
Abstract  

Background 

Several reports indicate that diabetes determines an increased mortality risk in patients with 

coronavirus disease 19 (COVID-19) and a good glycemic control appears to be associated with more 

favorable outcomes. Evidence also supports that COVID-19 pneumonia only accounts for a part of 

COVID-19 related deaths.  

Results 

This disease is indeed characterized by abnormal inflammatory response and vascular dysfunction, 

leading to the involvement and failure of different systems, including severe acute respiratory distress 

syndrome, coagulopathy, myocardial damage and renal failure. Inflammation and vascular 

dysfunction are also well-known features of hyperglycemia and diabetes, making up the ground for 

a detrimental synergistic combination that could explain the increased mortality observed in 

hyperglycemic patients. In this work, we conduct a narrative review on this intriguing connection. 

Together with this, we also present the clinical characteristics, outcomes, laboratory and 

histopathological findings related to this topic of a cohort of nearly 1000 subjects with COVID-19 

admitted to a third-level Hospital in Milan.  

Conclusion 

We found an increased mortality in subjects with COVID-19 and diabetes, together with an altered 

inflammatory profile; this may support the hypothesis that diabetes and COVID-19 meet at the 

crossroads of inflammation and vascular dysfunction.  
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Abstract  

Background 

Several reports indicate that diabetes determines an increased mortality risk in patients with 

coronavirus disease 19 (COVID-19) and a good glycemic control appears to be associated with more 

favorable outcomes. Evidence also supports that COVID-19 pneumonia only accounts for a part of 

COVID-19 related deaths.  

Results 

This disease is indeed characterized by abnormal inflammatory response and vascular dysfunction, 

leading to the involvement and failure of different systems, including severe acute respiratory distress 

syndrome, coagulopathy, myocardial damage and renal failure. Inflammation and vascular 

dysfunction are also well-known features of hyperglycemia and diabetes, making up the ground for 

a detrimental synergistic combination that could explain the increased mortality observed in 

hyperglycemic patients. In this work, we conduct a narrative review on this intriguing connection. 

Together with this, we also present the clinical characteristics, outcomes, laboratory and 

histopathological findings related to this topic of a cohort of nearly 1000 subjects with COVID-19 

admitted to a third-level Hospital in Milan.  

Conclusion 

We found an increased mortality in subjects with COVID-19 and diabetes, together with an altered 

inflammatory profile; this may support the hypothesis that diabetes and COVID-19 meet at the 

crossroads of inflammation and vascular dysfunction.  
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1. Introduction  

In patients with coronavirus disease 2019 (COVID-19), older age and the presence of comorbidities 

are associated with poor outcomes 1–4. Several reports indicate that diabetes is one of the most 

represented condition, and it is associated with higher fatality rate, especially if glucose control is 

inadequate 2,3,5–7. While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exerts a 

direct cytotoxic effect, evidence supports that COVID-19 pneumonia only accounts for a part of 

COVID-19 related deaths 2. The disease is indeed characterized by abnormal inflammatory response 

and vascular dysfunction, leading to multi-organ involvement and failure 8,9. Inflammation and 

vascular dysfunction are also well-known features of hyperglycemia and diabetes 10,11, making up the 

ground for a detrimental synergistic combination 12. The purpose of our review is to investigate this 

connection and to explain mechanisms underlying the increased mortality observed in diabetic 

patients with COVID-19, with the point-by-point support of findings from our cohort of nearly 1000 

patients.  

 

2. Methods  

Data were collected from patients admitted for SARS-CoV-2 acute infection at ASST FBF-Sacco 

Milan, Presidio Sacco, from February 1, 2020 to May 15, 2020, in whom COVID-19 was confirmed 

by RT-PCR detection of SARS-CoV-2 in respiratory samples. All clinical data were extracted from 

patient electronic medical reports, and all research studies and analysis reported in this manuscript 

were performed in accordance with the local Ethical Research Committee of Milan (Comitato Etico 

Milano Area 1, Cobeta, SIDIACO, and registered as NCT04463849 and NCT04382794). Glycemia 

was measured in each patient at admission to the emergency room, during in-hospital stay and at the 

discharge from hospital. Patients were classified as diabetic (type 2 diabetes, T2D) based on a known 

history of diabetes or if they were on anti-diabetic medications. A magnetic microsphere-based Bio-

Plex Pro Human Cytokine 17-plex immunoassay (# M5000031YV) was used in the analysis of serum 
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cytokines levels on a Bio-Plex 200 system (both from Bio-Rad, Hercules, CA, USA) according to the 

manufacturer’s instructions as already described 13,14.  

