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The structure of a vortex in the inner crust of a pulsar is calculated microscopically in the Wigner-
Seitz cell approximation, simulating the conditions of the inner crust of a cold, non-accreting neutron
star, in which a lattice of nuclei coexists with a sea of superfluid neutrons. The calculation is based on
the axially deformed Hartree-Fock-Bogolyubov framework, using effective interactions. The present
work extends and improves previous studies in four ways: i) it allows for the axial deformation
of protons induced by the large deformation of neutrons due to the appearance of vortices; ii)
it includes the effect of Coulomb exchange; iii) considers the possible effects of the screening of
the pairing interaction; and iv) it improves the numerical treatment. We also demonstrate that
the binding energy of the nucleus-vortex system can be used as a proxy to the pinning energy of a
vortex and discuss in which conditions this applies. From our results, we can estimate the mesoscopic
pinning forces per unit length acting on vortices. We obtain values ranging between 1014 to 1016

dyn/cm, consistent with previous findings.

I. INTRODUCTION

Pulsars are characterized by the regular emission
of electromagnetic radiation. These stars spin down
steadily, but sudden spin-ups, called glitches, have been
observed. Such events were recorded first in the Vela
pulsar and subsequently in many other stars (see [1] for
a statistical study of the properties of glitches observed
in 141 stars). Soon after the first observations, it was
proposed that the glitch phenomenon was closely asso-
ciated with the existence of a neutron superfluid in the
interior of the star [2], see [3, 4] for a review. According
to the current theoretical understanding of neutron star
structure, the layer extending from a density of about
10−3 fm−3 to 0.04 fm−3, called the inner crust, is com-
posed of a lattice of heavy nuclei immersed in a sea of
free neutrons and electrons [5, 6]. Negele and Vautherin
carried out a seminal study [7] within the Wigner-Seitz
approximation. They determined the optimal radius of
a spherical cell with a nucleus at its center, the number
of protons and of neutrons bound to the nucleus and the
number of unbound neutrons, as a function of the neu-
tron density at the edges of the cell. Their results have
been refined and extended in many subsequent works, see
[8–14] and references therein. Moreover, given the typi-
cal range of temperature expected in the inner crust of
mature neutron stars (from 107 to 109 K, that is from 1
to 100 keV, a very low value with respect to the Fermi
energy ranging from 10 to 100 MeV), neutrons are likely
to be superfluid [15].
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Due to the rotation of the star, the superfluid neutrons
form a (possibly disordered) array of quantum vortices
[16], whose average density is closely linked to the pul-
sar angular velocity via a generalization of the so-called
Feynman-Onsager relation [17]. Anderson and Itoh [18]
proposed that the interaction between the heavy nuclei
at the lattice sites and the vortices can anchor the vor-
tices in particularly energetically favourable positions, a
phenomenon referred to as “pinning”. If this is the case,
the superfluid component cannot follow the regular slow-
down of the crust and rotates faster, becoming a reservoir
of angular momentum. This gives rise to hydrodynamical
lift forces (Magnus forces), which act on the vortex lines
and tend to push them away from their sites. The glitch
phenomenon would then occur when Magnus forces take
over and a catastrophically large number of vortices sud-
denly unpin from their positions, releasing their angular
momentum to the crust.

There are still some unanswered questions regarding
several central aspects of this model. First of all, the
trigger which leads to the collective vortex unpinning is
not well established yet; there are several possibilities
advanced in the literature, like vortex avalanches [18, 19]
or hydrodynamical instabilities [20, 21]. Secondly, it has
been pointed out that the angular momentum contained
in the crust may not be sufficient [22, 23] to explain
glitches, albeit this conclusion is less clear if the statis-
tical uncertainty on the observed glitch activity [24] or
the possible presence of lattice defects [25] are taken into
account. Finally, there is no definitive answer on the
strength of the pinning interaction throughout the inner
crust. The greater the ability of pinning to withstand
the hydrodynamical lift, the higher the amount of an-
gular momentum that the superfluid can store, so that
it is possible to constrain the unpinning threshold (i.e.
the theoretical upper limit of the distribution of pinning
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forces [26]) with observations of large glitches [17].

The microscopic computation of the single-nucleus pin-
ning potential is very challenging and has never been per-
formed in the literature. In fact, existing studies resorted
to the pinning energy [27–29], defined as the energy dif-
ference between two extreme situations: one where the
vortex is on top of the nucleus (nuclear pinning), and
one where the vortex is equidistant between two adja-
cent nuclei in the lattice (interstitial pinning). A nega-
tive (positive) value of this quantity indicates that the
former (latter) situation is energetically favourable.

Different methods have been used to estimate the
single-nucleus pinning potential. Epstein and Baym [29]
used hydrodynamic considerations in combination with
the Ginzburg–Landau theory of superfluidity to compute
the free energy of a nucleus as a function of the distance
from a vortex line, ignoring the internal structure of the
nucleus and using instead schematic expressions for the
kinetic and condensation energies. They found that vor-
tices pin on nuclei in the deeper layers of the inner crust,
while they are repelled in the low-density regions. The
model by Epstein and Baym was later improved [30], pro-
viding estimates of pinning energies obtained by making
use of a semiclassical treatment based on the Local Den-
sity Approximation [27].

