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Abstract

One of the most important goals of Human Activity Recognition (HAR) is to au-

tomatically obtain information on the behaviors of the users to proactively assist

them with their tasks. In the literature, the majority of physical activity recog-

nition approaches rely on fully-supervised techniques to collaboratively train a

recognition model over the data collected from a large number of users. However,

these solutions usually su↵er from numerous issues like scalability, privacy, poor

personalization, and scarcity of labeled training data. In this thesis, we will focus

on analyzing in deep those problems, with the scope of proposing novel method-

ologies to tackle them. First of all, we consider the labeled data scarcity issue.

Indeed, obtaining human-annotated activity examples is costly, intrusive, time-

consuming, and hence unpractical on a large scale. Semi-supervised approaches

have been suggested to reduce the size of the training set required to initialize

the model, but their e↵ectiveness revealed not satisfactory for those activities

that involve similar body movements (e.g., standing and taking the elevator).

In order to mitigate this problem, we propose a novel hybrid semi-supervised

and knowledge-based framework that uses the context that surrounds users (e.g.

semantic location, speed, weather) to enable a machine learning model trained

with a limited number of labeled data to classify a wide set of context-dependent

activities. Then, we consider the scalability and privacy issues that arise in

collaboratively training a recognition model with the data coming from a large

number of di↵erent users. Federated Learning (FL) showed to be a promising

paradigm to address these problems. However, most of the FL-based solutions

for HAR proposed in the literature assume that users can always obtain labeled

data to train the recognition model, hence inheriting the limitation related to hu-

man annotation that we mentioned before. Moreover, generating a single global
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model for all the users may not be as e↵ective as expected. Indeed, di↵erent sub-

jects could perform activities in di↵erent ways depending on their physical traits

and habits. In order to tackle these problems, we introduce innovative hybrid

semi-supervised and FL-based solutions that enable personalized, privacy-aware,

and scalable activity recognition. In conclusion, we analyze the possible informa-

tion leakage of FL for HAR, with the aim of obtaining hints to guide the future

development of specific privacy-preserving techniques.
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Chapter 1

Introduction

1.1 Motivation And Problem Description

The rapid evolution of sensor technology and mobile computing in the last decades

opened the way to a new generation of intelligent context-aware services able to

automatically detect our daily activities [1]. Overall, the main goal of Human

Activity Recognition (HAR) is to monitor the behaviors of the users through the

analysis of observations obtained from users themselves and their environments

of living, with the aim of developing solutions capable of dynamically adapting

their functionalities to people’s behavior. The contributions in the literature

include the development of di↵erent AI-based approaches that exploit the data

collected from various sources in order to enable smart services like care-giving,

home rehabilitation, as well as human well-being and safety [2]. Overall, the

typology of activities commonly considered by researchers ranges from Activities

of Daily Living (ADLs) like cooking, eating, taking medicine, etc., to physical

activities like walking, taking the stairs, running, etc. Numerous research studies

have been carried out and many more are in progress in this application domain.

In the last two decades, video-based and sensor-based are the two categories of

HAR on which most of the works in the literature have been focused [3]. Video-

based HAR enables classifying both ADLs and physical activities by processing

video or images that contain human actions and motions. However, although the

promising results obtained by video-based HAR systems, the privacy and intru-

15



siveness issues related to continuously monitoring the user by cameras, lead the

research community to recently polarise on sensor-based HAR [4].

Considering sensor-based HAR, the adopted sensors equipment varies depend-

ing on the category of the activities to classify [5, 6]. ADLs require sophisticated

settings (e.g., smart homes) that enable monitoring of both the physical move-

ments of the users and their interaction with the living environment. Di↵erently,

physical activities can be classified by processing only the sensor data collected

from wearable devices (e.g., smartphones and smartwatches). Indeed, the new

generation of wearable devices, embed several sensors such as inertial (e.g., ac-

celerometer, gyroscope) and optical (e.g., heart rate sensor) which enable to seam-

lessly and unobtrusively obtaining information regarding the physical movements

of the users and their health condition [7].

In this thesis, we will focus on physical activity recognition based on the

data collected from wearable devices. The fundamental steps adopted to process

these data are: pre-processing, segmentation, features extraction, and classifica-

tion. The pre-processing step usually consists of filtering the sensor data in order

to reduce noise. Then, the segmentation process enables the partitioning of the

filtered sensor data stream into segments of a specific length. After the segmenta-

tion step, the features extraction procedure allows extracting from each segment

the most relevant features. In particular, this last step can be automated (i.e., by

adopting specific types of Deep Neural Networks (DNN)[8]) or handcrafted [9].

Concerning the classification step, most of the state-of-the-art sensor-based ac-

tivity recognition systems rely on fully supervised collaborative machine-learning

techniques [10, 1]. These approaches mostly involve centralizing a large number

of labeled sensor data collected by di↵erent subjects into a single cloud server,

where a global machine-learning model is trained. Despite the promising results

of these approaches, they su↵er from various challenges related to scalability, pri-

vacy, and personalization. From a privacy perspective, activity data are sensitive

since they can reveal users’ personal habits and health conditions [11]. Further-

more, the activity recognition process often involves private information, such as

the semantic position of the user, which is not meant to be shared or made public.

Thus, transferring such data to a third-party cloud server may expose users to
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many privacy threats. Considering scalability aspects, fully supervised collabo-

rative machine-learning methods may also pose issues related to communication

latency and computational costs. Moreover, we have to consider that di↵erent

users likely perform activities in very di↵erent ways depending on their physical

traits. For this reason, it emerges the need for a personalized activity recogni-

tion model for each user. In order to achieve this goal, each user would have to

collect plenty of labeled examples to train her personal classifier. However, the

annotation of activity data is costly, time-consuming, intrusive, and hence often

unfeasible on a large scale [12]. Lastly, it is also important to consider that most

of the works in the literature exploit only inertial sensor data to classify physical

activities, and thus poorly perform in discriminating those activities character-

ized by similar body movements (e.g., standing and taking the elevator). This

issue is even emphasized considering that, as we mentioned above, a single user

may struggle to collect the number of annotated examples needed to adequately

train a personalized recognition model.

Given all of these possible limitations, in Figure 1.1 we present our vision of

an ideal collaborative learning approach for HAR. First of all, we believe that

including context data (e.g., semantic location, speed, height variation) along

with inertial sensor data, would be important to improve the classification rate

of activities characterized by similar body movements. Another important aspect

to consider is the minimization of the number of annotated samples that each

user has to collect to build a personalized recognition model. Moreover, in our

vision, we think that to reduce privacy and scalability issues, each user should

share only a small portion of non-sensitive information with a cloud server. On

the server side, this non-sensitive information has to be manipulated to generate

a specialized recognition model for each group of similar users (e.g., users with

comparable physical traits and habits). Lastly, the users should also have the

possibility to further personalize the received model over their very distinctive

way of executing activities.

In the following of this thesis, we will investigate in deep the limitations re-

lated to the most common collaborative HAR approaches. Then, we propose
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novel methodologies to tackle them, with the aim of getting as close as possible

to our vision of an ideal collaborative learning system for sensor-based HAR.

Figure 1.1: Representation of our vision for collaborative approaches for HAR

First of all, focus on the labeled data scarcity problem. Indeed, as we pre-

viously introduced, collecting an adequate number of labeled data to train a

personalized activity recognition model is a real challenge. For instance, data

annotation can be performed directly by each user while performing activities

(self-annotation), but this approach is very obtrusive and error-prone. Alter-

natively, external observers can annotate the activity execution of a subject (in

real-time or by semi-automatic video annotation). However, this annotation tech-

nique is particularly time-consuming and privacy-intrusive. Semi-supervised and

incremental approaches revealed a valuable solution to mitigate this problem

[13]. These methods only require a small number of labeled data to initialize

the recognition model, while techniques like co-learning, self-learning, or active

learning are used to annotate the inertial sensor data stream, and incrementally
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train the model [14, 15, 16]. However, due to the small set of labeled data used for

model initialization, semi-supervised approaches may struggle in the early stages

to discriminate activities that involve similar body movements (e.g., walking and

taking the stairs). In order to increase the classification rate of those activities,

in the literature, has been proposed to use context data (e.g., semantic location,

weather, speed, altitude changes) as additional features in the machine learning

process [17, 18]. Anyway, given semi-supervised learning settings, it is not realis-

tic to acquire a comprehensive pre-training dataset that includes the large number

of possible context conditions in which activities can be performed. Moreover,

since context variables may be high and dynamic, the resulting machine-learning

model would be extremely complex.

Along with the annotated data scarcity problem, it is important to consider

the scalability and privacy issues that arise in centralizing the data collected by

a large number of subjects into a single cloud server, where the global activity

recognition model is trained.

Indeed, the data collected from mobile devices and wearable sensors are highly

personal and can reveal private and sensitive information about users such as

their health status, location, and daily routines [11]. Moreover, as the number of

users increases, storing and processing all the collected data on a single machine

becomes challenging, making scalability a concern. Further, the computational

e↵ort required to train the global model with data coming from numerous users

grows significantly with their number.

However, collecting a large number of data from multiple users in a privacy-

preserving way is crucial for any e↵ective and privacy-aware collaborative HAR

approach. Federated Learning (FL) framework, recently proposed in the litera-

ture [19], presents a promising solution to these challenges.

In the FL paradigm, the global model training task is distributed among a

large number of nodes. Each node uses its annotated data to train its local

instance of the global recognition model. The resulting model parameters of each

participating node are then sent to a server, which aggregates them to update the

global model. Finally, the updated global model’s parameters are shared with

the participating nodes.
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By sharing the locally learned model parameters instead of data, FL mitigates

the scalability and privacy issues of large-scale scenarios. Therefore, FL can be an

e↵ective and privacy-aware collaborative approach, providing a valuable solution

to the fundamental requirements of collecting and processing vast amounts of

data from numerous users while keeping their personal information private. For

those reasons, FL attracted attention from the pervasive computing community,

including HAR [20, 21, 22].

Despite the potential of FL in HAR scenarios, there are still some limitations.

First of all, in the literature most of the FL-based approaches for HAR assume

that labeled datasets are available for each client, thus inheriting the data annota-

tion problems that we previously discussed [23]. Then, in FL the server generates

a global model with the purpose of generalizing over a large number of di↵erent

subjects. However, diverse users may perform activities in very di↵erent ways

and by following diverse routines depending on various factors like habits, phys-

ical characteristics, age etc. Accordingly, the data coming from di↵erent users

is non-independently and identically distributed (non-IID). A trade-o↵ between

generalization and personalization should be considered by FL methods to build

accurate HAR models [24]. In the literature, the earliest approaches proposed to

tackle the non-IID problem for FL HAR rely on transfer learning [23]. Here, the

global recognition model is fine-tuned by each participating user by exploiting

its locally collected data. However, by depending only on transfer learning and

a single global model, it is challenging to balance personalization and generaliza-

tion, especially considering large-scale scenarios [25].

Lastly, even though FL avoids the release of labeled sensor data, recent studies

showed that the model’s parameters received and manipulated by the cloud server

may still reveal some information about users who generate them [26]. Indeed,

deep learning models’ parameters could implicitly memorize specific information

about the data used to train the model [27, 28]. This problem is particularly

relevant in the HAR domain where the training examples may expose private

and sensitive information of the users. However, to the best of our knowledge,

the potential privacy threats of federated HAR models have not been studied in

deep yet.
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1.2 Research Contributions

In this section, every research contribution of the thesis is introduced. It is im-

portant to note that these contributions have been achieved in collaboration with

my research group: the EveryWare Lab 1, at the University of Milan (Italy).

1.2.1 Hybrid Semi-Supervised Learning And Context-Aware

Reasoning Framework For Collaborative HAR

As we previously mentioned, state-of-the-art approaches for sensor-based HAR

mostly rely on fully-supervised learning strategies to collaboratively train the

recognition model. While the literature on this topic is quite mature, existing

methodologies do not consider how it is challenging for the users to collect the

large number of labeled data required to train the recognition model. Semi-

supervised learning approaches may be a valuable solution to mitigate this prob-

lem. However, they showed not very e↵ective in classifying activities character-

ized by similar body movements. Including context data as additional features

to train the machine learning model could help to discriminate those activities.

Nevertheless, as semi-supervised approaches rely on a small number of examples

to initialize the recognition model, collecting a training set including activity data

performed in every possible context condition is even more challenging.

In order to tackle these problems, in Chapter 3 we propose a novel approach

that combines semi-supervised learning, and knowledge-based reasoning [29, 30].

Precisely, an incremental machine learning classifier is in charge of inferring from

the inertial sensors data of each user the probability distribution over the possi-

ble activities. Meanwhile, the context data are processed separately by a specific

knowledge-based reasoning engine that refines the probability distribution con-

sidering context data. Finally, the context-refined predictions are used as newly

labeled samples to collaboratively update the classifier by following an active

1http://everywarelab.di.unimi.it/
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learning-based approach. In particular, we developed and experimentally evalu-

ated two di↵erent ontologies to perform the context-based refinement. The first

one is a deterministic ontology that enables excluding from the statistical predic-

tion vector the activities which are highly unlikely considering context data [29].

The latter consists of a probabilistic ontology that allows refining the statistical

prediction vector by considering the intrinsic uncertainty that characterizes the

relationships among activities and context data[30]. The obtained results show

that the proposed approach enables improving the recognition rate with respect

to state-of-the-art semi-supervised approaches for HAR, while using a very lim-

ited number of annotated samples.

Chapter 3 is based on the following publications:

• Claudio Bettini, Gabriele Civitarese, Davide Giancane, Riccardo Presotto,

“ProCAVIAR: Hybrid Data-Driven and Probabilistic Knowledge-Based Ac-

tivity Recognition”. IEEE Access, IEEE, 2020. (DOI: 10.1109/ACCESS.

2020.3015091).

• Claudio Bettini, Gabriele Civitarese, Riccardo Presotto, “CAVIAR: Context-

driven Active and Incremental Activity Recognition”. Knowledge-Based

Systems, Elsevier, 2020. (DOI: 10.1016/j.knosys.2020.105816).

• Gabriele Civitarese, Riccardo Presotto, Claudio Bettini. “Hybrid Data-

Driven and Context-Aware Activity Recognition with Mobile Devices”. Ad-

junct Proceedings of the 2019 ACM International Joint Conference on Per-

vasive and Ubiquitous Computing and the 2019 International Symposium

on Wearable Computers (UbiComp/ISWC ’19 Adjunct), 2019.
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My Contributions:

• Collaboration in methodology design.

• Collaboration in designing a part of the proposed ontologies.

• System implementation (except ontological reasoning).

• Collaboration in the design of the evaluation methods.

• Experiments execution.

• Collaboration in results analysis and interpretation.

1.2.2 FL-Based Approach To Reduce The Data Scarcity

Problem Of HAR

The semi-supervised learning and context-aware reasoning approach proposed in

Chapter 3 represents a promising solution to mitigate the labeled data scarcity

problem of HAR. However, like most of the state-of-the-art collaborative methods

for HAR, the proposed approach involves centralizing the data collected by users

on a single machine in order to train a global activity recognition model. Accord-

ingly, scalability and privacy limitations may arise when the process involves a

large number of subjects. Federated Learning (FL) is one of the most interesting

paradigms to address these problems. Nevertheless, the FL-based approaches for

HAR that have been proposed in the literature assume that participating users

can always obtain labeled datasets to train their local models.

In Chapter 4, we propose FedAR: a novel approach for HAR that combines semi-

supervised and federated learning to take advantage of the strengths of both

approaches. FedAR integrates active learning and label propagation to semi-

automatically annotate the local streams of unlabeled sensor data, while it relies

on FL to build a global activity model in a scalable and privacy-aware fashion.

FedAR also includes a transfer learning-inspired strategy to personalize the global

model for each user.
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We evaluated FedAR on two public datasets, showing that our novel method-

ology allows achieving a very high recognition rate with a very limited number

of annotated training examples, hence leading to an e↵ective, privacy-aware, and

scalable solution to tackle the labeled data scarcity problem of HAR.

Chapter 4 is based on the following publication:

• Riccardo Presotto, Gabriele Civitarese, Claudio Bettini, “Semi-Supervised

and Personalized Federated Activity Recognition Based on Active Learning

and Label Propagation”. Personal and Ubiquitous Computing, Springer,

2022.

My Contributions:

• Collaboration in concept and methodology design.

• System implementation.

• Design of the evaluation method.

• Experiments execution.

• Collaboration in results analysis and interpretation.

1.2.3 Tackling The Non-IID Issue Typical Of FL Approaches

For HAR

In various domains, the FL paradigm enabled achieving really good results in

a scalable and privacy-preserving way. However, considering the specific HAR

domain emerged some issues. Indeed, di↵erent subjects may perform the same

activities in various ways depending on their physical traits, age, habits, etc.

The activity data is hence non-independently and identically distributed (non-

IID) among the participants. Therefore, the generation of a single global model

for all the users may lead to unsatisfactory performances in terms of classifica-

tion accuracy. The model personalization strategy inspired by transfer learning
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that we propose in Chapter 4 partially mitigates this issue. Anyway, personalizing

a single global model may not be su�ciently accurate for a large number of users.

In Chapter 5, we introduce SS-FedCLAR, a novel semi-supervised federated learn-

ing approach for personalized HAR based on hierarchical clustering. Precisely,

SS-FedCLAR relies on an innovative framework that enables grouping the users

based on the server-side similarity computation, using only a portion of the model

weights shared by each participant. Given the similarity of the local model up-

dates, the cloud server of SS-FedCLAR derives groups of users that exhibit sim-

ilar ways of performing activities. For each group, SS-FedCLAR generates a

specialized global model in order to minimize the non-IID problem. Moreover,

SS-FedCLAR takes into account the annotated data scarcity problem: each client

uses a combination of active learning and label propagation to provide pseudo

labels to a large amount of unlabeled data, which is then used to collaboratively

train the Federated Clustering model.

We evaluated SS-FedCLAR on two well-known public datasets. Our results show

that it mitigates the non-IID problem and the data scarcity issue at the same

time. Indeed, SS-FedCLAR reaches recognition rates that are very close to fully-

supervised methods and it outperforms state-of-the-art semi-supervised FL-based

HAR approaches.

Chapter 5 is based on the following publications:

• Riccardo Presotto, Gabriele Civitarese, Claudio Bettini,“Federated Clus-

tering and Semi-Supervised Learning: A New Partnership for Personalized

Human Activity Recognition”. Pervasive and Mobile Computing, Elsevier,

2022. (DOI: 10.1016/j.pmcj.2022.101726).

• Riccardo Presotto, Gabriele Civitarese, Claudio Bettini, “FedCLAR: Fed-

erated Clustering for Personalized Sensor-Based Human Activity Recogni-

tion”. In Proceedings of the 2022 IEEE International Conference on Per-

vasive Computing and Communications (PerCom), 2022.
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My Contributions:

• Problem identification and formulation.

• Collaboration in methodology design.

• Design of the evaluation methods.

• Experiments execution.

• Results analysis and interpretation.

1.2.4 Investigating The Potential Privacy Issues In FL

HAR

Even though FL avoids the release of labeled sensory row data, the parameters

of deep learning models shared between the users and the cloud server may still

reveal some sensitive information through specifically designed attacks [26]. This

problem is particularly relevant considering the HAR domain where the involved

information includes sensitive data regarding the users’ health state and habits.

In Chapter 6 we propose the first contribution in this line of research by in-

troducing a novel methodology to evaluate the e↵ectiveness of the Membership

Inference Attack (MIA) for FL-based HAR.

Our preliminary results on a public dataset suggest that the global activity model

may reveal sensitive high-level information from participating users, hence pro-

viding hints for future works on countering such attacks.

Chapter 6 is based on the following publications:

• Riccardo Presotto, Gabriele Civitarese, Claudio Bettini. “Preliminary Re-

sults on Sensitive Data Leakage in Federated Human Activity Recognition”.

In Proceedings of the 2022 IEEE International Conference on Pervasive

Computing and Communications Workshops, 2022.
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My Contributions:

• Collaboration in methodology design.

• Collaboration in system implementation.

• Collaboration in the design of the evaluation methods.

• Collaboration in experiments execution.

• Collaboration in results analysis and interpretation.

1.3 Outline

The rest of the thesis is structured as follows. Chapter 2 provides a wide overview

of the state-of-the-art for sensor-based activity recognition field, and introduces

the specific challenges tackled by this thesis. Chapter 3 presents a novel hybrid

activity recognition framework that relies on knowledge-based reasoning to refine

the prediction of a machine learning classifier considering the context information.

In Chapter 4, we introduce a novel semi-supervised and federated learning-based

approach to reduce the data scarcity problem of HAR while preserving the pri-

vacy of the users. A valuable solution to tackle the non-IID problem typical of

federated learning-based solutions for HAR is then illustrated in Chapter 5. In

Chapter 6, we describe a novel framework to quantitatively measure the potential

information leakage of the model parameters shared in federated HAR. Lastly,

Chapter 7 summarises our contributions, outlines future works, and concludes

the thesis.
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Chapter 2

Related work

2.1 Human Activity Recognition

Human Activity Recognition is an enabling technology for the next generation of

pervasive systems and context-aware services as it allows obtaining information

about people, such as their health state, their habits, or monitor their dysfunc-

tional behaviors [1]. HAR finds also useful applications in healthcare and medical

systems, as it allows the development of advanced services such as remote pa-

tient monitoring and telemedicine. In recent years, the advent of ubiquitous

computing and the widespread adoption of smart sensors and IoT devices in our

everyday life enables collecting, storing, and processing of information related to

human activities. Nowadays, the most common HAR systems rely on di↵erent

typologies of data generated by a variety of devices and sensors [31, 32]. These

include video-based HAR, sensor-based HAR, and wireless signals-based HAR.

Video-based HAR analyses videos or images from cameras containing human mo-

tions [33, 34]. Wireless signal-based human activity recognition takes advantage

of the signals propagated by wireless devices to classify human activities [35].

Di↵erently, in sensor-based HAR the data are usually collected by inertial sen-

sors embedded into wearable devices (e.g., smartphones and smartwatches) or

ambient sensors dispatched in the living environment of the users (e.g., magnetic

sensors, smart plugs). In the last few years, sensor-based HAR dominated the

research landscape due to the ubiquity, unobtrusiveness, cheap installation pro-
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cedure, and ease of usability of the devices involved in the data collection process

[36]. Accordingly, in this thesis we will focus on sensor-based HAR.

2.1.1 Sensor-Based HAR

Overall, sensor-based HAR relies on the data collected from di↵erent sources:

wearable and environmental sensors. The sensor equipment varies according to

the typology of the considered activities. For example, physical activities like

walking, taking the stairs, or cycling, are mostly characterized by the physical

movement of the users. Therefore, there are usually considered only the data

coming from the inertial sensors (e.g., accelerometer, gyroscope) embedded into

wearable devices like smartphones or fitness bands. Di↵erently, Activities of

Daily Living (ADLs) like cooking, taking medicine, or watching TV, along with

the body movement of the user, also implicate interactions with the living envi-

ronment (e.g., open the medicines’ door to take the medicine, and then close it).

