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SUMMARY

Deletion of serine 63 from P0 glycoprotein (P0S63del)
causes Charcot-Marie-Tooth 1B neuropathy in hu-
mans,andP0S63del producesa similar demyelinating
neuropathy in transgenic mice. P0S63del is retained in
the endoplasmic reticulum and fails to be incorpo-
rated into myelin. Here we report that P0S63del is mis-
folded and Schwann cells mount a consequential
canonical unfolded protein response (UPR), including
expression of the transcription factor CHOP, previ-
ously associated with apoptosis in ER-stressed cells.
UPR activation and CHOP expression respond dy-
namically to P0S63del levels and are reversible but
are associated with only limited apoptosisof Schwann
cells. Nonetheless, Chop ablation in S63del mice
completely rescues their motor deficit and reduces
active demyelination 2-fold. This indicates that signal-
ing through the CHOP arm of the UPR provokes demy-
elination in inherited neuropathy. S63del mice also
provide an opportunity to explore how cells can dys-
function yet survive in prolonged ER stress—impor-
tant for neurodegeneration related to misfolded
proteins.

INTRODUCTION

Myelin protein zero (P0) is the major protein produced by myeli-

nating Schwann cells (Kirschner et al., 2004). P0 is a single-pass

transmembrane protein, with a large amino-terminal extracellu-

lar domain (ECD) and a short carboxy-terminal intracellular tail.

The protein is encoded by the Mpz gene and synthesized in

the endoplasmic reticulum (ER), where it undergoes N-glycosyl-

ation and formation of one intramolecular disulfide bond. In

myelin, P0 is present as tetramers that compact the extracellular

appositions of myelin wraps via in trans homophilic interactions

(D’Urso et al., 1990; Filbin et al., 1990; Shapiro et al., 1996).

Accordingly, mice with homozygous disruption of Mpz show
uncompaction of myelin in development (Giese et al., 1992),

and mice with heterozygous disruption show altered myelin

maintenance in the adult (Martini et al., 1995).

More than 100 mutations of P0, many in the ECD, are associ-

ated with hereditary motor and sensory neuropathies (Shy, 2005;

Wrabetz et al., 2004). Although the specific pathogenetic mech-

anisms have not been fully elucidated, dominant inheritance and

widely varying phenotypes suggest that many P0 mutations act

through gain of abnormal function (Martini et al., 1995; Wrabetz

et al., 2006). For example, deletion of serine 63 (S63del) or its

mutation to a cysteine (S63C) results in Charcot-Marie-Tooth

(CMT) type 1B and Dèjèrine-Sòttas syndrome (DSS) in humans,

respectively (Hayasaka et al., 1993; Kulkens et al., 1993). Trans-

genic mice expressing both mutant and normal P0 confirm that

these mutations produce a gain of abnormal function (Wrabetz

et al., 2006). The pathomechanisms are likely to differ between

the two mutations, for although S63C is incorporated into myelin,

producing packing defects, S63del is retained in the ER.

In the ER, membrane proteins are subject to stringent quality

control (Ron and Walter, 2007). Accumulation of misfolded pro-

teins in the ER sequesters chaperones like binding immunoglob-

ulin protein (BiP) and activates the unfolded protein response

(UPR). As an adaptive response, UPR upregulates transcription

of chaperones, temporarily attenuates new translation, and acti-

vates protein degradation via the proteasome. However, at high

levels of ER stress, UPR signaling contributes to apoptosis (Ron

and Walter, 2007). For example, deletion of the gene encoding

CHOP (CAATT enhancer-binding protein homologous protein,

a transcription factor active in the UPR) protects cells against

apoptosis (Marciniak et al., 2004; Zinszner et al., 1998).

Here we report that P0S63del activates a canonical and dose-

dependent UPR, including CHOP, and consequentially, demye-

lination in Schwann cells. ER retention and UPR depend on alter-

ation of the pattern of hydrophobic residues in P0 b strand C, not

changes at residue 63, a mechanism potentially shared by an-

other CMT1B mutation, deletion of phenylalanine 64 (Ikegami

et al., 1996). Ablation of Chop in S63del mice reverses behav-

ioral, electrophysiological, and morphological abnormalities, in-

dicating the UPR as a novel pathogenetic mechanism in demye-

linating peripheral neuropathies. Finally, UPR activation is rapidly
Neuron 57, 393–405, February 7, 2008 ª2008 Elsevier Inc. 393

mailto:wrabetz.lawrence@hsr.it


Neuron

UPR Modulates CMT1B Neuropathy
Figure 1. P0S63del Is Retained in the ER

and Induces a Dose-Dependent UPR

(A) Immunofluorescence analysis for P0 or KDEL

on teased fibers shows that P0 staining is aug-

mented in the ER of myelinating Schwann cells

from P0S63del (arrows), as compared to WT (ar-

rowheads), sciatic nerves.

(B and C) BiP and CHOP mRNA levels were mea-

sured in P28 sciatic nerves by quantitative RT-

PCR and normalized to 18S rRNA, WT = 1. L,

low, H, high expressor S63del transgenes; OE,

P0 wild-type overexpressor; tun, tunicamycin;

error bars, SEM for n = individual nerves from

3–5 animals. *p < 0.001, **p < 0.05 relative to WT

by Student’s t test.

(D) Western analysis for BiP and CHOP was per-

formed on freshly dissected nerves or WT nerve

segments cultured overnight with tunicamycin or

sham media. Note that CHOP, but not BiP,

mRNA and protein levels parallel the ratio of

P0S63del (arrowhead) to P0wt (arrow) and the se-

verity of neuropathy (Wrabetz et al., 2006) in

S63del mice. Calnexin (CNX) levels do not change.

BiP and CHOP are induced upon tunicamycin

treatment of WT nerve (wt/Tun +). b-Tubulin (Tub)

provides a control for loading.

(E) DOC1, 6, and 4 mRNA levels are induced by

tunicamycin treatment of NIH 3T3 cells (note the

logarithmic scale), but only DOC1 and 6 are in-

duced in S63del nerves. DOC4 is not induced

even by tunicamycin treatment of nerve.
reversed by reducing mutant protein levels in mutant nerves,

suggesting its dosage as a logical therapeutic target. Given

that Schwann cell death follows, not precedes demyelination,

we propose that the maladaptive UPR and CHOP in S63del

nerves produces a novel cellular dysfunction in Schwann cells.

RESULTS

Protein Quality Control in S63del Nerves
P0S63del causes a demyelinating neuropathy via gain of abnor-

mal function, but does not arrive to the myelin sheath (Wrabetz

et al., 2006). To characterize potential toxic mechanisms opera-

tive outside of myelin, we surveyed protein quality control in

S63del nerves. We considered autophagy (lysosomes), protea-

somes, and UPR in S63del nerves. LAMP1 staining was slightly

expanded but did not reveal the lysosomal aggregates that have

been reported for PMP22 mutants, where aggresomes are

cleared by autophagy (see Figure S1 available online) (Fortun

et al., 2003). Electron microscopy did not reveal aggregates or

swollen ER (Tsang et al., 2007) in S63del Schwann cells (Fig-

ure S2A). Also, EDEM1, a marker of endoplasmic reticulum acti-

vated degradation (ERAD), was expressed at normal levels, pre-

liminarily suggesting limited ERAD and proteasomal involvement

(Figure S2B).

