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Introduction

This doctoral thesis is a presentation of the work done during the Ph.D. program,
carried out by the author in Università degli Studi di Milano - Statale, under the
supervision of professor Marco M. Peloso, from October 2021 to September 2024.
This work is devoted to the study of certain Hilbert spaces of analytic functions
on the unit disk D of the complex plain, D := {w ∈ C : |w| < 1}. The classical
Dirichlet space D [3, 23], the Hardy spaces Hp, 0 < p ≤ ∞, [21, 36, 40], and the
Bergman space A2 [11, 20, 35] are the most well-known function spaces on the
open unit disk D. These spaces have been extended in several diverse directions.
In this thesis, we are interested in a generalized version of the Dirichlet space D,
and a class of Hilbert spaces that arise from the Hardy space H2.

This dissertation is divided into four parts. The first chapter contains the rel-
evant background definitions and results. The remaining three chapters contain
the original results, and are organized as three different papers or preprints. In
particular, Chapters 2 and 3 stem from a broad investigation into the relations be-
tween the two different classes of spaces of interest for this work, whereas Chapter
4 focuses on a specific problem in Dirichlet spaces.

In this introduction, we give an overview of the content of this thesis and we
provide a selection of the original results that were obtained. The third chapter
contains a joint paper with Carlo Bellavita, that has already been published, which
corresponds to Subsections 3.1 and 3.2. The second and fourth chapters are based
on two separate projects that gave rise to two preprints, that are currently under
review: the first one in collaboration with Carlo Bellavita and Javad Mashreghi,
and the second one with Javad Mashreghi, Mostafa Nasri and William Verreault.

In Chapter 1, we introduce the setting, the main stage where this work takes
place, that is, the Hardy space on the unit disk H2. This mathematical object
lies at the intersection between harmonic analysis, complex analysis and operator
theory. In this dissertation we recall some of the aspects that have made the space
H2 one of the most studied topics in mathematical analysis in the last century.
In Chapter 1, we also define the protagonists of this study, that are two different
classes of subsets ofH2, the de Branges–Rovnyak spaces H(b) and the harmonically
weighted Dirichlet spaces Dµ.

The first class of spaces have been introduced in 1966 by Louis de Branges and
James Rovnyak [18], as a generalization of the range space for the multiplication
operator Tb. Here, b is an analytic function on D that is uniformly bounded by 1.
In 1994, Donald Sarason [54] started a new approach to this theory and suggested
a new equivalent definition for the H(b) spaces. In this formulation, that is the
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one that we follow in this thesis, the de Branges–Rovnyak spaces are realized as
the range of the square root of the positive operator I − TbT ∗

b . They are subsets
of H2 that are not necessarily closed in the topology induced by the Hardy norm.
In general, the de Branges–Rovnyak space H(b) = Ran(I − TbT

∗
b )

1
2 is a Hilbert

space with respect to the so-called range norm, that in general can be somewhat
mysterious. As we will see, the construction is rather abstract, there is no explicit
formula that one can use to establish whether a function f ∈ H2 belongs to a
certain H(b) space. This aspect is one of the features that makes this whole
theory complicated, yet intriguing.

A special class of de Branges–Rovnyak spaces that we will discuss in great
detail are the model spaces. They correspond to the H(b) spaces that are, in fact,
closed in the Hardy norm and satisfy ∥ · ∥H(b) = ∥ · ∥H2 . They are characterized
by the fact that the associated function b is inner. Their name, and a part of
their fortune in literature, is due to certain results by Sz. Nagy and Foias, who
understood that the model spaces act as models for a certain type of isometries:
they appear in representation theorems for completely non-unitary isometries, a
class of operators that the very powerful spectral theorem cannot reach. Proper
references will be given throughout this work.

The other class of spaces that we treat in this thesis is a weighted version of
the Dirichlet space D. The harmonically weighted Dirichlet spaces Dµ have been
introduced by Stefan Richter in 1991 [48], in the context of the representation of
cyclic analytic 2-isometries. They also play an important role in the study of the
forward shift S on the classic Dirichlet space D: they appear in a very beautiful
Beurling-type classification theorem for closed S-invariant subspaces of D [50].
An important example in this class of spaces is the so-called local Dirichlet space.
Given a point ζ in the unit circle T := ∂D and a function f that is analytic on D,
we define the local Dirichlet integral of f at ζ as

Dζ(f) :=
1

π

∫
D
|f ′(z)|2 1− |z|

2

|z − ζ|2
dA(z).

We define the local Dirichlet space as

Dζ := {f ∈ Hol(D) : Dζ(f) <∞},

where dA is the two-dimensional Lebesgue measure, i.e., the area measure, and
Hol(D) denotes the space of analytic functions on D. This space is of great impor-
tance in this theory because of a disintegration formula that allows to express more
general Dirichlet integrals in terms of the local one. Because of this formula, that
we will discuss later, in some contexts the study of the quantities Dζ(f) allows one
to recover information on the membership of the function f in any harmonically
weighted Dirichlet space. One thing that we mention in passing is that every har-
monically weighted Dirichlet space contains all polynomials, hence it is dense in
H2. In 1991, Stefan Richter and Carl Sundberg [49] characterized the functions in
H2 that belong to Dζ : a function f ∈ H2 belongs to Dζ if and only if the difference
quotient function

Qζf(z) :=
f(z)− f(ζ)

z − ζ
, z ∈ D, (1)
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belongs to H2. Moreover, in this case, Dζ(f) = ∥Qζf∥2H2 . This result is very
important to us, and we show it in this introduction to motivate some of the work
that appears in this thesis.

The two classes of spaces that we introduced, the H(b) spaces and the Dµ

spaces, have both a beautiful structure and interesting properties that will be
dealt with in more detail. In 1997, Donald Sarason [55] showed that they are not
two completely separate species. From the realization that a special example of a
harmonically weighted Dirichlet space, the local Dirichlet space Dζ , is in fact also
a de Branges–Rovnyak space, many authors have started to study the possible
connections between these two classes of spaces. In Chapter 3 we say more about
the state of the art of this fascinating line of research, and we provide some original
contributions.

In Chapter 2, we study a special class of operators on the spaces H(b), the
difference quotient operators Qb

ζ . The idea is to study from an operator-theoretic
point of view the fundamental quantities

f(z)− f(ζ)
z − ζ

,

for functions f ∈ H(b) and boundary points ζ ∈ T. As we briefly explained
with Equation (1), such difference quotients characterize the membership in the
local Dirichlet space Dζ , and can give much information about the membership in
more general Dirichlet spaces. In this chapter, there are original results that are
interesting on their own, and the analysis that is carried out is instrumental for
Chapter 3. In these results that we report, a special role is played by the spectrum:
given a bounded analytic function b with ∥b∥H∞ = 1, we define its spectrum as
the set

σ(b) := {w ∈ D : b(w) = 0} ∪ {λ ∈ T : lim inf
z→λ

|b(z)| < 1}.

We will discuss the set σ(b) in much more detail in the preliminaries chapter.
In particular, we will show that, if ∆ is an open arc that is contained in the

complement of the closure of the spectrum σ(b)
cl
, i.e., ∆ ⊂ T \ σ(b)

cl
, then the

function b extends analytically on ∆ with |b| = 1 on ∆. For a boundary point

ζ ∈ T \ σ(b)
cl
, the difference quotient operator

Qb
ζf(z) :=

f(z)− f(ζ)
z − ζ

, z ∈ D,

is well-defined and bounded on H(b). In the following original result, we describe
the spectrum σ(Qb

ζ) and we give a lower estimate for the norm of Qb
ζ . We consider

the usual operator norm in the space B(H(b)) of bounded operators on H(b).

Theorem 1. Let b be a bounded analytic function on D with ∥b∥H∞ = 1, and

ζ ∈ T \ σ(b)
cl
. Then, the spectrum of the operator Qb

ζ is the set

σ(Qb
ζ) =

{
η

1− ζη
: η ∈ σ(b)

cl
}
.
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Also, the following lower estimate holds:

∥Qb
ζ∥B(H(b)) ≥

1

dist(ζ, σ(b)
cl
∩ T)

. (2)

Notice that the inequality in (2) shows that it is actually necessary to consider
points outside of the closure of the spectrum of b, to have a bounded operator Qb

ζ .
Specializing to the case of inner functions, we provide another lower estimate

for the norm ∥Qb
ζ∥B(H(b)). As we will see, the case of inner functions is easier,

because the norm of the associated model space coincides with the Hardy norm.
Moreover, the spectrum of an inner function is always closed.

Theorem 2. Let u be an inner function and ζ ∈ T \ σ(u). Then,

∥Qu
ζ∥B(Ku) ≥

|u′′(ζ)|
2|u′(ζ)|

.

The next results concern a special class of inner functions, the one-component
inner functions. As we will see, these special functions have certain properties that
allow for easier computations, in the context of difference quotients. The following
upper estimate for the norm holds.

Theorem 3. Let u be a one-component inner function, and let ζ ∈ T\σ(u). Then,

∥Qu
ζ∥B(Ku) ≤ Cu|u′(ζ)|, (3)

where Cu is a positive quantity not depending on ζ.

This beautiful match between one-component inner functions and the difference
quotient operator reaches its climax in the next theorem, where a characterization
of the property of being one-component is given in terms of the difference quotient
operator.

Theorem 4. Let u be an inner function. Then, u is a one-component inner
function if and only if there exists a positive constant Cu such that for every ζ ∈
T\σ(u) the inequality (3) holds and m(σ(u)) = 0, where m denotes the normalized
Lebesgue measure on T.

In Chapter 3, as we mentioned before, we treat the topic of the different rela-
tions between H(b) spaces and Dµ spaces. We report some important results and
recent contributions to this study, concerning when a de Branges–Rovnyak space
is also a Dirichlet space, and vice versa, with equality or equivalence of norms. As
we will further motivate, we are also interested in the possibility that a H(b) space
simply embeds into Dµ, without necessarily a total identity of the sets.

Before we give more details about the content of this chapter, we have to tell
something more about the structure of the H(b) spaces. Basically, the theory splits
into two main categories, depending on whether the function b associated to the
H(b) space is an extreme point of the closed unit ball of H∞. For functions b that
are extreme, the corresponding H(b) space cannot contain all polynomials, and in
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this case an embedding result H(b) ↪→ Dµ is the best that we can hope for. In
general, H(b) spaces associated to extreme functions b may be very “small”, even
finite-dimensional. We mention that inner functions are always extreme, hence this
is the case of the model spaces. On the other hand, when the function b is non-
extreme, the space H(b) contains all polynomials. In particular, the corresponding
H(b) space is infinite-dimensional, it is dense in H2, and we may have an equality
of sets H(b) = Dµ. When the function b is non-extreme, one can construct an
auxiliary function a that plays an important role in the study of the associated
H(b) space. We will say that a is the Pythagorean mate of b.

In Chapter 3, we study the embedding phenomenon in some special cases. We
give a sufficient condition for the embedding into local Dirichlet spaces.

Theorem 5. Let b be a bounded analytic function with ∥b∥H∞ = 1, and let ζ ∈
T \ σ(b)

cl
. Then, we have the embedding H(b) ↪→ Dζ.

We also give a necessary condition for the embedding H(b) ↪→ Dζ .

Theorem 6. Let b be a bounded analytic function with ∥b∥H∞ = 1, and let ζ ∈
T∩ σ(b). Then, the de Branges–Rovnyak space H(b) does not embed into the local
Dirichlet space Dζ.