The first microscopical quantum calculation was then
carried out by Avogadro et al. [28, 31], based on the so-
lution of the axially symmetric Hartree-Fock-Bogoliubov
(HFB) equations in the Wigner-Seitz approximation for
various densities in the crust. Specifically, it was found
that the nuclear shell structure has relevant effects on the
spatial configuration of the vortex and that pinning oc-
curs only in the less dense regions of the inner crust. The
solution of the HFB equations was carried out assuming
spherical symmetry for the proton density, thus breaking
self-consistency. In the present paper, we remove this
assumption, which was based on the fact that proton or-
bitals are deeply bound. Furthermore, we include the
effect of the Coulomb exchange, which was previously
neglected, and improve the numerical treatment, devot-
ing particular attention to the convergence of our results.
We are then able to present new and more reliable values
of the binding energy and, based on them, we present
our best estimation of the pinning energy. We also show
detailed results for neutron and proton deformation at
different densities. We also study the dependence of our
results on the strength of the pairing interaction, in keep-
ing with the analysis carried out in [27].

Due to the fact that hydrodynamics is non-linear, the
pinning potential is not immediately related to the pin-
ning “landscape” that defines the dynamics of a finite-
size vortex segment [26]. We then estimate the typical
strength of the pinning landscape by taking the mean
value of the pinning force for unit length acting on a
vortex line [32], see also the discussion in [26].

Other recent efforts, based on a microscopic quantal
picture, have also been made. The most significant ad-
vance concerns a three-dimensional dynamical simulation

of the vortex motion, based on the time-dependent su-
perfluid local density approximation (TDSLDA), leading
to an estimate of the force between the vortex and the
nucleus as a function of their separation [33, 34](see also
[35]). Results were obtained for two densities and showed
that the vortex is repelled by nuclei. At the same time, it
was found that the vortex-nucleus interactions induce a
deformation of the nucleus and lead to a bending of the
vortex line shape. These findings represent an impor-
tant confirmation of our results and extend them toward
a complete characterization of the vortex-nucleus inter-
action. On the other hand, TDSLDA computations are
very costly, while we are able to present systematic cal-
culations of the pinning energy with different functionals
and pairing forces and to provide a detailed description
of the nuclear deformation. We also report that the prop-
erties of a quantum vortex were recently studied at finite
temperature in infinite matter using Brussels-Montreal
energy functionals [36].

We begin in Section II by explaining the general fea-
tures of the calculation and giving some details about
the computation of the pinning energy. Our results are
presented in Section III. Finally, in Section IV we give
our closing remarks.

II. METHOD

II.1. General description

In this paper, we expand and improve the work done in
[28] (hereafter referred to as Paper I). There, the authors
approached the problem of pinning energy by solving the
Hartree-Fock-Bogolyubov (HFB) equations in a cylindri-
cal Wigner-Seitz cell of radius RWS and height hWS in
four different configurations. HFB equations (also called
Bogliubov-De Gennes equations) are well suited to study
the pairing properties of quantal inhomogeneous systems,
like the inner crust of a neutron star, where a lattice of
heavy nuclei coexists with a sea of superfluid neutrons.
With this technique both the nuclear potential and the
pairing correlations are treated simultaneously and self
consistently. Explicitly, the HFB equations read

{
(h(x)− λ)ui(x) + ∆(x)vi(x) = Eiui(x)

∆∗(x)ui(x)− (h(x)− λ) vi(x) = Eivi(x)
(1)

where Ei is the quasi-particle energy of level i and ui
and vi are the quasi-particle amplitudes relative to that
level, λ is the chemical potential, ∆(x) is the pairing
field and h(x) = T + UHF is the single particle Hartree-
Fock Hamiltonian, sum of the kinetic term T and the
self-consistent potential UHF .

From the solutions of (1), one can compute the normal
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and abnormal densities of the system

n(x) =
∑
i

|vi(x)|2

κ(x) =
∑
i

ui(x)vi(x)∗
(2)

from which one can find new h(x) and ∆(x) which in turn
give rise to a new set of equations (1) (see Appendix A).
The HFB equations are therefore solved via an iterative
process.

As for the interaction chosen in the HF sector, we
adopt the Skyrme SLy4 and the SkM* parameterizations
(see [37]) and neglect the spin-orbit term, because we ex-
pect that the pinning energy is not significantly affected
by this term (cf. Paper I and our discussion below).

For the pairing field, we start from a neutron pairing
potential, adopting a density-dependent, contact interac-
tion of the form

Vpair(x,x
′) = V0

(
1− η

(
n(x)

0.08

)a)
δ(x− x′) (3)

where V0 = −481 MeV · fm3, η = 0.7 and a = 0.45 have
been used. This leads in turn to the pairing field

∆(x) = −Vpair(x,x′)κ(x) (4)

The adopted parameters, together with a cutoff en-
ergy Ecut = 60 MeV, reproduce the pairing gap of
uniform neutron matter as predicted by a realistic nu-
cleon–nucleon interaction [38], and are the same as those
used in Paper I. We will also perform calculations with
two weaker pairing interactions. We aimed for pairing
gaps reduced by a factor β = 2 and β = 3; we found

V β=2
0 = 432.9 MeV · fm3 and V β=3

0 = 408.85 MeV · fm3.
These interactions are introduced only to have a rough
qualitative assessment of the effects of correlations be-
yond the mean field, which generally lead to a reduction
of the pairing gaps (see [39, 40] for recent reviews). How-
ever, such reductions show a dependence on the neutron
density which is not taken into account by the constant
reduction factors considered here. Nonetheless, we will
still label the results by β = 2 and β = 3.

The pairing interaction has been neglected in the case
of protons since Z=40 is used throughout this work and
this value corresponds to a magic number in our calcula-
tions.

