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Abstract: The EU market offers different types of milk, distinguished by origin, production method,
processing technology, fat content, and other characteristics, which are often detailed on product
labels. In this context, ensuring the authenticity of milk is crucial for maintaining standards and
preventing fraud. Various food authenticity techniques have been employed to achieve this. Among
them, near-infrared (NIR) spectroscopy is valued for its non-destructive and rapid analysis capabil-
ities. This study evaluates the effectiveness of a miniaturized NIR device combined with support
vector machine (SVM) algorithms and LDA feature selection to discriminate between four commercial
milk types: high-quality fresh milk, milk labeled as mountain product, extended shelf-life milk, and
TSG hay milk. The results indicate that NIR spectroscopy can effectively classify milk based on the
type of milk, relying on different production systems and heat treatments (pasteurization). This capa-
bility was greater in distinguishing high-quality mountain and hay milk from the other types, while
resulting in less successful class assignment for extended shelf-life milk. This study demonstrated
the potential of portable NIR spectroscopy for real-time and cost-effective milk authentication at the
retail level.

Keywords: near-infrared spectroscopy (NIR); fatty acids; milk authentication; support vector machine

1. Introduction

The EU is the second largest milk producer globally, having delivered approximately
160 million tons of raw milk in 2022 [1]. Dairy production is a key pillar of the agricultural
sector, representing more than 12% of total agricultural output in the EU [2]. In this context,
Italy contributes to EU milk production with 14 million tons, accounting for 8.7% of total
production, with 3000 processing plants employing 25,000 people [3].

A myriad of drinking milk types are commercialized in the EU, distinguished by
their origin (i.e., geographical, species), production method (i.e., conventional, organic,
mountain, hay milk), processing technology (i.e., raw, fresh, extended-life, ultra-filtrated,
ultra-heated milk), fat content (i.e., whole, skimmed, or semi-skimmed milk), and other
types (A2 milk, flavored milk, lactose-free milk) [4]. Such information is detailed on the
labels, in compliance with EU food law or national legislation [5,6], but, in certain cases,
these details may not be easily comprehensible or may be misunderstood by consumers.

This intricate spectrum of products has emphasized the importance of developing
robust methods to ensure the authenticity of milk [7]. These methods contribute to verifying
the adherence of the products to standards and regulations, preventing milk fraud and
adulteration, and safeguarding the interests of producers and consumers.

Numerous food authenticity techniques have been extensively described in the recent
literature [8–10]. Some of these techniques include spectroscopy, chromatography, isotopic
and elemental techniques, nuclear magnetic resonance (NMR), sensory analysis, and molec-
ular and immunological techniques. These enable the identification of specific indicators or
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characteristics unique to each food. Among these, fatty acids (FAs) composition, investi-
gated by chromatographic analysis, has been effectively employed to discriminate different
milk labels (such as mountain milk and hay milk from conventional milk) [11,12] at retail.
However, the analytical protocol for FAs analysis, including fat extraction and quantifi-
cation, FAs derivatization to their methyl esters (FAMEs), and chromatographic analysis
(including calibration for FAs quantification), requires considerable time and resources.
Which limits its practicality for routine use, especially in authenticity studies.

Conversely, near-infrared (NIR) spectroscopy is a powerful analytical technique widely
used in food authentication due to its non-destructive nature, rapid analysis, environ-
mental sustainability, and ability to provide detailed chemical information about food
samples [13,14]. NIR spectroscopy is based on the principle of interaction between near-
infrared light and the molecular vibrations of food components. When a sample is exposed
to NIR radiation, certain wavelengths are absorbed by the sample’s chemical bonds, while
others are transmitted or reflected. The resulting absorption spectrum contains valuable
information about the molecular composition of the sample [15]. After data acquisition,
different chemometric methods, including exploratory data analysis such as principal
component analysis (PCA), regression (PLS), and classification methods (PLS-DA, LDA,
SIMCA), are applied to interpret the complex spectral information and extract meaningful
insights [16–18]. Chemometric models are developed using mathematical algorithms to
correlate the spectral data with specific parameters of interest, such as moisture, fat, protein
content, and food adulterants [19].

