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Abbreviations 

AI, artificial intelligence 

ANN, artificial neural network 

ASCVD, atherosclerotic cardiovascular disease 

AUC-PR, area under the precision-recall curve 

AUC-ROC, area under the receiver operating characteristic curve 

BAC, breast arterial calcifications 

BCE, binary cross-entropy loss 

CAC, coronary artery calcium 

CC, cranio-caudal 

CI, confidence interval 

CNN, convolutional neural network  

CVD, cardiovascular diseases 

DBT, digital breast tomosynthesis 

DenseNet, dense convolutional network 

DL, deep learning 

DT, decision tree 

FC, fully connected 

FFDM, full-field digital mammogram 

FN, false negative 

FP, false positive 

FROC, free-response receiver operating characteristic  

GAN, generative adversarial network  
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GPU, graphic processing unit 

Grad-CAM++, generalized gradient-weighted class activation mapping 

IoU, intersection over union  

IQR, interquartile range 

ML, machine learning 

MLO, medio-lateral oblique 

PCA, principal component analysis 

ReLU, rectified linear unit 

ResNet, residual network 

SD, standard deviation 

SVM, support vector machine  

TL, transfer learning 

TN, true negative 

TP, true positive 

TPR, true positive rate  

U-Net, u-shaped encoder-decoder network  

VGG, visual geometry group 

VRAM, video random access memory  

Xception, extreme inception  
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Summary 

Cardiovascular diseases (CVD) represent the leading cause of morbidity and mortality worldwide, 

imposing a significant healthcare and economic burden. Current risk stratification scores as the 

main approach for assessing cardiovascular health often underestimate the risk in female 

population, leading to missed opportunities for primary prevention, early diagnosis, appropriate 

treatment, and ultimately contributing to the elevated cardiovascular disease burden. This gender-

based disparity has prompted the development of innovative sex-specific predictors that could 

improve women’s CVD risk stratification. In this light, breast arterial calcifications (BAC) have 

gained traction as one of the most promising women-specific biomarkers: BAC are localized 

Mönckeberg sclerosis expression involving within the tunica media of breast arteries and 

detectable as parallel line opacities on about 13% of routine mammograms. They have been shown 

to be associated with an elevated hazard of cardiovascular adverse events, more accurate than other 

traditional risk factors in asymptomatic middle-aged women, and also independent of them, 

indicating the different pathogenesis of BAC from that of atherosclerotic plaques. Considering the 

widespread diffusion of mammography breast cancer screening programs, systematic BAC 

assessment could offer a cost-effective cardiovascular risk stratification in women without 

additional examinations. However, their assessment is a challenging and time-consuming manual 

task, vulnerable to intra- and inter-observer variability; also, the considerable diversity of BAC’s 

appearance and the lack of a standard reporting guideline or a reliable quick quantification method 

have limited their adoption as a robust imaging biomarker in clinical practices. Automated 

methods using artificial intelligence (AI) and deep learning (DL) algorithms hold promise in 

addressing the limitations, improving diagnostic reproducibility, reducing radiologists' post-

processing workload, and facilitating broader utilization of BAC to improve cardiovascular risk 
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stratification in women and promote awareness of their cardiovascular health, leveraging the large-

scale mammographic screening programs. Accordingly, this thesis will present an overview of the 

current state of knowledge on the automatic BAC assessment using AI-based algorithms (section 

I), propose a novel DL-based approach for detection and estimation of BAC burden (section II), 

and subsequently explore the method by a comparative analysis with other established CNN 

architectures (section III). 
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Section I:  

 

Introduction to BAC as a biomarker of 

cardiovascular disease and applications of AI 

in automated detection 

 

 

 

 

 

Based on: 

- N Mobini, D Capra, G Baselli, and F Sardanelli. Role of deep learning in detecting breast 

arterial calcifications: a narrative review. In Submission, 

- V Magni, D Capra D, A Cozzi, CB Monti, N Mobini, A Colarieti, and F Sardanelli. 

Mammography biomarkers of cardiovascular and musculoskeletal health: A review. 

Maturitas (2023)  

DOI: 10.1016/j.maturitas.2022.10.001  
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Breast arterial calcifications and cardiovascular risk 

Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality worldwide, 

imposing a substantial healthcare and economic burden [1], [2]. Despite the common belief that 

mostly regarded CVD as a male affliction [3], [4], 45% of all women’s deaths in Europe are 

attributed to heart diseases, whereas men have a relatively lower CVD death rate of 39% [2]. 

Indeed, even though oestrogen has a protective role against CVD during the fertile age [5], this 

protection tends to vanish during the menopause transition, thus contributing to increase CVD risk, 

together with other adverse physiological and metabolic changes occurring in this period, such as 

alterations in body composition, lipid profile, and vascular function [6]. Furthermore, female-

specific risk factors strictly related to reproductive life (such as preterm delivery, hypertensive 

pregnancy disorders, and gestational diabetes mellitus) might contribute to the worsening of CVD 

risk profiles, especially in young women.  

Even though the awareness about CVD in women has increased during the past decades 

with a corresponding decline in female CVD mortality (in Europe, from 374 to 209 deaths per 

100000 in the period between 1985 and 2014) [7], both women and primary care physicians still 

have a tendency to underestimate this risk of developing CVD, increasing the disparity between 

men and women in the prevention, diagnosis, and treatment of CVD [8], [9]. Even the most 

updated prediction models used to estimate the risk of fatal and nonfatal CVD apply age- and sex-

specific multipliers without including risk factors specific to the female sex, further limiting the 

development of sex-specific strategies for the primary prevention of CVD [9]. 

In Europe, breast cancer awareness campaigns have been crucial to highlight the 

importance and efficacy of early diagnosis through mammographic screening [10], achieving 

satisfactory attendance rates in the majority of organized screening programs [11]. However, 

https://www.sciencedirect.com/topics/medicine-and-dentistry/cardiovascular-disease-in-women
https://www.sciencedirect.com/topics/medicine-and-dentistry/primary-health-care
https://www.sciencedirect.com/topics/medicine-and-dentistry/disparity
https://www.sciencedirect.com/topics/medicine-and-dentistry/therapeutic-procedure
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alongside the early detection of breast cancer, mammography has been reported to be useful for 

the identification of ancillary features unrelated to oncological disease, such as mammographic 

breast arterial calcifications (BAC), which have been recognized as important biomarkers 

of cardiometabolic risk [12]. This progressive awareness is paving the way towards an extension 

of the preventive role of mammography beyond breast cancer screening, acknowledging its 

potential to offer an insight into women's cardiometabolic health. 

In the context of breast cancer screening mammography reading, calcifications are 

classified either as typically benign or of suspicious morphology: the former are discarded, while 

the latter prompt second-level investigations. However, some calcifications (which are considered 

as surely benign) carry information about women's cardiovascular health. Specifically, BAC are a 

local expression of Mönckeberg sclerosis appear as parallel or tubular opacities associated with 

blood vessels and evolve within the tunica media and the internal elastic lamina of large and 

medium-sized arteries [13], [14], [15], which have been associated with cardiovascular risk for 

more than two decades [16]. Mönckeberg sclerosis is a histopathologic entity distinct from 

atherosclerosis involving coronary arteries, related to a pro-osteogenic environment, with the 

deposition of hydroxyapatite crystals in conditions of altered mineral metabolism [17] while 

atheromatic plaques are characterized by macrophagic activation and cholesterol deposition. In 

fact, no signs of inflammation were found in BAC plaques by histologic studies [15], [18]. It is 

supposed that calcified vessels become stiffer, leading to increased pulse pressure that could lead 

to CVD [19]. Indeed, postmenopausal women with BAC included in a substudy of the MINERVA 

(multiethnic study of breast arterial calcium gradation and CVD) cohort [20], had an odds ratio of 

1.36 (95% CI 1.01–1.87, p = 0.04) for having an ankle-brachial index < 0.90, a marker of peripheral 

artery disease [21]. The authors however did not observe any significant association between BAC 

https://www.sciencedirect.com/topics/medicine-and-dentistry/mammography
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severity and peripheral artery disease, perhaps because of the relatively small size of the BAC 

positive group. Conversely, such quantitative association was reported in a previous case-cohort 

study by Hendriks et al. [22], who reported a hazard ratio of 2.93 (95% CI 1.05–8.16) for peripheral 

artery disease compared to women without BAC. 

 

 

Figure 1 Examples of breast arterial calcifications on screening mammograms (white 

arrows). a Low, b mild, and c severe burden of BAC [23]  

 

BAC are a relatively common incidental finding, observed in around 13% of mammograms 

(Figure 1), their most important predictors being increasing age, diabetes, and parity [24]. 

Furthermore, hormonal levels seem to impact BAC, as BAC prevalence rises after menopause 

[24], while it is reduced by 50% in women aged over 65 years under hormonal replacement therapy 

[25]. BAC are associated with hypertension (pooled odds ratio 1.80, 95% CI 1.47–2.21), but not 
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with other established cardiovascular risk factors, such as hypercholesterolemia (odds ratio 1.31, 

95% CI 0.97–1.77), and present a negative association with smoking habit (odds ratio 0.54, 95% 

CI 0.42–0.70) [26], which again underlines the distinct pathologic pathway that leads to BAC 

pathogenesis. 

