS population with relatively simple
coronary lesions; however, diagnostic discordances between FFRCT and
FFR and between QFR and FFR were frequent.15 The aim of the present
sub-analysis of the SYNTAX III REVOLUTION trial9 was to investigate the
correlation and agreement between FFRCT and QFR in patients with de
novo three-vessel disease (3VD) and/or left main coronary artery disease
(LMCAD).

2. Methods

2.1. Study design and population

The present study is a post-hoc analysis of the SYNTAX III REVOLU-
TION trial (NCT02813473), which has investigated the agreement in
decision making between two heart teams on the selection of coronary
artery bypass graft (CABG) or percutaneous coronary intervention (PCI)
as modalities of revascularization, using either coronary computed to-
mography angiography (CCTA) with FFRCT or ICA, while blinded to the
other imaging modality in patients with de novo 3VD and/or LMCAD.9

The details of protocol and main results of the trial were reported else-
where.9,16 The trial enrolled a total of 223 patients in 6 centers from five
European countries. ICA was available for all patients. FFRCT was avail-
able for 196/223 (87.9%) patients.9 In the independent core laboratory
(CORRIB Core Lab, Galway, Ireland), QFRwas analyzed in those patients.
Similarly, severity and extension of CAD were assessed using the
anatomical SYNTAX score with CCTA and ICA.17,18 The pre-
sence/absence of LMCAD was judged according to the calculation of the
anatomical SYNTAX score derived from ICA.

The trial was approved by the investigational review board or ethics
committee at each participating center. The principal investigators had
unrestricted access to the data, were involved in the analysis and
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interpretation of the data. The principal investigators guarantee the
completeness and accuracy of the data and analyses and the fidelity of the
trial to the protocol.
2.2. Image acquisition and analysis of CCTA

CCTAwas performedwith the Revolution CT scanner (GE Healthcare,
Milwaukee, WI, USA) that has a nominal spatial resolution of 230 μm
along the X–Y planes, a rotational speed of 0.28 s and a Z-plane coverage
of 16 cm enabling imaging of the whole heart in one heartbeat.19 In select
cases, a proprietary post-processing algorithm (SnapShot Freeze, GE
Healthcare) was additionally used for the correction of any residual
motion artefacts.19 The protocol mandated the use of nitrates prior to CT
acquisition and beta-blockers in cases of heart rate higher than 65 bpm.
2.3. Analysis of FFRCT

The FFRCT analysis was performed in a blinded fashion at the core
laboratory (HeartFlow, Redwood City, California). FFRCT was calculated
from CCTA datasets by using computational fluid dynamics modeling
after semiautomated segmentation of coronary arteries and left ventric-
ular mass. Coronary blood flow and pressure were simulated under
conditions modeling maximal hyperemia. Details of the underlying
principle of FFRCT computation were previously reported6,20. The
continuous results of FFRCT were displayed, color-coded and super-
imposed on the coronary arterial tree. FFRCT �0.50 was noted as FFRCT
¼ 0.50 because FFRCT cannot provide actual values if � 0.50. In case of
total occlusion, FFRCT was not provided but was regarded as FFRCT ¼
0.50.15 A cutoff FFRCT �0.80 was used to indicate a flow-limiting
lesion.21
2.4. Image acquisition and analysis of QFR

In the SYNTAX III REVOLUTION trial, all ICA's were preceded by an
intra-coronary injection of isosorbide dinitrate or nitroglycerin. In the
independent core laboratory (CORRIB Core Lab, Galway, Ireland), off-
line QFR analysis was performed in a blinded fashion by experienced
observers using validated software (QAngio XA 3D/QFR 1.0 software,
Medis Medical Imaging Systems BV, Leiden, The Netherlands). Details of
the QFR calculation method was reported previously.10 In brief, QFR
calculation was based on the 3D-QCA reconstruction derived from two
angiographic projections with angles �25� apart and volumetric flow
rate calculated by using contrast bolus frame count.12 QFR value was
computed by applying contrast QFR without pharmacological hyperemic
condition for the analysis.12 Lesions were excluded from the analysis if
they 1) had a reference lumen diameter below 2.0 mm by visual
assessment, 2) presented slow coronary blood flow (Thrombolysis in
Myocardial Infarction [TIMI] 1 or 2, 3) were acquired from less than two
projections with isocenter calibration information, 4) had severe vessel
overlap at the stenotic segments, or 5) had poor angiographic image
quality precluding precise contour delineation.

