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ABSTRACT
Young protostellar discs are likely to be both self-gravitating, and to support grain growth to sizes where the particles decoupled
from the gas. This combination could lead to short-wavelength fragmentation of the solid component in otherwise non-
fragmenting gas discs, forming Earth-mass solid cores during the Class 0 / I stages of Young Stellar Object evolution. We use
three-dimensional smoothed particle hydrodynamics simulations of two-fluid discs, in the regime where the Stokes number
of the particles St > 1, to study how the formation of solid clumps depends on the disc-to-star mass ratio, the strength of
gravitational instability, and the Stokes number. Gravitational instability of the simulated discs is sustained by local cooling. We
find that the ability of the spiral structures to concentrate solids increases with the cooling time, and decreases with the Stokes
number, while the relative dynamical temperature between gas and dust of the particles decreases with the cooling time and the
disc-to-star mass ratio, and increases with the Stokes number. Dust collapse occurs in a subset of high disc mass simulations,
yielding clumps whose mass is close to linear theory estimates, namely 1–10 M⊕. Our results suggest that if planet formation
occurs via this mechanism, the best conditions correspond to near the end of the self-gravitating phase, when the cooling time
is long and the Stokes number close to unity.
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1 INTRODUCTION

Direct imaging of protostellar discs, in scattered light and especially
at sub-mm wavelengths, has opened debate as to how the timescales
for planet formation align with the established evolutionary sequence
for Young Stellar Objects (Adams et al. 1987). Many discs show
substructure (Andrews 2020) that is consistent with — and often
interpreted as — the theoretically expected signature of planet-disc
interaction (Dong et al. 2015; Zhang et al. 2018; Lodato et al. 2019).
A subset of these discs, including HL Tau (ALMA Partnership et al.
2015), IRS 63 (Segura-Cox et al. 2020) and GY91 (Sheehan & Eis-
ner 2018) are young, with ages estimated to be less than 1 Myr.
Assuming a planet origin for the substructure, a substantial part of
the planet formation process must overlap with the time when pro-
tostellar discs at 10–100 au scales are likely self-gravitating. How
this occurs is unclear. Classical planetesimal-only variants of Core
Accretion model (Safronov 1969; Pollack et al. 1996) are not vi-
able; meeting the timescale constraint at 10 au is already non-trivial,
and at substantially larger radii sufficiently massive planet formation
is not possible at all. Models with a dominant pebble component
(e.g. Rosenthal &Murray-Clay 2018; Morbidelli 2020; Guilera et al.
2020; Chambers 2021; Cummins et al. 2022; Jiang & Ormel 2022),
or those with large-scale core migration (Levison et al. 2010), are
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more promising, but the ability of these processes to form the in-
ferred large-orbital-radius population of planets has not been fully
established.
Alternatively, planets may form via gravitational instability (GI)

(Boss 1997) in a self-gravitating protostellar disk. Self-gravity is ex-
pected to be an important process during the Class 0/I phase of pro-
tostellar evolution, and is most vigorous at large orbital radii where
the cooling time is short (Clarke 2009; Rafikov 2009) and infall con-
tinues. GI in a gaseous disc, however, is a poor candidate for forming
the ALMA-inferred planet population, because it substantially over-
shoots the inferred masses. The mass of a gaseous fragment created
by GI is of the order of the Jeans mass of the spiral perturbation, and
for typical protoplanetary discs its value is, assuming Toomre 𝑄 = 1
(Toomre 1964; Kratter & Lodato 2016)

𝑀J =
4𝑐4s
𝐺2Σ

≈ 12𝑀Jup
(
𝑀∗
1𝑀�

) (
𝐻/𝑅
0.1

)3
, (1)

typically between 1–10 MJ (where 𝑀Jup is the mass of Jupiter) de-
pending on the disc aspect ratio. However, this is the initial mass of
the object: subsequently the fragment would start accreting material
belonging to the accretion disc, increasing its mass and likely be-
coming a brown dwarf (Kratter et al. 2010; Kratter & Lodato 2016).
A mechanism that may allow lower mass planets to form as a

consequence of GI was proposed by Rice et al. (2005). Concentration
of solid particles in spiral arms, together with vertical settling, can
lead to gravitational collapse in the solid component even in a non-
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2 C. Longarini et al.

fragmenting gravitationally unstable gaseous disc (Gibbons et al.
2012, 2014, 2015). It is known that gas spiral arms act as dust traps,
since they are pressure maxima (Rice et al. 2005; Shi et al. 2016).
Solid particles collect inside them (Dipierro et al. 2015a), reaching
dust to gas ratio that can be of the order of unity. Conversely, the
interaction between gas spiral arms and dust particles can excite
them, imparting random motions that reduce the peak density and
potential for collapse (Riols et al. 2020). Walmswell et al. (2013)
found that large dust particles experience gravitational scattering by
the spiral arms, while Booth & Clarke (2016) related the level of
excitation of solid particles to the aerodynamical coupling and the
cooling factor. Marginally coupled solid particles are less excited by
spiral arms, while, in rapidly cooled discs, the level of dust excitation
is higher. Baehr & Zhu (2021) confirmed this trend through 3D
shearing box simulations.
In this work, we perform three-dimensional smoothed particle

hydrodynamics (SPH) simulations using the phantom code (Price
et al. 2018) of gas and dust in gravitationally unstable protostellar
discs. The aim is to investigate the interplay between GI and the
dynamics of particles that are aerodynamically coupled to the gas,
and to understand under which conditions it is possible to form
solid cores inside GI spirals. In Section 2, we recall the basics of
the aerodynamical coupling between gas and dust, and the role of
dust in GI. In Section 3 we briefly describe the SPH code phantom
(Price et al. 2018) and the set of simulations we have performed for
this work. In Section 4 we analyse the simulations, show our main
results, and compare our findings with previous works. In Section 5,
we discuss our findings in an evolutionary perspective. Finally, in
Section 6 we present our conclusions.

2 DRAG FORCE AND GRAVITATIONAL INSTABILITY

2.1 Radial drift

To zeroth order, gas dynamics is dictated by the hydrodynamical
equations. Neglecting the role of the disc self gravity, in centrifugal
equilibrium, the azimuthal component of the gas velocity is

𝑣2𝜙,𝑔 = 𝑣2
𝑘
+ 1
𝜌𝑔

d𝑃
d𝑅
, (2)

where 𝑣2
𝑘
= 𝐺𝑀★/𝑅 is the Keplerian speed and the second term is

the negative contribution of the pressure gradient. It is possible to
explicitly compute the pressure gradient knowing the disc tempera-
ture structure: the gas azimuthal speed is slightly sub-Keplerian, and
the correction term is of the order of (𝐻/𝑅)2 ∼ 0.01, where 𝐻 is the
disc thickness. In addition, the gas has also a negative radial velocity,
given by viscosity.
Conversely, solid particle dynamics is dictated by both gravita-

tional and drag force. Since dust is not supported by pressure, the
basic velocity of gas and dust is different, but they interact through a
drag force, that modifies the relative velocity. Writing Δu = vd − vg,
the drag force Fd depends upon the relative velocity as

|Fd | =
1
2
𝐶D𝜋𝑠

2𝜌Δ𝑢2, (3)

where𝐶D is a coefficient that depends on the drag regime, 𝑠 is the dust
particle size and 𝜌 is the total density. The different aerodynamical
coupling regimes depend upon the size of dust particles relative to the
gas mean free path. It is possible to define a dimensionless parameter,
called the Knudsen number (Paardekooper & Mellema 2006), that

measures this property

Kn =
9𝜆𝑔
4𝑠

, (4)

where 𝑠 is the dust particle size and 𝜆g is the gas particles’ mean free
path, given by