In some special cases, these two conditions combined provide a complete char-
acterization of the embedding. For example, this is the case of the embedding of
model spaces into the local Dirichlet spaces, or any H(b) space that is associated
to a function b whose spectrum σ(b) is closed. We also completely characterize the
embedding of a H(b) space associated to a non-extreme function into a Dµ space,
where the associated measure µ is a finite sum of Dirac deltas,

µ =
N∑
j=1

αjδζj , (4)

with positive weights αj > 0.

Theorem 7. Let b be a non-extreme function in H∞, a its Pythagorean mate, and
µ an atomic measure as in (4). Then, we have the embedding H(b) ↪→ Dµ if and
only if the following conditions hold:

(i) There exists g ∈ H∞ such that a has the form

a =

(
N∏
j=1

(z − ζj)

)
g;

(ii) {ζ1, . . . , ζN} ∩ σ(b) = ∅.

We conclude the discussion of this embedding with a characterization of the
identity H(b) = Dµ, completing a previous result in literature.
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Theorem 8. Let b be a non-extreme function in H∞
1 , a its Pythagorean mate, and

µ an atomic measure as in (4). Then, we have the equality H(b) = Dµ if and only
if the following conditions hold:

(i) There exists g ∈ H∞ with infD |g| > 0 such that a has the form

a =

(
n∏

j=1

(z − ζj)

)
g;

(ii) {ζ1, . . . , ζN} ∩ σ(b) = ∅.

As previously indicated in the introduction, the last chapter diverges from
the main topic of the thesis. This final piece of work was carried out during a
visiting period at Université Laval, in Québec City (CA), under the supervision
of professor Javad Mashreghi. In Chapter 4, we deal with a specific question
about polynomial approximation schemes in Dirichlet spaces. Given the analytic
function f(z) =

∑n
k=0 akz

k in an appropriate weighted Dirichlet space, we study
the generalized Cesàro means

(σα
nf)(z) =

(
n+ α

α

)−1 n∑
k=0

(
n− k + α

α

)
akz

k,

where α is a parameter in the interval [0, 1]. We point out that, for α = 0, we
recover the n-th partial Taylor sum

(σ0
nf)(z) =

n∑
k=0

akz
k,

while for α = 1, we obtain the standard Cesàro mean

(σ1
nf)(z) =

n∑
k=0

(
1− k

n+ 1

)
akz

k.

We investigate the convergence σα
nf → f as n → ∞. To this end, it is enough to

study such convergence in the local Dirichlet spaceD1, to recover analogous results
in more general weighted Dirichet spaces. In particular, we are interested in the
asymptotical behavior of the norm ∥σα

n∥, as n → ∞, and its dependence on the
parameter α ∈ [0, 1]. In [41] it was proved that the approximation ∥σα

nf−f∥D1 → 0
is valid if and only if α > 1

2
. Hence, the value α = 1/2 is a threshold point, and

that is why in the following we have different theorems about the behavior of ∥σα
n∥,

with different flavors, corresponding to whether α > 1/2, α = 1/2, or α < 1/2.
The notation f(n) ∼ g(n) means that

lim
n→∞

f(n)

g(n)
= 1.
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Theorem 9. Let α < 1
2
. Then

∥σα
n∥ ∼ Cαn

1
2
−α,

where

Cα := Γ(α + 1)
Γ(1− 2α)1/2

Γ(1− α)
is a finite positive constant.

Theorem 10. Let α = 1
2
. Then

∥σ
1
2
n ∥ ∼

1

2
log1/2 n.

The result concerning the case α > 1
2
is more complicated, and we will not

discuss it in this introduction.
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Chapter 1

Preliminaries

1.1 Measures and Poisson kernels

We will be needing some basic yet fundamental results in measure theory. For
this part, we follow [30]. Standard references are [24, 52]. We will consider mainly
measures on the unit circle T, defined on the Borel σ-algebra, that is, the smallest
σ-algebra that contains all open arcs of T. A Borel measure on T is a countably
additive function that assigns to each Borel subset of T a complex number. We
denote M(T) the set of all such measures. An example of an element of M(T),
and perhaps the most important, is the Lebesgue measure m, normalized so that
m(T) = 1. We are mainly interested in the set of positive measures, denoted
M+(T), i.e. measures µ such that µ(E) ≥ 0 for every Borel set E.

We distinguish between the notions of support and carrier for a positive mea-
sure µ. Consider the union U of all the open sets O of T having measure µ(O) = 0.
Then, we define the support of µ as the complement

supp(µ) := T \ U.

Equivalently, we can define the support of µ as the set of points ζ ∈ T such that
every arc ∆ containing ζ has positive measure µ(∆) > 0. Notice that the support
is a closed subset of T. On the other hand, a carrier for µ is any set E such that,
for every Borel set A ⊂ T,

µ(A) = µ(A ∩ E).

We also say that µ is carried by the set E.

In general, the support of a measure is unique while a carrier is not. Also,
the support is always a carrier, however a carrier need not be the support. For
example, taking the normalized Lebesgue measurem on T, its support is the whole
circle T, but if we remove any collection of finitely many points from T we would
get a carrier for m. Note also that, in fact, a carrier might not even be closed.

We have the following notion of derivative for elements of M(T).

Definition 1.1. For a measure µ ∈ M(T) we define the symmetric derivative

1
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Dµ(ζ) at ζ ∈ T as the limit

Dµ(ζ) := lim
t→0+

µ
(
(e−itζ, eitζ)

)
m
(
(e−itζ, eitζ)

) ,
when this limit exists, where (e−itζ, eitζ) is the arc having extremes e−itζ and eitζ,
for t > 0.

This notion is strongly related to the Radon-Nikodym decomposition of a mea-
sure. The notation µ⊥m denotes that µ is singular with respect to m, that is,
that the measures µ and m are carried by two disjoint sets. The following result
holds.

Theorem 1.2. Let µ ∈M(T). The following properties hold:

(i) Dµ(ζ) exists for m-almost every ζ ∈ T and

Dµ =
dµ

dm
m− a.e.,

where dµ/dm is the Radon-Nikodym derivative of µ with respect to m;

(ii) µ⊥m if and only if Dµ = 0 m-almost everywhere;

(iii) If µ is positive and µ⊥m, then Dµ =∞ µ-almost everywhere. In particular,
µ is carried by the set {ζ ∈ T : Dµ(ζ) =∞}.

Proof. See Theorems 7.14 and 7.15 in [52].

We introduce the Poisson kernel. The function

Pz(ζ) :=
1− |z|2

|z − ζ|2
, z ∈ D, ζ ∈ T,

is called the Poisson kernel. This function plays a crucial role in many areas of
mathematics, in particular in harmonic analysis on the unit circle T and in complex
analysis, due to his many properties. We report some of them.

A simple computation shows that

Pz(ζ) = Re

(
ζ + z

ζ − z

)
, z ∈ D, ζ ∈ T.

Hence, for fixed ζ ∈ T, the mapping z ∈ D 7→ Pz(ζ) ∈ (0,+∞) is a positive
harmonic function on D. A computation using the geometric series expression

Prλ(ζ) =
∑
n∈Z

r|n|λnζ
n
, r ∈ (0, 1), λ ∈ T,

shows that ∫
T
Pz(ζ) dm(ζ) = 1, z ∈ D.
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Given a measure µ ∈M(T), its Poisson integral is

Pµ(z) :=

∫
T

1− |z|2

|z − ζ|2
dµ(ζ),

which is well-defined since the mapping T ∋ ζ 7→ Pz(ζ) is continous for every z
in D. A crucial result that we will need is Fatou’s Theorem. The following is
Theorem 1.10 in [30].

Theorem 1.3 (Fatou). Let µ ∈ M(T) and λ ∈ T. If the symmetric derivative
Dµ(λ) exists, then

lim
r→1−

Pµ(rλ) = Dµ(λ).

Thus, Pµ has a finite radial limit m-almost everywhere on T.

Poisson kernels are instrumental in representing harmonic functions. The fol-
lowing fundamental result by Herglotz is Theorem 1.18 in [30].

Theorem 1.4 (Herglotz). A function u on D is positive and harmonic if and
only if there exists a positive measure µ ∈ M+(T) such that u = Pµ. Also, such
measure µ is unique.

In the last chapter, we will also see an analogous for a more general class of
functions, the super-harmonic functions.

Given a finite positive Borel measure µ on the unit circle T, another function
associated to µ that is important for this work is the potential

Vµ : C ∋ z 7→
∫
T

1

|λ− z|2
dµ(λ) ∈ [0,+∞].

Following [17], we list some properties of Vµ that we will use in this work. We also
give a short proof.

Proposition 1.5. Let µ be a finite positive Borel measure on the unit circle T.
The following properties hold:

1. Vµ is lower-semicontinuous on C and continuous on C \ supp(µ);

2. For z ∈ C, it holds

µ(T)
(1 + |z|)2

≤ Vµ(z) ≤
µ(T)

dist(z, supp(µ))2
;

3. Vµ =∞ µ-a.e. on T.

Proof. The first two properties are trivial. The last one follows from the following
claim: given eiα ∈ T, if the symmetric derivative at eiα exists and Dµ(eiα) > 0,
then Vµ(e

iα) = +∞. Indeed, for t ∈ (0, 2π), let It be the arc

It := {eiθ : α− t < θ < α + t}.
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Since eiα ∈ It for every t > 0, it holds

Vµ(e
iα) ≥

∫
It

1

|eiα − eiθ|2
dµ(eiθ) ≥ 1

|It|
µ(It)

|It|
.

Since the arc length |It| is comparable with m(It), and Dµ(e
iα) > 0, it follows that

Vµ(e
iα) = +∞, as we claimed. Now, the proof follows from taking the Radon-

Nikodym decomposition of µ, namely dµ = fdm + dµs, with f ∈ L1(m) and
µs⊥m, and the properties of the symmetric derivatives of measures in Theorem
1.2.

1.2 Hardy spaces

In this section we introduce the Hardy spaces Hp. These are arguably the most
important and most studied spaces of holomorphic functions in the unit disk. As
we will briefly explain, Hp spaces correspond to an analytic version of the Lp

spaces on the unit circle T, with respect to the Lebesgue measure. There exist
versions of Hardy spaces in other domains, for example in the upper half plane
{z ∈ C : ℑ(z) > 0}, and also in several complex variables. For the presentation of
this very classic topic, we follow [28] and [30]. See also [31].

For an analytic function f on the unit disk D and r ∈ (0, 1), we denote by fr
the function

fr(z) := f(rz), z ∈ D.

The function fr is holomorphic on the closed disk Dcl
, and this allows us to give

the following definition.

Definition 1.6. For p ∈ (0,+∞], the Hardy space Hp is the space of holomorphic
functions on D such that

∥f∥Hp := sup
0<r<1

∥fr∥Lp(T) <∞.

For p ≥ 1, the space Hp paired with the norm ∥ · ∥Hp is a Banach space and,
as per usual, the special case p = 2 provides a Hilbert space. For p ∈ (0, 1), the
function ∥ · ∥Hp provides a seminorm that is not a norm, and the corresponding
Hp spaces are quasi-Banach spaces. In this thesis, we will only deal with the case
p ≥ 1, and we will be mainly interested in H2 and H∞. However, an application
of Hölder’s inequality gives the containment property

Hp ⊆ Hq ⇐⇒ p ≥ q,

and thus we will present some properties of the space H1, which contains all Hp

spaces with p ≥ 1. We point out that some of these properties that we discuss
for H1 also hold for the quasi-Banach case p ∈ (0, 1), but we will not mention it
again.