When expressed in mice of the Mpz null background, P0S63del

is retained in the endoplasmic reticulum (Wrabetz et al., 2006).
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However, CMT1B patients have both MPZ WT and S63del

alleles. Even when P0S63del was coexpressed with P0wt (Fig-

ure 5C), immunostaining on teased fibers showed that P0 was still

retained in the ER (Figure 1A). These data, taken together with

preliminary evidence that the transcription of BiP and CHOP is

upregulated in S63del nerves (Wrabetz et al., 2006), suggest

that the UPR is an important form of quality control for P0S63del.

Therefore, we asked whether P0S63del elicited a full UPR and

how the UPR correlated with disease. In mouse, disease severity

correlates with MpzS63del mRNA expression (Wrabetz et al.,

2006). To examinedosedependence, we exploited mice express-

ing S63del mRNA at levels of one (S63del-L) or two (S63del-H)

endogenous alleles. BiP and CHOP mRNA levels were increased

by 5.2- and 2.7-fold in S63del-L and 5.7- and 14.6-fold in S63del-

H sciatic nerves, respectively (Figures 1B and 1C). Induction of

BiP and CHOP mRNA was tissue and mutation specific. It was

not detected in the brain (data not shown) or in nerves of S63C,

P0Myc (pathological model of CMT1B; Previtali et al., 2000), or

P0 overexpressor mice (Wrabetz et al., 2000; Yin et al., 2000) (Fig-

ure 1B). The level of induction was robust, comparable to the

levels of BiP and CHOP mRNA acutely induced by tunicamycin

(glycosylation inhibitor) in liver (2.5- and 19-fold) (Figures 1B and

1C) or cultured sciatic nerve segments (4- and 10-fold) (Figures

5A and 5B) of normal mice.

Induction of BiP and CHOP in S63del and tunicamycin-treated

nerves was confirmed by western analysis (Figure 1D). As for
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Figure 2. Activation of IRE-1, PERK, and ATF6 Arms of the UPR in S63del Nerves

(A) IRE-1 catalyzes excision of a 26 nt fragment from XBP-1 mRNA. Semiquantitative RT-PCR for XBP-1 unspliced (XBP-1u), spliced (XBP-1 s), normalized to

GAPDH, shows that the spliced XBP-1 is enriched in S63del and tunicamycin-treated nerves. P0wt overexpressor (OE) nerves are included as expression-

matched controls for S63del low (L) and high (H). Error bars, SEM for n = 6 individual nerves, *p < 0.05 relative to WT by Student’s t test.

(B) Levels of eIF2a, eIF2a-P (phosphorylated), and ATF4 were measured by western analysis. Tubulin (Tub) shows equal loading.

(C) ATF3 mRNA was measured by quantitative RT-PCR and normalized to phosphoglycerate kinase 1(PGK1) mRNA. ATF3 is induced in a dose-dependent fash-

ion in S63del mice and in tunicamycin-treated livers. Error bars, SEM, n = 6, 5, 5, 3, and 3 nerves for WT, S63del-L, S63del-H, OE-L, OE-H, respectively, and 3

livers. **p < 0.01, *p< 0.05 relative to WT by Student’s t test.

(D) Immunostaining reveals CHOP in elongated, DAPI-positive Schwann cell nuclei in longitudinal sections of S63del nerves at P28 (b–b00), but is undetectable in

normal nerves (a–a00). Many CHOP-positive Schwann cells contain integral myelin sheaths (c–c00 0 ). Scale bar, 15 mm in a–b00; 13 mm in c–c00 0.

(E) Western analysis for ATF6 reveals dose-dependent cleavage of the 90 kD precursor protein (arrowhead) to the 50 kD product (arrow) only in S63del, not in

S63C, P0 overexpressor (OE), or WT nerves. Numbers indicate relative molecular weights (Mr).
mRNA levels, CHOP protein induction was higher in S63del-H

mice than in S63del-L mice, in parallel with the ratio of mutant

P0S63del to P0wt. CHOP activates transcription of the Down-

stream Of CHOP genes (DOCs) (Wang et al., 1998). Accordingly,

DOCs 1 and 6, although not 4, were induced in S63del nerve.

Tunicamycin treatment activated DOC4 in NIH 3T3 cells, but

not in sciatic nerve, raising the possibility that Schwann cells

respond differently to CHOP (Figure 1E). Altogether, these data

show that BiP, CHOP, and its target genes are upregulated

in S63del nerves to levels comparable to those found when

UPR is acutely induced by tunicamycin. Of these, the level of

CHOP correlated best with mutant protein level and disease

severity.
IRE-1, PERK, and ATF6 Pathways Are Activated
in S63del Nerves
To characterize the UPR in S63del nerves more fully, we ana-

lyzed activation of the three arms of the UPR: IRE-1 and PERK

kinases and cleavage of ATF6 transcription factor (Ron and Wal-

ter, 2007). Activated IRE-1 noncanonically splices the mRNA

of the transcription factor X-box-binding protein 1 (XBP-1), an

event specific to UPR (Yoshida et al., 2001). The spliced form

of XBP-1 was increased by 2.5-, 2.7-, and 5-fold in S63del-L,

S63del-H, and tunicamycin-treated nerves, respectively (Fig-

ure 2A). Activated PERK phosphorylates eIF2a and upregulates

translation of the transcription factor ATF4 and transcription of

ATF3, CHOP, and the oxidoreductin ERO1-Lb (Jiang et al.,
Neuron 57, 393–405, February 7, 2008 ª2008 Elsevier Inc. 395
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Figure 3. Alteration of P0 b Strand C Polar-

ity Causes ER Retention and Activation of

the UPR

(A) Western analysis was performed for P0 under

reducing (DTT +) or nonreducing conditions (DTT –)

on peripheral nerve lysates from WT, S63del/

P0�/� (S63del), or S63C/P0�/� (S63C) mice.