 

3. COVID-19 prevalence and outcomes in type 2 diabetes and the relevance of glycemic 

control  

Diabetes is reported to increase the susceptibility to infections and their complications 15,16 and poor 

glycemic control is a predictor of worse outcomes 17–20. Impaired neutrophil chemotaxis and 

adherence to vascular endothelium, phagocytosis, intracellular bactericidal activity, opsonization, and 

cell-mediated immunity were described in patients with hyperglycemia and type 2 diabetes (T2D), 

and could partially explain this increased susceptibility 21–24. Viral infections may impair glucose 

balance 25, and viral clearance resulted in an improved metabolic control 26. An increase of cases 

among diabetic subjects was confirmed during Severe Acute Respiratory Syndrome (SARS) outbreak 

in 2003 27,28 and Middle-East Respiratory Syndrome (MERS) outbreak in 2012 29; however, it is still 

not completely clear if this is the case for COVID-19. SARS-CoV-2 binds to angiotensin-converting 

enzyme 2 (ACE2) to enter the cell 30,31, and is capable of using human ACE2 as efficiently, if not 

more, as SARS coronavirus (SARS-CoV) 32; therefore, an enhanced ACE2 expression likely 

facilitates viral homing at target tissues in primary invasion sites 33. Following entry into the 

pneumocyte, the virus replicates and ACE2 gets downregulated 34; this, together with the activation 

of ADAM-17 that detaches the catalytic active domain of ACE from the cell surface, leads to ACE2 

depletion 33. ACE2, the “good” ACE, is a homologue of ACE that cleaves angiotensin II (AngII) to 

form Ang-(1-7) with a high catalytic efficiency, suggesting an important role in preventing AngII 

accumulation, while enhancing Ang-(1-7) formation 35, and thus contributing to keep in balance the 

pro-oxidative effects of AngII in the vascular system, and also in pancreatic islets. ACE2 expression 

is sometimes reduced in subjects with diabetes 34 and the subsequent pro-inflammatory condition 

represents an important contribution to the development of vascular and renal diabetes complications 

36. In a recent study, a phenome-wide Mendelian randomization suggested that diabetes and related 
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traits may increase ACE2 expression, which could influence susceptibility to infection 37, but these 

data need to be further confirmed. Some Authors also speculated that potentially an aberrant 

glycosylation of ACE2 in the lung, nasal airways, tongue, and oropharynx in uncontrolled 

hyperglycemia may serve as increased SARS‐CoV‐2 viral binding sites and lead to a higher 

propensity to infection 38,39; however, glycosylation does not seem to be crucial for the SARS‐CoV‐

2 receptor binding domain (RBD)/ACE2 interaction 40. A lower ACE2 expression before infection 

indicates a more likely evolving imbalance between the pressor and counteracting depressor arm of 

the angiotensin family during COVID-19 infection predisposing to greater disease severity 33. Two 

other major components of the renin-angiotensin-aldosterone system (RAAS) probably play an 

important role in disease development: the kinin-kallikrein and the chymase pathways; they both 

exert proinflammatory and procoagulant effects (via AT1R and BKB-1R, respectively), and BKB-

1R is upregulated in subjects with diabetes 41. Diabetes severely increases the need for medical 

interventions and the mortality risk in subjects with COVID-19 1,42. In an early report 7 of 193 patients 

with severe COVID-19, nearly 25% had diabetes, and 36 % of non-survivors had diabetes vs. 11 % 

of survivors. Diabetic patients had an almost double mortality compared to non-diabetics, together 

with higher rates of ICU hospitalization and need of mechanical ventilation, when experiencing 