The following result clarifies the connection with the Lp spaces that was men-
tioned at the beginning of this chapter.
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Theorem 1.7. Let f ∈ Hp, 1 ≤ p ≤ ∞. Then the radial limit

f ∗(ζ) := lim
r→1−

f(rζ) (1.1)

exists for almost every ζ ∈ T, the boundary value function f ∗ belongs to Lp, and
it holds ∥f∥Hp = ∥f ∗∥Lp. Also, if f ∈ H1, then the Fourier coefficients of f ∗ are
described by

f̂ ∗(n) =

{
f (n)(0)

n!
, n ≥ 0,

0, n < 0.

Finally, we have the Poisson and Cauchy integral representations,

f(z) =

∫
T

1− |z|2

|z − ζ|2
f ∗(ζ) dm(ζ) = Pf ∗(z), z ∈ D; (1.2)

f(z) =

∫
T

f ∗(ζ)

1− ζz
dm(ζ), z ∈ D. (1.3)

The last theorem gathers many important facts about Hardy spaces. First of
all, that Hp is isometrically isomorphic to the (closed) subspace of Lp consisting of
functions whose Fourier coefficients vanish on the negative integers. In particular,
the Taylor coefficients of f coincide with the Fourier coefficients of the boundary
function f ∗. In the Hilbert case p = 2, we can consider the orthogonal projection
P+ : L

2 → H2. This map is called the Riesz projection, and it acts as

P+

(∑
n∈Z

f̂(n)ζn

)
=
∑
n≥0

f̂(n)zn, f ∈ L2.

The Riesz projection returns the “analytic part” of a Fourier series in L2. As we
will see later, the Riesz projection can also be expressed in terms of the Cauchy
integral.

We have an explicit formula to compute the Hardy norm, by means of the Lp

norm. In particular, for f, g ∈ H2,

⟨f, g⟩H2 = ⟨f, g⟩L2 =

∫
T
fg dm.

Also, Equations (1.2) and (1.3) tell us that the Poisson integral and the Cauchy
transform act as bridges between these two different realms. Finally, we remark
that the existence of the radial limit f(ζ) in (1.1) can actually be improved to the
existence of a limit in a bigger, non-tangential, region. Given a point ζ ∈ T and
α > 1, we define the Stolz region as

Γα(ζ) := {z ∈ D : |z − ζ| ≤ α(1− |z|)}.

We say that f has non-tangential limit L at ζ provided that, for every α > 1, it
holds

lim
z→ζ,z∈Γα(ζ)

f(z) = L.
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We denote this special non-tangential limit with

L = ∠ lim
z→ζ

f(z).

It can be proved that a function f ∈ H1 has non-tangential limit at almost every
point in T. In what follows, with a standard abuse of notation, we will use the
same symbol f to denote both the function on D and its boundary values on T.

We recall the inner-outer factorisation for Hp functions. To this end, we follow
Chapter 17 of [52] and Chapter 2 of [30]. We say that

1. an inner function is a function u ∈ H∞ for which |u| = 1 m-a.e. on T,

2. an outer function is an analytic function O on D of the form

O(z) = exp

{∫
T

λ+ z

λ− z
φ(λ) dm(λ)

}
, z ∈ D,

where φ is a real-valued L1 function on T.

We are able to explicitly describe the structure of an inner function. They are
made up by two main factors: a Blaschke product and a singular inner function.
We recall that a sequence (an)n ⊆ D satisfies the Blaschke condition if

∞∑
n=1

(1− |an|) <∞. (1.4)

A sequence that satisfies (1.4) is called a Blaschke sequence.

Theorem 1.8 (Blaschke, F. Riesz). If (an)n ⊆ D \ {0} is a Blaschke sequence,
then the infinite product

B(z) :=
∞∏
n=1

an
|an|

an − z
1− anz

, z ∈ D,

converges uniformly on compact subsets of D. Moreover, B is an inner function.

We call Blaschke product any function of the form

B(z) = eiγzN
∞∏
n=1

an
|an|

an − z
1− anz

, z ∈ D,

where (an)n ⊆ D \ {0} is a Blaschke sequence, N ∈ N and γ ∈ R. Note that, by
construction, every Blaschke product has some zeros inside the disk: the zero set is
precisely {an}n. The second class of inner functions that we mentioned, however,
are distinguished by the property of being nowhere zero on D.

Theorem 1.9. Let τ be a positive measure on T that is singular with respect to
the Lebesgue measure m. The function

Sτ (z) := exp

{
−
∫
T

λ+ z

λ− z
dτ(λ)

}
, z ∈ D,

is inner.
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A function of the form eiγSτ , with γ ∈ R, is called a singular inner function.
Blaschke products and singular inner functions form the building blocks of all
non-constant inner functions.

Theorem 1.10 (Nevanlinna, F. Riesz). Let u be an inner function. Let

Λ := {z ∈ D \ {0} : u(z) = 0} = (an)n,

counting multiplicity. Then, Λ is a Blaschke sequence and u can be written as the
product

u = zNBΛSτ ,

where N is the multiplicity of the zero of u at z = 0, BΛ is the Blaschke product
associated to zero set (an)n ⊆ D \ {0} and Sτ is a singular inner function. This
factorisation is unique up to a unimodular constant.

Now, we recall the inner-outer factorisation for Hp functions.

Theorem 1.11. Let f ∈ Hp \ {0}, for 1 ≤ p ≤ ∞. Then, log |f | ∈ L1(T), the
outer function

Of (z) := exp

{∫
T

λ+ z

λ− z
log |f(λ)| dm(λ)

}
, z ∈ D,

belongs to Hp, and there exists an inner function uf such that

f = ufOf .

Notice that, in particular, if f ∈ Hp \ {0} is an outer function, then

f(z) = exp

{∫
T

λ+ z

λ− z
log |f(λ)| dm(λ)

}
, z ∈ D. (1.5)

In other words, outer functions are entirely determined by the modulus of
their boundary values. This of course does not hold for inner functions, since by
definition every inner function u satisfies |u| = 1 a.e. on T.

We conclude this part on the inner-outer factorisation with some concrete ex-
amples of outer functions. This simple class of functions will come up in Section
3.3. Using Equation (1.5), one can deduce the following characterization. For a
proof, see [30, Proposition 3.22].

Proposition 1.12. Suppose f ∈ H2. Then f is outer if and only if

log |f(0)| =
∫
T
log |f(λ)| dm(λ).

It also holds the following sufficient condition. For a proof, see [30, Corollary
3.23].

Proposition 1.13. If f ∈ H2 satisfies Re(f) > 0 on D, then f is outer. In
particular, given any self-map of the unit disk φ : D → D, the function φ + 1 is
outer.
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It follows that the binomial z− γ is outer, for any γ ∈ C \D. It is not relevant
for the thesis, but for γ ∈ D, the binomial z − γ cannot be outer, for it vanishes
in γ. In this case, its inner-outer factorization is given by

z − γ =
γ − z
1− γz

γ

(
z − 1

γ

)
.

Now that we have described the inner-outer factorisation, we can introduce two
special classes of functions.

Definition 1.14. The Nevanlinna class N is the set of all analytic functions on D
that can be written as the quotient of two bounded analytic functions,

N :=
{h1
h2

: h1 ∈ H∞, h2 ∈ H∞ \ {0}
}
.

The Smirnov class N+ is a special subset of N, where we ask that the denominator
is outer:

N+ :=
{h1
h2

: h1 ∈ H∞, h2 ∈ H∞ \ {0} outer
}
.

The Smirnov class has the following important property.

Theorem 1.15 (Smirnov maximum principle). If f ∈ N+ and∫
T
|f |2dm <∞,

then f ∈ H2. If the boundary function f belongs to L∞, then f ∈ H∞.

1.2.1 H2: kernels and shifts

A central fact in the theory of Hp spaces is that the polynomials are dense in Hp.
In particular, for p = 2, starting from the Taylor series f(z) =

∑
k akz

k, one can
deduce the following formula:

∥f∥2H2 = lim
r→1

1

2π

∫ 2π

0

|f(reiθ)|2 dθ

= lim
r→1

1

2π

∫ 2π

0

(
∞∑
k=0

akr
keikθ

)(
∞∑
j=0

ajr
je−ijθ

)
dθ

= lim
r→1

∑
k

|ak|2r2

=
∞∑
k=0

|ak|2.

Not only is the formula ∥f∥2H2 =
∑

k≥0 |ak|2 very beautiful and useful on its own,
but we can also apply it to show that the partial Taylor sums

Snf =
n∑

k=0

akz
k
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converge to f in H2, as n→∞. One has

∥f − Snf∥2H2 =
∞∑

k=n+1

|ak|2 −−−→
n→∞

0.

The same result does not hold for example in H1. One can use the Cesàro means to
produce an explicit example of approximation with polynomials in this space, but
the Taylor approximation scheme fails. We will say more about these polynomial
approximations in the last chapter. In the case p = 2, in analogy with the Fourier
basis in L2, the monomials {zn}n≥0 form an orthonormal basis for H2.

For w ∈ D, we introduce the Cauchy-Szegö kernel

cw(z) =
1

1− wz
, z ∈ D.

Due to the Cauchy integral formula (1.3), we have that

f(w) =

∫
T

f(ζ)

1− ζw
dm(ζ) = ⟨f, cw⟩H2 , f ∈ H2.

This tells us that H2 is a reproducing kernel Hilbert space.

Definition 1.16. Let H be a Hilbert space of functions on D. We say that H is a
reproducing kernel Hilbert space (RKHS) if there exists a function k : D×D→ C
such that for every w ∈ D the function k(·, w) ∈ H and it satisfies the reproducing
kernel formula

f(w) = ⟨f, k(·, w)⟩H , f ∈ H.

Equivalently, H is a RKHS if for every w ∈ H the evaluation functional H ∋
f 7→ f(w) ∈ C is bounded.

Using the reproducing kernels cw, we have the following expression for the Riesz
projection P+ : L

2 → H2. For f ∈ L2, we have that

P+f(w) = ⟨f, cw⟩L2 =

∫
T

f(ζ)

1− ζw
dm(ζ), w ∈ D.

This is because, since P+f ∈ H2 and P+ is an orthogonal projection,

P+f(w) = ⟨P+f, cw⟩H2 = ⟨f, P+cw⟩L2 = ⟨f, cw⟩L2 .

We introduce the (forward) shift operator S on the Hardy space H2. We follow
[30]. For f ∈ H2, we define

Sf(z) := zf(z), z ∈ D.

One can easily check that S is bounded on H2. More precisely, it is an isometry,
i.e. ∥Sf∥H2 = ∥f∥H2 . The forward shift S plays a crucial role in operator theory,
for it represents a prototype for non-unitary isometries. We would need an entire
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section to explain this last statement, and this topic is not really in the goals of
this thesis, so we will not add anything to this.

If we study the action of S on the Taylor coefficients, with the standard iden-
tification

f(z) =
∞∑
k=0

akz
k ∈ H2 ←→ (a0, a1, a2, . . . , ) ∈ ℓ2,

then it is easy to see that S acts on ℓ2

S : ℓ2 ∋ (a0, a1, a2, . . . , ) 7→ (0, a0, a1, . . . , ) ∈ ℓ2.

