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ABSTRACT
The growing popularity of online social media (OSM) has led to the
creation of a wide amount of social media platforms. In this context,
the increasing competition among platforms and the emergence of
decentralized alternatives such as Blockchain Online Social Media
(BOSM), have led to more frequent user migrations: individuals
tend to switch platforms in search of improved features, content,
or communities. Therefore there has been increasing interest in
user migration studies modeling and predicting user migration.
However, user migration, especially in blockchain-based platforms
remains an understudied problem. Existing methods rely on user
activity to derive interaction graphs and then address the user mi-
gration prediction problem as a node classification task, where
user decisions are encoded as node labels. While the performance
look promising, there are currently two important research gaps: i)
there is no work using graph neural networks, the state-of-the-art
in machine learning on graphs; and ii) there is a lack of methods
designed to improve prediction performance in the case of class
imbalance, i.e. the presence of dominant behavior among the ones
to predict. In this paper, we propose a machine learning pipeline
utilizing graph neural networks (GNNs) to predict user migration
in BOSM. We model the data as a directed temporal multilayer
graph, capturing social and monetary interactions among users.
To address the problem of class imbalance in node classification,
we introduce a data-level balancing technique following an under-
sampling approach. The evaluation, conducted on data describing
user migration across blockchain online social media platforms,
shows that graph neural networks are a suitable machine learning
approach to perform user migration prediction. Furthermore, the
proposed undersampling approach improves predictive power on
severely imbalanced data. These results highlight how graph neural
networks are effective in predicting user migration, without the
need for manual feature engineering and in the absence of user
information. Our methodology holds potential for applications be-
yond user migration, such as fraud detection and bot detection, and
opens up venues for further research in other prediction tasks in
online social networks and blockchain-based systems.

CCS CONCEPTS
• Networks → Peer-to-peer networks; Network economics; • Ap-
plied computing→ Digital cash; Electronic funds transfer;
Economics.

KEYWORDS
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1 INTRODUCTION
In recent years, online social media (OSM) has become an integral
part of our lives, with almost the 60% of the world population being
active social media users [30], connecting and sharing content with
each other. As the popularity of these platforms grows, so does the
competition among them to attract and retain users. In this highly
competitive environment, user migration has emerged as a common
phenomenon, with individuals switching from one platform to
another in search of better features, content, or communities. In this
context, the emergence of Web3 has given rise to more new online
platforms that offer a decentralized alternative to traditional social
networks. One such example is Blockchain Online Social Media
(BOSM), which enables the redistribution of wealth generated by
its users through rewards granted to those who contribute to the
growth of the platform. User migration can also affect BOSM, with
users switching between different blockchain-based social media
platforms due to a variety of reasons such as ethical concerns,
issues with the platform’s infrastructure, or policy disagreements.
Nonetheless, unlike traditional OSM, the user migration process in
BOSM can be studied and measured thanks to the high temporal
resolution data stored on the blockchains. These data are freely
available and provide researchers with valuable insights into the
dynamics of user behavior and migration in a decentralized social
network.

Despite an increasing number of studies [1, 5, 21, 25, 27], user
migration remains an understudied topic, particularly in BOSM
platforms. One primary gap in the literature is the lack of method-
ologies for accurately predicting user migration, especially when
there is a scarcity of user information or features. Existing methods
that rely on interaction graphs built from user interactions show
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promise in addressing this challenge. Despite the graph-based rep-
resentation of the task graph neural networks have not been yet
applied to the user migration prediction, even though they have
achieved state-of-the-art results in many machine learning tasks
on graphs. This is an important research gap to be addressed in this
context as GNNs do not require any feature engineering step on
the interaction graph and they have shown their prediction power
even without contextual information on users. Furthermore, user
migration, as many other learning tasks on graphs, is often charac-
terized by class imbalance, i.e. the target class sizes available in the
dataset differ by a substantial margin [17], which can negatively
impact the performance of machine learning models. The most used
techniques primarily operate on the data level, aiming to modify
the distribution of training data instead of altering the machine
learning model itself. Typically, these methods utilize sampling-
based approaches to tackle the issue of class imbalance. Existing
methods often focus on oversampling-like strategies, differing in
the methodologies for generating features, structures, or labels for
the creation of artificial minority data instances [23]. However,
in scenarios where there are sufficient data samples available for
each class, the generation of new synthetic data is not preferable,
as sampling may introduce bias. Interestingly, to the best of our
knowledge, none of the current approaches address undersampling
techniques. These aspects led us to the following research questions
(RQs): RQ1) Are graph neural networks a suitable method for user
migration prediction? RQ2) Can we improve performance in cases
of severe class imbalance with a balancing method following an
undersampling approach?