Therefore, in mutant mice, only mutant P0 is

present. Under nonreducing conditions, WT and

mutant P0 show a 3–4 kD shift as expected for

the formation of one disulfide bond. Note that non-

reduced S63del produces a smear (arrowhead)

that might represent protein misfolding. The ma-

jority of P0S63del recognized in this analysis is

unglycosylated (Wrabetz et al., 2006) and migrates

at a lower Mr. In contrast, S63C produces discrete

bands with the same mobility as P0wt. (B) P0

b strand C is characterized by an alternating hy-

drophilic (black) and hydrophobic (red) pattern of

residues. In contrast to S63C, deletion of either

S63 or F64 or the mutant S63F/T65F and S63F is

predicted to alter the orientation of 4, 3, 2, and 1

hydrophobic residues, respectively. The correla-

tion between number of altered (alt) hydrophobic

residues and ER retention (Ret +) in transfected

cells is shown. COS-7 cells were transfected

with constructs encoding various P0wt- or P0mu-

tant-DsRed fusion proteins and analyzed for ex-

pression of UPR markers (C) or for trafficking of

P0 (D). BiP mRNA was measured by quantitative

RT-PCR and normalized to 18S rRNA for transfec-

tion efficiency. XBP-1 and GAPDH were measured

by semiquantitative RT-PCR. Note that BiP mRNA

levels and XBP-1 splicing (XBP-1 s, arrow) are

enriched in cells expressing either P0S63del or

P0F64del mutants, as well as in cells treated with

tunicamycin (a representative experiment [of

three] is shown; error bars, SEM). (D) Confocal

microscopy of trafficking of P0-DsRed fusion

proteins (P0, red) and immunostaining for calnexin

(CNX, green) is shown in overlay. P0wt, P0S63C,

and P0S63F are delivered to the cell membrane,

whereas P0S63del and P0F64del are completely

retained in the ER (yellow signal). P0S63F/T65F

was mostly retained in the ER, although some

was delivered to the plasma membrane in some

cells. Scale bar, 20 mm.
2004; Pagani et al., 2000; Ron and Walter, 2007). Indeed, the

levels of eIF2a phosphorylation increased 1.8-fold, and ATF4

3-fold in S63del-L nerves (Figure 2B). Similarly, ATF3 mRNA

was induced 2.5-fold in S63del-L, 12.4-fold in S63del-H nerves,

and 6.1-fold in tunicamycin-treated liver (Figure 2C). Likewise,

ERO1-Lb was induced in S63del-H nerves and tunicamycin-

treated liver to a similar extent (Figure S2C and data not shown).

The UPR was activated in Schwann cells, as the transcription

factor CHOP, which was undetectable in normal nerves, was

localized to the nucleus of S63del Schwann cells (Figure 2D).

Finally, dose-dependent ATF6 cleavage was detected in

S63del-L and -H nerves (Figure 2E). Thus, P0S63del provokes

a dose-dependent activation of IRE-1, PERK, and ATF6

pathways in Schwann cells of S63del nerves, indicating a canon-

ical UPR.
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Alteration of b Strand C Periodicity
in P0 Causes ER Retention
In S63del nerves, ER retention of P0S63del and UPR activation

suggested protein misfolding. Thus, we performed western anal-

ysis for the intramolecular disulfide bond of P0 (Figure 3A). The

mobility of P0wt was increased by 3–4 kD under nonreducing

conditions, consistent with the presence of a disulfide bond.

Nonreduced P0S63del showed a similar shift (arrowhead), but

in addition produced a smear, which could represent alterna-

tively folded intermediates. In contrast, another neuropathic mu-

tation at the same residue, P0S63C, which is not retained in the

ER, migrated similarly to P0wt.

Serine 63 lies in b strand C, characterized by an alternating hy-

drophobic and hydrophilic pattern of residues (Figure 3B) (Sha-

piro et al., 1996). We hypothesized that deletion of serine 63
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altered the disposition of the 4 hydrophobic residues (FWYP) in

b strand C (Figure 3B, compare WT and S63del). Therefore, we

compared the effect of deleting serine 63 to either deletion of

phenylalanine 64 (F64del), conversion of both serine 63 and thre-

onine 65 into phenylalanines (S63F/T65F), substitution of serine

63 with phenylalanine (S63F), or substitution of serine 63 with

cysteine (S63C), which alter the disposition of 3, 2, 1, or 0 hydro-

phobic residues, respectively. P0 was fused at its carboxyl termi-

nus in frame with the discosoma red (DsRed) fluorescent protein.

Modification of P0 at the carboxyl terminus does not impair

targeting of P0 to the plasma membrane in cells (Shames

et al., 2003) or to myelin in transgenic sciatic nerve (M.P., P. Fratta,

and L.W., unpublished data). The chimeras were transiently

expressed in COS-7 (Figure 3D) or Chinese hamster ovary

(CHO) cells (data not shown), and the cells were immunostained

for the ER resident lectin, calnexin (CNX) (Figure 3D). Both P0wt

and P0S63C were targeted to the plasma membrane, whereas

P0S63del was confined to the ER, consistent with prior analysis

of these mutant P0s in transgenic mice (Wrabetz et al., 2006). In

addition, transfected P0MycDsRed was trafficked to the cell

membrane (data not shown), just as P0Myc arrives to myelin in

transgenic sciatic nerve (Previtali et al., 2000), further validating

the transfected cells as a model. S63F was trafficked to the

cell membrane, whereas F64del and S63F/T65F were mostly

retained in the ER. Deletion of glutamic acid 71 in the loop con-

necting b strands C and C0 did not impair protein trafficking

(data not shown). S63del and F64del also induced BiP transcrip-

tion and XBP-1 splicing in COS-7 cells to levels similar to those

obtained upon tunicamycin treatment (Figure 3C). These data

suggest that it is not alteration of the side chain at residue 63

but rather a perturbed alignment of hydrophobic residues in

b strand C that results in ER retention and activation of the

UPR, providing further support for the notion that P0S63del is

globally misfolded.

UPR Is Dynamic and Reversible in Sciatic Nerve
S63del nerves are characterized by hypomyelination, demyeli-

nated fibers, and onion bulbs (Wrabetz et al., 2006). A few

nascent onion bulbs are detectable at postnatal day 28 (P28)

and become evident by 6 months of age. To determine whether

the UPR activation preceded or followed the appearance of

pathological findings in diseased nerves, we analyzed P0, BiP,

and CHOP expression across development. In WT and S63del-

L mice, BiP and CHOP mRNAs were immediately upregulated

during development, mirroring the robust induction of P0 expres-

sion that occurs immediately after birth and peaks around P28

(Figure 4), although CHOP rapidly leveled off and was maintained

at a plateau, suggesting more complicated regulation. Similar

results were obtained for S63del-H mice (data not shown).

Thus, the robust UPR as measured by peak BiP and CHOP levels

is associated with the onset of myelin instability, destruction, and

failed remyelination marked by onion bulbs.

The relative amounts of BiP and CHOP differed between

S63del-L and S63del-H mice (Figure 1). Given that BiP chaper-

one helps cells to fold aberrant proteins (Gething, 1999), whereas

CHOP may kill overwhelmed cells (Marciniak et al., 2004; Zinsz-

ner et al., 1998), the increased level of CHOP in the face of stable

amounts of BiP could represent a transition from a cell survival
response in S63del-L to an apoptotic reponse in S63del-H.

One prediction of this hypothesis would be that in S63del-L

nerves the level of BiP is near maximal and cannot be aug-

mented. Therefore, segments of sciatic nerves were explanted

and maintained in culture for 20 hr with or without tunicamycin.

At time zero, BiP and CHOP were increased by 3.3- and 3.8-

fold in S63del as compared to WT nerves (Figures 5A and 5B).

Surprisingly, 20 hr after axotomy, BiP and CHOP expression

decreased to levels similar to WT mice, although parallel treat-

ment with tunicamycin induced BiP/CHOP to 3.9/10.4- and

3.8/6.9-fold in WT and mutant mice, respectively. These data

indicate that, after axotomy, UPR is almost completely reversed

in mutant nerves and is reinduced to similar levels by tunica-

mycin. Unfortunately, additive effects cannot be addressed after

axotomy.