QFR calculation was performed from the ostium of the main coronary
vessels (i.e., right coronary artery [RCA], left main trunk [LM]/left
anterior descending artery [LAD], and LM/left circumflex artery [LCX])
to the distal point with an anatomical landmark (i.e. side branch), at a
site where the lumen diameter of the vessel was still at least 2 mm
(Fig. 1).14,22 In case of a LM lesion, the proximal point of analysis was set
at the catheter tip. Because QFR cannot be measured in a totally occluded
artery before revascularization, a default QFR value of 0.50 was imputed
in the case of total or subtotal occlusions.23 The automatic reference
interpolation function was used to establish the reference diameter for
QFR calculation. A cutoff QFR�0.80 was used to indicate a flow-limiting
lesion.13 Reference vessel diameter, lesion length and percent area ste-
nosis were derived from the 3D-QCA and displayed simultaneously with
the QFR results.
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2.5. Endpoints and statistical analysis

Quantitative variables are reported as mean � standard deviation
[SD] or median and interquartile range (interquartile range, 25–75%).
Categorical variables are expressed as numeric values and percentages.
The Pearson correlation and the Passing-Bablok regression analysis were
used to quantify the correlation between QFR and FFRCT.24 Agreement
between QFR and FFRCT was assessed by the Bland-Altman plot.25 Those
analyses were preformed per vessel. Diagnostic discordance between
QFR (�0.80: positive or >0.80: negative) and FFRCT (�0.80: positive or
>0.80: negative) was also assessed per vessel (Fig. 1). To assess factors of
diagnostic discordance between QFR and FFRCT, multivariate logistic
regression analysis was conducted. Since a vessel level analysis was
performed in the present study, the covariates in the adjusted model
included the main coronary vessels (RCA, LM/LAD, or LM/LCX), the
presence of lesion length >20 mm, heavy calcification, aorto-ostial
lesion, and bifurcation or trifurcation in the vessel based on anatomical
SYNTAX score calculation derived from ICA measured by the core lab-
oratory, which had been selected based on prior knowledge of the
Fig. 1. Diagnostic concordance and discordance between FFRCT and QFR. (A) Diag
straight MPR images in IM. Top right panel: FFRCT analysis in IM. Bottom panel: QFR a
FFRCT and negative QFR). Top left panel: Curved MPR and straight MPR images in L
LAD). (C) Diagnostic discordance between QFR and FFRCT (Negative FFRCT and positi
panel: FFRCT analysis in RCA. Bottom panel: QFR analysis (RCA).
FFRCT: fractional flow reserve derived from computed tomography; QFR: Quantitative
coronary artery; LM: left main trunk; LAD: left descending artery; LCX: left circumfl
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association of these covariates with the outcomes.26 In addition, since the
data of QFR for LMCAD are not fully investigated, the correlation and
agreement between QFR and FFRCT in LAD and LCX stratified by the
presence/absence of LMCAD were assessed. A 2-sided p-value<0.05 was
considered to be statistically significant. All data were processed using
SPSS version 26.0 (IBM Inc, Armonk, NY, USA).

3. Results

3.1. Study participants and baseline characteristics

Out of 223 patients in the SYNTAX III REVOLUTION trial, 27 (12.1%)
patients were excluded from this analysis due to the unavailability of
FFRCT. Out of 596 vessels in 196 patients, 127 (21.3%) vessels were non-
analyzable for QFRmainly due to no appropriate two projections (Fig. 2).
Therefore, in the present study, a total of 469 (78.7%) vessels in 183
patients were analyzed.

Baseline patient characteristics are shown in Table 1, and vessel
characteristics are presented in Table 2. Most patients were male, and the
nostic concordance between FFRCT and QFR. Top left panel: Curved MPR and
nalysis (LM to IM). (B) Diagnostic discordance between FFRCT and QFR (Positive
AD. Top right panel: FFRCT analysis in LAD. Bottom panel: QFR analysis (LM to
ve QFR). Top left panel: Curved MPR and straight MPR images in RCA. Top right

flow ratio; MPR: multiplanar reconstruction; IM: intermediate artery; RCA: right
ex; RD: reference diameter; MLD: minimum lumen diameter.



Fig. 2. Flowchart.
MSCT: multislice computed tomography; FFRCT: fractional flow reserve derived from computed tomography; QFR: Quantitative flow ratio.

Table 2
Baseline characteristics of study vessels.