To fill these research gaps, we focused on predicting the phe-
nomenon of user migration in the context of Blockchain Online
Social Media (BOSM) platforms. Specifically, we design a machine
learning pipeline to verify the effectiveness of graph neural net-
works for user migration prediction, where we model the data as a
directed temporal multilayer graph describing social and monetary
interactions among users to predict user behavior as a classification
task. We also designed a data-level balancing technique following
an undersampling approach, comparing the results within the same
pipeline. To evaluate our methodology, we gathered data from the
ecosystem of social platforms based on the Steem blockchain, whose
main member is Steemit, and Hive, the blockchain originating from
a hard fork of the Steem blockchain on March 20, 2020.

Our methodology for the selection of the best model and the
proposed balancing approach have highlighted some interesting
findings. Graph neural networks are an effective method to predict
user migration in blockchain-based online social networks: the
GNNmodel is able to leverage graph structure on the graph of mon-
etary interactions, even with moderate data unbalance; however,
the GNN model struggles on the graph of social interactions that
is characterized by severe data imbalance (RQ1). However, after
applying our proposed data-level balancing approach that produces
a more balanced training set, graph neural networks show good
predictive power even on severely imbalanced data (RQ2).

The paper is organized as follows. Section 2 provides a brief in-
troduction to blockchain online social media and machine learning
on graphs. In Section 3 we introduce the main research questions
we focus on. In Section 4 we describe the dataset and its preprocess-
ing. The methodology for modeling interaction data, performing

user migration prediction, and the proposed balancing method is
presented in Section 5. Section 6 reports the main findings on the
effectiveness of graph neural networks and the impact of applying a
balancing approach. Finally, Section 7 concludes the paper, pointing
out possible future works.

2 BACKGROUND
Blockchain online social media and user migration. In the past

decade, the world of Internet services has witnessed significant
changes, where the focus has shifted from centralized services
to decentralized and distributed approaches. One of these new
paradigms, known as Web3 [29], strives to create a new type of web
that leverages blockchain technology in various systems. Blockchain
technology has led to Decentralized Finance (DeFi), Decentralized
AutonomousOrganisations (DAOs), and, in the social media context,
Blockchain-based online Social Media (BOSM) [13]. One of the key
innovations made possible by blockchain in social media is the con-
cept of a cryptocurrency-based rewarding system, that can promote
positive behaviors or high-quality content creation [8, 22]. While
in traditional social media platforms, interactions among users are
mainly social (such as sharing multimedia content, and interaction
through comments or votes), in BOSM users have the ability to
engage in “financial” or “monetary” interactions, i.e. the transfer
of tokens from a source account to a destination account. Among
the various proposals, Steemit [9, 13, 14], launched in 2016, has
been one of the first and most successful platforms. Other platforms
include Hive Blog, the primary web interface to Hive blockchain,
developed by some users leaving Steemit, and other services built
on Amazon Web Services that use the Ethereum blockchain to host
their own ERC-20 tokens such as Sapien [26] and Minds [24].

User migration. User migration, i.e. the phenomenon of users
moving from one online social platform to another, is a common oc-
currence in online social media. In the context of blockchain-based
platforms, they are often associated with fork events. A fork event
occurs when miners (validating nodes in the blockchain network)
need to modify the consensus protocol, i.e. the set of rules for vali-
dating transactions and maintaining the network. A fork is a soft
fork when miners make changes to the consensus protocol, while
still ensuring compatibility with the previous protocol. In BOSM,
these forks are typically used for making minor adjustments to
the consensus protocol, freezing account funds, or reversing spe-
cific transactions. On the other hand, an hard fork introduces more
significant changes in protocol, leading to a new distinct chain,
that will reject blocks validated with a different protocol. This type
of fork can support the creation of new platforms, such as in the
case of Steemit, where some of its users created a new platform
on the Hive blockchain with its own interface - Hive Blog - and
cryptocurrency system.