One possible explanation was that axotomy of the cultured

nerve segments produced acutely decreased mutant P0 (main-

tainence of Mpz expression depends on axonal signals; Trapp

et al., 1988). In fact, 20 hr after axotomy, the level of P0wt was

partially reduced (Figure 5C, arrow), whereas P0S63del was

Figure 4. Induction of the UPR Dynamically Parallels P0 Expression

P0 (A), BiP (B), or CHOP (C) mRNA levels in sciatic nerves were measured by

quantitative RT-PCR and normalized to 18S rRNA in WT (gray bars) or S63del

(black bars) mice. The level of P0 rises in both WT and S63del nerves at P7,

with a peak near P28. Only in S63del, not in WT nerves, BiP rises in parallel,

and CHOP rises by P7 to a plateau level that then persists. For P0 and BiP,

one representative experiment (animal) of three is shown; error bars, SEM;

n = 3. For CHOP, the average of seven experiments (animals) is shown

(anchored to P28wt and then expressed relative to P1wt = 1; error bars, SEM;

n = 7; **p < 0.05 relative to WT of the same age by Student’s t test).
Neuron 57, 393–405, February 7, 2008 ª2008 Elsevier Inc. 397
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almost undetectable, also suggesting that P0S63del is less sta-

ble (Figure 5C, arrowhead). Similar results were obtained in sci-

atic nerve segments from S63del mice deleted of endogenous

P0, where only mutant P0 is present (S63del�/�). As expected,

this effect was transcriptionally mediated, as the level of P0

mRNA was very low at 20 hr after axotomy (Figure 5D), and

had fallen significantly already by 6 hr after axon cut (data not

shown). Thus, the UPR in S63del nerves is continuously acti-

vated by sustained expression of mutant protein. Transcriptional

induction of BiP and CHOP can be halted by simply discontinu-

ing mutant transgene expression, indicating that the UPR is

reversible in vivo.

Ablation of Chop Amelioriates Neuropathy
Of the UPR mediators, the level of CHOP expression correlated

best with disease severity. To demonstrate a direct role for the

CHOP-dependent arm of the UPR in the pathogenesis of demy-

elination in S63del nerves, we crossed S63del-L and Chop null

mice (Zinszner et al., 1998) and analyzed behavior, neurophysiol-

ogy, and morphology in WT, S63del, Chop null, and S63del/

Chop null littermates. Chop null mice show no overt neuromus-

cular defects (Zinszner et al., 1998; see below). Four-month-old

S63del mice had lost one-third to one-half of their motor capacity

as compared to WT or Chop null littermates in analysis by accel-

erating rotarod (Figure 6A) (Wrabetz et al., 2006). Strikingly,

S63del/Chop null mice regained completely normal motor ca-

pacity in rotarod analysis (Figure 6A). This was accompanied

by a partial rescue of electrophysiological and morphological

abnormalities. In particular, S63del mice manifest reduced nerve

Figure 5. Diminished P0S63del Levels Acutely Reverse Activation

of the UPR

Segments of WT or S63del-L sciatic nerves were snap-frozen either immedi-

ately after dissection (t = 0h, white bars) or after incubation ex vivo for 20 hr

with (t = 20h TUN, black bars) or without (t = 20h, gray bars) tunicamycin

and were analyzed for UPR markers. Levels of mRNA were measured by quan-

titative RT-PCR (A, B, and D) and normalized to PGK1 mRNA. BiP and CHOP

mRNAs are induced in S63del mice at t = 0h and remain induced with tunica-

mycin treatment for 20 hr after axotomy. Instead, induction is rapidly reversed

without tunicamycin, in parallel with marked reduction of the band containing

P0S63del by western analysis ([C], arrowhead), due to the general reduction of

P0 mRNA after axotomy (D). (S63del�/�) represents P0�/� mice transgenic

for MpzS63del. b-Tubulin (Tub) is a control for protein loading. Error bars,

SEM, n = 3 animals.
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conduction velocity (NCV) and increased F-wave latency (Wra-

betz et al., 2006). In 6-month-old S63del/Chop null mice, the

F-wave latency was significantly improved, even if the NCV did

not change. In addition, there were half the number of demyeli-

nated fibers and a trend toward reduction of onion bulbs as com-

pared to S63del mice (Figure 6B and Table 1). Consistent with

unchanged NCV, hypomyelination remained (Figure 6B), as we

have documented previously in other transgenic mice that over-

express total P0 (Wrabetz et al., 2000). Finally, morphometric

analysis showed no change in the number or size distribution

of sciatic nerve axons (Figure S3). Thus, ablation of Chop res-

cued demyelination associated with toxic gain of function from

P0S63del.

Rescue was not due to reduced expression of the MpzS63del

transgene or reduced activation of the UPR. By RT-PCR analy-

sis, transgenic and endogenous Mpz mRNAs can be distin-

guished by exploiting a polymorphic restriction site (Wrabetz

et al., 2000). The amount of MpzS63del mRNA was about 50%

of the endogenous Mpz in both S63del and S63del/Chop null

mice at P28 and P180 (Figure 6C) (Wrabetz et al., 2006). Consis-

tent with the idea that P0S63del levels determine UPR activation,

BiP mRNA levels were similar in S63del and S63del/Chop null

nerves at P28 (Figure 6D) and remained induced 4- to 6-fold in

both at P42 and P120 (data not shown). Instead, Chop was un-

detectable as expected in S63del/Chop null nerve (Figure 6E).

Moreover, DOC1, which is induced in S63del-L nerve, was

reduced to basal levels in S63del/Chop null nerve (Figures 6F–

6H). Therefore, deletion of Chop from S63del mice restored

behavioral, electrophysiological, and morphological abnormali-

ties despite continued UPR, indicating that the CHOP arm of

the UPR is pathogenetic and suggesting that the expression of

Chop is a maladaptive response to P0S63del misfolding in

myelinating Schwann cells.