𝜆g =
5𝜋
64

√
2

𝜇𝑚𝑝

𝜌g𝜎coll
, (5)

where 𝜎coll = 2.367×10−15cm2 is the cross-section of gas particles,
𝜇 = 2.1 is the mean molecular weight, 𝜌g is the gas density and 𝑚𝑝

is the mass of the proton. Typically, in protoplanetary discs, Kn > 1,
meaning that the dust particles’ size is smaller than the gas mean
free path: this is called the Epstein regime. However, when the disc
is very massive, there is a transition between Epstein and Stokes
regime (Kn < 1). The main impact of this transition is that in the
inner denser region of the disc, where particles’ size is comparable
with the gas mean free path, the Stokes number is higher compared
to Epstein regime. The𝐶D coefficient is given by (Fassio & Probstein
1970)

𝐶D =


8
3
𝑐𝑔
Δ𝑢

Kn > 1
24Re−1 Kn < 1, Re < 1
24Re−0.6 Kn < 1, 1 < Re < 800
0.44 Kn < 1, Re > 800

(6)

where 𝑐𝑔 is the gas sound speed and the Reynolds number based
upon the difference of velocity is given by

Re =
2𝑠Δ𝑢
𝜈

= 4
𝑠Δ𝑢

𝜆𝑔𝑐𝑔
, (7)

and the last equivalence is true for collisional viscosity. We also
define the stopping time, i.e. the time needed to modify the relative
velocity between gas and dust. The longer it is, the less the particles
are coupled. For spherical grains, it is given by

𝑡s =
𝑚𝑑Δ𝑢

|F𝐷 | =
4𝜋𝜌0𝑠3Δ𝑢
3|F𝐷 | =

8𝜌0𝑠
3𝐶𝐷𝜌Δ𝑢

, (8)

where 𝑚𝑑 is the dust grain mass and 𝜌0 is the dust grain’s intrinsic
density. In order to measure the strength of the aerodynamical cou-
pling, we define a dimensionless Stokes number as the ratio between
the stopping time and the dynamical one: in general, its expression
is

St = 𝑡sΩ =
8
3𝐶D

(
𝜌0
𝜌

) ( 𝑣k
Δ𝑢

) ( 𝑠
𝑟

)
, (9)

and, in the Epstein regime, its value is

St = 1
(

Σ

0.2g/cm2

)−1 (
𝜌0

3g/cm3

) ( 𝑠

1mm

)
. (10)

The smaller the Stokes number is, the more tightly the particles are
coupled: so, for St → 0, dust dynamics follows the gas dynam-
ics, while for St → ∞, the two fluids do not influence each other
aerodynamically. In a smooth axisymmetric disc, the drag force has
dramatic physical consequences. Because of the azimuthal difference
of speed between gas and dust, solid particles experience a headwind
that slows them down, giving them a negative radial velocity. This
effect is called radial drift, and its timescale for St ∼ 1 is of the
order of ∼ 100yr, several orders of magnitude shorter than the disc
lifetime. This is the “metre sized barrier", so called because St ∼ 1
corresponds to roughly this physical size in the inner disc (Wei-
denschilling 1977). Radial drift can be stopped in discs where the
presence of a gas pressure maximum creates a “dust trap”. Indeed, in
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Drag force and gravitational instability — II 3

a gas pressure maximum, the pressure gradient is zero, and hence the
velocity difference between gas and dust vanishes and no radial drift
occurs. Several mechanisms have been proposed to form dust traps,
such as gaps made by planets (Paardekooper &Mellema 2004, 2006;
Ayliffe et al. 2012; Pinilla et al. 2012), zonal flows (Johansen et al.
2009; Simon & Armitage 2014), or spirals induced by gravitational
instabilities (Dipierro et al. 2015a). Concentration of solid material
by aerodynamic effects must be considered in assessing models for
planet formation in early protoplanetary stages.

2.2 Gravitational instability

In an axisymmetric thin disc composed of a single fluid, the disper-
sion relation for linear, tightly-wound density waves is

𝐷 (𝜔, 𝑘, 𝑚) = (𝜔 − 𝑚Ω)2 − 𝑐2𝑘2 + 2𝜋𝐺Σ|𝑘 | − 𝜅2, (11)

where 𝜔 is the perturbation frequency, Ω(𝑅) is the angular velocity,
𝑚/𝑅 is the azimuthal wavenumber of the perturbation, 𝑐(𝑅) the
sound speed of the fluid, 𝑘 the perturbation radial wavenumber, 𝜅(𝑅)
the epicyclic frequency and Σ(𝑅) the disc surface density. The well-
known instability criterion for axisymmetric disturbances is (Toomre
1964)

𝑄 =
𝑐𝜅

𝜋𝐺Σ
< 1, (12)

that identifies the parameter space for which 𝜔2 < 0. It is possi-
ble to generalize the instability taking into account a second fluid
component, i.e. particles in the protostellar case. In the context of
galactic dynamics, the gravitational role of a second component has
been investigated by Jog & Solomon (1984) and Bertin & Romeo
(1988). Longarini et al. (2023) applied this method to protoplanetary
discs, taking into account also the role of the drag force between gas
and dust. When the second component is considered, the outcome
of GI can significantly change. In the protostellar scenario, the three
fundamental parameters are the relative concentration of the dust
component to that of the gas

𝜖 =
Σ𝑑

Σ𝑔
, (13)

the dust relative temperature

𝜉 =

(
𝑐𝑑

𝑐𝑔

)2
, (14)

where 𝑐𝑑 is the dust dispersion velocity, and the Stokes number

St = 𝑡𝑠Ω. (15)

Two regimes of instability can be identified, depending on whether
the instability is triggered by the gas or the dust. When the insta-
bility is driven by the gas component, the most unstable wavelength
is close to the gas-only one, and the role of dust is negligible. Con-
versely, when the instability is controlled by the dust, the perturbation
wavelength is much smaller. This different kind of instability hap-
pens when the dust is sufficiently cold, decoupled and abundant: the
threshold between these two regimes is given by (Bertin & Romeo
1988)

𝜖𝜉−1/2 > 1, (16)

or, taking into account the drag interaction (Longarini et al. 2023)

𝜖𝜉−1/2 (1 + 0.72St−1.36) > 1. (17)

Dust driven instability could have important consequences for planet
formation because when the most unstable wavelength (i.e. the Jeans

wavelength) is smaller, the Jeans mass will be small as well. In the
gas-only model, the Jeans length is

𝜆1f𝐽 =
2𝑐2𝑔
𝐺Σ𝑔

=

√︂
2
𝜋

𝑐𝑔Ω

𝐺𝜌𝑔
, (18)

where we used 𝜌𝑔 = Σ𝑔/
√
2𝜋𝐻, and the Jeans mass is

𝑀1f𝐽 =
4
3
𝜋𝜌𝑔

(
𝜆1f𝐽

)3
=
4𝜋
3

(
2
𝜋

)3/2 𝑐3𝑔Ω3
𝐺3𝜌2𝑔

. (19)

When the instability becomes dust driven, the value of the most
unstable wavelength changes dramatically. It is possible to compute
it through the dispersion relation of the two fluid component model
with drag force (Longarini et al. 2023), and its value depends on the
Stokes number, the relative temperature and the dust to gas ratio.
In particular, the gas-only limit is obtained for St → 0, 𝜖 → 0
and 𝜉 → 1. For convenience, we define the ratio between the Jeans
wavelength of one fluid component model and of the two fluid one
with drag force as Λ(𝜖, 𝜉, St): the value of Λ is between 0 and 1,
where Λ = 1 is the one fluid limit. Indeed, by computing the most
unstable wavelength, it is possible to extract Λ. Hence, the Jeans
mass of the two-component fluid model is

𝑀2f𝐽 = 𝑀1f𝐽 Λ3. (20)

In Appendix A, we show plots of Λ3 as a function of (𝜖, 𝜉, St).