User migration across online social media is a widely studied but
not yet fully understood process, especially in blockchain-based
systems since most studies are focused on traditional social media
platforms. Kumar et al. [21], studied migration patterns across dif-
ferent platforms such as Twitter, Reddit, and Youtube after relying
on external sources of information such as BlogCatalog to per-
form user account matching between platforms. Similarly, Newell
et al. [25], focused on a survey-based approach to understand the
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reason behind migration events from Reddit to alternative web-
sites. Also, Zia et al. [37] tracked and analyzed user migration from
centralized Twitter to the decentralized microblogging platform
Mastodon, highlighting the strong influence of the social network
in platform migration. The same migration has been studied by La
Cava et al. [4], showing the importance of the network structure of
social interactions in migration. Senaweera et al. [27] studied mi-
gration patterns in Facebook groups using graph-based modeling.
While Davies et al. [5] identified and quantified migration in Red-
dit, focusing on migration in COVID-19-related subreddits. Studies
on user migration in blockchain-based platforms are still limited.
Recent studies on user migration in Web3 include Galdeman et.
al. [10], who studied the influence of hubs on the user migration
decisions of their direct neighbors and found that users directly
interacting with hubs tend to migrate, while Ba et al. [2], analyzed
Steemit user migration from amesoscopic perspective and observed
different migration behaviors among communities. Finally, Ba et
al. [1] have examined the effects of user migration on the graph
structure of interactions in Web3 social platforms and evaluated
the predictability of migrating using a graph structure. They treat
the prediction of user migration as a binary node classification task,
where two possible user future decisions (staying or leaving) are
encoded as labels; the prediction is performed using user activity of
social and monetary type modeled as interaction graphs, showing
the predictive power of graph derived features such as PageRank
in predicting user migration.

Machine learning on graphs. In the last decade, there has been
a growing interest in developing machine learning techniques tai-
lored for graphs to solve various tasks, such as node classification,
link prediction, and graph generation. In this context, traditional
approaches adopted a manual feature generation approach in order
to get a vector of statistics for each node, that could later be fed
into traditional learning models. However, these approaches are
often time-consuming and inflexible as they cannot be adapted to
the learning process. More recent approaches however rely on the
concept of graph representation learning, i.e. encoding the struc-
tural information of nodes into a low-dimensional latent space. In
the field of graph representation learning, graph neural networks
(GNNs) have emerged as the state-of-the-art approach in many
different tasks, such as node classification [15], link prediction [34],
community detection [33] and graph classification [35]. GNNs were
designed to perform predictions by exploiting both topology and
graph attributes by redefining basic deep learning operations, such
as convolution, for graph-structured data. The concept has been
formalized as the message passing framework [11]: the convolution
on graphs can be performed by aggregating the values of each
node’s features along with its neighboring nodes’ features. One of
the earliest examples is the Graph Convolutional Network (GCN)
model proposed by [20]. Given a graph 𝐺 = (𝑉 ,𝐴,𝑋 ) such that
𝑉 is the set of vertexes, 𝑋 is the node feature matrix, and 𝐴 the
adjacency matrix, at each layer 𝑘 the embedding ℎ of a node 𝑖 is
updated with the following computation:

ℎ
(𝑘+1)
𝑖

= 𝜎
©­­«

∑︁
𝑗∈𝑁 (𝑖 )

1√︃
𝐷𝑖𝑖𝐷 𝑗 𝑗

ℎ
(𝑘 )
𝑗

𝑊 (𝑘+1)ª®®¬ (1)

where 𝐷𝑖𝑖 =
∑

𝑗 𝐴𝑖 𝑗 corresponds to the degree of 𝑖 , computed on
𝐴𝑖 𝑗 the adjacency matrix with self-loops added. The aggregation is
order-invariant, (examples of such functions are average or sum-
mation). The number of layers of a GNN defines the number of
hops up to which a node will receive information. Starting from
these, we have seen the proposal of many architectures such as
GAT [28], graph autoencoders [19], GraphSAGE [15], and many
more, to cover different tasks and types of graph data.

Class imbalanced learning on graphs. A classification problem is
considered imbalanced when the target class sizes of a dataset differ
relatively by a substantial margin [17]. There are several examples
of real problems that are affected by this phenomenon, such as fraud
detection, disease diagnosis, anomaly detection, and sentiment
analysis. An imbalanced data sample can have a negative impact on
the predictive performance of the model, especially for the minority
classes. This is because the model has fewer opportunities to learn
the characteristics of the samples within the minority classes, which
can lead to poor generalization skills when applied to unseen testing
data. Finally, a class imbalance can cause the model to be biased
towards the majority classes, resulting in a tendency to predict the
class with the larger number of instances. Class imbalance remains a
challenging problem inmachine learning, but there exist techniques
and strategies that can be employed to mitigate its negative effects.
Current approaches can be divided into two categories [23]: i) data-
level methods, which modify the distribution of training data, and ii)
algorithm-level methods, which modify learning algorithms. Acting
at the data level is the most flexible approach as it allows the use
of already available models. Data-level methods try to address
the imbalance through sampling-based approaches [17]. Methods
usually rely on under-sampling approaches to select a subset of
instances from the majority classes or over-sampling approaches
to create additional instances of the minority classes or even a mix
of both (hybrid sampling). All those techniques have been designed
on point-based data and have limitations when it comes to learning
on graphs [36]: while in traditional cases it is just a matter of
considering more or less independent data points, in graphs is more
complicated, as removing nodes/edges will automatically modify
the graph structure, and this can create issues during the model
training, especially during the message-passing process in GNN
models. On the other hand, adding a node requires managing both
the node attributes and connectivity. As a result, some proposals
have been made to address class-imbalanced learning on graphs,
acting at both data-level and algorithmic-level. Current data-level
methods are focused on oversampling-like approaches and they
differ in their approach to generating features, structures, or labels
for synthetically created minority data instances [23]. However,
in cases where there are sufficient data samples for each class,
generating new artificial data is not desirable, as it could introduce
bias in the dataset. And yet, to the best of our knowledge, none of the
current works addresses approaches following the undersampling
approach.