With this in mind, it is clear that

Ker(S) = {0}, Ran(S) = {f ∈ H2 : f(0) = 0} = zH2.

Given an Hilbert spaceH, we denote B(H) the algebra of bounded linear operators
on H and ∥ · ∥B(H) the operator norm, i.e.

∥A∥B(H) := sup
x∈H,∥x∥H=1

∥Ax∥H .

We recall that, given an operator A ∈ B(H), its resolvent ρ(A) is the set

ρ(A) := {λ ∈ C : λI − A is invertible in B(H)},

and its spectrum is the complement

σ(A) := C \ ρ(A).

Also, the point spectrum is the set

σp(A) := {λ ∈ C : λI − A is not injective}.

In other words, σp(A) is the set of the eigenvalues of A, and clearly σp(A) ⊆ σ(A).
By Gelfand Theorem, the spectrum σ(A) is a non-empty compact set. We recall
the spectral properties of the shift S. We recall that, to avoid ambiguity with the

notation for the conjugation on C, we denote the closure of a set E with E
cl
.

Proposition 1.17. Let S be the (forward) shift operator on H2. Then:

• The spectrum σ(S) is the closed disk Dcl
;

• The point spectrum σp(S) is the empty set.

We discuss the adjoint S∗. Let f ∈ H2. First, notice that the function

D ∋ z 7→ f(z)− f(0)
z

∈ C

is analytic and in H2. We can write

S∗f(z) = ⟨S∗f, cz⟩H2 = ⟨f, zcz⟩H2 = ⟨f − f(0), zcz⟩H2 ,
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since in H2 the set C is orthogonal to zH2. Thus,

S∗f(z) = ⟨f − f(0), zcz⟩H2

=

∫
T

(
f(ζ)− f(0)

)
ζcz(ζ) dm(ζ)

=

∫
T

f(ζ)− f(0)
ζ

cz(ζ) dm(ζ)

=
f(z)− f(0)

z
.

The operator S∗ is called the backward shift operator. Notice that S∗ acts on the
Taylor coefficient as

S∗ : ℓ2 ∋ (a0, a1, a2, . . . , ) 7→ (a1, a2, a3 . . . , ) ∈ ℓ2.
In particular, it is clear that Ker(S∗) = C and Ran(S∗) = H2. We introduce the
following notation for a special class of operators. Given two points in a Hilbert
space, x, y ∈ H \ {0}, we define x⊗ y as the rank-one operator

x⊗ y : H −→ H
h 7−→ ⟨h, y⟩Hx

. (1.6)

Notice that Ran(x⊗ y) = Cx.
The operators S and S∗ satisfy the relations S∗S = I and

SS∗ = I − c0 ⊗ c0,
where c0 ⊗ c0 is the rank-one operator given by

(c0 ⊗ c0)f = ⟨f, c0⟩H2 c0 = f(0), f ∈ H2,

for the Cauchy-Szegö kernel c0 is identically 1. Concerning the spectrum of S∗, it

follows from Proposition 1.17 that σ(S∗) is the closed disk Dcl
. However, unlike

the forward shift S, in this case we have that the point spectrum σp(S
∗) is the

open disk D. In particular, it is not hard to show that

S∗cw = wcw, w ∈ D.

We conclude this section discussing the shift-invariant subspaces of H2. Notice
that the multiplication operator with an inner function u

Tu : H
2 ∋ f 7→ uf ∈ H2

is an isometry on H2, due to the fact that |u| = 1 a.e. on T. The shift S is a
special case of this class of operators, for S = Tz. In particular, the subspace
uH2 is always closed in H2, whenever u is inner. It is easy to check that uH2 is
a shift-invariant subspace of H2, i.e. S(uH2) ⊆ uH2. Surprisingly, these simple
spaces uH2 turn out to be exactly all the closed S-invariant subspaces of H2.

Theorem 1.18 (Beurling). Let M be a non-zero closed shift-invariant subspace
of H2. Then, there exists an inner function u such that M = uH2. Also, the
function u is unique up to unimodular constant.

We will devote an entire section to the closed S∗-invariant subspaces of H2,
the so-called model spaces.
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1.2.2 H∞: spectrum and Corona theorem

Given a function b ∈ H∞ with ∥b∥H∞ ≤ 1, we are interested in characterising the
open arcs ∆ ⊆ T for which b has an analytic extension across ∆ with the property
that |b| = 1 on ∆. We introduce the notation

H∞
1 := {b ∈ H∞ : ∥b∥H∞ ≤ 1}.

To extend analytically our functions, we appeal to the Schwarz reflection principle,
see for example [52, Theorem 11.14]. We recall the result for the unit disk.

Theorem 1.19. [28, Theorem 4.21] Let ∆ be an open subarc of T and f an
analytic function on D. Suppose that

lim
n

Im(f(zn)) = 0

for every sequence (zn)n in D converging to a point in ∆. Then, f can be analyti-
cally extended through ∆.

We will use the following corollary, for which we could not provide any specific
reference. We also give a short proof.

Corollary 1.20. Let ∆ be an open subarc of T and f an analytic function on D.
Suppose that

lim
n
|f(zn)| = 1

for every sequence (zn)n in D converging to a point in ∆. Then, f can be analyti-
cally extended through ∆.

Proof. Let ζ ∈ ∆. By assumption,

lim
z∈D,z→ζ

|f(z)| = 1,

and we can select an open disk Dζ ∋ ζ such that f never vanishes on Dζ ∩D. The
function g := i log f is well defined and analytic on Dζ ∩ D. Also,

Im (g(z)) = Re
(
log f(z)

)
= log |f(z)|, z ∈ Dζ ∩ D,

thus by Theorem 1.19 the function g can be analytically extended across the arc
Dζ ∩∆. Let G be this analytic extension. The function

F := exp (−iG)

is an analytic extension for f across Dζ ∩∆, and we conclude the proof.

We introduce the notion of spectrum of a bounded analytic function. This is
one of the central definitions for this work.

Definition 1.21. For a bounded analytic function b on D with ∥b∥H∞ = 1, we
define its spectrum as the set

σ(b) := {w ∈ D : b(w) = 0} ∪ {λ ∈ T : lim inf
z→λ

|b(z)| < 1}.
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We point out that in literature there exist different definitions for the spectrum
σ(b). For example, in [28], the spectrum of b introduced in section 5.2 is always a

closed set, and it corresponds to the closure σ(b)
cl
according to our definition. In

this work we follow [8], where the boundary spectrum introduced in Section 5 is
not necessarily closed.

Later in this work it will be more apparent why this set is called spectrum,
and why it contains some points in the inside of the unit disk, even though we are
introducing it in the context of boundary regularity. The following proposition
holds.

Proposition 1.22. Let b ∈ H∞ with ∥b∥H∞ = 1 and ∆ be an open arc in T.
Then, b has an analytic extension across ∆ with |b| = 1 on ∆ if and only if

∆ ⊆ T \ σ(b)
cl
.

In particular, the boundary part σ(b)
cl
∩T is the smallest closed subset of T having

the property that b admits an analytic extension on every open arc ∆ contained in

T \ σ(b)
cl
with |b| = 1 on ∆.

Proof. On the one hand, if ∆ ⊆ T \ σ(b)
cl
, then

lim inf
z∈D,z→ζ

|b(z)| ≥ 1, ζ ∈ ∆.

Since ∥b∥H∞ = 1, it follows that

lim sup
z∈D,z→ζ

|b(z)| ≤ lim inf
z∈D,z→ζ

|b(z)|, ζ ∈ ∆.

This shows that |b| = 1 on ∆, and therefore by Corollary 1.20 the function b
admits an analytic extension through ∆. On the other hand, assume that b has an

analytic extension across ∆ with |b| = 1 on ∆. By contradiction, if ζ ∈ ∆∩ σ(b)
cl
,

then there would exist a sequence (ζn)n in T converging to ζ and such that

lim inf
z→ζn

|b(z)| < 1, n ∈ N.

Since ζ ∈ ∆, there exists N ∈ N such that for any n > N we have ζn ∈ ∆. But then
b is analytic on each ζn with |b(ζn)| = 1, which is a contradiction. This shows that

necessarily ∆ ⊆ T \ σ(b)
cl
. The last part of the statement is a trivial consequence:

let E be a closed subset ot T such that b admits an analytic extension on every
open arc ∆ contained in T \ E with |b| = 1 on ∆. Being E closed, we can write
its complement as a union of open arcs,

T \ E =
⋃
n∈N

∆n.

Since every ∆n is contained in T \ E, b admits an analytic extension across ∆n

with |b| = 1 on ∆n. This shows that ∆n ⊆ T \ σ(b)
cl
, whence

T \ E =
⋃
n∈N

∆n ⊆ T \ σ(b)
cl
,

proving that σ(b)
cl
∩ T ⊆ E.
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The last proposition shows that the closure σ(b)
cl
is the right set to consider if

we want to study when b admits analytic extensions across an arc ∆ of the unit
circle, with |b| = 1 on ∆. For some finer results which will be discussed later, it is

important for us to distinguish between σ(b) and its closure σ(b)
cl
.

Now, we move on to describe more explicitly the spectrum. In order to do so,
we appeal to the inner-outer factorisation. In the case of inner functions, we have
the following explicit description of the spectrum, in terms of the Blaschke factor
and the singular inner part. We use the convention that, if z = 0 is a zero for
the function u, then the corresponding Blaschke factor is zk, where k ∈ N is the
multiplicity of the zero of u at z = 0.

Theorem 1.23. Let u = BΛSτ be an inner function, where BΛ is the Blaschke
product associated to the zero set Λ = {an}n of u and Sτ is the singular inner
function associated to the singular measure τ . Then,

σ(u) = {w ∈ Dcl
: lim inf

z→w
|u(z)| = 0} = {an}n

cl
∪ supp(τ).

In particular, σ(u) is closed.

Parts of the following proof are taken from Chapter 7 of [30]. We point out that
the definition of spectrum of an inner function in [30], which is Definition 7.17, at
first glance does not coincide with ours. The goal of Theorem 1.23 is precisely to
show that there is no ambiguity, for the two definitions are equivalent.

Proof of Theorem 1.23. The set equality

{w ∈ Dcl
: lim inf

z→w
|u(z)| = 0} = {an}n

cl
∪ supp(τ)

is proved in Proposition 7.19 in [30]. That

{w ∈ Dcl
: lim inf

z→w
|u(z)| = 0} ⊆ σ(u)

follows trivially from Definition 1.21 of the spectrum. To conclude, we show that

σ(u) ⊆ {an}n
cl
∪ supp(τ).

In Theorem 7.18 of [30], the authors show that u admits an analytic extension
with |u| = 1 across any open arc contained in the set

T \
(
{an}n

cl
∪ supp(τ)

)
.

Therefore, by Proposition 1.22, we have that

σ(u) ∩ T ⊆
(
{an}n

cl
∪ supp(τ)

)
∩ T.

Again by definition, the part of σ(u) that is inside of D is precisely the zero set of
u, in symbols σ(u) ∩ D = {an}n. This shows that

σ(u) ⊆ {an}n
cl
∪ supp(τ),

concluding the proof.