COVID-19 7. Also in other reports with higher numbers of patients, subjects with diabetes showed 

worse outcomes compared to sex- and age-matched controls without diabetes, with hypertension and 

older age as independent contributors to in-hospital death 6,43. This was confirmed in our cohort 

(Figure 1), where diabetic subjects had an almost double mortality risk independent of age and sex 

(OR 1.876, 95% CI 1.250-2.850, p = 0.0027). Interestingly, we observed that higher mean glycemic 

levels measured during hospitalization in patients with T2D and COVID-19 may predict poorer 

outcomes as compared to subjects with a better glycemic control (Figure 2). In a previous report 

Authors found that patients with hyperglycemia during hospitalization, although with normal HbA1c, 

had higher mortality than subjects with a history of diabetes 44. Stress-hyperglycemia is indeed known 

to be associated with worse outcomes, irrespective of pre-existing diabetes 45,46. With regards to this, 
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other studies suggest that uncontrolled cardiovascular risk factors may worsen the progression of 

COVID-19 more than previous history of major cardiovascular events with well-controlled metabolic 

risk factors 47. In the CORONADO Study, in subjects with diabetes hospitalized for COVID-19, BMI, 

but not long-term glucose control, was positively and independently associated with tracheal 

intubation and/or death within 7 days 48. The follow-up study indicated no association between BMI, 

HbA1c and other comorbidities with negative outcomes, but showed that a history of microvascular 

complications, routine anticoagulant therapy, dyspnea and biological markers of COVID-19 severity 

are associated with a reduced chance of hospital discharge by day 28 49. In agreement with this, 

Maddaloni et al. reported that cardiovascular disease (CVD) prevalence does not differ between 

people with diabetes with and without COVID-19 requiring hospitalization, and described an 

increased prevalence of chronic obstructive pulmonary disease (COPD) and of chronic kidney disease 

in COVID-19 patients with T2D 50. In addition, the CovidiabII study provided a deeper view about 

cardiometabolic risk factors, and showed that subjects with cardiometabolic multimorbidity have 

higher risk of negative outcomes if compared to subjects without such conditions 51. Since all risk 

factors together contribute to the cytokine storm and therefore to disease severity, the metabolic 

unbalance at the moment of viral infection is probably crucial; subjects with diabetes present an 

increased risk of negative outcomes also because diabetes often clusters with other metabolic 

conditions. Of note, we recently demonstrated that the dipeptidyl peptidase-4 (DPP4) inhibitor 

sitagliptin, as an add-on therapy to standard of care, may improve clinical outcomes in patients with 

type 2 diabetes and COVID-19 52; the effect may be linked to metabolic and inflammatory 

mechanisms 53. However, other reports did not confirm these results 54–56.  

 

4. Altered inflammation in COVID-19 and diabetes  

Together with direct viral infection, an abnormal and aggressive inflammatory host response is 

strongly implicated in COVID-19 severity 8. Host cells infected by SARS-CoV-2 undergo pyroptosis, 

a highly inflammatory form of programmed cell-death, and release damage associated molecular 
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patterns. As a consequence, epithelial cells, endothelial cells and alveolar macrophages produce pro-

inflammatory cytokines and chemokines (including IL-6, IL-1β, IP-10, MIP1α, MIP1β, MCP1) that 

attract monocytes, macrophages and T cells 2,8, towards a Th1-polarized response8. This pro-

inflammatory feedback loop may be associated with vascular leakage, as seen in patients with SARS-

CoV 57, and is the trigger to a cytokine storm that can in some cases result in multi organ failure. 

Consistently with these findings, some studies have reported the association of COVID-19 severity 

and elevated plasma levels of inflammatory markers, such as IL-6, IL-8, IL-1β, IL-2, IL-2 R, IL-7, 

IL-17, IL-10, G- CSF, IP-10, MCP1, MIP1α and TNFα 2,58–60. Increased white blood cells and 

neutrophil count, lactate dehydrogenase, C-reactive protein, and D-Dimer are associated with poor 

prognosis too 58. T-cells are instead decreased and exhausted in subjects with COVID-19, and reduced 

lymphocyte count is associated with worse outcomes 58,61. An underlying pro-inflammatory status is 

a typical feature of insulin resistance and type 2 diabetes, and increased circulating levels of IL-6 and 

TNFα can be detected in diabetic patients 10,62. Some reports suggest that COVID-19 patients with 

diabetes show increased levels of some circulating cytokines compared to non-diabetics 7,43,63. 