We carry out our calculations in a cylindrical box, so
it is natural to use cylindrical coordinates x = (ρ, z, ϕ).
Eqs. (1) are expanded on a single-particle basis. All
the calculation details are presented in Appendix A. The
pairing field (4) is defined as (Paper I and [41])

∆(ρ, z, ϕ) = ∆(ρ, z) eiνϕ (5)

so that the vortex is created along the z-axis keeping the
cylindrical symmetry. The integer parameter ν can be
interpreted as the number of units of angular momen-
tum carried by each Cooper pair along the z−axis. The

standard solution of the HFB equations corresponds to
ν = 0 and to Cooper pairs coupled to zero angular mo-
mentum while ν = 1 defines an excited solution in which
Cooper pairs of different parity couple to one unit of an-
gular momentum. This solution describes a vortex, as it
gives rise to an azimuthal velocity field V of the form

V (ρ, z, ϕ) = − i~
mnρ

∑
i

v∗i (ρ, z, ϕ)
∂vi(ρ, z, ϕ)

∂ϕ
. (6)

It is noted that nuclear shell effects act quite differently
on the ν = 1 gap, as compared to ν = 0. This point
is discussed at length in Paper I. In particular, one ex-
pects that the spin-orbit interaction, which is neglected in
the present work, tends to shift the energy of the single-
particle pairs involved in the formation of S = 0, ν = 1
Cooper pairs by the same amount (see Fig. 21 in Paper
I).

We have changed considerably the part of the com-
putation relative to protons with respect to Paper I. In
Paper I, the proton density was forced to be spherically
symmetric. This was achieved by taking spherical av-
erages of the cylindrical neutron densities to compute
the proton potential UHFprot at each step of the iterative
process. The reasoning behind this choice was that pro-
tons are deeply bound and one does not expect them to
be much affected by the neutron density deviation from
sphericity. As we will show, this is an accurate approxi-
mation only for the outermost layers of the inner crust.

Summarizing, we have extended and improved the cal-
culations of Paper I as follows:

• we add the Coulomb exchange term in the proton
potential using the Slater approximation.

• we adopt cylindrical symmetry also in the case of
protons.

• we consider, although schematically, the effects as-
sociated with the possible reduction of the pairing
interaction due to screening effects.

• we improve the numerical aspects of the code,
namely the derivation and integration techniques.
Improving the numerical precision is crucial for
computing the pinning energy, as we will show in
the next section.

II.2. Binding and pinning energy

We solve the HFB equations in the following configu-
rations (see Fig. 1 for a sketch):

• Neutron sea (NS): the neutron sea, with neither
a nucleus (Z = 0) nor a vortex (ν = 0);

• Nucleus (Nu): a nucleus (Z 6= 0) with no vortex
(ν = 0), surrounded by the neutron sea;
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• Interstitial pinning (IP): a vortex (ν = 1) with
no nucleus (Z = 0), surrounded by the neutron sea;

• Nuclear pinning (NP): a nucleus (Z 6= 0) and
a vortex (ν = 1) on top of it, surrounded by the
neutron sea.

By comparing the total energies of each configuration,
we computed the binding energy of the vortex onto the
nucleus. This quantity is defined as the difference be-
tween the energy needed to build a vortex on top of a
nucleus and the energy necessary to build a vortex in
uniform matter. Equivalently, the binding energy can be
defined as the energy needed to move the vortex from its
site on top of the nucleus to an infinite distance from it
(see Fig. 1). A negative value means that the favorable
position for the vortex is on top of the nucleus, whilst
a positive value means that the favorable position is far
away from it.

A simple combination of the total energies of each con-
figuration gives the explicit expression of the binding en-
ergy

Eb = ENP + ENS − (EIP + ENu)

− λn
[
(NNP +NNS − (N IP +NNu)

]
(7)

where Ei is the total energy of the specified configuration.
We added a correction term proportional to the neutron
chemical potential λn to ensure that we compare calcula-
tions with the same number of particles, since the vortex,
if present, reduces the number of neutrons N i found in
each cell.

Numerical precision is crucial to compute the binding
energy. The energy terms in (7) range from some hun-
dreds of MeVs up to tens of thousands MeVs as a function
of neutron density in the inner crust. The values of the
nucleus-vortex binding energy, on the other hand, range
from some hundreds of keVs up to tens of MeVs. Even
small numerical errors can have substantial effects on the
final values of the binding energy.

The binding energy is a different quantity with respect
to the pinning energy Ep. The latter is influenced by the
presence of the surrounding nuclear lattice and therefore
we are unable to calculate it directly. Nonetheless, we
can find an estimate through the binding energy.

Epstein and Baym in [29] realized that there is a ki-
netic component to the vortex-nucleus interaction, that
accounts for the amount of superfluid flow displaced by
the nucleus. It reads

Kn(ρ) =
3

2
Ms

(
ζ − 1

ζ + 2

)(
~

2m0ρ

)2

(8)

where m0 is the nucleon mass, Ms is the mass of the
neutron superfluid of density n∞ displaced by a sphere
of radius Rn (i.e., the nuclear radius) and ζ is the ratio of
the nucleus density nn to the neutron superfluid density
n∞. Kn is always positive and it is inversely proportional
to the square of the distance ρ between the nucleus center
and the vortex axis.

On the other hand, the other component of the in-
teraction is of nuclear nature. If we assume that such
nuclear interaction is short-ranged, then after a certain
critical distance ρ∗ it will become negligible, along with
its contribution to the pinning energy. We can estimate
such distance as the sum of the nuclear radius Rn and
the coherence length ξ of the vortex

ρ∗ ∼ Rn + ξ (9)

where ξ = ~2kF /πm0∆, with kF the Fermi momentum.
From our calculations, ξ ranges between 3 and 10 fm
approximately, depending on the density of the neutron
sea.