3 RESEARCH QUESTIONS
The problem we address in this paper is user migration predic-
tion, which has received limited attention in the context of Web3
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platforms. While developing a machine learning pipeline to pre-
dict whether a user will migrate, stay on the original platform, on
both, or become inactive, this work will answer two main research
questions:
Research question 1 (RQ1): Are graph neural networks a suitable
method for user migration prediction?
Research question 2 (RQ2): Can we improve performance in
cases of severe class imbalance with a balancing method following
an undersampling approach?
By answering these questions, we aim to contribute to the devel-
opment of effective techniques for predicting user migration in
Web3 platforms, which could have implications for improving user
experience and enhancing platform design and management.

4 DATASET
Our work on user migration prediction using graph neural net-
works leverages as a case study the user migration following a
hard fork event. As a case study, we consider data on interaction
actions obtained from the blockchain of both Steem (the original
blockchain) and Hive (the new descendant blockchain). Specifically,
we focus on the hard fork that occurred on March 20th, 2020. This
resulted in the creation of the Hive blockchain from Steem, which
consequently enabled the phenomenon of user migration to take
place. One advantage of studying user migration from Steem to
Hive is the easy account matching phase. Due to the fact that users
maintain the same usernames on both blockchain Hive and Steem,
the issue of account matching that is typically encountered in user
migration studies is non-existent, which allows for seamless track-
ing of user behavior before and after the fork event. The Steem
and Hive blockchains support two social media platforms, Steemit
and Hive Blog, respectively. Steemit was the original social media
platform launched in 2016, where users can post and share mul-
timedia content, and interact through comments and votes or by
following other users. Thanks to a reward system, users can earn
cryptocurrency tokens for high-quality and popular content. After
the fork event, Hive Blog was born with similar characteristics. For
both platforms, all interactions or operations that users perform
are stored on the supporting blockchains and a complete list is
available for both platforms [6, 7].

In this work, we focus on actions that represent an interaction be-
tween two users, either explicit or implicit. Specifically, we consider
two main groups: i) monetary and ii) social operations. Monetary
operations are those operations designated for the management of
tokens, rewards, and asset transfer. In contrast, social operations
are those that users are able to do on traditional social network plat-
forms, such as posting, rating, voting, sharing, and following. All
blocks and the corresponding operations can be gathered through
official APIs for both platforms, whose structure and usage are
similar. For the construction of the graph, we gathered operations
from the very first block on the Steem blockchain, produced on
24th March 2016, up to the fork event, i.e. to block 41818752, with
timestamp 2020-03-20T14:00:00. While for migration status, we ex-
amine data after that timestamp, and up to January 2021. From
there, Hive and Steem have different data, as they have become
two different blockchains. Overall, from the Steem blockchain, we
extract 993, 641, 075 operations describing social interactions and

72, 370, 926 operations describing economic interactions; from the
Hive blockchain, we get a total of 206, 224, 132 social operations
and 4, 041, 060 financial actions.

5 METHODOLOGY
Our objective is to leverage user interaction data to predict future
user migration decisions. We utilize a similar setting to the one
proposed in a previouswork [1], where usermigration is treated as a
machine-learning task on graphs, using only the network structure
of the graph to perform predictions, while user behavior is encoded
in classes, allowing us to handle user migration as a multiclass
node classification problem. In this section, we define the machine
learning pipeline, that will be used to perform the user migration
prediction task. Our proposed pipeline is presented in Figure 1.

In the following, we describe the methodology adopted in each
step, which will allow us to leverage interaction data as input for
machine learning models, to verify the effectiveness of graph neural
networks in the setting of a user migration prediction task, as well
as to address the class imbalance in datasets.