Chop Activation Is Associated with Delayed Apoptosis
in S63del Nerves
Prolonged ER stress and induced Chop expression can provoke

apoptosis (Oyadomari et al., 2002; Rutkowski et al., 2006; Zinsz-

ner et al., 1998). In fact, in S63del-L, the number of TUNEL-posi-

tive nuclei was 0.4% at P28 and 0.9% at P180, whereas WT mice

and Chop null mice showed very low levels of apoptosis. S63C,

P0-OE mice (dysmyelinating, not demyelinating neuropathies)

also showed no increase in apoptosis at P180 (Figure 7A). Abla-

tion of Chop in S63del mice decreased the number of TUNEL-

positive nuclei, indicating that CHOP causes apoptosis in

S63del nerves. Independently of UPR, demyelination itself also

provokes both proliferation and apoptosis in peripheral nerves

(Sancho et al., 2001). Therefore, to determine whether apoptosis

in S63del nerves was a direct consequence of CHOP signals or

secondary to demyelination, we analyzed its timing and whether

there was associated proliferation. Even if UPR activation as

measured by BiP and Chop expression peaked between P28

and P42, there were only slightly more TUNEL-positive nuclei

in S63del nerves at P42 as compared to P28, but many more

at 6 months old (Figure 7A). This pattern correlates instead

very closely to the trend of demyelination (Wrabetz et al.,

2006). In addition, in S63del nerves, apoptosis was not associ-

ated with cell loss, but with an increased number of cells,



Neuron

UPR Modulates CMT1B Neuropathy
consistent with supernumerary Schwann cells present in demy-

elination (Figure 7B). Indeed, cell death was compensated by in-

creased proliferation in S63del nerves at both P28 and P180,

typical of demyelination (Figure 7C). We also analyzed for pro-

teolytic cleavage of caspase-12, an event specific to UPR and

thought to be associated with cell death (Nakagawa et al.,

2000). The 42 kD activated caspase-12 was specifically enriched

in S63del nerves (Figure 7D, arrowhead) at P42 when the level of

apoptosis was relatively low. Moreover, at P28, ablation of Chop

Figure 6. Ablation of Chop Restores Motor Function

and Reduces Demyelination in S63del Mice

(A) Rotarod analysis of motor function showed that 4-month-

old S63del mice remain for 200 s less as compared to WT

and Chop null mice. Instead, S63del/Chop null mice perform

like WT mice. Error bars, SEM, n = 15–20 animals.

(B) Semithin sections stained with toluidine blue are shown

from P180 WT, S63del, Chop null, and S63del/Chop null sci-

atic nerves. S63del nerves manifest hypomyelination and de-

myelinated fibers and onion bulbs. Although hypomyelination

is not ameliorated in S63del/Chop null nerves, the number of

demyelinating fibers is significantly reduced (Table 1). Exam-

ples of pathological fibers from S63del or S63del/Chop null

nerves are shown magnified below. Arrows indicate demyeli-

nated fibers, stars indicate onion bulbs, and arrowheads indi-

cates remyelinating fibers. Scale bar, 15 mm in upper panels

and 5 mm in the magnified panels below.

(C) S63del transgene expression was analyzed in rescued

nerves by semiquantitative RT-PCR. Digestion of the am-

plimer with Dpn II distinguishes WT (326 bp) from transgenic

cDNA (244 and 82 bp fragments).

(D–H) BiP, CHOP, and DOC1, 6, and 4 expression was ana-

lyzed by quantitative RT-PCR and normalized to 18S rRNA.

Note that transgene expression and BiP activation remain in

S63del/Chop null nerves, whereas CHOP is undetectable

and DOC1 falls below WT levels. DOC6 and 4 are not induced

in S63del-L nerves. Error bars, SEM, n = 3.

and amelioration of demyelination reduced apopto-

sis to WT levels in S63del nerves, even if cleaved

caspase 12 remained easily detected (Figure 7D).

These data provide further evidence that activated

caspase 12 is not sufficient to cause cell death in

the context of UPR in tissues (Sharma and Gow,

2007). Thus, delayed cell death correlates best

with progressive demyelination, suggesting that

CHOP induces myelin instability and demyelin-

ation, which in turn causes, as a secondary consequence, prolif-

eration and cell death.

DISCUSSION

We describe a hereditary neuropathy associated with UPR. We

had previously shown that P0S63del produces demyelinating

neuropathy via a dose-dependent, toxic gain of function originat-

ing from the ER in transgenic Schwann cells (Wrabetz et al.,
Table 1. Ablation of Chop Reduces Demyelination in S63del Sciatic Nerves

Electrophysiology Morphology

Genotype NCV (m/s) F-Wave Latency (ms) G Ratio % Onion Bulbs % Dem Fibers

wt 39 ± 1.1(15) 4.8 ± 0.22(15) 0.67 ± 0.028(6) 0 0

chop�/� 38 ± 1.2(12) 4.8 ± 0.13(12) 0.70 ± 0.010(9) 0 0

S63del 32 ± 1.7(7) 6.1 ± 0.45(7) 0.76 ± 0.015(15) 0.45 ± 0.110(18) 0.82 ± 0.095(18)

S63del/chop�/� 31 ± 0.9(10)ns 5.2 ± 0.15(10)* 0.74 ± 0.021(11)ns 0.35 ± 0.103(22)ns 0.45 ± 0.103(22)**

All values represent mean ± SEM(n); where n = number of animals, except for G ratio, where n = total microscopic fields from 3–5 animals; ns = not

significantly different, *p < 0.05 or **p < 0.01 relative to S63del by Student’s t test. NCV, nerve conduction velocity; G ratio is calculated as axonal

diameter/fiber diameter; % dem fibers, % demyelinated fibers.
Neuron 57, 393–405, February 7, 2008 ª2008 Elsevier Inc. 399



Neuron

UPR Modulates CMT1B Neuropathy
Figure 7. Chop and Apoptosis in S63del Nerves

(A) TUNEL analysis in longitudinal sections of WT and mutant sciatic nerves at

P28 (gray bars), P42 (white bars), and P180 (black bars) reveals that cell death

is significantly increased in S63del nerves as compared to WT or other mutant

nerves. TUNEL-positive nuclei were usually elongated, suggesting that they

belonged to Schwann cells (data not shown). Ablation of Chop reduces cell

death to WT levels in S63del/Chop null nerves. Note that cell death in

S63del nerves at P180 is nearly double that of P28, whereas BiP and Chop ex-

pression peak at or before P28 (Figure 4). Error bars, SEM, for P28 and P180,

n = 27, 5, 14, 5, 6, or 6 animals in WT, Chop null, S63del, S63del/Chop null,

S63C, or OE (P0 wild-type overexpressor), respectively; for P42 WT and

S63del n = 3. *p < 0.001 by Student’s t test relative to WT or S63del/Chop null.

(B) Cell number per 403 field was estimated by counting DAPI-stained nuclei

in longitudinal sections of sciatic nerves. Chop ablation does not alter the nu-

clei/field in S63del nerves at either P28 or P180. *p < 0.002, &p < 0.05 by Stu-

dent’s t test relative to WT for n = 9–11 sections (2–3 sections from each of 3–5

animals).

(C) Cell proliferation was estimated by BrdU incorporation in P28 (gray bars)

and P180 (black bars) sciatic nerves from WT and mutant mice. Cell prolifera-

tion is increased in S63del mice at P28 and P180 and in S63del/Chop null mice

at P28. Error bars, SEM, n = 5, 3, 4, 3, WT, Chop null, S63del, S63del/Chop null,

respectively.

(D) Proteolytic cleavage of caspase-12 was analyzed by western analysis of

sciatic nerve lysates from P42 WT, S63del, S63C, and P0 OE or P28 WT,

Chop null, S63del, or S63del/Chop null animals. The amount of the 42 kD ac-

tivated form of caspase-12 (arrowhead) is strongly increased in S63del nerves

and remains after Chop ablation. A representative experiment (of three) is

shown. Numbers indicate Mr.
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2006). Here we show that P0S63del elicits a canonical UPR in

Schwann cells. Biochemical and mutation analyses suggest

that deletion of S63del alters the conformation of P0 b strand

C, leading to global misfolding and BiP binding to mutant P0.