Therefore, in this case, it is more profitable to use both wearable sensors as well as

environmental sensors (e.g., a magnetic sensor able to detect if the medicine door

is opened or closed). Regardless of the adopted sensor equipment, sensor-based

HAR solutions evolved by following a developmental pipeline with well-defined

steps such as data collection, pre-processing, segmentation, features extraction,

and finally, the training of a classification model through machine learning algo-

rithms [37, 38]. Overall, the most common approaches for sensor-based HAR can

be divided into two categories relying on how features are extracted and selected.

On the one hand, we have standard machine learning techniques that assume that

the features are handcrafted. On the other hand, deep learning-based approaches

can automatically generate the features during the training of the classification

model.

Standard Machine Learning Approaches For HAR

The general goal of HAR is to learn a machine learning model by minimizing the

discrepancy between the model prediction and the ground truth activity. In order

to achieve that goal, traditional machine learning approaches follow the four steps

presented in Figure 2.1. First of all, the pre-processing step usually consists of
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Figure 2.1: An illustration representing the pipeline adopted by standard sensor-
based activity recognition approaches

filtering the raw sensor data in order to reduce noise. The pre-processed stream

of sensor data is hence partitioned into segments of a specific length. Then, a

set of features (e.g., mean, variance, standard deviation ) are manually extracted

from each of those segments based on human knowledge [9]. Lastly, the obtained

feature vectors are used to train the machine learning model in order to classify

activities.

Among the many di↵erent standard machine learning algorithms for HAR pro-

posed in the literature, the most common are decision three [39, 40], Support

vector machine (SVM) [41, 42, 41], K-nearest neighbors (KNN) [43, 44], and

Hidden Markov Models (HMM) [45, 46]. Despite the promising results in terms

of the recognition rate obtained from these approaches, the major disadvantages

of standard machine learning bases solutions are related to the handcrafted fea-

ture extraction process. Indeed, in some cases, human experts are not able to

select the best set of features [47]. Further, irrelevant features may be generated,

making it necessary to apply methods that reduce the dimensionality of the data.

Deep Learning Approaches For HAR

In order to tackle the problems related to feature extraction, deep learning-based

solutions for HAR have been proposed. Indeed, as Figure 2.2 illustrates, Deep
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learning (DL) algorithms are capable of automatically generating features rep-

resenting the raw sensory data while learning the recognition model. The most

Figure 2.2: An illustration representing the pipeline adopted by deep learning
based approaches for human activity recognition

common Deep learning-based approaches for sensor-based HAR are Convolu-

tional Neural Networks (CNN), Recurrent Neural networks (RNN), and Fully

Connected networks (FCN). In particular, CNN based-approaches showed to be

more e↵ective in terms of activity recognition rate with respect to both SVM [48]

and Random Forest-based methods [8]. Considering RNN, the authors in [49]

propose a HAR model based on Ensembles of deep Long Short Term Memory

(i.e., LSTM is a specific type of RNN), which achieved a very good accuracy

over the most common publicly available datasets for HAR [50, 51]. Moreover,

it has been also proposed to use hybrid DNN models to identify human activi-

ties. For instance, the hybrid CNN and LSTM neural network presented in [32]

overtakes the classification rate obtained by adopting CNN and LSTM networks

separately. One of the major drawbacks of DL approaches is that they need

a wide set of annotated samples to automatically compute the features while

learning the recognition model. However, as we will detail in Section 2.1.1, the

collection of such a large number of labeled data is a real challenge, especially

considering the generation of a personalised recognition model.
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Label Data Scarcity In sensor-based HAR

Considering sensor-based human activity recognition, the majority of the pro-

posed machine learning based solutions rely on supervised learning approaches

[51, 52, 53, 9, 54]. On the one hand, these approaches enable obtaining an ex-

cellent recognition rate but, on the other hand, they need a considerable amount

of labeled data to train the classifier. Indeed, di↵erent users may perform the

same activity in very di↵erent ways due to their physical characteristics, age, spot

attitude, etc. Moreover, distinct activities may also be associated with similar

motion patterns (e.g., sitting and standing). Thus, arise the need to collect a wide

number of annotated samples from numerous users in order to train recognition

models in a fully supervised way. However, in HAR scenarios the annotation

task is very challenging as it is intrusive for the users, time-consuming, costly,

and hence prohibitive on a large scale [12]. In the following, we summarize the

most common methodologies that have been proposed in the literature in order

to mitigate the annotated data scarcity problem.

Unsupervised approaches have been used to derive activity clusters from unla-

beled sensor data [55]. Those approaches still need a few annotations to reliably

associate an activity label to each cluster. Since distinct human activities often

share similar sensor patterns, purely unsupervised data-driven approaches for

activity recognition are still a challenge considering real-world scenarios. Data

augmentation is one of the most popular solutions adopted in the literature to

mitigate the data scarcity problem, especially given imbalanced datasets [56, 57].

In these approaches, the available labeled data are slightly perturbed to generate

new labeled samples. Recently, data augmentation in HAR has also been tack-

led taking advantage of GAN models to generate synthetic data more realistic

than the ones obtained by the above-mentioned approaches [58, 59]. However,

GANs require to be trained with a significant amount of data. Then, many trans-

fer learning approaches have been applied to HAR to fine-tune models learned

from a source domain with available labeled data to a target domain with low-

availability of labeled data [60, 61, 62, 63].

In the last few years, self-supervised learning (SSL) has drawn attention from
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the research community. Indeed, SSL provides a general framework for learning

from unlabeled data through solving a pretext task. In particular, a surrogate

objective (i.e., the pretext task) is specified in such a way that optimizing it

would force the network to learn meaningful and usable features for the down-

stream task (e.g., classification). Once the pretext task has been solved, a simple

fully connected layer for classification can be added on the top of the learned

network and then trained using a small batch of labeled examples. By following

this approach, several SSL-based solutions have been proposed, especially in the

computer vision and natural language processing domains [64, 65]. In view of

the encouraging outcomes obtained in these domains, SSL has been very recently

applied also for sensor-based HAR, leading to interesting results [66, 67]. How-

ever, given the novelty these SSL-based HAR solutions, we can consider them as

the first steps in a promising research direction that is rapidly evolving. Among

Figure 2.3: An example of the active learning cycle

the various methodologies proposed to address the annotated data scarcity prob-

lem in HAR, semi-supervised learning based approaches seem to be the most

e↵ective and mature [13, 68, 69, 70]. Indeed Semi-supervised methods only use

a restricted labeled dataset to initialize the activity model. Then, a significant

amount of unlabeled data is semi-automatically annotated. The most common

semi-supervised approaches for HAR are self-learning [68], label propagation [71],

co-learning [72], and active learning [14, 73, 16, 15]. Active learning has also been

adopted in HAR to handle the class imbalance problem [74]. Figure 2.3 shows

an example of the active learning (AL) cycle used to annotate unlabeled data.

However, existing semi-supervised solutions do not usually consider the scalabil-
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ity and privacy problems that may arise in generating a recognition model with

a large number of users for a real-world deployment.

2.1.2 Knowledge-Based Methods

The information about the context that surrounds the user (e.g., semantic loca-

tion, weather condition, time of the day, etc.) can be used to significantly extend

the set of considered activities and to better discriminate the ones with similar

motion patterns that are generally executed in di↵erent context conditions (e.g.,

sitting and sitting on a bus) [29]. However, the acquisition of a comprehensive

training set where activities are performed in all the possible context conditions

is prohibitive. The abstraction ability of common-sense knowledge can be used

to generate formal models representing the relationships between context and ac-

tivities [18]. Several approaches have been proposed in the literature to formally

represent context data [75]. Ontologies have been preferred over other formalisms

for activity recognition mainly for their expressive power and automatic reason-

ing capabilities [76, 77, 78]. There are several well-known ontologies that propose

a formalism for context and activities, like SOUPA [79], MetaQ [80], and the so

called foundational ontology [81].

2.1.3 Hybrid Machine Learning And Knowledge Based

Methods

The combination of ontological context reasoning tools and machine learning al-

gorithms on sensor data has been also explored. Banos et al. [82], proposed the

integration of machine learning, used to derive low-level activities, with ontolog-

ical reasoning, used to infer higher-level context based on the derived activities

and other context sources (e.g., mood, semantic location). Ontological reason-

ing has also been used to integrate context data derived from machine learning

processes in complex industrial IoT scenarios [83]. This is a typical application

of ontologies, particularly useful when data is gathered by di↵erent sources and

organizations. Moreover, some other hybrid methods propose to refine the pre-

diction of a machine learning classifier by using knowledge-based reasoning over
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context data [18]. Indeed, semantic reasoning can exclude from the prediction

those activities that are highly unlikely according to the current context. The

major issue of those hybrid solutions is the rigidity of the ontological formal-

ism that is based on logical rules that despite o↵ering the power of abstraction,

struggle to capture the probabilistic nature of the relationship between context

and activities. Overall, there is a vast literature on logic formalisms that support

some form of uncertainty reasoning. Some e↵orts have also been made specifically

for applications in the area of pervasive computing [84]. Considering description

logics as the underlying logics of ontologies, an integration with fuzzy logic has

been proposed to express confidence values for each axiom [85].

One of the well-known formalisms that combine logic with probability theory

is Markov Logic Network (MLN) [86]. MLN can model both hard and soft con-

straints using weights associated with each rule. Generally, the weights associated

with soft constraints are learned from labelled data. MLNs have been proposed

for smart-home activity recognition [87]. However, they are less suitable than

ontologies to model the complex hierarchical relationships between context data

and activities. More recently, probabilistic ontologies have been proposed. Exam-

ples of such ontologies are PR-OWL [88, 89], DISPONTE [90, 91] and Log-linear

Description Logics [92].

2.2 Collaborative Learning For HAR

One of the biggest challenges in the field of HAR is to train a global recognition

model over the data coming from a large number of di↵erent users in a scalable

and privacy-preserving way. However, as Figure 2.4 illustrates, the majority of

existing approaches in the literature involve centralizing the users’ data on a single

server where the global recognition model is trained. This approach can create

significant scalability challenges and privacy concerns. Firstly, centralizing data

from a large number of users onto a single server can require a massive amount

of computational resources and storage capacity. This can result in significant

costs and resource requirements, which may make it di�cult or even impossible

for some organizations to implement. Secondly, centralizing the data on a single
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server poses potential privacy risks. If the server were to be compromised, an

attacker could gain access to sensitive user data, potentially resulting in negative

consequences for the individuals involved. [93, 11]. A promising solution to

Figure 2.4: The architecture of a standard collaborative learning approach for
HAR

reduce the privacy risks for the users in collaborative HAR, has been proposed in

CollAR [94]. Here, the users cooperate to train a global model by sharing only a

small portion of the parameters of their personal models. Moreover, the proposed

framework enables the users to define which activities to keep private. However,

its performance on large scale is still unclear in terms of communication latency

and computational costs.

2.2.1 Federated Learning Approaches

To address both scalability and privacy concerns, the Federated Learning (FL)

framework has been shown to be e↵ective in various domains [95, 96, 97, 19, 98,

99]. FL o↵ers a promising solution by enabling the collaborative training of a

global recognition model without requiring data centralization on a single server.

This approach enables distributed learning over multiple devices, preserving the

privacy of users’ data and reducing the computational and storage requirements

for the central server.

In FL, the training of the global activity model is distributed among the
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participating clients. Each client trains a local model with its available labeled

data and only transmits local model parameters to the server, instead of shar-

ing private activity data. The server aggregates the parameters received by the

participating clients and creates a global model. Moreover, privacy-preserving

mechanisms like Di↵erential Privacy (DP) and Secure Multi-Party Computation

(SMC) are usually adopted to further protect the shared model weights from

attacks that can potentially reverse-engineer data or properties from the weights

[95].

Federated Learning (FL) has recently been proposed as a solution for sensor-

based HAR, allowing the collaborative training of a global recognition model

among participating clients [100, 21, 101, 102, 23, 103, 20]. While FL solutions

for HAR achieve slightly lower recognition accuracy than standard centralized

models [21], personalization is essential for HAR [24]. To address this, existing

works have applied transfer learning strategies to fine-tune the global model on

each client, leading to significantly improved recognition rates [101, 23]. However,

these solutions assume high availability of labeled data and a fully supervised set-

ting.

Although federated and active learning have been combined for Intrusion De-

tection Systems [104], semi-supervised federated learning solutions for HAR are

only partially explored. Existing works mainly focus on unsupervised methods to

learn a robust feature representation from the unlabeled sensor data stream using

FL, with the global feature representation used to build activity classifiers using

a limited amount of labeled data. For example, [102] proposes an autoencoder-

based approach, while [105] is based on self-supervised learning. However, these

works do not consider model personalization or approaches for continuously ob-

taining new labeled data from users.

The Non-IID Problem

Another important aspect to consider in FL for HAR is that data coming from

di↵erent users are likely non-independently and identically distributed (non-IID).

Indeed, di↵erent subjects may have di↵erent physical characteristics and habits
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and hence execute activities in very distinctive ways. Therefore, a single global

model would lack in capturing those di↵erences over a large number of users [106].

Several recent works proposed approaches to mitigate the non-IID problem in FL-

based HAR. A common solution is to adopt transfer learning techniques on the

client-side to improve personalization [101, 23, 103]. In particular, the global

model is fine-tuned on each client by training the last layers of the personal

deep learning model (i.e., the ones closest to the output) with personal data.

The intuition behind this approach is that the last layers capture the personal

patterns of the users, while the first layers encode cross-subject features [107].

However, those approaches are still based on a single global model, and balancing

personalization and generalization is still a challenge. Multi-task federated learn-

ing is another approach proposed to mitigate the non-IID problem in FL-based

HAR [108]. In particular, the clients contribute to collaboratively learning only

the common features, while the diversity is handled on the client side. Never-

theless, these approaches are based on a convex objective function that is not

suitable for complex HAR models based on deep learning.

A very recent work, that is called ClusterFL, proposes a multi-task federated

clustering method for FL-based HAR [25]. This method is based on a distributed

optimization approach: the clients and the cloud server collaborate in optimizing

both the local models as well as the clustering structure. A limitation of Clus-

terFL is that the information about the association between users and clusters, as

well as the parameters of each local model, are distributed to all the participating

clients. Hence, ClusterFL does not adhere to the standard FL protocol and it

reveals sensitive information to each client. Moreover, ClusterFL requires mobile

devices to compute an optimization task that is more computationally expensive

with respect to the usual local training required by FL approaches. The re-

cent FL literature proposes Federated Clustering approaches that adhere to the

standard FL protocol, without revealing clustering details to the participating

clients [109, 110, 111].
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Privacy Risks

The large amount of information that may be easily collected thanks to the po-

tential of pervasive computing, may expose users to privacy risks, since most of

this information may be private and sensitive. One of the challenges of Human

Activity Recognition is to protect these sensitive data, while being still able to

provide useful services and build e↵ective activity classifiers. As we previously

mentioned in Section 2.2.1, Federated Learning (FL) has been proposed as a

privacy-preserving framework for distributed machine learning and recently, it

has been also adopted in the HAR domain [21, 23, 25]. However, recent studies

reveal that the model’s parameters received and manipulated by the cloud server

may still reveal information about the FL participating users. In the literature,

the most investigated attack techniques are: a) the Membership Inference Attack

(MIA) [27, 28, 112], b) the Property Inference Attack (PIA) [113], and c) the

Reconstruction Attack (RA) [114, 115, 116]. MIA enables inferring if a given

sample has been used or not to train a Deep Learning model (More details re-

garding the Membership inference attack are given in Section 6.2). Di↵erently,

the PIA technique aims at extracting properties of training data that may not be

directly related to the task of the classifier (e.g., use the HAR model to infer if

a subject su↵ers from the Parkinson disease). Finally, the RA technique has the

objective of reconstructing prototypical examples of the samples used to train the

machine learning model (e.g., reconstructing sensor data patterns that reveal sen-

sitive physical characteristics of a subject). For instance, in a recent work [117]

the authors show that given a Deep learning model trained over portraits of hu-

mans, it is possible to exploit RA to reconstruct pictures that look similar to the

ones used to train the model. These attacks may be countered by adopting addi-

tional privacy-preserving mechanisms like Di↵erential Privacy (DP)[118, 119] and

Secure MultiParty Computation (SMC)[120]. However, those privacy-preserving

mechanisms negatively impact the classification rate and system e�ciency. Un-

derstanding and balancing those trade-o↵s is one of the major challenges in this

area.
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2.3 Datasets For Sensor-Based HAR

In the literature are available a large number of benchmark datasets for Sensor-

based Human Activity Recognition [121, 122, 50, 51, 32, 123, 124, 125]. In the

following of this section, we describe which of those datasets we consider in this

thesis. In particular, we selected the ones that include data from a large number

of heterogeneous subjects, as it is a fundamental aspect to evaluate the general-

ization and personalization capabilities of collaborative approaches for HAR.

Furthermore, we introduce DOMINO, a self-acquired dataset that along with the

inertial sensors data collected from wearable devices, includes a detailed descrip-

tion of the context in which activities have been performed.

2.3.1 MobiAct

MobiAct [121] includes labeled data from 60 di↵erent subjects with high variance

in age and physical characteristics. The dataset contains data from a triaxial ac-

celerometer, gyroscope, and magnetometer embedded into a smartphone carried

by users while performing 9 physical activities in 16 trials. During the acquisi-

tion process, the users were left free to position the smartphone with a random

orientation into one of their trousers’ pockets. The physical activities included

in this dataset are the following: Standing, Walking, Jogging, Jumping, Upstairs,

Downstairs, Sitting, Car step in, Car step out. The data distribution of these

activities is illustrated in Table 2.1. Regarding the participants’ gender, 73% of

them are male, while 27 are female. The subjects’ age range between 20 and 47

(average: 26), the height ranged from 160 cm to 189 cm (average: 175), and the

weight varied from 50 kg to 120 kg (average: 76). The adopted data acquisition

frequency is the highest enabled by the sensors of the selected smartphone (i.e.,

at most 200Hz).

2.3.2 WISDM

The well-known WISDM dataset [51] has been widely adopted as a benchmark for

HAR. WISDM contains accelerometer data collected from a smartphone located

in the front pants leg pocket of each subject during activity execution. The activ-
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Activity
percentage
of records

Standing 32.6%
Walking 37.8%
Jogging 7.8%
Jumping 7.4%
Sitting 5.5%
Upstairs 2.5%
Downstairs 2.3%
Car step in 1,7%
step out 1,9%

TOTAL 10,788,386 records

Table 2.1: MobiAct: distribution of
the considered activities

Activity
percentage
of records

Walking 38.6%
Jogging 31.2%
Sitting 5.5%
Standing 4.4%
Upstairs 11.2%
Downstairs 9.1%

TOTAL 1,098,207 records

Table 2.2: WISDM: distribution of
the considered activities

ities included in this dataset are the following: walking, jogging, sitting, standing,

Upstairs, and Downstairs. The distribution of activity classes in WISDM is illus-

trated in Table 2.2. While performing these activities, the sampling rate for the

accelerometer sensor was kept at 20Hz. WISDM includes data from 36 subjects.

The data collection was supervised by one of the WISDM team members to en-

sure the quality of the collected data. Further information about the participants

like gender, age, and weight distribution is not publicly available.

2.3.3 PAMAP2

The benchmark PAMAP2 [50] was recorded in a scripted setting where 9 partici-

pants were instructed to carry out a total of 12 activities of daily living, covering

domestic activities and various sportive exercises. In particular, the activity data

were collected from three inertial sensors made up of triaxial accelerometers, gy-

roscopes, and magnetometers located on the subjects’ ankle, chest, and wrist

regions while they performed the following activities: rope jumping, lying, sitting,

standing, walking, running, cycling, nordic walking, ascending stairs, descending

stairs, vacuum cleaning, ironing. The sampling rate adopted for data acquisition

was set to 100Hz. The distribution of the activities considered in this dataset is

described in Table 2.3.
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Activity
percentage
of records

rope jumping 2.5%
lying 9.9%
sitting 9.4%
standing 9.7%
walking 12.2%
running 5.1%
cycling 8.5%
nordic walking 9.7%
ascending stairs 6.0%
descending stairs 5,4%
vacuum cleaning 9,0%
ironing 12,2%

TOTAL 3,850,505 records

Table 2.3: PAMAP2: distribution of
the considered activities

Activity
percentage
of records

Standing 38.6%
Sitting 31.2%
Lying 5.5%
Walking 4.4%
Running 11.2%
Cycling 38.6%
Brushing teeth 31.2%
Stairs up 5.5%
Stairs down 4.4%
Elevator up 11.2%
Sitting on transport 11.2%
Standing on transport 11.2%
Moving by car 9.1%

TOTAL 3,924,200 records

Table 2.4: DOMINO: distribution of
the considered activities

2.3.4 DOMINO

The DOMINO dataset contains context-aware HAR data collected from 25 dif-

ferent users wearing a smartphone and a smartwatch. The activities included in

this dataset are the following: walking, running, standing, lying, sitting, stairs

up, stairs down, elevator up, elevator down, cycling, moving by car, sitting on

transport, standing on transport and brushing teeth. Those activities have been

acquired in di↵erent contexts like working at the o�ce, going around in the city

(Milan), driving, using public transportation, cycling, and staying at home. Ta-

ble 2.4 summarises the distribution of the activity considered in DOMINO. Over-

all, we recorded almost 9 hours of labeled and context-rich sensor data (⇠ 350

activity instances). In particular, in our data collection setup, users carry a

smartphone in their pants’ front pocket and a smartwatch on the dominant hand’s

wrist. Dedicated Android applications run on those devices to enable the users

to collect and self-annotate inertial sensor measurements and context data. The

inertial sensor data is collected from the built-in accelerometer, magnetometer,

and gyroscope of both the smartphone and the smartwatch. In particular, we

considered the maximum sampling rate of such mobile devices (i.e., 200 Hz for

the smartphone and 140 Hz for the smartwatch).
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Context data is acquired by the smartphone considering embedded sensors as well

as publicly available web services. Since context information does not change fre-

quently, it was collected every 15 seconds. The considered embedded sensors

are: the barometer measuring height variations, the luminosity sensor, the mi-

crophone to obtain the environment’s noise level, and the GPS revealing the

user’s location and speed. Moreover, additional context information has been

derived by combining the smartphone’s built-in sensors with public web services.

Google’s Places API 1 provides the user’s closest semantic places (e.g., univer-

sity); OpenWeatherMap2 supplies current local weather conditions (e.g., rainy),

while Transitland3 provides information about the public transportation routes

and stops closest to the user. we also collect temporal context like the moment

of the day (e.g., morning, afternoon, evening), the day of the week, the season,

etc.

2.4 Research Problems Addressed By This The-

sis

In this section, we outline the research questions tackled in this thesis. For each

question, we introduce the research problem and indicate the specific chapter

where the problem is addressed.

Q1) Can knowledge-based and data-driven approaches be combined to

reduce the number of annotated samples required to collaboratively

learn a HAR model?

The majority of the state-of-the-art solutions for collaborative HAR rely on su-

pervised machine learning approaches. Anyway, the acquisition of annotated

dataset of activities is costly and often unfeasible for the users. In order to over-

come that issue, semi-supervised learning methods for HAR have been proposed.

However, semi-supervised methods poorly perform in recognizing those activities

1https://developers.google.com/maps/documentation/places/web-service/
overview

2https://openweathermap.org/
3https://transit.land/
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characterized by similar movements (e.g., walking, taking stairs). A valuable

solution to mitigate that issue may involve including the user context (e.g., se-

mantic location, weather condition) as additional features in a machine learning

process. Unfortunately, acquiring a comprehensive training dataset that includes

annotated examples of activities executed in all the possible context conditions

is extremely challenging, especially in semi-supervised settings.