Vessel, number (%) or mean � standard deviation 469 (100)

RCA 136 (29.0)
LM/LAD 190 (40.5)
LM/LCX 143 (30.5)
Total occlusion 96 (20.5)
Bifurcation 126 (26.9)
Type of bifurcation

Medina 1,0,0 12 (2.3)
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prevalence of diabetes mellitus was 36.0%. About one-fourth (25.7%) of
patients had a LMCAD. Total occlusion was present in 20.5% (96/469) of
vessels.

3.2. Correlation and agreement between QFR and FFRCT

The correlation and agreement between QFR and FFRCT are shown in
Fig. 3 and Fig. 4.

Diagnostic discordance between QFR and FFRCT was observed in 55
(11.7%) vessels and mainly occurred in vessels with high QFR (>0.80)
Table 1
Baseline characteristics of study patients.

Patient, number (%) or mean � standard deviation 183 (100)

Male 159 (86.9)
Age, year-old 67.0 � 8.9
Body mass index, kg/m2 26.4 � 3.6
Smoking 122 (63.2)
Past smoker 73 (41.2)
Current smoker 39 (22.0)

Diabetes mellitus 66 (36.0)
Type 1 7 (3.8)
Type 2 43 (32.2)

Insulin user 17 (9.4)
Hypertension 133 (72.7)
Hyperlipidemia 121 (66.1)
Previous stroke 15 (8.2)
Previous myocardial infarction 2 (1.1)
Previous cardiac surgery 0 (0)
COPD 21 (11.5)
Peripheral vascular disease 26 (14.2)
Creatinine clearance, ml/min 81.8 � 27.8
Left ventricular ejection fraction, % 54.5 � 11.3
Left main disease 47 (25.7)
Anatomical SYNTAX score derived from ICA measured by the
core laboratory

29.6 � 11.8

Anatomical SYNTAX score derived from MSCT measured by the
core laboratory

33.3 � 13.2

COPD: chronic obstructive pulmonary disease, ICA: invasive coronary artery
disease, MSCT: multislice computed tomography.

Medina 0,1,0 15 (3.2)
Medina 1,1,0 21 (4.5)
Medina 1,1,1 41 (8.7)
Medina 0,0,1 14 (3.0)
Medina 1,0,1 12 (2.3)
Medina 0,1,1 11 (2.3)

Trifurcation 11 (2.3)
Aorto-ostial lesion 19 (4.1)
Severe tortuosity 7 (1.5)
Lesion length >20 mm 109 (23.2)
Heavy calcificationa 77 (16.4)
Reference lumen diameter, mm 2.75 � 0.64
FFRCT �0.80 394 (84.0)
QFR �0.80 372 (79.3)

RCA: right coronary artery, LM: left main trunk; LAD: left descending artery, LCX:
left circumflex, FFRCT: fractional flow reserve derived from computed tomogra-
phy, QFR: quantitative flow ratio, CCTA: coronary computed tomography angi-
ography, ICA: invasive coronary angiography.

a On CCTA, heavy calcification was defined as presence of calcium that en-
compasses more than 50% of the cross-sectional area of the vessel at any location
within the specific lesion.9 On ICA, it was defined as multiple persisting opaci-
fications of the coronary wall visible in more than one projection surrounding the
complete lumen of the coronary artery at the site of the lesion.9
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and low FFRCT (�0.80) (Fig. 3). The Pearson correlation and the Passing-
Bablok regression analysis demonstrated a strong positive correlation
between QFR and FFRCT (R ¼ 0.759; 95% confidence interval [CI] 0.714
to 0.798; P < 0.001) (Fig. 3). The Bland-Altman analysis between QFR
and FFRCT demonstrated slightly lower value in FFRCT with a mean dif-
ference of �0.005 and a SD of 0.116 (Fig. 4).



Fig. 3. Correlation between QFR and FFRCT.

Scatter diagram with regression line between QFR and FFRCT. Blue line shows the regression line, and the red dotted lines show the 95% CI. The diagnostic
discordance (55 vessels, 11.7%) is a total of QFR �0.80 and FFRCT >0.80 (16 vessels, 3.4%) and FFRCT �0.80 and QFR >0.80 (39 vessels, 8.3%).
QFR: Quantitative flow ratio; FFRCT: fractional flow reserve derived from computed tomography; CI confidence interval. (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Agreement between QFR and FFRCT.

Bland-Altman plots of QFR and FFRCT. Blue line shows the
regression line, and the red dotted lines show the 95% CI.
QFR: Quantitative flow ratio; FFRCT: fractional flow reserve
derived from computed tomography; CI confidence interval.
(For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this
article.)
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3.3. Multivariate analysis to search for independent factors for diagnostic
discordance between QFR and FFRCT

The logistic regression analysis to investigate independent factors of
diagnostic discordance between QFR and FFRCT is shown in Table 3.

