High-pressure phase transition and crystal structure evolution of inderite,

$MgB_3O_3(OH)_5 \cdot 5H_2O$

Comboni D. * 1, Battiston T. 1, Lotti P. 1, Gatta G. D. 1

¹Earth Science Department, University of Milan, Italy *Presenting author; E-mail: davide.comboni@unimi.it

Abstract text

Inderite, ideally [MgB₃O₃(OH)₅·5H₂O], is a light (1.80 g/cm³) Na-free hydrated borate, discovered in the Inder deposit (Kazakhstan), which could be efficiently employed in radiation-shielding concretes due to its relatively high B₂O₃ content (~37 wt%). The crystal structure of inderite is made by [B₃O₃(OH)₅]²· polyions, organized in 3-membered rings of 2 Bφ₄ tetrahedra and one Bφ₃ unit (where φ is an anion; O²·or OH·). Prior to any utilization, is advisable to correctly characterized the thermodynamic parameters of any aggregate, if used in neutron-shielding concretes, where temperature can increase due to the interactions with the highly energetic neutron beam. Overall, phase transitions occurring at different pressures (and temperatures) were discovered in all the hydrous borates investigated so far (*e.g.*, [1, 2]), suggesting that the high-pressure stability of hydrated borates having polyions organized in isolated units (*e.g.*, inderite) is directly correlated with the total H₂O content of the mineral itself. Inderite is the ideal case-scenario to validate this model and here we report the results of this study that leads to: 1) track the isothermal compressional path, based on the experimental *P-V* data, 2) derive the elastic parameters, currently unavailable in the literature; 3) investigate the phase-stability field of inderite at *high-pessure*; 4) describe the *high-pressure* structural re-arrangement of inderite at the atomic scale.

References

- [1] Pagliaro F., Lotti P., Battiston T., Comboni D., Gatta G.D., Cámara F., Milani S., Merlini M., Glazyrin K., Liermann H. (2021) Thermal and compressional behavior of the natural borate kurnakovite, MgB₃O₃(OH)₅·5H₂O. Construction and building materials, 266, 121094.
- [2] Comboni D., Poreba T., Pagliaro F., Battiston T., Lotti P., Gatta G.D., Garbarino G., Hanfland M. (2021) Crystal structure of the high-P polymorph of $Ca_2B_6O_6(OH)_{10}\cdot 2(H_2O)$ (meyerhofferite). Acta Crystallographic Section B., 6, 940-945.