In Chapter 3, we propose novel hybrid semi-supervised and knowledge-based

frameworks for HAR that enable outperforming in terms of classification rate the

state-of-the solutions for semi-supervised HAR, while dramatically reducing the

interactions with the users required to collect annotated examples.

Q2) Can the Federated Learning Framework be a valuable solution to

implement a scalable and privacy-aware HAR system in a data scarcity

scenario?

Despite the novel approach proposed in Chapter 3 enabling the classification of

a wide set of activities while reducing the data annotation e↵orts for users, there

are still several challenges that limit the deployment of these solutions in realis-

tic scenarios. Scalability and privacy issues arise when collaboratively training a

recognition model with potentially sensitive data from a large number of di↵er-

ent users. Additionally, as the volume of data increases, it becomes increasingly

challenging to store and process it on a single machine.

To tackle these limitations, in Chapter 4, we propose an innovative semi-supervised

and federated learning-based approach that enables privacy-aware and scalable

activity recognition while also considering the labeled data scarcity problem. Fed-

erated learning is a machine learning paradigm that enables training models on

decentralized data sources without the need to collect and centralize them. In-

stead, each user’s device trains the model locally using their private data, and

only the model updates are exchanged among the users. This approach increase

the privacy level by ensuring data ownership while enabling the training to scale

over a large number of users.
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Furthermore, in contrast with most of the state-of-the-art FL systems that

assume that labeled datasets are available for each client, our approach combines

active learning and label propagation to semi-automatically provide pseudo-labels

to the unlabeled data stream. This solution enables each client to contribute to

the model’s training process, even if the labeled data is scarce. Moreover, clients

can learn from the model’s global knowledge while leveraging their own private

data to improve the model’s accuracy.

Q3) How is it possible to mitigate the non-IID problem typical of FL-

based approaches for HAR?

In the literature, most of the FL-based approaches assume that the data collected

by the users are independently and identically distributed (IID data). Unfortu-

nately, in the field of HAR, that assumption cannot be always satisfied as the

participating users may have di↵erent habits and/or perform the same activity

in di↵erent ways depending on their physical traits. For instance, consider the

activity of walking, which is a common daily activity for people of all ages. How-

ever, the way that younger individuals walk is often di↵erent from that of elderly

individuals. Younger individuals tend to have a faster and more energetic walking

style, while elderly individuals often walk at a slower pace and with less stride

length. As a result, the data collected from young individuals and elderly indi-

viduals while performing the walking activity may di↵er a lot. This highlights

the need for personalized models that can adapt to the di↵erences in activity

patterns between di↵erent groups of users.

Therefore, in Chapter 5 we propose a novel Semi-Supervised Federated Clus-

tering method for Personalized Sensor-Based Human Activity Recognition. Our

approach mitigates the non-IID problem by assigning a specialized classifier for

each group of users that exhibit similar ways of performing activities. By cluster-

ing users based on the similarity of their model updates, we can create groups of

users who perform activities in a similar manner. Each group of users is then as-

signed a specialized classifier that is trained on their data using a semi-supervised

learning approach, which enables us to handle the labeled data scarcity prob-
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lem. This approach provides each user with a customized model that accurately

reflects their unique activity patterns, while still retaining the scalability and

privacy benefits of the federated learning framework

Q4) Which sensitive information of the users could be inferred by a

potential attacker that accesses the model parameters shared in an

FL-based system for HAR?

Concerning the privacy aspects, it is important to note that the data used in

sensor-based HAR can contain sensitive and private information about the par-

ticipating individuals. For example, the data may reveal information about their

health conditions, habits, or dysfunctional behaviours. If this information were

to be accessed by an unauthorized party, it could potentially result in a breach of

privacy for the individuals involved. While FL is a promising approach for pro-

tecting user privacy in distributed machine learning, recent studies have shown

that, through specifically designed attacks, parameters of deep learning models

may still reveal information about the data used for training [27, 28]. This raises

concerns regarding the actual privacy level provided by FL-based systems for

HAR.

To explore this issue further, in Chapter 6 we propose a methodology for evalu-

ating which sensitive information could be inferred by a potential attacker that

accesses the model parameters shared in an FL-based system for HAR. By under-

standing the types of information that are at risk of being leaked, we believe that

it is possible to develop more e↵ective privacy-preserving mechanisms to protect

user data in FL-based HAR.
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Chapter 3

Using Context Data To Mitigate

The Data Scarcity Problem In

Collaborative HAR

3.1 Introduction

One of the major drawbacks of fully-supervised machine learning solutions for

HAR is the cost of collecting the amount of labeled data required to build a

reliable recognition model [51]. Collaborative learning is a promising research

direction, but still requires high e↵ort from users to collect annotated training

samples. Semi-supervised and incremental approaches have been proposed to

overcome this issue, as they only require a small amount of training data to

initialize the recognition model [15, 16, 68, 69]. However, their e↵ectiveness on

complex and context-dependent activities is still unclear. Considering also the

context surrounding the user (e.g., semantic location, weather, tra�c condition,

speed, etc.) could be valuable solution to tackle this problem. [17, 18]. Nonethe-

less, directly using context data as additional features in the machine learning

process may not be as e↵ective as expected, given the large and dynamic number

of context variables involved.

In this Chapter, we consider these problems and we propose a novel collabora-
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tive activity recognition framework that combines semi-supervised learning and

context-aware reasoning. An incremental machine learning classifier is in charge

of inferring from inertial sensor data a candidate probability distribution over

the possible activities. A knowledge-based reasoning engine is then used to re-

fine the probability distribution considering context data. The system provides

as output the most likely activity from the resulting context-refined probability

distribution. Then, by following the semi-supervised approach, when the system

is not su�ciently confident about the current activity despite the context-based

refinement, it starts an active learning process: asks the user about the activ-

ity being performed and uses the answer to provide a new labeled sample to

the incremental classifier. In particular, we propose and evaluate two di↵erent

typologies of knowledge-based reasoning engines. The first one relies on a de-

terministic ontology and enables excluding from the statistical prediction vector

the activities which are highly unlikely considering context data. The latter uses

a probabilistic ontology that allows refining the statistical prediction vector by

taking into account the intrinsic uncertainty that characterizes the relationships

between activities and context data.

Our experimental evaluation shows that both of the proposed knowledge-

based reasoning engines are e↵ective in a) improving the recognition rate, b)

extending the set of recognizable activities, and c) triggering a significantly lower

number of active-learning queries. Moreover, the obtained results highlighted

that the use of a probabilistic ontology enables to more realistically capture the

complex relationships between activities and the context, leading to better results

with respect to the deterministic knowledge-based approach.

The rest of the chapter is structured as follows. In Section 3.2 a detailed system

overview has been introduced. Section 3.3 describes how we implemented our

incremental human activity recognition statistical classifier. Section 3.4 presents

the probabilistic ontology, the deterministic ontology, and the related knowledge-

based reasoning engines. Then, in Section 3.5 the prediction confidence evaluation

and the active-learning strategies are described. The proposed experimental eval-

uation and the obtained results are presented in Section 3.6. Finally, in Section

3.7 we introduce a practical demonstration of the proposed solution.
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3.2 System Overview

In this section, we describe the overall architecture of the proposed approach, as

depicted in Figure 3.1.

Figure 3.1: Overall architecture of our system

Inertial sensors data (e.g., accelerometer, gyroscope, and magnetometer) com-

ing from multiple mobile devices are processed by the Incremental Statistical

Model that relies on an incremental semi-supervised classifier to produce a can-

didate probability distribution over the possible activities. The mobile devices

also dynamically acquire context data both by exploiting built-in sensors (e.g.,

GPS, luminosity sensor) and by querying publicly available Web services (e.g.,

Google APIs to obtain the user’s semantic location). Note that, in the literature,

“context” is a very broad term used to define a situation at di↵erent levels of

abstractions [126]. For the sake of this thesis, with context data we denote the

information about the environment that surrounds the user (e.g., user’s semantic

location, temperature, the time of the day) while the user is interacting with

the system. Context data are analysed by the Context Reasoning and Refine-
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ment module. This module applies knowledge-based reasoning on context data

to refine the statistical prediction produced by the incremental statistical model.

Finally, the Prediction Confidence Evaluation module adopts an active learning

strategy based on a dynamic threshold. When the confidence over the refined

prediction is lower than this threshold, a query is triggered to the user in order

to obtain the ground truth. Upon receiving usable feedback, the module sends

a new labeled sample to the incremental statistical model. In the following, we

describe in more detail the components of our approach.

3.3 Incremental Human Activity Recognition

The Incremental Activity Recognition module relies on an online semi-supervised

classifier to derive a candidate set of activities performed by the user. The stream

of inertial sensor data is continuously pre-processed and segmented to extract

feature vectors. These feature vectors are then provided to the classifier in order

to derive the probability distribution over all the possible activities. Note that

the activity recognition model is first initialized during an o✏ine phase with a

small amount of labeled data.

3.3.1 Segmentation, Feature Extraction, And Classifica-

tion

In the following, we describe the pre-processing steps applied to the inertial sen-

sors data stream. Since a user may carry multiple mobile devices (e.g., a smart-

phone and a smartwatch), it is first necessary to temporally align their raw sensor

data streams. In our experimental setup, we considered for each device the data

streams from the accelerometer, magnetometer, and gyroscope. A median filter

is then applied to each stream in order to reduce the intrinsic noise of the signal.

Then, the streams of aligned sensor data are segmented into segments defined

as the set of inertial sensor data acquired during a specific time window of k

seconds. Each segment starts the next second with respect to the end of the pre-

vious segment, hence segments are contiguous and non-overlapping. The length

k is the same for all segments, and it should be chosen carefully according to the
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complexity of the considered activities to balance the trade-o↵ between accuracy

and reaction time. In our experimental setup, we studied the existing literature

to choose a reasonable fixed value for k [127]. Since our target activities are both

simple (e.g., standing) and complex (e.g., driving) we could not choose a too-

short window size. Hence, to guarantee a reasonable trade-o↵ between accuracy

and reaction time, we decided to use k = 4.

From each segment, a wide set of statistical features are extracted. These features

have been selected from the ones that are well-known in the activity recognition

literature [1]. In particular, for each axis of each inertial sensor, we extract: aver-

age, variance, standard deviation, median, mean squared error, kurtosis, symme-

try, zero-crossing rate, number of peaks, energy and di↵erence between maximum

and minimum. Finally, for each inertial sensor, we compute the Pearson correla-

tion for each combination of its axes and the magnitude on all of its axes. Hence,

given q 3-axis inertial sensors equipped in the user’s mobile devices, we compute

q⇥37 features. We also apply standardization to each feature to further improve

the recognition rate [128].

Example 3.3.1 Consider a user which carries a smartphone and a smartwatch,

both equipped with a three-axial accelerometer, gyroscope, and magnetometer.

Since the overall number of inertial sensors is 6, for each segment, 6⇥ 37 = 222

features are computed.

For each feature vector fv computed from a segment s, the incremental clas-

sifier h outputs a probability distribution over the set of considered activities

A = {A1, A2, . . . , An}:
h(fv) = hp1, p2, . . . , pni

where 0  pi  1 is the probability P (Ai|s) that the segment s was generated by

the activity Ai, with
Pn

i pi = 1, and n = |A|. The probability distribution h(fv)

is forwarded to our Context Reasoning and Refinement module which will refine

it based on context data.
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3.3.2 Activity Model Bootstrap

A crucial aspect of our semi-supervised framework is the activity model initializa-

tion. Indeed, without a proper bootstrap mechanism, the semi-supervised model

would have to discover each activity “on-the-fly”, with a negative impact on the

recognition rate. Hence, we initialize the semi-supervised model by acquiring t

seconds of labeled data for each activity to obtain a balanced labeled dataset.

While the value of t should be as small as possible to minimize the e↵ort in the

labeled set collection, this value has a high impact both on the recognition ac-

curacy and on the number of queries triggered to the users. In our experimental

setup, we consider t = 60 (i.e., one minute) and hence, given the length of each

segment, the activity model is initialized by using 15 labeled feature vectors for

each activity. Based on our experiments and the range of considered activities,

we believe that this small value should be su�cient to initialize an activity model

that can rapidly evolve thanks to active learning.

3.4 Ontological Models

The Context reasoning and Refinement module is in charge of refining the predic-

tion h(fv) obtained by the Incremental Activity Recognition through the analysis

of the context which surrounds the user. In order to achieve this task, this module

relies on an ontology that models the relationships between context and activi-

ties. In particular, in this thesis, we implement and evaluate two di↵erent types

of ontologies: a deterministic ontology, described in Section 3.4.2, and a proba-

bilistic ontology illustrated in Section 3.4.3. The use of deterministic ontologies is

the most common in the HAR literature because of their ease of implementation

and usage. However, they involve defining rigid rules to model the relationship

between the considered ontological concepts. Di↵erently, probabilistic ontolo-

gies are more sophisticated and require a higher implementation e↵ort, but they

enable to finely model the relationships between activities and context.
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3.4.1 Translating Context Data Into Ontological Facts

Context data collected by the mobile devices are automatically mapped to the

respective ontological concepts by a specifically designed middleware. This mid-

dleware encodes the rules that are necessary to transform raw context data into

high-level axioms. The majority of context data can be mapped one-to-one with

ontological entities. For example, the user semantic location obtained from a ded-

icated service is directly mapped by the middleware to the respective ontological

fact.

Considering scalar values, the middleware discretizes them taking into ac-

count the entities covered by the ontology. For instance, each user’s speed value

is mapped to one of the following ontological concepts: NullSpeed, LowSpeed,

MediumSpeed, and HighSpeed. The specific rules that map a scalar value to an

ontological concept are based on ranges of values designed by the knowledge engi-

neer (e.g., speed values greater than 0 km/h and lower than 8 km/h are mapped

to LowSpeed).

3.4.2 Deterministic Ontology

The proposed deterministic ontology is an extension of the ActivO ontology [18]

that defines a wide set of activities, semantic locations, artifacts (e.g., used by

the user or part of the semantic locations), user’s postures, time granularities

(e.g., day of the week, time of the day) and environmental information (e.g.,

temperature and light conditions). Details aboutActivO ’s implementation can

be found in [18]. We took advantage of the Protégé tool 1 to extend ActivO with

several new activities, contextual data, and their relationships. An example of

those entities is shown in Figure 3.2.

Deterministic Ontology Modelling

Our ontology considers several sources of context data: user’s semantic place,

user’s recent route, weather conditions, proximity to public transportation stops

and routes, surrounding tra�c condition, user’s height variations, user’s speed,

1https://protege.stanford.edu/ (Accessed on 2020-02-19)
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surrounding light, environment’s noise level and temporal context (e.g., time of

the day, day of the week, month, . . . ). Figure 3.2a shows a portion of those

context data modeled in our deterministic ontology, while Figure 3.2b focuses on

the set of considered semantic locations, including the ones classified by Google

Places API 2. It is important to note that we distinguish symbolic locations and

their characteristics from their use. This allows us to better model activities

related to symbolic locations.

(a) An excerpt of context hier-
archy

(b) An excerpt of symbolic loca-
tions hierarchy

Figure 3.2: Excerpts of our ontology

Due to the intrinsic open-world assumption of ontological reasoning, we explic-

itly state the necessary conditions which make activities possible or not possible

in a given context. As we will explain later, such constraints are necessary to en-

able our context-aware refinement which is based on consistency reasoning. For

2https://developers.google.com/places/supported_types (Accessed on 2020-02-19)
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instance, the activity TakingStairs (Figure 3.3a) should take place at a location

that may have stairs and the person should have a non-negative height variation.

Another example is the activity MovingByCar (Figure 3.3b): our deterministic

ontology enforces that it should take place in an outdoor location which includes

a road or a street and that the car’s speed should be positive.

(a) Definition of the activity “taking stairs” (b) Definition of the activity “moving by
car”

Figure 3.3: Examples of activity definitions in our ontology

Deterministic Context Reasoning And Refinement

For each activity candidate Ai 2 A in the statistical prediction h(fv), our system

uses deterministic ontological reasoning to determine whether Ai is consistent or

not with the current context. As a first step, our system adds to the knowledge

base an axiom to represent an instance of Person which identifies the subject

wearing mobile devices. As a second step, context data collected by the mobile

devices are automatically mapped to ontological concepts as described above and

then added as axioms to the knowledge base. As a third and final step, since we

want to test the consistency of activity Ai with respect to the current context,

the system adds an axiom that states that the user is performing Ai.

Example 3.4.1 Bob is using the system working with a deterministic context

reasoning module. When the context reasoning task is triggered, Person(Bob)
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is added as a fact. Then, context data gathered by mobile devices is analyzed

to expand the set of facts. Suppose that a Web service provides the information

that Bob is in a park and that the speed value obtained by the GPS sensor is 10

km/h. Those context information are automatically pre-processed to instantiate

the following individuals: Park(place), MediumSpeed(speed). Then, the rela-

tionships between Bob and context data are added as facts:

hasCurrentSymbolicLocation(Bob, place), hasCurrentSpeed(Bob, speed).

Finally, in order to test whether the activity Running is context-consistent, CAVIAR

adds the axioms Running (currentActivity) and isPerforming(Bob,

currentActivity). The consistency of the set of facts with respect to the do-

main knowledge will determine if the running activity is consistent according to

the current Bob’s context.

We define an activity Ai context-consistent when the axioms created with the

observed data as described above are consistent concerning the domain knowl-

edge. Note that the consistency check involves reasoning that is automatically

performed in the logic used to specify the deterministic ontology.

Given the current context C and the marginal probabilities obtained by the

semi-supervised classifier h(fv) = hp1, p2, . . . , pni, the goal of the deterministic

context refinement is to exclude those activities which are not context-consistent

according to C. For each activity class Ai such that pi > 0, we compute its

consistency according to context C as explained above. Each activity that is not

context-consistent is removed from the probability vector. The refined vector is

finally normalized to preserve the properties of a probability distribution. The

output is a new refined probability distribution over the possible activities:

predictions = hP1, P2, . . . , Pni

such that each Ai is a context-consistent activity according to C,
Pn

i=1 Pi = 1,

and Pi 2 [0, 1]. Note that an activity is usually not context-consistent when the

constraints of the deterministic ontology are violated.

Example 3.4.2 Continuing Example 3.4.1, suppose that Bob is actually run-

ning. According to the Incremental Activity Recognition classifier, the current
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probability distribution is 45% cycling, 40% running, 10% walking, and 5% stand-

ing. Thanks to a dedicated Web service, it is possible to know that Bob is currently

in a pedestrian area of the park where bicycles are not allowed. According to the

deterministic ontology, cycling is not context-consistent since it should not be

performed in pedestrian areas. Hence, the resulting deterministic context-refined

probability distribution is 73% running, 18% walking, and 9% standing.

The resulting context-refined prediction vector is then processed by the Pre-

diction Confidence Evaluation module that we will introduce in Section 3.5.

3.4.3 Probabilistic Ontology

In this section, we introduce the probabilistic ontology that, di↵erently from a

deterministic ontology, takes into account the intrinsic uncertainty that charac-

terizes the relationships between context and activities. As previously described

in Section 3.4.1 the context data obtained from the mobile devices are automat-

ically translated into ontological facts, which are then added to the probabilistic

ontology as a description of the current context condition. Then, probabilis-

tic reasoning is in charge of inferring, given the current context situation C, a

confidence value conf(C,Ai) for each activity Ai 2 A. Intuitively, conf(C,Ai)

estimates the “semantic compatibility” of Ai being performed by the user whose

current context is C. Finally, these confidence values are used to refine the prob-

ability distribution h(fv) derived from inertial sensors data.

Probabilistic Ontology Modelling

The proposed approach combines soft and hard constraints to model the relation-

ships between activities and context. Hard constraints capture context conditions

that should always be satisfied to consider a given activity as possible. For in-

stance, Walking is an activity that requires the user to have a positive speed. On

the other hand, soft constraints are useful to capture context conditions that are

likely to occur when an activity is performed, but not necessarily they have to be

verified; this can be captured by associating a certain degree of confidence to the

axiom. Intuitively, the highest the confidence and the more value will have the
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presence of that context for the likelihood of the corresponding activity to occur.

For instance, it is more likely that the activity Running is carried out on a sunny

day rather than on a stormy day. Hence, the confidence value associated with

the soft constraint “running can be performed on a sunny day” should be high,

while the one associated with the soft constraint “running can be performed on

a stormy day” should be lower.

In order to implement the deterministic ontology, we modified the publicly

available OWL2 ActivO ontology [18] into a probabilistic ontology based on log-

linear description logic [129]. A log-linear description logic is characterized by a

CBox (i.e., Constraint Box) defined as C = (CD
, C

U), where C
D is a set of hard

axioms and C
U = {(c1, wc1), (c2, wc2), ..., (cn, wcn)} is a set of soft axioms. Each

soft axiom ci is associated with a real-valued weight wci .

The inclusion of an axiom in C
D and C

U is mutually exclusive. C
D is also

assumed to be coherent and consistent (i.e., it is not possible to derive inconsisten-

cies). A log-linear description logic relies on a log-linear probability distribution

over the coherent and consistent subsets of the CBox. Each subset of the CBox

represents a world that, if coherent and consistent, is associated with a probabil-

ity computed using the weights of its soft axioms. Incoherent and/or inconsistent

subsets of the CBox are considered as impossible. More details about log-linear

description logics can be found in [129].

In our probabilistic ontology, activities are explicitly grouped according to

context conditions. Examples of these groups could be “activities that can be

performed indoor” or “activities that can be performed at a positive speed”. We

refer to these groups as activity characterizations. Clearly, an activity may belong

to more than one characterization. Characterizations provide an abstraction

layer that improves the ontology readability. Moreover, characterizations can be

used to define mutually exclusive sets of activities. This approach also makes it

possible to easily add new context conditions by creating a new characterization

and binding it with the desired activities. Figure 3.4 and Figure 3.5 show how

characterizations are represented in our ontology.

Each characterization is modeled as an equivalence axiom which describes a

specific context condition that an activity should satisfy. Therefore, each activity

can be modeled in terms of set membership to specific context conditions by using
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Figure 3.4: A subset of the characterizations in our ontology

Figure 3.5: Examples of descriptions of characterizations in our ontology

subsumption or disjunction axioms with the characterization classes.

In order to understand how activities are modeled in our ontology, consider

Running. It is clear that a person has to move with a positive speed in order

to perform this activity. However, other context conditions related to Running

should be modeled considering soft constraints:

• outdoor/indoor: even if it is more likely that a person is running outside,

it is also possible to run inside a building;

• speed: a person may run with di↵erent speed rates and each rate has its

own probability. Intuitively, a normal running speed rate is the most likely

one for this activity, slow running (e.g., jogging) is slightly less probable,

while running fast is the least likely one;

• height variation rate: a person may run on a flat or inclined road. Hence,
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users may run at varying height variations. The most likely scenario is

probably running on flat roads.

Due to these considerations, a possible probabilistic modeling of Running is de-

picted in Figure 3.6, using subsumption and disjunction relationships with the

corresponding characterizations. The hard rules are recognizable by the absence

of the yellow OWLAnnotation marker, which is enabled on the soft rules. Indeed,

the specific log-linear logic that we adopted in our system associates a weight to

each soft axiom by using an OWL2 annotation called confidence.