Modeling user interactions and user decisions: graphs and labels.
User interactions can be modeled as a set of tuples 𝐼 = (𝑢, 𝑣, 𝑡, 𝑟 ),
where 𝑢 and 𝑣 are users, who explicitly or implicitly interact at
time 𝑡 through an action of type 𝑟 . As we are interested in the
graph structure before the fork, we can consider the interactions
before 𝑡𝐹𝑜𝑟𝑘 (March 20th, 2020, 2:00 PM), which we denote as 𝐼𝑡𝐹𝑜𝑟𝑘 .
From this subset of interactions, we are able to construct a temporal
directed multilayer graph [16], that we denote as G = {G𝑟

𝑡𝐹𝑜𝑟𝑘
∀𝑟 },

where each element G𝑟
𝑡𝐹𝑜𝑟𝑘

is a layer of the multilayer graph. More
precisely for each interaction type 𝑟 , a layer of the graph can be seen
as a temporal weighted graph G𝑟

𝑡𝐹𝑜𝑟𝑘
= (𝑉 𝑟

𝑡𝐹𝑜𝑟𝑘
, 𝐸𝑟𝑡𝐹𝑜𝑟𝑘

) that stores
the interactions of type 𝑟 that happened up to 𝑡𝐹𝑜𝑟𝑘 . Each edge
(𝑢, 𝑣, 𝑡, 𝑐) ∈ 𝐸𝑟𝑡𝐹𝑜𝑟𝑘

encodes the operations from node 𝑢 to node 𝑣 ,
described by the counter 𝑐 and timestamp 𝑡 . Specifically, the counter
𝑐 keeps track of the number of operations within the directed pair
of nodes, while the timestamp 𝑡 corresponds to the time of the first
operation from 𝑢 to 𝑣 . While the obtained graphs could be used
to perform prediction on all users, they may have not been active
before the fork, therefore it is important to filter users that stopped
using the platform before the fork event. We define a set𝑈 of users
of interest, in which we consider only users active before the fork
while including new users that would appear in the following time
period. Similarly to what has been done in [1], a user 𝑢 belongs to
the set 𝑈 (therefore active) if it performed at least one operation
in the 3 months before the fork event. In this way, we are able to
extract 𝐺𝑡𝑓 𝑜𝑟𝑘 , i.e. the subgraph of G𝑡𝑓 𝑜𝑟𝑘 induced by the set𝑈 of
active nodes. If we consider the set of 𝑟 ∈ {𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 (𝑚), 𝑠𝑜𝑐𝑖𝑎𝑙 (𝑠)},
we can denote the layer graphs 𝐺𝑚

𝑡𝐹𝑜𝑟𝑘
and 𝐺𝑠

𝑡𝐹𝑜𝑟𝑘
, representing

monetary interactions and social interactions respectively, that will
be leveraged to predict behavior after the fork. We then need to
process interaction data to encode user behavior after the fork, in a
way that can be learned by machine learning models. This means
defining labels for each node based on the user activity after the
fork. If we observe the interactions that happened after the fork
event involving a user 𝑢, we can consider 4 possible cases:

- resident: a user active only on the original platform (Steemit)
- migrant: a user active only on the new platform (Hive Blog)
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Figure 1: The proposed methodology to solve node classification tasks.
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Figure 2: Representation of selected graph neural network architecture. The selected architecture is inspired by the classical
GCN architecture by Kipf [20].

- co-active: a user that performs actions on both platforms
- inactive: a user that stops using both platforms

These cases are defined at the end of an observation period, after
the fork event, considering the activity up to the last interaction
in the available data. So each user 𝑎 is assigned to one of the four
labels after observing the interactions 𝐼 = (𝑢, 𝑣, 𝑡, 𝑟 ) where 𝑢 = 𝑎

and with 𝑡 > 𝑡𝐹𝑜𝑟𝑘 . The assigned label (resident,migration, co-active,
or inactive) is defined as the migration decision 𝑙 of user 𝑢.

Leveraging graph neural networks: model training and best model
selection. The first step is the selection of the architecture for our
machine learningmodel: we selected theGCN architecture from [20].
We implemented a similar version, as represented in Figure 2. First,
the input features and the adjacency matrix are then leveraged
by two graph convolutional layers that create node embeddings.
Finally, a linear transformation layer uses the embeddings gener-
ated by the GNN, to return a vector with a dimension equal to the
number of target classes of the task. Then we obtain a vector repre-
senting a probability distribution on the target classes by applying
to the output of the previous layer 𝑧 a softmax function 𝜎 (𝑧).