As a consequence, Ire-1, Perk, and ATF6 pathways are acti-

vated, leading to Chop induction that parallels the severity of

neuropathy. Ablation of Chop from S63del mice restores motor

function and reduces demyelination, indicating that the CHOP

arm of the UPR is pathogenetic in S63del neuropathy. The mech-

anism, however, is surprising, for whereas cell death is reduced

in S63del/Chop null nerves, the neuropathy phenotype, the tim-

ing of cell death and the presence of proliferation indicate that

Chop primarily provokes demyelination and only secondarily

cell death. Thus, unlike in oligodendrocytes, where Chop is

part of the adaptive stress response and ameliorates cell death,

in Schwann cells Chop is part of a maladaptive stress response

and produces cell-specific dysfunction not primarily related to

cell death.

The UPR Is Specific to S63del Expression
The UPR has a physiological role in other cells that must coordi-

nately synthesize high levels of proteins and lipids (Ron and Wal-

ter, 2007), and precisely coordinated gene dosage and protein

and lipid synthesis is pivotal for normal myelinogenesis (Saher

et al., 2005; Suter and Scherer, 2003; Wrabetz et al., 2004). Nev-

ertheless, neither the normal upregulation of myelin protein ex-

pression during myelinogenesis nor the overexpression of nor-

mal P0 or other mutant P0s (e.g., P0S63C, P0myc) nor the

expression of mutant PMP22Tr-J (Dickson et al., 2002) activated

the UPR to significant levels (there was a trend toward increased

levels of CHOP mRNA during myelin formation [Figure 4C]). Only

P0S63del, retained in the ER, activated UPR significantly.

Loss of b Strand C Periodicity Causes ER Retention
and Activation of the UPR
We show that ER retention of, and UPR activation by, P0S63del

was not due to the lack of S63 itself, but rather to alteration of

b strand C periodicity. S63 is the first residue of b strand C (Sha-

piro et al., 1996), characterized by an alternating pattern where

the hydrophobic side chains are oriented toward the protein

core and the hydrophilic side chains away. Therefore, deletion

of serine 63 might alter the orientation of the 4 hydrophobic res-

idues of b strand C, causing protein unfolding, as suggested by

the smear produced when S63del is resolved under nonreducing

conditions (Figure 3). Accordingly, deletion of F64, a CMT1B

mutation in human (Ikegami et al., 1996), was predicted to alter

disposition of 3 out of 4 hydrophobic residues. Indeed, F64del

was completely retained in the ER and activated the UPR in trans-

fected cells. Instead, S63F, also associated with a CMT1B muta-

tion in human (Blanquet-Grossard et al., 1995), did not alter traf-

ficking or induce a UPR in transfected cells. Clearly, the UPR is

only one of several ‘‘toxic’’ gain of function mechanisms associ-

ated with Mpz-related neuropathies (Wrabetz et al., 2006).

The amino acid composition and disposition of P0 b strand

C residues are highly similar to the BiP binding domain in immu-

noglobulin (Gething, 1999). Under physiological conditions, BiP

binds UPR transducers IRE-1, PERK, and ATF6, maintaining

them inactive (Ron and Walter, 2007). Binding of accumulated
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misfolded proteins by BiP activates IRE-1 and PERK kinases and

ATF6 processing. Therefore, we suggest that alteration

of P0S63del b strand C exposes a hydrophobic surface that

promotes BiP binding, thereby activating the UPR in S63del

Schwann cells.

UPR Directly Causes S63del CMT1B Neuropathy
CHOP expression correlated well with the level of MpzS63del

and disease severity, suggesting a direct role in the pathology.

Indeed, genetic ablation of Chop restored motor function. Sev-

eral observations support that ameliorated demyelination ac-

counts for the rescue. The number of demyelinated fibers was

reduced by half, and there was a trend toward reduced numbers

of onion bulbs, the hallmark of demyelination in neuropathy. The

F-wave latency—a neurophysiological measure of demyelin-

ation—returned to near normal. Finally, preterminal sprouting

at neuromuscular junctions, typical of demyelination, was res-

cued in S63del/Chop null mice (E.T., F. Court, and L.W., unpub-

lished data; Court et al., 2008).

However, Chop ablation did not rescue either hypomyelination

or reduced NCV. One possible explanation is that they are

caused by P0 overexpression—present in S63del nerves (Fig-

ure 4A) (Wrabetz et al., 2000). Alternatively, other UPR effectors

could alter differentiation (Acosta-Alvear et al., 2007; Tsang

et al., 2007) and cause hypomyelination. For example, sustained

activation of the MEK/ERK signaling pathway is associated with

UPR (Hu et al., 2004), and activated ERK kinases induce

Schwann cell de-differentiation (Harrisingh et al., 2004). In addi-

tion, ablation of Chop only rescued half of demyelination. The

UPR could also produce demyelination independently of

CHOP, as it broadly alters both the transcription and stability

of specific mRNAs (Hollien and Weissman, 2006; Ron and Wal-

ter, 2007) and has global effects on other metastable proteins

and their folding with consequential changes in function (Gidale-

vitz et al., 2006). PMP22 could be considered a metastable

protein (Pareek et al., 1997); alterations of PMP22 or its dosage

produce the most common hereditary demyelinating neuropa-

thy. These possibilities would all fit with a model of pathogenesis

where CHOP produces some demyelination, but other UPR me-

diators provoke further demyelination, as well as other aspects

of the neuropathy.

Although hypomyelination independent of CHOP signaling

may explain in part why ablation of Chop rescues rotarod perfor-

mance but not all of the electrophysiological and morphological

aspects of S63del neuropathy, other factors may intervene.

Rotarod performance is incompletely sensitive, and we analyzed

animals at 4–6 months of age, where demyelination is underway

but axonal damage is limited. In demyelinating neuropathy, dis-

ability correlates best with axonal damage, whereas how early

myelin alterations produce disability is largely unknown—neuro-

muscular junction alterations may play a role (Yin et al., 2004).

CHOP and Demyelination versus Cell Death
What role does cell death play in S63del pathogenesis? Under

conditions of persistent stress and prolonged activation, the

UPR initiates proapoptotic pathways (Rutkowski et al., 2006).

Accordingly, we observed an increased number of cells pro-

grammed to die in S63del mutant mice. Moreover, CHOP func-
tions as a proapoptotic gene both when UPR is activated acutely

(Zinszner et al., 1998) and chronically (Oyadomari et al., 2002).

However, a series of observations in S63del nerves indicate

that UPR and CHOP induce demyelination with secondary cell

death and not vice versa. First, mouse models of neuropathy

due to death of Schwann cells manifest a different phenotype,

congenital hypomyelination (Messing et al., 1992). Instead,

S63del nerves show a classic ‘‘onion bulb’’ neuropathy, where

myelin is formed normally and then becomes unstable and is

destroyed. Second, the rise in TUNEL-positive nuclei is signifi-

cantly delayed relative to CHOP induction (compare Figures 7

and 4) and rises after demyelination is detected. Third, there is

accompanying proliferation and no decrease in cell numbers.