Nevertheless, BAC presence is significantly associated with coronary artery disease (odds 

ratio 2.61, 95% CI 2.12–3.21), and women with a moderate to severe BAC load have a 2.95 odds 

ratio (95% CI 1.49–5.84) for coronary artery disease. A retrospective study published by Margolies 

et al. [27] in 2016 found a strong, quantitative association between BAC and coronary artery 

disease, with the incidence of higher BAC scores increasing accordingly to coronary artery 

calcium (CAC) score measured at coronary computed tomography. Furthermore, BAC scores from 

4 to 12 (representing a marked BAC burden) had an adjusted odds ratio of 3.2 (95% CI 1.8–5.9) 

for the presence of coronary artery calcium. Moreover, a BAC score > 0 showed an equivalent 

area under the receiving operator curve to that of Framingham risk score for the detection of CAC. 

A subsequent retrospective cohort study by Yoon et al. [28] confirmed the association between 

BAC presence and BAC score to subclinical coronary artery calcium, with adjusted odds ratios of 

2.87 (95% CI 1.67–4.93) and 1.20 (95% CI 1.10–1.31) respectively. They also confirmed the 

prognostic value of BAC assessment, showing net reclassification improvements after adding 

BAC presence to the 10-years atherosclerotic cardiovascular disease−ASCVD risk score calibrated 

for the Korean population, with a net reclassification index of 0.052, and significant, albeit small 

improvement of the AUC from 0.66 to 0.68 (p = 0.010) for the presence of coronary arteries 

plaques. The recently published results from the MINERVA cohort study [29], conducted on 

women aged between 60 and 79, reported that women with BAC have a 1.51 (95% CI 1.08–2.11) 

increased hazard of hard atherosclerotic CVD events (acute myocardial infarction, ischemic stroke, 
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CVD death), and a 1.23 (95% CI 1.00–1.52) increased hazard of global CVD events. Iribarren and 

colleagues also evaluated the performances of the American College of Cardiology/American 

Heart Association Pooled Cohort Equations for atherosclerotic CVD risk assessment combined 

with the presence of BAC, significantly improving its performances, with a net reclassification 

index of 0.11. A previous prospective cohort study [30]on 1454 women with a 5-year follow up 

reached similar conclusions, reporting a significantly higher likelihood of developing coronary 

artery disease for women with BAC than those without (6.3% vs 2.3%, p = 0.003) (Figure 2). 

 

 

Figure 2 An overview of how modifications in breast arterial calcifications burden influence 

cardiovascular risk. Yellow arrowheads in mammographic images indicate BAC [31] 

 

The aforementioned results and the widespread diffusion of screening mammography [10], 

[11], advocate for the inclusion of BAC in cardiovascular risk scores [32], particularly for 
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postmenopausal women. Nonetheless, despite the fact that an overwhelming majority of women 

would prefer to be informed about their BAC status [33], BAC are currently not integrated in CVD 

risk prevention strategies and even BAC reporting in mammography interpretation is still scarce 

[34]: although over 80% of European breast radiologists declared they are aware of the association 

between BAC and CV risk, less than 65% of them report on BAC. Moreover, most of the 

radiologists who report BAC merely describe them as present, while just over 25% of radiologists 

use an ordinal visual scale for BAC evaluation and only one radiologist uses a quantitative 

assessment. Indeed, there are a few issues hindering a more widespread adoption of BAC detection 

and reporting in routine clinical practice. 

One pivotal obstacle in BAC assessment lies in the time needed to evaluate them. Indeed, 

if spotting BAC presence may be considered relatively immediate (excepting the case of small, 

tiny calcifications not definable as surely being BAC), measuring their extension may be a 

painstaking process. In fact, quantification methods based on manual measurements may take up 

to 3 minutes per mammogram [35], which would put further strain on radiologists, especially in 

the case of screening reading. In addition, methods based on subjective visual assessment may not 

ensure optimal reproducibility. 

Several quantification methods have been proposed over the years, from 4-points Likert 

scales [36] and 12-points semiquantitative scales [37], [35] to quantitative scores that evaluate the 

calcium mass performing a densitometry using carefully calibrated mammography systems, as in 

the MINERVA study [38]. However, the necessity of calibrating mammography systems clashes 

with the potential immediate application of BAC evaluation in the context of the available 

mammography systems already employed for routine breast cancer screening and clinical 

assessment.  
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Artificial Intelligence for BAC assessment  

The term Artificial Intelligence (AI) was coined in the 1950s and refers to a broad field of 

computational science (Figure 3) focused on developing automatic systems capable of imitating 

humanlike intelligence and behaviours such as learning, problem-solving, and natural language 

understanding to perform various tasks [39], [40], [41], [42]. Machine learning (ML), the key 

subfield of AI, involves algorithms and statistical models that can learn from relevant extracted 

features, identify patterns, and make decisions based on that learning without external 

reprogramming [43], [44]. The main categories in ML techniques include supervised learning 

(training on labelled data), unsupervised learning (finding patterns in unlabelled data), semi-

supervised learning (dealing with semi-labelled data to minimize annotation requirements), and 

reinforcement learning (learning from interactions with an environment) [44], [45]. Decision Trees 

(DT) [46], Support Vector Machine (SVM) [47], and Principal Component Analysis (PCA) [48] 

are some representatives of classic ML models.  

 

 

Figure 3 The broad AI family. Since 2010s and the evolution of technologies, CNNs have become the 

leading architecture for most image classification tasks  
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Moving forward to the early 2000s, the evolution of technologies, growth of big data, and 

availability of open-source algorithms have shifted AI from research to practical applications [49], 

[50], where a specialized subfield of ML called Deep learning (DL) has outperformed its 

predecessors [51], [52]. These networks, also known as Artificial Neural Networks (ANNs), 

inspired by the hierarchical structure of the biological synapse system are composed of multi-layer 

interconnected artificial neurons organized into input, hidden, and output layers to directly process 

raw form of data and generate predictions or results [45], [53]. Unlike traditional ML, DL 

techniques minimize human intervention by embedding feature extraction steps into the network 

architecture through adjustable model parameters (Figure 4), and therefore, have gained 

prominence for robust handling of complex tasks requiring sophisticated pattern recognition and 

representation learning [52]. The performance of DL algorithms improves as dataset size rises; 

though there is no rule to determine the exact size of dataset required, training sets must be 

sufficiently broad and diverse to incorporate the wide-ranging features of the classes being 

classified. 

Convolutional neural networks (CNNs) are the most popular of DL algorithms, which have 

been specially modified for processing structured grid data and applied with great success to the 

detection, segmentation, and classification of objects in images [54], [55]. AlexNet [56], VGG 

[57], and U-Net [58] are well-known examples of such architectures, which could surpass human 

expert performance in some cases. However, a successful CNN implementation requires a 

substantial volume of labelled training data, posing a significant barrier in real-world applications 

[55], particularly in fields like medicine where annotations demand professional expertise and 

instances of diseases are scarce [59], [60]. Transfer learning (TL) is an appealing solution, where 

knowledge and feature representations acquired from processing a large-scale annotated dataset 
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like ImageNet can be leveraged to address another problem with fewer input samples, instead of 

training from scratch [61], [62]. The earlier layers of a CNN model capture simple features such 

as edges or contours generic to all kinds of images, while the deeper layers extract high-level 

details specific to the tasks in hand, and therefore, can be transferred through fine-tuning across 

domains and adapted to new tasks.  

 

 

Figure 4 Differences between machine learning and deep learning in image classification tasks: While 

traditional ML algorithms mainly rely on manually engineered features, DL-based methods integrate 

feature extraction directly into the network architecture, thus minimizing the manual intervention by 

human expert 
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Given the growing popularity of DL in radiology following the dynamic development of 

AI systems and hardware technologies [60], [63], researchers show interest in using neural 

networks for BAC assessment as a potential risk biomarker for CVD in women. AI could be 

effective in addressing the intrinsic challenges associated with manual BAC evaluation ensuring a 

processing time compatible with everyday practice, helping reduce the ever-increasing radiologic 

workload, and minimising operator-dependency. Considering the intricate topology of BAC 

appearance over a broad spectrum of signal intensities on mammographic images, various 

strategies have been presented in the literature, developing either semiautomatic or automatic AI-

based tools. Table 1 presents an overview of the key published studies, detailing the datasets and 

the CNN architectures employed.   

The group of Wang et al. in 2017 [64] was the pioneer to investigate the viability of 

automating accurate BAC detection with DL systems, developing a customized 12-layer deep 

architecture that involved stacks of ten convolutional blocks, two fully connected (FC) layers, and 

a SoftMax activation function. They formulated the problem as a binary classification task and 

used case-based 3-fold cross validation to implement a pixel-wise patch-based procedure to predict 

the probability of each central pixel belonging to the BAC class. The performance was evaluated 

using free-response receiver operating characteristic (FROC) analysis and quantitative calcium 

mass study on a total dataset of 210 four-view standard mammography exams with 146 BAC and 

64 non-BAC cases. Their findings demonstrated an overall true positive rate (TPR) of 60% 

comparable to that of the human reader and a strong correlation between the automatically 

estimated calcium mass and that of the ground truth annotations (coefficient of determination of 

0.96). Investigation into the interchangeability of mammographic views revealed that integrating 
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samples from both projections (i.e., cranio-caudal (CC) and medio-lateral oblique (MLO)) can 

effectively improve the model's performance.  

Conversely, Wang et al. 2019 [65] did not observe any advantage of deep networks over 

classical image processing approaches in detecting or segmenting calcified vessels. They tested 

the efficacy of three available networks, including YOLO, U-Net, and DeepLabv3+, using a rather 

small dataset of 135 BAC images sourced from both standard full-field digital mammographic 

(FFDM) or digital breast tomosynthesis (DBT) data. Evaluation metrics included intersection over 

union (IoU) and a new measure analysing the proportion of acceptable small-object segmentation 

over the validation subset (20% of the total dataset, i.e., 27 images), to consider the complex 

topology and the small dimension of BAC. However, all models exhibited poor performance in 

the experiment, failing to detect BAC from the digital images. In comparison, a simple Hessian-

based multiscale filter paired with a self-adaptive thresholding technique yielded the maximum 

validation accuracy (small-object detection score of 0.78), with the minimum configuration 

complexity and computation cost. Considering the imbalanced distribution of calcified pixels 

across images, they concluded that an appropriate selection of training parameters, such as loss 

functions, would significantly impact the results. 