3 NUMERICAL SIMULATIONS

In this work, we perform numerical SPH simulations of gas and
dust protostellar discs using the code phantom (Price et al. 2018).
This code is widely used in the astrophysical community to study
gas and dust dynamics in accretion discs (Ragusa et al. 2017; Ceppi
et al. 2022), both in a single fluid mixture (Veronesi et al. 2020) or
dust-as-particles approach (Aly et al. 2021). In this work, we use the
dust-as-particles formulation.

3.1 Two-fluid gas and dust mixtures

The dust formulation is based on the continuum fluid equations in
the form
𝜕𝜌g
𝜕𝑡

+
(
vg · ∇

)
𝜌g = −𝜌g

(
∇ · vg

)
, (21)

𝜕𝜌d
𝜕𝑡

+ (vd · ∇) 𝜌d = −𝜌d (∇ · vd) , (22)

𝜕vg
𝜕𝑡

+
(
vg · ∇

)
vg = −∇𝑃

𝜌g
+ 𝐾

𝜌g

(
vd − vg

)
, (23)

𝜕vd
𝜕𝑡

+ (vd · ∇) vd = − 𝐾
𝜌d

(
vd − vg

)
, (24)

where the subscripts 𝑔 and 𝑑 refer to gas and dust properties. We
define the stopping time, that is given by

𝑡𝑠 ≡
𝜌g𝜌d

𝐾 (𝜌g + 𝜌d)
, (25)

where the drag coefficient 𝐾 depends on the physical drag regime
the system is in. In general, it is given by

𝐾 = 𝜌g𝜌d
1
2
𝐶D

𝜋𝑠2

𝑚d
|Δ𝑣 |, (26)

where 𝐶𝐷 is defined as before.
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4 C. Longarini et al.

In the phantom implementation, the two phases are modelled
as two distinct sets of particles: hereafter, we adopt the convention
from Monaghan & Kocharyan (1995), and refer to gas particles with
the subscripts 𝑎, 𝑏, 𝑐 and to dust particles with 𝑖, 𝑗 , 𝑘 . Gas and dust
densities are computed by weighted summation over the particles of
the same type according to

𝜌𝑎 =
∑︁
𝑏

𝑚𝑏𝑊𝑎𝑏 (ℎ𝑎) ; ℎ𝑎 = ℎfact

(
𝑚𝑎

𝜌𝑎

)1/3
, (27)

𝜌𝑖 =
∑︁
𝑗

𝑚 𝑗𝑊𝑖 𝑗 (ℎ𝑖) ; ℎ𝑖 = ℎfact

(
𝑚𝑖

𝜌𝑖

)1/3
, (28)

where the kernel𝑊 is the same for gas and dust, ℎ is the smoothing
length and ℎfact = 1/2. The drag terms of the equations of motion are
discretized by using a “double hump" kernel (Fulk & Quinn 1996)
that, instead of the bell-shaped kernel, goes to zero at 𝑟 = 0 and has
a peak at 𝑟/ℎ . 1. 1 In these simulations, we are using the velocity
reconstruction procedure presented in Price & Laibe (2020).

3.2 Heating and cooling

In order to take into account the effect of cooling or heating phenom-
ena, we write the complete equation for the evolution of gas internal
energy 𝑒

𝜕𝑒

𝜕𝑡
+
(
vg · ∇

)
𝑒 = − 𝑃

𝜌g

(
∇ · vg

)
+ Λshock −

Λcool
𝜌𝑔

+
Λdrag
𝜌𝑔

, (29)

where the first term on the RHS is the 𝑃d𝑉 work, the second is a
heating term due to the shock viscosity, the third is the cooling of
the disc and the last term is the drag heating term. In this work, we
assume an adiabatic equation of state. For an ideal gas, it is possible
to link pressure and density as follows

𝑃 = (𝛾 − 1)𝜌𝑔𝑒 =
𝑐2𝑔𝜌𝑔

𝛾
, (30)

where 𝛾 = 5/3 and 𝑐𝑔 is the gas sound speed, that is initialized as a
power law 𝑐𝑔 ∝ 𝑅−0.25.
The shock viscosity term can be written as

Λshock = 𝑐1𝛼
AV ℎ𝑔

𝐻
+ 𝑐2𝛽AV

(
ℎ𝑔

𝐻

)2
, (31)

where 𝑐1, 𝑐2 are two numerical factors, whose dimension is a specific
energy per unit time, 𝛼AV and 𝛽AV are respectively the linear and the
quadratic viscosity coefficients, and ℎ𝑔/𝐻𝑔 is related to the numeri-
cal resolution2. The viscosity term is dissipative, so it heats the disc.
In the phantom simulations we are not using the disc-viscosity
flag, meaning that the shock capturing viscosity is not described by
an 𝛼SS (Shakura & Sunyaev 1973) prescription. We did so since in
these systems the main driver of angular momentum transport is GI.
For the cooling we use the prescription from Gammie (2001) and

Rice et al. (2004), in which the cooling time 𝑡cool is proportional to
the dynamical time, with a factor of proportionality 𝛽cool

𝑡cool = 𝛽coolΩ
−1 (32)

1 Laibe & Price (2012a) showed that using a double-hump kernel gives a
factor of 10 better accuracy at no additional computational cost. For further
information, see Section 2.13.4 of Price et al. (2018).
2 This quantity tells how many smoothing lengths are included in the disc
thickness.

Under the assumption that the transfer of angular momentum driven
by gravito-turbulence occurs locally (Lodato & Rice 2004; Béthune
et al. 2021), we can relate the cooling parameter to an effective
𝛼−viscosity parameter

𝛼GI =
4
9

1
𝛾(𝛾 − 1)𝛽cool

. (33)

We need to introduce a cooling prescription for the system in order
to trigger GI. Finally, the drag heating term is

Λdrag = 𝐾 |v𝑑 − v𝑔 |2. (34)

Currently, phantom neglects any thermal coupling between the dust
and the gas, aside from the drag heating.

3.3 Numerical setup

We perform simulations with three different disc-to-star mass ratios
𝑀𝑑/𝑀★ = {0.05, 0.1, 0.2}, three different cooling times 𝛽cool =
{8, 10, 15} and two different dust particle sizes, for a total of 18
simulations. See below for further details. We first initialize a gas-
only disc around a solar mass star, with 𝑅in = 0.25au, 𝑅out = 25au,
and Σ𝑔 ∝ 𝑅−1. We set the aspect ratio so that 𝑄ext = 2 initially and
because of the cooling, it decreases, eventually reaching 𝑄 = 1. The
shock viscosity coefficients 𝛼AV = 0.1, 𝛽AV = 0.2 as in Rice et al.
(2005). As a test, we performed a simulation with 𝛽AV = 2, and we
did not find any differences in terms of the relevant quantities in this
work. The self-gravity of both gas and dust is taken into account,
as well as the dust back-reaction. We performed simulations at two
different numerical resolutions: the standard runs are performed with
𝑁𝑔 = 106 and the high resolution ones with 𝑁𝑔 = 2 × 106. In both
cases, 𝑁𝑑 = 𝑁𝑔/5, where 𝑁𝑔 and 𝑁𝑑 are the number of gas and dust
particles respectively. We verify that the results are consistent with
the different resolutions.
We let the system evolve for an outer thermal time (𝛽coolΩ−1 at the

outer radius), and then we add dust particles and evolve for a further 5
outer dynamical times (i.e. 5× 103 inner dynamical times). The dust
particles are added proportional to the gas distribution.3 Distributing
dust particles proportional to the gas is a valid assumption only for
St <10. Shi et al. (2016) and Baehr & Zhu (2021) showed that for
uncoupled particles gravitational interactions and stirring become
quite relevant, and hence dust distribution is closer to a uniform one.
This is particularly clear for St ∼ 100, where. In our simulations of
large dust grains, although the initial distribution is proportional to
the gas one, we observe that the spiral is less prominent compared to
smaller grains.
Dust back-reaction and dust self-gravity are always taken into

account. Since the aim of the work is to study the effect of the drag
force in GI, we use two different dust sizes: a larger one, to reproduce
weakly coupled solid particles, and a smaller one, to studymarginally
coupled particles. Since the disc mass is different across our set of
simulation, we chose to adapt the particles’ size in order to obtain
the same Stokes number distribution. To do so, we computed the
radially averaged Stokes number as a function of the particle size for
different disc-to-star mass ratio, starting from the initial conditions
of the gas disc, taking into account the transition between Epstein
and Stokes regime. We decided to choose the small particles’ size so