The increasing availability of portable NIRS technology has facilitated the exploration
of several supervised techniques, including the support vector machine (SVM). Origi-
nally developed as a binary classifier, SVM has since been extended to handle multi-class
problems through the use of kernel functions. Known for its simplicity and flexibility in
classification, SVM is particularly valued for its computational efficiency and ability to
achieve high performance compared to other machine learning classifiers [20]. However,
a key challenge is the selection of the optimal kernel and its parameters, which can also
be combined with data dimensionality reduction methods such as principal component
analysis (PCA). PCA reduces data dimensionality by identifying principal components
(PCs), which are orthogonal, uncorrelated, linear combinations of the original features that
capture the maximum variance in the data [21]. PCA offers significant benefits, including
improved generalization by minimizing noise and greater computational efficiency through
feature reduction. This results in more robust models and faster training and prediction pro-
cesses. By relying on PCs rather than raw spectra, the classifier gains accuracy. PCA-SVM
classifiers have achieved high accuracy in distinguishing between different products such
as honey [22], tea [23], and persimmons [24]. Recent studies have also demonstrated the
effectiveness of PCA-SVM with Fourier-transform mid-infrared (FT-MIR) spectroscopy for
non-destructive classification of milk based on geographical origin, achieving classification
rates close to 95% [25]. Despite these advantages, PCA requires all the original features to
derive the principal components, and these are often more difficult to interpret than the
original data.

The classification accuracy of SVM can be improved using linear discriminant anal-
ysis (LDA), a linear classification method that maximizes the variance between groups
and minimizes the variance within categories [26]. Because of its ability to reduce data
dimensions, LDA facilitates data analysis and increases classification accuracy by better
separating different classes [27]. Some studies aimed at determining the geographical
origin of food have implemented the use of PCA prior to dimension reduction with LDA
and classification with SVM [25,28,29].

In the dairy sector, NIR spectroscopy offers several advantages for authentication,
including real-time analysis, minimal sample preparation, high throughput, and cost-
effectiveness. It could be applied across various sectors of the dairy chain, including
animal feed, raw milk production, milk processing, and cheese assessment, to verify the
authenticity, quality, and safety of dairy products [30].
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In recent years, the commercialization of several types of miniaturized NIR instru-
ments [31–33] has brought significant advancements and new opportunities in the field of
NIR application to milk authentication [30,34]. One of the primary advantages of minia-
turized NIR instruments is their compact size and portability. They could be used for
on-site analysis in various settings, like processing plants and field environments [35,36].
This portability facilitates real-time monitoring, rapid screening, and in situ measurements,
offering greater flexibility for users [37]. In addition, they are more cost-effective if com-
pared to traditional benchtop spectrometers. Indeed, their smaller size and simplified
design enable manufacturers to offer these instruments at lower price points, making
NIR spectroscopy more affordable and accessible to a broader range of users, including
researchers and field technicians. On the other hand, they might have limitations in terms
of performance compared to traditional benchtop spectrometers. Factors such as lower
spectral resolution, reduced signal-to-noise ratio, and narrower spectral range may impact
the accuracy, precision, and sensitivity of measurements, particularly for complex samples
or analytes present at low concentrations [38].

In this study, we aimed to evaluate the effectiveness of a miniaturized NIR device
combined with advanced chemometric techniques for the discrimination of four types of
commercial milk: hay milk, fresh milk labeled as mountain product, high-quality fresh
milk, and extended shelf-life milk. Our primary goal was to assess the device’s capability
to accurately classify milk samples based on their characteristics. To achieve robust clas-
sification, we employed LDA and support vector machine (SVM) algorithms to analyze
the data generated by the NIR device. This approach allowed us to determine the device’s
discriminatory power and its potential utility for practical application in quality control
and authenticity verification in the dairy industry.

2. Materials and Methods
2.1. Milk Samples

Eighty cartons or bottles of milk, depending on the producers, were purchased from
several supermarkets in northern Italy. The milk was of four different types: high-quality
fresh milk (HQ), mountain milk (MM), extended shelf-life milk (ESL), and hay milk (HM).
Milk samples were collected on a weekly basis, spanning from March to September 2022,
resulting in a total of 80 samples, 20 packs for each milk type. In pursuit of a compre-
hensive and representative selection, a variety of milk brands were included, guided by
market availability during each respective sampling week. Only refrigerated full-fat milk
samples with a shelf-life of fewer than 30 days were considered eligible for inclusion in this
study, thereby focusing on products with a relatively short time frame from production
to consumption.