In the multivariate analysis, an independent predictor of diagnostic
concordance between QFR and FFRCT was the lesion location in RCA
(odds ratio [OR] 0.395; 95% CI 0.174 to 0.894; P ¼ 0.026). The other
lesion characteristics such as heavy calcification were not independent
predictors of the discordance between the two imaging modalities (OR
1.245; 95% CI 0.598 to 2.592; P ¼ 0.557).
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3.4. Correlation and agreement between QFR and FFRCT in LAD and LCX
stratified according to the presence/absence of LMCAD

When the vessels with LMCAD were included in the analysis, the
Pearson correlation and the Passing-Bablok regression analysis demon-
strated a strong positive correlation between QFR and FFRCT in LM/LAD
and LM/LCX (R ¼ 0.709; 95% confidence interval [CI] 0.644 to 0.763; P
< 0.001) (Online Fig. 1). The Bland-Altman analysis between QFR and
FFRCT in LM/LAD and LM/LCX demonstrated slightly lower value in
FFRCT with a mean difference of �0.010 and a SD of 0.125 (Online
Fig. 1).



Table 3
Multivariate analysis to search for independent factors for diagnostic discordance
between QFR and FFRCT.

Diagnostic discordance between QFR and FFRCT

Odds ratio (95% CI) P value

Vessel
LM/LAD Reference –

RCA 0.395 (0.174–0.894) 0.026
LM/LCX 0.793 (0.411–1.530) 0.489

Lesion length >20 mm 0.559 (0.264–1.184) 0.129
Heavy calcificationa 1.245 (0.598–2.592) 0.557
Aorto-ostial lesion 1.529 (0.475–4.918) 0.476
Bifurcation/trifurcation 1.328 (0.695–2.541) 0.391

QFR: quantitative flow ratio, FFRCT: fractional flow reserve derived from
computed tomography, LM: left main trunk; LAD: left descending artery, RCA:
right coronary artery, LCX: left circumflex, CI: confidence interval.

a On CCTA, heavy calcification was defined as presence of calcium that en-
compasses more than 50% of the cross-sectional area of the vessel at any location
within the specific lesion.9 On ICA, it was defined as multiple persisting opaci-
fications of the coronary wall visible in more than one projection surrounding the
complete lumen of the coronary artery at the site of the lesion.9
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When the vessels with LMCAD were not included in the analysis, the
Pearson correlation and the Passing-Bablok regression analysis demon-
strated a strong positive correlation between QFR and FFRCT in LAD and
LCX (R¼ 0.794; 95% confidence interval [CI] 0.735 to 0.841; P< 0.001)
(Online Fig. 2). The Bland-Altman analysis between QFR and FFRCT in
LAD and LCX demonstrated slightly lower value in FFRCT with a mean
difference of �0.009 and a SD of 0.113 (Online Fig. 2).

4. Discussion

The main findings of the present study can be summarized as follows:

1. Among patients with de novo 3VD and/or LMCAD, QFR and FFRCT
were strongly correlated.

2. An independent predictor of diagnostic concordance between QFR
and FFRCT was the lesion location in RCA.

3. QFR and FFRCT in LAD and LCX correlated well, regardless of the
presence of LMCAD.

To the best of our knowledge, this is the first study to investigate the
correlation and agreement between QFR and FFRCT in a specific popu-
lation of patients with de novo 3VD and/or LMCAD. Compared with
invasive FFR, especially in patients with complex CAD, QFR and FFRCT
could reduce procedure time, wire-related complications, patient's
discomfort and costs because there is no need to use a pressure guidewire
or to induce maximum hyperemia. In the present sub-analysis of the
SYNTAX III REVOLUTION trial, all patients had de novo 3VD and/or
LMCAD with a mean angiographic anatomical SYNTAX score of 30.3 �
12.2. Therefore, the heart team was consulted in the decision making on
the revascularization treatment strategy to be followed, either CABG or
PCI.9 The main difference between this study and the study by Tanigaki
et al.15 is the absence or presence of invasive FFR as a comparator.
However, in the present study, the mean diseased vessel number per
patient was 2.6 (469 vessels/183 patients). This population represents a
more anatomically complex CAD than the one enrolled in the previous
publication by Tanigaki et al.,15 in which the mean diseased vessel
number per patient was 1.5 (233 vessels/152 patients).