3 We benchmarked our simulations with the ones of Rice et al. (2004), as
they started with an initial uniform dust distribution, with a fixed thickness.
We obtained the same results, since dust trapping is very efficient in these
systems. Something that should be pointed out is that Rice et al. (2004) did
not account for self-gravity acting on the solid particles.
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Drag force and gravitational instability — II 5

Table 1. Parameters of simulations: disc-to-star mass ratio 𝑀𝑑/𝑀★, cool-
ing factor 𝛽cool, size of dust particles 𝑠, average Stokes number 〈St〉 and
corresponding dust particles size in a 10 times bigger disc 𝑠10.

Simulation 𝑀𝑑/𝑀★ 𝛽cool s [cm] 〈St〉 s10 [cm]

S1 0.05 8 300 40 3
S2 0.05 10 300 40 3
S3 0.05 15 300 40 3
S4 0.05 8 60 8 0.6
S5 0.05 10 60 8 0.6
S6 0.05 15 60 8 0.6
S7 0.1 8 600 40 6
S8 0.1 10 600 40 6
S9 0.1 15 600 40 6
S10 0.1 8 120 8 1.2
S11 0.1 10 120 8 1.2
S12 0.1 15 120 8 1.2
S13 0.2 8 1500 40 15
S14 0.2 10 1500 40 15
S15 0.2 15 1500 40 15
S16 0.2 8 600 16 6
S17 0.2 10 600 16 6
S18 0.2 15 600 16 6

that the radially averaged Stokes number 〈St〉 = 8, and for the large
ones 〈St〉 = 40: in this way we effectively cover a Stokes number
range from 1 to 10 with smaller grains, and from 10 to 100 for larger
ones. One exception is that the small dust particles for the highest
disc-to-star mass ratio simulations are chosen to have 〈St〉 = 16
for computational reasons. In addition, as we will show in the next
section, a higher disc-to-star mass ratio makes the dust unstable, and
collapse can happen: for that reason, dust in simulations S16, S17 and
S18 is evolved only for an outer dynamical time. In every simulation,
dust intrinsic density is fixed 𝜌0 = 5 g/cm3.
Self-gravitating discs may be more radially extended than our

models, which can be rescaled. If we rescale the outer radius of
a factor 𝜆, how does the dust particles’ size need to be rescaled?
Since St ∝ 𝑠/Σ ∝ 𝑠𝑅2out, if we change the outer radius according
to 𝑅′

out = 𝜆𝑅out, in order to maintain the same Stokes number, the
corresponding rescaling for dust particles size should be 𝑠′ = 𝜆−2𝑠.
Hence, if we consider a larger disc with 𝑅′

out = 10𝑅out = 250 au,
the corresponding particle sizes should be rescaled as 𝑠′ = 𝑠/100.
Dust properties are summarized in Table 1, where we also include
the rescaled dust particles’ size. Snapshots of the hydrodynamical
simulations are shown in Figures 1, 2, 3.

4 ANALYSIS AND RESULTS

In this section, we present the analysis of the numerical simula-
tions. Since the simulations use a two-fluid approach (Laibe & Price
2012a,b), gas and dust particles are treated as two different sets of
particles, thus they occupy different locations and carry their own
physical information. In order to obtain properties that depend on
both gas and dust, such as dust to gas ratio, or Stokes number, we in-
terpolate gas properties to the location of dust particles. In addition,
since dust is modelled as a pressureless fluid, it has no internal energy
and no thermal sound speed. However, stirring phenomena induce a
velocity dispersion onto dust particles (Youdin & Lithwick 2007): to
obtain this quantity, we compute it with an SPH interpolation over

neighbouring dust particles, via

𝑐2
𝑑,𝑖

=

𝑁neigh∑︁
𝑗=1

𝑚 𝑗

(
𝑣𝑑,𝑖 − 𝑣𝑑, 𝑗

)2
𝜌 𝑗

𝑊𝑖 𝑗 (ℎ𝑖) . (35)

For our analysis, we will mainly focus our attention on the dust to gas
ratio 𝜖 , the relative temperature between gas and dust 𝜉 = (𝑐𝑑/𝑐𝑔)2,
the Stokes number St, the cooling factor 𝛽cool and the disc-to-star
mass ratio𝑀𝑑/𝑀★. These parameters are related to different physical
phenomena: the dust to gas ratio and the relative temperature trace
dust trapping and dust excitation respectively, the cooling factor is
linked to the gas spiral amplitude (and hence to the strength ofGI), the
Stokes number determines the power of the aerodynamical coupling
and the disc-to-star mass ratio is connected to the spiral morphology.

4.1 Dust trapping: the 𝜖 parameter

GI spiral arms trap dust particles (Dipierro et al. 2015a), since they
are both pressure maxima and gravitational potential minima. We
use the simulations to quantify how this phenomenon depends on
the model parameters. Figure 4 shows the distribution of the dust
to gas ratio for different 𝛽cool and 𝑀𝑑/𝑀★, for a set of simulations
with large dust particles. The initial value of the dust to gas ratio is
10−2. In Figure 4 the higher tail of the distributions reaches values
of & 10−1, implying that dust concentration by up to approximately
an order of magnitude is happening. Figure 5 shows a comparison
between the dust to gas ratio distributions of large and small particles.
As expected, dust concentration in spiral arms is stronger for smaller
particles, and it can approach values of the order of unity, since their
aerodynamical coupling with gas is stronger. The strength of dust
trapping is determined by both the aerodynamic coupling between
gas and dust and the gravitational potential of gas spiral arms. The
combined effect of gravitational and drag interaction is maximised
when St ' 𝑄 ' 1 (Baehr & Zhu 2021), thus, in our simulations,
smaller particles reach higher values of the dust to gas ratio. No
particular correlations are found between 𝜖 and the disc to star mass
ratio, while there is a slight dependence on the cooling factor. In
order to understand this relationship, Figure 6 shows the quantity
𝛿Σ/Σ0 for gas (orange dots) and dust (large particles - blue dots,
small particles - green dots) as a function of the cooling factor 𝛽cool.
The quantity Σ0 is the azimuthally averaged surface density at a
fiducial radius of 10 au, and the quantity 𝛿Σ is its standard deviation.
For the gas, it is known that 𝛿Σ𝑔/Σ𝑔0 ∝ 𝛽

−1/2
cool (Cossins et al. 2009),

and we recover this behaviour in our simulations. For the dust, the
situation is different. We do not find any evident correlation between
the density contrast and the cooling factor. So, if we assume that

𝛿Σ𝑔

Σ𝑔0
∝ 𝛽

−1/2
cool ,

𝛿Σ𝑑

Σ𝑑0
= const, (36)

the ratio between these two quantities is

𝛿Σ𝑔

Σ𝑔0

Σ𝑑0
𝛿Σ𝑑

= 0.01𝜖−1 ∝ 𝛽
−1/2
cool , (37)

where Σ𝑑0/Σ𝑔0 = 1/100, meaning that 𝜖 ∝ 𝛽
1/2
cool. This is the pos-

itive correlation we found before. Why do we not find any evident
correlation between the dust density contrast and the cooling factor?
Physically, the dust experiences the effect of the gas cooling through
gravitational and drag forces. When St � 1, dust and gas particles
are indistinguishable, and so 𝛿Σ𝑔/Σ𝑔0 = 𝛿Σ𝑑/Σ𝑑0 ∝ 𝛽