In 2020, Alghamdi et al. [66] explored the applicability of the U-Net alterations for a same 

purpose, which had shown remarkable results in various medical segmentation tasks [58]. They 

extended the conventional structure by integrating both the contracting and expanding paths with 

summation long-connections and dense blocks of DenseNet [67], to avoid learning redundant 

features, preserve local details, and reduce computational costs. The problem was framed as a 

semantic segmentation and studied on 816 digital mammograms with an equal number of BAC 

and non-BAC images, which were collected from a publicly available breast cancer screening 
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database [68] and meticulously annotated by expert radiologists to provide ground-truth BAC 

information. The experimental results from training the proposed DU-Net using 5-fold cross 

validation demonstrated an impressive overall F1 score of 0.92 and a Jaccard index of 0.85, 

outperforming the expert readers. Further quantitative evaluation showed DU-Net’s efficacy in the 

BAC detection task, achieving an accuracy of 0.91 with an evaluation time of 10.8 seconds per 

epoch—faster than the preliminary CNN model [64], which attained an accuracy of 0.62 on the 

current annotated dataset. 

Similarly, Guo et al. 2021 [69] presented the Simple Context U-Net (SCU-Net), a 

lightweight design to enhance the efficacy of fine vessel segmentation and calcification 

quantification. The network exploited the advantage of both dilated convolution operations and 

skip connections to learn multilevel contextual features, thereby improving the predictive accuracy 

of the typical U-Net while maintaining an order of magnitude less trainable parameters. For model 

training and validation on a dataset of 661 FFDM from 216 participants, each mammographic 

image was trimmed into fixed-size patches of 512×512 with pixels of overlap and then 

corresponding patches were concatenated together to generate whole-image final predictions. 

Extensive quantitative and qualitative results displayed comparable or superior performance of the 

SCU-Net, as compared to a series of semantic segmentation models including DeepLabv3 and U-

Net, achieving 0.99 accuracy, 0.72 F1 score, and 0.58 Jaccard index value on the validation scans, 

capable of correctly disregarding benign ductal calcifications unrelated to BAC. The severity 

estimation of BAC within the segmented mask by the model was strongly correlated with calcified 

volume (R2-correlation = 0.84) and calcium mass (R2-correlation = 0.87) in a cohort of 10 subjects 

who had previous breast CT examinations. Notably, the SCU-Net's automated tracking of 
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calcification progression in a longitudinal study of 26 patients with almost 10 years of retrospective 

mammograms revealed a gradual increase in BAC burden over time. 

A subsequent study by Alamir et al. 2023 [70] recommended adopting the generative 

adversarial network (GAN), consisting of a generator followed by a discriminator interdependent 

grid, to extract binary masks and classify them as either BAC or non-BAC. They integrated a 

multiscale difference-of-Gaussian (DoG) pyramid into the contracting path of the U-Net as the 

generator for segmenting input mammographic images, to enhance the salient features of calcified 

vessels while reducing high-level details of others or noise, thereby improving feature extraction 

capability. To develop and assess the proposed DoG-GAN model, researchers prepared a BAC-

enriched dataset comprising 750 synthetic 2D images from DBT examinations, offering enhanced 

tissue and lesions visualization compared to a standard digital mammography. The network’s 

ability to detect the calcified patterns from the processed image of the DoG containing the edge 

information, exceeded the traditional U-Net trained on raw mammograms themselves, leading to 

an overall AUC-ROC value of 0.99 and sensitivity of 0.75, within an evaluation time of 14 seconds 

per epoch. 

Wang et al. 2023 [71] further analyzed the effect of training factors, including input size, 

pre-processing techniques, loss functions, deep network characteristics, and annotation quality, on 

the automatic BAC segmentation performance. The study involved 6573 raw tomosynthesis 

central projections with a BAC positive rate of 95%, annotated for training and evaluating 

deepLavV3+ and U-Net models with various learning strategies. While higher image resolution, 

proper contrast adjustments, and deeper complex architectures can typically contribute to optimal 

classification results, they found labelling quality to be a pivotal determinant of the calcification 

segmentation performance, specifically when annotations were made by non-expert readers. A 
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solid annotation alone delivered the most significant improvement in network outcomes compared 

to other learning settings investigated; however, achieving pixel-perfect ground-truth markings 

remain challenging even for experienced radiologists. Additionally, recognizing the clinical 

practice of measuring BAC by its length rather than area size, they advocated for length-based 

quantification to better capture the linear trajectory of BAC.  

 

Table 1 Summary table of the state-of-the-art research focused on AI-driven automatic BAC assessment 

on mammograms 

Reference Dataset Network  Validation 

method  

Outcome 

Wang et al. (2017) 

[64] 

Private FFDM 

dataset, including 840 

images (506 BAC) 

with pixel-wise 

ground truth 

annotations 

 

Customized 12-

layer CNN, 

trained with 

patches of 

95×95 

3-fold cross 

validation 

(case-wise data 

splitting) 

Pixel-wise 

detection and 

quantification 

of BAC burden 

Wang et al. (2019) 

[65] 

Private FFDM and 

DBT (central slices) 

dataset, including 135 

images (135 BAC) 

with pixel-wise 

ground truth 

annotations and the 

bounding box of the 

significant calcified 

regions 

 

YOLO, U-Net, 

and 

DeepLabv3+ 

80% training, 

20% validation 

(image-wise 

data splitting) 

Failed 
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Alghamdi et al. (2020) 

[66] 

Public FFDM dataset 

[68], including 826 

images (413 BAC) 

with pixel-wise 

ground truth 

annotations 

 

DU-Net 

 

5-fold cross 

validation 

(image-wise 

data splitting) 

Pixel-wise 

BAC detection 

Guo et al. (2021) 

[69] 

Private FFDM 

dataset, including 661 

images from 216 

cases with pixel-wise 

ground truth 

annotations 

 

SCU-Net, 

trained with 

BAC patches of 

512×512  

80% training, 

20% validation 

(image-wise 

data splitting) 

Pixel-wise 

detection and 

quantification 

of BAC burden 

Alamir et al. (2023) 

[70] 

Private DBT 

(synthetic 2D view) 

dataset, including 750 

images (600 BAC) 

with pixel-wise 

ground truth 

annotations 

 

DoG-Gan 80% training, 

20% validation 

(image-wise 

data splitting)  

Pixel-wise 

BAC detection  

Wang et al. (2023) 

[71] 

Private DBT (central 

slices) dataset, 

including 6573 

images (95% BAC) 

with pixel-wise 

ground truth 

annotations 

 

U-Net and 

DeepLabv3 

80% training, 

10% validation, 

10% testing 

(image-wise 

data splitting) 

Pixel-wise 

BAC detection 

 



23 
 

Conclusions 

In the framework of ongoing efforts aiming to reduce gender-based disparities in cardiac health 

assessment, BAC have emerged as a beneficial and cost-effective biomarker that can be easily 

obtained from the already established mammographic screening practices to improve women’s 

CVD risk stratification. AI-based tools can play a significant role in detecting and quantifying 

BAC reproducibly, without increasing the radiologists’ workload. Nevertheless, despite all 

promising results from previous studies, fully automated BAC quantification remains an open 

challenge, as BAC present with a complex topology, strongly influencing their appearance on 

different mammographic views, with a large spectrum of extent and x-ray attenuations. The patch-

based training models prove time-consuming and impractical for clinic [64], some models may 

mis-detect non-continuous BAC structures [66], [70], and improvements could be artificially 

inflated when BAC samples deviate from real-world prevalence, when the dataset is not sufficient 

to form a fully unknown test set, or when bias is introduced through image-wise data splitting [69], 

[70], [71]. Foremost, the available approaches still rely on manual pixel-wise BAC segmentation 

to train the models, thus being vulnerable to inter-reader variability, as highlighted in a paper by 

Trimboli et al. [72] in which the authors developed a semi-automatic tool for BAC quantification. 

In the future, weakly supervised approaches may overcome the need for images annotated on a 

pixel basis as ground truth, further reducing operator-dependency and facilitating their translation 

from research into clinical practice.   
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Section II:  

 

Development of an innovative deep learning 

approach for detection and quantification of 

BAC 

 

 

 

Based on: 

- N Mobini, M Codari, F Riva, MG Ienco, D Capra, A Cozzi, S Carriero, D Spinelli, RM 

Trimboli, G Baselli, and F Sardanelli. Detection and quantification of breast arterial 

calcifications on mammograms: a deep learning approach. European Radiology (2023)  

DOI: 10.1007/s00330-023-09668-z  
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Background  

Cardiovascular diseases (CVD) are the leading cause of death in the female population [72]. 

Although it is commonly assumed that males have a greater mortality rate from CVD [3], almost 

as many women as men die from heart disease yearly. Traditional approaches for cardiovascular 

risk assessment perform worse in women [9], [73], as up to 20% of women’s cardiovascular 

adverse events occur in the absence of traditional risk factors [74], and women are less likely to 

be prescribed CVD prevention therapy in primary care settings [75]. Hence, innovative imaging 

biomarkers that could improve cardiovascular risk stratification in women have been proposed 

over the last two decades [31]. 