Subjects with diabetes also show reduced lymphocyte count 43, and a reduction of CD4+ and CD8+ 

T-cell was associated with lower survival rates 6. Our data showed an altered secretome in patients 

with T2D and COVID-19 as compared to those with COVID-19 but without T2D (Figure 3 and 

Supplementary Figure S1). Particularly of interest are the increased levels of IL-1ra, IL-6, IL-8, MCP-

1, IFN-γ, IP-10 (Figure 3), which may explain a propensity to develop excessive inflammation after 

SARS-CoV-2 infection.  

 

5. Vascular dysfunction in COVID-19 and diabetes  

There is an inseparable link between inflammation and vascular dysfunction, and it seems particularly 

strong in patients with COVID-19 64,65. The endothelium is altered by SARS-CoV-2 infection: direct 

viral damage, the presence of inflammatory and vasoactive molecules, reduced ACE2 activity, and 

neutrophils activation determine the loss of its barrier function and lead to vascular leakage 66. As a 
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consequence, tissue edema in pulmonary endothelium is the basis for acute respiratory distress 

syndrome propagation 66–68. Monocyte-derived tissue factor and PAI-1 are increased 69,70, and both 

the extrinsic and intrinsic coagulation pathways are involved 71. Patients with COVID-19 show a 

procoagulant pattern, with platelet activation and increased clot strength 72, and an increase in 

vascular complications, such as microvascular thrombosis, disseminated intravascular coagulation 

and venous thromboembolic events 73,74, together with a directly and indirectly increased 

cardiovascular risk 75–78. However, the lung pathology observed in these patients appears somehow 

distinct from the one usually observed in macrophage activation syndrome or disseminated 

intravascular coagulation; the suggested “diffuse pulmonary intravascular coagulopathy” definition 

indicates an extensive lung immunothrombosis, as this condition mainly affects lungs, with reduced 

systemic bleeding risk 79. Plasma levels of α-defensins, antimicrobial peptides released from activated 

neutrophils with anti-fibrinolytic and prothrombotic effect, were reported to be elevated during 

COVID-19 80; α-defensin is also increased in patients with diabetes 81, putting these subjects at greater 

risk of vascular dysfunction. Another feature in common between hyperglycemia and COVID-19 is 

represented by alterations of the glycocalyx. Endothelial glycocalyx is impaired in diabetic condition, 

and changes in the structure and function of the glycocalyx promote an inflammatory response 82–84. 

An undersulfated glycocalyx may not only increase susceptibility to SARS-CoV-2 infection, but 

would also result in a procoagulant and antifibrinolytic state associated with poorer outcomes 85,86. 

The competitive action of heparin with heparan sulphate, that is used by SARS-CoV-2 to adhere to 

vascular wall and to bind to ACE2, may explain some of the positive effects of heparin therapy in 

COVID-19. Insulin resistance and hyperglycemia affect vascular wall by a series of events 87. 

Decreased nitric oxide bioavailability 88, PI3-K/Akt pathway disorders 89, increased cytokine levels 

10,89, and platelet hyperactivity 11 altogether impair endothelial function. Hyperglycemia increases the 

production of reactive oxygen species, impairs the function of endothelial progenitor cells, and 

activates the protein kinase C, hexosamine and polyol pathways 90–93, and a better glucometabolic 

control, as that obtained with successful islet transplantation, may improve vascular dysfunction 94–
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96. Interestingly, the vessel ultrastructure, as observed at electron microscopy, suggested that COVID-

19 induces wide abnormalities, somehow mimicking those observed in patients affected with type 2 

diabetes (Figure 4) 97,98. Endothelial cells show extensive vacuolization, an endothelial cell pyknotic 

nucleus, and Weibel-Palade granules loss. Skin capillary endothelial cells in patients with COVID-

19 also show, contained in the vacuoles, some small vesicles which could be interpreted as viral 

particles (Figure 4).  