Figure 3.6: Description of Running using hard and soft axioms. The soft axioms
are the ones associated with the yellow OWLAnnotation marker. Clicking on that
marker it is possible to obtain the weight value.

Weighted subsumption axioms are used to describe uncertainty about the

di↵erent values that a context condition can have. As we show in this example,

our ontology includes a weighted subsumption for each possible speed rate related

to Running.

Note that, for instance, the soft constraint of Figure 3.6 related to low speed

can be formalized as follows:

Running v Act Performed With SPEED LOW : w1

where w1 2 R is the weight associated with this axiom. Later in this section we

will discuss how these weights are actually computed. The weight influences the

veracity of other axioms related to the same context property (e.g. Running can

be performed at medium/high speed rates). Therefore, when modelling weighted
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axioms, we need to pay attention to how a specific weighted axiom influences the

others in the reasoning process.

In our model, weighted disjunctions are used to represent uncertainty about

context conditions considered both in hard rules and soft rules. For instance, if

we model using a weighted subsumption axiom that Running may be performed

indoor, then Running and other outdoor activities would be associated with dif-

ferent output probability values given the same context conditions. This would

happen because of the semantics of log-linear DL, which would take into account

also the indoor subsumption axioms during the reasoning process of the current

user’s context, which may specify that the user is outdoor. On the other hand,

weighted disjunctions express a degree of incompatibility between activity and

specific context information. In this case, the axiom would be taken into account

during the reasoning process only if the current context contains that information.

In this example, the weighted disjunction can be formalized as follows:

Running u Act Performed With LOCATION Indoor v ?: w2

where w2 2 R is the weight associated with the disjunction.

Axioms’ Weights

In log-linear description logics, the weight associated with a soft axiom takes

values in R. In the literature, those weights are generally learned from labeled

data. In our domain, the acquisition of a comprehensive annotated dataset that

includes activities performed in a wide variety of context conditions is prohibitive.

In this work, we associate with each axiom a probability value p 2 [0, 1] based on

common-sense knowledge on context and activities. This knowledge should not

necessarily come from the knowledge engineer and domain experts but it may be

extracted semi-automatically in several ways, including:

• Proposing a survey to a large number of users;

• Scraping information about context and activities from the Web.

For example, suppose that, according to common knowledge, the activity Running

is not very likely when performed in indoor environments. Hence, according

to common-sense knowledge, our system associates the probability value 0.3 to
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the soft axiom “running can be performed indoor”, while 0.7 to the soft axiom

“running can be performed outdoor”.

Note that directly using probability values as weights associated with soft ax-

ioms is not a good choice given the underlying log-linear probability distribution.

Hence, as proposed in other works [130, 131], we use the logit function to map

each probability value p to a real number as follows:

logit (p) = log (p)� log (1� p) = log

✓
p

1� p

◆

The advantage of using logit is that it can approximate probability values for a

log-linear model. Note that logit is not defined at 0 and at 1. When p = 1 or

p = 0 we consider the axiom as a hard constraint. In the former case, it is a

context condition that is always required for the corresponding activity; in the

latter case, it is a context condition that should never occur.

Probabilistic Context Reasoning And Refinement

The proposed Probabilistic Context Reasoning engine uses the previously de-

scribed probabilistic ontology to compute, given the current context data, a con-

fidence value for each activity. First, context data is translated into ontological

facts: class instances and relationships that populate the assertional part of the

ontology. Once the ontology has been extended with facts about the current con-

text conditions, it is processed by the probabilistic reasoner ELOG [129]. ELOG

is in charge of computing marginal inference to obtain, for each activity Ai, a

confidence value. Each confidence value conf(Ai, C) estimates the compatibility

of Ai with the current context condition C.

The marginal inference algorithm implemented in ELOG, called MisSampler

(Minimal Inconsistent Subset Sampler), analyzes the entire ontology to gener-

ate a posterior probability value for each soft axiom according to the log-linear

description logic semantics. In order to compute a posterior probability value for

each activity possibly performed by the user, our ontology includes dedicated soft

axioms. In particular, there is an additional soft axiom for each activity. Each

one of these axioms is declared as a subclass of the corresponding activity entity
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with 0 as the default confidence value. According to the log-linear DLs seman-

tics, the posterior probability of these axioms is 0.5 if they do not conflict with

other axioms. Indeed, without conflicts, the posterior probability of an axiom

c with weight wc is defined by alogit(wc) where alogit(R) ! (0, 1) is the logit

inverse function. Figures 3.7 and 3.8 show those additional soft axioms and their

relationships with the rest of the ontology.

Figure 3.7: Probabilistic terminological overlay

Figure 3.8: CandidateActivity and Prob-Running classes

The output of the marginal inference algorithm is a vector of confidence values:

confidences(C) = hc1, c2, . . . , cni

where C is the input context data and ci 2 R+ is the confidence value conf(Ai, C)

associated to the activity Ai 2 A. Note that conf(C) is not a probability dis-

tribution over the activities. Each ci is a posterior probability value computed

by the underlying log-linear probability distribution over coherent and consistent

ontologies. Hence, these values should be considered as confidence values asso-

ciated with the activities given the current context condition. Since we use the
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default value 0 for the probabilistic axioms in the ontology, the value of each ci

is in the range [0, 0.5] (due to alogit as we previously discussed).

Given a confidence value ci:

• ci = 0.5 reveals that the context satisfies the hard rules related to Ai without

the involvement of probabilistic axioms;

• 0 < ci < 0.5 reveals that the context satisfies the hard rules of Ai but

some soft axioms were used in the inference process, thus decreasing the

output confidence. The more soft axioms are involved, the lower the output

confidence;

• ci = 0 reveals that the context does not satisfy at least one hard constraint

for Ai. Therefore, according to our ontology, the activity is impossible in

that specific scenario.

The confidence values inferred by ELOG are used to refine the probability

distribution obtained from the Incremental Statistical Model on inertial sen-

sor data. In particular, given the probability distribution hp1, p2, . . . , pni and
confidences(C) = hc1, c2, . . . , cni such that Ai is an activity label, pi is the proba-

bility associated to Ai by the statistical model and ci is the ontological confidence

value of Ai given the current context condition, we compute the following vector:

v = hp1 ⇤ c1, p2 ⇤ c2, . . . , pn ⇤ cni

Hence, confidence values are used as weights associated with the probability val-

ues. Finally, the vector v is normalized in order to obtain a probability distribu-

tion over the possible activities:

predictions = hP1, P2, . . . , Pni

such that
Pn

i=1 Pi = 1 and Pi 2 [0, 1]. This probability distribution is the output

of the Context reasoning module and is forwarded to the Prediction Confidence

Evaluation module.
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3.5 Prediction Confidence Evaluation and Ac-

tive Learning

The Prediction Confidence Evaluation module is in charge of using context-refined

predictions to update the activity model with newly labeled samples obtained

through a custom active learning-based strategy.

3.5.1 Active Learning

In order to update and improve the activity model, we apply an active learn-

ing strategy asking a feedback from the user about her current activity when

there is uncertainty in the context-refined prediction. In particular, we adopt a

state-of-the-art non-parametric method called VAR-UNCERTAINTY [132]. This

method is based on a threshold ✓ which is dynamically adjusted over time. Ini-

tially, this threshold is initialized to ✓ = 1. Given a context-refined prediction

hP1, P2, . . . , Pni, we denote with P
? = maxi Pi the probability value of the most

likely activity A
?. If P ? is below ✓, we consider the system uncertain about the

current activity performed by the user. In this case, an active learning process

is started by asking the user to provide the ground truth A
f about the current

activity. The feedback A
f is used to update the activity model with a newly

labeled data sample. When A
f = A

?, it means that the most likely activity was

actually the one performed by the user, and hence the threshold ✓ is decreased

to reduce the number of questions. On the other hand, when A
f 6= A

?, ✓ is in-

creased. More details about the VAR-UNCERTAINTY algorithm can be found

in [132].

We assume that active learning queries are prompted to the user in real-time

through a dedicated application, thanks to a user-friendly interface. Each query

asks the user to choose the activity that she is currently performing among the

possible ones. For the sake of usability, our system only presents a couple of al-

ternatives taken from the most probable activities. Figure 3.9 shows a screenshot

of the active learning application that we implemented for the smartwatch.
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Figure 3.9: Illustration of our active learning interface for smartwatch.

3.6 Experimental evaluation

In this section, we describe how we evaluate the e↵ectiveness of both the deter-

ministic and the probabilistic context-based refinement approaches. Finally, we

compare ad discuss the obtained results.

3.6.1 Deterministic Reasoning Based Results

To evaluate the e↵ectiveness of the deterministic reasoning approach, we used

the DOMINO dataset introduced in Section 2.3.4. This dataset contains iner-

tial sensor data and context information regarding the execution of 14 di↵erent

activities executed by 25 users wearing a smartphone and a smartwatch. The

considered activities are the following: walking, running, standing, lying, sitting,

stairs up, stairs down, elevator up, elevator down, cycling, moving by car, sitting

on transport, standing on transport, and brushing teeth. These activities were

recorded in various contexts, including working, going around in the city, and

using public transportation. Then, we adopted Online Random Forest [133] as

classifier, since it is the incremental version of the well-known Random Forest

machine learning algorithm, which proved to be one of the most e↵ective classi-

fiers for activity recognition [122]. We take advantage of the Java implementation

proposed in [134]. HermiT [135] in combination with the Java OWL API [136]

is our OWL2 ontological reasoner. Since there is no system in the literature to
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directly compare with, we implemented two variants of our approach. The former

is called Data-Driven approach, since it only considers inertial sensor data to rec-

ognize activities. In particular, it combines the Incremental Activity Recognition

module and the Prediction Confidence Evaluation module without applying our

deterministic context-refinement approach. Note that Data-Driven approach can

be considered as a baseline since it is a standard approach for activity recogni-

tion [1] The latter variant is called Context as features. This method, instead of

using semantic refinement, incorporates context data directly in the feature vec-

tors generated by the feature extraction mechanism presented in Section 3.3.1.

In particular, this method extracts a) statistical features (average, variance, dif-

ference between max and min) from numeric context data like speed or height

variations, and b) binary features for symbolic context data (i.e., semantic place,

weather condition, proximity to transportation routes, etc.). We used a leave-

one-subject-out cross-validation approach to evaluate and compare our approach

with these two variants in terms of recognition rate and the number of subject

questions. At each fold, we use 25 subjects to collaboratively update the activ-

ity model, which is initialized considering only 1 minute of labeled data samples

for each activity. The data of the remaining subject is used to compute the

recognition rate, and the number of questions asked to the subject.

Table 3.1 shows the results (in terms of overall F1 score). The results clearly

show that context data has a significant impact on the overall recognition rate.

Moreover, context data also allows our method to consider a wider set of activities

compared to standard methods which only consider inertial sensors (e.g., With-

out Context). Indeed, activities that are characterized by similar inertial patterns

but that are typically executed in very di↵erent context conditions can be eas-

ily discriminated by our deterministic context-based approach. For example, it

is evident that activities like going upstairs/downstairs and sitting/standing on

transport (which are more di�cult to recognize only considering motion pat-

terns) highly benefit from context data. On the negative side, we observe that

the recognition rate of the deterministic context-based approach on the cycling

activity is lower than the ones obtained by the other approaches. Indeed, this

activity is often confused with moving by car. This is due to the fact that the

available context data that characterizes those activities are similar (e.g., they

67



Data-Driven Context Deterministic

Activity approach as features Context Reasoning

Elevator up 0.0 0.09 0.70

Elevator down 0.31 0.65 0.83

Moving by car 0.76 0.80 0.87

Brushing teeth 0.77 0.83 0.83

Running 0.98 0.97 0.98

Sitting 0.94 0.96 0.97

Going upstairs 0.38 0.45 0.77

Going downstairs 0.58 0.81 0.90

Cycling 0.96 0.96 0.93
Standing 0.85 0.95 0.96

Walking 0.84 0.89 0.95

Sitting transport 0.35 0.62 0.78

Standing transport 0.41 0.97 0.90

Avg F1 0.62 0.77 0.88

Table 3.1: Recognition rate (F1-score) of the proposed deterministic context-
based solution compared with alternative approaches

are both performed outdoor in the city tra�c, with variable speed, etc.).

Besides the recognition rate, a crucial evaluation parameter is the number of

questions triggered by the system, since it has a significant impact on usability.

As Figure 3.10 shows, the proposed approach generates a significantly lower num-

ber of questions (6%) compared to Data-Driven approach (22%) and Context as

features (16%).

Figure 3.10: Percentage question triggered by the deterministic reasoning ap-
proach compared with alternative solutions
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Indeed, our semantic deterministic refinement technique exploits the ontology

to remove unlikely activities from the prediction, thus significantly increasing the

confidence in the remaining activities. Accordingly, the experimental evaluation

indicates that our approach reaches satisfying results in terms of classification

rate using a very limited number of labeled samples, proving to be particularly

appropriate in data scarcity scenarios like sensor-based HAR.

3.6.2 Probabilistic Reasoning Based Results

A possible limitation of the deterministic reasoning approach is the rigid formal-

ism for knowledge representation and reasoning that cannot take into account

the intrinsic uncertainty and incompleteness of common knowledge and sensor

technology. However, the DOMINO dataset that we use to evaluate it does not

include activities executed in context conditions that are unlikely but not impos-

sible in realistic scenarios. For instance, the Running activity was never executed

in indoor environments and/or with lower speed rates (e.g., jogging). Another

example is the Stairs up and Stairs Down activities, which were never executed

outdoor despite it is possible to find stairs outside. Since we want to quantita-

tively show if the probabilistic reasoning framework overcomes these drawbacks,

we slightly modified the DOMINO dataset in order to incorporate unusual con-

text scenarios.

Simulating Unusual Scenarios

We implemented a probabilistic simulator for context data which is based on the

considered dataset. Hence, we replaced the original context data with simulated

context data. For each activity class in the dataset, our simulator considers:

• context information which characterizes the activity regardless of the sce-

nario (i.e., context data needed to satisfy the hard constraints of the ontol-

ogy);

• a probability distribution over the context data that may be relevant for

estimating the probability of the activity (i.e., context data captured by

soft constraints in the ontology).
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Our simulator relies on a probabilistic representation of the common knowl-

edge of the activity domain to generate possible scenarios for each activity class.

For each activity instance in the dataset, the simulator generates, based on the

label, a scenario that includes context data related to hard constraints and some

of the context data related to soft constraints. The latter are sampled from a

probability distribution.

For instance, consider the activity Walking. Based on common-sense, our

simulator incorporates the following probabilistic knowledge:

1. it is very common that users walk slowly (80% of probability), while they

sometimes walk faster (20% of probability);

2. in the majority of the cases, users walk on flat surfaces, hence with no height

variation (70% of probability), while they can walk ascending/descending

paths with a lower probability (30% of probability);

3. Walking can be performed indoor or outdoor with equal probability.

For each activity instance, our simulator generates context data by sampling

from these probability distributions. Continuing the example of Walking, a wide

variety of context scenarios can be generated, like the following ones:

• Scenario A: {low speed, no height variation, indoor location}

• Scenario B: {low speed, positive small height variation, outdoor location}

• Scenario C: {medium speed, no height variation, indoor location}

• Scenario D: {medium speed, negative small height variation, outdoor lo-

cation }

Intuitively, scenario A is the most common one for Walking and it would be

frequently generated by our simulator. The other examples of scenarios are the

least common, so they would be rarely generated by the simulator.
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Probabilistic vs Deterministic Reasoning Results

In the following, we present the results obtained thanks to the proposed proba-

bilistic reasoning approach. Here, we used the dataset presented in Section 2.3.4,

enhanced with our probabilistic context data simulator. In order to evaluate the

e↵ectiveness of this technique we compare it with the Data-driven approach and

the deterministic context reasoning approach.

We performed leave-one-subject-out cross-validation to assess the recognition

rate of our system and the ones of the other approaches. Table 3.2 shows the

results in terms of the overall F1 score3.

Data-Driven Deterministic Probabilistic

Activity approach Context Reasoning Context Reasoning

Elevator up 0.0 0.95 0.95

Elevator down 0.27 0.94 0.94

Moving by car 0.78 0.81 0.81

Brushing teeth 0.77 0.77 0.82

Running 0.98 0.80 0.98

Sitting still 0.94 0.98 0.99

Going upstairs 0.50 0.63 0.86

Going downstairs 0.51 0.67 0.83

Cycling 0.95 0.95 0.97

Standing still 0.84 0.95 0.97

Walking 0.76 0.84 0.94

Sitting transport 0.31 0.86 0.90

Standing transport 0.48 0.94 0.97

Avg F1 0.63 0.86 0.92

Table 3.2: Recognition rate (F1 score) of probabilistic context reasoning com-
pared with alternative approaches

The obtained results confirm that context data has a significant impact on

the overall recognition rate. Most importantly, the probabilistic context reasoning

approach significantly outperforms the deterministic context reasoning approach

reaching an overall F1 score of 0.92. Indeed, thanks to its probabilistic per-

spective, it can recognize activities performed in unusual scenarios, considered

3Note that the results regarding Data-driven approach and Deterministic Context Reasoning
exhibited in Table 3.2, di↵er from the ones presented in Table 3.1 as they have been obtained
with the modified version of DOMINO which includes simulated unusual context scenarios.
The same consideration is valid also for the other comparisons that we present in the following
of this Section.
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as impossible by the deterministic context reasoning approach. Looking closely

at the results, some of the activities related to the highest improvements are

Going downstairs, Going upstairs, Walking, SittingTransport, StandingTransport

and BrushingTeeth. For these activities, our simulator generated a wide range

of unusual scenarios, thanks to a higher number of combinations of context data

with respect to other activities. Thus, the dataset contains more ”unusual sam-

ples” for those activities with respect to the others, which are characterized by a

smaller range of possible scenarios.

Considering the deterministic context reasoning, it is possible to observe a

significant decrease in the recognition rate of Running. Indeed, while this activity

can be reliably recognized only by analyzing inertial sensor data, the deterministic

semantic refinement often considers it inconsistent considering unusual scenarios.

For instance, the deterministic ontology described in Section 3.4.2 considers as

impossible the fact that Running can be carried out indoor, since it is unlikely.

Our method can overcome these problems thanks to soft axioms.

Besides the recognition rate, a crucial evaluation parameter is the number of

questions triggered by the system, since it has a significant impact on usability.

Figure 3.11 shows how both Probabilistic and Deterministic reasoning generates

a significantly lower number of questions (respectively 6% and 8%) compared to

Data-Driven approach (22%).

Figure 3.11: Percentage questions triggered by probabilistic context reasoning
compared with alternative approaches
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The Probabilistic context reasoning slightly decreases the number of user ques-

tions with respect to Deterministic context reasoning. Hence, on average, our

probabilistic context refinement method further reduces the uncertainty on the

output probability distributions compared to the deterministic solution.

In order to evaluate how the recognition rate and the number of triggered

questions evolve over time, we use the evaluation method proposed in [137].

We classify each data sample of the dataset (considering all 26 subjects) with

the current model and, depending on the prediction’s confidence, we update the

recognition model. The classification’s output (i.e., the most likely activity), and

the corresponding ground truth are collected in sliding windows of 800 samples

with an overlap of 75% to periodically compute the overall F1 score and the per-

centage of triggered questions. Samples coming from di↵erent users are randomly

interleaved. Figure 3.12 shows the evolution of the F1 score and the number of

questions of Probabilistic context reasoning with respect to the baselines. The

results show that in the early stages, the recognition rate of all considered ap-

proaches was not acceptable, highlighting the significance of the active learning

module to collect labeled samples for incremental training.

Compared to the Data-Driven approach, both the Deterministic context rea-

soning and Probabilistic context reasoning approaches quickly achieved high recog-

nition rates and significantly fewer questions. The Probabilistic context reasoning

approach outperformed the Deterministic context reasoning approach, demon-

strating a faster learning curve.

However, the number of questions generated by the Probabilistic context rea-

soning approach was only slightly lower than those generated by the deterministic

approach, reflecting the results presented in Figure 3.11.

3.7 A System Demonstration

In the previous Sections, we showed that combining context data with common

knowledge about the relationship between context and human activities, leads

to obtain optimum results in terms of recognition rate by using a small num-
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(a) F1 score (b) percentage of questions

Figure 3.12: Evolution of the recognition model over time. Considered activities:
Running, Sitting, Cycling, Standing, Walking, Elevator up, Elevator down, Going
Upstairs, Going Downstairs, Brushing Teeth, Moving by car, Sitting transport,
Standing transport

ber of labeled training examples. In order to demonstrate to the users how the

proposed systems works, we implemented a demo consisting of a real-time activ-

ity recognition system that combines supervised learning on inertial sensor data

and context-aware reasoning. In particular, we ask the participants to keep a

smartphone in a pocket and a smartwatch on the wrist. These devices run cus-

tom applications that transmit inertial sensor data and context information to

a server that executes our hybrid statistical and deterministic context reason-

ing approach in real-time. As Figure 3.13 shows, a web dashboard displays in

real-time the most important steps executed by our system.

In particular, the dashboard displays to the user the following information:

• In the top-left box, the output of the machine learning module

• In the top-right box, the pre-processed context-data

• In the bottom-left box, the list of consistent and inconsistent activities is

derived by context reasoning. By clicking on an activity it is also possible

to consult the ontological definition.

• In the bottom-right box, the context-refined probability distribution of ac-

tivities
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Figure 3.13: Our Dashboard

Given the constraints of the laboratory environment in which the demo took

place, we also enabled the users to simulate di↵erent contexts and inertial sensors

data presets. These presets have been created by using the data collected in the

DOMINO dataset, and can be dynamically changed by using a dedicated menu

of the dashboard. Example 3.7.1 describes a possible situation in which a user

experiences our demo taking advantage of the available data presets.

Example 3.7.1 Suppose that a user selects from the presets menu the inertial

sensor data pattern representing a user standing on a bus. In this case, the clas-

sifier shows uncertainty between Standing Still and Standing on Transport activ-

ities. This is consistent with theoretical results obtained in Section 3.6. Then,

suppose that the user chooses a context preset simulating that she is following a

public transportation route and that she is moving at a certain speed. According

to the ontology, Standing still is not context-consistent since it should be a static

activity. Hence, the system derives Standing on Transport as the most likely

context-refined activity and displays it to the user.
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3.8 Summary

In this Chapter, we presented a novel approach that, relying on a combination

of semi-supervised learning and knowledge-based reasoning, enables reducing the

number of labeled examples required to classify a wide set of physical activities.

Overall, the proposed approach uses a machine learning algorithm on inertial

sensor data to obtain the candidate probability distribution over the activities

carried out by the user. Then, a knowledge-reasoning engine refines the can-

didate prediction given the relationships between activities and context data

modeled into an ontology. Thanks to active learning, our systems can contin-

uously improve the statistical classifier initialized with a limited set of labeled

examples. In particular, we developed and evaluated two di↵erent ontologies to

implement the knowledge-reasoning engine. The former is a deterministic on-

tology that uses a rigid ontological formalist to model the relationships between

activities and context. The latter is a probabilistic ontology that enables captur-

ing more sophisticated probabilistic relationships between activities and context.