Demyelinating neuropathy from other causes typically manifests

cell death and proliferation at levels similar to S63del nerves

(Sancho et al., 2001). In contrast, the UPR has been implicated

in a number of misfolded protein disorders with primary cell

death, including diabetes (Oyadomari et al., 2002), GM1-gan-

gliosidosis (Tessitore et al., 2004), Pelizeaus-Merzbacher dis-

ease (Southwood et al., 2002), polyglutamine repeat diseases

(Nishitoh et al., 2002), and Alzheimer’s disease (Hoozemans

et al., 2005), where cell death is much more evident (typically

5%–20% as measured by percent pyknotic, tunel-, or caspase

3-positive nuclei; Knapp et al., 1986; McLaughlin et al., 2007;

Tessitore et al., 2004; versus less than 1% here). Finally, CHOP

is usually detected in nonpyknotic Schwann cell nuclei, associ-

ated with normal myelin sheaths (Figure 2), suggesting that

CHOP is associated with other early pathogenetic events, not

late cell death. This provides further support for the idea that

Chop induction in the context of UPR does not guarantee cell

death (Rutkowski et al., 2006).

One must be careful not to equate the effects of UPR and

CHOP; the UPR comprises a complex group of effectors. Does

UPR produce demyelination because the UPR is peculiar in

Schwann cells or because the UPR happens to occur in cells

that form myelin? We favor the latter. First, the UPR activation

is canonical, CHOP target genes are activated, and P0S63del

also activates a UPR in heterologous cells. Instead, the UPR,

or alterations to its mediators, perturb myelination by both oligo-

dendrocytes (Li et al., 2004; Lin et al., 2005; Richardson et al.,

2004; Southwood et al., 2002) and Schwann cells. In contrast,

the diverse effects of Chop ablation in the two cells indicate

opposing roles. CHOP is adaptive in oligodendrocytes of Rump-

shaker mice (Southwood et al., 2002), but maladaptive in

Schwann cells of S63del mice. A comparison of CHOP target

genes, as well as the relative level of activation of the arms

of the UPR, in the two pathological cells could illuminate the

differing response.

So how does the CHOP arm of the UPR perturb S63del

Schwann cells? It is important to note that the UPR and CHOP

are induced during myelin formation, but pathology appears

only later in mature myelin (de- not dys-myelination). Given that

hereditary demyelinating neuropathies are commonly associ-

ated with moderately altered protein dosage (Suter and Scherer,

2003; Wrabetz et al., 2004), an appealing hypothesis is that Chop

could target the program of myelin gene expression, perhaps via

its stoichiometry. This could occur either transcriptionally—

CHOP is a transcription factor that activates a downstream
Neuron 57, 393–405, February 7, 2008 ª2008 Elsevier Inc. 401
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program of gene expression (Marciniak et al., 2004; Wang et al.,

1998)—or posttranscriptionally—CHOP target genes regulate

dephosphorylation of eIF2a and thereby stress-induced

changes in translation of specific mRNAs (Marciniak et al.,

2004). It is notable in this regard that subtle changes in transla-

tional control may exert dramatic effects on myelin homeostasis

in the CNS (Li et al., 2004; Richardson et al., 2004).

Activation of the UPR Occurs during Myelination
and Is Dynamic and Reversible
In S63del nerves, transcriptional induction of BiP and CHOP

begins within the first week of age during myelin formation.

The observation that the UPR is activated before appearance

of pathological symptoms strengthens the idea that the UPR

is pathogenetic in S63del nerves. Furthermore, activation of

the UPR was dynamically linked to continued expression of

MpzS63del. Indeed, when the Mpz mRNA disappeared after

axotomy, P0S63del disappeared quickly, and the UPR was

halted immediately. Given the capacity of Schwann cells to

remyelinate, this suggests that pathology could be reversed

in vivo. Likewise, disease reversibility in vivo has been reported

in other models of progressive neurodegenerative disorders as-

sociated with toxic mutant proteins, including Huntington’s dis-

ease (Yamamoto et al., 2000) and spinocerebellar ataxia type 1

(Zu et al., 2004).

Relevance to Neuropathies and Other Misfolded
Protein Diseases
One-third to one-half of hereditary neuropathies are due to a myr-

iad of small mutations in more than 20 genes (Suter and Scherer,

2003; Wrabetz et al., 2004). How can we develop unifying treat-

ment strategies? Common therapeutic targets will be key, and

alterations in protein trafficking and protein quality control

are common to many hereditary neuropathies. The UPR due to

S63del is pathogenetic, dose dependent, dynamic, and revers-

ible. But elimination of one UPR mediator, Chop, only rescues

half of demyelination—other aspects of UPR probably also con-

tribute to pathogenesis. These data provide a rationale for treat-

ment strategies aimed at eliminating directly the mutant protein,

thereby converting a more severe toxic neuropathy into a milder

neuropathy due to P0 haploinsufficiency. In this light, S63del

mice provide the opportunity for proof of principle, by allelic-spe-

cific RNAi, for example (Wood et al., 2007), that could ameliorate

diseases due to toxic protein quality control responses. Finally,

S63del mice provide an animal model where misfolded proteins

elicit a UPR, causing cellular dysfunction but not immediate

apoptosis. Mechanisms identified in this model may be relevant

to the first events of other misfolded protein diseases, such as

Alzheimer’s or Parkinson’s disease or diabetes.

EXPERIMENTAL PROCEDURES

Animals

All experiments involving animals were performed following experimental

protocols approved by the San Raffaele Scientific Institute Animal Care and

Use Committee. Transgenic mice expressing either P0 with serine 63deleted

(S63del) or substituted by cysteine (S63C) (Wrabetz et al., 2006), as well as

P0 overexpressor (OE), P0 null (Wrabetz et al., 2000), P0-Myc (Previtali

et al., 2000), or Chop null mice (Zinszner et al., 1998) have been previously
402 Neuron 57, 393–405, February 7, 2008 ª2008 Elsevier Inc.
described. All transgenic lines were maintained on the FVB/N background

(Charles River, Calco, Italy). Genotypes were determined as described in the

references above. Where indicated, mice were intraperitoneally injected with

1 mg tunicamycin/g body weight in 150 mM dextrose.

Western Analysis

Sciatic nerves from WT and transgenic mice were dissected, immediately fro-

zen in liquid nitrogen, and analyzed as previously described (Wrabetz et al.,

2000; see Supplemental Data for antibodies). Where indicated, sciatic nerves

were dissected, desheathed (to avoid the blood-nerve barrier), and incubated

with or without 10 mg/ml tunicamycin either overnight or 20 hr in DMEM, 10%

fetal calf serum, and 100 ng/ml nerve growth factor at 37�C in 5% CO2 humid-

ified atmosphere. Samples were then frozen in liquid nitrogen and processed.

To analyze disulfide bond formation, sample buffer lacked 2-mercaptoethanol

and either contained or lacked 200 mM dithiothreitol (DTT). Before loading,

samples were incubated 10 min at room temperature with 0.1 M iodoaceta-

mide. All westerns were repeated at least three times with similar results.