This study encompassed four distinct types of retail milk, each contributing to the
overall diversity of the dataset. The first type of milk was high-quality fresh milk (HQ)
from intensive production systems. High-quality fresh milk derives from raw milk which
underwent a single heat treatment of pasteurization (heating to approximately 72 ◦C for
15 s) within 48 h of milking to make it suitable for human consumption.

The second type was fresh milk labeled as mountain milk (MM). Mountain product is
an optional quality designation established by Regulation (EU) No. 1151/2012 on quality
schemes for agricultural products and foodstuffs [39]. The purpose of this designation is to
enhance the marketing of mountain products and is exclusively used to identify products
for which raw materials and animal feed essentially derive from mountain areas. The MM
collected in this study was high-quality fresh milk, thus underwent a single heat treatment
of pasteurization (approximately 72 ◦C for 15 s).

The third type of milk was extended shelf-life milk (ESL) from conventional production
systems. ESL was pasteurized at high temperature for a short time (135 ◦C for 1–2 s). The
shelf-life of ESL was around 20 days at refrigeration temperature.

The fourth type of milk was labeled as hay milk (HM). HM is a Traditional Specialty
Guaranteed label (TSG) introduced by Regulation (EU) no. 2016/304 [40]. The HM is a
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dairy product of cows bred in traditional dairy farms and fed by grass, legumes, cereals, and
hay without using fermented foods or supplying GMO feed. It is mandatory that, whatever
the season, roughage make up at least 75% of the yearly ration of dry feed. Fermented
fodder, such as silage, and fermented hay are strictly prohibited. The HM samples collected
in this study were pasteurized at high temperature for a short time (135 ◦C for 1–2 s).

One-liter milk packages were collected and transported under refrigerated conditions
to the university laboratories. Subsequently, approximately 60 mL of each milk type was
transferred to sterile plastic tubes (4 × 15 mL each) and stored at −20 ◦C until analysis.
The characteristics of the milk types used in this work are summarized in Table 1 along
with data on fatty acid classes (saturated, monounsaturated, polyunsaturated, odd- and
branched-chained) obtained on our previous investigation [41].

Table 1. Characteristics of milk, as indicated on the label, and average composition of FAs of samples
submitted to NIR analysis from previous published paper [41].

Label High-Quality
Fresh Milk (HQ)

Mountain Milk
(MM)

Extended Shelf-Life
Milk (ESL)

Hay Milk
(HM)

N 20 20 20 20

Heat treatment
◦C/s 72–80 ◦C/15–30 s 125–140 ◦C/1–10 s

Average fat content
g/L 36 37 36 36

Average energy content
kCal/100 mL 65 66 65 66

Average price at retail
€/L 1.28 1.58 1.57 1.72

Fatty acids 1

mg 100 mL−1 of milk p 3

SFAs 2 2060 ± 193.7 2202 ± 168.8 2067 ± 160 2120 ± 217.6 0.071
MUFAs 2 684 ± 59.0 708 ± 66.5 685 ± 47.1 698 ± 77.0 0.499
PUFAs 2 123 ± 13.8 127 ± 9.7 121 ± 11.0 137 ± 22.1 0.063
OCFAs 2 66 ± 6.7 b 75 ± 7.1 a 71 ± 7.0 b 75 ± 9.0 a 0.002 *
BCFAs 2 52 ± 4.6 d 69 ± 7.3 b 59 ± 6.4 c 79 ± 8.0 a 0.000 *

1 mean ± standard deviations. 2 SFAs: saturated fatty acids; MUFAs: monounsaturated fatty acids; PUFAs:
polyunsaturated fatty acids; OCFAs: odd-chain fatty acids; BCFAs: branched-chain fatty acids. 3 An asterisk (*)
and different superscripts in a row indicate significant differences (Kruskal–Wallis test, p < 0.05).

2.2. NIR Spectra Acquisition and Pre-Processing

An ultra-compact spectrometer, MicroNIR 1700 (VIAVI Solutions, Inc., San Jose, CA,
USA), was used to collect the spectrometric data, connected to MicroNIR Pro 3.2 software.
The device was equipped with the side view vial holder accessory that works in trans-
flectance mode. This instrument is based on thin film linear variable filter (LVF) technology
for the light dispersing element and works in the spectral region of 950–1650 nm, taking
measurements at 125 spectral points spaced by approximately 6.2 nm. A white and a dark
reference measurement was obtained using the dark-white reference assembly. The sensor
integration time was 10 ms, and each spectrum was the mean of 3 scans.