To compute the pinning energy, we must compare ρ∗

with RWS . We assume that the nuclear contribution to
the vortex-nucleus interaction is negligible for ρ & ρ∗. If
ρ∗ < RWS , we then suppose that at ρ = RWS the vortex-
nucleus interaction is dominated by the kinetic term (8).
Therefore, from the definition of pinning energy, we write

Ep ' Eb −Kn(RWS) (10)

At RWS , the contribution of Kn(RWS) is of the order of
a few tens of keV, so that it usually represents a small
correction to the pinning energy.

If, on the contrary, ρ∗ & RWS , there would still be a
substantial overlap between the vortex and the nucleus
at a distance ρ = RWS . In this case, we are unable
to estimate the non-negligible nuclear component to the
interaction and therefore we cannot provide an estimate
on the pinning energy.

II.3. Computational details

Similarly to Paper I, we present the calculated value
of the pinning energy as a function of the density of the
neutron sea far from the nucleus, n∞. We investigated
eight different density zones, from n∞ = 0.001 fm−3 to
n∞ = 0.038 fm−3. At each density, we have carried out
six sets of calculations, using two different Skyrme mod-
els, namely SLy4 and SkM*, and three different pairing
strengths (marked by the pairing-interaction reduction
factor β). For each set, we iteratively solved two HFB
equations, one for protons and one for neutrons, for each
of the four different configurations.

The neutron chemical potential was chosen so as to re-
produce the external densities predicted in [7] and stud-
ied in Paper I. On the other hand, the proton chemical
potential was adjusted to give the proton number Z = 40
[7].

We took special care in estimating the errors due to
the convergence of the calculations and also those due to
the size of the box, which is essential for our results to
be reliable. Specifically, we adopted the following conver-
gence criterion for the computation of a given configura-
tion: the program halts when the relative total energy
difference between the last and second-last iteration is
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The schematic picture of the four different physical situations needed to cal-
culate the pinning energy: (a) cell with a vortex pinned on a nucleus (the expulsion of the
vortex is in keeping with the quantal results), (b) cell with a nucleus, (c) cell with a vortex,
(d) uniform cell
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FIG. 1: Visual representation of (7). The binding energy is shown as the energy cost to move a vortex from its
position on top of a nucleus to an infinite distance from it.

less than 5× 10−6 for three consecutive iteration cycles.
In some cases, we observed that this criterion was not
stringent enough; we let therefore the computation con-
tinue until the relative energy difference reached 5×10−8

for three consecutive iteration cycles.

After the binding energy was obtained, we computed
the critical distance ρ∗ (9) as well as the kinetic con-
tribution (8) (which within our approximation does not
depend on the box radius). If the criterion ρ∗ < RWS

was met, we were able to compute the corresponding pin-
ning energies via (10); otherwise, we concluded that our
method could not produce a result for the particular pa-
rameter set. In Appendix C we show the values of ρ∗ we
obtained.

III. RESULTS

III.1. Vortex effects on pairing gaps and proton
deformation

In Fig. 2 we compare contour plots of the pairing gaps
associated with the NP (left), Nu (center), and IP (right)
configurations in the (ρ, z) plane, calculated with the
SLy4 interaction for the density n∞ = 0.008 fm−3. One
can see that the gap acquires its asymptotic value for
ρ & 10 fm in the IP configuration, while the presence of
the nucleus distorts the gap profile in the NP configu-
ration so that the vortex enlarges and incorporates the
nucleus, and the gap reaches its asymptotic value only
for ρ & 15 fm. Our results are qualitatively consistent
with those obtained in [33], where the vortex-nucleus in-
teraction was studied with dynamical simulations (see
Fig. 2 in [33], where one can actually observe the vortex
bending to avoid the nuclear region). The gap profiles
for the NP, Nu, and IP configuration along the equator
z = 0 are shown in Fig. 3 for the SLy4 interaction and
the three values of β we have considered. The density
is n∞ = 0.026 fm−3. In all cases, the gap is suppressed
for ρ ≤ 10 fm and rapidly reaches the asymptotic value
corresponding to the given value of β. There is a slight

dependence on the interaction, which essentially depends
on the different values of the effective mass associated
with the SLy4 and with the SkM∗ interaction.

In Fig. 4 we present contour plots in the (ρ, z) plane
of the differences between the density distributions cal-
culated in the NP and in the Nu configuration with the
SLy4 interaction (see also [42]). Upper and lower panels
refer to neutrons and to protons respectively. We have
set the same color scale for both neutrons and protons
and we display results obtained for four different Wigner-
Seitz cells corresponding to varying depths in the inner
crust. Deformation effects increase as a function of den-
sity. The deformation of the nucleus tends to be prolate,
that is, aligning the nuclear density with the axis of the
vortex. In the neutron case, it is possible to observe a
density depletion (circular blue shadow) surrounding the
nucleus (ρ . 7 fm and z . 7 fm). This is an expected
effect of the internal regions of a fermionic vortex (see
Paper I and [36] for more details), that takes place at all
densities and for the three β factors. The only exceptions
are found in the case of the SkM* interaction where one
observes some penetration of the vortex into the nucleus
at the two highest neutron sea densities (not shown in
the figures).

In general, the deformation of the distribution of pro-
tons is similar in shape and magnitude to that of neutrons
(giving rise to variations in the density up to 5-10% in the
case of high-density cells). This can be considered to be
the result of the general tendency of the nucleus to max-
imize the overlap between the distribution of neutrons
and protons. We will assess the effect of the deformation
on pinning energies below.

It is reasonable to think that this trend should continue
as we move to deeper and denser areas of the crust, where
the pasta phase will most likely produce negative pinning
energy, thus giving rise to a hitherto unexplored hybrid
mode of pinning.