−1/2
cool . For

higher Stokes number, the drag force is weaker, and the dust is less
influenced by the gas cooling. In this case, we expect the relationship
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Figure 1. Dust dynamics in gas spiral arms: large and small dust particles surface density for different cooling factor and 𝑀𝑑/𝑀★ = 0.05.
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Figure 2. Dust dynamics in gas spiral arms: large and small dust particles surface density for different cooling factor and 𝑀𝑑/𝑀★ = 0.1.
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Figure 3. Dust dynamics in gas spiral arms: large and small dust particles surface density for different cooling factor and 𝑀𝑑/𝑀★ = 0.2.
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Figure 4. Distribution of the dust to gas ratio for different values of cooling
factor (top panel) and disc to star mass ratio (bottom panel). The simulations
shown in these plots are S1,S2,S3,S7,S13.

between 𝛿Σ𝑑/Σ𝑑0 and 𝛽cool to be flatter than 𝛽
−1/2
cool : if this condition

is respected, the correlation between 𝜖 and 𝛽cool will be positive. In
general, 𝛿Σ𝑑/Σ𝑑0 is a function of both the cooling factor and the
Stokes number.

4.2 Dust excitation: the 𝜉 parameter

To investigate dust excitation by spiral arms, we study how the rela-
tive temperature 𝜉 = (𝑐𝑑/𝑐𝑔)2 varies as a function of the simulation
parameters. Figure 7 shows the distribution of the dust relative tem-
perature 𝜉 for different values of 𝛽cool and 𝑀𝑑/𝑀★ for a set of
simulations with large dust particles. We observe that for the simu-
lations in which dust collapse is not happening, the dust dispersion
velocity reaches very quickly (< 1 outer orbital time) a steady value.
The relative temperature shows a negative correlation with both the
disc-to-star mass ratio and the cooling factor. For the disc-to-star
mass ratio, this can be understood by considering the relationship
with the spiral morphology: 𝑀𝑑/𝑀★ is inversely proportional to the
azimuthal wavenumber 𝑚 (Cossins et al. 2009), hence massive discs

Figure 5. Comparison of the distribution of dust to gas ratio of large (orange
line) and small (blue line) dust particles. The simulations shown in this plot
are S1 and S4.

Figure 6.Density contrast 𝛿Σ/Σ0 of gas (orange), large dust grains (blue) and
small dust grains (green) as a function of the cooling factor, for 𝑀𝑑/𝑀★ =

0.05.

have fewer spiral arms. Since dust is excited because of “spiral kicks”
(Walmswell et al. 2013), the lower the number of spiral arms, the less
the dust is excited. For the cooling factor, the negative correlation
can be understood in two ways. First, the cooling rate 𝛽cool is linked
to the amplitude of the spiral perturbation according to eq. 36. Since
gas spiral arms excite dust particles by kicking them every passage,
the higher is the perturbation, the stronger is the kick, and so the
excitation. Second, in gravito-turbulent regime, transport of angular
momentum is driven by the spiral perturbation, and it is possible to
define an 𝛼−viscosity coefficient related to the cooling rate (eq. 33).
The height of a dust layer is determined by the interaction with the
gas and by the vertical diffusion. In the hypothesis that the vertical
diffusion coefficient is equal to the azimuthal one, we can obtain the
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Figure 7. Distribution of the relative temperature for different values of
cooling factor (top panel) and disc to star mass ratio (bottom panel). The
simulations shown in these plots are S1,S2,S3,S7,S13.

height of the dust layer as

𝐻𝑑 = 𝐻𝑔

√︂
𝛼

𝛼 + St . (38)

If we assume that 𝛼 = 𝛼GI, the dust layer height, and thus the dust
dispersion velocity, is inversely proportional to 𝛽cool.
Figure 8 compares the relative temperature distributions of large

and small dust particles. Small particles are colder than the large
ones, and their relative temperature is almost completely enclosed in
the interval 𝜉small ∈ [10−2, 1], meaning that their random motions
are subsonic. On average, the distribution of 𝜉small is shifted by
one order of magnitude compared to 𝜉large. This behaviour is in
agreement with what Booth & Clarke (2016) found: larger particles
tend to be dynamically hotter, because the kicks of the gas spiral
are more effective, while if the coupling with the gas is stronger, the
kicks are damped because of the drag force.
In principle, the observed trend would imply that increasing 𝛽cool

would lead to an arbitrarily thin dust layer, eventually causing grav-
itational collapse. This would be a direct analogue of the classical

Table 2. Table that summarizes the correlations between 𝜖 , 𝜉 and 𝛽cool,
𝑀𝑑/𝑀★ and St.

𝛽cool 𝑀𝑑/𝑀★ St
𝜖 Positive None Negative
𝜉 Negative Negative Positive

Figure 8. Comparison of the distribution of relative temperature of large
(orange line) and small (blue line) dust particles. The simulations shown in
this plot are S1 and S4.

Goldreich & Ward (1973) mechanism for planetesimal formation in
a (weakly) self-gravitating context, and in a more realistic model it
likely be limited in a similar way by the excitation of shear turbulence
(Cuzzi et al. 1993). However, there is an upper limit for 𝛽cool set by
the value above which the transfer of angular momentum would be
driven by some process other than gravitational instability. To com-
pute an estimate of the maximum cooling time, we require 𝛼GI to be
larger than 10−3. Observations of protoplanetary discs that are not
expected to be self-gravitating suggest that this is a reasonable upper
limit to the strength of turbulence (Flaherty et al. 2017). Thus, we
obtain

𝛽maxcool = 400
(
𝛼

10−3

)−1
, (39)

that corresponds to a minimum density perturbation

𝛿Σ𝑔

Σ𝑔0

����
min

= 0.05
(
𝛼

10−3

)1/2
. (40)

Table 2 summarizes the relationships we have discussed in these
paragraphs. A broader collection of histograms can be found in Ap-
pendix C.
Booth & Clarke (2016) studied the relationship between the dust

excitation and both the cooling and the Stokes number. They found
that 𝑐𝑑 ∝ 𝛽−1/2St1/2𝑣𝑘 , where 𝑣𝑘 is the Keplerian speed. To com-
pare with Booth & Clarke (2016), we use our data to reproduce
Figures 7 and 13 of their paper, that show a relationship between
the dust velocity dispersion and 𝛽cool and St. To do so, we divided
the particles into equally spaced intervals of Stokes number and, for
each particle, we computed the mean value of 𝑐𝑑/𝑐𝑔 =

√
𝜉. The

comparison is shown in Figure 9, where we show the results of sim-
ulations with 𝑀𝑑/𝑀★ = 0.05, for both standard and high resolution

MNRAS 000, 1–18 (2023)



Drag force and gravitational instability — II 11

cases. The previously derived relationships with the Stokes number
(the left panel) and with the cooling factor (the right panel) are well
recovered. Using our two fluid algorithm, it is too computationally
expensive to analyse properly the case of St < 1. However, in this
case we expect that as the aerodynamical coupling with the gas is
stronger, 𝑐𝑑/𝑐𝑔 should increase, eventually reaching 𝑐𝑑 = 𝑐𝑔 for
St→ 0. This growth for St < 1 has been shown by Booth & Clarke
(2016).