Each milk sample was incubated at 37 ◦C for 30 min in a controlled-temperature
bath (Grant Instruments, Royston, UK) before acquiring spectra. Three mL of each milk
sample was placed into a 4 mL glass vial, and analyses were carried out in triplicate. The
spectral data were exported in csv format for model development and statistical analysis.
Triplicate readings were averaged for data analysis. Data were divided into training and
validation sets with a ratio of 70:25, ensuring that each subset was representative of the
overall distribution. Feature normalization was performed independently on the training
and validation sets.
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2.3. Classification Models

Classification models were built by combining LDA and SVM algorithms.
NIR spectral data were used as input to LDA, a classification technique commonly

used in machine learning and pattern recognition. The linear method estimates the distance
of each observation to the multivariate mean of each group using the Mahalanobis distance,
and observations are classified into the closest group [42]. The LDA was performed using
the discriminant platform of JMP Pro 17.2.

The SVM was trained on both the NIR data and the canonical scores identified by
LDA. SVM is a supervised learning algorithm widely used to solve classification tasks.
Based on the training data where the responses are known, the algorithm (kernel function)
tries to find the optimal hyperplane, which can be used to classify new data points. The
most commonly used kernels include linear and the Radial Basis Function (RBF) that create,
respectively, a linear and a nonlinear hyperplane to separate the classes. The goal with
a SVM is to fit a model such that the error between a predicted response and the actual
response falls within a range of −ε to ε (insensitive region). The penalty associated with
misclassifying an observation in the training set represents the cost parameter (C). A higher
C parameter implements an algorithm that is less likely to misclassify a point in the training
set, whereas a lower C parameter produces a wider margin. The SVM model’s performance
depends on selecting the kernel and setting the parameters C and ε. Reducing ε usually
increases the size of C [43]. In addition to the C parameter, the RBF kernel involves the
definition of the gamma parameter (γ) that determines the amount of curvature there is to
the decision line. A higher Gamma value indicates more curvature. Both the linear and the
RBF kernels were tested using as minimum and maximum values for the parameters ε, C,
and γ the JMP Pro 17 statistical software default values (ε = 0.1; C = 0.01 to 5; γ = 0.001 to
0.5) and repeating the procedure 20 times.

The performance of classification models was measured based on the highest accuracy
rate calculated as the number of right classifications divided by the total number of obser-
vations. Multi-class confusion matrices were used for this purpose. To further evaluate the
classification performance of the algorithms, the confusion matrices were converted into a
one-vs-all type matrix (binary-class confusion matrix) to apply the following class-wise
metrics based on the number of true positives (TP), false positives (FP), and false negatives
(FN) from both dimensions of the matrix, with the remaining numbers contributing to true
negatives (TN) [43] as follows:

Sensitivity (true positives over the count of actual positive outcomes):

TP
TP + FN

(1)

Specificity (true negatives over the count of actual negative outcomes):

TN
TN + FP

(2)

MCC (Matthews correlation coefficient):

(TP × TN)− (FP × FN)√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

(3)

The range of this metric is from −1 to +1. In the case of an MCC of 1, we can assume
that FP and FN are equal to 0, whereas in the case of an MCC of −1, we obtain a classifier
that always misclassifies, hence we receive TP and TN equal to 0. As a rule of thumb,
values of 0.70 or higher and −0.70 or lower indicate a very strong positive or negative
relationship, respectively.

Statistical analysis and calibrations were performed using the statistical software JMP
Pro 17.2 (SAS Institute, Cary, CA, USA) with the spectral tools developed by Worley [44].
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3. Results and Discussion

