
Neurocomputing 520 (2023) 152–170
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Deep neural networks compression: A comparative survey and choice
recommendations
https://doi.org/10.1016/j.neucom.2022.11.072
0925-2312/� 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail addresses: giosue.marino@studenti.unimi.it (G.C. Marinó), alessandro.

petrini@unimi.it (A. Petrini), dario.malchiodi@unimi.it (D. Malchiodi), marco.
frasca@unimi.it (M. Frasca).
Giosué Cataldo Marinó, Alessandro Petrini, Dario Malchiodi, Marco Frasca ⇑
Dipartimento di Informatica, Università degli Studi di Milano, Via Celoria 18, 20133 Milano, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 22 March 2022
Revised 6 September 2022
Accepted 21 November 2022
Available online 25 November 2022
Communicated by Zidong Wang

Keywords:
CNN compression
Connection pruning
Weight quantization
Weight sharing
Huffman coding
Succinct Deep Neural Networks
The state-of-the-art performance for several real-world problems is currently reached by deep and, in
particular, convolutional neural networks (CNN). Such learning models exploit recent results in the field
of deep learning, leading to highly performing, yet very large neural networks with typically millions to
billions of parameters. As a result, such models are often redundant and excessively oversized, with a
detrimental effect on the environment in terms of unnecessary energy consumption and a limitation
to their deployment on low-resource devices. The necessity for compression techniques able to reduce
the number of model parameters and their resource demand is thereby increasingly felt by the research
community. In this paper we propose the first extensive comparison, to the best of our knowledge, of the
main lossy and structure-preserving approaches to compress pre-trained CNNs, applicable in principle to
any existing model. Our study is intended to provide a first and preliminary guidance to choose the most
suitable compression technique when there is the need to reduce the occupancy of pre-trained models.
Both convolutional and fully-connected layers are included in the analysis. Our experiments involved two
pre-trained state-of-the-art CNNs (proposed to solve classification or regression problems) and five
benchmarks, and gave rise to important insights about the applicability and performance of such tech-
niques w.r.t. the type of layer to be compressed and the category of problem tackled.
� 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The methodology behind deep neural networks (DNNs) dates
back to more than forty years ago. However, the availability of ded-
icated hardware (such as GPUs or TPUs) and of huge datasets
recently allowed to maximize the performance of several DNN-
based predictors, setting in practice the state-of-the-art for several
problems of image processing, financial forecasting, and so on.
Convolutional neural networks (CNNs) played a key role in this
advancement, and several pre-trained models, like for instance
AlexNet [1] and VGG16 [2], to mention earlier works, or T5, pro-
posed in the context of natural language processing [3], are avail-
able as base models for the applications of transfer learning
techniques [4,5]. Such models are often overparameterized [6]
and have a considerable memory footprint: for instance, the above
mentioned VGG16 demands around 500 MB, whereas T5 (variant
11B) requires about 20 GB. Their ever-increasing size has given rise
to major challenges, including a critical ascent in energy
consumption and its detrimental effect on the environment [7],
the need of trustworthy artificial intelligence systems, i.e., systems
functioning in the most environmentally friendly way possible
during both development and deployment (ALTAI guideline 6)
[8], and the limitation or even the unfeasibility of their on-device
training and inference on low-resource devices, e.g., an edge device
with limited computational resources and battery life [9].

As a matter of fact, the need of space-conscious models is conse-
quently emerging in multiple machine learning applications [10].
Plenty of approaches have been proposed in the last decade to
tackle this problem, ranging from methods which adopt learning
strategies directly producing succinct neural networks (see, e.g.,
[11,12]), to techniques aiming to appropriately compress existing
models. Unfortunately, most of the proposed methodologies in this
field are application- or model-specific, thereby making rather dif-
ficult to identify the approach or the combination of compression
methods most suitable for a given problem and a deep neural
model specifically designed to solve it. The purpose of this work
is to try to identify some consolidated trends that help practition-
ers in selecting the most appropriate way to compress their
pre-trained networks. To this end, we focus on the post-training
compression, that is the problem of reducing the computational

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.11.072&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2022.11.072
http://creativecommons.org/licenses/by/4.0/
mailto:giosue.marino@studenti.unimi.it
mailto:alessandro.petrini@unimi.it
mailto:alessandro.petrini@unimi.it
mailto:dario.malchiodi@unimi.it
mailto:marco.frasca@unimi.it
mailto:marco.frasca@unimi.it
https://doi.org/10.1016/j.neucom.2022.11.072
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
resources needed by existing CNNs while possibly preserving their
accuracy. This choice is motivated by the rapid increase of the
number of pre-trained CNNs made publicly available in various
application contexts, and by the fact that frequently such models
are heavily redundant [13]. In doing so, we focus on structure-
preserving compression methods, thus excluding all approaches,
e.g., knowledge distillation [14] or skeletonization [15], that change
the topology of the network (number of layers, neurons, filters,
channels, and so on). Not altering the model structure best suits
the case of post-training compression, requires no prior knowledge
about the interdependence between the different layers in the net-
work, and does not represent a limitation, as other compression
approaches varying the network topology can be applied only in
earlier stages. Moreover, there are some specific network struc-
tures which cannot easily undergo to layer/filter/channel elimina-
tion (for instance, those forming residual blocks).

That being said, the vast domain of structure-preserving CNN
compression methodologies can be roughly arranged into three
main categories: connection pruning, weight quantization, and
(weight) matrix/tensor low-rank decomposition. Specifically, in
addition to standard magnitude-based connection pruning we
examined four top-performing quantization methods, four variants
of them, and a low-rank factorization method recently proposed to
compress fully-connected (FC) layers in CNNs, by combining both
sparsity and singular value decomposition. The ultimate aim is to
extensively compare, in terms of accuracy and compression ratio,
the effectiveness of each methodology in relation to the layer type,
the problem category (classification or regression), and the data
characteristics. To the best of our knowledge, this is the first study
investigating several CNN compression techniques not for survey
purposes, but rather for detecting their relevant and specific fea-
tures in relation to the type of problem, data and model to which
they are applied, so as to assemble a vademecum for users who
need to reduce the computational demand of their deep neural sys-
tems. Accordingly, we included in our experimental comparison
two publicly available CNNs and five heterogeneous benchmark
datasets: respectively, three are related to classification and the
remaining two to regression. Although having evidence only in
relation to the considered data, problems and neural models, our
experiments:

(i) provide important indications about the behaviour of indi-
vidual compression schemes when applied both to convolu-
tional and FC layers,

(ii) give some important clues for the choice of the compression
design in relation to a specific application, and

(iii) can serve as a reference for who is approaching this field for
the first time.

In particular, we have initially found that quantizing globally
rather than by individual layers typically yields a higher compres-
sion rate, and in most cases the same or higher accuracy. This is
independent of the layer type and the considered task. On the
other side, our experiments suggest that it is not convenient to
apply weight quantization to convolutional layers (mainly for clas-
sification problems) and that some quantization methods some-
times show unstable behaviour, thus discouraging their
application under specific conditions (related to quantization level,
problem, and layer type). On FC layers, instead, the application of
weight pruning along with quantization is always convenient
when the layer topology allows a relatively high pruning level.
On such layers, low-rank factorization is a faster and valid alterna-
tive to pruning/quantization methods, but only on classification
problems. In terms of absolute performance, our results corrobo-
rate those obtained in previous studies, namely that it is possible
to sensibly reduce the model occupancy, up to around 20� in
153
our case, while not worsening or even improving the baseline per-
formance. Finally, our contribution also includes a public reposi-
tory containing instructions on how to apply the compression
techniques described in the paper also to CNNs and/or datasets
not included in this study, thus allowing generic users to approach,
design and execute the appropriate compression scheme for their
own models.

For sake of readability, we summarize here the notation
adopted henceforth. A matrixWo 2 Rn�m is used to denote the con-
nection weights of a generic network layer (flattened in case of
tensors) with n input and m output neurons, whereas its com-
pressed version, resulting from the application of a given compres-
sion scheme, is denoted by W 2 Rn�m. Symbols wo and w will
denote generic entries of Wo and W , respectively. The occupancy

ratio ofW is defined as w ¼ sizeðWÞ
sizeðWoÞ, where sizeðxÞ denotes the mem-

ory size of x. A value w < 1 means that the compressed matrix
occupies less than the original one. For instance, w ¼ 0:1 means
that the compressed matrix needs just 10% of the storage space
of its uncompressed counterpart. When it will be more appropriate
for the discussion, we will refer to the compression ratio, that is the
inverse of w. Boldface and italic boldface will be used for matrices
and vectors (e.g., W and x), while j � j will be an abstract cardinality
operator returning the length of a string or the number of elements
in a vector. The log function refers throughout the manuscript to
the binary logarithm, while for sparsity coefficient of a matrix we
mean the ratio of the number of its null elements over the total
number of entries. Finally, note that in the general context of neu-
ral networks compression the terms DNN and CNN are often used
interchangeably. Henceforth we almost always use the latter to
highlight the fact that our study is extended to convolutional
models.

The paper is organized as follows: Section 2 is dedicated to the
related works, while Section 3 describes the compared compres-
sion techniques. Section 4 illustrates the experimental comparison
and the obtained results. Some concluding remarks end the paper.

2. Related work

The main studies belonging to the considered categories of
structure-preserving CNN compression methods, namely connec-
tion pruning, weight quantization, low-rank matrix and tensor
decomposition, are separately described hereafter, including tech-
niques based on weight sharing in the broader category of weight
quantization. For the sake of completeness, the main structural
compression methods are also sketched in Section 2.4. The litera-
ture abounds with thorough reviews of compression methods for
NNs: the interested reader can refer for instance to [16,17].

2.1. Connection pruning

Connection pruning is likely the most common technique to
lower the number of parameters in a pre-trained network (and
likely also the oldest one, as it dates back to 1990, see for instance
[18]). Pruning consists in eliminating connections deemed as irrel-
evant w.r.t. the overall network behavior, while clamping the
weight matrix dimension (differently than in structural compres-
sion, see Section 2.4). Libraries handling sparse matrix multiplica-
tion (SM) can be subsequently exploited to take full advantage of
the memory reduction. However, SM tends to be slower than its
dense counterpart; as a consequence, structural compression is
often applied along with connection pruning. The simplest pruning
strategy involves setting a threshold that decides which connec-
tions are removed: typically, those whose weights are in absolute
value lower than the threshold are pruned [19]. The threshold
can be layer-specific, or it can be set globally for the whole



Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
network. This criterion is often referred to as magnitude-based
pruning, and it involves a subsequent fine-tuning (retraining) of
the remaining weights. In another large class of pruning
approaches, regularization terms (e.g., using L1 or L2 norms) are
applied to drive the learning algorithm to output a network in
which several weights have negligible values, so that pruning can
be applied as a straightforward post-training step [20]. Connection
pruning has also been performed via alternative optimization
strategies, such as genetic algorithms [21] and particle swarm opti-
mization [22]. The benefit of these techniques is that weights
removed at first can be reintroduced later on; notwithstanding,
their high complexity allows their application only to CNNs of lim-
ited size.
2.2. Weight quantization

In neural networks, quantization refers to the process of fixing
the number of bits used in order to represent weights, activation
or gradient values, with the effect of saving space. For instance,
when using single-precision floating point (FP32, as each value is
encoded using 32 bits) in place of standard double-precision
(FP64), the space used to store connection weights is halved.
Half-precision for floating point (FP16) and integer arithmetic
(INT16) are also commonly considered. To reduce memory foot-
print, meanwhile speeding up training time, recent researches
have investigated the use of even smaller precision for the training
and inference phases of CNNs, considering short integer (INT8,
INT4, INT2), or just 1-bit representation [23]. In the latter, extreme
form of quantization also called binarization, weights and activa-
tions are represented using a single bit and floating points opera-
tions are converted into binary gates [24]. Usually, the use of less
than 32 bits can yield to a severe decay in performance, and a stan-
dard approach in this case is to replace floating-point operations
with their integer equivalent, sometimes adding a further training
step that ameliorates the consequent accuracy compromise [25].
Hybrid approaches have also been developed to apply quantization
only to the weight and activation values concentrated around a
narrow region, whilst representing the remaining values using a
higher precision, thus leading to reduced errors [26].

Another category of compression methods considers the quan-
tization as minimization of a penalty term included in the loss
function [27,28]. Due to its independence on the underlying archi-
tecture and their low complexity, weight sharing quantization has
found a large application: here, the weights are first partitioned
into multiple categories, then within each category a representa-
tive value is selected and used to replace all weights in that cate-
gory. Such methods mainly differ in the way they subdivide the
network weights, e.g., by means of clustering techniques [29], sta-
tistical methods [30,31], uniform schemes [32], or by minimizing
the distortion and the entropy of the coded source [33]. We will
describe these methods in detail in Section 3.
2.3. Low-rank matrix and tensor decomposition

CNNs can also be compressed by decomposing the weight
matrices (or tensors reshaped to 2 dimensions) into a lower rank
approximation. For instance, a given matrix W 2 Rn�m of full rank
r can be decomposed as W ’ AH, where A 2 Rn�r and H 2 Rr�m,
moving from a space complexity OðnmÞ to OðrðnþmÞÞ, to the detri-
ment of some approximation error coming from the estimate of
low-rank matrices. Singular Value Decomposition (SVD) has been
widely used in this context to achieve such a factorization
[34,35]: in this case W ¼ URVT , where U 2 Rn�r and V 2 Rm�r are
orthogonal matrices, and R 2 Rr�r is the diagonal matrix of singular
values. The nonzero elements of R are sorted in decreasing order
154
(along with the rows of U and V). The truncated SVD approximates
W by computing the product of the matrices obtained by selecting
the first q < r columns of U and V and the top left square sub-
matrix of R of dimension q. Similar approaches apply Canonical
Polyadic and Tucker decompositions to tensors [36], convolutional
filters decomposition into a linear combination of rank-1 (separa-
ble) filters [37] and channel-wise low-rank decompositions
endeavoring to reduce redundancy in the channel [38], or a combi-
nation of both approaches [39].