4.3 Two fluid instability

In this section, we apply the two fluid instability theory presented in
Section 2. The gas-only and gas-and-dust models for gravitational in-
stability have both been developed within a linear framework; hence,
in principle, the quantities 𝜖 , 𝜉 and St should be evaluated in the
unperturbed state. However, in this work, we are evaluating them in
the perturbed one. Although not completely self-consistent, it gives
us an idea of the most unstable regions of the disc. Figure 10 shows
the distribution of large (blue) and small (orange) dust particles in
the (𝜉, 𝜖) diagram: the black lines corresponds to the dust driven GI
threshold for St = ∞ (eq. 16, solid line) and for St = 0.5 (eq. 17,
dashed line). We choose St = 0.5 as a minimum value since the
number of particles with Stokes number lower than this is negligible.
The particles above the region are in a dust driven GI regime. We
find that the number of small particles for which the instability is
dust driven is greater compared to large ones: this is because small
particles have both larger dust to gas ratio and lower dispersion ve-
locity. In addition, the number of dust driven particles increases with
the cooling factor and with the disc to star mass ratio, as already
discussed in previous sections. To understand the spatial location of
these particles in the disc, Figure 11 shows the particles that satisfy
condition 16 superimposed on the total density map. As expected,
the most unstable regions of the disc are not randomly distributed,
but correspond with the spiral arms.
Figure 12 shows the value of the Jeans mass for 𝑀𝑑/𝑀★ = 0.05 as

a function of the Stokes number. The curve can be divided into two
parts: for St ∈ (0, 5), the Jeans mass is decreasing with the Stokes
number, reaching its minimum at about St ∼ 3. This happens because
for St → 0, the particles are indistinguishable, and the instability is
gas driven. It is important to notice that the number of particles with
small Stokes number is low, hence the binning in Stokes number
presents a considerable scatter. By increasing the Stokes number, 𝜉
decreases and the two fluids behave more and more differently.When
the Stokes number is approximately 1, the relative temperature is a
minimum and the dust to gas ratio is high, so the instability becomes
dust driven. Otherwise, for St > 5, the Jeans mass increases with the
Stokes number. Indeed, the relative temperature increases, and the
dust to gas ratio decreases. Hence, the system transitions from dust
into gas driven instability, again, eventually reaching the gas-only
component model value.

5 DISCUSSION

5.1 Dust collapse

The simulations with 𝑀𝑑/𝑀★ = 0.2 and small dust particles do not
reach 5 outer orbits, since the simulation stops due to the onset of
dust collapse. This happens because the stopping time of collapsing
dust particles becomes smaller than the time step of the code. Indeed,
the stopping time is inversely proportional to the total density 𝜌tot =
𝜌𝑔 + 𝜌𝑑 , and since the dust density is increasing, because of the

collapse, the stopping time tends to zero. The top panel of Figure 13
shows the maximum dust density as a function of time for small
and large dust particles, in the run with 𝑀𝑑/𝑀★ = 0.2 and 𝛽 = 15.
While large dust particles reach a quasi-steady state, the small particle
density exponentially increases in the first orbit. This is the signature
of dust collapse. This phenomenon is visible in simulations S16,
S17 and S18, and happens only in the dust component. The bottom
panel of Figure 13 shows a comparison between gas and small dust
averaged density as a function of time, for 𝑀𝑑/𝑀★ = 0.2 and 𝛽 =

15. At 𝑡 = 0, 〈𝜌𝑑〉 = 10−2〈𝜌𝑔〉. Whereas the gas average density
is constant with time, the dust density increases because of dust
trapping, eventually exceeding that of the gas. This means that any
clumps forming from this mechanism would be substantially made
up of solids, and would likely be identified with the rocky core of a
giant planet. However, in this work we do not want to characterize
the outcome of this collapse, which is a complex topic. Indeed,
simulations of planetesimal collapse (Nesvorný et al. 2021) show
that a rotating self-gravitating cloud of dust does not monolithically
collapse, meaning that it is not possible to directly equate the cloud
mass with the planetary core one.
To identify and analyse dust clumps in more detail, we define

the numerical conditions that should be respected for a clump to be
physical and not affected by resolution. For a clump radius 𝑟clump the
smoothing length of the dust particle ℎ𝑖 should be less than a fraction
of the clump radius, in order to be resolved. This condition translates
into ℎ𝑖 < 𝜂𝑟clump, where 𝜂 is less than unity. We take 𝜂 = 1/2.
Physically, a gravitationally bound clump is a collection of particles
whose thermal support does not balance the gravitational one. We
define the thermal and gravitational energy of particles inside 𝑟clump
as follows:

𝑒th =

𝑖∈𝑟clump∑︁
𝑖

𝑚𝑖𝑐
2
𝑖 , (41)

𝑒gr = −1
2

𝑖∈𝑟clump∑︁
𝑖

𝑗∈𝑟clump∑︁
𝑗=𝑖

𝑚𝑖𝑚 𝑗 [𝜑(𝑟𝑖 𝑗 , ℎ𝑖) + 𝜑(𝑟𝑖 𝑗 , ℎ 𝑗 )], (42)

where 𝜑 is the gravitational softening kernel and 𝑟𝑖 𝑗 = |r𝑖 − r 𝑗 |. We
used a cubic spline softening kernel, and the detailed expression can
be found in the appendix of Price & Monaghan (2007). According
to the virial theorem, if the force between any two particles can be
described in terms of a potential energy Φ ∝ 𝑟𝑛, where 𝑟 is the
distance between two particles, the equilibrium state respects the
following condition

2〈𝑇〉 = 𝑛〈Φ〉, (43)

where 𝑇 is the kinetic energy. In the case of gravitational inter-
action, the virial theorem reads 〈𝑇〉/〈Φ〉 = −1/2. We define a
clump as a region of the space where the dimensionless quantity
𝛼𝐽 = −𝑒th/𝑒gr < 1/2. Then, in order to be sure that the collapse
is physical, and not artificial, we verify that ℎ𝑔 < ℎ𝑑 in the region
where there is the dust clump. The last condition requires that the
resolution of the gas in the region where there is a possible clump
should be higher compared to the dust resolution.
To summarize, the conditions under which we define a dust clump

are the following

• ℎ𝑔,𝑖 ≤ ℎ𝑑,𝑖 ,
• ℎ𝑑,𝑖 < 𝜂𝑟clump,
• 𝛼𝐽 < 1/2.

In simulations S16, S17 and S18 there are particles that respect
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Figure 9. Comparison with Booth & Clarke (2016). The left panel shows how dust dispersion velocity depends on the Stokes number, for different values of
cooling factor, compared to the expected relationship ∝ St1/2. The right panel, shows how dust dispersion velocity depends on the cooling factor, for different
values of Stokes number, compared to the expected relationship ∝ 𝛽

−1/2
cool . All the simulations shown in these plots have 𝑀𝑑/𝑀★ = 0.05. The diamonds are the

values obtained from the standard resolution simulations, while the squares from the high resolution ones.

Table 3. Comparison between the expected and the observed Jeans Mass in
the simulations where dust collapse happens.

# Expected 𝑀𝐽 [M⊕] Simulation [M⊕]
S16 2 0.6
S17 2.2 1.
S18 4.5 3.2

the previous conditions, implying that dust collapse has happened.
Table 3 shows themass of the clumps, obtained by summing themass
of each particle that is gravitationally bound and the one obtained
from analytical theory from Eq. 20. The masses are broadly in agree-
ment with analytic expectations. For S16, for example, the derived
Jeans mass is of the order of an Earth mass. In general, the mass
of the clump computed from the simulation is smaller compared to
the one expected from the analytical theory: this is not surprising,
since with the simulation we are only able to appreciate the initial
phase of the collapse. Indeed, as soon as the stopping time is smaller
than the time step, the simulation stops. To avoid this problem, one
could decrease the time step of the code, but it is computationally
expensive. Otherwise, one could not consider the dust density when
computing the stopping time: this procedure has been applied in pre-
vious works to increase the velocity of the simulations (Poblete et al.
2019; Longarini et al. 2021) but this approximation is valid only for
small dust to gas ratios. While there this was justified, here this is not
possible, since dust is collapsing and the dust to gas ratio becomes
higher than unity. Finally, to study the early evolution of clumps with
an SPH code, it would be possible to simulate them as sink particles:
so far, the creation of dust sink particles is not possible in phantom.