In a previous study, we demonstrated that FAs profiling combined with statistical
analysis can be a useful tool to distinguish the different types of retail milk considered in the
study (HQ, MM, ESL, and HM). Data obtained through FAs analyses revealed significant
differences among the four types of milk. Briefly, these showed notable differences for
some FAs considered good markers of milk authenticity in terms of geographical origin
(mountain or lowlands) and production system (organic, conventional, grass-based, or
silage-based) [45,46], such as trans-C18:1 isomers, BCFAs, OCFAs, linoleic acid isomers,
rumenic acid (CLA), and n-3 PUFAs. We detected higher concentrations for these FAs
in HM, followed by MM, and then by HQ and ESL. In line with literature, these levels
are generally higher in milk from cows fed with fresh herbage and roughage, as opposed
to a corn silage-based diet [46]. We imputed these results to HM’s and MM’s product
specifications, which prohibit the use of fermented feeds and mandate minimum 75%
roughage in the annual dry matter cow ration (HM) and restrict the geographical origin of
feedstuffs to mountain areas (MM), where dairy farming is mostly based on local forage
production. On the contrary, we detected very few differences between HQ and ESL,
which probably derived both from conventional production systems commonly spread in
lowlands, where animals are mainly fed corn silage-based diets, characterized by lower
forage-to-concentrate ratios.

Although the analytical protocol used to characterize the FAs profile of the differ-
ent milk types provided interesting outcomes, it presents some limitations for routine
application, particularly in authenticity studies, due to the extensive time and resources
required. To address this, in this study, we explored NIR spectroscopy as a faster alternative
and tested the discrimination ability of the four groups of milk based on fast NIR spectra
acquisition combined with the use of machine learning techniques for classification.

Tables 2 and 3 show the predicted and actual results of the observations, along with
the overall accuracy, in the training and validation sets for the RBF kernel of NIR data and
LDA-NIR data, respectively.

Table 2. Confusion matrix of milk type classification using SVM based on NIR data.

Training Set (n = 55) Validation Set (n = 19)

Predicted Predicted
Actual HQ MM ESL HM

Overall
Accuracy

94.5%

Actual HQ MM ESL HM
Overall

Accuracy
63.2%

HQ 13
(92.9%) 1 0 0 HQ 2

(40.0%) 2 0 1

MM 1 11
(91.7%) 0 0 MM 1 3

(75.0%) 1 0

ESL 0 0 14
(93.3%) 1 ESL 0 0 3

(60.0%) 2

HM 0 0 0 14
(100%) HM 0 0 1 4

(80.0%)
HQ = high-quality fresh milk; MM = mountain milk; ESL = extended shelf-life milk; HM = hay milk; ( ) Accuracy
in prediction for each milk class.

Generally, the RBF kernel of the SVM based on NIR data and LDA provided the
highest overall accuracy for all milk types compared to the linear kernel. The combination
of LDA and SVM improved the overall classification accuracy in the validation set (from
63.2% to 73.7%), as well as the classification accuracy between classes, compared to the
NIR-based kernel. The accuracy in predicting MM, ESL, and HM in the validation set
was the same (75%, 60%, and 80%, respectively), but the LDA-based SVM was once more
accurate in predicting HQ samples (from 40% to 80% accuracy).
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Table 3. Confusion matrix of milk type classification using SVM based on LDA-NIR.

Training Set (n = 55) Validation Set (n = 19)

Predicted Predicted
Actual HQ MM ESL HM

Overall
Accuracy

81.8%

Actual HQ MM ESL HM
Overall

Accuracy
73.7%

HQ 11
(78.6%) 1 1 1 HQ 4

(80.0%) 1 0 0

MM 2 10
(83.3%) 0 0 MM 1 3

(75%) 0 0

ESL 0 0 14
(93.3%) 1 ESL 0 0 3

(60.0%) 2

HM 2 0 2 10
(71.4%) HM 0 0 1 4

(80.0%)
HQ = high-quality fresh milk; MM = mountain milk; ESL = extended shelf-life milk; HM = hay milk; ( ) Accuracy
in prediction for each milk class.

Interestingly, the LDA-SVM classification model applied to the NIR spectra of milk
samples exhibited a certain percentage of misclassification among the milk classes. Notably,
these misclassification errors primarily occurred between classes of milk that underwent
the same thermal treatment (HQ and MM; ESL and HM). These outcomes suggest that the
discrimination model based on NIR spectra and data analysis with variable selection based
on LDA could be able to detect compositional differences in milk imparted by thermal treat-
ment. Specifically, the HQ and MM classes were both subjected to standard pasteurization
(72–80 ◦C/15–30 s), while the ESL and HM classes underwent high-temperature pasteuriza-
tion (125–140 ◦C/1–10 s). This suggests that the model is sensitive to the changes induced
by these different thermal processes, enabling a distinction in composition reflective of
the treatment type, thus even HQ vs ESL. This outcome is very interesting since we were
not able to detect any effect of the thermal treatment by analysis of fatty acids esterified
in triacylglycerols of milk fat globules [41]. This could be imputed to thermal processing
causing greater modification in other, more heat-sensitive milk components, such as whey
proteins, vitamins, enzymes, and secondary compounds (i.e., furosine, hydroxymethyl-
furfural, and lactulose) [47,48]. We could hypothesize that these modifications altered
the spectroscopic properties of milk, affecting molecular vibrations and thus generating
different absorption spectra.