Hence, the vortex-nucleus interaction may favor the
appearance of the pasta phase, thought to be present at
higher densities than the ones studied here [43]. More-
over, the appearance of the nuclear pasta is expected to
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FIG. 2: Contour plots of the pairing gaps of the NP (left), Nu (center), and IP (right) configurations.
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FIG. 3: Typical pairing gaps obtained in our calculations for the NP, Nu, and IP configurations, for the SLy4
interactions, and for the three adopted values of β, as a function of the distance from the vortex axis in the z = 0

plane.

FIG. 4: Difference between the densities calculated in the NP and Nu configurations, expressed in fm−3, as a
function of (ρ, z) in a ϕ-constant plane for several neutron sea densities n∞. In the top half, we show neutron

quantities, while in the bottom half proton quantities.
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influence the pinning interaction, with consequences for
the macroscopic hydrodynamic behavior of the superfluid
in the pasta layers [26]. This interesting subject is left for
future studies. The effect of deformation on the pinning
energy will be discussed in the next section.

III.2. Pinning Energies

In Fig. 5 we show our results for the pinning energy as
a function of the neutron sea density n∞ for both SLy4
(straight line) and SkM* (dotted line) interactions. The
corresponding numerical values are reported in Tab. I
and II.

The value of the pinning energy depends considerably
on the value of the interstitial pairing gap, which could
be much lower than the bare gap (especially at high den-
sities) due to screening effects. For this reason, we have
carried out calculations with β=2 and 3.

We first point out that with β = 3 and the SLy4 inter-
action we find ρ∗ > RWS at the highest density, so the
criteria we explained in II.2 are not met. Therefore our
method cannot produce a pinning energy value for that
point.

Generally, the pinning energy has the same qualitative
behavior for both interactions, with SkM* systematically
predicting higher values. At the lowest densities, the
pinning energy is slightly negative and therefore nuclear
pinning is favored. On the other hand, the pinning en-
ergy grows considerably with n∞ up to about n∞ = 0.02
fm−3, implying that vortex lines are repelled at inter-
mediate densities. At the highest densities, the pinning
energy either becomes roughly stable, as in the case of
SkM*, or decreases, as for SLy4, where it even becomes
negative again for β = 2 and 3.

At a given density the pinning energy decreases as a
function of β. This can be understood, considering that
the vortex radius (expressed in terms of its coherence
length ξ) grows with n∞ and with β, as a larger value of
β corresponds to a lower pairing field ∆. We have pre-
viously seen that the vortex tends to incorporate the nu-
cleus. This costs less energy if the vortex radius is larger,
that is, for larger values of β, because the deformation
needed is clearly less significant. The nuclear pinning
configuration, while still being not convenient, becomes
less unfavorable and the pinning energy decreases con-
siderably with β.

We carefully checked the dependence of our results on
the radius of the Wigner-Seitz cell. We have found that
generally, the computed pinning energies tend to stabilize
for RWS larger than 35 fm. For each set of parameters,
we performed three calculations for ρWS= 38 fm, 40 fm,
42 fm, and the same height (hWS = 40 fm). The result-
ing pinning energies differ by less than ∼ 10 keV at the
lowest density we have considered, that is, n∞ = 0.001
fm−3 and by less than 300 keV at n∞ = 0.017 fm−3. For
a given density, we will report the value averaged over
the three boxes. We have found that at the two largest

n∞ [fm−3] Ep [MeV] (SLy4)
β = 1 β = 2 β = 3

0.001 −0.72 −0.48 −0.27
0.002 −0.91 −0.75 −0.70
0.004 −0.89 −0.97 −0.93
0.008 2.73 0.40 −0.43
0.011 3.01 0.63 −0.26
0.017 10.00 3.90 1.06
0.026 11.78 3.77 −0.94
0.037 9.85 −1.49 -

TABLE I: Pinning energy and its uncertainty for eight
different values of the neutron sea density. We show our
results with the SLy4 interaction for the three different

values of β. The highest density point with β = 3 is
absent because it does not satisfy our requirement

ρ∗ > RWS (see section II.2).

n∞ [fm−3] Ep [MeV] (SkM*)
β = 1 β = 2 β = 3

0.001 −0.19 −0.30 −0.27
0.002 −0.10 −0.35 −0.50
0.004 1.63 0.18 −0.23
0.008 7.47 2.72 1.19
0.011 8.06 3.41 1.68
0.017 11.12 5.81 3.59
0.026 19.07 10.31 6.47
0.037 18.69 12.07 6.43

TABLE II: Pinning energy and its uncertainty for eight
different values of the neutron sea density. We show our
results with the SkM* interaction for the three different

values of β.

computed densities, namely n∞ = 0.026 fm−3 and n∞
= 0.037 fm−3, the convergence pattern is more compli-
cated, and we considered also larger values of RWS , up to
48 fm. The HFB self-consistent process for the NP con-
figurations can lead to two solutions having a different
pairing and density spatial dependence, according to the
box radius, and differing from each other by about 1.5
MeV. For these two densities, the boxes displaying the
deepest minima were selected, in keeping with the varia-
tional nature of our approach. The resulting uncertainty
on the pinning energy is equal to about 500 keV.

We conclude this section comparing our results with
those reported in Paper I in Fig. 6. The pinning ener-
gies computed with the SLy4 and the SkM* interaction
are shown in the left and right panel respectively. Only
the value β = 1 was considered in Paper I. The results
obtained for the SkM* interaction are similar, aside from
a sharp fall of the pinning energy in the second den-
sity zone. On the other hand, for SLy4 the situation is
rather different: the new results are more regular and
grow monotonously with n∞, while the previous ones
present a distinct oscillatory behavior. Quantitatively,
the difference with the results of Paper I is substantial at
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FIG. 5: Pinning energies as a function of the neutron sea density n∞, for three values of β and for both SLy4
(straight line) and SkM* (dotted line) interactions. The highest density point with SLy4 and β = 3 is absent

because it does not satisfy our requirement ρ∗ > RWS (see section II.2).
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FIG. 6: Comparison between our new results (blue dots) on the pinning energy and the results of Paper I [28]
(purple triangles). As previously, we show the values as a function of the exterior neutron sea density n∞ for both

Sly4 (left) and SkM* (right) interactions and for β = 1.

the largest densities, where the present pinning energies
are larger by 5-10 MeV.