In particular, breast arterial calcifications (BAC) have been suggested as a sex-specific 

predictor of cardiovascular risk [13], [29], [30], [76], [77], [78], [79]. BAC are a common 

incidental finding on mammograms, where they appear as parallel linear opacities within vessel 

walls (illustrated in Figure 1) [13], [76]. Their approximate prevalence, although in a wide range, 

has been estimated around 13% [27], [29], [35], [78], [79]. BAC presence has been associated with 

a 1.23 increased risk of CVD in postmenopausal women [29] and has higher diagnostic accuracy 

than other traditional cardiovascular risk factors in asymptomatic middle-aged women, especially 

under 60 years of age [30], [78], [79].  

Considering the widespread diffusion of screening mammography [10], [11], systematic 

BAC assessment could provide a low-cost cardiovascular risk stratification in women without any 

additional tests. Although most radiologists are aware of the link between BAC and CVD, BAC 

reporting in routine mammography interpretation is scarce [34], being further prevented by the 

lack of standard BAC reporting guidelines and of reliable and quick methods for BAC detection 

and quantification [35]. As BAC vary considerably in size, length, and density, several methods 
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for BAC burden estimation have been proposed, either with manual semiquantitative scoring [27], 

[35] or with quantitative scoring based on automated segmentation by artificial neural networks 

[64], [69]. Despite promising results, these supervised algorithms still required time-consuming 

manual pixel-wise annotations in a large number of images for the training process. Conversely, 

deep learning (DL) algorithms and convolutional neural networks (CNN) trained by a simple 

dichotomic supervision to detection can provide higher robustness and lesser human image 

postprocessing workload [53], [80]. BAC positive (BAC+) and BAC negative (BAC-) annotation 

can be adopted in place of a full manual segmentation of BAC and throughout the work we name 

the former “weak supervision” as opposed to the latter. 

The objective of our study was to develop a weakly supervised deep CNN that can 

distinguish mammograms with and without BAC. Additionally, we aimed to obtain an estimate of 

the BAC burden as a by-product of our detection algorithm. To achieve this, we formulated the 

problem as a binary classification task and used an AI explainability algorithm to identify the 

approximate location of BAC, without relying on ground truth segmentation. 
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Methods 

Patient enrolment and data collection 

This retrospective study was approved by the local Ethics Committee (protocol code SenoRetro, 

approved on November 9, 2017, amended on May 12, 2021) and the need for informed consent 

was waived. We included a series of consecutive patients aged ≥45 years, who were referred to 

the IRCCS Policlinico San Donato between January and March 2018 to undergo spontaneous or 

organized population-based screening mammography.  

All included examinations were bilateral mammograms with cranio-caudal (CC) and 

medio-lateral oblique (MLO) projections, acquired using full-field digital systems (Giotto IMAGE 

3DL or Giotto TOMO series, IMS). Three readers (R.M.T., D.S., and S.C. with 10, 3, and 2 years 

of experience in breast imaging, respectively) reviewed the included mammograms to perform a 

patient-based classification as BAC+ or BAC-. BAC+ patients had at least one BAC detectable on 

a mammographic view, whereas all other patients were considered BAC-. A fourth reader (D.C. 

with 3 years of experience in breast imaging) then labelled each mammographic view of BAC+ 

patients as BAC+ or BAC-. All the labels were encoded in a database and served as the ground 

truth during training and testing of the BAC detection model.  

 

Clinical dataset preparation and pre-processing 

To preserve the age distribution of the positives, BAC+ data was divided into four age classes 

using our population’s age quartiles as thresholds: first class, 45 years–Q1; second class, Q1–Q2; 

third class, Q2–Q3; fourth class, Q3–maximum age of the participants (see   
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Results for details). Then, we performed a stratified split of the BAC+ dataset into three subsets 

within the classes to preserve the BAC+ age distribution: 70% of the random shuffled positive 

cases entered the training subset, 15% entered the validation subset to tune model hyperparameters 

based on the highest precision-recall curve (AUC-PR), and the remaining 15% entered the test 

subset to evaluate the performance of the final optimized CNN. Subsequently, the whole BAC- 

dataset was randomly partitioned into training, validation, and test sets containing 70%, 15%, and 

15% of the negative cases, respectively. The relevant BAC+ and BAC- splits were then 

consolidated to complete the three subsets. In other words, we combined the training divisions of 

BAC+ and BAC- to form the final training set, the validation divisions of BAC+ and BAC- to 

create the final validation set, and likewise the test divisions of BAC+ and BAC- to form the final 

test set. To account for class imbalance during model training [81], [82], the majority class (BAC-

) in the training subset was randomly under-sampled to reach a BAC+ prevalence of 30% at 

patient-level. The validation and test sets remained intact to mirror the real BAC prevalence. To 

eliminate any bias that may happen by allocating different views of a single case into different 

subsets, data splitting at patient-level preserved all the mammogram views of each case the same 

subset.  

The dataset consisted of images with various matrix sizes up to 3584  2816, depending 

on the compacting plates used during acquisition. Therefore, a pre-processing step was required to 

exclude non-tissue areas and normalize the signal intensities. Using histogram analysis following 

the Otsu’s method, we successfully extracted the tissue regions from the dark background pixels 

[83], [84]. After defining the smallest rectangular area surrounding the breast tissue, the cropped 

image was scaled to a fixed-size 1536  768 matrix that would define the size of the input layer of 

the CNN (Figure 5). Then, pixels belonging to the breast region were normalized to zero mean 
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and unit variance to improve the convergence of training, thus accounting for the high variability 

of mammogram pixel intensities caused by acquisition and biological factors like technical 

differences between mammography units and tissue density, as follows: 

𝑥𝑖
′ =

𝑥𝑖 − 𝜇(𝑥)

𝜎(𝑥)
 

where 𝑥𝑖
′ represents the normalized intensity of the ith pixel, μ is the mean, and σ is the standard 

deviation of the pixel values in the image. 

 

 

Figure 5 Overall workflow of the pre-processing step to exclude non-tissue areas. a a sample 

mammogram with a matrix size of 3580 × 2812, b the bimodal histogram (low intensities referring to the 

background, high intensities referring to the tissue) and the calculated Otsu's threshold, c the smallest 

rectangular contour surrounding the largest over-threshold area as the breast tissue, and d final cropped 

and padded image to a fixed-size matrix of 1536 × 768 
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Neural network architecture and implementation 

We implemented a BAC detection model using a deep transfer learning strategy [61] based on the 

16-layer pre-trained Visual Geometry Group (VGG16) image classification model with modifiable 

connection weights [57]. We replaced the last dense layer with two fully connected layers (256 

channels each) including leaky rectified linear unit activation functions (α = 0.3) trained from 

scratch, and a sigmoid activation function as final output layer, as appropriate for our binary 

classification problem (presence or absence of BAC). Next, we optimized the number of the initial 

convolutional layers to be fixed as “non-trainable layers” and of the later ones to be fine-tuned on 

the new binary classification. This was done by trial and error, each time training the modified 

CNN and assessing its performance on the validation set. The best-performing structure was found 

to be that with five fine-tuning layers. Figure 6 summarizes the complete architecture of the 

proposed CNN. VGG16 input structure constrained a fixed dimension of red-green-blue colour 

coding (Figure 6a); hence, grey-level mammograms were resampled to fixed-size 1536  768 

images and input three times in parallel (Figure 6b). Our model elaborated each mammographic 

view independently. 

We applied online data augmentation during training, including random rotations, 

width/height shift, horizontal/vertical flip, and zoom, as well as random Gaussian and salt-pepper 

noise addition to learn more robust features. During training, the Adam optimizer [85] was applied 

to minimise the binary cross-entropy loss (BCE) function. In addition to the data-level solution 

using random under-sampling, a class-balanced re-weighting strategy (weighted BCE) was also 

utilized to deal with the imbalanced dataset at algorithmic-level which automatically altered the 

loss inversely proportional to the class frequency, thereby assigning a higher weight to the minority 
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BAC+ class in the loss function (the number of positive and negative incidences are summarized 

in Table 3), helping to balance the impact of classes on the model's training process. 

 

 

Figure 6 General VGG16 architecture consisting of 13 convolutional layers (kernel 3 × 3, depth k), 5 

pooling layers (non-trainable), and 2 fully connected (FC, n: number of neurons) layers followed by a 

Softmax activation function to solve the multiclass classification problem (a), and the final CNN for 

automated binary BAC detection where the “non-trainable layers” exploited VGG16 transfer learning (b). 

Rectified linear unit (ReLU) activation functions (in model a) and leaky ReLUs (in model b) following 

each convolutional kernel are not shown 
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Learning rate was initially set to 10-6 and adjusted over the epochs using cosine annealing 

scheduler as follows: 

𝑙𝑟𝑥 = 𝑙𝑟 (
cos(𝑥𝜋

100⁄ ) + 1
2

⁄ ) 

where 𝑙𝑟 is the starting rate, x is the epoch number, and lrx is the learning rate at epoch x [86]. Due 

to the highly imbalanced dataset, the area under the PR curve was monitored and the parameters 

related to the maximum quantity provided the best model configuration at the end of each epoch. 

The number of epochs and batch size were empirically selected as 25 and 8 images, respectively, 

to optimize model performance while ensuring compatibility with the available hardware 

resources. Dropout regularisation was set to 0.3 for each dense layer. The proposed model 

summary, developed using Python V3.8.11 on a system with NVIDIA GeForce RTX 3080 and 

10GB vRAM, is represented in Figure 7. 