2.4. Other approaches

Other relevant compression techniques include knowledge dis-
tillation (KD) and several approaches to structural pruning. The
former encompasses the learning of a ‘thinner’ NN model, called
student, from a larger teacher, whose outputs act as soft targets
for the training process. The teacher output should be a probability
distribution, and the idea is to exploit the corresponding logits to
‘distill’ information to the student, which is trained minimizing
the cross entropy between the logits of teacher and student
[14,40,41].

In structural compression instead, inadequate components (e.g.,
units or layers) are pruned, usually through iterative procedures
[42,43]. Adequacy is related to the loss change incurred when a
component is removed [44]. Skeletonization, for instance, consists
in coupling each connection to an importance coefficient. The more
general class of loss sensitivitymethods computes importance coef-
ficients via measures of loss variation using first [45] or second
order derivatives [43], and after a joint training of connections
and coefficients, all units having the lowest importance coefficients
are discarded. Both FC [46,47] and convolutional [48–50] parts can
be pruned, however there are no general criteria to detect useless
components, and often one should just rely on problem-dependent
heuristics. Finally, of undoubted interest are some attempts to
simultaneously learn a model along with its compression via con-
strained optimization frameworks, which propose alternated train-
ing and compression steps via the existing compression schemes
mentioned so far [51], or their combinations [52].

3. Materials and methods

In the following sections we describe the compression strate-
gies considered in this comparative study.

3.1. Connection pruning

We implemented connection pruning (see Section 2.1) remov-
ing weights that are small in absolute value. After having fixed
an empirical percentile wp of the entries of Wo, we defined W by
setting w ¼ wo if jwj > wp;0 otherwise. The time complexity is
Oðnm logðnmÞÞ, as the sorting step needed for obtaining wp domi-
nates the overall computation. The procedure ends with a fine-
tuning for non-null weights in W . The only hyperparameter is
the percentile level p, related in turn to the sparsity coefficient
(see Section 4 for a description of how hyperparameters of all con-
sidered compression methods have been selected).

3.2. Quantization via weight sharing

This quantization strategy consists in reducing the space
needed to store individual weights via weight sharing (WS),
expressly by casting connection weights into categories and substi-
tuting all weights in a category with a representative for them.
Three logic phases can be detected: a) detecting shared weights,
by partitioning the latter into k categories, and transforming all



Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
the weights in i-th category into a unique representative value ci;
b) cumulative retraining of the weights; c) storage of the shared
weights, adopting a suitable format leveraging the quantization.
The various state-of-the-art quantization approaches considered
in this work mainly differ for the way they realize phase a), as
detailed in the following.

3.2.1. Share weights
Clustering-based WS (CWS) This strategy, fixed the number k of

clusters C1; . . . ;Ck, aims at gathering similar values in Wo via the
k-means algorithm, obtaining the corresponding centroids
fc1; . . . ; ckg, and subsequently using the latter as representatives
which will replace each weight in Wo [29]. The time complexity

is OðkðmnÞ2Þ, due to k-means application. To achieve a higher com-
pression, in [29] pruning and CWS have been applied in chain, with
weight sharing considering non-null weights identified by pruning.

Probabilistic WS (PWS) This approach is based on a weight shar-
ing technique named Probabilistic Quantization, recently proposed
in [30] and relying on a probabilistic transformation analogous to
those mapping weights onto special binary or ternary values pro-
posed in [53,54]. Given wmin ¼ minWo; wmax ¼ maxWo, PWS is
based on the following probabilistic rationale1: suppose that each
weight wo is the specification of a random variable Wo with support
W :¼ ½wmin;wmax�. If W denotes the two-valued random variable
defined by

PðW ¼ wminÞ ¼ wmax�w
wmax�wmin

;

PðW ¼ wmaxÞ ¼ w�wmin
wmax�wmin

;
ð1Þ

the specifications ofW approximate a weightw through an extreme
form of weight sharing in which k ¼ 2 and the two representatives
wmin and wmax are chosen randomly according to (1). Denoting as
usual with E the expectation operator, it is easy to show that
EðWjWo ¼ wÞ ¼ w, so that independently of the distribution of Wo,

EðWÞ ¼
Z
W

EðWjWo ¼ wÞf Wo ðwÞdw ¼
Z
W

wfWo ðwÞdw

¼ EðWoÞ: ð2Þ
As a consequence, pseudorandomly extracting a specification of

W for each entrywo, we get a quantized matrixW which is a highly
compressible unbiased estimator of Wo. This method is extensible
to k > 2 as follows: partition W in k� 1 intervals Wi ¼ ½ci; ciþ1Þ,
for i ¼ 1; . . . ; k� 1 (where obviously c1 < c2 < . . . < ck), so that
fc1; . . . ; ckg will be the set of representative weight values. A gen-
eric w is obtained exactly as above, now considering the interval
Wi containing w and replacing wmin and wmax with ci and ciþ1,
respectively. It is easy to show that the matricial estimator of Wo

will be unbiased regardless of the chosen partition. Here we follow
[30] to set ci as ci ¼ v i

k
, with vq the q-quantile of the entries of Wo,

which induces the representatives to be scattered evenly over the
support in case the elements of Wo are uniformly distributed over
W. The overall time complexity amount to Oðnm logðnmÞÞ, due to
quantile computation.

Uniform Quantization (UQ). This quantization scheme, which
selects representative weights uniformly in the weight domain,
has been proven yielding an entropy asymptotically smaller than
that of any other quantizer, regardless of the source statistics,
under the assumption that the latter has a reasonably smoothed
1 in this subsection we slightly modify the used notation, respectively denoting
random variables with upper case letters (W), specifications with lower case letters
(w), and sets of specifications with calligraphic upper case letters (W). When speaking
of an estimator, in some cases we refer to a univariate random variable modeling a
matrix entry, and in other cases to a random matrix: as the context easily allows to
discriminate between the two cases, we prefer to not further extend the notation.
155
density function [55]. Banking upon this result, in [32] UQ has been
formalized so as to transform the weight wo so that
w ¼ d � roundððwo þ dÞ=dÞÞ � d, where d > 0 is the interval size,
d 2 ½� d

2 ;
d
2� is a constant bias, and round is the rounding function.

The parameter dmust be selected on the basis of compression ratio
and/or of accuracy requirements, also taking into account the
desired number k of distinct weights: the compression ratio
increases, accuracy degrades and k decreases, as d grows. Entropy
Constrained Scalar Quantization (ECSQ) This compression strategy
(also known as Entropy Coded Scalar Quantization) [33,56] trans-
forms a weight wo into the representative ci associated to the par-
tition of ‘‘similar” weights Ci to which the weight wo belongs to.
Both Ci and ci are learned by jointly optimizing the expected value
for the quantization distortion D (using a prefixed distortion mea-
sure such as MSE) and the entropy H of the resulting distribution of
representative weights. The optimal ECSQ scheme has been found
minimizing the distortion while constraining entropy to not
exceed a prefixed threshold [55], considering the optimization of
the Lagrange cost

Dþ kH ¼ 1
nm

Xk

i¼1

X
j2Ci

wo
j � ci

��� ���2 � k logpi

� �
; ð3Þ

where k is a Lagrange multiplier, and pi ¼ jCij=ðnmÞ. ECSQ and UQ
have shown the best trade-off accuracy/compression ratio in a
recent state-of-the-art comparison [32]. Here the hyperparameter
k impacts on the number of sets in the final partition, since some
of themmight collapse during the optimization; accordingly, kmust
be tuned to obtain exactly k sets in the partition.

3.2.2. Cumulative retrain of weights
Once weights have been partitioned into categories C1; . . . ;Ck

with representative weights c1; . . . ; ck, a retrain phase follows,
ensuring weights always assume values in the set of representa-
tives. This is achieved by using the cumulative gradient defined
by @L

@cl
¼ 1

jCl j
P

w2Cl

@L
@w to update cl, with l 2 f1; . . . ; kg. This might

end up in using less than k weights, if two or more representatives
converge to a same value during retraining.

3.2.3. Storing the shared weights
Once the matrix/tensor W having only k distinct weights

c1; . . . ; ck has been obtained, different possibilities are available to
store it in a lossless compressed format. For the purpose of an equi-
table comparison, however, the adopted format is less relevant,
provided that it is used fairly for all quantization methods. Among
the formats specifically proposed for CNNs, in the experimental
section we will leverage those yielding the highest compression
ratio (to our knowledge) for the specific case. In particular, for FC
quantized layers, matrices are represented via the Huffman
Address Map (HAM) [30,31], and via its extension for sparse matri-
ces, sparse HAM (sHAM), when the sparsity inW is high enough [30].
Both methods construct the Huffman code of the k source symbols,
and use the codewords to compress the matrix in a unique binary
string. Due to the dependence on the source statistics, it is not pos-
sible the know in advance the exact occupancy ratio of HAM and
sHAM, whilst quite loose upper bounds are wHAM 6 1þlog k

b þ 6k
nm and

wsHAM 6 sð1þlog kÞ
b þ 6kþmþ1

nm þ s, where b is the number of bits used to
store one entry ofWo, and s is the ratio of non-zero elements in W .

Being HAM and sHAM not applicable to convolutional layers, their
quantized matrices/tensors are represented through the Index Map
(IM) [29] format. In case of matrices, IM stores the representative
weights in a vector c, whose indices populate the index matrix
P, such that if wo

ij is associated with centroid, say, c1, then

pij ¼ 1. Denoted by �b the number of bits used to store one entry



Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
of P, the occupancy ratio is wIM ¼ �bnmþkb
bnm ¼ �b

b þ k
nm. Thus, when

k 6 256 and �b ¼ 8, assuming FP32 for Wo (b ¼ 32) implies
wIM ’ 1=4. This approach can be easily extended to tensors of order
> 2. Since the same storage format is used for all compression
techniques, and our aim is to provide a comparison of the latter,
in the rest of the paper we consider the ideal case �b ¼ dlog ke,
reminding that on most architectures the minimum value for �b is
8 (one byte). Finally, for FC layers which underwent only to con-
nection pruning, we use the classical Compressed Sparse Column
(CSC) format [57] when the sparsity induced in W is high enough,
leaving it uncompressed otherwise.

3.3. Sparse low-rank factorization (SLR)

This is a recently proposed method to compress FC layers in
DNNs,which achieved top performance in this category of compres-
sion techniques [58]. It exploits low-rank factorization of rank q via
truncated SVD of W , i.e. W ’ URVT ;U 2 Rn�q, R 2 Rq�q, and
V 2 Rm�q. The truncated matrices U and V are further compressed
by assuming some input and output neurons in the layer are less
important, utilizing for them a reduced rank �q < q. This means that
the corresponding rowand columnentries inU andVT , respectively,
are set to zero (sparsification). This sparsification preserves the
importance of latent concepts contributing to reconstruction of W ,
unlike ‘classical’ low-magnitude pruning. The authors proposed
three strategies to select irrelevant neurons, however the weighted
sum of their absolute connections resulted the best criterion when
taking into account both performance and efficiency. It isworth not-
ing that no post-factorization fine-tuning of theweight is needed for
this methodology. The reduced rank is computed as �q ¼ dcrqe,
whereas the number of rows and columns to be sparsified is
�n ¼ dcsneand �m ¼ dcsme, respectively. The quantities cr ; cs 2 ½0;1�,
called reduction and sparsity coefficient, are hyperparameters of the
method.Whenconsidering classical low-rank factorizationvia trun-
cated SVD, the number of parameters needed is nq (formatrixU),mq
(formatrixV) and q (for the q entries of the diagonal ofR), for a total
ofqðnþmþ 1Þparameters. In SLR, �n rowsand �m columnsare instead
represented using a rank �q, needing �qð�nþ �mÞ parameters, while the
remainingn� �n rowsandm� �m columnswill still have rank q. Thus,
diving by the number nm of entries in the originalmatrix, we get the
following occupancy ratio:

wSLR ¼ qðn� �nþm� �mþ 1Þ þ �qð�nþ �mÞ
nm

:

2 https://github.com/BIGBALLON/CIFAR10-cnn.
3 Precisely, by preserving training configuration we adapt the model input (for
NIST) and output (for CIFAR100) layer in order to deal with different data
imensions.
4 The repository https://github.com/hkmztrk/DeepDTA. contains a script that
roduces the original model trained on KIBA; also in this case, we fine-tune this
odel on DAVIS by preserving training configuration.
4. Experimental analysis

In this section we describe the experimental setting used to
empirically compare the illustrated techniques in several scenar-
ios, including five datasets and two uncompressed neural net-
works, as detailed here below.

4.1. Data

� Classification. MNIST [59], a benchmark of handwritten digits,
containing a train set of 60 K 28x28 grayscale images and a test
set of 10 K analogous images; CIFAR10 [60], a dataset of 50 K
(train set) + 10 K (test set) 32x32 color images. Both datasets
refer to ten classes (one for each digit) and their labels are bal-
anced; CIFAR100 [61], extension of CIFAR10 to 100 classes, con-
taining 500 training images and 100 testing images per class.