To study these differences in more detail, in Fig. 7
we consider first the effect of proton deformation and of
Coulomb exchange, which were not taken into account in
Paper I. Proton deformation decreases the energy of the
NP configuration; on the other hand, it does not affect
the Nu configuration, in which we consider a spherical,
closed shell nucleus. As a consequence (see Eq. (7))
the pinning energy decreases, and therefore this effect
cannot explain why the pinning energies are larger than
those calculated in Paper I. In any case, one sees in Fig.
7 (see in particular the inset) that this effect is signifi-
cant only for the largest densities, where it amounts to
about 600-700 KeV. Neglecting deformation but includ-

ing Coulomb exchange, on the other hand, decreases the
pinning energy by at most about 100 keV.

We then conclude that the differences with Paper I
must be related to the improvements in the computa-
tional algorithms. This point is further considered in
Appendix B.

III.3. Mesoscopic pinning forces

The pinning energy contains information about the mi-
croscopic interaction between a vortex and a single nu-
cleus. Nonetheless, inner crust vortices are much longer
than the lattice spacing and are expected to interact with
many pinning sites [26, 32], giving rise to pinning at the
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highest densities are shown in more detail in the inset.

mesoscopic scale (an intermediate scale in between the
lattice spacing and the typical distance between two vor-
tices in a pulsar).

Seveso et al. [32] found a simple prescription to es-
timate the mesoscopic pinning force per unit length fL
acting on a vortex segment of length L, which is a bet-
ter representative of the vortex-lattice interaction than
the single-nucleus pinning energy, see the discussion in
[26]. They found an analytic approximation where the
force per unit length fL = fL(Ep, RWS , L) is a function
of the pinning energy Ep and the dimension of the WS
cell RWS . This function depends also on the parameter
L, the typical length over which a vortex filament in the
inner crust could be approximated as straight. Finally,
the estimate of fL(Ep, RWS , L) also depends on the ge-
ometrical properties of the lattice and on whether there
is nuclear or interstitial pinning. However, the authors
found that this distinction has a low impact on the pin-
ning strength results, a result that is confirmed also by
the dynamical simulations of an ensemble of vortices in
complex pinning landscapes performed in [26, 44].

By following the procedure in [32], we can calculate
new estimates for the typical pinning force for three dif-
ferent values of the parameter L that defines the scale
on which a vortex can be considered straight (L =
1000, 2500, 5000 RWS , see [32]). Our results are shown
in Fig. 8. We plot the absolute value of the force per
unit length; where it is marked with dots, it is repulsive,
otherwise, it is attractive where marked by circles. The
mesoscopic pinning force values are of the same order of
magnitude as the results of [32]: the force per unit length
ranges from ∼ 1013 dyn/cm up to ∼ 1016 dyn/cm.

While most of the remarks present in [32] are valid for
our results too, we briefly underline the following aspect.
The force decreases as the vortex length increases. Note
that for an infinitely long and rigid vortex, the pinning
force should vanish. In fact, if the vortex were to move,

the number of nuclei with which it interacts would not
change[32, 45].

We can also compare our findings with the results of
[33], which are obtained through a different method. In
particular, from inset (b) of Fig. 3 of their work, we can
see that they found a repulsive force of the order of ∼ 0.5
MeV/fm when the vortex-nucleus distance is approxi-
mately 20 fm; after conversion to appropriate units, this
is broadly consistent with our results.

IV. CONCLUSIONS

Microscopic pinning energies are a crucial ingredient
in the dynamics of vortex-mediated pulsar glitches. The
stronger the pinning of a vortex line, the larger the
amount of angular momentum that can be stored in the
inner crust in the form of a persistent (dissipationless)
neutron current, which can then be potentially released
in a glitch [4].

Most of the past estimates of the pinning energies re-
lied on a classical or semiclassical picture and had to use
significant approximations to describe nuclei. Working in
the microscopic HFB framework solves these problems,
as was done in Paper I [28]. We have expanded and
improved the latter work in four respects: we have i) al-
lowed for the axial deformation of protons; ii) included
the effect of the Coulomb exchange; iii) considered, al-
though schematically, the effects of the screening of the
pairing interaction; and iv) improved the numerical treat-
ment giving special attention to the convergence of our
results. Based on these improvements, we found new and
more reliable results on the pinning energy.

Our results show that nuclei attract vortices for the
lower external neutron sea densities, while the situation
is the opposite at higher densities unless the pairing gap
is strongly screened. From our estimates of the pinning
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FIG. 8: Absolute value of the pinning force per unit length as a function of the neutron sea density n∞, for both
SLy4 (upper half) and SkM* (lower half) interactions. Where it is attractive, we used a hollow circle, while where it

is repulsive we used a dot. The values have been found using the prescription in [32] for three different
maximum-straight lengths L = 1000 (straight line), 2500 (line-dot), and 5000 (dotted line) RWS . We plotted the
results for the three different values of β used. As for the corresponding pinning energy, the highest density point

with SLy4 and β = 3 is absent because it does not satisfy our requirement ρ∗ > RWS (see section II.2).