The selected graph neural network model needs to be trained
i.e. its weights need to be adjusted so that it can learn to predict
the right classes. When the ground truth is available, GNNs can be
trained in a supervised setting. For node classification tasks, super-
vised learning requires the so-called train-test split [12]. While in
traditional machine learning tasks, the split requires the separation
into two sets of training samples, when dealing with graphs, the
split is not as straightforward: for graph neural networks, the train-
ing and test sets are defined as the creation of masks𝑀1 ∈ R𝑛 , like
in Figure 3. The masks indicate which labels should be visible for
the GNN model during training.

As in traditional supervised learning frameworks, the objective
is to make the model output as close as possible to the ground truth

values. This is done by adjusting model parameters through the
data learning process to minimize a loss function. A common choice
for classification problems is the cross-entropy loss function [20].
Alongside the model parameters, the selection of the best model
configuration for the task requires the optimization or tuning of hy-
perparameters, i.e. parameters that can not be estimated from data
learning and must be set before training an ML model because they
define the model architecture [31]. Testing all the possible combina-
tions of hyperparameters from the grid of possible parameters - grid
search - can be a computationally demanding and time-consuming
phase as there are many hyperparameters in GNN models, lead-
ing to a huge number of combinations to verify. For this reason, a
popular strategy is to perform a random search [3]: only a subset,
of possible hyper-parameter combinations, is chosen at random
and tested. In this work, we combine the two approaches. After the
first exploratory step is conducted with a random search, the best
configurations are used to refine the candidate configurations, so
that we can reduce the number of combinations before performing
a full grid search.

Dealing with class imbalance: a new undersampling based ap-
proach. Formally, in a multiclass supervised learning task, there
are 𝑚 classes in total, {𝐶1, ...𝐶𝑚}, and |𝐶𝑖 | is the size of the 𝑖-th
class, referring to the number of samples belonging to that class.
Here, we introduce an under-sampling technique to balance the
distribution of the target variable at the data level. Formally we
balance the target variable as follows: we choose a percentage 𝑝 ,
and compute the number of samples 𝑛 = 𝑚𝑖𝑛𝑖 |𝐶𝑖 | ∗ 𝑝 to get the
number of samples per class to include in the training set. To build a
balanced training set, we perform under-sampling of each class 𝐶𝑖 :
we consider a random subset of cardinality 𝑛 of samples, creating a
uniform distribution. This leads to a reduced training set size, but
each target class is equally represented. In Figure 4, we report a
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Figure 3: Supervised training example. On the left side, the
training mask is defined, while on the right side, an example
of the corresponding test mask. Training and message pass-
ing is performed using the complete graph structure, but the
loss function is computed only for training nodes. During
testing, message passing is performed over the entire graph,
but evaluation is conducted on test nodes.

toy example with two classes. The selected method can be applied
seamlessly in the pipeline we described previously in Figure 1.

Experimental setting. In this work, for both RQ1 and RQ2, we
are interested in evaluating the performance of graph neural net-
works in the task of user migration. Performance can be evaluated
with different evaluation metrics. We selected some of the most
used metrics for multiclass classification problems, accuracy and
F1 [23]. Both metrics are computed from the evaluation of true
positives (TP) and true negatives (TN) that represent the number
of accurate classifications of positive and negative samples, while
false positives (FP) and false negatives (FN) indicate the number
of incorrect classifications of positive and negative samples. The
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 represents the relationship between
observations correctly predicted and total observations. While the
𝐹1 = 2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁 , represents the average of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 . However, in multiclass classification, with

𝐶 classes and 𝑁 samples, F1 can be adjusted to account for each
class size, leading to the weighted F1 =

∑𝐶
𝑖=1𝑤𝑖 ∗ 𝐹1(𝐶𝑖 ), as the

weighted average of class-wise F1 scores, where for each class 𝐶𝑖 ,
we have a weight 𝑤𝑖 =

|𝐶𝑖 |
𝑁

. The metrics are evaluated both on
training and test sets: to obtain more robust results. It is common
in the literature to consider the average performance over multi-
ple random seeds for each combination, therefore we report the
average over 3 random seeds as done in [32]. Through the selected
metrics, we compare the predictive performance of graph neural
networks to two baseline classifiers: the Uniform Baseline classifier
that generates predictions uniformly at random (hence it will make
a correct prediction in around 1/4 of the cases) and the Most Fre-
quent Baseline classifier, which predicts always the most frequent
class observed in the training set.

For RQ1, data is separated into training and test set through a
random train test split, with 70% of the nodes as a training set, and
30% of the nodes as a test set. Whereas we answer RQ2 by applying
our under-sampling technique for balancing, generating various
training and test sets, with different sizes. In this work, for both RQ1
and RQ2, we are interested only in the impact of network structure.
Therefore, node attributes from the dataset are not considered in
the prediction: a constant attribute (equal to 1) is associated with
each node. The weight update over the training in this work is done
by Adam optimizer [18].