Since the combination of LDA-SVM showed greater accuracy, this combination was
chosen to further investigate the power of the discriminant model. Table 4 shows the
converted one-vs-all confusion matrices for each class of milk (HQ, ESL, HM, and MM) in
the training and validation sets using SVM based on LDA-NIR data.

Table 4. One-vs-all confusion matrices for each class of milk based on LDA-NIR data.

Training Set (n = 55) Validation Set (n = 19)

Predicted Predicted

Actual HQ NOT HQ Actual HQ NOT HQ
HQ 11 3 HQ 4 1

NOT HQ 4 37 NOT HQ 1 13

MM NOT MM MM NOT MM
MM 10 2 MM 3 1

NOT MM 1 42 NOT MM 1 14

HM NOT HM HM NOT HM
HM 14 1 HM 3 2

NOT HM 3 37 NOT HM 1 13

ESL NOT ESL ESL NOT ESL
ESL 10 2 ESL 4 1

NOT ESL 4 39 NOT ESL 2 12
HQ = high-quality fresh milk; MM = mountain milk; ESL = extended shelf-life milk; HM = hay milk.
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Table 5 shows the classification performance of the SVM RBF kernel based on the
class-wise metrics (sensitivity, specificity, and MCC) on LDA-NIR data.

Table 5. Classification performance of the SVM based on LDA-NIR data for each milk class.

Training Set (n = 55) Validation Set (n = 19)

Milk
Class

Sensitivity
(%)

Specificity
(%) MCC Milk

Class
Sensitivity

(%)
Specificity

(%) MCC

HQ 78.6 90.2 0.67 HQ 80.0 92.9 0.73
MM 83.3 97.7 0.84 MM 75.0 93.3 0.68
ESL 93.3 92.5 0.83 ESL 60.0 92.9 0.57
HM 71.4 95.2 0.70 HM 80.0 85.7 0.62

HQ = high-quality fresh milk; MM = mountain milk; ESL = extended shelf-life milk; HM = hay milk.

In the one-vs-all confusion matrix, it is observable that a good classification per-
formance was achieved in discriminating HQ vs NOT HQ (80% sensitivity, 0.73 MCC),
MM vs NOT MM (75% sensitivity, 0.68 MCC), and HM vs NOT HM (80% sensitivity,
0.62 MCC), while a lower performance in discriminating ESL vs NOT ESL (60% sensitivity,
0.57 MCC) was observed. These results seem to highlight a potential use of the portable
NIR spectroscopy to discriminate different milk types with different labeling through fast
in situ analysis.

The results from the classification of the different types of milk based on NIR obtained
in this study align with previous studies describing the possibility of using NIRS to dif-
ferentiate milk on the basis of the production system, mainly related to different diets
administered to the cows, at farm level. Particularly, Martin et al. [49] and Noziere et al. [50]
applied NIRS to bulk milk samples and differentiated between milk from grazing cows
and cows fed corn silage and between milk from cows fed hay and cows fed grass. Valenti
et al. [51] using a benchtop instrument (1100–2498 nm, reflectance mode) demonstrated
the capability of NIRS to efficiently discriminate between milk samples from the hay and
pasture-based systems and between milk samples from the corn silage and pasture-based
systems, while a lower efficiency of discrimination was found for milk samples from corn
silage and hay-based systems. The authors suggested spectroscopic methods (including
MIR and NIR) as useful tools to discriminate different feeding systems in cow milk pro-
duction chain at the farm level, with several parameters related to the farming system
well known: geographical origin of milk, milk yield and composition, average breed com-
position for the herd, altitude of the farms, type of feedstuff (pasture, hay, grass silage,
maize silage, or concentrate), and the estimated percentage of each feedstuff given to the
herd. At the same time, Manuelian et al. [52] evaluated the feasibility of using visible/NIR
spectroscopy (400–2500 nm, transmission mode) to discriminate organic from conventional
bulk milk. However, authentication of organic bulk milk failed, likely due to the similarities
in management and feeding of cows in the organic and conventional groups.