Finally, visual explanations of the proposed CNN were generated using the generalized 

gradient-weighted class activation mapping (Grad-CAM++) method after the deepest 

convolutional layer [87], [88], providing heat-maps highlighting the pixels that were significant 

for predictions. Simple binarization thresholding of the heatmaps in positive predictions enabled 

us to delineate an estimated BAC region from the total tissue. 

The time required for automatic mammogram classification and generation of Grad-

CAM++ heatmaps was recorded and reported as average image elaboration time. 
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Figure 7 Summary of the model implemented in Python 
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Quantification 

We assessed the correlation of the estimated BAC region delineated on the Grad-CAM++ in a 

subset of MLO views with manual measurements of calcified segments length obtained from a 

previously published study (Figure 8) [35]. The BAC length was calculated as follows: 

𝐵𝐴𝐶 =  𝑃 ∑ 1𝐺(𝑖)>𝑇ℎ

𝑛

𝑖=1

 

where 𝑃 is the pixel size, 𝑛 the total number of pixels in the image, and 𝐺(𝑖) the Grad-CAM++ 

heatmap value at pixel ith. 𝑇ℎ represents the best binarization threshold, which was set to 0.3 by 

trial and error. 

 

 

Figure 8 An example of manual BAC-length measurement (adapted from Trimboli et al. 2021 [35]) 

showing: a a single involved vessel, b opacification of the vessel from side to side, and c the resulting 

calcified segments of 125.05 mm 
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Statistical analysis 

The Kolmogorov–Smirnov test was used to assess the normality of the continuous variables' 

distributions; normal variables were reported as mean ± standard deviation (SD), whereas non-

normal variables were reported as median and interquartile range (IQR). The Mann-Whitney U 

test was performed to compare the age distributions in the BAC+ and BAC- groups; p values less 

than 0.05 were considered statistically significant [89].  

The overall diagnostic performance of the proposed CNN model was evaluated against the 

ground truth labels provided by the readers, using the following metrics: accuracy, balanced 

accuracy, precision, recall (sensitivity), F1 score, and area under the receiver operating 

characteristic curve (AUC-ROC).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
+  

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 
=

2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

where TP, TN, FP, FN denote the number of true positive, true negative, false positive, and false 

negative detections, respectively. Correlations were appraised by Pearson r or Spearman ρ as 

appropriate, and the resulting coefficients were interpreted according to Evans [90].   
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Results 

A total of 1557 patients underwent screening mammography at our institute between January and 

March 2018. After excluding patients younger than 45 years of age, 1493 women with a median 

age of 59 years (IQR 52–68) were finally included, for a total of 5972 mammographic views. BAC 

were present in 194 of 1493 women (13.0%) and 581 of 5972 views (9.7%), respectively (Table 

2). Prevalence of BAC increased with age, from 6.3% in the first age class (45–60 years), to 11.6% 

in the second age class (61–70 years), 34.3% in the third age class (71–73 years), and 38.2% in the 

fourth age class (74–87 years). The 194 BAC+ women had a significantly higher median age (70.5 

years, IQR 60–73) than the 1299 BAC- women (median 57 years, IQR 52–65, p < 0.001) (Figure 

9).  

 

Table 2 Study population 

 

Total 

Population 

BAC Positive BAC Negative 

Patient-level Image-level Patient-level Image-level 

Frequency 1493 194 581 1299 5391 

Prevalence 100% 13.0% 9.7% 87.0% 90.3% 

Age [IQR] 59 [52–68]  70.5 [60–73] 57 [52–65] 

IQR Interquartile range  
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Table 3 reports training, validation, and test sets composition. Following data partitioning, 

1042 women (4168 mammograms) were assigned for training, 222 (888 mammograms) for 

validating, and 229 (916 mammograms) for testing, each containing 398, 89, and 94 BAC+ views, 

respectively. To reduce class imbalance during model training we artificially increased the 

prevalence of BAC+ patients to around 30% in the training set by randomly under sampling BAC- 

mammograms from those assigned to the training dataset, reaching 1640 images from 410 women. 

Eventually, image-level BAC prevalence was lower, given that not all mammographic views of 

BAC+ patients showed BAC. BAC prevalence in validation and test sets was left unchanged 

(Figure 10).  

 

Table 3 Training, validation, and test set composition 

 
 Training Validation Testing 

BAC+ (n[%]) 398 (24.27) 89 (10.02) 94 (10.26) 

BAC- (n[%]) 1242 (75.73) 799 (89.98) 822 (89.74) 

Total images 1640 888 916 
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Figure 9 Age distribution of the study population (blue: non-BAC, orange: BAC) and the BAC's quartiles 

defining the age classes. First class, Minimum age (45 years)–Q1; second class, Q1–Q2; third class, Q2–

Q3; fourth class, Q3–maximum age of the participants (87 years) 
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Figure 10 Age distribution of the subsets (blue: non-BAC, orange: BAC). The training set was under-

sampled to a BAC prevalence of 30% to address the imbalanced dataset bias, while the validation and 

testing sets remained intact to reflect the real-world prevalence 
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Table 4 represents the overall corresponding image-level performances of the proposed 

CNN model in detecting the presence or absence of BAC in the subsets. Training was performed 

at image-level and optimised based on the highest AUC-PR. In the independent test set, the best-

trained CNN achieved a 0.95 accuracy, a 0.76 F1 score, and a 0.94 AUC-ROC, highlighting good 

overall performances in BAC detection. The training phase loss curves and the resulting ROC and 

PR plots are presented in Figure 11 and Figure 12, respectively. 

 

Table 4 Diagnostic performance of the model in detecting BAC on mammograms 

 TN TP FN FP Accuracy 

Balanced-

Accuracy 

Precision Recall 

F1 

score 

AUC-

ROC 

AUC-

PR 

Training 1222 312 86 20 0.93 0.88 0.94 0.78 0.85 0.96 0.93 

Validation 787 64 25 12 0.96 0.85 0.84 0.72 0.78 0.95 0.86 

Test 803 69 25 19 0.95 0.86 0.78 0.73 0.76 0.94 0.81 

TN true negative, TP true positive, FN false negative, FP false positive, AUC-ROC area under the receiver 

operating characteristic curve, AUC-PR area under the prediction-recall curve 
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Figure 11 The model loss curves on the training (blue) and validation (orange) datasets, over the epoch 

numbers 

 

 

 

Figure 12 ROC and PR plots of training (red line), validation (blue line), and test (green line) subsets 
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The Grad-CAM++ heatmaps across the convolutional layers of the fine-tuned VGG16 offer 

a visual explanation of the decision-making process by highlighting the significant regions for 

predictions, thereby opening the black box of the presented deep model. As illustrated in Figure 

13, with a confirmed BAC mammographic input, the heatmaps at the initial layers show diffuse 

and broad activations, primarily capturing basic edge and contour information. However, as we 

move deeper into the network and into the trainable layers, the heatmaps become progressively 

focused, recognizing more specific features, with the final layer showing the highest concentration 

of activation over the BAC area.  

 

 

Figure 13 Visual explanation of each convolutional layer to open the model's black box. Generally, the 

earlier blocks detect generic information such as edges and contours, while the deeper blocks capture 

high-level task-specific features 
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Accordingly, Figure 14 shows the performance of our CNN model through Grad-CAM++ 

heatmaps generated from the deepest convolutional layer. In true positive detections, BAC are 

accurately localized also when multiple incidences of BAC are present in the same view (Figure 

14a, a’). Furthermore, our CNN demonstrated to be capable of detecting even small or non-

continuous BAC occurrences (Figure 14b, c). Conversely, Grad-CAM++ heatmaps of true 

negative predictions emphasize BAC-like structures in the whole breast without reaching the 

threshold for BAC+ classification (Figure 15) and without being confounded by typically benign 

rounded micro calcifications or medical implants such as loop recorders and biopsy markers. 

Examples of wrong detection are reported in Figure 16. The average image elaboration time, 

including automatic BAC detection and Grad-CAM++ generation, was 0.80 ± 0.07 s. 

 

 

Figure 14 Grad-CAM++ heatmaps of the automatic detection results by the proposed model. Examples of 

true-positive cases with a, a′ a high burden of BAC in multiple vessels, b, b small BAC (arrows), and 

c, c′ non-continuous BAC 
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Figure 15 True-negative cases with confounding factors such as: a, a′ various benign calcifications 

unrelated to BAC, b, b′ an implantable loop recorder, and c, c′ a radiopaque biopsy marker. None of the 

structures coloured on the heatmaps reach the threshold for being finally detected as BAC and are 

correctly ignored by the model 

 

 

Figure 16 Examples of misclassification. a, a′ False-positive case with small calcifications within a 

Cooper’s ligament mistaken as BAC (arrow), b, b′ false-positive case with skinfold including cutaneous 

calcifications mislabelled as BAC (arrowhead), c, c′ false-negative case with small BAC concealed under 

dense tissue (circle) 
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A preliminary quantitative evaluation was performed on a subgroup of 57 patients with 

previous manual BAC length measurements. One patient had a discordant assessment of her BAC 

status between assigned label and BAC length measurement and was hence discarded. The analysis 

was therefore performed on MLO views of 56 BAC+ women aged 49–82 years. In total, 112 MLO 

views were analysed, and presence of BAC was reported in 95 of them. Automatic BAC burden 

estimation was performed by Grad-CAM++ heatmaps thresholding as depicted in Figure 17a. The 

automatically detected BAC region showed a strong correlation with the manually measured 

length (Spearman ρ = 0.88, p < 0.001) (Figure 17b).  