Our experimental evaluation using the DOMINO dataset showed that the pro-

posed method enables increasing the recognition rate with respect to standard

semi-supervised approaches, while reducing the number of active learning ques-

tions triggered to the users to obtain annotated training data. In particular, the

knowledge-reasoning engine based on probabilistic ontology outperformed the one

based on deterministic ontology. Thus, we can conclude that the solution pre-

sented in this chapter addresses the research question Q1) presented in Section

2.4 by mitigating the data scarcity problem typical of collaborative HAR. We

also believe that our approach is more flexible in terms of the availability of con-

text data with respect to using context as features. Since context sources may

not always be available, using context as features may lead to missing values in

the feature vectors used to update the classifier, which in turn may negatively

a↵ect the recognition rate. This work only represents a preliminary investiga-

tion of the e↵ectiveness of using probabilistic logics in context-aware and hybrid

activity recognition systems. We foresee several promising research directions.

First, given the probabilistic ontology, a critical aspect is the setting of weights

for the soft axioms determining the influence of context on activities. We plan to
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investigate how to populate the probabilistic ontology in a semi-automatic fash-

ion, by extracting knowledge about context and activities from external sources.

For instance, some works proposed to extract information from textual descrip-

tion [138] and images [139] of activities from the Web. Those works were mainly

focused on building models for smart-home activity recognition. Besides uncer-

tainty on the association of context with activities, a probabilistic ontology may

also capture the fact that context data may have an associated confidence value.

Indeed, it is not always advisable to completely trust input context data (e.g.,

geographical positioning, as well as semantic place identification, can have di↵er-

ent levels of approximation and reliability). Including uncertainty on input data

has the potential of making our system more robust with respect to inaccurate

information. Last but not least, it is also important to consider the scalability

and privacy issues that may arise in collaboratively training a machine learning

model in a centralized way by using the data collected by a wide number of users.
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Chapter 4

Federated HAR In Data Scarcity

Scenarios

4.1 Introduction

The previous chapter discussed collaborative and semi-supervised methods for

mitigating the data scarcity problem in sensor-based HAR [13]. Combining these

methods with knowledge-based reasoning can limit user interactions while recog-

nizing a wide range of activities [29, 30]. However, challenges such as scalabil-

ity and privacy concerns limit the deployment of collaborative approaches. To

address these problems, Federated Learning (FL) is introduced as a promising

solution for making activity recognition scalable for a large number of users while

preserving privacy [19].

Indeed, in traditional collaborative approaches, all data must be transferred

to the central server where resides the machine learning model, which can be

time-consuming, resource-intensive, and pose privacy risks. Furthermore, as the

volume of data increases, it becomes increasingly challenging to store and process

it on a single machine. In contrast, federated learning allows each node to train

a local model using its own labeled data, forwarding only updated model pa-

rameters to the server responsible for aggregating them into a global recognition

model. In such a way it is possible to dramatically reduce the amount of data

transferred from clients and the server, and decrease privacy risks for the users.
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Moreover, the federated approach enables the use of distributed computing re-

sources across many devices, allowing for the e�cient processing of large amounts

of data. While FL has been successfully applied to HAR, existing FL-based so-

lutions assume complete availability of labeled data at each node, which is not

realistic for HAR applications with limited labeled data availability [23, 98]. Ex-

tending FL to semi-supervised learning is one of the open challenges in this area

[98].

In this Chapter, we propose FedAR: a hybrid semi-supervised and FL framework

that enables privacy-aware and scalable HAR based on mobile and wearable de-

vices. Di↵erent from the majority of the existing solutions, FedAR considers a

limited availability of labeled data. In particular, FedAR combines active learn-

ing and label propagation to provide labels to a large amount of unlabeled data.

Newly labeled data are periodically used by each node to perform local train-

ing, thus obtaining the model parameters that are then transmitted to the server

that aggregates them using Secure Multiparty Computation. FedAR also relies

on transfer learning to fine-tune the global model for each user, while generat-

ing a global model that generalizes over unseen users. Given the limitations of

existing evaluation methodologies for FL applied to HAR [20], we also designed

a novel evaluation methodology to robustly assess both the generalization and

the personalization capabilities of our approach. The results obtained with two

publicly available datasets showed that FedAR reaches a recognition rate close to

state-of-the-art solutions that assume the complete availability of labeled data.

Moreover, the number of generated active learning questions resulted very small

and hence acceptable for real-world deployment.

This chapter is structured as follows. The proposed methodology and the related

algorithms of FedAR are detailed in Section 4.2. We introduce the experimental

evaluation in Section 4.3. Finally, in Section 4.4 we summarize our contributions

and discuss the actual advantages and limitations.
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4.2 The Proposed Methodology

4.2.1 System Architecture

The overall architecture of the proposed approach, is depicted in Figure 4.1. In

Figure 4.1: Overall architecture of the proposed approach.

particular, by following the FL framework, the actors of FedAR are a server and

a set of clients that cooperate to periodically compute the weights of a global

activity recognition model. In order to address the labeled data scarcity prob-

lem, the proposed approach initializes the global model in an o✏ine phase with a

limited amount of labeled data, while each client implements a semi-supervised

learning strategy (i.e., a combination of active learning and label propagation) to

semi-automatically label a portion of the unlabeled sensor data stream. Periodi-

cally (e.g., every night), the server starts a process to update the weights of the

global model. Each client uses its available labeled data to train its local model.

The resulting local weights are transmitted to the server, which aggregates them

with the ones from the other clients to obtain a new version of the global model.

Finally, the new version of the global model weights is transmitted to each client.

Since di↵erent users may perform activities in very di↵erent ways, a model per-

sonalization module on each client is in charge of fine-tuning the updated global

model weights on the specific user. A more detailed overview of the global model
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update and personalization is described in Section 4.2.4.

4.2.2 Local Models

One of the strengths of the proposed approach is that it considers both personal-

ization and generalization aspects. Personalization is crucial for the local models

to recognize the activities of each user more accurately. On the other hand, gener-

alization is a desirable property for the global model. Indeed, some participating

users may not wish to collect labeled data (not even a small amount) or may

have devices not adequate to perform local training. Those users are not able

to actively contribute to the federated learning process, and their clients would

directly use the last version of the global model for activity classification.

In order to guarantee both personalization and generalization, each client stores

two distinct instances of the activity model. The former is called Shareable Model,

and it is the one used for federated learning. In order to personalize the activity

model for each user, a straightforward solution would be to fine-tune the Share-

able Model with transfer learning approaches [140]. However, recent studies show

that a global model built by aggregating the weights of fine-tuned models exhibits

poor generalization capabilities on external users [20]. In order to overcome this

problem, at the end of each global model update the clients that actively con-

tribute to the federated learning process create a copy of the Shareable Model

that is called Personalized Model. The Personalized Model is fine-tuned on the

specific user and it is used for activity classification. Besides improving gener-

alization, an advantage of keeping private the weights of the Personalized Local

Model is a positive impact on privacy protection [141].

4.2.3 Semi-supervised Data Labeling And Classification

Figure 4.2 depicts the semi-supervised data labeling and classification flow of

the proposed approach. Each client in FedAR uses the Personalized Model to

classify activities in real-time on the continuous stream of unlabeled pre-processed

sensor data. Before classification, each unlabeled data sample is stored in the

Feature Vectors Storage. This storage collects both unlabeled and labeled data

samples. After classification, if the confidence over the current prediction is below
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Figure 4.2: Semi-supervised data labeling and classification data flow

a threshold, an active learning process is started, and the system asks the user

about the activity that she was actually performing. The feedback from the user

is then associated with the corresponding feature vector in the Feature Vectors

Storage. Active learning makes it possible to assign a label to those informative

data points that can e↵ectively improve the local model. For the sake of usability,

the number of active learning queries should be low, since they may bother the

user during activity execution. For this reason, FedAR also periodically applies a

Label Propagation algorithm to spread the labels acquired through active learning

to a larger number of unlabeled data points. The advantage of label propagation is

to further improve the recognition rate by training the classifier with a significant

amount of labeled data samples and, at the same time, to reduce the number of

needed active learning queries over time.

4.2.4 Global Model Update And Personalizazion

Periodically (e.g., every night) the server asks to the participating clients to

update the global model. This process is depicted in Figure 4.3. First, each

client replaces its Shareable Model with the current version of the Global Model.

Then, the labeled data in the Feature Vectors Storage are used to perform local

training of the Shareable Model. After training, the updated Shareable Model

weights are then forwarded to the server, that is in charge of aggregating the
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Figure 4.3: Local models training and personalized model update

weights from all the clients to generate a new version of the global model. These

steps are repeated until the convergence of the global model. At the end of this

process, the Shareable Model of each client is replaced with the last stable version

of the Global Model. Then, the Model Personalization module generates a copy

of the Shareable Model that is called Personalized Model, that is fine-tuned using

the Feature Vectors Storage. The result of this process is a Personalized Model

that takes advantage of the high-level features of the Global Model as well as the

personalized aspects of the specific user.

In this section, we describe in detail the algorithms of FedAR.

4.2.5 The Activity Model

Since we consider a setting with limited availability of labeled data, activity mod-

els that automatically learn features from raw data are not e↵ective in FedAR.

Indeed, based on our experiments that we describe in Section 4.3.2, CNN models

reach significantly lower recognition rates in FedAR due to the high complex-

ity of learning reliable features from limited labeled data. For this reason, in

FedAR, the activity classification model is based on a fully-connected deep learn-

ing model, and the input is a vector of handcrafted features. In particular, we

choose features that proved to be e↵ective for HAR [29]. Recent studies in the

HAR domain demonstrate that a good choice of handcrafted features and fully

connected models can lead to recognition rates comparable to the ones of state-
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of-the-art CNN models [142].

4.2.6 Initialization Of The Global Model

At the very beginning, the participating clients in FedAR need a pre-trained

global model to infer labels on unlabeled data. However, in this work we assume

limited availability of labeled data.

Figure 4.4: Initialization of the global model in FedAR.

Hence, FedAR initializes the global model using a restricted annotated dataset

(we will call it pre-training dataset in the following) 1. The pre-training dataset is

also used to initialize label propagation algorithm. In realistic settings, the pre-

training dataset can be, for example, a combination of publicly available datasets,

or a small training set specifically collected by a restricted number of volunteers.

Figure 4.4 summarizes the initialization mechanism of FedAR.

4.2.7 The Proposed Federated Learning Based Approach

In the following, we describe the FL process to update the global and local

models. Periodically (e.g., each night) the server starts a global model update

process. The devices that are available to perform computation (e.g, the ones

idle and charging) inform the server that they are eligible to take part in the FL

1Note that, considering out target application, a labeled dataset is a collection of times-
tamped inertial sensors data acquired from mobile/wearable devices during activity execution.
Examples of such sensors are accelerometer, gyroscope, and magnetometer. The labels are
annotated time intervals that indicate the time-span of each performed activity.
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process. Afterward, the server executes several communication rounds to update

the weights of the global model.

A communication round consists of the following steps:

• The server sends the latest version of the global weights to a fraction of the

eligible devices

• Each device uses the labeled data in the Feature Vectors Storage to train

the Shareable Model

• When local training is completed, each device sends the new weights of the

Shareable Model to the server

• The server aggregates the local weights to compute the new global weights

The communication rounds are repeated until the global model converges.

In particular, the server considers the global model converged when there is no

substantial di↵erence between the weights of the global model after a certain

number of subsequent updates 2. Then, the new weights are transmitted to

each participating device including the ones that did not actively contribute to

the communication rounds. The server updates the global model weights by

executing a weighted average of the locally learned model weights provided by

clients. Since the local weights may reveal private information, the aggregation is

performed using the Secure Multiparty Computation approach presented in [97].

The pseudo-code of the server-side federated learning process is described in

Algorithm 1, while the client-side in Algorithm 2.

4.2.8 Model Adaptation

FedAR adopts a transfer learning inspired strategy to fine-tune the Personalized

Model on each user. The intuition behind the user adaptation mechanism is

that the last layers of the neural network (i.e., the ones closer to the output)

encode personal characteristics of activity execution, while the remaining layers

encode more general features that are common between di↵erent users [107]. As

2In Section 4.3.3 we discuss pro and cons of the criteria that are generally used to evaluate
the convergence of a federated learning model in HAR.
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Algorithm 1 Server side - Federated global model

1: PT ( pre-training set
2: Initialize global model wG with PT

3: d( participating devices
4: for each periodic update (e.g., every night) do
5: for each communication round do
6: ask for eligibility to each device in d

7: ed( eligible devices
8: ed

0 ( k devices randomly sampled from ed

9: send w
G to each device in ed

0

10: aggregate updated models’ weights received from devices in ed
0 with

SMC [97]
11: end for
12: end for

Algorithm 2 FedAR - Client side - Model update

1: pm( Personalized Model
2: sm( Shareable Model
3: Update the Feature Vectors Storage using the Label Propagation algorithm

in Section 4.2.8.
4: for each communication round i do
5: train sm using labeled data in the Feature Vector Storage
6: send sm to the server
7: receive updated global model wG

i

8: sm( w
G
i

9: end for
10: pm( sm

11: fine-tune pm using the transfer learning inspired method described in Sec-
tion 4.2.8
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Figure 4.5: Shared and Personal Layers.

depicted in Figure 4.5, we refer to the last l layers of the neural network as the

User Personalized Layers, while we refer to the remaining ones as Shared Hidden

Layers. In FedAR, when the update of the global model is complete, each client

creates the Personalized Model as a copy of the Shareable Model. In order to fine-

tune the Personalized Model on each user, the Shared Hidden Layers are frozen,

and the Feature Vector Storage is used to train the User Personalized Layers.

Active Learning and Labels propagation

In the following, we describe how each client semi-automatically provides labels

to the stream of unlabeled sensor data. FedAR relies on a combination of two

semi-supervised learning techniques: Active Learning and Label Propagation.

Active Learning

An active learning process requires the user feedback about her currently per-

formed activity when there is uncertainty in the classifier’s prediction. The intu-

ition is the following: unlabeled data samples for which the classification confi-

dence is significantly low would have the most impact in improving the classifier

if the label were available (i.e., they are the more informative ones). FedAR

relies on the active learning strategy previously presented in Section 3.5 of Chap-

ter 3. Algorithm 3 introduces the pseudo-code describing how FedAR executes

classification and active learning.
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Algorithm 3 Client side - Classification and data labeling

1: sm( Shareable Model
2: pm( Personalized Model
3: receive pre-trained w

G from the server
4: sm( w

G

5: pm( w
G

6: for each feature vector fv computed in real-time from sensor data do
7: ~p( probability distribution of the activities predicted by pm on fv

8: output the most likely activity according to ~p

9: if a feedback is needed according to VAR-UNCERTAINTY [132] then
10: l ( activity label from the user
11: add (fv, l) to the Feature Vectors Storage
12: else
13: add (fv,�) to the Feature Vectors Storage . unlabeled data point
14: end if
15: end for

Label Propagation

The major drawback of active learning is that the queries may interrupt the

user while performing an activity. In order to reduce the interaction with the

user and, at the same time, to train the local models with a larger amount of

labeled data, FedAR also relies on label propagation.

The Label Propagation process is started when the server requires to update

the global model (see Algorithm 1). Given a set of labeled and unlabeled data

points, the goal of label propagation is to automatically spread labels to a por-

tion of unlabeled data [143]. The intuition behind label propagation is that data

points close in the feature space likely correspond to the same class label. The La-

bel Propagation model of FedAR is a fully connected graph g = (V,E) where the

nodes V are all the data samples in the Feature Vectors Storage and the weight

on each edge in E is the similarity between the connected data points. In the

literature, this similarity is usually computed using K-Nearest Neighbors (KNN)

or Radial Basis Function Kernel (RBF kernel). FedAR relies on the RBF kernel

due to its trade-o↵ between computational costs and accuracy [144]. Formally,

the RBF kernel function is defined as K(x, x0) = e
��||x�x0||2 where ||x � x

0||2 is

the squared Euclidean distance between the feature vectors of two nodes x and
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x
0 (where x

0 is a labeled node), and � 2 R+. Hence, the value of the RBF ker-

nel function increases as the distance between data points decreases. The kernel

is used to perform inductive inference to predict the labels on unlabeled data

points, based on a threshold on the similarity between the nodes. This process is

repeated until convergence (i.e., when there are no more unlabeled data points for

which label propagation is reliable based on the threshold). In FedAR, the Label

Propagation model (i.e., the graph) is initialized with the labeled data points of

the pre-training dataset. Moreover, this model is personal and never shared with

other users nor with the server.

4.3 Experimental Evaluation

In the following, we describe the methodology designed to evaluate the e↵ective-

ness of FedAR, both in terms of personalization and generalization. Finally, we

discuss the obtained results. Since FL makes sense when many users participate

in collaboratively training the global model, we considered publicly available

datasets of physical activities (performed both in outdoor and indoor environ-

ments) that were collected involving a significant number of subjects. However,

there are only a few public datasets with these characteristics. Two of them are

the MobiAct [121] and the WISDM [51] datasets, which we detailed in Section

2.3. In particular, MobiAct includes labeled data from 60 di↵erent subjects with

high variance in age and physical characteristics. The dataset contains data from

inertial sensors (i.e., accelerometer, gyroscope, and magnetometer) of a smart-

phone positioned in a trousers’ pocket freely chosen by the subject in any random

orientation. In our experiments, we take into account only the following phys-

ical activities: standing, walking, jogging, jumping, and sitting, omitting those

with a limited number of samples. Indeed, our evaluation methodology requires

partitioning the data of each user and those activities with a small number of

samples would be insu�ciently represented in each partition. We believe that

this problem is only related to this specific dataset and that, in realistic settings,

even short activities would be represented by a su�cient number of samples.

Given the WISDM dataset, it contains accelerometer data collected from a

smartphone located in the front pants leg pocket of each subject during activity
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execution. WISDM includes data from 36 subjects. The activities included in

this dataset are the following: walking, jogging, sitting, standing, and taking stairs

(and we consider all of them).

4.3.1 A Novel Evaluation Methodology

We split each of the considered datasets into three partitions that we call Pt,

Tr, and Ts. The partition Pt (i.e., pre-training data) contains data of users

that we only use to initialize the global model. Tr (i.e., training data) is the

dataset partition that includes data of users who participate in FL. Finally, Ts

(i.e., test data) is a dataset partition that includes data of left-out users that we

only consider to periodically evaluate the generalization capabilities of the global

model. In our experiments, we randomly partition the users as follows: 15%

whose data will populate Pt, 65% whose data will populate Tr, and 20% whose

data will populate Ts. We partition the data for each user in Tr into sh shards of

equal size. In realistic scenarios, each shard should contain data collected during

a relatively long time period (e.g., a day) where a user executes many di↵erent

activities. However, the considered datasets only have a limited amount of data

for each user (usually less than one hour of activities for each user). Hence, we

generate shards as follows. Given a user u 2 Tr, we randomly assign to each

shard a fraction 1
sh of the available data samples associated with u in the dataset.

Note that each data sample of a user is associated with exactly one shard. This

mechanism allows us to simulate the realistic scenario described before, where

users perform several types of activities in each shard.

Evaluation Algorithm

In the following, we describe our novel evaluation methodology step by step.

First, the labeled data in Pt are used to initialize the global model, which is

then distributed to the devices of all the users in Tr that will use it as the first

version of the Personalized Model. We evaluate the recognition capabilities of

the initial pre-trained global model on the partition Ts in terms of the F1 score.

This assessment allows us to measure how the initial global model generalizes on
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unseen users before any FL step.

As we previously mentioned, for each user, we partition its data samples in Tr

into exactly sh shards. For the sake of the evaluation, we assume a synchronous

system in which the shards of the di↵erent users in Tr are actually temporally

aligned and occur simultaneously (i.e, the first shards of every user occur at the

same time interval, the second shards of every user occur at the same time inter-

val, and so on). Note that, in the considered datasets, each user has a di↵erent

data distribution and a di↵erent number of samples. Hence, within a specific

shard, each client contributes with data collected considering its personal distri-

bution. The evaluation process is composed of sh iterations, one for each shard.

Considering the i-th shard we proceed as follows:

1. The devices of the users in Tr exploits the Personalized Model to classify

the continuous stream of inertial sensor data in its shard. We use the

classification output to evaluate the recognition rate in terms of F1 score

providing an assessment of personalization. Note that, during this phase,

we also apply our active learning strategy and we keep track of the number

of triggered questions.

2. When all data in the shard have been processed (by all devices), the server

starts a number r of communication rounds with a subset of the devices in

order to update the global weights. Each round is implemented as follows:

(a) The server randomly selects a certain percentage p% of users in Tr

and sends to their devices the last update of the global weights.

(b) Each user’s device, by receiving the global weights, applies Label Prop-

agation (See Section 4.2.8) and uses the newly labeled data to train its

Shareable Model. After training, the resulting weights are transmitted

to the server.

(c) The server merges the received weights obtaining a new version of the

global model weights.

(d) We evaluate in terms of F1 score the recognition rate of the resulting

global model on the left-out users in Ts (providing an assessment of
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generalization).

3. After the execution of all the communication rounds, each users’ device:

(a) replaces the weights of the Shareable Model and Personalized Model

with the ones of the latest global model

(b) fine-tunes the Personalized Model with labeled data from active learn-

ing and label propagation

(c) starts the personalization process described in Section 4.2.8.

Note that our evaluation methodology introduces several levels of randomness:

assigning users to Ts, Tr, and Pt; assigning data samples to shards; selecting

devices at each communication round. We iterate experiments 10 times and

average the results in order to make our estimates more robust.

4.3.2 Results

In the following, we report the results of the evaluation of FedAR.

Classification model and hyper-parameters

As explained and motivated in Section 4.2.5, our classification model is a fully-

connected deep neural network. The network consists of four fully connected

layers having respectively 128, 64, 32, and 16 neurons, and a softmax layer for

classification. We use Adam [145] as optimizer. The choice of this specific net-

work architecture is due to the good performance reported in the federated HAR

literature [103]. As hyper-parameters, we empirically chose w = 4s, p = 30%,

r = 10, l = 2, sh = 3, and 10 local training epochs with a batch size of 30

samples. These hyper-parameters have been empirically determined based on

data in Ts. The low number of epochs and communication rounds is due to the

small size of the public datasets. This also limits the data in each shard. In a

large-scale deployment, these parameters should be accurately calibrated.
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Impact Of Semi-Supervised Learning

Figure 4.6 and Figure 4.7 show how the F1 score and the percentage of active

learning questions change at each shard for the users in Tr.

(a) Average F1 score (b) Average percentage of active learning
questions.

Figure 4.6: MobiAct: The impact of label propagation and active learning on the
subjects that participated in the FL process.

(a) Average F1 score (b) Average percentage of active learning
questions.

Figure 4.7: WISDM: The impact of label propagation (LP) and active learning
(AL) on the subjects that participated in the FL process.

We observe that the F1 score significantly improves shard after shard, while

the number of active learning questions decreases. Averaging the results of both

datasets, the number of active learning questions at the first shard is around

25%, while at the last shard is only around 5%. This result indicates that our
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method continuously improves the recognition rate with a limited amount of la-

bels provided by the users. Moreover, the continuous decrease in the number

of questions militates for the usability of our method, which will prompt fewer

and fewer questions with time. These figures also show the impact of combining

active learning with label propagation. Without label propagation, active learn-

ing alone leads to a lower recognition rate and a higher number of questions.