6 RESULTS
In this section, we present the graph and labels obtained by applying
the graph preprocessing methodology shown earlier. Then we show
how we apply the proposed methodology to answer our research
question.

Graph and labels. Applying the proposed methodology we ob-
tain a multilayer graph 𝐺𝑡𝑓 𝑜𝑟𝑘 . Note that 𝐺𝑡𝑓 𝑜𝑟𝑘 is the active users’
subgraph, i.e. the subgraph induced by the set of active users on
the two layers 𝑟 ∈ {𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 (𝑚), 𝑠𝑜𝑐𝑖𝑎𝑙 (𝑠)}. The monetary layer
graphs 𝐺𝑚

𝑡𝐹𝑜𝑟𝑘
contains 38, 566 nodes connected by 949, 046 edges.

While the social layer graph𝐺𝑠
𝑡𝐹𝑜𝑟𝑘

has 90, 055 nodes and 42, 556, 877
edges, Overall, the social layer has more active users and links: this
is consistent with the selected operations; in fact, social operations
are far more common than monetary transactions. For these users,
we encoded their behavior in the 4 possible classes whose frequen-
cies are shown in Figure 5a for the monetary interactions and in
Figure 5b for social interactions. We can observe how the distri-
bution of labels is not balanced: in the monetary layer, there is a
slight skew in the number of co-active users, and the minority class
is composed of migrant users. Whereas the social layer is severely
imbalanced as the majority of users become inactive after the fork
event.

Predicting user migration. We now investigate whether graph
neural networks are a suitable method for user migration prediction
(RQ1) by applying the methodology presented in Section 5 on our
dataset. We first train our models for prediction on the graph𝐺𝑚

𝑡𝐹𝑜𝑟𝑘
representing monetary interactions before the fork. In Table 1 we
show the obtained results on the monetary layer. The trained GNN
model surpasses both Baseline classifiers by a significant margin,
both in terms of accuracy and weighted F1. These results indicate
that the model can learn by exploiting only the topology derived
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Figure 4: Train-test split with unbalanced classed. A visual example of an imbalanced dataset with 2 classes (A, B). On the top
half, a representation of a classical 85/15 train-test split: in this case, the training set presents more examples of class A (9) than
class B (3). On the lower half, we illustrate our proposed approach: we select 85% of the minority class B as training data, and
the same number of examples is kept for the other classes. The obtained training set will present the same number of training
nodes for each class (3).

(a) Decisions on monetary layer (b) Decisions on social layer

Figure 5: The distribution of the generated labels encoding the user migration decision, in the two layers a) monetary and b)
social respectively.

from monetary interactions. We then perform the prediction task
on the social layer 𝐺𝑠

𝑡𝐹𝑜𝑟𝑘
that represents social interactions be-

fore the fork. In Table 2, we show the evaluation results. The gap
between the trained model and the baseline classifiers is not as
large. The most frequent baseline classifier ( the one that predicts
the most frequent class observed in training) obtains an accuracy
score similar to the best GNN model, while the Uniform Baseline
lags severely behind. When we consider the weighted F1 scores we

observe a similar trend: the Baseline performs similarly to the GNN
model. As the accuracy scores coincide with the percentage of the
most frequent class for both the baseline and the GNNmodel, we in-
vestigated the predictive behavior of the best model; we discovered
that after a few epochs, begins to predict always the same class, the
most frequent class in the training set. In the case of a severely im-
balanced dataset, the graph neural network model struggles in the
prediction of less frequent classes, it acts similarly to the baseline
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Model Train accuracy Test accuracy Train weighted F1 Test weighted F1
Baseline most-frequent 0.346 ± 0.001 0.336 ± 0.003 0.178 ± 0.0011 0.169 ± 0.002

Baseline uniform 0.249 ± 0.001 0.249 ± 0.004 0.253 ± 0.001 0.2515 ± 0.001
Best model 0.426 ± 0.003 0.424 ± 0.006 0.381 ± 0.002 0.379 ± 0.003

Table 1: Accuracy and weighted F1 (mean and standard deviation over 3 random seeds [32]) obtained by the Baseline classifiers
and the best GNN model on the monetary graph 𝐺𝑚

𝑡𝐹𝑜𝑟𝑘
.