In our analysis, heavy calcification and other complex lesion char-
acteristics were not independent predictors of diagnostic discordance
between QFR and FFRCT. CCTA is sensitive in detecting calcium and its
distribution, but the quantification of calcification is hampered and
overestimated by the blooming artefact27,28,29,30. In the SYNTAX III
REVOLUTION trial, heavily calcified lesions were documented in 28.9%
according to the assessment of the heart team allocated to CCTA.31
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However, our results suggest that CCTA, especially when acquired with
newest generation multislice computed tomography, could be used for
patients with complex calcified lesions. In addition, a hypothetic expla-
nation for better diagnostic concordance between QFR and FFRCT in RCA
compared to the other vessels is that the stenotic RCA might be less
affected by heavy calcification from the aspects of anatomical factors
and/or plaque components.

Especially for LMCAD, the diagnostic accuracy of QFR has not been
fully evaluated.32,33 To the best of our knowledge, the present study is the
largest dataset including QFR analysis in LMCAD. In our analysis, LMCAD
was included in one-fourth of patients. The exploratory analysis in LAD
and LCX showed similar strong correlation between QFR and FFRCT
irrespective presence/absence of LMCAD. This finding may suggest the
clinical relevance of QFR for LMCAD, although further trials comparing
wire-based FFR and QFR are warranted.

Both FFRCT and QFR could be used for decision making of revascu-
larization mode, treatment planning, and possibly execution of PCI or
CABG in the context of heart team discussion for patients with complex
CAD. FFRCT is used mainly in the outpatient setting and has been shown
to reduce the number of unnecessary ICA in patients without functionally
significant CAD.34,35 In addition, CCTA with FFRCT could be used for the
decision making of heart team as demonstrated in the SYNTAX III REV-
OLUTION trial.9 This imaging modality could provide the heart team
with comprehensive information on anatomical disease extension, pla-
que composition, and physiological repercussion of narrowing. The
ongoing FASTTRACK CABG trial is testing the feasibility and safety of
treatment planning and execution of CABG solely based on CCTA and
FFRCT.36 QFR obtained during diagnostic ICA helps the decision making
in revascularization planning by identifying functionally significant le-
sions. In the SYNTAX II trial enrolling patients with 3VD, the percentage
of analyzable QFR amounted to 71.0% of lesions, and QFR had a good
correlation with the wire-based physiological assessment (area under the
curve 0.81, accuracy 73.8%).14 Furthermore, the post-procedural QFR
after complex PCI had a significant prognostic impact on vessel oriented
composite endpoint.22 Kogame et al. demonstrated that the vessels with
post-procedural QFR <0.91 had worse outcomes than those with
post-procedural QFR�0.91.22 Therefore, QFR could further guide PCI by
providing functional assessment after stenting.

5. Limitations

The present study must be cautiously interpreted due to some limita-
tions. First, invasive FFR as a gold standard of physiological assessment for
intermediate coronary stenosis was not performed. However, a previous
study demonstrated that QFR and FFRCT showed a strong correlation with
invasive FFR.15 Therefore, we investigated factors of diagnostic discor-
dance between QFR and FFRCT on ischemia in patients with de novo 3VD
and/or LMCAD. Second, the present study was a retrospective and
non-pre-specified analysis. The ICA was not prospectively acquired ac-
cording to specific acquisition protocol to fulfill all the technical require-
ment of QFR analysis. Third, the diagnostic performance of both QFR and
FFRCT in the scenario of concomitant epicardial and microvascular
dysfunction and/or coronary collaterals to obstructed vessels was not
investigated. In the presence of microvascular disease, there is an increase
in the microvascular resistance resulting in reduced trans-stenotic pressure
drop and flowvalues. In view of this, microvascular diseasemay impair the
performance of both QFR and FFRCT derived values. Indeed, the compu-
tational blood flow analysis of FFRCT relies on the assumptions regarding
microvascular resistance. Finally, FFRCT and QFR are two “luminogram”

surrogates of the pressure derived indices that were not available in this
patient population. Ideally, the diagnostic accuracy of these two angio-
graphic surrogates should be evaluated and compared with the gold stan-
dard of pressure measurement during hyperemia in the investigated
population. Indeed, we relied on the validations on angiographic QFR and
wire-based physiological assessment already reported in the literature and
indulged ourselves in a comparison of surrogates.14,22
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6. Conclusions

In patients with complex CAD, QFR and FFRCT were strongly corre-
lated. The location of the lesion in RCA was associated with the highest
diagnostic concordance between QFR and FFRCT.
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