 

6. The molecular link between hyperglycemia, inflammation and vascular dysfunction  

Hyperglycemia acutely increases circulating cytokine concentrations by an oxidative mechanism 10, 

and circulating levels of IL-6 and TNF-α are elevated in diabetic patients 62,99,100, with increased M1 

macrophage polarization 89. Insulin resistance and hyperglycemia also determine endothelial 

dysfunction and increased platelet activity 11,87,88,101. This makes up the ground for a detrimental 

synergistic combination with what is observed in COVID-19. After SARS-CoV-2 entry into the cells, 

innate immunity activation leads to the nuclear translocation of NF-κB and interferon regulator 

factors, resulting in the secretion of type I interferons and pro-inflammatory cytokines/chemokines 

such as TNFα, IL-1, IL-6, CXC-chemokine ligands and CC-chemokine ligands 69,70; higher 

monocyte-derived TF and PAI-1 expression were also observed 70,72. This is exactly what we 

observed in subjects with T2D and COVID-19 in our cohort: the increase in IL-6, IL-8, MCP-1, IL-

1ra, IFN-γ and IP-10 is the expression of an excessive Th1-polarized immune response. As a result, 

hyperglycemia may be responsible for an amplificated pro-inflammatory and pro-coagulant milieu 

during SARS-CoV-2 infection, and therefore explain why diabetic people, especially if having poorly 

controlled blood glucose levels, have greater risk to develop a severe form of COVID-19 (Figure 5) 

5,6. Interestingly, Codo et al. also showed that SARS-CoV-2 replication and cytokine production in 

monocytes are promoted by elevated glucose levels through a mitochondrial ROS/HIF-1a dependent 

pathway, that results in T cell dysfunction and epithelial cell death 102.  
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7. Targeting inflammation and vascular dysfunction in COVID-19  

Vaccination is the most effective strategy we nowadays have to prevent the severe forms of the 

disease 103, and should for this reason be the priority. When facing the clinical course of COVID-19, 

improving inflammation and vascular dysfunction may represent an important strategy to reduce 

disease severity 65,104,105. Thanks to its anti-IL-6 action, tocilizumab, a monoclonal antibody, has been 

among the first agents considered for COVID-19 therapy: one first retrospective study suggested a 

reduced risk of invasive mechanical ventilation or death 106; treatment with this drug was also 

described to improve endothelial dysfunction 107 and its efficacy in COVID-19 was reduced by 

hyperglycemic state 108. Unfortunately, a following randomized controlled trial did not confirm the 

efficacy109. In a small randomized controlled trial, a short course of metilprednisolone in hospitalized 

patients did not reduce mortality 110; however, the larger RECOVERY trial indicates, in subjects 

requiring respiratory support, improved outcomes with dexamethasone 111. IL-1 blockade with 

anakinra showed promising results in severe forms of COVID-19 112, and JAK inhibition with 

baricitinib was able to prevent disease progression by modulating the patients' immune landscape 113. 

Intriguingly, the cyclosporine-analog alisporivir has been shown to inhibit SARS-CoV2 in vitro 114, 

thus indicating a potential role of calcineurin inhibitors 115,116, and blocking IL-17 could also provide 

a novel therapeutic strategy 117. Coagulopathy with prominent elevation of D-dimer is associated with 

high mortality. Considering also its anti-inflammatory action, anticoagulation with heparin is 

considered a paramount in COVID-19 therapy 118,119. Critically ill patients showed an increased 

incidence of venous thromboembolic events despite prophylaxis with low-molecular-weight heparin 

65,120 but, on the other hand, bleeding was recently described as a significant cause of morbidity 121. 