� Regression. DAVIS [62] and KIBA [63], datasets containing the
evaluation of the affinity between drugs (ligands) and targets
(proteins), respectively represented using the amino acid
sequence and the SMILES (Simplified Molecular Input Line Entry
156
System) string encoding. DAVIS and KIBA contain, respectively,
442 and 229 proteins, 68 and 2111 ligands, 30056 and 118254
total interactions between them, with 1/6 of the data compos-
ing the test set.

4.2. Benchmark models

We used two publicly available pre-trained, top-performing
CNN models:

(i) VGG19 [2], consisting of 16 convolutional layers followed by
a FC block, in turn containing two hidden layers of 4096 neu-
rons each, and a softmax output layer.2, originally trained on
CIFAR10 (and fine-tuned in order to work with MNIST and
CIFAR100 datasets3);

(ii) DeepDTA [64], having two separate blocks for proteins and
ligands, both containing three convolutional layers followed
by a max pool layer and merged in a FC block consisting of
three hidden layers, respectively containing 1024;1024,
and 512 units, followed by a single-neuron output layer4.

Using pre-trained networks allows a fair analysis of compres-
sion and storage techniques, without introducing potential biases
in the model selection and training procedures. Moreover, when
fine-tuning weights after quantization, we preserved the same
training configuration setup described in the original papers
proposing the model. Finally, the uncompressed model is also
employed as reference performance, and named hereafter as
baseline.

4.3. Evaluation metrics

We performed comparisons focusing on the following metrics:

1. accuracy for classification and mean squared error (MSE) for
regression (as in original papers);

2. occupancy ratio w (cfr. the end of the Introduction).

When only partly compressing the model, time and space per-
formance only account for the actually compressed layers. The rest
of the paper assesses the effectiveness of compression techniques
in three scenarios, namely compressing:

1. only FC layers,
2. only convolutional layers, and
3. both layer types.

4.4. Software implementation

The code retrieved for baseline NNs was implemented in Python
3, using Tensorflow and Keras. We used the same environment for
implementing compression and retraining. The software is dis-
tributed as a standalone Python 3 package. Source code, datasets
and trained baseline networks are available at https://
github.com/giosumarin/compare_dnn_compression. The provided
code allows to replicate our experiments and compute the corre-
sponding performance metrics. Moreover, the repository contains
instructions for applying the compression techniques described
M
d

p
m

https://github.com/giosumarin/compare_dnn_compression
https://github.com/giosumarin/compare_dnn_compression
https://github.com/BIGBALLON/CIFAR10-cnn
https://github.com/hkmztrk/DeepDTA


Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
in the paper to user-defined models/datasets and evaluate the
results. The software processing pipeline for the compression of a
generic DNN is composed of three steps, each corresponding to a
dedicated script:

1. model training (skipped in the case of a pre-trained model);
2. model compression (selecting the desired combination of prun-

ing, quantization, LRF, memorization format via instantiation of
dedicated classes);

3. evaluation of the resulting occupancy ratio w.

5. Results

Before introducing the results obtained throughout the differ-
ent experiments, we recap some recent findings that are useful
for the purposes of our study.

5.1. Preliminary results from previous studies

In this subsection we summarize our previous results obtained
when compressing only FC layers via pruning, CWS, and PWS
methods, considering each layer separately, that is when each layer
has its own k distinct weights [30]. They serve as a base reference
for the different analyses presented here. Compression techniques
setup Four of the benchmark datasets described in Section 4.1
(CIFAR100 is absent) and the two models introduced in Section 4.2
were used to compare the following compression schemes.

Pruning
The percentile level p was chosen in the set
p 2 f30;40;50;60;70;80;90;95;96;97;98;99g where levels smal-
ler than 50, although not guaranteeing an occupancy < 1, were
included because potentially useful in the combinations Pr-CWS
and Pr-PWS (see last item in this list);
Table 1
Top testing performance achieved by compression techniques. Type is the compression te
shown in brackets in the first column). w is the occupancy ratio. In bold the best results o

Net-Dataset Type Config

VGG19-MNIST
(0.9954)

Pr 96

CWS 128–3
PWS 32-32–
Pr-CWS a 96/128
Pr-CWS b 96/128
Pr-PWS a 96/32-
Pr-PWS b 50/32-

VGG19-CIFAR10
(0.9344)

Pr 60

CWS 32-32–
PWS 32–2-3
Pr-CWS a 60/2–2
Pr-CWS b 50/32-
Pr-PWS a 60/2–2
Pr-PWS b 98/32–

DeepDTA-KIBA
(0.1756)

Pr 60

CWS 128–1
PWS 32–12
Pr-CWS a 60/32–
Pr-CWS b 30/128
Pr-PWS a 60/128
Pr-PWS b 40/32–

DeepDTA-DAVIS
(0.3223)

Pr 80

CWS 128–2
PWS 128–3
Pr-CWS a 80/32–
Pr-CWS b 40/128
Pr-PWS a 80/128
Pr-PWS b 60/128

157
CWS The number k of representatives for VGG19 was selected in
the set f2;32;128;1024g for the first two FC layers and in
f2;32g for the (smaller) output layer; as DeepDTA is more
compact, k 2 f2;32;128g in the three FC layers and
k 2 f2;32g for the output layer are considered.

PWS To have a fair comparison, k was set as in CWS.
Pr-X The combined application of pruning followed by the quan-

tization X 2 fCWS;PWSg was tested in two variants: a)
selection of best p in terms of performance, and then tuning
of X as in previous points; b) the vice versa.

Fine-tuning of compressed weights Post-compression retraining
was done using the same configuration as in original training.
Data-guided tuning was applied only to learning rate (3 � 10�4 for
pruning, 10�3 and 10�4 for PWS, CWS, and combined schemes),
and maximum number of epochs, set to 100.

Performance assessment The top performance for each compres-
sion technique, and its configuration, is shown in Table 1, whereas
the configuration improving the baseline (when existing) having
the smallest memory requirement is shown in Table A.1 in the
Appendix. Excluding discussions about these results, which are
alreadypresent in the original paper,weonly underline the fact that.

1) compression techniques providing the lowest occupancy,
i.e., those combining connection pruning and quantization,
still achieved to be competitive or better than the baseline
w.r.t. performance;

2) no compression technique better than the other ones
emerged.

The next sections extend and enrich these results, providing
instead a better characterization of the different methods and their
effectiveness in different scenarios.
chnique, while Perf contains Accuracy for VGG19 and MSE for DeepDTA (baseline is
n each couple Net-Dataset.

Perf w

0.9954 0.0800

2-32 0.9957 0.3210
2 0.9958 0.3090
–32-32 0.9956 0.0390
–32-32 0.9956 0.0390
128–32 0.9956 0.0260
32–2 0.9958 0.1870

0.9365 0.8000

2 0.9371 0.3060
2 0.9363 0.0910
-32 0.9366 0.0880
32–2 0.9370 0.2160
-32 0.9363 0.0880
2-32 0.9365 0.0120

0.1599 0.8000

28-32–2 0.1679 0.3900
8-128–32 0.1761 0.4250
128-2–32 0.1666 0.1870
–128-32–2 0.1644 0.3300
–128-128–32 0.1769 0.2070
128-128–32 0.1683 0.2910

0.2242 0.4000

-128–2 0.2320 0.2120
2-32–32 0.2430 0.3240
128-2–32 0.2341 0.1050
–2-128–2 0.2826 0.1910
-128–32 0.2302 0.1220
–32-32–32 0.2353 0.1600



Table 2
Comparison between unified and non-unified quantization. Same notations as in Table 1.

Net-Dataset Type Config Perf w

VGG19-MNIST
(0.9954)

CWS 128–32-32 0.9957 0.3210

uCWS 192 0.9957 0.2344
PWS 32-32–2 0.9958 0.3090
uPWS 66 0.9955 0.1857

VGG19-CIFAR10
(0.9344)

CWS 32-32–2 0.9371 0.3060

uCWS 66 0.9370 0.1856
PWS 32–2-32 0.9363 0.0910
uPWS 66 0.9366 0.1857

DeepDTA-KIBA
(0.1756)

CWS 128–128-32–2 0.1679 0.3900

uCWS 290 0.1609 0.2516
PWS 32–128-128–32 0.1761 0.4250
uPWS 320 0.1631 0.2642

DeepDTA-DAVIS
(0.3223)

CWS 128–2-128–2 0.2320 0.2120

uCWS 260 0.2291 0.2496
PWS 128–32-32–32 0.2430 0.3240
uPWS 224 0.2253 0.2469

5 The ECSQ technique does not accept the number k of distinct values as a
yperparameter. Therefore, we perform a preliminary tuning by trying

Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
5.2. Evaluation of global and per-layer quantization

The experiments in the previous section made use of a non-
unified quantization, selecting a specific k per layer and quantizing
layers separately. In essence, all weight matrices could be quan-
tized at the same time using a unique value of k, leading to a vari-
ant that we name hereafter unified quantization. The non-unified
case has higher flexibility, counterbalanced by an increase of mem-
ory overhead, as each layer requires its own vector of representa-
tives. On the other hand, the unified case entails only one
dictionary, but the choice of k represents an ‘one size fits all’ solu-
tion, which might reduce the versatility and impact on the perfor-
mance. To better understand it, here we extend the experiments of
Section 5.1 by comparing these two approaches while preserving
the experimental setting, that is compressing only FC layers on
the same models and datasets, and measuring performance in
terms of accuracy/MSE and occupancy ratio. Since in principle
the non-unified variant uses distinct weights for each layer, a fair
comparison is obtained by allowing the unified variant to use a
number of distinct weights obtained summing up the number of
distinct weights used by the non-unified approach across layers.
The best non-unified models in terms of performance from Table 1
have been considered, and the corresponding unified variants have
been trained. The resulting four experiments are summarized in
Table 2, where the modalities exploiting the unified choice of k
are marked as ‘‘uCWS” and ‘‘uPWS”. The results point up that such
variants tend to compress more than their non-unified counter-
parts, having in some cases negligible performance decay
(classification), or even improvements (CIFAR10-uPWS and regres-
sion). Specifically, uCWS compresses up to 1:64� more than CWS
(VGG19-CIFAR10), and uPWS up to 1:66� more than PWS
(VGG19-MNIST), while almost preserving the accuracy (�0:03%
and �0:01%, respectively). Besides, uCWS improves the MSE up
to 4% on DeepDTA-KIBA (while compressing 1:55� more), and
uPWS improves up to 8% on DeepDTA-DAVIS, even with a com-
pression ratio of 1:31� higher. Nonetheless, the above-
mentioned flexibility of non-unified variants in two cases leads
to higher compression than the unified counterparts, specifically
when they use lower k values in large layers. For instance, PWS
has less than half occupancy compared to uPWS on VGG19-
CIFAR10 by using only two distinct weights for the central hidden
layer of VGG19 (the largest one). In order to confirm these trends,
158
we repeated this experiment using the non-unified models
reported in Table A.1 (best compression preserving the baseline
performance), as shown in Table 3. The trend of Table 2 is pre-
served, although here the higher flexibility for non-unified meth-
ods is more marked (indeed they always compress more on
classification data). For this reason and to better evaluate the
behavior of unified versions, in the same table we also reported

the additional results when varying k 2 f2ij1 6 i 6 7g, and report-
ing the setting achieving the best compression ratio among those
performing not worse than the non-unified counterparts. With this
‘‘non-constrained” setting, in most cases the occupancy is much
lower than in non-unified variants (e.g., 4� smaller on VGG19-
MNIST data). This is a nice result, suggesting that unified variants,
apart being easier to configure (non-unified counterparts present a
large number of combinations of k values across layers), tend to
compress more and to perform better, mainly for regression prob-
lems. Accordingly, in the rest of the paper this variants will be
used. Anyhow, the non-unified variants remain valid alternatives,
able to attain better compression ratios in some particular cases
(e.g., VGG19-MNIST data for the CWS method).
5.3. Comparison on FC layers

Another extension of the results in Section 5.1 consists in
including in the evaluation two state-of-the-art quantization
methods, precisely UQ and ECSQ5 (cfr. Section 3.2 compression
method based onmatrix low-rank factorization (SLR, see Section 3.3).
Further, to consolidate our analyses, henceforth we also include in
our experiments the CIFAR100 dataset. Conforming to the results
obtained in the previous section, the unified variants are tested as
quantization strategies (denoted by prefixing a ‘u’ to the strategy
name). The setting used up to now (compressing only FC layers
and measuring accuracy/MSE and occupancy ratio) is maintained,
but for a more complete comparison, a wider set of values for k,
namely f2;16;32;64;128;256g, is tried. The parameters k (uECSQ)
and d (uUQ) have been tuned to give in output the number k of
desired clusters, whereas to reduce the already massive set of exper-
iments, we have set d ¼ 0 for uUQ. In accordance with the sugges-
2 ½10�13;10�2�, subsequently choosing the value yielding the desired k.

h
k



Table 3
Comparison between unified and non-unified variants when the configurations for non-unified methods are those reported in Table A.1. Same notations as in Table 1.