1.2. HARDY SPACES 15

For a bounded outer function F , we have the following interpretation of the
spectrum σ(F ), in terms of the measure log |F | dm. Although this result is well-
known, we are not able to provide any reference for this specific formulation.

Proposition 1.24. Let F be an outer function with ∥F∥H∞ = 1. Then,

σ(F )
cl
= supp(− log |F | dm). (1.7)

Proof. First of all, notice that

σ(F )
cl
= {ζ ∈ T : lim inf

z∈D,z→ζ
|F (z)| < 1}

cl
,

since F does not vanish on D. Let ζ ∈ supp(− log |F | dm). By the definition of
support of a positive measure, for every open neighbourhood U ⊂ T containing ζ,
we have that

−
∫
U

log |F | dm > 0.

Let us consider
∆(ζ, ε) := {z ∈ T : |z − ζ| < ε}.

Notice that for every n ∈ N there exists ζn ∈ ∆(ζ, 1
n
) such that

lim inf
z∈D,z→ζn

|F (z)| < 1.

Otherwise, we would have |F | = 1 on some arc ∆(ζ, 1
N
), which gives the contra-

diction

−
∫
∆(ζ, 1

N
)

log |F (λ)| dm(λ) = 0.

We have constructed the sequence (ζn)n in σ(F ) converging to ζ, proving that

ζ ∈ σ(F )
cl
. On the other hand, we consider ζ ∈ T \ supp(− log |F | dm). Let

∆ ⊂ T be an open arc containing ζ such that∫
∆

log |F | dm = 0.

Since F is an outer function, for every z ∈ D we have that

|F (z)| = exp

(∫
T

1− |z|2

|z − λ|2
log |F (λ)| dm(λ)

)
= exp

(∫
T\∆

1− |z|2

|z − λ|2
log |F (λ)| dm(λ)

)
.

This proves that F can be analytically extended across ∆, and that |F | = 1 on ∆.
By Proposition 1.22, this means that

∆ ⊆ T \ σ(F )
cl
,

and in particular that ζ /∈ σ(F )
cl
, concluding the proof.
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For an analytic function b with ∥b∥H∞ = 1, we have the following description

of σ(b)
cl
in terms of its inner-outer factorisation.

Theorem 1.25. Given b in H∞ with ∥b∥H∞ = 1, let b = bibo be its inner-outer
factorisation. Then,

σ(b)
cl
= σ(bi) ∪ supp (− log |bo| dm) .

Proof. By Theorem 1.23,

σ(bi) = {w ∈ Dcl
: lim inf

z→w
|bi(z)| = 0} ⊆ σ(b).

Also, by Proposition 1.24, since bo ∈ H∞ with ∥bo∥∞ = 1,

supp(− log |bo| dm) = {ζ ∈ T : lim inf
z→ζ

|bo(z)| < 1}
cl
⊆ σ(b)

cl
,

for
lim inf
z→ζ

|b(z)| ≤ lim inf
z→ζ

|bo(z)|, ζ ∈ T.

To show the reverse inequality, we note that if

ζ ∈ T \
(
σ(bi) ∪ supp (− log |bo| dm)

)
,

then both bi and bo have an analytic extension to an open arc ∆ containing ζ, with
|bi| = |bo| = 1 on ∆. In particular, the same holds for the product b = bibo, and
then by Proposition 1.22

∆ ⊆ T \ σ(b)
cl
.

This shows that ζ /∈ σ(b)
cl
, concluding the proof.

We conclude this section with a discussion on the Corona theorem. This was
proved in 1962 by Carleson [13]. This is a very profound result, concerning the
structure of the maximal ideals in the Banach algebra H∞. However, for the goals
of this thesis, we are only interested in the following statement, that is also very
important on its own.

Theorem 1.26 (Corona Theorem). Let n ∈ N and f1, . . . , fn ∈ H∞. Then, the
two following conditions are equivalent.

(i) There exists δ > 0 such that

n∑
k=1

|fk(z)| ≥ δ, z ∈ D.

(ii) There exist functions g1, . . . , gn ∈ H∞ such that

n∑
k=1

fk(z)gk(z) = 1, z ∈ D.
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1.3 Spaces of analytic functions

In the following chapters of this thesis, we will discuss several spaces of analytic
functions on the unit disk. In this section, we gather the preliminary and central
facts that are important to us for our goals. We split this discussion in three
different parts, corresponding to three different subsections. First, we introduce
the de Branges–Rovnyak spaces H(b), then we focus on a special class, the so-
called model spaces Ku, and finally we define the harmonically weighted Dirichlet
spaces Dµ.

1.3.1 H(b) spaces

We define the de Branges–Rovnyak spaces H(b). These spaces were originally
introduced by Louis de Branges and James Rovnyak in 1966 as a generalization
of the orthogonal complement of the range of multiplication by b on H2, see [18].
Ever since, this class of spaces has been of great interest because of the role that
they play in operator theory. We will see some examples of their importance, and
we will briefly present some aspects of their beautiful structure.

There are several equivalent definitions for the de Branges–Rovnyak spaces
H(b). In this work, we follow the approach of [28] and [29]. See also [54].

We start in a rather abstract setting. Given a Hilbert space H, let A ∈ B(H)
be a bounded linear operator on H. We can give a Hilbert space structure to the
range of A, Ran(A), regardless if it is closed in the topology of H. We call M(A)
the pair (Ran(A), ⟨·, ·⟩M(A)), where

⟨Ax,Ay⟩M(A) := ⟨P(KerA)⊥x, P(KerA)⊥y⟩H , x, y ∈ H.

Here, P(KerA)⊥ denotes the orthogonal projection on (KerA)⊥, and the symbol ⊥
denotes the orthogonal complement. Notice that the definition of the inner product
is well-given, because if x1, x2 ∈ H satisfy Ax1 = Ax2, then x1 − x2 ∈ KerA and
therefore P(KerA)⊥x1 = P(KerA)⊥x2. Also, if either x or y belongs to (KerA)⊥, then

⟨Ax,Ay⟩M(A) = ⟨x, y⟩H . (1.8)

Finally, it is not hard to check that M(A) is a Hilbert space. We move on to
the so-called complementary spaces H(A), that will be our de Branges–Rovnyak
spaces. We consider a contraction A ∈ B(H), i.e.

∥Ax∥H ≤ ∥x∥H , x ∈ H.

Notice that it holds AA∗ ≤ I, meaning that the operator I − AA∗ is positive.
Thus, its square root (I − AA∗)

1
2 is a well-defined positive operator. We define

H(A) as the range space

H(A) := M
(
(I − AA∗)

1
2

)
.

Notice that both I − AA∗ and (I − AA∗)
1
2 are self-adjoint. For more information

on the construction of the square root of a positive operator, see [28, Ch. 7]. The
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condition that A is a contraction is equivalent to ∥A∥B(H) ≤ 1. If ∥A∥B(H) < 1,
then we have the set equality H(A) = H. This is because

H(A) = Ran(I − AA∗)
1
2 =

(
Ker(I − AA∗)

1
2

)⊥
,

and

Ker(I − AA∗)
1
2 ⊆ Ker(I − AA∗) = {0}.

That Ker(I − AA∗) = {0} follows from the following fact. If x ∈ Ker(I − AA∗),
then

∥x∥H = ∥AA∗x∥H ≤ ∥A∥2B(H)∥x∥H .

If x ̸= 0, we would have the contradiction ∥x∥H < ∥x∥H . It can also be shown
that, in the case with ∥A∥B(H) < 1, the H(A)-norm is equivalent to the H-norm,

being that (I−AA∗)
1
2 is bounded, invertible and positive, thus also bounded from

below.
Another equivalent definition for H(A), the complementary space for the range

M(A), follows from the next theorem (that is Corollary 16.27 in [29]). This was
actually the original construction of H(A), done by de Branges and Rovnyak in
1966 [18].

Theorem 1.27. Let A ∈ B(H) be a contraction and let x ∈ H. Then, the
following are equivalent:

• x ∈ H(A);

• supy∈M(A)

(
∥x+ y∥2H − ∥y∥2M(A)

)
<∞.

Moreover, for such an element, we have

∥x∥2H(A) = sup
y∈M(A)

(
∥x+ y∥2H − ∥y∥2M(A)

)
.

This theorem is due to Sarason, who originally showed that the spaces H(A)
defined by de Branges and Rovnyak coincide with the range of the operator (I −
AA∗)

1
2 . See [54].

Notice that, if A is a contraction, then the adjoint A∗ is also a contraction.
There is a relation between the space H(A) and the space H(A∗), that gives us an
important inequality for the norm.

Proposition 1.28. Let A be a contractive operator on a Hilbert space H, and let
x ∈ H. Then, x ∈ H(A) if and only if A∗x ∈ H(A∗). Moreover, in this case,

∥x∥2H(A) = ∥A∗x∥2H(A∗) + ∥x∥2H .

In particular,

∥x∥H ≤ ∥x∥H(A), x ∈ H(A). (1.9)



1.3. SPACES OF ANALYTIC FUNCTIONS 19

We are ready to define the de Branges–Rovnyak spaces. We recall the notation
H∞

1 for the closed unit ball in H∞. Given b ∈ H∞
1 , we introduce the multiplication

operator
Tb : H

2 ∋ f 7→ bf ∈ H2.

Since ∥b∥H∞ ≤ 1, the operator Tb is a contraction, for

∥Tbf∥2H2 =

∫
T
|bf |2 dm ≤ ∥b∥2H∞∥f∥2H2 ≤ ∥f∥2H2 .

We define the de Branges–Rovnyak space H(b) as the complementary space

H(b) := H(Tb) = M
(
(I − TbT ∗

b )
1
2

)
.

If ∥b∥H∞ < 1, then the space H(b) is just a renormed version of H2. In some parts
of this thesis, we will make the non-restricting assumption that ∥b∥H∞ = 1.

We have introduced a class of Hilbert spaces that are contained in H2, but are
not necessarily closed inH2. We will discuss their closure in theH2 norm in Section
1.3.2. This definition is rather mysterious, and we have no concrete examples of
elements in an H(b) space, nor much information on the norm ∥ · ∥H(b). Equation
(1.9) gives us

∥f∥H2 ≤ ∥f∥H(b), f ∈ H(b). (1.10)

Using the characterization in Theorem 1.27, we can show that H(b) spaces are
all invariant under the action of the backward shift S∗. In fact, this is one of the
central properties of these spaces.

Theorem 1.29. Let b ∈ H∞
1 . If f ∈ H(b), then S∗f ∈ H(b) and

∥S∗f∥H(b) ≤ ∥f∥H(b).

In particular, the operator

Xb : H(b) −→ H(b)
f 7−→ S∗f

(1.11)

is bounded.

Proof. We fix f ∈ H(b) and we show that S∗f ∈ H(b). In light of Theorem 1.27,
it suffices to show that

sup
g∈M(Tb)

(
∥S∗f + g∥2H2 − ∥g∥2M(Tb)

)
<∞.