Prophylaxis with heparin is therefore recommended but the appropriate type, dose, and timing of 

administration is still debated 122,123. RAAS inhibitors do not increase the risk of severe COVID-19 

outcomes and may be helpful to restore ACE1/ACE2 balance 124–127. Since in diabetic subjects a good 

glycemic control is associated with better outcomes, normalizing glycemia is mandatory in all 

patients with COVID-19. Insulin is known to have some potential anti-inflammatory effects 128,129 
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and is the drug of choice for hyperglycemia management in hospitalized patients 130,131. One 

interesting aspect regards DPP4 inhibition: it was speculated that gliptins may reduce viral entry into 

the cells 53,132, and a recent study showed that treatment with sitagliptin is associated with reduced 

COVID-19 mortality 52, thus suggesting a potential therapeutic role in subjects with and without 

diabetes. On the other hand, other works suggested no effect of DPP4 inhibitors on COVID-19 

clinical course 54,55. The reason may lie in the observational nature of available studies, the 

heterogeneity of data and the resulting potential biases. Thus far, evidence suggests that DPP4 

inhibitors are safe but does not provide sufficient evidence to strongly recommend their use against 

COVID-19 56.  

 

8. Conclusions  

Our data confirmed an increased COVID-19 mortality in subjects with diabetes, and a better glycemic 

control during hospitalization was associated with improved outcomes. COVID-19 severity is 

strongly related to an abnormal inflammatory response and a hypercoagulable state, and oxidative 

stress, cytokine release and endothelial dysfunction are also a hallmark of hyperglycemia, making up 

the ground for a detrimental synergistic combination. This was confirmed by the observation of 

increased levels of IL-1ra, IL-6, IL-8, MCP-1, IFN-γ and IP-10 in subjects with type 2 diabetes and 

COVID-19 in our cohort, suggesting a propensity to develop excessive inflammation and endothelial 

dysfunction that may contribute to explain the greater disease severity observed in diabetic patients. 

COVID-19 was also recently shown to be associated with insulin resistance on an inflammatory basis 

133. For all these reasons, treating inflammation, preventing coagulopathy and, importantly, 

normalizing glycemia should be a priority in these patients.  
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Figure legends  

 

Figure 1. Time to endpoint analysis (death/discharge) in patients with type 2 diabetes (n=486) or not 

(n=396) and admitted to the hospital for COVID-19. Log-Rank (Mantel-Cox) analysis.  

 

Figure 2. Time to clinical endpoint (death/hospital discharge) in all patients grouped according to 

quartiles of in-hospital mean blood glucose level (Q1 mean glycemia < 140 mg/dL; Q2-Q3 mean 

glycemia comprised between 140 and 188 mg/dL; Q4 mean glycemia > 188 mg/dL). Log-Rank 

(Mantel-Cox) analysis.  

 

Figure 3. Differential plasma levels of peripheral cytokines in patients with type 2 diabetes (n=10) 

or not (n=38) and admitted to the hospital for COVID-19. Analysis performed by a Bio-Plex Pro 

Human Cytokine 17-plex immunoassay on a Bio-Plex 200 system (both from Bio-Rad). Two-tailed 

t-student test. *p<0.05, **p<0.01.  

 

Figure 4. Electron microscopy of skin capillary sections in healthy control (Panels A and C) and in 

subject with COVID-19 (Panels B and D). Panel C: blue arrows indicate Weibel-Palade granules in 

endothelial cells. Panel D: red arrows indicate small vesicles within vacuoles.  

 

Figure 5. Excessive inflammation and vascular dysfunction are a key feature of both hyperglycemia 

and COVID-19, making up the ground for a detrimental synergistic combination. The increase of 

IL1-ra, IL-6, IL-8, MCP-1, IFN-γ and IP-10 observed in subjects with type 2 diabetes and COVID-

19 may contribute to explain the greater disease severity observed in diabetic patients.  

 

Supplementary Figure S1. Plasma levels of cytokines that are unchanged between patients with type 

2 diabetes (n=10) or not (n=38) and admitted to the hospital for COVID-19. Analysis performed by 
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a Bio-Plex Pro Human Cytokine 17-plex immunoassay on a Bio-Plex 200 system (both from Bio-

Rad). Two-tailed t-student test.  
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