 

 

Figure 17 a Automatic segmentation of a BAC by thresholding the Grad-CAM++ heatmap of a 

mammogram with moderate burden of BAC (length 41 mm). b Scatterplot of the estimated BAC (y-axis) 

compared to the manually measured length (x-axis) for all 56 women in the subgroup (112 views) 
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Discussion and Conclusions  

We implemented a CNN for the automatic detection of BAC on mammograms. Our model showed 

good performances in BAC detection, with an AUC-ROC of 0.95 in the test set, and it proved 

capable of estimating BAC region with a correlation of 0.88 with manual measurements. The 

application time of our model was less than a second for each image, a time suitable for a swift 

integration in everyday clinical practice.  

In the framework of the research effort aiming to reduce the gender gap in CVD prevention 

and cardiovascular risk assessment [91], BAC stand out as a beneficial and low-cost biomarker of 

cardiovascular risk that can be easily obtained from the already established screening practice [12]. 

Nonetheless, BAC presence is seldom reported during mammography interpretation [34]: this can 

be ascribed both to the primary focus on cancer detection that clinicians keep in the context of 

mammographic screening and to the lack of fast, automated, and reliable tools for BAC detection 

and quantification. Therefore, automatic tools for BAC detection and quantification could 

overcome this issue without increasing the radiologists’ workload.  

A previous experience in BAC semiautomatic detection and quantification demonstrated 

that human detection is the main source of variability in developing an automated tool [92]. 

Therefore, we chose to address the classification problem by training a weakly supervised CNN, 

which may allow to partially overcome the intra and inter-reader variability. Our CNN was trained 

using image level labels in order to obtain as by-product then pixel-wise detection of BAC on 

mammograms. This strategy allowed us to reach high performances with an accuracy of 0.95, a 

recall (i.e., sensitivity) of 0.73, a precision (i.e., positive predictive value) of 0.78, and an AUC-

ROC of 0.94 in the independent test set, which consisted of 916 images. Furthermore, our model 
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proved to be capable of estimating BAC length with a strong correlation (ρ = 0.88) with manual 

annotation in a subset of 56 positive cases.  

Our performances are similar to those reported by previous studies: Khan and Masala [93] 

recently published a study on BAC detection using transfer learning, comparing the results 

obtained from different deep learning architectures trained on a small population of just 104 

mammograms from 26 patients. They reported an accuracy of 0.96 of VGG19, marginally lower 

than that yielded by deeper CNNs such as ResNet50 or DenseNet-121, which shown an accuracy 

of 0.97 and 0.98 respectively. In 2017, Wang et al. [64] developed a CNN for BAC detection using 

the mammograms of 210 women, 146 BAC+ and 64 BAC-, demonstrating a detection rate 

comparable to that of human readers, and a very strong correlation between the automatically 

estimated BAC area and the ground truth (Pearson coefficient 0.94). In 2021, Guo et al. [69] trained 

a Simple Context U-Net capable of segmenting BAC with a R2 correlation > 0.95 with ground 

truth. The estimated area using this model were strongly correlated with calcification volume (R2 

= 0.84) and calcification mass (R2 = 0.87) on breast computed tomography. However, some 

notable advantages of our model over these previously developed tools are worth noting. First, we 

did not input any information regarding BAC quantity for CNN training, whereas Guo and Wang’s 

works relied on manual, pixel-by-pixel BAC annotations as ground truth [64], [69]. Our weakly 

supervised approach yielded a twofold benefit: a considerable facilitation in the dataset formation 

(as our readers only had to classify each image either as BAC+ or BAC-) and a sizable 

computational efficiency, given that we obtained good estimations of BAC burden as a by-product 

of BAC detection using a relatively simple CNN, with fast processing times (around 1 s for each 

image). Furthermore, differently from previous works, we tested our model on an independent test 

set which reflected real world BAC prevalence (around 12%), whereas the datasets employed in 
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other works [64], [69] included a majority of BAC+ patients, which might have led to model 

overfitting [94]. Instead, we chose to artificially augment BAC prevalence to 30% only in the 

training set, in order to select the best performing hyperparameters for BAC detection, and then 

reverted to a 12% prevalence for validation and testing. Therefore, as we already tested the CNN 

on a realistic and imbalanced set, we hypothesise that our model’s performances will be stable and 

robust in the upcoming external validation, where BAC are the minority class.  

A visual examination of the wrong predictions by our model showed that the majority of 

false positives were due to small calcifications that mimicked BAC usual appearance, i.e., lined-

up, punctuated calcifications often within linear formations such as skin folds or Cooper’s 

ligaments (Figure 16a,b). Conversely, false negatives occurred in situations where BAC detection 

could be difficult also for trained human readers, such as BAC in dense breasts (Figure 16c) or 

very faint BAC. Of note, the latter could perhaps be of lower clinical value for CVD risk prediction. 

Our work presents some limitations. First, the model was trained and tested on a 

consecutive series of women from a single institution studied using two mammographic units from 

a single manufacturer. Even though our dataset consisted of over 1400 patients and we allotted 

15% of the dataset for independent testing, an external validation of our model on different 

machines is warranted. Second, the correlation coefficient of BAC burden estimation with manual 

measurement in our work (0.88) was marginally lower than those reported in previous studies 

(0.95 [69] and 0.94 [64]). However, we must note that differently from previous studies we did 

not train our model using manual segmentations as ground truth, and that extremely precise BAC 

segmentation may not be necessary from a clinical point of view. Indeed, according to the most 

recent meta-analysis on the association between BAC and CVD [26], only moderate and severe 

BAC (i.e., extensive calcifications on one or more vessels, clouding vessels’ lumen and involving 
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notable portions of their length – see Figure 6a) were associated with coronary artery disease. 

Therefore, our model would still allow to identify women at higher CVD risk, albeit with a less 

precise BAC segmentation. Third, we performed a stratified split of BAC+ cases into training, 

validation and test sets to preserve the BAC age distribution and avoid any age-related potential 

bias. However, this procedure might have introduced some degree of sampling bias, considering 

the age constrains in the randomization. Finally, we did not perform any experimental comparison 

between the performances of our model and that obtainable with other available CNN 

architectures, such as ResNet 50 or DenseNet. However, such comparison was beyond the aims of 

the present work.  

In conclusion, we developed a CNN that can detect BAC with good performance (AUC-

ROC of 0.94 in the test set) and can also output a segmentation of BAC with a very strong 

correlation with manual measurements (ρ = 0.88). The integration of our model to clinical practice 

could improve BAC reporting without increasing clinical workload, potentially facilitating large 

scale studies on the impact of BAC use as a biomarker to consistently guide cardiovascular risk 

assessment and management, ultimately contributing to raise awareness on women cardiovascular 

health in the context of mammographic screening practice. 
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Section III:  

 

Comparative study of CNN architectures for 

detection and quantification of BAC 
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Background 

Cardiovascular diseases (CVD) are the primary cause of mortality and morbidity in women 

worldwide [1], [2]. Traditional risk scores such as the Framingham score often underestimate the 

risk in women, leading to missed opportunities for early diagnosis and appropriate primary 

prevention [29], [76], [77], [79]. Over the past decades, breast arterial calcifications (BAC) have 

been advocated as a promising sex-specific biomarker of CVD to improve women’s cardiovascular 

stratification [12], [31], [78], [95]. BAC are medial calcium depositions detectable as parallel line 

opacities on about 13% of routine mammograms [14], [24] and have been shown to be associated 

with an elevated hazard of CVD, independent of most conventional risk factors such as smoking 

[22], [96], [97]. With the increasing use of mammography for breast cancer screening, BAC 

present an opportunity for CVD risk stratification in asymptomatic women [78], [98]. 

Nevertheless, their assessment is a time-consuming manual task, vulnerable to intra- and inter-

observer variability [35], [92]; also, the considerable diversity of BAC’s appearance and the lack 

of a standard reporting guideline limited their adoption as a robust imaging biomarker in clinical 

practice [13], [99].  

Automated methods using artificial intelligence (AI) have been recommended in the 

literature to overcome the intrinsic limitations of BAC detection [64], [66], [69]. The potential 

capability of deep learning (DL)-based approaches in extracting complex topologies of large 

datasets, could improve the reproducibility of diagnosis while reducing radiologists' post-

processing workload. A twelve-layer deep convolutional neural network (CNN) was the first DL 

model developed for pixel-wise patch-based BAC detection and exhibited comparable overall 

performances to a human expert considering the free-response receiver operating characteristic 

(FROC) analysis [64] analysis [64]. In subsequent studies, modified versions of U-Net were 
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explored for the similar purpose of segmenting calcified vessels and achieved higher levels of 

accuracy [66], [69]. However, training supervised learning models requires large-scale images 

with manual segmentation-level annotations, therefore still exposing the models to biases related 

to the inherent variability of human assessment. Nonetheless, techniques such as transfer learning 

from a pretrained CNN are well recognized to mitigate this issue [61], [62]. 

In a recent study [23] addressing automatic BAC detection and quantification, we proposed 

a novel transfer learning-based weakly supervised framework that effectively reduced operator 

dependency. By formulating the problem as a simple dichotomous classification task that only 

requires image-level annotations, i.e. BAC or non-BAC labels instead of time-consuming pixel-

by-pixel ground truth, the approach allowed estimation of calcified regions through weak 

supervision. Further improvements were achieved by fine-tuning a pre-trained VGG16 

classification model on challenging open-source datasets, allowing the transfer of previously 

acquired knowledge for solving the specific BAC classification problem, without starting from 

scratch. Despite the study demonstrated promising results in BAC recognition, it primarily focused 

on optimizing VGG16 architecture, leaving the exploration of the optimal models among the state-

of-the-art deep CNN networks as an open challenge subject to further research. 