Net-Dataset Type Config Perf w

VGG19-MNIST
(0.9954)

CWS 128-2–32 0.9954 0.1040

uCWS 162 0.9957 0.2265
uCWS 16 0.9954 0.1215
PWS 1024-2–32 0.9955 0.1260
uPWS 1058 0.9955 0.3121
uPWS 2 0.9955 0.0313

VGG19-CIFAR10
(0.9344)

CWS 2–2-32 0.9360 0.0630

uCWS 36 0.9367 0.1567
uCWS 2 0.9362 0.0313
PWS 2–2-32 0.9351 0.0630
uPWS 36 0.9364 0.1576
uPWS 2 0.9364 0.0313

DeepDTA-KIBA
(0.1756)

CWS 32-32–2-2 0.1723 0.2280

uCWS 68 0.1601 0.1843
uCWS 8 0.1661 0.0848
PWS 32–128-128–32 0.1761 0.4250
uPWS 320 0.1631 0.2642
uPWS 32 0.1718 0.1553

DeepDTA-DAVIS
(0.3223)

CWS 2–2-2–2 0.2840 0.0630

uCWS 8 0.2637 0.0900
uCWS 4 0.2751 0.0606
PWS 32-32–2-32 0.2430 0.2370
uPWS 98 0.2276 0.2091
uPWS 8 0.2783 0.0865

Fig. 1. Best accuracy (a) and best w at least attaining baseline accuracy (b) for the compared compression techniques applied to the FC layers of VGG19 on MNIST, CIFAR10
and CIFAR100 datasets. Values reported in the bars on the right denote the gain w.r.t. baseline.

Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170

159



Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
tions of authors in [58], we set cr ¼ cs ¼ 0:5, while tuning
q 2 f8;16;32;64;128g.

To provide an insight on how pruning interacts with quantiza-
tion, we also compare the methods Pr-X, preposing a pruning stage
to quantization (cfr. Section 5.1), varying p in
f30;40;50;60;70;80;90;95;96;97;98;99g, and testing all possible
combinations of p and k. All FC layers are compressed, and the
overall compression ratio across them is computed. Figs. 1 and 2
summarize our main results, respectively for classification and
regression. Further, the results for all combinations are shown in
Table A.2 for quantization, whereas in Tables A.3,A.4 we report
the extended results of best performance and best space ensuring
baseline configurations for Pr-X methods (due to the large number
of combinations of pruning and quantization hyperparameters,
showing all combinations was not feasible in this case).

On classification data the top accuracy is attained by quantiza-
tion methods, never worse than the baseline (Fig. 1(a)), with rare
exceptions in which performance drastically worsens (e.g., uUQ
with low k, Table A.2). However, for k > 64 (MNIST), k > 32
(CIFAR10) or k > 2 (CIFAR100), uUQ becomes competitive in accu-
racy, sensibly outdoing the occupancy ratio of the remaining meth-
ods (up to around 4� lower). SRL exhibits good compression ratios,
with a negligible drop in accuracy (cfr. Table A.5 for full results),
whereas in terms of both w and accuracy Pr-uUQ (MNIST and
CIFAR10) and Pr-uECSQ (CIFAR100) stand out. Even for regression
it is difficult to characterize a winning method: the main difference
is that SLR performance strongly decays, while compressing the
lowest (see Fig. 2); uCWS and uEQCS tend to have the best MSE,
with the latter being preferable for low values of k, even in terms
of occupancy (Table A.2); uUQ and its combination with pruning
often compress the most, but they still show a high MSE drop for
too low values of k.

Although a clear rank of compressors does not emerge, we can
attempt to list some remarks: 1) uUQ should be adopted only when
Fig. 2. Best MSE (a) and best w at least attaining baseline accuracy (b) for the compare
datasets. Same notations as in Fig. 1.

160
enough distinct weights can be used; 2) uECSQ should be
employed in the remaining cases, in which uPWS and uCWS (re-
spectively on classification and regression) are valid alternatives;
3) in combination with pruning, uUQ compresses more than all
other methods for classification, substantially confirming the
results obtained with no pre-pruning; 4) in terms of best occu-
pancy, uECSQ is competitive with uUQ, especially on CIFAR10,
CIFAR100 and KIBA (Table A.4); 5) the tendency shown in
Table A.2 is confirmed when pruning comes before sharing the
weights, with the precious benefit of similarly performing while
decreasing the occupancy by almost one order of magnitude.

5.4. Comparison on convolutional layers

This section is focused on the compression of convolutional lay-
ers only, with the aim to obtain useful information for the final
experiment, where convolutional and FC layers will be compressed
simultaneously. Only the performance (accuracy or MSE) is
thereby evaluated here, to detect to most meaningful compression
configurations on these layers. Before starting, it is worth pointing
out that FC layers in CNNs typically contain most parameters, and
low-rank factorization applied to convolution?lters mainly helps to
speed up the time-taking convolution, while usually sensibly
reducing the model accuracy [65]. Moreover, the authors of SLR
discouraged its application to convolutional layers [58], and in
light of these considerations, SLR has been excluded from the com-
parison carried out in this section.

Connection pruning. Although so far we have mainly applied
pruning in synergy with quantization, here we dedicate a prelimi-
nary assessment to evaluate its effectiveness when applied only to
convolutional tensors, to obtain an initial insight about its impact
on the performance. The results are summarized in Table 4.

A main emerging feature is that, although pruning helps also in
this case to improve the baseline accuracy (in brackets in the
d compression techniques applied to the FC layers of DeepDTA on KIBA and DAVIS



Table 4
Testing performance (accuracy for VGG19 and MSE for DeepDTA) when pruning convolutional layers. Column p contains the percentile level. Horizontal traits represent the limit
level ensuring a performance gain.

VGG19 DeepDTA

p MNIST CIFAR10 CIFAR100 KIBA DAVIS
(0.9954) (0.9344) (0.7126) (0.1756) (0.3223)

10 0.9957 0.9355 0.7162 0.1561 0.2220
20 0.9957 0.9341 0.7176 0.1565 0.2233
30 0.9957 0.9337 0.7148 0.1566 0.2238
40 0.9957 0.9333 0.7123 0.1576 0.2218
50 0.9955 0.9289 0.7074 0.1571 0.2237
60 0.9956 0.9255 0.6994 0.1577 0.2224
70 0.9951 0.9179 0.6906 0.1600 0.2234
80 0.9944 0.9084 0.6773 0.2223 0.2433
90 0.9917 0.8802 0.6440 0.3139 0.3492
95 0.9907 0.7950 0.5870 0.3692 0.4136
96 0.9909 0.7608 0.5132 0.3796 0.4753
97 0.9903 0.6910 0.4122 0.4067 0.5180
98 0.9882 0.6154 0.2890 0.4576 0.5350
99 0.9852 0.5204 0.0852 0.5446 0.6548

Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
table), the percentile level assuring an improvement is much lower
compared to its counterpart on FC layers: up to p ¼ 60 for MNIST,
p ¼ 70 for KIBA, only p ¼ 10 and p ¼ 30 for CIFAR10 and CIFAR100,
and p ¼ 80 for DAVIS. Moreover, the top performance is worse than
that obtained when pruning FC layers (see Section 5.1). This sug-
gests that the role of convolutional layers in a CNN is more critical
and sensitive to a parameter reduction, which is reasonable consid-
ering that convolutional layers are responsible for input scan and
elaboration, and that most parameters are contained in FC layers
(at least in the considered models). Indeed, in most cases pruning
on these layers cannot be increased much without having a sensi-
ble loss in performance. This deterioration would also be amplified
by the application of quantization, still fostering a reduction of the
pruning percentile to contain the performance decay. Taking into
account also that the IM format would not benefit of connection
pruning, in the experiment described in the next section (the one
in which all network layers are compressed), only quantization will
be applied to convolutional layers. Quantization The convolutional
blocks have been compressed via unified quantization by consider-
ing k 2 f32;64;128;256g (lower values of k performed too poorly).
As in this experiment compressed models rarely beat the baseline,
best performance and best occupancy results coincide and are
reported in Fig. 3, while in Table A.6 we have shown the results
of all configurations.

On classification data, the trend of uUQ with low values of k
observed in Section 5.3 is confirmed and intensified, with even
uPWS showing a similar behavior for k ¼ 32 and k ¼ 64. uCWS
and uECSQ tend to perform better than the other two techniques,
exhibiting higher robustness for small values of k. The lower accu-
Fig. 3. Best performance for the different quantization techniques applied only to c

161
racy induces to think that quantization should be much limited on
these layers in classification settings. On the other hand, the per-
formance on regression datasets (Fig. 3(b)) is better, more stable,
and similar to those observed on FC layers. uUQ and uPWS are
again competitive with the other two methods, with uUQ achiev-
ing the lowest MSE on KIBA, even when using the smallest tested k.

This experiment highlights that probably it is better to differ-
ently approach classification and regression problems when decid-
ing the quantization level for convolutional layers: in the former
case, we should not apply too radical quantizations, and k P 256
is preferable; in the latter, instead, it seems possible to adopt a
more compressing configuration without getting unstable results.
In the next section we leverage this cognition to attempt in design-
ing the most appropriate and effective compression configuration
for the combined experiment jointly considering FC and convolu-
tional layers.

5.5. Comparison on the whole network

The final comparison among compression techniques involves
compressing all layers in the CNN. As emphasized in previous sec-
tions, in this setting it is more convenient to not apply pruning to
convolutional layers, since it helps preventing further accuracy
decay and it does not affect the occupancy ratio. Furthermore, on
FC layers we directly applied the combined methods Pr-X, due to
their superior compression capabilities.

An interesting characteristic in this scenario is that the quanti-
zation methods here include all layers in the unified setup, hence
requiring convolutional and FC layers to share the same
onvolutional layers of VGG19 (a) and DeepDTA (b). Same notations as in Fig. 1.



Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
representatives; this allows a higher compression and offers
thereby also a full insight of how the proposed strategies interact
and perform when globally applied to the network. In accordance
to the results obtained in Sections 5.1 and 5.4, the values
k 2 f32;64;128;256g have been retained. On the other side, the
results obtained in Section 5.1 suggest to prune FC layers adopting
specific values for p on each dataset: p 2 f90;92;95;97;99g for
MNIST and CIFAR10 (here we extend this setting also to CIFAR100),
p 2 f50;55;60;65;70g for KIBA, and p 2 f70;75;80;85;90g for
DAVIS. We kept the same setting also for the SLR hyperparameter
(q tuned in f8;16;32;64gÞ. To denote combined methods, we sep-
arated by a ‘/’ the method applied to convolutional and that applied
to FC layers: for instance, uCWS/SLR is the combined approach
using uCWS and SLR to compress, respectively, convolutional and
FC layers. When quantizing both layer types, the same k is used
across layers (we remark this is a variant unified across the net-
work). Fig. 4 depicts an extract of the best results obtained by each
compression scheme (convolutional/FC), while Tables A.7–A.11
show the full results. For SLR we exhaustively reported only results
for q ¼ 32;64, since for lower values of this parameter the overall
performance sensibly dropped. Finally, to better understand these
results, we remark that the occupancy ratios reported in the previ-
ous sections where limited to the compressed layers, not to the
whole net; hence, since for the IMmethod the occupancy ratio can-
not be lower than 0:25 (even higher when k > 256), the overall
occupancy ratio is destined to increase with reference to that of
FC layers. As a confirmation, the registered lowest occupancy not
worsening baseline accuracy is 0:0576 (uPWS/Pr-uPWS, DAVIS,
k = 128).

As a first important observation, the performance tends to dete-
riorate (as expected), mainly on classification (Fig. 4(a)); notwith-
standing, we still have at least one configuration improving the
baseline in all datasets: on MNIST, uECSQ/SLR (k ¼ 256; q ¼ 32)
and occupying only 15:6% of the original network; on CIFAR10,
uUQ/SLR (k ¼ 256; q ¼ 64) with 0:15 occupancy; on CIFAR100,
uUQ/Pr-uUQ (k=256; p ¼ 90) and occupancy 0:15; KIBA, uCWS/Pr-
uCWS (k ¼ 32; p ¼ 50) and occupancy 0:115; on DAVIS, uPWS/Pr-
Fig. 4. Best performance when quantizing convolutional layers and applying SLR or pr
notations as in Fig. 1. The hyperparameter configuration is reported between the group

162
uPWS (k ¼ 128; p ¼ 90) and occupancy 0:0576. These results are
quite impressive if we consider that the model structure has not
been modified. SLR confirms its main feature, that is a really effec-
tive performance on classification data, compensated by being the
worst method on regression problems.

The flexibility of this approach aids the possibility to trade-off
multiple criteria: for instance, in case we need to compress more
on MNIST, the occupancy of the best model can be halved to the
detriment of only 0:19% of its accuracy (uPWS, p ¼ 97; k ¼ 32). In
classification settings, uUQ and uPWS still show unstable behavior,
suggesting to not adopt them in this context. This performance
confirms for uUQ the results obtained when quantizing only con-
volutional layers (Section 5.4), and it is likely to be amplified for
both methods, when using low values of k, by the fact that the
actual number of clusters can be smaller than k, due to a potential
centroid overlapping during retraining (see Section 3.2). On the
contrary, uUQ and uPWS are the most compressing methods in
the regression settings (cfr. Tables 1), while improving the baseline
performance. When performance should be preferred over com-
pression, uCWS is able to achieve in 3 cases out of 4 the highest
score, while still having an occupancy lower than 0:15 in all cases.
5.6. Discussion

We have carried out several experiments involving state-of-the-
art CNN compression techniques with the purpose to shed light on
their potential relationship with the type of problem (classifica-
tion, regression), the layer to be compressed (convolutional, FC),
the dataset at hand, and to assess their overall effectiveness in dif-
ferent settings. Here we recap the principal trends emerged so as to
provide a reference to support researchers in the choice of a com-
pression technique for an existing CNN, bearing in mind that this
task might be at least partially specific to the setting here adopted
(the pre-trained model and the dataset), and accordingly our
results represent indications to guide such a choice.

In the comparison between unified and non-unified quantiza-
tion techniques, the former basically compress more while being
uning followed by quantization to FC layers of VGG19 (a) and DeepDTA (b). Same
s of bars.



Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
at least as accurate as their non-unified variants, mainly on regres-
sion problems. Among them, the uniform quantization (uUQ) often
achieved higher compression and better performance, but it has
shown an unstable behavior with low values of k, so it is advisable
to use it when the value of k is large enough (e.g., > 64). When this
is not possible, uECSQ is preferable (similar performance but
higher compression than uCWS and uPWS). It is always convenient
to apply connection pruning along with quantization (Pr-X meth-
ods) on FC layers, when the pre-trained model has a topology that
allows a relatively elevate pruning level (p > 60); indeed, it yields
higher compression ratios and a negligible performance worsen-
ing. In classification problems, SLR is a valid alternative to Pr-X
methods, and it is also faster (as it does not require retraining);
however, its application is not recommended to regression prob-
lems, where we observed an important performance degeneration.

The compression of convolutional layers instead should be han-
dled gingerly: we observed a high sensitivity to parameter reduc-
tion in this case. Quantization methods almost never improved
the baseline on classification data, and accordingly it has not been
possible to apply their combination with pruning. Among quanti-
zation methods, it is preferable to avoid uUQ and uPWS, which,
as on FC layers, exhibit unstable behaviors. Instead, quantizing
convolutional layers on regression data is less problematic; indeed,
in this case roughly all techniques tend to compress a little less w.r.
t. FC layers while performing alike.

The final experiment, focusing on the simultaneous compres-
sion of convolutional and FC layers, has finally provided some read-
able facts: compressed models still outmatch the uncompressed
ones in most cases; some unstable behavior of uUQ and uPWS on
classification data are still intensified, and accordingly uCWS and
uECSQ are better choices in this case; compression schemes includ-
ing uCWS quantization often attain the top performance on both
regression and classification datasets, hinting a higher robustness
of this quantization method to heterogeneous layers and prob-
lems; on regression problems, schemes exploiting uUQ and uPWS
quantization tend to compress more, with uUQ, even in this set-
ting, showing the best occupancy/performance trade-off.
6. Conclusions

This work proposed the first extensive empirical comparison, to
the best of our knowledge, of several state-of-the-art-compression
techniques for pre-trained CNNs, while keeping their original
topology. Connection pruning, weight quantization, low-rank
matrix factorization and a bunch of their variants and combina-
tions have been studied. We have compressed first separately
and then simultaneously both convolutional and FC layers, obtain-
ing full insights about their impact on the model performance. Our
results have confirmed the potential of compression techniques to
trade-off between model performance and its space requirements,
Table A.1
Best occupancy ratio ensuring no decay in performance w.r.t. the uncompressed model. S

Net-Dataset Type Config

Pr 97
CWS 128-2–
PWS 1024-2
Pr-CWS a 96/2-1
Pr-CWS b 96/128
Pr-PWS a 96/32-

VGG19-MNIST
(0.9954)

Pr-PWS b 97/32-

Pr 99
CWS 2–2-32
PWS 2–2-32

163
with the possibility to preserve at least the same accuracy of the
baseline models while getting models more than 6� smaller.
Indeed, for each learning task and corresponding deep neural net-
work we have found at least one compression strategy on the
whole network (convolutional and fully-connected layers) preserv-
ing or improving the original performance: uECSQ/SLR
(k ¼ 256; q ¼ 32) for MNIST, yielding a model around 6:41� smal-
ler; uUQ/SLR (k ¼ 256; q ¼ 64) for CIFAR10, with a space reduction
of 6:66�; uUQ/Pr-uUQ (k ¼ 256; p ¼ 90) for CIFAR100, space
reduction 6:66�; uCWS/PruCWS (k ¼ 32; p ¼ 50) for KIBA, space
reduction around 8:7�; finally, uPWS/Pr-uPWS (k ¼ 128; p ¼ 90)
for DAVIS, yielding a model even 17:36� smaller. In addition, we
have brought out some specific characteristics of individual com-
pressors, and characterized their pros and cons with respect to
the problem to be tackled. Although our analyses are limited to
the models and datasets used here, the trends emerged can be of
great support and help in the analysis and choice of configurations
and compression methods more appropriate for who aims at com-
pressing a state-of-the-art convolutional neural network in any
given application domain.
CRediT authorship contribution statement

Giosué Cataldo Marinó: Software, Validation, Investigation,
Writing – review & editing, Visualization. Alessandro Petrini: Soft-
ware, Validation, Investigation, Writing – review & editing, Visual-
ization. Dario Malchiodi: Conceptualization, Formal analysis,
Methodology, Writing – original draft, Writing – review & editing,
Supervision. Marco Frasca: Conceptualization, Formal analysis,
Methodology, Writing – original draft, Writing – review & editing,
Supervision, Funding acquisition, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work has been supported by the Italian MUR PRIN project
‘‘Multicriteria data structures and algorithms: from compressed to
learned indexes, and beyond” (Prot. 2017WR7SHH). Part of this
work was done while D. Malchiodi was visiting scientist at Inria
Sophia-Antipolis/I3S CNRS Université Côte d’Azur (France).
Appendix A. Full result tables

See Tables A.1–A.11.
ame notations as in Table 1.

Perf w

0.9953 0.0600
32 0.9954 0.1040
–32 0.9955 0.1260
28–2 0.9954 0.0380
–32-32 0.9956 0.0390
128–32 0.9956 0.0260
32–2 0.9955 0.0180

0.9357 0.0200
0.9360 0.0630
0.9351 0.0630

(continued on next page)



Table A.2
Extended results of quantization methods on FC layers. The performance of the uncompressed model is shown in brackets in the headline. The best results for each configuration
(k, dataset) are shown in bold.

MNIST
(0.9954)

CIFAR10
(0.9344)

CIFAR100
(0.7126)

KIBA
(0.1756)

DAVIS
(0.3223)

k Method Acc w Acc w Acc w MSE w MSE w

uCWS 0.2266 0.0313 0.9355 0.0313 0.7166 0.0313 80.0142 0.0313 22.3118 0.0313
2 uPWS 0.9951 0.0313 0.9363 0.0313 0.7121 0.0313 0.7699 0.0313 29.6357 0.0313

uUQ 0.2213 0.0313 0.1981 0.0313 0.0204 0.0313 105.6028 0.0313 22.3100 0.0313
uECSQ 0.9901 0.0461 0.9368 0.0472 0.7122 0.0313 80.0640 0.0313 22.3111 0.0313

uCWS 0.9954 0.1215 0.9366 0.1179 0.7167 0.1116 0.1625 0.1197 0.2321 0.1211
16 uPWS 0.9953 0.1212 0.9368 0.1212 0.7103 0.1216 0.1847 0.1225 0.2581 0.1217

uUQ 0.2159 0.0314 0.1991 0.0316 0.7156 0.0390 0.1696 0.0523 22.3108 0.0413
uECSQ 0.9957 0.0949 0.9369 0.0801 0.7163 0.0799 0.1631 0.1031 0.2309 0.1059

uCWS 0.9957 0.1467 0.9365 0.1513 0.7170 0.1525 0.1606 0.1491 0.2203 0.1502
32 uPWS 0.9955 0.1544 0.9365 0.1545 0.7109 0.1547 0.1713 0.1551 0.2432 0.1550

uUQ 0.2239 0.0322 0.9370 0.0355 0.7170 0.0563 0.1639 0.0841 6.9812 0.0652
uECSQ 0.9955 0.1338 0.9366 0.1241 0.7163 0.1491 0.1600 0.0933 0.2283 0.1183

uCWS 0.9957 0.1835 0.9364 0.1836 0.7162 0.1829 0.1608 0.1825 0.2237 0.1853
64 uPWS 0.9955 0.1867 0.9365 0.1867 0.7126 0.1868 0.1674 0.1873 0.2258 0.1873

uUQ 0.8908 0.0397 0.9362 0.0498 0.7161 0.0794 0.1639 0.1161 0.2244 0.0959
uECSQ 0.9956 0.1841 0.9366 0.1359 0.7166 0.1715 0.1618 0.1237 0.2251 0.1636

uCWS 0.9956 0.2134 0.9364 0.2162 0.7164 0.2165 0.1608 0.2149 0.2214 0.2169
128 uPWS 0.9954 0.2184 0.9363 0.2184 0.7110 0.2185 0.1659 0.2194 0.2323 0.2194

uUQ 0.9955 0.0559 0.9363 0.0736 0.7167 0.1085 0.1620 0.1498 0.2304 0.1272
uECSQ 0.9958 0.1953 0.9364 0.1787 0.7171 0.2055 0.1615 0.1894 0.2242 0.1967

uCWS 0.9957 0.2477 0.9367 0.2468 0.7168 0.2475 0.1600 0.2446 0.2272 0.2494
256 uPWS 0.9955 0.2500 0.9363 0.2500 0.7112 0.2500 0.1628 0.2519 0.2228 0.2519

uUQ 0.9953 0.0971 0.9364 0.1154 0.7170 0.1247 0.1613 0.1772 0.2204 0.1593
uECSQ 0.9957 0.2283 0.9367 0.2395 0.7167 0.2383 0.1603 0.2187 0.2309 0.2069

Table A.1 (continued)

Net-Dataset Type Config Perf w

Pr-CWS a 60/2–2-32 0.9366 0.0880
Pr-CWS b 99/32-32–2 0.9358 0.0060
Pr-PWS a 60/2–2-32 0.9363 0.0880

VGG19-CIFAR10
(0.9344)

Pr-PWS b 99/32–2-32 0.9363 0.0060

Pr 60 0.1599 0.8000
CWS 32-32–2-2 0.1723 0.2280
PWS 32–128-128–32 0.1761 0.4250
Pr-CWS a 60/32–2-32–2 0.1739 0.1270
Pr-CWS b 60/128–128-32–2 0.1712 0.2220
Pr-PWS a 60/128–128-128–32 0.1769 0.2070

DeepDTA-KIBA
(0.1756)

Pr-PWS b 50/32–128-128–32 0.1702 0.2430

Pr 90 0.2425 0.2000
CWS 2–2-2–2 0.2840 0.0630
PWS 32-32–2-32 0.2567 0.2370
Pr-CWS a 80/32–2-2–32 0.2367 0.0790
Pr-CWS b 60/128–2-128–2 0.2906 0.1480
Pr-PWS a 90/128–32-32–32 0.2671 0.0600

DeepDTA-DAVIS
(0.3223)

Pr-PWS b 80/32–2-2–32 0.2943 0.0770

Table A.3
Pr-X methods yielding the best performing model in terms of Accuracy when compressing FC layers. Same notations as in Table 1.

Net-Dataset Method p-k Perf w

Pr-uCWS 60–16 0.9955 0.0777
VGG19-MNIST

(0.9954)
Pr-uPWS 60–32 0.9955 0.0807

Pr-uUQ 99–32 0.9954 0.0057
Pr-uECSQ 95–16 0.9954 0.0276

Pr-uCWS 95–32 0.9365 0.0338
VGG19-CIFAR10

(0.9344)
Pr-uPWS 60–16 0.9366 0.0617

Pr-uUQ 99–16 0.9363 0.0057
Pr-uECSQ 60–16 0.9365 0.0754

Pr-uCWS 40–256 0.7172 0.1682

Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170

164



Table A.3 (continued)

Net-Dataset Method p-k Perf w

VGG19-CIFAR100
(0.7126)

Pr-uPWS 98–32 0.7156 0.0109

Pr-uUQ 99–32 0.7178 0.0057
Pr-uECSQ 99–32 0.7178 0.0056

Pr-uCWS 60–16 0.1645 0.0791
DeepDTA-KIBA

(0.1756)
Pr-uPWS 60–64 0.1700 0.0902

Pr-uUQ 60–64 0.1630 0.0825
Pr-uECSQ 60–32 0.1645 0.0918

Pr-uCWS 60–16 0.2218 0.0795
DeepDTA-DAVIS

(0.3223)
Pr-uPWS 60–64 0.2269 0.0875

Pr-uUQ 60–64 0.2203 0.0675
Pr-uECSQ 60–32 0.2199 0.0887

Table A.4
Pr-X methods yielding the smallest model performing not worse than baseline when compressing only FC layers. Same notations as in Table 1.

Net-Dataset Method p-k Perf w

VGG19-MNIST
(0.9954)

Pr-uCWS 80–64 0.9954 0.0577

Pr-uPWS 60–32 0.9954 0.0807
Pr-uUQ 99–32 0.9954 0.0057
Pr-uECSQ 95–16 0.9954 0.0276

VGG19-CIFAR10
(0.9344)

Pr-uCWS 99–32 0.9361 0.0055

Pr-uPWS 99–32 0.9344 0.0055
Pr-uUQ 99–16 0.9363 0.0056
Pr-uECSQ 99–32 0.9363 0.0055

VGG19-CIFAR100
(0.7126)

Pr-uCWS 98–64 0.7156 0.0108

Pr-uPWS 98–32 0.7156 0.0109
Pr-uUQ 99–16 0.7178 0.0057
Pr-uECSQ 99–16 0.7173 0.0055

DeepDTA-KIBA
(0.1756)

Pr-uCWS 60–16 0.1645 0.0790

Pr-uPWS 60–64 0.1700 0.0901
Pr-uUQ 60–16 0.1698 0.0596
Pr-uECSQ 60–16 0.1660 0.0766

DeepDTA-DAVIS
(0.3223)

Pr-uCWS 95–64 0.3037 0.0268

Pr-uPWS 97–32 0.3187 0.0159
Pr-uUQ 90–16 0.2383 0.0365
Pr-uECSQ 95–32 0.3127 0.0271

Table A.5
SLR combinations applied only FC layers. Same notations as in Table 1.