5.1.1 Gas-dust coupling during the collapse

The bottom panel of Figure 13 shows that the collapse happens only
in the dust component, and the gas is not influenced. This could sound
surprising: indeed, in high density regions, we expect the stopping
time (eq. 25) to be small. So, why is the dust collapse not influencing
the gas? The degree of coupling is measured with the Stokes number,

Table 4. Stopping, dynamical and free fall timescales for the simulations that
show dust collapse

# 𝑡𝑠 [yr] 𝑡dyn [yr] 𝑡ff [yr] 𝑡𝑠/𝑡dyn 𝑡𝑠/𝑡ff
S16 2.7 7.9 0.4 0.3 6
S17 5.6 14.1 0.7 0.4 8
S18 7.2 17.7 1.6 0.4 4

that compares the strength of the drag force with the ones that are
acting on the particle. Usually, in a flat protoplanetary disc, the
Stokes number is computed as the ratio of the stopping time and the
dynamical time, that is the typical timescale of a particle orbiting
around a central object at a distance 𝑅. However, in this situation,
the dust clump is driving the dynamics of the surrounding particles,
and hence we should compare the stopping time with the free fall
time in order to understand the degree of coupling of particles. The
typical timescale of the infall of a spherically-symmetric distribution
of mass is

𝑡ff =

√︄
3𝜋
32𝐺𝜌

. (44)

Comparing the stopping time and the free fall time in the simu-
lations where dust collapse is happening (Table 4), we obtain that
the particles in the collapsing region are uncoupled, since the ratio
between the two timescales is higher than one.
It is possible to quantify the critical density a clump should reach

so that 𝑡ff < 𝑡dyn, that is

𝜌crit =
3𝜋
32

𝑀★

𝑅3
: (45)

when a clump reaches this density, the evolution of the surrounding
particles is determined by the clump, and not by the star anymore.
From that point, the aerodynamical coupling should be quantified
by taking the ratio between the stopping time and the free fall time.
Hence, for 𝜌 < 𝜌crit, St ∝ 𝜌−1, since the dynamical time does not
depend on the density. For 𝜌 > 𝜌crit, the scaling changes since the
free fall time depends on the density St ∝ 𝜌−1/2, and so does the
degree of coupling.
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Figure 10. Distribution of large (blue) and small (orange) dust particles in the (𝜖 , 𝜉 ) diagram, for different values of disc-to-star mass ratio and cooling factor.
The black lines corresponds to the dust driven GI threshold for St = ∞ (eq. 16, solid line) and for St = 0.5 (eq. 17, dashed line). We choose St = 0.5 as a
minimum value since the number of particles with Stokes number lower than this is negligible. The particles above the region are in a dust driven GI regime.

5.2 Gravitational instability in the context of protoplanetary
disc evolution

In this work, we focused on cooling driven GI, but it is also possible
to trigger it through infall. Kratter et al. (2010) found that in the
infall-driven case the strength of the spiral perturbation is controlled
by two dimensionless parameters, a thermal one, that relates the
infall mass accretion rate ¤𝑀inf to the characteristic sound speed of
the disc, and a rotational one, that compares the relative strength of
rotation and gravity in the core. Obviously, the higher the accretion
rate, the stronger is the spiral perturbation in the disc. We can naively
associate the dust evolution we have modelled in the limit of fast
(slow) coolingwith high (low) infall rate. This association is expected
to be qualitatively correct, however a detailed comparison between
these two regimes is given by Kratter & Lodato (2016).

By studying the non-linear evolution of gas and dust in proto-
planetary discs, we found that the instability conditions for the two
components are different. It is well established that spiral fragmen-

tation occurs in fast cooling gas discs, and it is possible to define
a critical value of 𝛽cool below which fragmentation occurs. Simu-
lations of cooling-driven fragmentation (Gammie 2001; Rice et al.
2005; Lodato & Clarke 2011; Meru & Bate 2012) currently suggest
that 𝛽min ' 3 (Deng et al. 2017). For the dust, Booth & Clarke
(2016) found that dust becomes more unstable for higher 𝛽cool, and
we confirm this trend with 3D simulations. The differing behaviour
of gas and dust suggests an interesting evolution in the outcome of
gravitational instability within protoplanetary discs. During a first
stage, at the beginning of the disc lifetime, we expect a very massive
disc system characterized by strong GI, caused by the high infall rate
from the molecular cloud. If conditions allow gas fragmentation, be-
cause of the high Jeans mass, low mass stellar companions can be
formed (Kratter et al. 2010). A second stage is characterized by a less
massive disc, with lower infall rate, or equivalently longer cooling
time. If conditions during this epoch trigger gravitational instability,
it will lead to dust-driven fragmentation that could be responsible
for the formation of rocky cores of giant planets. Then, in the third
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Figure 11. Total density maps for small dust particles simulations (S4,S5,S6,S10,S11,S12,S16,S17,S18 in order). Yellow dots correspond to particles for which
the instability is dust driven.

Figure 12. Jeansmass given by eq. (20) evaluated at each dust particle location
as a function of the Stokes number, for 𝑀𝑑/𝑀★ = 0.05 and 𝛽cool = 8.

stage, there is a protostar surrounded by a planet hosting disc, char-
acterized by substructures such as gaps, rings or planetary spirals.
In this stage, GI is not effective anymore because the disc mass is
small and the transport of angular momentum is controlled by disc
winds (Tabone et al. 2022) or other, non-self-gravitating, sources of
turbulence (Lesur et al. 2022). A schematic view of these stages is
given by figure 14.

5.3 Application to an actual case: HL Tau

HL Tau is a young (< 1Myr) protostellar system that shows ax-
isymmetric structures (gaps and rings) in dust continuum emission
(ALMA Partnership et al. 2015). The origin of rings and gaps
is usually attributed to planet disc interaction (Lin & Papaloizou
1986), with Dipierro et al. (2015b) finding that three protoplanets
with masses 𝑀𝑝1 = 61M⊕ , 𝑀𝑝2 = 83M⊕ , 𝑀𝑝3 = 170M⊕ at
𝑅𝑝1 = 13.2au, 𝑅𝑝2 = 32.3au and 𝑅𝑝3 = 68.8au best match the ob-
servations. The formation of super-Earth mass planets at large radii,
in such a young system, is a challenge for core accretion theory. If
planets can form via the dust-induced collapse mechanism we have

MNRAS 000, 1–18 (2023)
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Figure 13. Maximum dust density as a function of time for simulations S15
(𝑀𝑑/𝑀★ = 0.2, 𝛽 = 15, large dust particles, blue line) and S18 (𝑀𝑑/𝑀★ =

0.2, 𝛽 = 15, small dust particles, blue line).

discussed in this work, HL Tau is a plausible example of what the
resulting planetary system might look like. We note that the inferred
trend of increasing mass with radius can be interpreted within our
model. In a simplistic way, we assume that St ∝ Σ−1 ∝ 𝑅, and
that 𝜉 ∝ 𝛽−1coolSt ∝ 𝑅

4.5𝑅 = 𝑅5.5, where we have supposed a realistic
cooling law, according to which 𝛽cool ∝ 𝑅−4.5 (Rafikov 2005; Clarke
& Lodato 2009). Supposing that the dust to gas ratio is constant, the
Jeans mass of the gas-and-dust fluid model will be an increasing
function of the radius, since the relative temperature is smaller for
particles closer to the central star. So, within this hypothesis, we
expect that the mass of the dust driven GI protoplanets will be an
increasing function of the radius. We want to point out that this is
just a qualitative argument. Indeed, to thoroughly investigate whether
HL Tau planets can be formed through dust driven GI, one should
properly model the system. In addition, planet migration and planet
accretion should also be considered.