This means that the labeled data points derived by label propagation positively

improve the activity model. On the other hand, we observe that label propa-

gation leads to unsatisfying results without active learning. Indeed, the labeled

samples obtained by active learning represent informative data that are crucial

for label propagation. Hence, the evaluation with both datasets confirms that

the combination of active learning and label propagation leads to the best results.

In Figure 4.8 and Figure 4.9 we show the generalization capability of the global

model on left-out users (i.e., users in partition Ts) after each communication

round performed during the FL process with the users in Tr. The red lines

Figure 4.8: MobiAct: the trend of F1 score on the left-out users after each
communication round. This Figure also shows the impact of active learning and
label propagation. Each red line marks the end of a shard.

mark the end of each shard. The results indicate that the federated model con-

stantly improves also for those users that did not contribute with training data,

even if the active learning questions continuously decrease. These plots also con-

firm that the combination of label propagation and active learning leads to the

best results on both datasets.
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Figure 4.9: WISDM: the trend of F1 score on the left-out users after each com-
munication round. This Figure also shows the impact of active learning and label
propagation. Each red line marks the end of a shard.

The Proposed Approach Vs Fully Supervised Solutions

We compared our approach with two existing FL methods based on fully labeled

data. The first one is the well-known FedAVG [19], which is the most common FL

method in the literature. FedAVG simply averages the model parameters derived

by the local training on the participating nodes (without any personalization).

The second method that we use for comparison is called FedHealth [23]. This

is one of the first FL approaches proposed for activity recognition on wearable

sensor data. Similarly to our approach, FedHealth applies personalization using

a transfer learning based strategy. Since FedAR considers a limited amount of

available labeled data, our goal is to achieve a recognition rate that is as close

as possible to the one obtained by solutions that assume full availability of an-

notations. For the sake of fairness, in our experiments we adapted FedAVG and

FedHealth to use the same neural network that we use in FedAR. Hence, we per-

formed our experiments using our evaluation methodology by simulating that, for

FedAVG and FedHealth, each node has the ground truth for each data sample

on each shard. Hence, the evaluation of those methods does not include active

learning and label propagation. Moreover, di↵erently from FedAR, FedAVG and

FedHealth only use a single local model.

The results of this comparison for the users in Tr (i.e., the ones that actively

participated in the FL process) are reported in Figure 4.10a and Figure 4.10b.
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(a) MobiAct (b) WISDM

Figure 4.10: Comparison of FedAR with methods based on fully labeled data.

From these plots, we observe that FedAR reaches recognition rates that are sim-

ilar to solutions based on fully labeled data at each shard. The advantage of

FedAR is that it can be used for realistic HAR deployments where the availabil-

ity of labeled data is scarce. Despite a reduced number of required annotations,

FedAR performs even better than FedAVG on the WISDM dataset, while on

MobiAct it performs slightly worse. Moreover, FedAR is only ⇡ 3% behind

FedHealth on both datasets.

Performance on each activity

Figure 4.11 shows how the recognition rate improves between shards for each

activity for the users in Tr on both datasets. We observed an improvement in

(a) MobiAct (b) WISDM

Figure 4.11: F1 score at each shard for each activity on the users that participated
in the FL process.

96



the recognition rate shard after shard for each considered activity. The only ex-

ception is the standing activity on the MobiAct dataset in the third shard, which

maintains the same F1 score.

Overall, the greatest improvement occurs between the first and the second shards.

This is due to the fact that, in the first shard, activities are recognized using the

initial global model only trained with the pre-training dataset. Starting from the

second shard, classification is performed with the Personalized Model updated

thanks to FL and personalized using our transfer learning based approach.

Impact of personalization

Figure 4.12 and Figure 4.13 show the impact of the FedAR personalization strat-

egy based on transfer learning. This evaluation is performed on the users in the

Tr partition.

(a) Average F1 score (b) Average percentage of active learning
questions

Figure 4.12: MobiAct: results on the users that participated in the FL process
for each shard, with and without personalization.

As expected, fine-tuning the personal models leads to an improvement both in

the recognition rate and in the number of questions in active learning. Note that,

during the first shard, classification is performed using the weights derived from

the pre-trained dataset and personalization is applied since the second shard.
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(a) Average F1 score (b) Average percentage of active learning
questions

Figure 4.13: WISDM: results on the users that participated in the FL process for
each shard, with and without personalization.

Fully Connected vs Convolutional models

The classification model in FedAR is a fully connected network (we will refer to

it as MLP3 for the sake of brevity) that receives as input handcrafted feature

vectors. Nonetheless, as we introduced in Section 2.1.1, in the literature, Convo-

lutional Neural Networks (CNNs) proved to be very e↵ective in fully supervised

HAR approaches, since they can automatically learn features from raw data [142].

We performed a preliminary experiment to compare MLP and CNN in a fully

supervised centralized approach using a leave-one-subject-out cross-validation.

As CNN architecture, we consider the one recently proposed in [146] since it

proved to be one of the most e↵ective for sensor-based HAR. Figure 4.14 shows

the outcome of this comparison. We observe that considering a fully-supervised

centralized setting, CNN is more e↵ective on both datasets. However, we ob-

served that CNN struggles in learning reliable features considering our federated

and semi-supervised setting, since the amount of labeled data to train the clas-

sifier is limited (cold start issue). Figures 4.15 and 4.16 show the comparison

of FedAR using our MLP model with handcrafted features and the CNN model.

On both datasets, MLP quickly reaches a higher F1 score with respect to CNN

with a significantly lower number of active learning queries. Since features are

3MultiLayer Perceptron
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(a) WISDM (b) MobiAct

Figure 4.14: Centralized setting: MLP vs CNN based on leave-one-subject-out
cross-validation.

computed a priori, the MLP model can immediately focus on training the clas-

sification layers rather than learning features. Hence, these results motivate our

choice of adopting a MLP model with handcrafted features in FedAR.

(a) Average F1 score (b) Average percentage of active learning
questions

Figure 4.15: WISDM: results on the users that participated in the FL process for
each shard using both CNN and MLP networks

4.3.3 Discussion

Generality Of The Proposed Approach

While we designed FedAR with wearable-based activity recognition as target

application, we believe that this combination of semi-supervised and FL can be

applied also to many other applications. Our method is suitable for human-

centered classification tasks that include the following characteristics:
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(a) Average F1 score (b) Average percentage of active learning
questions

Figure 4.16: MobiAct: results on the users that participated to the FL process
for each shard using both CNN and MLP networks

• There is a large number of clients that participate in the FL process.

• Classification needs to be performed on a continuous data stream, where

labels are not naturally available.

• Each node generates a significant amount of unlabeled data.

• It is possible to periodically obtain the ground truth by delivering active

learning questions to users that are available to provide a small number of

labels.

• It is possible to obtain a limited training set to initialize the global model.

Hence, a small group of volunteers should be available (in an initial phase)

for annotated data acquisition.

• The nodes should be capable of computing training operations. Clearly,

nodes can also rely on trusted edge gateways/servers (like proposed in [103]).

Convergence of the global model in Federated HAR

Evaluating the convergence of the global model is essential for determining the

quality of the global model and ensuring its e↵ectiveness in real-world applica-

tions. Here, we discuss the most common approaches and corresponding chal-

lenges associated with convergence evaluation in federated learning.
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There are three primary approaches commonly used to evaluate convergence

in federated learning:

1. Server-side evaluation: A portion of the data is held out on the server

side and used as an evaluation set for the global model. The global model

is trained using data from multiple clients, and its performance on the

evaluation set is monitored to evaluate convergence. The global model is

considered converged when its performance on the evaluation set reaches

a satisfactory level. Server-side evaluation is computationally e�cient but

may not reflect the performance of the model on all clients’ data.

2. Client-side evaluation: In this approach, each client holds out a portion of

its data and uses it as an evaluation set. The client trains a local model

using its data and sends the updated model parameters to the server. The

server evaluates the performance of the global model on the held-out data

from each client and monitors the convergence of the model across clients.

When the model is converged for most of the clients, it can be considered

converged. Client-side evaluation provides a more comprehensive evaluation

of the model’s performance, but it can be more computationally expensive.

3. Parameter similarity: The server considers the global model converged

when there is no substantial di↵erence between the parameters or gradi-

ents of the global model after a certain number of subsequent updates. The

server can use a threshold to determine the level of similarity required for

convergence. Parameter similarity is a simple and e�cient approach, but it

may not guarantee optimal performance on all clients’ data.

Each approach has its own advantages and limitations, and the choice of ap-

proach depends on the specific application requirements and available resources.

Moreover, evaluating convergence can be challenging in federated learning due to

the heterogeneity of the data across clients ( i.e., non-iid data), and the presence

of communication delays and failures.

In this thesis we adopted the Parameter similarity criteria to determine the

convergence of the global model due to its simplicity and e�ciency. However,

given the importance of convergence evaluation and the many challenges that
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emerges in this area, we can consider it as an opened research problem that we

aim to study in deep in the near future.

4.4 Summary

In this Chapter, we presented FedAR, a novel semi-supervised federated learning

framework for activity recognition on mobile devices. This approach addresses the

research question Q2) presented in Section 2.4 by providing a semi-supervised

and collaborative learning solution that enables a privacy-aware and scalable

activity recognition, considering also the data scarcity problem. To the best of

our knowledge, FedAR is the first application of federated learning to personalized

activity recognition that is not based on the assumption that labeled data exists

for all participating clients. Our results showed that the combination of active

learning and label propagation leads to recognition rates that are comparable

to the ones reached by solutions that rely on fully supervised learning to train

the local models. Moreover, the personalization strategy implemented by FedAR

enables fairly mitigating non-IID problem typical of FL-based approaches for

HAR. By following this promising research direction, in the next Chapter, we

will introduce a federated clustering method that allows further reducing the

non-IID problem for FL-based HAR. Indeed, it has been shown that HAR is

more e↵ective when the collaborative model only involves users that are similar

between them. [134].
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Chapter 5

Cluster-based And

Semi-Supervised FL for HAR

5.1 Introduction

As we introduced in the previous Chapters, in the last few years the Federated

Learning paradigm attracted attention from the HAR community, as an enabling

technology to mitigate scalability and privacy problems related to collaborative

learning solutions for human activity recognition [20, 22, 23]. Even though FL is

a promising direction toward real-world HAR, there are still some limitations. A

major issue is that the FL global model should generalize over a large number of

users. However, di↵erent users may perform activities with distinctive patterns

depending on their physical characteristics, age, and habits. Indeed, data coming

from di↵erent users likely results non-independently and identically distributed

(non-IID) [106].

In Chapter 4, we presented FedAR, a semi-supervised approach for Federated

Learning HAR that uses a fine fine-tuning strategy based on transfer learning

in order to mitigate this issue. However, this approach struggles to balance per-

sonalization and generalization in large-scale scenarios. In the general literature

on FL, Federated Clustering has been recently proposed to address the non-IID

problem [109, 111]. Nonetheless these solutions do not consider the data scarcity

103



issues typical in the HAR domain.

In this Chapter, we propose SS-FedCLAR: a novel Semi-Supervised Federated

Clustering method for Personalized Sensor-Based Human Activity Recognition.

With respect to existing federated clustering approaches, SS-FedCLAR selects

only a portion of the model weights shared by each client, with the objective of

computing a similarity score and building groups of users using a hierarchical

clustering algorithm. The selected weights intuitively characterize the subject-

specific activity patterns. For instance, considering deep learning models, these

would be the weights corresponding to layers that are closer to the output [107].

In SS-FedCLAR, those users that can not be included in any cluster will use a

generic global model that is trained by all the participating users, like in a stan-

dard federated learning setting. Moreover, a transfer learning based method is

used to fine-tune activity recognition on each user to further improve personal-

ization. Finally, in order to deal with the data scarcity issue, SS-FedCLAR also

implements the hybrid active learning and label propagation strategy that we

proposed in Section 4.2.8.

We evaluated SS-FedCLAR on two well-known public datasets of sensor-based

HAR and our results show that FedCLAR outperforms FL-based state-of-the-art

semi-supervised approaches for HAR that use transfer learning to tackle the non-

IID problem. Furthermore, our experimental evaluation also shows the advantage

of combining federated clustering with a fine-tuning strategy inspired by transfer

learning to improve personalization.

The rest of the Chapter is structured as follows. In Section 5.2 we formal-

ize the problem of non-IID data in the field of FL-based HAR. The proposed

methodology and algorithms are hence described in Section 5.3. Then, Section

5.4 introduces the experimental evaluation and the obtained results. Finally,

Section 5.5 summarizes our contributions and concludes the Chapter.
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5.2 Non-IID Issue in HAR

Let U = {U1, . . . , Un} be the set of users. Each user Ui is associated with a labeled

dataset Di = {(x, y)}, where x is a data point and y the corresponding activity

label. Let D = {D1, . . . , Dn} be the set of datasets, each one corresponding to

a user in U . D is non-independently and identically distributed (non-IID) if at

least a pair of datasets Di, Dj 2 D satisfies one of the following conditions [109]:

• Feature distribution skew: PDi(x) 6= PDj(x). This inequality between

probability distributions is true when the data samples in Di have a signif-

icantly di↵erent marginal distribution than the ones in Dj. In HAR, this

often happens since each subject may perform activities in a peculiar way.

Among many factors, users’ physical characteristics have a strong impact

on activity patterns. For instance, a young subject would probably have a

faster walking pattern than an elder subject.

• Label distribution skew: PDi(y) 6= PDi(y). This inequality between

probability distributions is true when the labels in Di have a significantly

di↵erent marginal distribution than the ones in Dj. In HAR, this usually

happens since di↵erent users may have di↵erent daily routines. For exam-

ple, a sporty subject would likely spend more time running or cycling than

a sedentary subject.

• Quantity distribution skew: This condition is true when |Di| and |Dj|
are significantly di↵erent. In HAR, is not unusual to have significantly

di↵erent sizes of labeled samples for di↵erent subjects.

5.2.1 Formalisation Of The problem in FL settings for

HAR

Given a non-IID set of datasets D, a standard centralized ML approach builds a

recognition modelMC by using all the annotated data points inD
⇤ = D1

S
D2...

S
Dn.

In this case, the training phase consists in finding the parameters w 2 Rd that

minimize a global objective function f(w):
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min
w2Rd

f(w), f(w) :=
1

|D⇤|

|D⇤|X

k=1

`k(w) (5.1)

where `k(w) is a loss function. Intuitively, the objective is to find the param-

eters w that minimize the average loss over all the annotated samples in D
⇤. By

considering all the annotated samples at the same time, this centralized approach

mitigates the non-IID problem.

However, there are significant di↵erences in an FL setting. Indeed, each user

Ui locally trains a modelMi, and it transmits to the server only theMi parameters

wi. The server is in charge of building a global modelM from the local parameters

W = hw1, . . . ,wni, and it is not possible to directly access D
⇤. The objective

function f(w) of the federated model to derive the global parameters w is the

following:

min
w2Rd

f(w), f(w) =
nX

i=1

|Di|
|D⇤|fi(wi) (5.2)

where fi(wi) is the local objective function that each user Ui minimizes by

using Di to obtain wi:

min
wi2Rd

fi(wi), fi(wi) :=
1

|Di|

|Di|X

k=1

`k(wi) (5.3)

Ideally, the parameters of the federated model should approximate the ones

of the centralized model. However, in a non-IID setting, the overall data distri-

bution of D⇤ (that is captured by the centralized approach) may be considerably

di↵erent from the distribution of each Di 2 D that is captured by the federated

approach. For this reason, minimizing f(w) may lead to a global model that

would significantly underperform the one derived by minimizing f(w).

5.2.2 The Federated Clustering issue considering non-IID

data

A possible solution to tackle the non-IID problem in the FL setting issue is to

partition U into s clusters C = C1, ..., Cs so that each cluster minimizes the
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non-IID properties among the datasets of the users assigned to the same cluster.

Hence, it is possible to derive a federated model M
Cj for each cluster. The

objective function f
Cj(wCj) of each model MCj can be optimized by using data

from the cluster:

min
wCj2Rd

f
Cj(wCj), f

Cj(wCj) =
|Cj |X

i=1

|Di|
|DCj |fi(wi) (5.4)

where DCj is the set of datasets of the users belonging to the cluster Cj. If the

clusters actually capture the similarity between the distributions of the datasets,

the resulting model would better approximate the one generated by a centralized

approach on the users of the same cluster.

However, in the FL setting it is not possible to access each Di to compute

the clusters, since only the model parameters wi are available. Hence, a major

problem that we tackle in this work is how to compute user clustering in the FL

setting.

5.2.3 Data scarcity assumptions

In this chapter, we assume that the users do not actually have labeled datasets,

but that they can only observe a stream of unlabeled sensor data. Let Si =

{x1, x2, . . . } be the stream of unlabeled data points observed by Ui. We also

assume that, given a data point x, a user U can sometimes provide feedback

about the corresponding activity. Finally, we assume the existence of a small pre-

training labeled dataset D
pt that can be used to initialize the federated model.

Note that the data points in D
pt are not collected from the users in U .

The problem tackled in this chapter is to compute user clustering under the

above-mentioned assumptions.
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5.3 SS-FedCLAR: Combining Federated Clus-

tering and Semi-Supervised Learning

5.3.1 Overview

We assume that each user that participates in SS-FedCLAR has a personal trusted

device (e.g., a smartphone, a smartwatch, a smart-home gateway) that we will

refer as client. The client is in charge of collecting sensor data and running the

client-side SS-FedCLAR’s algorithms.

At the very beginning, SS-FedCLAR uses a classic FL solution that is based

on a single global model. Since we assume limited availability of labeled data,

this model is initialized using a small labeled dataset called pre-training dataset.

Considering real-world deployments, the pre-training dataset may be one or more

public datasets, or a small training set specifically collected by appropriately re-

warded volunteers. Since we assume that the clients do not have personal labeled

datasets to train their local models, SS-FedCLAR relies on a semi-supervised

learning strategy that analyes the periodic classifier’s outputs to provide pseudo-

labels to the stream of unlabeled data. The newly labeled data are then used

to train the local model during FL global model updates. At the end of each

FL training process, each client also uses a fine-tuning strategy based on trans-

fer learning to further personalize the global model. Periodically, during global

model updates, SS-FedCLAR uses a server-side Federated Clustering algorithm

(explained in detail in Section 5.3.2) to group the clients in clusters based on the

similarity of their local model updates, and to incrementally compute a special-

ized model for each cluster.

Since some clients may not belong to clusters due to peculiarity in their ac-

tivity execution, SS-FedCLAR also considers non-clustered clients. Federated

Clustering is transparent to clients, that are not aware if they belong to a clus-

ter.

After clusters are finalized, the server uses a standard aggregation method

to update each specialized cluster model using the local model updates received

by the clients of that cluster. The server also maintains a classic global model
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Figure 5.1: Overall architecture of SS-FedCLAR

using the updates of all clients, including non-clustered clients that will be the

ones receiving this model during the updates. The overall architecture of SS-

FedCLAR is summarized in Figure 5.1.

5.3.2 Server Side: Federated Clustering

We first describe the tasks performed by the server-side component of SS-FedCLAR.

Computing similarity between users

SS-FedCLAR adopts a server-side clustering approach to create specialized global

models for groups of similar users. In general, clustering methods rely on a

similarity metric that is computed on each pair of items that may be clustered. In

sensor-based HAR, similar users are those that share similar sensor data patterns

(i.e., similar activity patterns). However, in an FL learning process, only the

weights of the local models are available, and not sensor data. Nonetheless,

if two local models share similar weights, they were likely trained with similar

patterns of data. Hence, given the parameter vectors wi and wj of the models

corresponding to the users Ui and Uj, it is possible to compute their similarity.
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SS-FedCLAR relies on the cosine similarity since it proved to be e↵ective for

federated clustering [111]. The cosine similarity between the model weights of

two users Ui and Uj can be computed as follows:

sim(wi,wj) =
wi ·wj

kwikkwjk
(5.5)

However, considering HAR models and the recent results on transfer learn-

ing [23], we realized that computing the similarity by taking into account the

whole parameter vector would not be the optimal choice. Considering local mod-

els based on deep learning, the closest layers to the input reflect high-level features

that are common among all the subjects [107]. On the contrary, the layers that

are close to the output are the ones that encode user-specific activity patterns.

Let pers(w) be a function that extracts from parameter vector w the user-

specific parameters. Hence, SS-FedCLAR computes the pairwise similarity be-

tween model weights as follows:

sim(wi,wj) =
pers(wi) · pers(wj)

kpers(wi)kkpers(wj)k
(5.6)

Since SS-FedCLAR is based on deep learning, the function pers(w) returns

the weights corresponding to the last l layers of w.

Hierarchical Clustering

Using the similarity function described above, the cloud server in SS-FedCLAR

can apply a clustering algorithm to derive groups of users that perform activities

in a similar way. In this work, we use a hierarchical approach, since in the

literature it proved to be e↵ective for federated clustering [109].

The pseudo-code for the hierarchical clustering method of SS-FedCLAR is

described in Algorithm 4. The intuition behind this process is the following.

Initially, there is a cluster for each user. Then, clusters are grouped based on

the pairwise similarity of the participating users and a clustering threshold ct.

When two clusters are merged into a single one, a new specialized model for that

cluster is generated by merging the models of the merged clusters. The process

is repeated until no more clusters can be merged (i.e., there is no pair of clusters
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such that the similarity of their specialized models is higher than ct). The users

in the singleton clusters are considered as non-clustered clients.

Algorithm 4 HierarchicalClustering
Input: W = {w1, . . . ,wn}
Output: A set of clusters C, a set of specialized models WC

1: W
C  W

2: C  {{U1}, . . . , {Un}}
3: cmap empty map from model weights to clusters
4: cmap[w1] {U1}
5: . . .
6: cmap[wn] {Un}
7: do

8: P  pairwise similarity matrix on W
C based on sim()

9: wa,wb  argmin
wa,wb|a 6=b

Pab

10: if sim(wa,wb) � ct then
11: wab  merge wa and wb using FedAvg
12: Ca  cmap[wa]
13: Cb  cmap[wb]
14: Cab  Ca [ Cb

15: cmap[wab] Cab

16: C  C \ Ca

17: C  C \ Cb

18: C  C [ Cab

19: W
C  W

C \wa

20: W
C  W

C \wb

21: W
C  W

C [wab

22: else

23: W
C  {w 2W

C such that |cmap(w)| > 1}
24: C  {Cj 2 C such that |Cj | > 1}
25: return C and W

C

26: end if

27: while True

Model Update in SS-FedCLAR

The model update mechanism of SS-FedCLAR is described by Algorithm 5. Peri-

odically (e.g., every night), the server requires an update of the models. Hence, a

sequence of communication rounds is started. Each client locally trains its model

and transmits the resulting weights to the server. Upon receiving the weights

from the clients, the first task of the server is generating an overall global model

using FedAvg.
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If required, during the update the server computes clusters and specialized

models as described before. Note that computing the similarity between users is

e↵ective only if performed after a certain number of communication rounds. Oth-

erwise, we experimentally observed the risk of considering model parameters that

are not su�ciently trained, thus generating unreliable clusters. For this reason,

in SS-FedCLAR, our hierarchical clustering method explained in Section 5.3.2 is

performed after a predefined number r of communication rounds. From the com-

munication round r, the server will use the local model updates received from the

clients to update the specialized models, while the ones received from the non-

clustered clients are used to update the overall global model. Note that, in order

to provide to non-clustered clients a global model with su�cient generalization

capabilities, also the local models from clustered clients are used to update the

overall global model.