Net-Dataset q Perf w

VGG19-MNIST
(0.9954)

8 0.4997 0.0072

16 0.8976 0.0130
32 0.9955 0.0238
64 0.9954 0.0455
128 0.9954 0.0888

VGG19-CIFAR10
(0.9344)

8 0.3682 0.0072

16 0.8371 0.0130
32 0.9343 0.0238
64 0.9343 0.0455
128 0.9343 0.0888

VGG19-CIFAR100
(0.7126)

8 0.0510 0.0071

16 0.2914 0.0141
32 0.7091 0.0282
64 0.7103 0.0564
128 0.7125 0.1067

DeepDTA-KIBA
(0.1756)

8 0.5568 0.0220

16 0.4999 0.0437

(continued on next page)

Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170

165



Table A.5 (continued)

Net-Dataset q Perf w

32 0.4060 0.0871
64 0.3055 0.1740
128 0.2325 0.3476

DeepDTA-DAVIS
(0.3223)

8 0.7614 0.0220

16 0.6026 0.0437
32 0.4453 0.0871
64 0.4085 0.1740
128 0.3558 0.3476

Table A.6
Performance of quantization techniques applied to convolutional layers. Accuracy and MSE are reported respectively for DeepDTA and VGG19. Top results for each dataset are
shown in bold.

VGG19 DeepDTA

k Method MNIST
(0.9954)

CIFAR10
(0.9344)

CIFAR100
(0.7126)

KIBA
(0.1756)

DAVIS
(0.3223)

uCWS 0.9941 0.9109 0.6741 0.1570 0.2221
32 uPWS 0.9918 0.1129 0.1141 0.1634 0.2209

uUQ 0.1434 0.1210 0.0100 0.1557 0.2234
uECSQ 0.9943 0.8941 0.6053 0.1582 0.2301

uCWS 0.9943 0.9036 0.6850 0.1575 0.2219
64 uPWS 0.9932 0.1234 0.1482 0.1602 0.2234

uUQ 0.2059 0.1746 0.0100 0.1571 0.2214
uECSQ 0.9933 0.9013 0.6697 0.1586 0.2326

uCWS 0.9943 0.9133 0.6891 0.1563 0.2189
128 uPWS 0.9934 0.9020 0.3665 0.1579 0.2211

uUQ 0.2076 0.1842 0.7087 0.1568 0.2216
uECSQ 0.9952 0.9030 0.6791 0.1582 0.2315

uCWS 0.9946 0.9196 0.6889 0.1563 0.2193
256 uPWS 0.9936 0.9065 0.5162 0.1571 0.2191

uUQ 0.2106 0.9073 0.7132 0.1576 0.2189
uECSQ 0.9955 0.9336 0.6840 0.1581 0.2204

Table A.7
Model accuracy after applying quantization to convolutional layers and pruning + quantization or only SLR to FC layers of VGG19 trained on the MNIST dataset. The k value used
is the same for convolutional and FC layers. Compression ratio (w) in brackets. Baseline of the uncompressed model is reported in the top line. The configurations attaining the top
accuracy and the top compression for each value of k are shown in bold.

VGG19 – MNIST (0.9954)

Quantization + SLR

k Method Pr: 90 Pr: 92 Pr: 95 Pr: 97 Pr: 99 q: 32 q: 64

uCWS 0.9936
(0.1150)

0.9937
(0.1144)

0.9936
(0.1103)

0.9916
(0.1047)

0.9937
(0.0992)

0.9941
(0.0919)

0.9941
(0.1024)

uPWS 0.1538
(0.0988)

0.9935
(0.0981)

0.9934
(0.0940)

0.9935
(0.0884)

0.9932
(0.0831)

0.9293
(0.0919)

0.9286
(0.1024)

32 uUQ 0.2258
(0.1131)

0.1374
(0.1128)

0.1945
(0.1087)

0.1898
(0.1038)

0.1135
(0.0989)

0.1135
(0.0919)

0.1135
(0.1024)

uECSQ 0.9931
(0.1167)

0.994
(0.1154)

0.9945
(0.1107)

0.9944
(0.1048)

0.9929
(0.0992)

0.9949
(0.0923)

0.9949
(0.1032)

uCWS 0.9943
(0.1338)

0.9941
(0.1323)

0.9914
(0.1272)

0.9932
(0.1211)

0.9943
(0.1153)

0.9945
(0.1080)

0.9945
(0.1185)

uPWS 0.9938
(0.1162)

0.9942
(0.1150)

0.9943
(0.1105)

0.9943
(0.1047)

0.9942
(0.0992)

0.9612
(0.1080)

0.9617
(0.1185)

64 uUQ 0.1325
(0.1292)

0.1334
(0.1289)

0.1361
(0.1254)

0.1330
(0.1203)

0.1221
(0.1152)

0.1135
(0.1080)

0.1135
(0.1185)

uECSQ 0.9941
(0.1344)

0.9942
(0.1328)

0.9465
(0.1275)

0.9948
(0.1213)

0.9938
(0.1154)

0.9951
(0.1240)

0.9951
(0.1346)

uCWS 0.9944
(0.1509)

0.9941
(0.1492)

0.9952
(0.1438)

0.9931
(0.1377)

0.9941
(0.1316)

0.9953
(0.1240)

0.9954
(0.1346)

uPWS 0.9937
(0.1336)

0.9935
(0.1322)

0.9939
(0.1271)

0.9796
(0.1211)

0.9592
(0.1153)

0.9882
(0.1240)

0.9883
(0.1346)

128 uUQ 0.2090
(0.1302)

0.1887
(0.1294)

0.1661
(0.1257)

0.1601
(0.1204)

0.2007
(0.1152)

0.1009
(0.1240)

0.1009
(0.1346)

uECSQ 0.9946
(0.1520)

0.9949
(0.1501)

0.9925
(0.1442)

0.9926
(0.1378)

0.9943
(0.1316)

0.9955
(0.1401)

0.9954
(0.1506)

uCWS 0.9945
(0.1685)

0.9955
(0.1666)

0.9952
(0.1608)

0.9953
(0.1540)

0.9947
(0.1472)

0.9954
(0.1401)

0.9954
(0.1507)

uPWS 0.9940 0.9939 0.9867 0.9945 0.9886 0.9914 0.9914

Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170

166



Table A.8
Results for the CIFAR10 dataset. Same notations as in Table A.7.

VGG19 – CIFAR10 (0.9344)

Quantization + SLR

k Method Pr: 90 Pr: 92 Pr: 95 Pr: 97 Pr: 99 q: 32 q: 64

uCWS 0.8810
(0.1161)

0.8818
(0.1150)

0.8655
(0.1104)

0.8668
(0.1047)

0.8822
(0.0992)

0.8962
(0.0919)

0.8964
(0.1024)

uPWS 0.1173
(0.0993)

0.1170
(0.0983)

0.1233
(0.0941)

0.1221
(0.0886)

0.1133
(0.0831)

0.3100
(0.0919)

0.3157
(0.1024)

32 uUQ 0.1335
(0.1131)

0.1110
(0.1128)

0.1061
(0.1087)

0.1362
(0.1038)

0.1180
(0.0989)

0.1000
(0.0919)

0.1000
(0.1024)

uECSQ 0.8706
(0.1172)

0.8731
(0.1176)

0.8731
(0.1139)

0.8668
(0.1049)

0.8794
(0.0992)

0.8912
(0.0921)

0.8910
(0.1025)

uCWS 0.8898
(0.1341)

0.8904
(0.1328)

0.8892
(0.1274)

0.8913
(0.1213)

0.8923
(0.1154)

0.9033
(0.1080)

0.9031
(0.1185)

uPWS 0.1210
(0.1165)

0.1216
(0.1153)

0.1158
(0.1105)

0.1156
(0.1048)

0.1098
(0.0992)

0.3755
(0.1080)

0.3804
(0.1185)

64 uUQ 0.1385
(0.1292)

0.1601
(0.1289)

0.1659
(0.1255)

0.1673
(0.1203)

0.1678
(0.1152)

0.1000
(0.1080)

0.1000
(0.1185)

uECSQ 0.8822
(0.1348)

0.8774
(0.1331)

0.8799
(0.1307)

0.8799
(0.1214)

0.8757
(0.1154)

0.8921
(0.1081)

0.8933
(0.1188)

uCWS 0.8919
(0.1514)

0.8944
(0.1497)

0.8936
(0.1441)

0.9022
(0.1376)

0.9027
(0.1315)

0.8897
(0.1240)

0.8901
(0.1346)

uPWS 0.1210
(0.1339)

0.1164
(0.1324)

0.1290
(0.1272)

0.1172
(0.1212)

0.1263
(0.1154)

0.5905
(0.1240)

0.5896
(0.1346)

128 uUQ 0.1440
(0.1297)

0.1409
(0.1294)

0.1414
(0.1258)

0.1494
(0.1206)

0.1323
(0.1152)

0.1098
(0.1240)

0.1099
(0.1346)

uECSQ 0.8917
(0.1523)

0.8889
(0.1503)

0.8899
(0.1475)

0.8955
(0.1379)

0.8995
(0.1316)

0.8941
(0.1240)

0.8939
(0.1346)

uCWS 0.9083
(0.1693)

0.9089
(0.1672)

0.9089
(0.1611)

0.9088
(0.1544)

0.9080
(0.1478)

0.8983
(0.1401)

0.8989
(0.1506)

uPWS 0.1270
(0.1515)

0.1239
(0.1497)

0.1207
(0.1440)

0.1244
(0.1377)

0.1335
(0.1315)

0.7703
(0.1401)

0.7716
(0.1506)

256 uUQ 0.9317
(0.1461)

0.9305
(0.1457)

0.9331
(0.1420)

0.9328
(0.1367)

0.9309
(0.1314)

0.9359
(0.1401)

0.9362
(0.1506)

uECSQ 0.9034
(0.1699)

0.9040
(0.1676)

0.9031
(0.1643)

0.9052
(0.1544)

0.9037
(0.1478)

0.9003
(0.1401)

0.9000
(0.1506)

Table A.7 (continued)

VGG19 – MNIST (0.9954)

Quantization + SLR

k Method Pr: 90 Pr: 92 Pr: 95 Pr: 97 Pr: 99 q: 32 q: 64

(0.1512) (0.1494) (0.1438) (0.1375) (0.1315) (0.1401) (0.1507)
256 uUQ 0.1247

(0.1463)
0.1170
(0.1459)

0.1993
(0.1423)

0.1139
(0.1368)

0.2077
(0.1313)

0.1009
(0.1401)

0.1009
(0.1507)

uECSQ 0.9949
(0.1696)

0.9952
(0.1674)

0.9953
(0.1611)

0.9948
(0.1543)

0.9938
(0.1478)

0.9956
(0.1562)

0.9956
(0.1667)

Table A.9
Results for the CIFAR100 dataset. Same notations as in Table A.7.

VGG19 – CIFAR100 (0.7126)

Quantization + SLR

k Method Pr: 90 Pr: 92 Pr: 95 Pr: 97 Pr: 99 q: 32 q: 64

uCWS 0.6642
(0.1001)

0.6605
(0.0985)

0.6611
(0.0938)

0.6685
(0.0880)

0.6543
(0.0823)

0.6729
(0.0934)

0.6720
(0.1073)

uPWS 0.0201
(0.0973)

0.0582
(0.0967)

0.0453
(0.0930)

0.0185
(0.0876)

0.0136
(0.0823)

0.0879
(0.0934)

0.0983
(0.1073)

32 uUQ 0.0100
(0.0983)

0.0104
(0.0977)

0.0099
(0.0935)

0.0100
(0.0878)

0.0100
(0.0824)

0.0100
(0.0934)

0.0100
(0.1073)

uECSQ 0.6432
(0.1101)

0.6401
(0.1082)

0.6398
(0.1023)

0.6344
(0.0961)

0.6312
(0.0911)

0.6532
(0.1031)

0.6547
(0.1232)

uCWS 0.6812
(0.1168)

0.6789
(0.1146)

0.6803
(0.1101)

0.6765
(0.1040)

0.5905
(0.0982)

0.6808
(0.1094)

0.6843
(0.1232)

uPWS 0.0441
(0.1148)

0.0904
(0.1135)

0.0800
(0.1092)

0.0556
(0.1036)

0.0135
(0.0982)

0.1190
(0.1094)

0.1341
(0.1232)

64 uUQ 0.0107
(0.1154)

0.0100
(0.1143)

0.0100
(0.1095)

0.0106
(0.1040)

0.0100
(0.0985)

0.0101
(0.1094)

0.0095
(0.1232)

uECSQ 0.6742 0.6784 0.6776 0.6766 0.6712 0.6656 0.6662

(continued on next page)

Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170

167



Table A.10
Model MSE after applying quantization to convolutional layers and pruning + quantization or only SLR to FC layers of DeepDTA trained on the KIBA dataset. Same notations as in
Table A.7.