binding energy, we then extracted the typical force per
unit length acting on a vortex, consistently with the pro-
cedure developed in [32]. This force defines a theoretical
upper limit on the depinning threshold [26] and, accord-
ingly, an upper limit on the glitch amplitude in general
relativity [17]. Therefore, in Sec. III.3 we have checked
that our mesoscopic pinning forces are sufficiently large
to be consistent with observations of giant glitches in the
Vela pulsar.
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Appendix A: Numerical details

Within the HF approximation, one can obtain an ex-
plicit expression for the self-consistent potential of the

Skyrme potential

h(x) = −∇ ~2

2m∗q(x)
∇+ Uq(x) + δq,pVC (A1)

where q can stand for p (protons) or n (neutrons). Re-
membering that nq and τq are the density and the ki-
netic density of either protons or neutrons, and that
n = np + nn and τ = τp + τn, we write the terms in
(A1) following [37]. The effective mass m∗q is

~2

2m∗q(x)
=

~2

2mq
+

1

8

[
t1(2 + x1) + t2(2 + x2)

]
n(x)

−1

8

[
t1(1 + 2x1) + t2(1 + 2x2)

]
nq(x)

(A2)
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the self-consistent potential Uq reads

Uq(x) =
1

2
t0

[
(2 + x0)n+ (1 + 2x0)nq

]
+

1

24
t3

{
(2 + x3)(2 + α)nα+1−

(2x3 + 1)
[
2nαnq + αnα−1(n2p + n2n)

]}
+

1

8

[
t1(2 + x1) + t2(2 + x2)

]
τ+

1

8

[
t2(1 + 2x2)− t1(1 + 2x1)

]
τq

+
1

16

[
t2(2 + x2)− 3t1(2 + x1)

]
∇2n

+
1

16

[
t2(1 + 2x2) + 3t1(1 + 2x1)

]
∇2nq

(A3)

Lastly, the Coulomb potential, with the Slater approxi-
mation for the exchange part, reads

VC(x) = e2

(∫
np(x

′)d3x
′

|x− x′|
−
(

3

π

) 1
3

np(x)
1
3

)
(A4)

In the code, we neglect the spin-orbit interaction, taking
into account the spin simply with a degeneracy factor
g = 2.

Each term of the potentials contributes to a term of
the energy density of the system HHF (x), which in turn
is subdivided into different components

HHF = K +H0 +H3 +Heff +Hfin +HC (A5)

where each term reads

K =
~2

2m
τ

H0 =
1

4
t0

[
(2 + x0)n2 − (2x0 + 1)(n2p + n2n)

]
H3 =

1

24
t3n

α

[
(2 + x3)n2 − (2x3 + 1)(n2p + n2n)

]
Heff =

1

8

[
t1(2 + x1) + t2(2 + x2)

]
τn

+
1

8

[
t2(2x2 + 1)− t1(2x1 + 1)

]
(τpnp + τnnn)

Hfin =
1

32

[
3t1(2 + x1)− t2(2 + x2)

]
(∇n)

2

− 1

32

[
3t1(2x1 + 1) + 3t2(2x2 + 1)

] [
(∇np)2 + (∇nn)

2
]

HC = e2

(
np
2

∫
np(x

′)d3x
′

|x− x′|
− 3

4

(
3

π

) 1
3

np(x)
4
3

)
(A6)

We solve (1) in a cylindrical box with height hbox and

radius ρbox. We search for a solution expanded on a
single-particle basis so that the amplitudes uqm(ρ, z, ϕ)
and vqm(ρ, z, ϕ) for the quasi-particle level q with pro-
jection of angular momentum along the z-axis m are

uqm(ρ, z, ϕ) =
∑
nl

Unlqmfnm(ρ)gl(z)e
imϕ

vqm(ρ, z, ϕ) =
∑
nl

V nlqmfnm−ν(ρ)gl(z)e
i(m−ν)ϕ

(A7)

On the ρ axis, functions fnm(ρ) are the solution of the
Schrödinger equation for free particles

− ~2

2m0

(
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+
m2

ρ2

)
fnm(ρ) = enmfnm(ρ)

(A8)
where m0 is the bare nucleon mass and the index n is the
number of nodes of function fnm(ρ) on the ρ axis.

On the z axis, functions gl(z) are normalized plane
waves

gl(z) =

√
2

hbox
sin

(
kl

(
z +

hbox
2

))
, kl =

π

hbox
,

2π

hbox
, . . .

(A9)
so that we have

− ~2

2m0

(
∂2

∂z2
+

1

ρ

∂2

∂ϕ2
+

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

))
fnm(ρ)gl(z)e

imϕ =(
enm +

~2k2l
2m0

)
fnm(ρ)gl(z)e

imϕ

(A10)

As for the boundary condition, each single-particle
function vanishes at the edge of the box.

To solve (1), we project it onto generic basis states
|mi, ni, li〉 = |αi〉. Therefore our system of equations
becomes, in matrix form(

〈α2|h− λ|α1〉 〈α2|∆|α1〉
〈α2|∆∗|α1〉 − 〈α2|h− λ|α1〉

)
(A11)

Since h depends only on the density, and the density does
not depend on the azimuthal angle ϕ, it holds

〈m2, n2, l2|h|m1, n1, l1〉 = δm1,m2
〈n2, l2|h|n1, l1〉 (A12)

On the other hand, ∆ = ∆(ρ, z)eiνϕ. It follows

〈m2, n2, l2|∆|m1, n1, l1〉 = δm1,m2+ν 〈n2, l2|∆(ρ, z)|n1, l1〉
(A13)