In this article, we compare the performance of different neural network architectures using 

a deep transfer learning strategy and aim to find the best models for the binary classification task 

of discriminating mammograms with and without BAC. The findings would assist researchers in 

selecting exemplary networks for detecting BAC and developing efficient tools for early CVD risk 

stratification, with the potential for widespread integration into clinical practices. 
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Material and Methods 

Dataset description 

The dataset as well as the preparation process were similar to our previously published study ([23]. 

In summary, this retrospective single-center study included 1493 screening mammography exams 

acquired using full-field digital IMS systems (Giotto IMAGE 3D or Giotto TOMO series). Each 

examination consisted of bilateral craniocaudal (CC) and mediolateral oblique (MLO) view 

images of both breasts, which were reviewed by four expert readers and labelled as either BAC or 

non-BAC. These annotated labels were encoded as the ground truth for model training, 

hyperparameter tuning, and performance evaluation. As fully discussed earlier (also in Section II) 

[23], BAC incidence was found to be positively associated with women’s age [35] and therefore, 

a specific strategy was conducted to split the data while preserving BAC age distribution; 70% of 

the exams were allocated to the training subset, 15% to the validation subset, and the remaining 

15% to the testing subset. The training images were further randomly under-sampled reaching a 

BAC prevalence of 30%, to alleviate the classification bias toward the majority class of our 

imbalanced dataset [81], [82]. The validation and testing subsets were instead fully preserved to 

ensure an accurate representation of the real-world BAC prevalence. Similarly (as illustrated in 

Figure 5), the data preprocessing step involved extracting the breast regions from the dark 

background pixels by defining the smallest rectangular area surrounding the breast and rescaling 

the cropped images to a common fixed-size dimension of 1536  768 pixels accepted by all the 

networks. Histogram analysis and Otsu’s thresholding method were used to separate the image 

pixels into tissue and background [83], [84]. Next, over-threshold pixel values corresponding to 

the breast region were normalized to reduce the intensity variation of mammographic images 

caused by technical or biological reasons, thus enhancing the convergence of training. 
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Training setting 

Throughout the experiment, we used a total of eleven deep neural networks, namely Xception 

[100], VGG16, VGG19 [57], ResNet50V2, ResNet101V2, ResNet152V2 [101], MobileNet [102], 

MobileNetV2 [103], DenseNet121, DenseNet169, and DenseNet201 [67]. The models were 

previously pretrained on the ImageNet dataset, comprising more than 14 million annotated color 

images from 1000 categories [104], and were publicly available through Keras Applications. Then, 

we implemented a uniform transfer learning strategy and a harmonized set of hyperparameters 

across all the networks to directly compare the performance of the various architectures, regardless 

of specific optimization. Since the source and our target datasets were from disparate domains, the 

classification layer of each was replaced with two randomly initialized fully connected layers 

followed by a sigmoid activation function in the output layer, as appropriate for the binary BAC 

classification task. For transferring knowledge, all layers in the convolutional base except the last 

were kept frozen with initial pre-trained weights, while the rest of the deeper layers and the new 

classification top were fine-tuned on the mammographic dataset specifically, as illustrated in 

Figure 18. 

The training and evaluations were implemented using Keras and TensorFlow2 framework 

of Python V3.8, on a system equipped with Intel Core i7-10700KF CPU, NVIDIA GeForce RTX 

3080 card, and 10GB video memory (vRAM). Each network was retrained over 100 epochs, with 

a batch size of eight images limited by the available graphic processing unit (GPU) memory. The 

Adam optimizer with an initial learning rate of 10-3 decayed by a cosine annealing scheduler was 

exploited to minimize the binary cross-entropy loss [85], [86]. Furthermore, augmentation 

techniques including random rotation, shifting, flipping, and zooming were applied online to the 

training data to avoid overfitting and improve robustness of the classifications [105], [106]. Model 
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checkpoint executed on the validation subset while tuning the hyperparameters and the best-

performing configuration was saved at the end of each training.  

 

 

Figure 18 The transfer learning strategy using fine-tuning. FC, fully connected 

 

 

Performance evaluation 

The Kolmogorov–Smirnov test was used to evaluate the normality. The continuous variables were 

presented by mean ± standard deviation (SD) or median and interquartile range (IQR) according 

to their distribution. Further, the Mann–Whitney U test was adopted to evaluate the age distribution 

disparities between the BAC and non-BAC groups, where a p-value less than 0.05 was considered 

statistically significant [89]. 
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The overall diagnostic performance of the models against the ground truth labels was 

evaluated using the receiver operating characteristic curve (ROC) and area under the curve (AUC), 

independent of classification thresholds. Then, the true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) values were calculated at an optimal cutoff point, 

corresponding to the maximum F1 score achieved by each network on the validation dataset. The 

F1 score is a harmonic mean of precision and recall metrics that sought to balance the concerns of 

both classes in our binary classification problem: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 
=

𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
 

Furthermore, we conducted a qualitative evaluation of the models' detection and 

localization abilities using the generalized gradient-weighted class activation mapping (Grad-

CAM++) method, which can provide promising reader-interpretable visual explanation of the 

CNN models in the presence of multiple object instances within a single image, compared to the 

state-of-the-art [87], [88]. The technique exploited the last convolutional layer's rich semantic and 

spatial information to generate a heatmap that highlighted the most informative pixels contributing 

to the decision-making process of the network [88], [107]. To rank these visual explanations in a 

somewhat quantitative manner, we assessed the spearman correlation coefficient of the estimated 

calcified region delineated through thresholding of the heatmaps [23], against the corresponding 

manual measurements of BAC lengths previously measured in a subgroup of BAC exams with 

MLO views [35]. 
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Results 

The ground truth annotation indicated the presence of BAC in 194/1493 women (13.0%) and 

581/5972 images (9.7%). The participants' median age was 59 years (interquartile range (IQR) 

52−68), where women with BAC had a significantly higher median age of 70.5 years (IQR 60–

73) compared to non-BAC women (median age 57, IQR 52–65, p < 0.001). Following data 

partitioning, 410 women were assigned for training (1640 views, including 398 BAC), 222 for 

validating (888 views, including 89 BAC), and 229 for testing (916 views, including 94 BAC). 

The training subset BAC prevalence was artificially increased by random under-sampling to 

address the class imbalance bias. Table 3 presents the final composition of the subsets. The patient-

level data splitting prevented biases that could arise from allocating different views of an 

individual to different subsets. 

Figure 19 shows the CNNs’ learning curves during the training and validating processes. 

The ROC curves and AUC values derived from fine-tuning each network on the mammographic 

dataset are presented in Figure 20. The AUC values above 0.80 in the training dataset achieved 

by MobileNet, VGG, and DenseNet architectures indicated their good discriminatory ability 

between BAC and non-BAC images. The performances could be further confirmed by assessing 

the independent test subset, where VGG16, MobileNet, and DenseNet201 achieved the most three 

accurate detections with AUC values of 0.79, 0.78, and 0.77, respectively. On the other hand, 

ResNet152V2 (0.67) and Xception (0.63) exhibited a comparatively lower performance, while 

ResNet101V2 demonstrated the worst result yielding an AUC of 0.51, close to a random chance 

classifier. Considering the convergence failure of ResNet101V2 also on the training and validation 

subsets, the network was eliminated from further analysis. 
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Figure 19 Learning curves (AUC-PR for training and validation) of the selected CNN architectures over 

100 epochs. Due to the highly imbalanced dataset, the area under the precision-recall curve was 

monitored and the parameters pertaining to the maximum quantity generated the models configurations 
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Figure 20 ROC curves and AUC values for each of the networks  
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Table 5 reports the quantitative prediction results of the networks at their optimal operating 

point. Among the models tested, VGG16 (0.53), MobileNet (0.51), and VGG19 (0.46) achieved 

the highest F1 scores, while ResNet50V2 (0.33), Xception (0.31), and ResNet152V2 (0.29) placed 

at the bottom. In terms of true positive detections, VGG16 ranked first correctly identifying 47/94 

BAC images in the testing subset, higher than VGG19 and MobileNet each with 38/94 and 34/94 

correct BAC detections. The architecture characteristics and the computational loads are 

summarized in Table 6. In general, fine-tuning each epoch of the pre-trained models on our 

mammographic dataset took between 241 seconds for lightweight MobileNet to 271 seconds for 

ResNet152V2 with the highest total number of parameters (around 59.5 million). 