DeepDTA – KIBA (0.1756)

Quantization + SLR

k Method Pr: 50 Pr: 55 Pr: 60 Pr: 65 Pr: 70 q: 32 q: 64

uCWS 0.1680
(0.1149)

0.1693
(0.1085)

0.1717
(0.1015)

0.1780
(0.0953)

0.1954
(0.0884)

0.4222
(0.0956)

0.3117
(0.1718)

uPWS 0.1918
(0.1021)

0.1978
(0.0950)

0.1908
(0.0883)

0.3108
(0.0779)

0.3946
(0.0712)

0.4315
(0.0956)

0.3329
(0.1718)

32 uUQ 0.1686
(0.0869)

0.1690
(0.0839)

0.1732
(0.0806)

0.1987
(0.0773)

0.3272
(0.0733)

0.4222
(0.0956)

0.3096
(0.1718)

uECSQ 0.1679
(0.1272)

0.1684
(0.1189)

0.1748
(0.1094)

0.1777
(0.1002)

0.1970
(0.0913)

0.4174
(0.0956)

0.3094
(0.1718)

uCWS 0.1649
(0.1320)

0.1664
(0.1240)

0.1704
(0.1158)

0.1758
(0.1088)

0.1938
(0.1007)

0.4123
(0.0994)

0.3050
(0.1756)

uPWS 0.1781
(0.1198)

0.1789
(0.1115)

0.1827
(0.1032)

0.1956
(0.0913)

0.3533
(0.0833)

0.4255
(0.0994)

0.3166
(0.1756)

64 uUQ 0.1658
(0.1040)

0.1674
(0.0987)

0.1742
(0.9418)

0.1906
(0.0897)

0.1985
(0.0848)

0.4183
(0.0994)

0.3074
(0.1756)

uECSQ 0.1656
(0.1423)

0.1665
(0.1326)

0.1700
(0.1234)

0.1785
(0.1128)

0.4559
(0.1034)

0.4179
(0.1032)

0.3111
(0.1795)

uCWS 0.1657
(0.1514)

0.1670
(0.1419)

0.1702
(0.1323)

0.1769
(0.1229)

0.4429
(0.1141)

0.4211
(0.1032)

0.3089
(0.1795)

uPWS 0.1734
(0.1377)

0.1741
(0.1278)

0.1735
(0.1144)

0.1876
(0.1050)

0.2804
(0.0956)

0.4224
(0.1032)

0.3157
(0.1795)

128 uUQ 0.1652
(0.1218)

0.1670
(0.1162)

0.1734
(0.1097)

0.1866
(0.1036)

0.1946
(0.0974)

0.4189
(0.1032)

0.3068
(0.1795)

uECSQ 0.1649
(0.1546)

0.1678
(0.1463)

0.1707
(0.1353)

0.4311
(0.1257)

0.4977
(0.1148)

0.4134
(0.1071)

0.3084
(0.1833)

uCWS 0.1652
(0.1690)

0.1669
(0.1585)

0.1705
(0.1480)

0.4485
(0.1371)

0.4111
(0.1264)

0.4218
(0.1071)

0.3111
(0.1834)

uPWS 0.1720
(0.1555)

0.1737
(0.1441)

0.1762
(0.1294)

0.3684
(0.1186)

0.4418
(0.1078)

0.4176
(0.1071)

0.3106
(0.1834)

256 uUQ 0.1654
(0.1409)

0.1662
(0.1333)

0.1706
(0.1259)

0.1766
(0.1183)

0.1947
(0.1103)

0.4165
(0.1071)

0.3049
(0.1834)

uECSQ 0.1659
(0.1651)

0.1673
(0.1557)

0.1714
(0.1453)

0.4221
(0.1312)

0.5349
(0.1202)

0.4198
(0.1071)

0.3074
(0.1834)

Table A.9 (continued)

VGG19 – CIFAR100 (0.7126)

Quantization + SLR

k Method Pr: 90 Pr: 92 Pr: 95 Pr: 97 Pr: 99 q: 32 q: 64

(0.1315) (0.1301) (0.1254) (0.1195) (0.1141) (0.1253) (0.1391)

uCWS 0.6849
(0.1316)

0.6841
(0.1305)

0.6717
(0.1255)

0.6728
(0.1196)

0.5952
(0.1141)

0.6874
(0.1253)

0.6891
(0.1391)

uPWS 0.3434
(0.1325)

0.3656
(0.1308)

0.3504
(0.1258)

0.3164
(0.1198)

0.0864
(0.1142)

0.3386
(0.1253)

0.3589
(0.1391)

128 uUQ 0.7080
(0.1316)

0.7061
(0.1313)

0.7049
(0.1263)

0.7041
(0.1204)

0.2913
(0.1144)

0.7050
(0.1253)

0.7084
(0.1391)

uECSQ 0.6840
(0.1491)

0.6847
(0.1474)

0.6862
(0.1419)

0.6801
(0.1359)

0.6788
(0.1301)

0.6780
(0.1412)

0.6801
(0.1550)

uCWS 0.6786
(0.1501)

0.6814
(0.1483)

0.6787
(0.1423)

0.6797
(0.1361)

0.6772
(0.1303)

0.6866
(0.1412)

0.6889
(0.1550)

uPWS 0.5137
(0.1499)

0.5155
(0.1480)

0.5078
(0.1423)

0.5017
(0.1361)

0.4624
(0.1302)

0.5071
(0.1412)

0.5084
(0.1550)

256 uUQ 0.7138
(0.1497)

0.7128
(0.1482)

0.7122
(0.1428)

0.7110
(0.1366)

0.7062
(0.1305)

0.7107
(0.1412)

0.7113
(0.1550)

uECSQ 0.6850
(0.1666)

0.6845
(0.1646)

0.6842
(0.1591)

0.6829
(0.1533)

0.6847
(0.1478)

0.6830
(0.1571)

0.6826
(0.1709)

Table A.11
Results for the Davis dataset. Same notations as in Table A.7.

DeepDTA – DAVIS (0.3223)

Quantization + SLR

k Method Pr: 70 Pr: 75 Pr: 80 Pr: 85 Pr: 90 q: 32 q: 64

uCWS 0.2309
(0.0866)

0.2342
(0.0789)

0.2408
(0.0733)

0.2544
(0.0666)

0.2530
(0.0607)

0.3661
(0.0956)

0.2994
(0.1718)

uPWS 0.4050 0.3990 0.4180 0.3626 0.5045 0.3671 0.2932

Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170

168



Table A.11 (continued)

DeepDTA – DAVIS (0.3223)

Quantization + SLR

k Method Pr: 70 Pr: 75 Pr: 80 Pr: 85 Pr: 90 q: 32 q: 64

(0.0702) (0.0642) (0.0584) (0.0528) (0.0486) (0.0956) (0.1718)
32 uUQ 0.2331

(0.0644)
0.2376
(0.0633)

0.2397
(0.0603)

0.2482
(0.0575)

0.2801
(0.0544)

0.3634
(0.0956)

0.2853
(0.1718)

uECSQ 0.2310
(0.0901)

0.2402
(0.0771)

0.2441
(0.0712)

0.2441
(0.0634)

0.2552
(0.0564)

0.3682
(0.1032)

0.2915
(0.1795)

uCWS 0.2386
(0.0995)

0.2346
(0.0920)

0.2372
(0.0844)

0.2524
(0.0663)

0.2603
(0.0590)

0.3662
(0.0994)

0.2957
(0.1756)

uPWS 0.2539
(0.0825)

0.2552
(0.0747)

0.2610
(0.0679)

0.2842
(0.0610)

0.3271
(0.0549)

0.3682
(0.0994)

0.2809
(0.1756)

64 uUQ 0.2344
(0.0748)

0.2369
(0.0719)

0.2410
(0.0685)

0.2525
(0.0645)

0.2584
(0.0597)

0.3655
(0.0994)

0.2957
(0.1756)

uECSQ 0.2364
(0.0949)

0.2348
(0.0866)

0.2356
(0.0805)

0.2414
(0.0714)

0.2467
(0.0632)

0.3621
(0.1071)

0.2831
(0.1833)

uCWS 0.2311
(0.1114)

0.2301
(0.1026)

0.2440
(0.0791)

0.2412
(0.0705)

0.2525
(0.0598)

0.3612
(0.1032)

0.2808
(0.1795)

uPWS 0.2535
(0.0949)

0.2474
(0.0857)

0.2538
(0.0772)

0.2637
(0.0690)

0.2755
(0.0576)

0.3615
(0.1032)

0.2783
(0.1795)

128 uUQ 0.2295
(0.0860)

0.2305
(0.0818)

0.2342
(0.0763)

0.2423
(0.0716)

0.2636
(0.0667)

0.3696
(0.1032)

0.2946
(0.1795)

uECSQ 0.2343
(0.1031)

0.2335
(0.0934)

0.2355
(0.0898)

0.2377
(0.0794)

0.2570
(0.0698)

0.3661
(0.1071)

0.2945
(0.1833)

uCWS 0.2267
(0.1252)

0.2273
(0.1145)

0.2346
(0.0862)

0.2411
(0.0770)

0.2718
(0.0644)

0.3677
(0.1071)

0.2957
(0.1834)

uPWS 0.2397
(0.1071)

0.2390
(0.0965)

0.2440
(0.0865)

0.2460
(0.0770)

0.2581
(0.0642)

0.3680
(0.1071)

0.2808
(0.1834)

256 uUQ 0.2305
(0.0943)

0.2391
(0.0882)

0.2393
(0.0822)

0.2419
(0.0760)

0.2505
(0.0698)

0.3600
(0.1071)

0.2811
(0.1834)

uECSQ 0.2291
(0.1103)

0.2286
(0.1020)

0.2329
(0.0995)

0.2419
(0.0876)

0.2663
(0.0765)

0.3604
(0.1071)

0.2809
(0.1834)

Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
References

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, in: Advances in Neural Inf. Process. Syst., 2012,
pp. 1097–1105.

[2] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, in: Y. Bengio, Y. LeCun (Eds.), 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015,
Conference Track Proceedings, 2015.

[3] C. Raffel, N. Shazeer, A. Roberts, et al., Exploring the limits of transfer learning
with a unified text-to-text transformer, CoRR abs/1910.10683.
arXiv:1910.10683.

[4] S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng. 22
(10) (2010) 1345–1359.

[5] S. Ruder, Neural transfer learning for natural language processing, NUI Galway,
2019, Ph.D. thesis.

[6] Z. Allen-Zhu, Y. Li, Y. Liang, Learning and generalization in overparameterized
neural networks, going beyond two layers, in: H. Wallach, H. Larochelle, A.
Beygelzimer, et al. (Eds.), Advances in Neural Information Processing Systems,
vol. 32, Curran Associates Inc, 2019.

[7] J. Yang, W. Xiao, C. Jiang, et al., Ai-powered green cloud and data center, IEEE
Access 7 (2019) 4195–4203, https://doi.org/10.1109/ACCESS.2018.2888976.

[8] E. Commission, C. Directorate-General for Communications Networks,
Technology, The Assessment List for Trustworthy Artificial Intelligence
(ALTAI) for self assessment, Publications Office, 2020. doi:doi/10.2759/791819.

[9] M. Zhang, F. Zhang, N.D. Lane, et al., Deep Learning in the Era of Edge
Computing: Challenges and Opportunities, John Wiley & Sons, Ltd, 2020, Ch. 3,
pp. 67–78. doi:https://doi.org/10.1002/9781119551713.ch3.

[10] P. Ferragina, G. Vinciguerra, The PGM-index: a fully-dynamic compressed
learned index with provable worst-case bounds, PVLDB 13 (8) (2020) 1162–
1175, https://doi.org/10.14778/3389133.3389135.

[11] M. Sandler, et al., Mobilenetv 2: Inverted residuals and linear bottlenecks, in:
Proc. IEEE Conf. on Comput. Vision and Pattern Recognit., 2018, pp. 4510–
4520.

[12] W. Dong, J. Wu, Z. Bai, et al., Mobilegcn applied to low-dimensional node
feature learning, Pattern Recogn. 112 (2021), https://doi.org/10.1016/
j.patcog.2020.107788.

[13] B. Neyshabur, Z. Li, S. Bhojanapalli, et al., The role of over-parametrization in
generalization of neural networks, in: 7th International Conference on
Learning Representations, ICLR 2019; Conference date: 06–05-2019 Through
09–05-2019, 2019.

[14] J. Ba, R. Caruana, Do deep nets really need to be deep?, Advances in Neural Inf
Process. Syst, vol. 27, Curran Associates Inc, 2014.
169
[15] M.C. Mozer, P. Smolensky, Skeletonization: A technique for trimming the fat
from a network via relevance assessment, in: D. Touretzky (Ed.), Advances in
Neural Information Processing Systems, vol. 1, Morgan-Kaufmann, 1989.

[16] L. Deng et al., Model compression and hardware acceleration for neural
networks: A comprehensive survey, Proc. IEEE 108 (4) (2020) 485–532.

[17] Y. Cheng, et al., A survey of model compression and acceleration for deep
neural networks, arXiv preprint arXiv:1710.09282.

[18] Y. LeCun, J. Denker, S. Solla, Optimal brain damage, Advances in neural
information processing systems 2.

[19] M. Hagiwara, Removal of hidden units and weights for back propagation
networks, in: Proc. of 1993 Int. Conf. on Neural Net. (IJCNN-93-Nagoya, Japan),
vol. 1, 1993, pp. 351–354. doi:10.1109/IJCNN.1993.713929.

[20] A.S. Weigend, D.E. Rumelhart, B.A. Huberman, Generalization by weight-
elimination with application to forecasting, in: Proc. of the 1990 Conf. on
Advances in Neural Inf. Process. Syst., 1990, p. 875–882.

[21] D. Whitley, T. Starkweather, C. Bogart, Genetic algorithms and neural
networks: optimizing connections and connectivity, Parallel Comput. 14 (3)
(1990) 347–361, https://doi.org/10.1016/0167-8191(90)90086-O.

[22] J. Tu, Y. Zhan, F. Han, A neural network pruning method optimized with pso
algorithm, in: 2010 Second Int. Conf. on Comput. Model. and Simul., vol. 3,
2010, pp. 257–259. doi:10.1109/ICCMS.2010.424.