Notice that the operator Tb is injective, therefore for every g ∈M(Tb) = bH2 there
exists a unique h ∈ H2 such that g = bh, and it holds ∥g∥M(Tb) = ∥h∥H2 . Since
the (forward) shift operator S is an isometry on H2, one can check that it is well-
defined and isometric also on M(Tb). Also, recall that the range Ran(S) = zH2 is
orthogonal in H2 to C. It follows that, for g ∈M(Tb),

∥S∗f + g∥2H2 = ∥SS∗f + Sg∥2H2 = ∥SS∗f + Sg + f(0)∥2H2 − |f(0)|2.
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From the identity SS∗ = I − c0 ⊗ c0, we have that

∥S∗f + g∥2H2 − ∥g∥2M(Tb)
= ∥f + Sg∥2H2 − |f(0)|2 − ∥g∥2M(Tb)

= ∥f + Sg∥2H2 − ∥Sg∥2M(Tb)
− |f(0)|2.

In particular, by Theorem 1.27, for every g ∈M(Tb)

∥S∗f + g∥2H2 − ∥g∥2M(Tb)
≤ sup

G∈M(Tb)

(
∥f +G∥2H2 − ∥G∥2M(Tb)

)
− |f(0)|2

= ∥f∥2H(b) − |f(0)|2 <∞.

In particular, S∗f ∈ H(b) and

∥S∗f∥2H(b) = sup
g∈M(Tb)

(
∥S∗f + g∥2H2 − ∥g∥2M(Tb)

)
≤ ∥f∥2H(b) − |f(0)|2 ≤ ∥f∥2H(b).

For concrete examples of functions in H(b), we discuss its reproducing kernel
Hilbert space structure. We recall that

cw(z) =
1

1− wz
, z, w ∈ D,

is the reproducing kernel of H2. Notice that, for b ∈ H∞
1 ,

(Tb)
∗cw(z) = ⟨cw, bcz⟩H2 = b(w)cz(w) = b(w)cw(z), z ∈ D. (1.12)

Theorem 1.30. Let b ∈ H∞
1 . Then, H(b) is a RKHS with kernel given by the

function

kbw(z) :=
1− b(w)b(z)

1− wz
, z, w ∈ D.

Also, it holds

∥kbw∥2H(b) =
1− |b(w)|2

1− |w|2
, w ∈ D.

Proof. First of all, by (1.12) it holds

(I − TbT ∗
b )cw(z) = (1− b(z)b(w))cw(z), z ∈ D,

so that
kbw = (I − TbT ∗

b )
1
2 (I − TbT ∗

b )
1
2 cw ∈ H(b), w ∈ D.

Now, we show that the reproducing formula holds. By definition, given f ∈ H(b),
there exists g ∈ H2 such that

f = (I − TbT ∗
b )

1
2 g.

Also, since (I − TbT ∗
b )

1
2 is self-adjoint,(
Ker(I − TbT ∗

b )
1
2

)⊥
= Ran(I − TbT ∗

b )
1
2 .



1.3. SPACES OF ANALYTIC FUNCTIONS 21

By the reproducing formula for H2 and (1.8), for f ∈ H(b) it holds

f(w) = ⟨f, cw⟩H2

= ⟨g, (I − TbT ∗
b )

1
2 cw⟩H2

= ⟨(I − TbT ∗
b )

1
2 g, (I − TbT ∗

b )cw⟩H(b)

= ⟨f, kbw⟩H(b).

Finally, for w ∈ D,

∥kbw∥2H(b) = ⟨kbw, kbw⟩H(b) = kbw(w) =
1− |b(w)|2

1− |w|2
,

concluding the proof.

It is easy to check that the kernels kbw span a dense subset of H(b): if f ∈ H(b)
is orthogonal to every kernel kbw, then

f(w) = ⟨f, kbw⟩H(b) = 0, w ∈ D,

so that f ≡ 0. Following the abstract construction of a reproducing kernel Hilbert
space of Aronszjan [4], one could equivalently define the H(b) space as the RKHS
having for kernel the function

kb(z, w) :=
1− b(w)b(z)

1− wz
, z, w ∈ D.

In this case, the space H(b) is defined as the closure of the linear span of the
reproducing kernels,

span({kb(·, w) : w ∈ D})
cl
,

with respect to a suitable norm so that the reproducing kernel property is satisfied.
An interesting feature of the H(b) spaces is that, not only do we have repro-

ducing kernels for points w ∈ D, but we also have kernels for some special points
ζ ∈ T. We recall the following definition. Given a function b ∈ H∞

1 and a point
ζ ∈ T, we say that b has angular derivative in the sense of Carathéodory (ADC)
at ζ if the boundary value b(ζ) exists and has modulus 1, and the derivative b′

admits non-tangential limit b′(ζ) at ζ. For more details on this definition, see for
example [30, Section 2.5]. The following is Theorem 21.1 in [29].

Theorem 1.31. Let b be an analytic function on D with ∥b∥H∞ ≤ 1 and let ζ ∈ T.
Put

c := lim inf
z→ζ

1− |b(z)|
1− |z|

.

The following are equivalent:

(i) c <∞;
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(ii) There exists λ ∈ T such that the function

D ∋ z 7→ b(z)− λ
z − ζ

belongs to H(b);

(iii) Every function f in H(b) admits non-tangential limit at ζ;

(iv) The function b has ADC at ζ.

Moreover, under the preceding equivalent conditions, the following results hold:

(a) λ = b(ζ) and for every f ∈ H(b) one has f(ζ) = ⟨f, kbζ⟩H(b), where

kbζ(z) =
1− b(ζ)b(z)

1− ζz
∈ H(b);

(b) We have

c = ∠ lim
z→ζ

1− |b(z)|
1− |z|

= ∥kbζ∥2H(b) = |b′(ζ)| = b(ζ)ζb′(ζ) > 0;

(c) We have the convergence

∠ lim
w→ζ
∥kbw − kbζ∥2H(b) = 0.

The function kbζ is called boundary kernel at the point ζ ∈ T. The previous
theorem says that, roughly speaking, boundary regularity of the function b trans-
lates to boundary properties for the elements of H(b). We see another result in
this direction, that concerns analyticity. The spectrum σ(b), introduced in Section
1.2.2., and the operator Xb, introduced in Section 1.3.1, come into the picture.

Theorem 1.32. Let ∆ be an open arc of T. The following are equivalent:

(i) Each function f ∈ H(b) has an analytic continuation across ∆;

(ii) b has an analytic continuation across ∆ and |b| = 1 on ∆;

(iii) ∆ is contained in the resolvent of X∗
b , i.e. ∆ ⊆ T \ σ(X∗

b );

(iv) ∆ is disjoint from the closure of the spectrum of b, i.e. ∆ ⊆ T \ σ(b)
cl
.

Proof. The equivalence of the first three statements follows from Theorem 20.13
of [29]. The equivalence of (ii) and (iv) follows from Proposition 1.22.
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Notice that, as a Corollary of Theorem 1.32, we have that

T ∩ σ(b)
cl
= T ∩ σ(X∗

b ).

This relation between the spectrum σ(b) and the spectrum of the operator X∗
b will

be discussed in greater detail.
In Theorem 1.29, we showed that all H(b) spaces are invariant under the back-

ward shift operator S∗, and its restriction Xb is a bounded operator on H(b).
However, the same does not hold for the forward shift S: not all H(b) spaces are
S-invariant. To discuss this matter, we introduce an important notion that allows
to categorize H(b) spaces into two main groups: this is the notion of extremality.
We follow [28, Chapter 6]. Given a normed vector space X and two distinct points
x, y ∈ X, we define the interval [x, y] as the set of all convex combinations

[x, y] := {tx+ (1− t)y : t ∈ [0, 1]}.

We recall that a set B ⊆ X is convex if, for each pair of distinct points x, y ∈ B,
the interval [x, y] is entirely contained in B. Given a convex set B ⊆ X and p ∈ B,
we say that p is an extreme point for B if it is not in the interior of any interval
contained in B. Equivalently, a point p ∈ B is an extreme point for B if and only
if the set B \ {p} is convex.

There is a very practical characterization for the property of extremality in the
context that interests us: b ∈ H∞

1 is an extreme point of H∞
1 if and only if∫

T
log(1− |b|) dm = −∞.

For a proof, see [28, Theorem 6.7]. Notice that, in particular, every inner function
u is an extreme point of H∞

1 , for |u| = 1 a.e. on T. Also, notice that the property
of being non-extreme forces a condition on the size of the spectrum σ(b). This is
because, if ζ /∈ σ(b), then lim infz→ζ |b(z)| ≥ 1. Since ∥b∥H∞ ≤ 1, this implies that
the limit limz→ζ |b(z)| exists and it is equal to 1. In particular, the complement
T\σ(b) has to have Lebesgue measurem(T\σ(b)) = 0, otherwise, by monotonicity,
since log(1− |b|) ≤ 0,∫

T
log(1− |b|) dm ≤

∫
T\σ(b)

log(1− |b|) dm = −∞.

This means that the spectrum σ(b) has full measure, and in particular the closure

is σ(b)
cl
= T. Theorem 1.32 tells us that, given any open arc ∆ ⊆ T, then for

every non-extreme symbol b there exists a function in H(b) that does not have
analytic continuation across ∆.

If the function b is non-extreme, i.e. log(1 − |b|) ∈ L1, then there exists an

unique outer function a whose modulus on T is a.e. (1− |b|2) 1
2 and a(0) > 0. This

function is defined by

a(z) := exp

(∫
T

ζ + z

ζ − z
log(1− |b(ζ)|2)

1
2 dm(ζ)

)
, z ∈ D,
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and it is called the Pythagorean mate of b. The name comes from the following
relation that the pair (b, a) satisfies:

|b|2 + |a|2 = 1 a.e. on T.

This function a plays a pivotal role for the structure of H(b). We refer to [29, Ch.
23-24] for more details.

The structure of H(b) heavily depends on whether the function b is an extreme
point for H∞

1 or not. Informally, the H(b) spaces associated to a non-extreme
function b are “bigger” than the ones associated to an extreme function, and
they are more similar to the Hardy space H2. We list some important features
of the structure of H(b) spaces with a non-extreme symbol b. We always have
that b ∈ H(b). The space H(b) contains all (analytic) polynomials, and the set
of polynomials is dense in H(b). For every f ∈ H(b), we have that Sf ∈ H(b),
where S denotes the (forward) shift operator. Also, S defines a bounded operator
on H(b). We denote Yb the restriction of S to H(b), and we recall that Xb denotes
the restriction of S∗. We have that Yb and Xb are not one the adjoint of the
other. There is a rank-one operator that ruins this analogy with the H2 case. The
following relations hold:

Yb = X∗
b + b⊗ S∗b, Y ∗

b = Xb + S∗b⊗ b.

In this work, it is more important to us the adjoint operator X∗
b , rather than the

restricted shift Yb. In Chapter 2, X∗
b will be used to define the difference quotient

operator, that will be crucial in Chapter 3. The following spectral properties hold,

in the non-extreme case: σp(Xb) = D, σp(X∗
b ) = ∅, and σ(Xb) = σ(X∗

b ) = Dcl
. For

proofs, we refer to [29, Section 24.3]. Notice the analogy between the spectra of
the operator Xb, and the spectra of the operator S∗ on H2, that was previously
discussed. We conclude this part with an important result that characterizes the
property of being non-extreme in terms of the associated H(b) space.

Theorem 1.33. Let b ∈ H∞
1 . Then, the following are equivalent.

(i) b is a non-extreme point of H∞
1 ;

(ii) b ∈ H(b);

(iii) H(b) is invariant under the forward shift operator S;

(iv) H(b) contains all the (analytic) polynomials.

Proof. See Corollary 25.5 and Corollary 25.10 in [29].