The abovementioned papers focused on spectroscopic data obtained using benchtop
instruments on tank milk samples from farms. In the present study, we tested the ability
of a portable NIR instrument to provide data (based on NIR spectra) suitable to detect
differences and discriminate the considered milk labels at retail level. Actually, results
from our discrimination model are based on data obtained from milk collected directly
on the market. This milk originates from supply chains for which there is limited specific
information available to authors, aside from the provisions stipulated by regulatory frame-
works and the voluntary certification standards adhered to by these two categories of milk:
Reg. EU 2016/304 for HM and Reg. EU 1151/2012 for MM. In this context, lacking specific
information directly linked to farms and relying solely on commercial labels at the retail
level, the ability to differentiate HM and MM using these techniques appears crucial for
ensuring traceability and authenticity assurance.

Regarding the analytical technique based on portable tool, some authors previously
compared models based on benchtop (1000–2500 nm, transmittance mode) and handheld



Foods 2024, 13, 3577 9 of 12

NIRS (908–1676 nm, reflectance mode), showing equivalent ability to predict the identity
of organic and conventional milk samples [34]. Some difficulties in classification were
encountered when milk samples from pasture-fed cows were also included, as their patterns
occasionally resembled those of the organic milk group. Furthermore, some authors
utilized NIR data to predict FAs with the aim of discriminating milk samples from different
production systems [45]. Notably, the n-3 PUFAs content of milk was predicted by NIR
spectroscopy (1000–2500 nm, reflectance mode) to discriminate milk samples from organic
and conventional production systems. A satisfactory prediction of α-linolenic acid and EPA
(while no reasonable data were obtained using rumenic acid) was reached through NIR
calibration equations, suggesting NIR as a fast and easy screening method to differentiate
milk production systems (organic vs conventional), reducing the quantity of extensive
and costly gas-chromatographic analysis necessary for FA profiling. In our research, the
differentiation of different milk types was observed using both a classification model
based on LDA-NIR data and the results obtained from chemical analysis of milk fat [41].
Interestingly, the latter suggested some individual FAs, particularly the iso form of some
BCFAs, as interesting compounds to be proposed as additional markers (other than α-
linolenic acid and EPA) to predict milk origin in HM and MM through NIR calibration
equations and fast NIR analysis as a promising future perspective.

4. Conclusions

The appeal of milk associated with voluntary quality schemes has created a growing
market share in recent years, but on the one hand the consumer cannot directly verify
their authenticity, and on the other hand most of the methods used to guarantee the
quality standard requirements are expensive and time-consuming. Therefore, a rapid, non-
destructive, and inexpensive analysis to verify the conformity of the milk on the market
with its label description represents a great opportunity. This study demonstrated the
feasibility of using compact and portable NIR spectroscopy coupled with LDA-based SVM
algorithms to rapidly classify different milk types without chemical pre-treatment at the
retail level. This capability was greater for distinguishing high-quality milk, milk labeled
as mountain product, and TSG hay milk, while resulting in less successful class assignment
for extended shelf-life milk samples.

The practical application of this method lies in its ability to streamline quality verifica-
tion in real-time, making it feasible for wider implementation in the supply chain, thereby
enhancing consumer trust. The combination of LDA for initial data separation and SVM
for precise classification allows for accurate milk classification even in complex scenarios,
making it a valuable tool for quality assessment.

The use of a handheld NIRS enables on-site testing of milk samples at the retail level
and potentially eliminates the need for laboratory analysis, significantly improving supply
chain efficiency. The improved classification accuracy provided by the LDA-SVM approach
enables retailers and quality control personnel to quickly identify adulterated or mislabeled
milk, promoting food safety and consumer confidence as regular on-site testing can catch
problems before products reach the consumer.

However, further studies are needed to investigate the possibility of employing
the NIR technique, combined with appropriate calibration over specific clusters of fatty
acids (primarily, the branched-chain FAs), to differentiate milk complying with volun-
tary quality schemes, including hay milk and mountain milk, focusing on a subset of
significant compounds.
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