Based on preliminary experiments, we observed that it is not necessary to

perform clustering at each model update if the set of participating users and

their local data distribution do not change. We hypothesize that it may be

necessary to introduce the clustering step in the model update only when there

is a significant change. A deeper investigation of this aspect is out of the scope

of this paper, and we discuss possible solutions in Section 7.2.

5.3.3 Client Side: Semi-Supervised Learning

In SS-FedCLAR, the clients do not have a labeled dataset to train the local model.

In order to overcome this problem, we proposed a semi-supervised strategy in-

spired by the one presented in Section 4.2.8 of Chapter 4. In particular, each

client semi-automatically provides pseudo-labels to the unlabeled data stream by

combining Active Learning and Label Propagation.

Classification and active learning

As we previously mentioned, active learning involves asking the user the activity

label only for those data samples where the classifier shows uncertainty in ac-

tivity classification. Indeed, the data samples associated with low classification

confidence would have the most impact on improving the activity model if their
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Algorithm 5 SS-FedCLAR - Server Side Model Update
C  nil
W

C  nil
for each periodic update (e.g., every night) do

for each communication round i do
receive W={w1, ..,wn} from clients
w

G  FedAVG using W (global model)
if i < r and W

C == nil then
send w

G to each client
else

if i == r and cluster update is required then

C,WC  HierarchicalClustering(W)
else

for Cj 2 C do /*for each cluster*/
wCj  FedAVG using wi 2W from clients in Cj

end for

end if

for Cj 2 C do

send wCj to each client in Cj

end for

send w
G to non-clustered clients

end if

end for

end for

label were available. The overall pseudo-code of classification and active learning

strategy of SS-FedCLAR is detailed in Algorithm 6.

Label Propagation and Model Update

During a model update, the clients’ first step is to start a Label Propagation pro-

cess in charge of expanding the amount of labeled data. Besides training the local

model with more labeled examples, Label Propagation has the major advantage

of further reducing active learning queries, and hence interactions with the user.

Given a set of labeled and unlabeled data points, the Label Propagation algo-

rithm automatically spreads pseudo-labels to a portion of unlabeled data [143].

Intuitively, data points that are close in the feature space likely correspond to the

same class label. SS-FedCLAR adopts the Label Propagation strategy presented

in Section 4.2.8.

After Label Propagation, the actual model update is started: for each com-
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Algorithm 6 Client side - Classification and active learning
1: lm( local model
2: for each feature vector fv computed in real-time from sensor data do

3: ~p( probability distribution over the activities predicted by lm on fv
4: output the most likely activity according to ~p
5: if feedback is needed according to VAR-UNCERTAINTY [132] then
6: l( activity label from the user
7: add (fv, l) to the Feature Vectors Storage
8: update threshold of VAR-UNCERTAINTY [132]
9: else

10: add (fv,�) to the Feature Vectors Storage . unlabeled data point
11: end if

12: end for

munication round, the clients train their local model with the available labeled

data samples in the Feature Vectors Storage. Then, the resulting weights are

transmitted to the server1. Finally, the clients receive the updated global model

from the server. Each client is not aware if it is receiving updated weights from

specialized cluster models or from a generic global model.

Even though Federated Clustering mitigates the non-IID problem, it is still pos-

sible that distinct users in the same cluster exhibit peculiar execution of some

activities. Indeed, while some users may be grouped in the same cluster because

they similarly perform the majority of the activities, they still may exhibit slight

di↵erences over a restricted number of activities.

In order to further personalize the recognition model, SS-FedCLAR also relies

on a fine-tuning approach for each client, inspired by transfer learning solutions

that proved to be e↵ective in FL-based HAR [23]. In particular, the last p layers

(i.e., the closest to the output) of the local model are fine-tuned using the Feature

Vectors Storage, while the remaining ones are left as received by the server.

The client-side model update process of SS-FedCLAR is summarized is by

Algorithm 7.

1Each client also transmits the number of labeled data points used to train the local model.
This information is needed for the FedAVG algorithm.
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Algorithm 7 Client side - Model Update
1: lm local model
2: Update the Feature Vectors Storage using the Label Propagation algorithm [147]
3: for each communication round do

4: train lm using available labeled data in the Feature Vectors Storage
5: send the weights w of lm to the server
6: receive updated model wS from the server
7: replace the weights of lm with w

S

8: end for

9: freeze the layers of lm except for the last p layers
10: train lm using available labeled data
11: unfreeze lm layers

5.4 Experimental Evaluation

In order to evaluate the e↵ectiveness of FedCLAR, we considered two well-

known HAR datasets: WISDM [51] and MobiAct [121]. More details about

these datasets are given in Section 2.3. It is important to note that we used

WISDM and MobiAct since they include a relatively large number of subjects

with respect to other sensor-based HAR datasets. Even though a real deployment

would involve a significantly larger number of participants, this aspect is crucial

to evaluate our FL-based approach, considering that data (and participant) aug-

mentation techniques may not lead to realistic results. Moreover, the subjects

that participated in data collection in these datasets exhibit both data and label

distribution skew, which is necessary to evaluate the clustering capabilities of

SS-FedCLAR.

WISDM includes labeled activity data from 36 di↵erent subjects obtained

from the accelerometer of a smartphone placed in the pants pocket during the

activity execution. The activities considered in this dataset are: walking, jogging,

sitting, standing, and taking stairs. The MobiAct dataset includes labeled activity

data from 60 di↵erent subjects. Those data were collected from the inertial sen-

sors (i.e., accelerometer, gyroscope, and magnetometer) of a smartphone placed

in the pants pocket. In our experiments, we considered the following physical

activities standing, walking, jogging, jumping, going upstairs, going downstairs,

and sitting.
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5.4.1 Experimental setup

As activity model, in our experiments, we used a simple feed-forward deep neural

network composed of three fully connected layers having respectively 32, 16, and

16 neurons, and a softmax layer for classification. The inputs of the network are

hand-crafted feature vectors extracted in real-time from the stream of sensor data.

We consider features that proved to be e↵ective for HAR in the literature [37].

We used Adam as optimizer. Even though existing FL approaches proposed

more sophisticated deep learning classifiers (even to collaboratively learn feature

representation), a simpler model with hand-crafted features allowed us to focus

only on the specific semi-supervised clustering problem. Moreover, we believe

that an advantage of our simple model is a reduced computational e↵ort, which

is more suitable for mobile devices. Some of the hyper-parameters were selected

considering the results of our previous work [148]: l = 1, p = 2, r = 5, and

10 local training epochs with a batch size of 30 samples. The remaining hyper-

parameters were selected using a grid search, with the objective of optimizing the

overall F1 score. For instance, considering the clustering threshold ct, we chose

ct = 0.0035 for the WISDM dataset, and ct = 0.0030 for the MobiAct dataset.

The impact of the clustering threshold on the recognition rate and quality of

clusters is reported in Section 5.4.3.

5.4.2 Evaluation methodology

Since we consider a semi-supervised approach, we decided to use an evaluation

methodology that shows the evolution of the recognition rate and the number

of active learning queries. In particular, we adapted the evaluation methodology

proposed in Section 4.3.1 to include Federated Clustering.

First, we split the dataset into two partitions called Pt and Tr. The parti-

tion Pt (i.e., pre-training data) includes data from users that are only used to

initialize the global model. The partition Tr (i.e., training data) includes data

of the users who actually participate in the FL process. In our experiments, we

randomly partition the users into 15% whose data will populate Pt, and 75%

whose data will populate Tr. Moreover, we partition the data for each user in
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Tr into sh shards having the same size. Intuitively, a shard represents the time

period that separates two model updates. Unfortunately, the considered datasets

have a limited amount of data not temporally distributed in shards (e.g., day).

Moreover, shards will more likely have similar data distributions among the dif-

ferent activities. Hence, we randomly assign to each shard of a user u a fraction
1
sh of the available u’s data samples, making sure of reflecting in each shard the

distribution of the data samples. This approach allows us to mimic a realistic

scenario where users perform several types of activities in each shard.

In the following, we describe our evaluation strategy in detail. The global model

(pre-trained with Pt) is first distributed to the clients of the users in Tr, which

will use it as the first version of the local model. Then, the process is composed

of sh iterations, one for each shard. During a shard, each device exploits the

current local model to classify the continuous stream of sensor data. The classifi-

cation output is used to evaluate the recognition rate in terms of the F1 score. In

parallel, we also apply our active learning strategy keeping track of the number

of triggered questions. At the end of the shard, our Federated Learning process

starts and the local models are updated. Since for each user the data distribution

in its shards was similar, the hierarchical clustering algorithm is performed only

at the first shard. In Section 5.4.3 we show the impact of clustering at di↵erent

shards.

In our experiments, we empirically determined sh = 4 for the WISDM dataset

and sh = 3 for the MobiAct Dataset. Higher values of sh would lead to an

insu�cient amount of data samples in each shard, thus negatively impacting the

evaluation of SS-FedCLAR.

5.4.3 Results

In the following, we report the results of our evaluation. In particular, we com-

pared SS-FedCLAR considering four baselines:

• FedAvg [19]. A classic fully supervised FL approach not considering the

non-IID problem.
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• FedHealth [23]. A fully-supervised FL-based approach for HAR that tack-

les the non-IID problem using transfer learning.

• FedCLAR [148]. A fully-supervised Federated Clustering method for

HAR.

• FedAR [147]. The semi-supervised FL approach for HAR that we intro-

duced in Chapter 4. It combines semi-supervised learning with a fine-tuning

strategy inspired by transfer learning to mitigate both the labeled data

scarcity issue and the non-IID problem.

Overall recognition rate

Figure 5.2 shows, on both datasets, the recognition rate of SS-FedCLAR at each

shard. This figure also compares SS-FedCLAR with the fully-supervised baselines

(assuming that clients have complete availability of labeled data at each shard).

Even though SS-FedCLAR uses a limited amount of labeled data, with respect

to FedCLAR it is only ⇡ 1.5% behind on the MobiAct dataset and ⇡ 2.6% on

WISDM. Considering the remaining baselines, SS-FedCLAR outperforms them

on the WISDM dataset, while it reaches similar results on the MobiAct dataset.

(a) WISDM (b) MobiAct

Figure 5.2: SS-FedCLAR vs. fully supervised baselines shard by shard (F1 score)

These results show that our method is capable of reaching results that are close

to the state-of-the-art approaches without assuming labeled data availability.

Figure 5.3 and Figure 5.4 compare SS-FedCLAR with FedAR, another FL-

based semi-supervised HAR approach based on semi-supervised and transfer
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learning. The results indicate that SS-FedCLAR reaches higher recognition rates

(a) Average F1 score (b) Average percentage of questions

Figure 5.3: WISDM: Comparison shard by shard of SS-FedCLAR with FedAR
in terms of the F1 score and the percentage of triggered questions

on each shard with respect to FedAR and, at the same time, it triggers a signifi-

cantly lower number of active learning questions. This is due to the fact that our

Federated Clustering algorithm better mitigates the non-IID problem, reducing

uncertainty during classification.

(a) Average F1 score (b) Average percentage of questions

Figure 5.4: Mobiact: Comparison shard by shard of SS-FedCLAR with FedAR
in terms of the F1 score and the percentage of triggered questions
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Cluster-based results

Figure 5.5 and Figure 5.6 show the results of SS-FedCLAR at the cluster level.

For each cluster generated by SS-FedCLAR, we compare the F1 score and the

percentage of active learning questions of SS-FedCLAR with the ones of FedAR.

Note that these results are just a detailed version of the ones proposed in Fig-

ure 5.3 and Figure 5.4. Indeed, FedAR is actually evaluated considering all the

users, while we show the F1 score considering the subsets of the users based on

the output of SS-FedCLAR.

Our results show that the federated clustering method has a positive impact

on each cluster, especially considering the WISDM dataset. We also observed

that only a small percentage of clients was not clustered. Since those clients use

a general FL global model, the recognition rate and the number of active learning

questions of SS-FedCLAR are similar to the ones of FedAR.

(a) Average F1 score (b) Average percentage of questions

Figure 5.5: WISDM: Comparison of SS-FedCLAR with FedAR cluster by cluster
in terms of F1 score and percentage of triggered questions

Impact of the clustering threshold

In the following, we show the impact of the clustering threshold ct on the recog-

nition rate. Table 5.1 and Table 5.2 show that the choice of ct has a significant

impact on the recognition rate, the number of clusters, and the percentage of

not-clustered clients. When ct is too low, SS-FedCLAR generates small clusters
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(a) Average F1 score (b) Average percentage of questions

Figure 5.6: Mobiact: Comparison of SS-FedCLAR with FedAR cluster by clus-
ter in terms of F1 score and percentage of triggered questions

ct F1 # clusters
clients not

clustered

0.0010 0.83 6 56.67%
0.0020 0.85 8 20.00%
0.0030 0.85 6 16.67%
0.0035 0.88 5 13.33%

0.0040 0.86 4 10.00%
0.0045 0.85 4 6.67%
0.0050 0.85 4 6.67%

Table 5.1: WISDM: Impact of the
clustering thresholds

ct F1 # clusters
clients not

clustered

0.0010 0.94 11 23.53%
0.0020 0.95 8 11.76%
0.0030 0.96 7 3.92%

0.0035 0.96 7 3.92%

0.0040 0.96 7 3.92%

0.0045 0.95 6 3.92%
0.0050 0.94 5 3.92%

Table 5.2: MobiAct: Impact of the
clustering thresholds

and a high rate of not-clustered clients, thus negatively impacting the recognition

rate.

By closely inspecting the results on the MobiAct dataset in Table 5.2, we

noticed that ct values higher than 0.003 do not change the percentage of not-

clustered clients. This is likely due to the fact that, in this dataset, the users

corresponding to not-clustered clients perform activities in a very di↵erent way

with respect to all the other users.
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The impact of clustering at di↵erent shards

As we previously mentioned, due to the nature of the considered datasets, in our

experiments we performed clustering only during the model update at the first

shard. Figure 5.7 and Figure 5.8 show the impact of performing clustering at

di↵erent shards on both datasets. We observed that the advantage of performing

clustering at the first shard is that it immediately improves the recognition rate

in the following shards and, at the same time, it quickly reduces the number of

active learning questions. Hence, these results indicate that even if the clusters

are created at the very first shard, they are reliable. This is likely due to the fact

that data distribution in the di↵erent shards does not change significantly.

(a) Average F1 score (b) Average percentage of questions

Figure 5.7: WISDM: The impact of clustering at di↵erent shards.

The impact on non-IID data

In the following, we show how the non-IID problem is actually mitigated by

SS-FedCLAR on the considered datasets. First, we investigate the feature dis-

tribution skew. This condition occurs when di↵erent users perform the same

activity with di↵erent patterns. We expect that users grouped in the same clus-

ter perform activities in a similar way, while users in di↵erent clusters execute

activities in di↵erent ways. In order to evaluate if the clusters generated by SS-

FedCLAR have this property, from the raw sensor data of all users in each dataset

we extract, for each activity, a set of patterns. Each pattern characterizes a way
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(a) Average F1 score (b) Average percentage of questions

Figure 5.8: Mobiact: The impact of clustering at di↵erent shards.

of performing that activity 2. Then, we correlate the patterns with the clusters

of users generated by SS-FedCLAR. For the sake of brevity, we report a couple

of examples related to the WISDM dataset in Figure 5.9.

(a) Going Downstairs (b) Jogging

Figure 5.9: WISDM: examples of feature distribution skew. The plot shows the
correlation between clusters generated by SS-FedCLAR and activity patterns.

From this analysis, it emerges that many clusters generated by SS-FedCLAR

in WISDM exhibit a peculiar correlation with activity patterns. Hence, the

non-IID problem is reduced with a positive impact on the recognition rate. For

instance, considering the activities in Figure 5.9, the improvement in overall

2We normalize raw sensor data, we apply PCA for dimensionality reduction and we apply
the K-Means algorithm. In order to find the optimal number of clusters for each activity, we
maximize the Silhouette score.
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F1-score of SS-FedCLAR with respect to FedAR is +12% for going downstairs

(from 0.64 to 0.76), while +4% for jogging (from 0.90 to 0.94). We observed an

improvement in the F1 score for each activity in WISDM whenever there is a

clear correlation between clusters and patterns.

We also noticed that the feature distribution skew does not clearly emerge

in MobiAct, since most of the users in this dataset tend to perform activities

with similar patterns. This is consistent with the results presented above: SS-

FedCLAR has in general a minor improvement on this dataset with respect to

WISDM. The improvement of SS-FedCLAR on MobiAct is still appreciable since,

di↵erently from WISDM, this dataset su↵ers from a label distribution skew.

Hence, SS-FedCLAR is still able to improve the recognition rate by grouping

users that have similar label distributions. Figure 5.10 shows this property for a

couple of activities. Considering the examples in this figure, the improvement in

F1-score of SS-FedCLAR with respect to FedAR is +5% (from 0.92 to 0.97) for

walking, while +7% for sitting (from 0.86 to 0.93). We observed an improvement

in the F1 score for each activity in MobiAct whenever there is a clear correlation

between clusters and skewed label distributions.

(a) Walking (b) Sitting

Figure 5.10: MobiAct: examples of labels distribution skew. The plot shows the
average number of activity samples for each user in the clusters generated by
SS-FedCLAR.
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5.5 Summary

In this Chapter, we presented SS-FedCLAR, a novel solution that combines fed-

erated clustering and semi-supervised learning for HAR. Our results show that

SS-FedCLAR addresses the research question Q3) presented in Section 2.4, by

strongly reducing the non-IID problem typical of Federated HAR, while tackling

the labeled data scarcity issue as well. Indeed, SS-FedCLAR reaches recognition

rates that are very close to fully-supervised methods and it outperforms state-of-

the-art semi-supervised FL-based HAR approaches.

Among the limitations of the current version of SS-FedCLAR, there is the poten-

tial leak of private information to an honest-but-curious service provider running

the server infrastructure. It is well known that, despite only model parameters

being shared with the server, some personally identifiable data could be still in-

ferred from them. In order to mitigate this issue, FL approaches usually rely

on Secure MultiParty Computation (SMC) to aggregate the local weights in a

privacy-preserving fashion [149]. SMC makes it possible to hide from the service

provider the mapping between each local model and the corresponding subject.

Even when this type of protection is applied, FL models are exposed to several

types of attacks that extract private information from the global model param-

eters [150]. Examples of such attacks are the reconstruction attack [151], the

membership inference attack [152], and the property inference attack [153].

In order to explore these privacy vulnerabilities related to FL for HAR, in the

following Chapter we will introduce a novel methodology that uses the member-

ship inference attack to assess the potential privacy leakages of a global activity

recognition model.
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Chapter 6

Sensitive Data Leakage in

Federated Human Activity

Recognition

6.1 Introduction

In the previous Chapters, we introduced FedAR and SS-FedCLAR, two novel

collaborative approaches for sensor-based human activity recognition that take

advantage of the Federated Learning (FL) framework to mitigate privacy issues

related to collaborative HAR [19, 154]. However, despite FL avoiding the release

of labeled sensor data, recent studies show that the model’s parameters received

and manipulated by the cloud server may still reveal sensitive information about

the data used by FL users to train the recognition model [26]. While several

research works recently investigated how to infer sensitive information from FL

models in various domains, to the best of our knowledge the potential privacy

leakages of federated HAR models have not been studied yet.

In this Chapter, we make the first step along this line of research by proposing

a novel framework to quantitatively measure the potential information leakage

of the global models’ weights in federated HAR. Our framework relies on the

Membership Inference Attack (MIA) [27] to try inferring the following sensitive
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information about participating users: a) whether a specific subject is one of the

FL participating users, b) whether a specific participant contributed to the global

model with a particular activity. It is also important to note that here we decided

to consider a traditional FL-based setting for HAR instead of the semi-supervised

or clustering-based approaches that we presented in the previous sections. We

made this choice to provide a general overview of the potential privacy leakage in

Federated HAR without introducing bias related to our specific solutions, such

as the use of a limited number of training samples to learn the model or the

presence of personalized cluster models server-side.

The obtained preliminary experimental evaluation suggests that it is possible

to derive sensitive information from HAR global models. Hence, we hope that

these results may pave the way to further research investigations in this area.

6.2 Membership Inference Attack in FL-based

HAR

6.2.1 Membership Inference Attack

The objective of the Membership Inference Attack (MIA) is to infer whether a

specific data sample has been used or not to train a DL model. Formally, given

a set X of data samples (represented by feature vectors), let D
t be a labeled

dataset of pairs (x, y) where x 2 X and y is a label. Dt is used to train a target

model M t.

MIA assumes the access to M
t and uses a binary classifier (i.e., the attack

model) to determine if a data sample x 2 X appears in a pair (x, y) of Dt or

not. In the first case, we say that x is a member data sample, while in the

second case is a non-member. The attack model performs such classification by

analyzing the behaviour 1 of M t in classifying the feature vector x. Details about

the construction of the attack model will be given in Section 6.3.1 considering

the specific domain of HAR.

1Examples of relevant behaviours are the gradients’ variations and the confidence of the
model while classifying an input data.
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6.2.2 Membership Inference Attack in FL

In FL, an attacker may perform the MIA attack on the global model (the target

model M t). Since the FL cloud service provider has no access to the training

dataset Dt, the authors in [28, 112] proposed to train the attack model using a

shadow model trained with a shadow training dataset.

A shadow model M s aims at imitating the behaviour of M t. In particular, the

attacker creates a pair of disjoint shadow training sets Ds (members shadow data)

and N
s (non-members shadow data), such that each training set contains labeled

data samples in the same feature and label space as Dt. Moreover, these training

datasets should have a similar distribution to D
t. In practice, shadow training

datasets can be obtained by public datasets or by generating synthetic data.

M
s is trained by using D

s, and the attack model is trained by analyzing

the behaviour of M
s while classifying the data samples in D

s and N
s. The

intuition is that, since both M
t and M

s are trained with data that share a similar

data distribution, the attack model trained considering the behaviour of M s in

classifying members and non-members data samples would also be e↵ective for

M
t.

6.2.3 Shadow models for HAR

Considering the specific HAR domain, the generation of a shadow dataset Ds is

particularly challenging. This is a well-known limitation of the attacks based on

MIA: approximating the distribution of data strictly related to a specific set of in-

dividuals is challenging [153]. In HAR, due to the high intra- and inter-variability

in activity execution among several subjects (i.e., each subject has peculiar ac-

tivity patterns and habits), the underlying data distribution is not independent

and identically distributed (non-IID). If Ds is significantly di↵erent from D
t, the

attack performance of MIA degrades accordingly [155]. This problem becomes

serious when D
t includes a large number of users with di↵erent characteristics.

For this reason, we consider a worst-case scenario in which the attacker manages

to use a shadow dataset Ds very close2 to the actual training dataset Dt. More-

over, similarly to other applications of the MIA, we assume that the attacker has

2In the experiments this is implemented by taking Ds ⇢ Dt.
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access to some data samples of the participating users to perform the attack.