Now, we treat the H(b) spaces with symbol b extreme. In this case, it is no
longer necessary that σ(b) is dense in T, although it still might occur. In light of
Theorem 1.32, we can expect boundary regularity on larger subsets of T from both
b and the elements of H(b). This has also consequences on the spectrum of Xb. A
very important example of extreme functions of H∞

1 are inner functions, and the
corresponding class of H(b) spaces will be discussed in detail in the next section.
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By Theorem 1.33, we know that b /∈ H(b), H(b) does not contain all polynomials
and it is not invariant under the shift S. We have the following description of the
spectrum of X∗

b , when the function b is extreme.

Theorem 1.34. Let b be an extreme function in H∞
1 . Then the spectrum of the

operator X∗
b coincides with the closure of the spectrum of b,

σ(X∗
b ) = σ(b)

cl
.

In particular,

σp(X
∗
b ) = σ(X∗

b ) ∩ D = {w ∈ D : b(w) = 0}.

Proof. This follows from combining Corollary 26.3 of [29], for the part of σ(X∗
b )

that is inside D, and Theorem 1.32 for the part of σ(X∗
b ) that is on the boundary

T.

In the case of b inner, this celebrated result is due to Livšic–Möller [37, 43].
Note that a similar result holds for Xb: we have that

σ(Xb) = {w ∈ Dcl
: w ∈ σ(b)},

and

σp(Xb) = σ(Xb) ∩ D = {w ∈ D : b(w) = 0}.

We conclude this section showing a class of functions b that will appear in many
examples in Chapter 3. For these special functions b, much can be said about the
structure of the associated H(b) space. For reference, see [25].

Proposition 1.35. Let u be an inner function. Then, the function

b(z) :=
1 + u(z)

2
, z ∈ D,

is a non-extreme element of H∞
1 . Its Pythagorean mate a satisfies

a(z) = eiγ
1− u(z)

2
, z ∈ D,

where γ ∈ R.

Proof. Since u is inner, we have that ∥b∥H∞ ≤ 1. Now we show that b is non-
extreme. For every z ∈ D it holds that

|1 + u(z)|2 + |1− u(z)|2 = 2(1 + |u(z)|2).

In particular, the following equality holds m−a.e. on T:

|b|2 +
∣∣∣∣1− u2

∣∣∣∣2 = 1 + |u|2

2
= 1.
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By proposition 1.13, the function 1 − u is outer, and therefore by 1.12 we have
that ∫

T
log(1− |b|2) dm =

∫
T
log

∣∣∣∣1− u2

∣∣∣∣2 dm
= 2

∫
T
log |1− u| dm− 2 log 2

= 2 log |1− u(0)| − 2 log 2.

This shows that b is non-extreme. Also, the function ã := (1 − u)/2 is outer and
it satisfies |b|2 + |ã|2 = 1 a.e. on T. Therefore, the Pythagorean mate a of b is
obtained through a suitable rotation

a(z) = eiγ
1− u(z)

2
, z ∈ D,

with γ ∈ R chosen in a way that a(0) > 0.

1.3.2 Model spaces

In this subsection, we are interested in the de Branges–Rovnyak spaces that are
actually closed in H2, and that inherit the Hilbert space structure from H2, with
∥ · ∥H(b) = ∥ · ∥H2 . The following result, that is Lemma 16.14 in [29], gives us a
characterization for the complementary spaces H(A) that are closed in H with
∥ · ∥H(A) = ∥ · ∥H . We say that an operator A is a partial isometry if

∥Ax∥H = ∥x∥H , x ∈ (KerA)⊥.

Proposition 1.36. Let A ∈ B(H) be a contraction. Then, H(A) is a closed
subspace of H and ∥x∥H(A) = ∥x∥H , for each x ∈ H(A), if and only if A is a
partial isometry. In this case, the set identity H(A) = Ran(I − AA∗) holds.

In our context, Proposition 1.36 says that the space H(b) is closed in H2, with
∥ · ∥H(b) = ∥ · ∥H2 , if and only if the operator Tb is a partial isometry. In light
of Theorem 12.18 in [28], this happens if and only if the function b is inner. The
special class of H(b) spaces with b inner are called model spaces. It is common to
denote the inner function with the letter u, and the corresponding model space
with Ku.

Being Ku closed in H2, there exists Pu : H
2 → Ku, the orthogonal projection

onto Ku. We can express Pu in terms of the reproducing kernels kuw: for f ∈ H2,
it holds

Puf(w) = ⟨Puf, k
u
w⟩H2 = ⟨f, Puk

u
w⟩H2 = ⟨f, kuw⟩H2 .

We can also express Pu in terms of the Riesz projection P+ : L
2 → H2, and this

will have important consequences for us. This is taken from Proposition 5.14 in
[30]. We write the (short) proof for the sake of completeness.

Proposition 1.37. Let f ∈ H2. Then,

Puf = f − uP+(uf). (1.13)



1.3. SPACES OF ANALYTIC FUNCTIONS 27

Proof. We recall that kuw = (1− u(w)u)cw, where

cw(z) =
1

1− wz
, z ∈ D,

is the reproducing kernel of H2. We have that

Puf(w) = ⟨f, kuw⟩H2

= ⟨f, (1− u(w)u)cw⟩H2

= ⟨f, cw⟩H2 − u(w)⟨f, ucw⟩H2

= f(w)− u(w)⟨uf, cw⟩L2

= f(w)− u(w)P+(uf)(w).

We remark that it follows directly from (1.13) that Pu = I − TuT
∗
u . This is

coherent with the general result contained in Proposition 1.36: when the operator
A is a partial isometry, then H(A) = Ran(I − AA∗).

Thanks to this expression for the orthogonal projection Pu, we obtain the
following description for the model space Ku.

Theorem 1.38. Let u be an inner function. Then, Ku is the orthogonal comple-
ment of the space uH2,

Ku = H2 ⊖ uH2.

Proof. On the one hand, we show that every function f in Ku is orthogonal to
uH2. We start with the reproducing kernel f = kuw. For g ∈ H2, it holds

⟨ug, kuw⟩H2 = ⟨ug, (1− u(w)u)cw⟩H2

= ⟨ug, cw⟩H2 − u(w)⟨ug, ucw⟩H2 .

Being that |u| = 1 a.e. on T,

⟨ug, kuw⟩H2 = u(w)g(w)− u(w)⟨g, cw⟩H2 = 0.

In particular, the orthogonal complement H2 ⊖ uH2 contains every finite linear
combination of kernels kuw, and therefore its closure as well. This means that

H2 ⊖ uH2 ⊇ span({kuw : w ∈ D}) = Ku.

On the other hand, we show that every function f ∈ H2 ⊖ uH2 belongs to Ku.
Notice that

P+(uf)(w) = ⟨uf, cw⟩L2 = ⟨f, ucw⟩H2 = 0.

It follows from Proposition 1.37 that

f = Puf ∈ Ku,

concluding the proof.
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Thanks to this expression for Ku, it follows from Beurling’s theorem 1.18 that
the model spaces are exactly all the closed S∗-invariant subspaces of H2. In liter-
ature, it is more common to find the model spaces introduced in this way, as the
orthogonal complement H2 ⊖ uH2, with u inner. For a treatise on model spaces,
see for example [30, 46].

We can characterize the membership in model spaces in terms of the boundary
values.

Proposition 1.39. For an inner function u, the model space Ku is the set of all
f ∈ H2 such that f = uzg a.e. on T for some g ∈ H2. In other words,

Ku = H2 ∩ uzH2.

Proof. We have that f ∈ Ku if and only if ⟨f, uh⟩L2 = 0 for every h ∈ H2. This is
equivalent to saying that uf belongs to the orthogonal complement of H2 in L2,
which is exactly zH2. Thus, f ∈ Ku if and only if uf ∈ zH2. This concludes the
proof, for |u| = 1 a.e. on T.

This characterization allows to define a special conjugation operator on Ku,
defined in terms of the boundary function:

C : Ku −→ Ku

f 7−→ fzu
. (1.14)

C is a conjugation, i.e. conjugate linear, involutive (C2 = I), and isometric.
As we saw in the previous subsection, being that inner functions are a special

class of extreme functions ofH∞
1 , the model spacesKu are not S-invariant. Thanks

to the orthogonal projection Pu, we have a substitute for this important operator.
We define the compressed (forward) shift on Ku as Su := PuS. It is easy to check
that Su is well-defined and bounded on Ku. In fact,

∥Suf∥H2 = ∥PuSf∥H2 ≤ ∥f∥H2 , f ∈ Ku.

This compressed shift plays a very important role in our analysis.

Proposition 1.40. Let u be an inner function. Then, X∗
u = Su.

Proof. Let f, g ∈ Ku. Then,

⟨X∗
uf, g⟩H2 = ⟨f, S∗g⟩H2

= ⟨Sf, g⟩H2

= ⟨Sf, Pug⟩H2

= ⟨PuSf, g⟩H2

= ⟨Suf, g⟩H2 .
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The compressed shift Su is a natural substitute for the forward shift S, in
the context of model spaces. By the Livšic–Möller theorem, the spectrum of the
operator Su is exactly the spectrum of u, i.e. σ(Su) = σ(u). Just like in the H2

space, the shift Su is a rank-one operator away from being unitary. It holds that
[30, Lemma 9.9]

SuXu = I − ku0 ⊗ ku0 , XuSu = I − Cku0 ⊗ Cku0 ,

where C is the conjugation defined in (1.14). We will discuss a special class of
rank-one perturbations of Su, that will provide a family of unitary operators, the
Clark operators Uα. These operators are very important to us, for they allow us to
interpret the model space Ku as the Lebesgue space L2(σα), for a suitable measure
σα, called Clark measure. This identification will give us crucial information about
the model spaces, that will be used in the following chapters. We introduce the
Clark theory. For every α ∈ T, the function

z ∈ D 7→ 1 + αu(z)

1− αu(z)
∈ C

is analytic on D, and the function

D ∋ z 7→ Re

(
1 + αu(z)

1− αu(z)

)
=

1− |u(z)|2

|α− u(z)|2

is positive and harmonic on D. By Herglotz’s Theorem 1.4, there exists a positive
measure σα on T such that

1− |u(z)|2

|α− u(z)|2
=

∫
T

1− |z|2

|ζ − z|2
dσα(ζ), z ∈ D.

The set of measures {σα}α∈T is the set of the Clark measures for the inner function
u. We cite [51] and [53] as standard references for the Clark measures, and we
follow Chapter 11 of [30].

Proposition 1.41. For an inner function u, the corresponding family of Clark
measures {σα}α∈T satisfies the following properties:

(i) σα⊥m for every α ∈ T;

(ii) σα⊥σβ for every α ̸= β;

(iii) σα has a point mass at ζ ∈ T if and only if

u(ζ) = lim
r→1

u(rζ) = α

and u has finite angular derivative in the sense of Carathéodory at ζ. Fur-
thermore,

σα({ζ}) =
1

|u′(ζ)|
and u′(ζ) =

αζ

σα({ζ})
;
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(iv) A carrier for σα is the set

{ζ ∈ T : lim
r→1

u(rζ) = α}.

We call Clark points the atoms, i.e. the point masses, of a Clark measure, that
are described in (iii).

Proof. See Proposition 11.2 of [30]. Notice that the assumption that u(0) = 0 is
not really necessary for the proof.