Model Train accuracy Test accuracy Train weighted F1 Test weighted F1
Baseline most-frequent 0.770 ± 0.001 0.770 ± 0.002 0.671 ± 0.001 0.670 ± 0.004

Baseline uniform 0.250 ± 0.001 0.250 ± 0.001 0.319 ± 0.001 0.318 ± 0.001
Best model 0.770 ± 0.001 0.770 ± 0.002 0.671 ± 0.001 0.670 ± 0.004

Table 2: Accuracy and weighted F1 (mean and standard deviation over 3 random seeds [32]) obtained by the Baseline classifiers
and the best GNN model on the social graph 𝐺𝑠

𝑡𝐹𝑜𝑟𝑘
.

Model Train accuracy Test accuracy Train weighted F1 Test weighted F1
Best model imbalanced 0.426 ± 0.003 0.424 ± 0.006 0.381 ± 0.002 0.379 ± 0.003
Best model balanced 0.427 ± 0.001 0.424 ± 0.001 0.386 ± 0.007 0.382 ± 0.007

Table 3: Accuracy and weighted F1 (mean and standard deviation over 3 random seeds [32]) obtained by the best GNN model
trained on the imbalanced training set and the best model trained on the balanced training set, on the monetary graph 𝐺𝑚

𝑡𝐹𝑜𝑟𝑘
.

Model Train accuracy Test accuracy Train weighted F1 Test weighted F1
Best model imbalanced 0.770 ± 0.001 0.770 ± 0.002 0.671 ± 0.001 0.670 ± 0.004
Best model balanced 0.403 ± 0.002 0.725 ± 0.006 0.359 ± 0.003 0.788 ± 0.004

Table 4: Accuracy and weighted F1 (mean and standard deviation over 3 random seeds [32]) obtained by the best GNN model
trained on the imbalanced training set and the best model trained on the balanced training set, on the social graph 𝐺𝑠

𝑡𝐹𝑜𝑟𝑘
.

classifier. In general, we can say that the GNN has learned from the
input data, making it a suitable model for solving the problem on
the monetary layer. While prediction in more imbalanced settings,
like in the social graph requires addressing the class imbalance
problem.

Dealing with class imbalance. In the following, we now ana-
lyze how we can deal with class imbalance (RQ2) by applying the
methodology presented in Section 5. We compare the best GNN
model obtained on the two layers and compare the best model using
the balancing approach.

We first make the comparison on the monetary layer: in Table
3 we report the evaluation metrics for both the approaches. The
models that learned from the balanced graph and those that learned
from the original graph have roughly the same performance. This is
expected as the target variable is not very imbalanced in the mone-
tary layer. Moreover, the fact that the performances are similar is an
additional positive factor: the model trained on the balanced train
set, actually learns from fewer examples, and yet does not lose in
performance. In fact, we actually observe the opposite effect, with
slight improvements overall. We then present the evaluation results
obtained on the social layer: where target labels are more imbal-
anced, In Table 4. We can see the impact of the balancing technique
we proposed. First, we verified that the model that learns from
the balanced set actually returns as a prediction not just the most

frequent class, but other classes as well. The model that learns on
the balanced dataset exhibits a drop in both accuracy and weighted
F1 over the training sets, however, the performance over the test
sets is high, especially in terms of weighted F1.

Overall the balancing technique constitutes an improvement for
the GNN model. In more balanced datasets, we are able to obtain
good performance but training on fewer data, while on the more
imbalanced datasets, it improves the learning phase for the model,
which learns to better predict minority classes.

7 CONCLUSION
In this work, we addressed the problem of user migration predic-
tion, focusing on some understudied aspects like the effectiveness
of graph neural networks as a prediction method, as well as address-
ing the class imbalanced learning problem typically observed in
classification tasks, and also in blockchain-based systems. Our find-
ings show that graph neural networks are an effective method to
predict user migration in blockchain-based online social networks
as our methodology, modeling user interaction data into multilayer
temporal graphs suitable for graph neural network modeling, leads
to a model able to leverage the graph of monetary interactions
but struggling on the severely imbalanced social layer. However,
after applying our proposed data-level balancing approach that pro-
duces a more balanced training set, graph neural networks show
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increased predictive power even on severely imbalanced data. The
obtained performances are an important result since they high-
light the predictive power of graph structure, without the need for
manual feature engineering. Moreover, the trained models perform
well even with a lack of node features, something that is typical
of blockchain-based systems. Future research will look into the
applications, as user migration is not limited to online social net-
works: leaving for another social, leaving for another crypto or
other Dapp. The proposed methodology could lead to significant
improvement in other prediction tasks typical of online social net-
works or blockchain-based systems such as fraud detection, and
bot detection. Future additional works could focus on developing
other balancing strategies.
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