Semiquantitative Reverse-Transcription Polymerase

Chain Reaction Analysis

Sciatic nerves from WT and transgenic mice were immediately frozen in liquid

nitrogen after dissection. Total RNA was prepared with Trizol (Roche Diagnos-

tic GmbH, Germany), and 400 ng of RNA were reverse transcribed using 1 mM

dNTPs, 2.5 ng/ml random examers, 40 units RNasin, and 20 units AMV Reverse

Transcriptase (Promega, WI, USA). Samples were incubated 10 min at room

temperature and 1 hr at 42�C. The same volume of RT products was used to

amplify glyceraldehyde-3-phosphate dehydrogenase (GAPDH), X-box binding

protein (XBP-1) and P0. Digestion of the P0 amplimer for a DpnII polymorphism

distinguished WT FVB/N alleles from BALB/C transgenic allele (Wrabetz et al.,

2000).

Taqman Quantitative PCR Analysis

Quantitative PCR was performed according to the manufacturer’s instructions

(Taqman, PE Applied Biosystems Instruments) on an ABI PRISM 7700 se-

quence detection system (Applied Biosystems Instruments). The relative stan-

dard curve method was applied using WT mice as reference. Normalization

was performed using either 18S rRNA or phosphoglycerate 1 (PGK1) as refer-

ence genes. Target and reference gene PCR amplification were performed in

separate tubes with Assays on Demand (Applied Biosystems Instruments, see

Supplemental Data for assay numbers). Total RNA was prepared as described

above from normal and mutant mice. To measure BiP and P0, 400 ng of RNA

were retrotranscribed as described above. For the other genes, 4 mg of total

RNA were retrotranscribed using the SuperScriptII RNase H� Reverse Tran-

scriptase (Invitrogen, USA) as per the manufacturer’s instructions.

DNA Constructs

A rat cDNA containing the P0 open reading frame (the kind gift of Marie Filbin,

Hunter College, NY, USA) was cloned into the pBlue-Script vector (Stratagene,

La Jolla, CA). The cDNA was amplified by polymerase chain reaction (PCR)

with the following oligonucleotides: forward 50-GGGGAAGCTTATGGCTCCTG

GGGCTCC, reverse 50-GGGGGATCCCGTTTCTTATCCTTGCGAGACTC, con-

taining HindIII and BamHI restriction sites (underlined). The reverse primer does

not include the stop codon. The HindIII-BamHI fragment was cloned in frame

into the corresponding sites of the pDsRed-N1 (Clontech, Palo Alto, CA), gen-

erating the pP0-Red vector. Site-directed mutagenesis was performed via the

QuikChange Site-Direct Mutagenesis Kit (Stratagene, La Jolla, USA) as per the

manufacturer’s instructions, using as template the pP0-Red plasmid (see

Supplemental Data for oligonucleotides). All amplimers were confirmed by

automated sequence analysis.

Cell Transfection

COS-7 or CHO cells were transfected using a standard calcium phosphate pre-

cipitation protocol (Taveggia et al., 1998). Forty-eight hours later, the propor-

tion of live transfected cells was determined as a measure of transfection effi-

ciency. Thereafter, total RNA was extracted, and 400 ng of total RNA were

retrotranscribed as described above. BiP mRNA and 18S rRNA levels were

measured by Taqman analysis. The BiP/18S ratio (B) was normalized for
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transfection efficiency and for any unintended effect of transfection on BiP

activation with the weighting calculation: B = [(X 3T) + (C 3 (1� T))]/[(D 3 R) +

(C 3 (1�R))], where X is the value of BiP/18S induced by the P0mutant, T is the

fraction of cells transfected with P0mutantDsRed fusion, C represents the

endogenous BiP/18S in untransfected cells arbitrarily set to 1, D is the level

of BiP/18S from cells transfected with the sham vector pDsRed, and R is frac-

tion of cells transfected with pDsRed. XBP-1 was analyzed via RT-PCR. Equal

amounts of RT products were used to amplify GAPDH and XBP-1. Where

indicated, cells were treated for 12 hr with 1 mg/ml tunicamycin at 37�C in

5% CO2 humidified atmosphere. In this case, T was considered as 1. Parallel

transfections performed with P0mutant-monoDsRed (nondimerizing) con-

structs reproduced the intracellular localization and XBP-1 splice results

(data not shown).

Immunofluorescence Analysis

Immunofluorescence was performed on cells, sciatic nerves, or teased fibers

from sciatic nerves as previously described (Occhi et al., 2005; Pennuto

et al., 2003; Wrabetz et al., 2006; see Supplemental Data for details and

antibodies).

Behavioral, Morphological, and Electrophysiological Analysis

Motor ability was assessed in 4-month-old mice by rotarod analysis, as previ-

ously described (Wrabetz et al., 2006). The number of demyelinated axons and

onion bulbs were counted blind to genotype in semithin sections stained with

toluidine blue in images acquired with a 1003 objective as described (Quattrini

et al., 1996). We analyzed 3500–5000 fibers in 22–40 fields for each genotype

in 15 WT, 11 chop null, 18 S63del, and 22 S63del-chop null animals. One of us

(A.Q.) was able to distinguish all of the P0S63del from P0S63del/chop null

nerves when blinded to genotype. Semiautomated computer-based mor-

phometry was performed on semithin sections of sciatic nerve to determine

the G ratio and the distribution of fiber diameters for myelinated axons as

described (Bolis et al., 2005). Six to fifteen microscopic fields from nerves of

three to five animals per genotype were analyzed. Electron microscopy was

performed as described (Quattrini et al., 1996). Electrophysiology was

performed as previously described (Bolino et al., 2004).

Bromodeoxyuridine Incorporation and Terminal Deoxynucleotidyl

Transferase-Mediated dUTP-Biotin Nick End Labeling Analysis

WT and transgenic mice were intraperitoneally injected with 100 mg/g body

weight of a 150 mM NaCl solution containing 10 mg/ml BrdU. One hour later,

mice were sacrificed and sciatic nerves were embedded in OCT (Miles) and

snap frozen in liquid nitrogen. Longitudinal 8 mm cryosections were fixed in

cold methanol for 20 min at –20�C, washed in PBS, and incubated 25 min in

2 N HCl. After washing in PBS, specimens were incubated 10 min in 0.1 M

Na2B4O7 (pH 8.5) and 10 min in PBS. Blocking was performed for 30 min in

10% goat serum in PBS. Incubation with primary monoclonal anti-BrdU anti-

body 1:20 (Roche, Switzerland) and secondary goat anti-mouse-FITC 1:50

(Southern Biotech, Birmingham, AL, USA) together with Hoechst 1:1000 was

performed in 0.1% bovine serum albumin and 0.1% Triton in PBS. Specimens

were then rinsed in 1% BSA and 0.2% Triton in PBS and mounted as

described above. TUNEL analysis was performed as previously described

(Feltri et al., 2002).

Supplemental Data

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/57/3/393/DC1/.
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