6 CONCLUSIONS

Self-gravitating gas discs may be ubiquitous during the Class 0/I
phases of YSO evolution (e.g. Lin & Pringle 1990; Xu & Kunz
2021). Observations suggest that the self-gravity can in some sys-
tems be strong enough as to trigger fragmentation (Tobin et al. 2016),
while in other cases, such as the massive disc of the more evolved IM
Lup system (Lodato et al. 2023) the instability is expected to be more
gentle. If that fragmentation occurs in the gas, as in the L1448 IRS3B
system, the outcome is typically star or brown dwarf formation.
Lower mass objects can be formed if the fragmenting fluid is instead
the solid component of a two-fluid self-gravitating disc, given disc
conditions that allows the collisional growth of dust to small macro-
scopic dimensions while the disc remains self-gravitating. Analytic
estimates suggest that planetary cores of ∼ 1 − 10 𝑀⊕ could form
from thismechanism at large orbital radius, with properties that could
be identified with the population of ALMA-inferred disc-embedded
planets (Andrews 2020).
In this paper, we presented the results of SPH simulations of gas

and dust in protoplanetary discs, studying the role of aerodynamic
coupling in the context of gravitational instability. We analysed our
results in the framework of two fluid gravitational instability, and
compared our findings with previous numerical works, finding gen-
erally good agreement.
Our main results can be summarized as follows:

(i) We studied the relationship between the dust to gas ratio 𝜖 , the
relative temperature between gas and dust 𝜉 and the cooling factor
𝛽cool, the disc to star mass ratio and the Stokes number.We found that
the dust to gas ratio increases with the cooling factor and decreases
with the Stokes number, and that the relative temperature increases
with the Stokes number and decreases with the cooling factor and
the disc to star mass ratio. It is possible to explain these relationships
by considering the interaction between dust particles and gas spiral
arms. We compared our findings with Booth & Clarke (2016) and
found good agreement.
(ii) We investigated the role of dust in gravitational instability, and

found that the most unstable regions of the disc are the spiral arms,
where the instability tends to be dust driven. In addition, we studied
the relationship between the theoretical Jeans mass and the Stokes
number. We found that the Jeans mass — when the instability is dust
driven — can reach values of the order of the Earth mass.
(iii) We observe three cases of dust collapse in our set of simu-

lation, which occur (as expected) in the high disc mass models. The
values of the clump masses obtained numerically are close to those
predicted by linear theory.

In applying our results to the possibility of early planet formation
in Class 0/I discs, the main prerequisite is the requirement that dust
is able to grow via coagulation to a large enough Stokes number,
with a top-heavy particle mass function, in a short enough time. Our
simulations that explicitly exhibited dust collapse had solid particles
with an average Stokes number 〈St〉 = 16, which would correspond
(rescaling our simulations to a disc size of 𝑅out = 250au) to particles
with sizes between a few cm and a few metres. Fragmentation and
radial drift pose barriers to growth to the required sizes (Birnstiel
et al. 2010), and further work is needed to assess whether there are
circumstances where the required Stokes numbers can be reached.
Simulations with a constant Stokes number, along with runs with
St ∼ 1 (a regime which is numerically difficult to access using our
code), would also help to better define the regime where dust can
fragment in a gas disc that is itself stable against fragmentation.
In an evolutionary context, our results imply that planet forma-
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Figure 14. Scheme of the three stages of disc lifetime

tion — if it is able to occur via the mechanism of dust-dominated
gravitational disc instability — is likely to occur toward the end
of the self-gravitating phase. This is when the competing effects of
particle trapping and particle excitation are jointly most favourable
for collapse. The masses and orbital radii of the planets formed via
dust collapse are qualitatively in agreement with those inferred for
the HL Tau system, and we speculate that they may form from the
collapse of solids in the spiral arms of a formerly self-gravitating
protostellar disc.
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APPENDIX A: VALUE OF Λ

In this appendix we discuss the value of Λ used to compute the Jeans
mass for the two fluid components model. The value of Λ can be
obtained through the dispersion relation of the two fluid component
model with drag force (Longarini et al. 2023), by computing the
most unstable wavelength having fixed (𝜖, 𝜉, 𝑆𝑡). Figure A1 shows
the value of Λ3 as a function of (𝜖, 𝜉, 𝑆𝑡). The curves show a sharp
fall: this is the point where instability becomes dust driven. When the
instability is gas driven, the value ofΛ3 decreases with the dust to gas
ratio. Then, it starts increasing since the mass of the dust becomes
higher and higher, significantly contributing to the total density. Con-
versely, the value of Λ3 increases with the relative temperature both
in gas and dust driven regimes. Finally, Λ3 decreases with the Stokes
number.

APPENDIX B: RESOLUTION REQUIREMENTS

In this appendix, we compute the minimum number of dust particles
to resolve the expected Jeans mass: to study this problem, we refer
to Lodato & Clarke (2011). In order to resolve the Jeans length, we
require the smoothing length to be smaller than the disc height: so,
the condition for dust particles is

ℎ𝑑

𝐻𝑑
< 1. (B1)

Dust smoothing length and height can be written as a function of gas
properties as follows

𝐻𝑑 = 𝐻𝑔𝜉
1/2, (B2)

ℎ𝑑 = ℎ𝑔

(
1
100

𝑁𝑔𝜌𝑔

𝑁𝑑𝜌𝑑

)1/3
, (B3)

where we assumed𝑀dust/𝑀gas = 1/100. By considering the gas disc
to be marginally unstable (𝑄𝑔 = 1), condition B1 becomes

𝑁𝑑

2.5 × 105
> 𝜉−3/2

( 𝜖

0.01

)−1 ( 𝑚(𝑟)
5 × 10−3

)−3 (
𝑀𝑑/𝑀★
0.1

)
, (B4)

where 𝜖 is the dust to gas ratio and 𝑚(𝑟) = Σ𝑔𝑟
2/𝑀★. If we write

the disc mass as 𝑀𝑑 = 𝜋𝑟2outΣ𝑔, 𝑚(𝑟) ' 1/𝜋(𝑀𝑑/𝑀★), thus the
resolution requirement is

𝑁𝑑 > 4 × 104
(
𝜉

0.1

)−3/2 ( 𝜖

0.01

)−1 (𝑀𝑑/𝑀★

0.1

)−2
. (B5)

Figure B1 shows the minimum number of dust particles required
to resolve the Jeans length as a function of the relative temperature
𝜉 for 𝑀𝑑/𝑀★ = {0.05, 0.1, 0.2}, for a fixed dust to gas ratio 𝜖 =

0.1: even for extreme values of 𝜉, the standard resolution we have
chosen (𝑁𝑑 = 2 × 105) is sufficient to resolve the Jeans length. One
should note that we never reach 𝜉 ∼ 10−2, and in addition we have
underestimated the dust to gas ratio: indeed, inside spiral arms it
could reach values > 0.1, making our 𝑁𝑑 choice even safer.
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Figure A1. Λ3 as a function of (𝜖 , 𝜉 , 𝑆𝑡) , from top to bottom panel.

APPENDIX C: LARGE AND SMALL DUST PARTICLES
COMPARISON

Figure C2 show the complete set of histograms of the dust to gas
ratio and the relative temperature, for small and large dust particles.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure B1. Minimum number of dust particles as a function of the relative
temperature 𝜉 for different values of the disc-to-star mass ratio. The black
line represents the value of this work

MNRAS 000, 1–18 (2023)



Drag force and gravitational instability — II 19

Figure C1. Comparison between large and small dust particles.
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Figure C2. Comparison between large and small dust particles.
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