[23] J. Su, N.J. Fraser, G. Gambardella, et al., Accuracy to throughput trade-offs for
reduced precision neural networks on reconfigurable logic, in: N. Voros, M.
Huebner, G. Keramidas, et al. (Eds.), Applied Reconfigurable Computing.
Architectures, Tools, and Applications, Springer International Publishing,
Cham, 2018, pp. 29–42.

[24] I. Hubara et al., Binarized neural networks, in: D. Lee, M. Sugiyama, U.
Luxburg, et al. (Eds.), Advances in Neural Inf. Process. Syst., Curran Associates
Inc, 2016.

[25] B. Jacob, et al., Quantization and training of neural networks for efficient
integer-arithmetic-only inference, in: Proc. of the IEEE Conf. on Comput. Vision
and Pattern Recognition (CVPR), 2018, pp. 2704–2713.

[26] E. Park, S. Yoo, P. Vajda, Value-aware quantization for training and inference of
neural networks, in: Proc. of the Eur. Conf. on Comput. Vision (ECCV), 2018, pp.
580–595.

[27] L. Hou, Q. Yao, J.T. Kwok, Loss-aware binarization of deep networks, in: 5th Int.
Conf. on Learn. Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
OpenReview.net, 2017.

[28] A. Zhou, et al., Incremental network quantization: Towards lossless CNNs with
low-precision weights, in: 5th Int. Conf. on Learn. Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, OpenReview.net, 2017.

[29] S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding, in: Y. Bengio,
Y. LeCun (Eds.), 4th International Conference on Learning Representations,

http://refhub.elsevier.com/S0925-2312(22)01464-3/h0020
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0020
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0025
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0025
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0025
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0030
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0030
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0030
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0030
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0030
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0030
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0030
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0030
https://doi.org/10.1109/ACCESS.2018.2888976
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1016/j.patcog.2020.107788
https://doi.org/10.1016/j.patcog.2020.107788
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0070
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0070
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0070
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0075
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0075
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0075
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0075
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0075
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0080
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0080
https://doi.org/10.1016/0167-8191(90)90086-O
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0115
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0115
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0115
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0115
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0115
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0115
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0115
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0115
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0115
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0120
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0120
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0120
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0120
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0120
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0120
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0120


Giosué Cataldo Marinó, A. Petrini, D. Malchiodi et al. Neurocomputing 520 (2023) 152–170
ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016, Conference Track
Proceedings, 2016.

[30] G.C. Marinó et al., Compression strategies and space-conscious representations
for deep neural networks, 2020 25th Int. Conf. on Pattern Recognition (ICPR)
2021 (2020) 9835–9842, https://doi.org/10.1109/ICPR48806.2021.9412209.

[31] G.C. Marinò et al., Reproducing the sparse huffman address map compression
for deep neural networks, in: Reproducible Research in Pattern Recognition,
Springer International Publishing, Cham, 2021, pp. 161–166.

[32] Y. Choi, M. El-Khamy, J. Lee, Universal deep neural network compression, IEEE
J. Sel. Topics Signal Process. 14 (4) (2020) 715–726.

[33] A. Gersho, R.M. Gray, Vector Quantization and Signal Compression, Kluwer
Academic Publishers, USA, 1991.

[34] J. Xue, J. Li, Y. Gong, Restructuring of deep neural network acoustic models
with singular value decomposition, in: Interspeech, interspeech Edition, 2013,
pp. 2365–2369.

[35] T.N. Sainath, et al., Low-rank matrix factorization for deep neural network
training with high-dimensional output targets, in: Proc. IEEE Int. Conf. on
Acoust., Speech and Signal Proc., 2013, pp. 6655–6659.

[36] L. De Lathauwer, Decompositions of a higher-order tensor in block terms –
part i: Lemmas for partitioned matrices, SIAM J. Matrix Anal. Appl. 30 (3)
(2008) 1022–1032.

[37] R.Rigamonti,etal., Learningseparablefilters, in:2013 IEEEConf.onComput.Vision
and Pattern Recognition, 2013, pp. 2754–2761. doi:10.1109/CVPR.2013.355.

[38] M. Jaderberg, A. Vedaldi, A. Zisserman, Speeding up convolutional neural
networks with low rank expansions, CoRR abs/1405.3866. arXiv:1405.3866.

[39] X. Yu, et al., On compressing deep models by low rank and sparse
decomposition, in: Proc. of the IEEE Conf. on Comput. Vision and Pattern
Recognition (CVPR), 2017, pp. 7370–7379.

[40] R. Müller, S. Kornblith, G.E. Hinton, When does label smoothing help?,
Advances in Neural Inf Proc. Syst., vol. 32, Curran Associates Inc, 2019.

[41] Y. Tian, D. Krishnan, P. Isola, Contrastive representation distillation, in: Int.
Conf. on Learn. Representations, 2020.

[42] A. Mallya, S. Lazebnik, Packnet: Adding multiple tasks to a single network by
iterative pruning, in: 2018 IEEE Conf. on Comput. Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, IEEE
Computer Society, 2018, pp. 7765–7773. doi:10.1109/CVPR.2018.00810.

[43] Y. LeCun, J. Denker, S. Solla, Optimal brain damage, in: Advances in Neural Inf.
Proc. Syst., vol. 2, Morgan-Kaufmann, 1990.

[44] P. Molchanov, A. Mallya, S. Tyree, et al., Importance estimation for neural
network pruning, in: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, 2019, Computer
Vision Foundation/ IEEE, 2019, pp. 11264–11272. doi:10.1109/
CVPR.2019.01152.

[45] P. Molchanov, et al., Pruning convolutional neural networks for resource
efficient transfer learning, CoRR abs/1611.06440. arXiv:1611.06440.

[46] H.-G. Han, J.-F. Qiao, A structure optimisation algorithm for feedforward neural
network construction, Neurocomput. 99 (2013) 347–357, https://doi.org/
10.1016/j.neucom.2012.07.023.

[47] H. Li, et al., Pruning filters for efficient convnets, arXiv preprint
arXiv:1608.08710 arXiv:1608.08710.

[48] J.-H. Luo et al., Thinet: Pruning cnn filters for a thinner net, IEEE Trans. Pattern
Anal. Mach. Intell. 41 (10) (2019) 2525–2538, https://doi.org/10.1109/
TPAMI.2018.2858232.

[49] Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep neural
networks, in: 2017 IEEE Int. Conf. on Comput. Vision (ICCV), 2017, pp. 1398–
1406. doi:10.1109/ICCV.2017.155.

[50] X. He, Z. Zhou, L. Thiele, Multi-task zipping via layer-wise neuron sharing,
Advances in Neural Inf. Proc. Syst., vol. 31, Curran Associates Inc, 2018.

[51] Y. Idelbayev, M.A. Carreira-Perpiñán, Lc: A flexible, extensible open-source
toolkit for model compression, in: Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, Association for
Computing Machinery, New York, NY, USA, 2021.

[52] M. Á. Carreira-Perpiñán, Y. Idelbayev, Model compression as constrained
optimization, with application to neural nets. part V: combining compressions,
CoRR abs/2107.04380. arXiv:2107.04380.

[53] M. Courbariaux et al., Binaryconnect: Training deep neural networks with
binary weights during propagations, in: Advances in Neural Inf. Proc. Syst. 28,
Curran Associates Inc., 2015, pp. 3123–3131.

[54] L. Deng et al., Gxnor-net: Training deep neural networks with ternary weights
and activations without full-precision memory under a unified discretization
framework, Neural Networks 100 (2018) 49–58.

[55] H. Gish, J. Pierce, Asymptotically efficient quantizing, IEEE Trans. Inf. Theory 14
(5) (1968) 676–683.

[56] P.A. Chou, T. Lookabaugh, R.M. Gray, Entropy-constrained vector quantization,
IEEE Trans. Acoust. Speech Signal Process. 37 (1) (1989) 31–42.

[57] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., Society for
Industrial and Applied Mathematics, USA, 2003.

[58] S. Swaminathan, D. Garg, R. Kannan, et al., Sparse low rank factorization for
deep neural network compression, Neurocomputing 398 (2020) 185–196,
https://doi.org/10.1016/j.neucom.2020.02.035.

[59] Y. Lecun et al., Gradient-based learning applied to document recognition, Proc.
IEEE 86 (11) (1998) 2278–2324.

[60] A. Krizhevsky, Learning multiple layers of features from tiny images,
University of Toronto, 2009, Master’s thesis,.

[61] A. Krizhevsky, Learning multiple layers of features from tiny images (Tech.
rep.), University of Toronto, 2009.
170
[62] M.I. Davis et al., Comprehensive analysis of kinase inhibitor selectivity, Nat.
Biotechnol. 29 (2011) 1046–1051.

[63] J. Tang et al., Making sense of large-scale kinase inhibitor bioactivity data sets:
A comparative and integrative analysis, J. Chem. Inf. Model. 54 (3) (2014) 735–
743, https://doi.org/10.1021/ci400709d.

[64] H. Öztürk et al., DeepDTA: deep drug–target binding affinity prediction,
Bioinformatics 34 (17) (2018) i821–i829, https://doi.org/10.1093/
bioinformatics/bty593.

[65] E. Denton, W. Zaremba, J. Bruna, et al., Exploiting linear structure within
convolutional networks for efficient evaluation, in: Proceedings of the 27th
International Conference on Neural Information Processing Systems – Volume
1, NIPS’14, MIT Press, Cambridge, MA, USA, 2014, p. 1269–1277.

Giosuè Cataldo Marinò received the B.Sc. degree in
computer science from the Università degli Studi di
Milano, Italy, where he is currently pursuing the mas-
ter’s degree in computer science. His research interests
include machine learning and compression of neural
network models.
Alessandro Petrini received a B.Sc. in Applied Mathe-
matics, and a M.Sc and a Ph.D. in Computer Science from
the Università degli Studi di Milano, Italy, in 2014, 2017
and 2021 respectively. His main research interest is
focused in Parallel and Accelerated Computing, but
during his career he contributed in several fields of
scientific research such as Machine Learning, Deep
Learning, Bioinformatics, Image/Video Analysis and
Processing, and data compression. As a part of his con-
tinuous pursuit of the forefront of technical innovation,
he is now a Senior Software Engineer contributing to
Web 3.0 research and developing blockchain based

applications.
Dario Malchiodi received the M.Sc. degree in comput-
ing and the Ph.D. degree in computational mathematics
and operations research from the Università degli Studi
di Milano, Italy, in 1997 and 2000, respectively. Since
2002, he has been an Assistant Professor with the
Department of Computer Science, Universit? degli Studi
di Milano, where he was appointed as an Associate
Professor, in 2011. He teaches statistics and data anal-
ysis and algorithms for massive datasets. He is the
author of about 100 scientific publications. He is also
actively involved in the popularization of computing.
His research interests include the treatment of uncer-

tainty in machine learning, with a particular focus to data-driven induction of fuzzy
sets, compression of machine learning models, mining of knowledge bases in
semantic web, negative example selection in bioinformatics, and application of

machine learning to the medical, veterinary, and forensics fields.

Marco Frasca received the Ph.D. degree in computer
science from the Università degli Studi di Milano, Italy,
in 2012. He was a Postdoctoral Researcher with the
Department of Biosciences and the Department of
Computer Science, Università degli Studi di Milano.
Since 2017, he has been an Assistant Professor at the
Department of Computer Science, of the same univer-
sity, where he is a member of AnacletoLab, whose
research activities regard the field of machine learning
applied in biology and medicine. He has been an Invited
Research Visitor at several universities, including the
Terrence Donnelly Centre for Cellular and Biomolecular

Research, University of Toronto, and the Institute of Molecular Biology, Johannes
Gutenberg University of Mainz. He contributed to consolidate the application of
Hopfield networks to classification and ranking problems with the development of

single- and multi-task parametric Hopfield models. His research interest includes
the design and analysis of new machine learning methods, with applications in
bioinformatics, computational biology, and medicine.

https://doi.org/10.1109/ICPR48806.2021.9412209
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0155
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0155
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0155
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0155
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0160
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0160
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0165
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0165
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0165
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0180
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0180
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0180
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0200
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0200
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0200
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0205
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0205
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0205
https://doi.org/10.1016/j.neucom.2012.07.023
https://doi.org/10.1016/j.neucom.2012.07.023
https://doi.org/10.1109/TPAMI.2018.2858232
https://doi.org/10.1109/TPAMI.2018.2858232
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0250
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0250
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0250
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0265
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0265
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0265
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0265
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0270
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0270
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0270
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0275
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0275
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0280
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0280
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0285
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0285
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0285
https://doi.org/10.1016/j.neucom.2020.02.035
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0295
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0295
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0300
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0300
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0300
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0305
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0305
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0305
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0310
http://refhub.elsevier.com/S0925-2312(22)01464-3/h0310
https://doi.org/10.1021/ci400709d
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1093/bioinformatics/bty593

	Deep neural networks compression: A comparative survey and choice recommendations
	1 Introduction
	2 Related work
	2.1 Connection pruning
	2.2 Weight quantization
	2.3 Low-rank matrix and tensor decomposition
	2.4 Other approaches

	3 Materials and methods
	3.1 Connection pruning
	3.2 Quantization via weight sharing
	3.2.1 Share weights
	3.2.2 Cumulative retrain of weights
	3.2.3 Storing the shared weights

	3.3 Sparse low-rank factorization (SLR)

	4 Experimental analysis
	4.1 Data
	4.2 Benchmark models
	4.3 Evaluation metrics
	4.4 Software implementation

	5 Results
	5.1 Preliminary results from previous studies
	5.2 Evaluation of global and per-layer quantization
	5.3 Comparison on FC layers
	5.4 Comparison on convolutional layers
	5.5 Comparison on the whole network
	5.6 Discussion

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Full result tables
	References