 

Table 5 Classification performances of the fine-tuned models 

 Training Validation Testing 

TN TP FN FP F1 TN TP FN FP F1 TN TP FN FP F1 

Xception 1192 146 252 50 0.77 772 22 67 27 0.32 767 27 67 55 0.31 

VGG16 1219 260 138 23 0.76 762 44 45 37 0.52 785 47 47 37 0.53 

VGG19 1216 237 161 26 0.51 761 40 49 38 0.48 787 38 56 35 0.46 

ResNet50V2 1209 125 273 33 0.61 784 22 67 15 0.35 801 23 71 21 0.33 

ResNet152V2 1225 83 315 17 0.33 791 22 67 8 0.37 809 18 76 13 0.29 

MobileNet 1242 247 151 0 0.62 793 36 53 6 0.55 817 34 60 5 0.51 

MobileNetV2 1232 280 118 10 0.45 778 34 55 21 0.47 781 27 67 41 0.33 

DenseNet121 1215 187 211 27 0.61 777 32 57 22 0.45 800 30 64 22 0.41 
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DenseNet169 1196 199 199 46 0.49 763 37 52 36 0.46 784 34 60 38 0.41 

DenseNet201 1227 141 257 15 0.81 790 32 57 9 0.49 807 26 68 15 0.39 

TN true negative, TP true positive, FN false negative, FP false positive, F1 F1 score 

 

 

 

Table 6 Comparison of the deployed networks characteristics 

Network Depth Number of parameters (106) Model size 

(MB) 

Training 

time (s)/ 

epoch (s) 

Testing 

time (ms)/ 

image 

Total Trainable 

Xception 36 22.04 4.34 117 251.6 39.4 

VGG16 16 15.11 2.75 78.7 255.2 31.2 

VGG19 19 20.42 2.75 99 262.6 38.4 

ResNet50V2 50 24.74 2.23 111 242.5 28.0 

ResNet152V2 152 59.51 2.23 245 271.2 61.8 

MobileNet 28 3.88 1.71 28.1 241.1 15.9 

MobileNetV2 53 3.04 1.20 21.2 245.9 18.9 

DenseNet121 121 7.69 0.69 35.8 246.1 30.7 

DenseNet169 169 13.62 1.02 61.4 249.3 39.3 

DenseNet201 201 19.43 1.16 84.8 261.4 47.8 
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Several examples of the Grad-CAM++ heatmaps generated from image-level ground truth 

are presented in Figure 21, for an intuitive comparison of the best performances within various 

burden of BAC. The localization maps mainly emphasized the regions of BAC, while de-

emphasizing the overall breast with varying extent of precision. Among them, the heatmaps 

created by the VGG architecture explicitly outperformed those by the others in the majority of 

examples and provided discriminative image regions of interest that could accurately localize the 

area related to BAC with finer-grained details. Additional examples of wrong predictions are 

presented in Figure 22. A visual assessment of the false negative detections revealed that variables 

such as dense tissue or faint BAC affected the models' accuracy in predicting the presence of BAC, 

but no consistent patterns were observed across different CNNs in the false positives. 

The superiority of the VGG16 architecture in estimating BAC region was further supported 

by the Spearman's rank correlation analysis (Spearman ρ = 0.68, p < 0.001), performed in a 

subgroup of 56 exams comprising 94 BAC out of 112 total views (Figure 23). Meanwhile, the 

MobileNet ability to accurately visualize BAC areas within the images appeared inadequate and 

showed a poor correlation with the manually measured length, despite the good quantitative 

classification results.  
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Figure 21 From left to right: original images (cropped to minimize the background), and examples of 

Grad-CAM++ heatmaps with the binary predicted labels (BAC:1 and non-BAC:0) generated from 

Xception, VGG16, VGG19, ResNet50V2, ResNet152V2, MobileNet, MobileNetV2, DenseNet121, 

DenseNet169, and DenseNet201. ResNet101V2 was excluded from the analysis due to its limited ability 

to effectively learn BAC features 
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Figure 22 Examples of misclassifications. From top to bottom: a positive case with minor BAC 

concealed under dense breast tissue (circle) misclassified as negative, and two negative cases with benign 

calcifications and skinfolds mistaken as BAC by some CNNs 
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Figure 23 Scatterplots comparing the estimated BAC length (y-axis) and the manual length 

measurements (x-axis) in a subgroup of 56 women with 112 MLO views (red line, linear regression). Key 

statistics, including Spearman’s rank correlation coefficient (rho) and p-value (p), are provided in the 

lower right corner of each plot 
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Discussion and Conclusions 

In this work, we implemented different pretrained convolutional neural networks of varying depths 

and explored their performances for the automatic detection of BAC, a mammographic finding not 

related to breast cancer, which has been recently identified as a women-specific biomarker of 

cardiovascular risk. The performance ranking of the CNNs on the mammography dataset revealed 

that increasing depth and complexity may not necessarily improve the classification outcomes, as 

the best results were obtained by using relatively shallow models like VGG and MobileNet 

architectures in terms of higher AUC-ROC values. The highest F1 score and best visual 

explanation has been obtained by VGG16. When a biomarker like BAC is under consideration, 

these results play in favour of lightweight models be implemented quickly and efficiently even 

with limited hardware resources. 

The use of AI networks, particularly DL-based approaches, has been explored in several 

studies as a solution to overcome the intrinsic limitations of manual BAC assessments [64], [66], 

[69]. Nonetheless, they predominantly relied on pixel-level segmentation, demanding meticulous 

manual annotation and often subject to observer variability. Therefore, the current study addressed 

the BAC classification problem based on a recently developed transfer learning-based weakly 

supervised framework that allows for estimation of calcified regions using only image-level 

annotations, thus further reducing operator dependency and radiologists’ workload [23]. The shift 

toward transfer learning as a potential solution to the data scarcity problem, leveraged previously 

acquired knowledge of a well-established CNN network from large annotated open-source datasets 

and efficiently fine-tuned the relevant learned features for the specific BAC classification task in 

hand, rather than training from scratch [23], [61], [62]. 
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According to our results in the testing subset, VGG16, MobileNet, and DenseNet201 

exhibited the most accurate BAC detections with AUC-ROC values close to 0.80. In this setting, 

depth and complexity of the neural networks do not necessarily guarantee superior performance in 

classifying mammography images. Both VGG16 and MobileNet are relatively shallow networks. 

VGG16 is characterized by a straightforward sequential architecture with small 3  3 convolutional 

filters, allowing a more focused learning of relevant features, effective in various computer vision 

tasks [57]. MobileNet uses depth-wise separable convolutions that reduces the overall number of 

parameters, making it a lightweight and efficient model for mobile and embedded vision 

applications [102]. The other tested architectures, such as Xception and ResNetV2 [100], [101], 

are also recognized for their efficacy in attaining state-of-the-art results, though their performances 

may be influenced by the specific characteristics of the dataset and task at hand. The superiority 

of smaller networks to their deeper counterparts, when it comes to medical dataset often with 

limited number of samples, have also been observed in some other studies exploring DL techniques 

for a wide variety of diagnostic medical imaging applications such as chest x-ray classification or 

breast cancer diagnosis [108], [109].  

The qualitative assessment of performances through generalized Grad-CAM 

complemented the quantitative analysis based on the AUC-ROC and F1 score metrics. Notably, 

the inherent simplicity and uniformity of the VGG16 architecture facilitated a more precise 

representation of the distinctive patterns associated with BAC on mammograms. These heatmaps 

hold potential for application in weakly-supervised segmentation, as we previously elaborated in 

[23], wherein BAC localization is achieved by a CNN trained only on image-level labels, without 

requiring pixel-by-pixel ground truth annotations. Consequently, an estimation of the BAC burden, 

as a by-product of the automatic detection framework, could be obtained by using simple 
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thresholding and segmenting out the most intense pixels of the Grad-CAM++ heatmaps which 

encapsulated calcified areas of the original image. Furthermore, this visual approach introduces 

the prospect of integrating human expertise into the decision-making loop, as clinicians could 

contribute their insights to further refine the segmentation or improve the CNN model based on 

the visual cues provided by the heatmaps.  

The comparability of our method and the other cited research may be limited as detailed 

BAC segmentations were mostly used to evaluate the outcomes [64], [66], [69]. The original study 

that proposed the novel weakly supervised BAC detection framework, achieved a promising 

performance by fine tuning VGG16 with an AUC-ROC of 0.94 in the testing subset and a strong 

correlation with manual BAC measurements (Spearman ρ = 0.88, p < 0.001) [23], surpassing all 

models in our analysis. Indeed, in the current experiment, a uniform transfer learning strategy 

followed by a harmonized hyperparameter set were adopted across all networks, which were 

probably not selected as precisely as in [23], since our priority was comparing architectures rather 

than optimizing each model. Furthermore, all models were evaluated on an independent testing 

subset reflecting real-world BAC prevalence of around 12%, as in the original research [23]. This 

realistic imbalanced subset ensures the CNNs’ stability and robustness for future studies with BAC 

as the minority class, in contrast to the previous research that predominantly included BAC exams, 

risking model overfitting. 

The present study has some limitations. First, the dataset included in this retrospective 

analysis was obtained from a single imaging center using two mammographic devices by the same 

manufacturer, which may introduce potential biases and constrain the generalizability of the 

findings. Second, while using a uniform training strategy across all neural network architectures 

enabled a fair comparison, it may limit the full potential of each model. Further research is 



71 
 

warranted to explore customized configurations tailored to the unique characteristics of each 

architecture to exploit their maximum capabilities and optimize their performances. Lastly, the 

chosen metrics for performance evaluation provide robust insights, yet the clinical relevance of 

these metrics to real-world patient outcomes remains an area for future investigation. 

In conclusion, this study demonstrated the efficacy of employing deep transfer learning-

based approaches for BAC on mammograms, where networks such as VGG16 and MobileNet 

outperformed their deeper more complex counterparts. The competitive performance and notable 

computational efficiency of simpler networks highlighted the viability of adopting such models in 

clinical settings with substantial savings in both time and resources. Our extensive experiment and 

evaluations, both quantitative and qualitative, could provide valuable insights for researchers in 

selecting exemplary network architectures for automatic BAC detection and developing efficient 

tools for early CVD risk stratification in asymptomatic women. Further research is required to 

address the limitations and validate the models using a larger diverse study population, ultimately 

paving the way for integrating the models into clinical practices without any time loss for 

radiologists and fostering awareness of women's cardiovascular health in the context of widespread 

mammographic screening programs. Conversely, the use of mammographic images for 

cardiovascular risk stratification could be an added new motivation for participation to screening 

mammography programs, thus reinforcing its value also for secondary prevention of breast cancer 

in the female population [31]. As the field continues to evolve, a balance between diagnostic 

accuracy, computational efficiency, and real-world applicability will be crucial.  
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