We can now rewrite (1) explicitly. From (A1) and (5),
we find
∑
n2l2

(
hmn1l1n2l2 − λ

)
Uqmn2l2

+ ∆m
n1l1n2l2V

qm
n2l2

= EqmUqmn1l1∑
n2l2

∆m
n1l1n2l2U

qm
n2l2
−
(
hmn1l1n2l2 − λ

)
V qmn2l2

= EqmV qmn1l1

(A14)
where
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hmn1l1n2l2 = 2π

∫ hbox

0

2dz

∫ ρbox

0

ρ dρ

{
fn2m(ρ)gl2(z)

(
U(ρ, z) +

(
m0

m∗(ρ, z)

)(
en1m +

~2k2l1
2m0

)
− λ

)
fn1m(ρ)gl1(z)

+ fn2m(ρ)gl2(z)

(
∂

∂ρ

(
~2

2m∗(ρ, z)

)
· ∂fn1m(ρ)

∂ρ

)
gl1(z) + fn2m(ρ)gl2(z)

(
∂

∂z

(
~2

2m∗(ρ, z)

)
· ∂gl1(z)

∂z

)
fn1m(ρ)

}
(A15)

and

∆m
n1l1n2l2 = 2π

∫ hbox

0

2dz

∫ ρbox

0

ρdρ (fn2m−ν(ρ)gl2(z)∆(ρ, z)fn1m(ρ)gl1(z)) (A16)

Since protons and neutrons feel different self-consistent
potentials (A3), they give rise to two systems (A14).
From the solution of such systems, we then compute new
densities, which we can use to write a new set of equa-
tions (A14). This iterative process stops once the relative
energy difference between subsequent iterations is lower
than an appropriate value. Since protons are confined in
the nucleus, the dimension of their box is smaller, fixed
at 15 fm: so that it’s big enough to contain all the pro-
tons but small enough to shorten the calculation times.
Finally, we do not consider proton pairing.

Appendix B: Numerical Test

We test the accuracy of our axially deformed HFB code
by applying it to the spherical nucleus 40Ca and compar-
ing the results with the those obtained with the spherical
code hfbcs-qrpa [46]. For this test, we use the SLy4 in-
teraction without the spin-orbit terms.

In Table III we show the total energy, divided among
its contributions, as listed in (A6); the only exception
being E12, which is defined as E12 = Efin + Eeff . The
relative difference between the hfbcs-qrpa results and
our program amount to 0.1-0.3%.

In Table VI we list the single-particle energy levels of
neutrons and protons. We see that the present code re-
produces the degeneracy of the Levels with the same val-
ues of the angular momentum l within a few keVs, while
deviations of the order of 100 keV are found in the orig-
inal code.

Appendix C: ρ∗ criterion

We show here the values of the critical distance
ρ∗ = RN + ξ (see eq. (9)) for the two adopted
Skyrme parametrizations and for three values of the gap-
reduction factor β.

We observe that the value of ρ∗ is mostly determined
by the pairing gap. As a consequence, ρ∗ has a minimum
at intermediate densities, where the pairing gap reaches
its maximum value.

TABLE III: All contributions to the total energy (Etot).
Values are expressed in MeV. δE is the relative energy
difference (in percentage) between each value and the
standard HF equivalent. We divided the energy in its

main contributions, as in (A6), except for E12, which is
defined as E12 = Efin +Eeff . The interaction used was
SLy4 and the spin-orbit terms were neglected, as well as

the Coulomb exchange potential.

Ref. [46] Present work δE(%)
K 640.21 638.93 0.1
E0 −3716.80 −3707.01 0.3
E3 2398.00 −2391.19 0.3
E12 279.59 278.83 0.3
EC 78.94 78.72 0.3
Etot −320.03 −319.33 0.2
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Neutrons Protons
Ref. [46] Present work Ref. [46] Present work

2s lz = 0 −16.95 −16.889 −9.48 −9.459
lz = 2 −18.85 −18.785 −11.40 −11.361
lz = 1 −18.85 −18.786 −11.40 −11.362

1d lz = 0 −18.85 −18.789 −11.40 −11.371
lz = −1 −18.85 −18.786 −11.40 −11.362
lz = −2 −18.85 −18.785 −11.40 −11.361
lz = 1 −33.21 −33.184 −25.29 −25.282

1p lz = 0 −33.21 −33.182 −25.29 −25.277
lz = −1 −33.21 −33.184 −25.29 −25.282

1s lz = 0 −47.82 −47.799 −39.36 −39.356

TABLE IV: Energies of each single particle level, both for protons and neutrons, expressed in MeV.
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n∞ [fm−3] RWS [fm] ρ∗ [fm] (SLy4)
β = 1 β = 2 β = 3

0.001 43.7 11.8 16.3 21.0
0.002 41.5 11.9 16.0 20.0
0.004 38.8 11.4 14.2 16.7
0.008 33.7 11.1 13.1 14.9
0.011 31.8 11.2 13.1 14.7
0.017 28.9 11.6 13.6 15.3
0.026 25.6 12.5 15.0 17.2
0.037 21.4 14.5 18.5 21.7

TABLE V: Critical distance ρ∗ from our calculations
with the SLy4 Skyrme parametrization. For β = 3, the
value of ρ∗ is comparable to the dimension of the WS
cell; therefore our method cannot estimate the pinning

energy for this case.

n∞ [fm−3] RWS [fm] ρ∗ [fm] (SkM*)
β = 1 β = 2 β = 3

0.001 43.7 11.3 15.9 20.6
0.002 41.5 11.7 16.3 21.0
0.004 38.8 11.5 13.9 19.7
0.008 33.7 10.7 12.7 14.2
0.011 31.8 10.7 12.4 13.9
0.017 28.9 10.7 12.4 13.8
0.025 25.6 11.2 12.9 14.3
0.038 21.4 12.3 14.0 14.0

TABLE VI: Critical distance ρ∗ from our calculations
with the SkM* Skyrme parametrization.
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