6.3 The proposed attack framework

In the following, we propose a novel framework based on the Membership Infer-

ence Attack (MIA) to quantitatively measure the amount of sensitive information

potentially revealed by the global model in FL-based HAR. In particular, we in-

vestigate two research questions:

• R1) User Membership: Is it possible to infer from the global model whether

a certain user took part in the FL process? This property may be crucial

considering FL systems that are specialized for a certain category of users

(e.g., subjects with the same disease).

• R2) Activity Membership: Is it possible to infer from the global model

whether a participating user performed a specific activity?

For the sake of this thesis, we only consider honest-but-curious attackers that

infer sensitive data by periodically observing the parameters of the global model:

the cloud server and the participating users.

6.3.1 Attack model training

Given the notation introduced in Section 6.2, in our setting D
t = {(x1, y1),

..., (xn, yn)} is the set of labeled samples from all the participating clients, while

M
t is the global model on the cloud server. M

t is trained with a FL approach.

In order to perform the MIA attack, the attacker trains a binary classifier A to

determine if a given data sample belongs to D
t. In particular, we take advantage

of the attack model recently proposed in [27]. This attack assumes that the

attacker can inspect the internal parameters of M t. In our FL setting, this is

actually possible. Figure 6.1 depicts a high-level data flow of the attack model

training. In order to train A, the attacker creates the shadow datasets D
s and

N
s, as well as a shadow model M s trained using D

s. We recall that D
s has a

similar distribution to D
t. Then, each data sample in D

s and in N
s is provided

to M
s for classification. While processing each input, the attacker observes the
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behavior of M s. In particular, given an input x provided to the shadow model

M
s, the attacker extracts:

• The confidence of M s in classifying x

• The output of each layer of M s while processing x

• The classification loss `(M s(x), y)

• The gradients of the loss with respect to each parameter of M t

These values are encoded in a feature vector, that is labeled as member if

x 2 D
s and non-member if x 2 N

s. The resulting labeled feature vectors are

used to train A.

Figure 6.1: Training of the attack model. The attacker observes the behavior of
the shadow model when classifying member and non-member data points. The
output is the training dataset for the attack model.

6.3.2 Inferring user and activity membership

In the following, we illustrate how our framework infers user and activity mem-

bership using an attack model based on MIA.
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Let U = {u1, . . . , un} be a set of n users. In order to answer the research

question R1), we use the attack model to infer whether a certain user u 2 U

contributed in training the global model. In this scenario, we assume that the

attacker knows the corresponding user for each available data sample. The at-

tacker infers that a subject u participated in training the global model if the

majority of the samples of u tested by the attacker are classified as members.

We quantitatively estimate the success of the attack by computing the average

confidence of the attack model in classifying data samples of u as members.

In order to answer the research question R2), we use the attack model to

infer whether u participated in training the global model with an activity a.

In this scenario, we also assume that the attacker knows the activity label for

each available sample. The attacker infers that u participated in training the

global model with activity a when the majority of the available labeled samples

of u related to the activity a tested by the attacker are classified as members.

We quantitatively estimate the success of the attack by computing the average

confidence of these classifications.

6.4 Experimental Evaluation

6.4.1 Experimental setup

We perform a preliminary evaluation of our framework using the publicly available

MobiAct dataset [156] introduced in Section 2.3.1. MobiAct includes labeled data

from inertial sensors (i.e., accelerometer, gyroscope, and magnetometer) from a

smartphone placed in the pant’s pocket. Overall, MobiAct includes data from 60

subjects. In our experiments, we considered the following physical activities 3:

standing, walking, jogging, jumping, and sitting. Since this dataset involves a rela-

tively large number of subjects with respect to other sensor-based HAR datasets,

it is particularly suited to evaluate FL-based solutions. In our experiments, we

consider a FL client for each user in MobiAct.
3Note that we omitted from MobiAct those physical activities with a limited number of

samples as they are insu�ciently represented and hence not suitable for our evaluation. We
believe that this problem is only related to this specific dataset and that, in realistic settings,
even short activities would be represented by a su�cient number of samples.
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Federated Learning

We use the FL experimental setup proposed in Chapter 5 in Section 4.3.2, since

it exhibited promising performances for HAR. In particular, the activity model

is a feed-forward deep neural network composed of three fully connected layers

having respectively 128, 64, and 32 neurons, and a softmax layer for classification.

The inputs of that network are hand-crafted feature vectors extracted in real-time

from the stream of sensor data. We consider features that proved to be e↵ective

for HAR in the literature [37]. We used Adam [145] as optimizer. The well-known

FedAvg algorithm [19] is in charge of aggregating the model parameters received

by clients and updating the global model. Each client trains its local model for 10

epoch. Finally, we empirically selected 30 as the number of FL communication

rounds as it guarantees the convergence of the global model avoiding overfitting.

Membership Inference Attack

The implementation of MIA is based on the public ML Privacy Meter 4 tool [27].

For each experiment, we trained the attack model for 150 epochs with a learning

rate of 0.001, while the Adam optimizer was used to minimize the loss function.

As we mentioned in Section 6.2.3, in our experiments the shadow model is trained

by using a subset of labeled data from the participating users.

Metric

In order to quantitatively measure the probability that a sample x was part of

the target dataset D
t given a target model M t, we use the confidence of the

attack model in classifying x as member. We will refer to this measure as the

membership probability (MP):

MP(x) = Pr(x 2 D
t|M t)

Intuitively, an MP value closer to 1 indicates that x is likely a member, while

an MP value closer to 0 indicates that x is likely a non-member.

4https://github.com/privacytrustlab/ml_privacy_meter
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6.4.2 Evaluating user membership

Data preparation

The data partitioning schema is illustrated in Figure 6.2. As usually proposed in

FL methods, we randomly select 15% of the users from the dataset to initialize

the global model (pre-training). The remaining users are partitioned as follows:

50% of users participate in FL (FL members) and 50% of users do not participate

in FL (FL non-members) 5. The global model is hence trained in a FL fashion

using data inD
t. We train the attack model by using 70% of data fromD

t labeled

as members, and 70% from labeled as non-members 6. We use the remaining 30%

from both datasets to evaluate the e↵ectiveness of the attack model.

Figure 6.2: Dataset splitting process adopted to evaluate user membership

Results

Figure 6.3 shows the results of the user membership attack at the data sample

granularity. We observed an MP value close or equal to 1 for most of the FL

members ’ data samples, while a value close or equal to 0 for most of the FL

non-members ’ samples. Thus, we can conclude that, overall, the attack model is

confident in discriminating members and non-members samples.

Figure 6.4 shows the same result at the user granularity. In particular, for

each user, we average the MP score computed on its test data sample. We can

5Note that the union of labeled data from FL members corresponds to Dt.
6Note that these partitions correspond to Ds and Ns, respectively.
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Figure 6.3: Distribution of the membership probability for members versus non-
members data

observe that the users that actually participated in FL are associated with an

average higher MP value than those that did not participate. Hence, in this

scenario, the MIA attack potentially reveals if a specific user participated to FL.

Figure 6.4: Average membership probability assigned by the attack model to
each of the considered users.
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6.4.3 Evaluating user membership with data not used in

FL

In this experiment, we want to check if the attack recognizes the membership of

a user even by analyzing data samples from that user that have not been used in

training the global model.

Data preparation

In order to perform this experiment, we consider the specific setting where the at-

tacker has access to 15% of data samples (not used to train the global model) from

5% of the FL members. The data partitioning schema is depicted in Figure 6.5.

Figure 6.5: Dataset splitting process adopted to evaluate user membership with
data not used in FL

Results

Figure 6.6 summarizes the results of the attack at the user granularity. We

observed that data samples not used in the FL training still reliably reveal the

membership of the corresponding users.
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Figure 6.6: Average membership probability assigned by the attack model to
each of the considered users.

6.4.4 Evaluating activity membership

In this experiment, we consider the setting proposed in Section 6.4.2 to under-

stand if it is possible to determine whether a user contributed to FL with a

specific activity. For each activity, we computed the MP value for each test data

sample of both FL members and non-members subjects. Figure 6.7 shows the

outcome of this experiment considering the activities walking and sitting.

(a) MP Walking (b) MP Sitting

Figure 6.7: MP assigned to the samples of the activities Walking and Sitting
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We observe that the attack is e↵ective for walking (a) while not really for

sitting (b). Indeed, Figure 6.7b shows that the average MP is around 0.5. Since

both FL members and non-members perform this activity in a similar way, during

the training phase the attack model can not observe significant di↵erences in the

shadow model behavior when processing members and non-members data.

Intuitively, considering the sensor setup used in MobiAct and in several other

HAR datasets, walking represents a set of activities that are likely to di↵er in

their pattern of execution by di↵erent subjects, while sitting represents activities

that have limited variance in their execution patterns.

This may lead concluding that the attack for this last category of activities is

not e↵ective while it is e↵ective for those in the first category.

Nonetheless, activities in this first category are not necessarily exposed to

privacy risks in general. Indeed, considering larger datasets where it is very

unlikely that users perform the activity in a unique way, it is questionable if the

attack would be e↵ective as well.

Considering possible privacy protection approaches, we believe that these re-

sults may provide useful information on which activities may be more exposed,

hence guiding, for example, the distribution of artificial noise in obfuscation

strategies.

6.5 Summary

In this Chapter, we addressed the research question Q4) presented in Section 2.4,

by proposing a novel framework based on the Membership Inference Attack that

enables evaluating which sensitive information could be inferred by a potential

attacker that accesses the model parameters shared in an FL-based system for

HAR. Our preliminary results suggest that the global activity model may actu-

ally reveal some sensitive information about the participating users. The major

limitation of this work was to use of a subset of the target data to learn the attack

model (i.e., the worst-case scenario). Obviously, this is not a realistic assumption

since the attacker cannot actually access this information. However, we consider

the study presented in this Chapter only the first step in a research direction that

we intend to explore in the near future.
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Chapter 7

Conclusions

7.1 Summary

In this thesis, we proposed novel methodologies to address the limitations re-

lated to scalability, privacy, poor personalization, and labeled data scarcity, that

emerge in state-of-the-art collaborative approaches for sensor-based HAR. First of

all, we introduced an innovative technique that combines context-aware reasoning

with semi-supervised learning to increase the number of recognizable activities

and reduce the data annotation burden. Nonetheless, this approach keeps su↵er-

ing from scalability and privacy issues as it involves centralizing the data collected

by multiple users into a central server, where the global activity recognition model

is trained. Thus, bearing in mind the labeled data scarcity problem, and with the

aim of mitigating privacy and scalability issues, we introduced the first hybrid

semi-supervised and federated learning (FL) system for HAR. Despite this sys-

tem allowed us to make an important step towards reducing the above-mentioned

issues, it does not overcome the non-IID data concern. Indeed, the FL framework

has been designed to perform well with independently and identically distributed

data. However, in the field of HAR, that assumption cannot be always satisfied

as each subject execute activities in a di↵erent way due to its specific physical

traits and habits. Therefore, we proposed a Federated Clustering approach for

HAR that mitigates the non-IID problem by assigning a personalized classifier

for each group of users that exhibit similar ways of performing activities. Finally,
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we also considered the possible privacy leakage of FL systems for HAR. In par-

ticular, by using a novel membership inference attack methodology we performed

a preliminary evaluation on which sensitive information could be inferred by a

potential attacker that accesses the model parameters of the global recognition

model.

Extensive evaluation with several datasets showed the e↵ectiveness of our meth-

ods. In the following, we summarize the specific contributions presented in this

thesis.

Hybrid semi-supervised learning and context-aware reasoning frame-

work for collaborative HAR

Our first contribution to this thesis is the hybrid semi-supervised learning and

knowledge-based framework that we propose in Chapter 3. Here, a machine

learning classifier is in charge of inferring from inertial sensor data the candidate

probability distribution over the possible activities. Meanwhile, a knowledge-

based reasoning engine is used to refine activity predictions considering context

data (i.e., semantic location, weather, moving speed). Precisely, we presented

two di↵erent typologies of ontology to implement the knowledge-based reasoning

engine. The former is a deterministic ontology that uses a rigid ontological for-

malism to model the relationships between context and activities. The latter is a

probabilistic ontology that takes advantage of probabilistic reasoning to capture

the intrinsic uncertainty of context data. From our experimental evaluation per-

formed on the DOMINO dataset, emerged that the proposed knowledge-based

reasoning engine is e↵ective in both improving the recognition rate of the sta-

tistical classifier, and reducing the number of active learning queries used to

collect annotated training samples (especially by using the probabilistic ontol-

ogy). Among the limitations of this work, it is important to note that we did not

consider the scalability and privacy issues that may arise in collaboratively train-

ing the machine learning model when the number of users increases. Moreover,

we aim to study personalization aspects related to personal context situations.

Indeed, we believe that incrementally adapting the ontology to each user would

allow our system to learn personalized contexts and hence improve accuracy.

139



FL-based approaches to reduce the data scarcity problem of HAR

Given the scalability and privacy issues that arise in collaboratively training a

recognition model for HAR in a labeled data scarcity scenario, in Chapters 4 and

Chapter 5 we proposed novel semi-supervised and FL-based methodologies. In

particular, in Chapter 4 we introduced FedAR, the first hybrid semi-supervised

and federated learning system for HAR. On the one hand, the FL framework

enables distributing the training of a global activity recognition model over mul-

tiple users in a scalable and privacy-preserving way. On the other hand, a semi-

supervised approach based on active learning and label propagating allows to

semi-automatically annotate training data by triggering a very limited number

of activity queries to the users. Our results showed that this novel method leads

to a classification rate that is comparable to the one obtained by HAR methods

that rely on fully supervised learning to train the local models.

Despite, the very promising results obtained by FedAR, a limitation of this

approach consists of the non-IID data concern. Indeed, users having di↵erent

physical traits may execute activities with dissimilar motion patterns, hence col-

lecting non-independently and identically distributed datasets. In order to over-

come this personalization problem, in Chapter 5, we proposed SS-FedClar, a

novel semi-supervised Federated Clustering algorithm that enables assigning a

specialized classifier to each group of users who perform activities in a similar

way. Our experimental evaluation with publicly available datasets demonstrated

that SS-FedClar outperforms FedAR both increasing the classification rate and

further reducing the number of active learning queries for the users. Among the

limitation of this work, important aspects to consider before a real-world deploy-

ment are the need for evaluation on large scale and the problem of dynamically

adapting the generated cluster of users when new subjects join the system (or

some participants leave it). We will examine in deep these problems and provide

possible future research directions in Section 7.2

Investigation of the potential privacy issues in FL-based HAR

In this thesis, we proposed di↵erent FL-based approaches with the aim of in-

creasing the privacy level for the users that collaboratively learn a HAR model.
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Indeed, the sensor data typically used in HAR may reveal sensitive information

about the participating subjects like their habits or health conditions. Sharing

this potentially sensitive information with a third-party server with the scope of

collaboratively training a shared activity recognition model may pose many pri-

vacy threats to the users. In FL each user locally trains a personal model using

the available labeled data and sends the updated model parameters to a cloud

server that is in charge of aggregating them to generate the shared recognition

model. In that way, users preserve the raw sensor data in the local storage of their

devices. However, recent studies indicated that even the model’s parameters re-

ceived and manipulated by the cloud server may still reveal sensitive information

about the users who participate in FL. However, to the best of our knowledge,

non of them focused on the HAR domain.

Thus, we took the first contribution to this line of research by introducing a

novel framework to quantitatively evaluate the e↵ectiveness of the Membership

Inference Attack (MIA) for FL-based HAR.

Although we used a standard FL setup in our experiments, we gained valu-

able insights that should be considered when developing FL-based approaches

for HAR. For example, we found that even a shared activity recognition model

trained with FL may reveal sensitive information about participating users under

certain assumptions. However, this study is only a preliminary step, and we plan

to explore this research direction further. We acknowledge that using a subset of

the target data to learn the attack model is not realistic, and we plan to investi-

gate alternative strategies, such as using GAN to generate synthetic data as well

as unsupervised membership attack methods [27, 157]. We also intend to evalu-

ate other types of attacks besides MIA. For instance, the reconstruction attack

may be used to recreate sensor patterns that reveal the medical conditions of

the participating users, while the property-inference attack could be used to infer

high-level properties about specific users from the global activity model. Consid-

ering privacy-preserving techniques, we plan to study solutions based on Local

Di↵erential Privacy (LDP) with heuristics guided by the outcomes of our anal-

ysis. Lastly, we plan to assess the implications of our proposed semi-supervised

and Federated Clustering solutions on the privacy level of the users.
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7.2 Future Works

The results presented in this thesis are encouraging, and we plan to further im-

prove our methods by investigating several interesting research directions. In the

following, we outline the ones we believe are more promising.

Acceptability of active learning based strategies for HAR

In this thesis, we proposed various approaches that use active learning in order

to obtain annotated samples from the users. However, we assumed that users are

willing to provide active learning feedback if the number of queries will quickly

decreases over time. This assumption is shared with other HAR papers based

on active learning [14, 15]. Nevertheless, it may not be realistic in the HAR

domain, since users’ availability is highly influenced by the contexts in which

queries are received. For instance, a user may not be willing to provide feed-

back while participating in a social event. Postponing queries is critical since it

becomes challenging to locate in time and remember the activity that was per-

formed. Indeed, each active learning query is associated with a single feature

vector processed by the classifier at a specific time instant.

Moreover, another challenge that we encountered when using user-provided

labels is the possibility of wrong labels, either due to human error or misun-

derstanding. This issue is not unique to our approach but is a general problem

that a↵ects all supervised learning approaches that rely on user-provided labels.

There are several solutions to deal with wrongly labeled data, including filtering

out the incorrect labels, relabeling the data, or using robust learning techniques.

One possible approach to filtering out incorrect labels is to use a validation set

that is separate from the training data. The validation set can be used to detect

and remove samples with inconsistent or incorrect labels. Another approach is

to use algorithms that are robust to mislabeled data, such as the Co-Training or

Tri-Training algorithms [158], which use multiple classifiers trained on di↵erent

subsets of the data to identify and correct mislabeled samples.

Relabeling the data can also be an e↵ective solution to the issue of wrong

labels. This can be done by asking the user to review and correct their previously

provided labels or by using crowd-sourcing platforms to obtain new labels from
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a large group of users. However, this approach may not always be feasible due to

the cost and time required to obtain new labels.

Finally, robust learning techniques can be used to mitigate the e↵ect of wrong

labels. For example, some techniques use robust loss functions, such as the Huber

loss function, that are less sensitive to outliers and mislabeled data [159].

Currently, we are exploring the use of these solutions to deal with wrongly

labeled data in the context of our active learning-based HAR approach. We

are also investigating the feasibility of combining these solutions with our active

learning module to obtain more accurate labels from the users.

Include context data into federate learning

In chapter 3 we introduced a novel semi-supervised learning and context-aware

reasoning framework for collaborative HAR. From our experimental evaluation

emerged that the proposed context-based refinement is e↵ective in both improv-

ing the recognition rate, and reducing the number of active learning queries used

to collect annotated training samples. Then, in Chapters 4 and 5, we proposed

other semi-supervised approaches for HAR that, by leveraging the FL frame-

work, achieve the objective of reducing the users’ burden in annotating activity

examples, while improving the system scalability and providing more privacy

guarantees for the involved subjects. However, these FL-based approaches did

not take advantage of context data in the activity recognition process. Therefore,

in the near future, we intend to investigate how to include high-level context data

to continuously adapt the federated model based on the current user’s context.

For instance, if the user is in the gym, she could use and improve a model that is

specific for physical exercises. On the other hand, if she is at home, the system

would consider a federated model more suitable for smart-home environments.

Evaluation on a large scale

In this thesis, we evaluated our collaborative learning approaches for HAR by

relying on those public datasets with the highest number of subjects. However,

real-world scenarios may involve thousands or even millions of users. Hence, al-

though the proposed methodologies exhibited promising results, they need to be

confirmed in more realistic experiments on a larger scale. For instance, consid-
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ering the Federated learning approaches proposed in Chapters 4 and Chapter 5,

a significant limitation is that at each communication round every participating

client is involved in the global model update. However, for the sake of scalability,

real-word FL methods randomly sample a limited number of clients at each com-

munication round [19]. Hence, we will investigate scalable solutions to distribute

the process in multiple communication rounds. Another significant problem re-

lated to deploying our FL-based solutions on a large scale is the correct choice

of hyper-parameters. Indeed, the hyper-parameters that proved to be e↵ective in

our experiments may not reflect the ones that are e↵ective on a large scale. Hence,

we will study the challenging problem of choosing the correct hyper-parameters

in large-scale scenarios, where only a limited amount of labeled data is actually

available.

Continual federated clustering

In Chapter 5, we evaluated our novel semi-supervised and federated clustering

approach by using publicly available datasets that only include a limited number

of data samples for each user. In a real-world scenario, users may change their

activity patterns and habits in the long term. Moreover, considering a real-world

deployment, the set of clients may significantly vary due to new clients that join

the system as well as clients that leave the system. When those events occur, the

clustering structure may change. In order to tackle this challenge, a possibility is

that the cloud server stores every intermediate model computed during clustering

(i.e., the dendograms associated with intermediate steps of hierarchical cluster-

ing). Hence, when needed, the server can recompute an optimal set of clusters

by reversing some of the clustering steps and evaluating the new situation. A

similar approach was proposed in [111]. However, re-computing clusters may be

computationally expensive, and it should be performed periodically only when

the above-mentioned conditions change significantly. For instance, considering

changes in local data distributions, each client may locally run algorithms to

detect significant changes in patterns and habits. When a client detects such a

change, it may notify the server. The clustering update may be performed only

when a significant number of clients have notified the server. Given the changes
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in the set of users, a clustering update may be required only when there is a sig-

nificant amount of join and abandon events. In the future, we intend to explore

in deep these problems and propose a valuable and e�cient solution to tackle

them.

Self-Supervised learning

In this thesis, we presented di↵erent semi-supervised learning based approaches

that enable mitigating the data scarcity problem in collaborative HAR. How-

ever, all of those solutions involve initializing the recognition model with a small

portion of human-annotated data, and then incrementally training it thanks to

an active-learning strategy. However, by following this approach may arise some

issues. Indeed, as we previously mentioned, users characterized by di↵erent phys-

ical traits may perform activities in di↵erent ways, and a recognition model ini-

tialized with few examples would probably struggle in capturing those di↵erences.

Accordingly, some users would probably receive a considerable number of active-

learning queries, especially in the early stages. Therefore, it emerges the need for

a model initialized over the labeled examples collected by heterogeneous users.

However, as we extensively discussed in this thesis, this is often unfeasible on

large scale due to the activity data annotation costs. A valuable solution to

tackle this problem may consist of leveraging self-supervised learning (SSL) as

it provides a general and powerful framework for learning with a tremendous

amount of unlabeled inputs through solving pretext tasks [65]. Overall, in SSL

a surrogate objective (i.e., the pretext task) is specified in such a way that op-

timizing it would force the network to learn meaningful and usable features for

the downstream task (i.e., classification). Then, only a few labeled data are suf-

ficient to refine the network for classification. Thus, in the near future, we aim

to exploit SSL to initialize the recognition model over a very large number of un-

labeled data coming from plenty of subjects. Then, a specifically designed active

learning strategy can be used to fine-tune it over each user with a very limited

set of labeled examples.
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