We introduce the Clark unitary operator, the Clark transform and we discuss
a special orthonormal basis for Ku. For simplicity, it is customary to assume that
u(0) = 0. At the end of this section, we will quickly discuss how to move to the
general case. We fix an inner function u such that u(0) = 0. For each α ∈ T, we
define the Clark operator on Ku as the rank-one perturbation

Uα := Su + α(ku0 ⊗ Cku0 ),

where C is the conjugation defined in (1.14). It holds the following, that is Theorem
11.4 in [30].

Theorem 1.42 (Clark). For each α ∈ T, the operator Uα is a unitary operator.
The eigenvalues of Uα are the points ζ ∈ T such that u(ζ) = α and u has an angular
derivative in the sense of Carathéodory at ζ. The corresponding eigenvectors are
the boundary kernels kuζ .

We have a concrete spectral representation for the operator Uα, that uses the
Clark measure σα [30, Theorem 11.6].

Theorem 1.43 (Clark). For an inner function with u(0) = 0 and α ∈ T, the
Clark transform defined by

(Vαf)(z) = (1− αu(z))
∫
T

f(λ)

1− λz
dσα(λ), z ∈ D,

is a unitary operator from L2(σα) onto Ku. Furthermore, considering the bilateral
shift

Zα : L
2(σα)→ L2(σα) (Zαf)(λ) = λf(λ),

then VαZα = UαVα. In particular, Uα is unitarily equivalent to Zα.

Some collections of boundary kernels provide orthonormal basis for the model
space Ku. In what follows, we take u inner with u(0) = 0 and α ∈ T such that the
Clark measure σα has countable support. If {ζn}n∈N ⊂ T are the Clark points for
the measure σα, we denote

k̃n(z) :=
1

∥kuζn∥H2

1− u(ζn)u(z)
1− ζnz

, z ∈ D (1.15)

the associated normalized boundary kernels.
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Lemma 1.44. Let σα be a Clark measure with countable support. Then, the collec-
tion {k̃n}n defined as in (1.15) forms a complete orthonormal basis for the model
space Ku.

Proof. The Clark transform Vα : L
2(σα)→ Ku is a unitary operator. We note that

the set {φn}n of the normalized characteristic functions

φn(λ) :=
1√

σα({ζn})
χ{ζn}(λ), λ ∈ T,

is a complete orthonormal basis for L2(σα). Finally, since by Theorem 1.31 and
Proposition 1.41,

σα({ζn}) =
1

|u′(ζn)|
=

1

∥kuζn∥
,

then for z ∈ D it holds

(Vαφn

)
(z) =

1− αu(z)√
σα({ζn})

∫
T

χζn(λ)

1− λz
dσα(λ)

=
1√
|u′(ζn)|

1− αu(z)
1− ζnz

=
1

∥kuζn∥H2

1− u(ζn)u(z)
1− ζnz

= k̃n(z).

Therefore, (k̃n)n is a complete orthonormal basis in Ku.

So far, we have assumed that u(0) = 0. To pass to the general case, one can
consider the Crofoot transform. First of all, we recall that every (analytic) disk
automorphism takes the form

φη,a(z) = η
a− z
1− az

, z ∈ D,

with η ∈ T and a ∈ D. Notice that, given an inner function u and φη,a an
automorphism of D, the composition φη,a ◦ u is inner, since φη,a maps the cirle
T in itself. It is less evident, but the composition of two inner functions always
produces an inner function [30, Chapter 6].

Theorem 1.45 (Theorem 6.7 in [30]). For an inner function u and w ∈ D, the
Crofoot transform

Jwf =

√
1− |w|2
1− wu

f

defines a unitary operator from Ku onto Kuw , where

uw =
u− w
1− wu

= φ−1,w ◦ u.

Considering the Crofoot transform Jw with w = u(0), notice that uw(0) = 0.
This shows that any model space Ku admits an unitary operator onto another
model space Kuw , with uw(0) = 0. This is the reason why, in our context, in the
study of the Clark theory it was not restrictive to assume that u(0) = 0.
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1.3.3 Dirichlet spaces

We move on to the third class of spaces that are of interest for this work. The
Dirichlet space

D := {f ∈ Hol(D) |D(f) :=
1

π

∫
D
|f ′(z)|2 dA(z) <∞},

endowed with the norm ∥f∥2D := ∥f∥2H2 + D(f), is one of the most interesting
and studied spaces of analytic functions on the unit disk. Here, dA is the two-
dimensional Lebesgue measure, i.e. the area measure. Many questions about
Dirichlet functions are still unanswered today. For example, it is not known if
there exists a characterization for the zero sets of Dirichlet functions, or a charac-
terization for the cyclicity condition in D. We mention that there is a formula for
D(f) expressed purely in terms of the boundary values of f , due to Douglas [19]:

D(f) =

∫
T

∫
T

∣∣∣∣f(λ)− f(ζ)λ− ζ

∣∣∣∣2 dm(λ) dm(ζ), f ∈ Hol(D). (1.16)

In this work, we will be interested in a weighted version of D. Given a finite
positive Borel measure µ on the unit circle T, the associated Dµ space is the
space of holomorphic functions on D having finite harmonically weighted Dirichlet
integral, that is

Dµ(f) :=
1

π

∫
D
|f ′(z)|2 Pµ(z) dA(z) <∞, (1.17)

where Pµ is the Poisson integral of µ,

Pµ(z) =

∫
T

1− |z|2

|λ− z|2
dµ(λ), z ∈ D.

These spaces were introduced by Stefan Richter in 1991 for the representation of
cyclic analytic two-isometries, see [48]. Also, they play a key role in the description
of the closed shift-invariant subspaces of the classical Dirichlet space D, see [50].
In the last chapter, we will consider a more general weighted version, the super -
harmonically weighted Dirichlet spaces.

We recall a few basic properties; for a treatise of Dirichlet spaces we refer
to [23]. If µ is a finite positive Borel measure on T, then Dµ is a subset of the
Hardy spaceH2 which contains all polynomials. Notice that the weighted Dirichlet
integral annihilates the constants, thus, on its own, it does not produce a norm.
However, Dµ is a Hilbert space with respect to the norm

∥f∥2Dµ
:= ∥f∥2H2 +Dµ(f).

Considering µ = m, the normalized Lebesgue measure on T, one has Pm ≡ 1, so
that Dm(f) = D(f) and the space Dm is exactly the classical Dirichlet space D.
For ζ ∈ T, considering the Dirac delta δζ we obtain the so-called local Dirichlet
space, which we simply denote by Dζ . Also, we write Dζ(f) instead of Dδζ(f), to
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denote the local Dirichlet integral. For f ∈ H2, by Fubini’s theorem, Dµ(f) given
in (1.17) can be expressed as

Dµ(f) =

∫
T
Dζ(f) dµ(ζ). (1.18)

In [49], Richter and Sundberg showed the following characterization of Dζ .

Theorem 1.46. Let f ∈ H2. Then, f ∈ Dζ if and only if there exist c ∈ C and
g ∈ H2 such that

f(z) = c+ (z − ζ)g(z), z ∈ D.
In this case, c = f(ζ) and Dζ(f) = ∥g∥2H2.

We can also write
Dζ = C+ (S − ζI)H2.

The proof of Theorem 1.46 is technical, and we do not show it here. See [49] or
[30]. In particular, Theorem 1.46 implies that all functions in Dζ admit boundary
value at ζ. We remark that, in fact, stronger results hold: the limit f(ζ) exists in
any oricyclic approach region of the form

{z ∈ D : |z − ζ| ≤ κ(1− |z|2)
1
2},

for every κ > 0, the Fourier series of f converges at ζ and

f(ζ) =
∑
n≥0

f̂(n)ζn ∈ C.

As a corollary, we get the following useful formula for Dζ(f), which includes the
boundary value f(ζ) = limr→1− f(rζ), whenever it exists.

Theorem 1.47 (Local Douglas formula). Let f ∈ H2 and ζ ∈ T. If the boundary
value f(ζ) exists, then

Dζ(f) =

∫
T

∣∣∣∣f(λ)− f(ζ)λ− ζ

∣∣∣∣2 dm(λ). (1.19)

Otherwise, Dζ(f) =∞.

Notice that, integrating both sides of (1.19) with respect to dm(ζ), we recover
the Douglas formula (1.16).

Proof of Theorem 1.47. We follow [30]. Suppose first that Dζ(f) < ∞. Then, by
Theorem 1.46, f(ζ) exists and Dζ(f) = ∥g∥2H2 , where

g(z) :=
f(z)− f(ζ)

z − ζ
, z ∈ D. (1.20)

In particular, (1.19) holds. To conclude the proof, we have to show that if f(ζ)
exists and Dζ(f) = ∞, then the right-hand side of (1.19) is also ∞. Consider
again g as in (1.20). The numerator of g is in L2, and the denominator is an outer
function. If we had g ∈ L2, then by Theorem 1.15 we would have that g ∈ H2. We
would have that f ∈ Dζ , by Theorem 1.46, which is a contradiction. In particular,
∥g∥L2 =∞, concluding the proof.
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This formula shows that the difference quotient at ζ plays an important role
for membership in the local Dirichlet space. We will study these quotients in great
detail in Chapter 2.

Inner functions behave nicely with respect to the local Dirichlet integral.

Theorem 1.48. Let u be an inner function and ζ ∈ T. Then, u ∈ Dζ if and only
if u has finite ADC at ζ. Moreover,

Dζ(u) = |u′(ζ)|.

Proof. By Theorem 7.6.5 in [23], we have that

Dζ(u) = lim
r→1

1− |u(rζ)|2

1− r2
. (1.21)

Using the notation of Theorem 1.31, if u ∈ Dζ , then the quantity

c := lim inf
z→ζ

1− |u(z)|
1− |z|

is finite. Thus, u admits ADC at ζ, and it follows that

c = ∠ lim
z→ζ

1− |u(z)|
1− |z|

= |u′(ζ)|.

In particular, by (1.21), we have that Dζ(u) = |u′(ζ)|. On the other hand, if u
has finite ADC at ζ, then by (b) in Theorem 1.31 and (1.21) we conclude that
Dζ(u) = |u′(ζ)| <∞.

The previous result is taken from Proposition 3.5 of [49]. In the same work,
the authors also showed that for any analytic self-map of the disk b : D → D, if
b has finite ADC at ζ, then b ∈ Dζ with Dζ(b) ≤ |b′(ζ)|. We can prove a simple
generalization for an arbitrary measure µ.

Corollary 1.49. Let µ be a finite positive Borel measure on T. Then, u ∈ Dµ is
and only if u′ ∈ L1(µ). Moreover,

Dµ(u) = ∥u′∥L1(µ).

Proof. If u ∈ Dµ, then by Fubini’s Theorem

Dµ(u) =

∫
T
Dζ(u) dµ(ζ) <∞.

In particular, for µ-a.e. ζ ∈ T we have that Dζ(u) < ∞. By Theorem 1.48, we
have that u has finite ADC at µ-a.e. ζ ∈ T, and

∥u′∥L1(µ) =

∫
T
|u′(ζ)| dµ(ζ) =

∫
T
Dζ(u) dµ(ζ) = Dµ(u) <∞.

Similarly, if u′ ∈ L1(µ), then for µ-a.e. ζ ∈ T we have that Dζ(u) <∞ and

Dµ(u) =

∫
T
Dζ(u) dµ(ζ) =

∫
T
|u′(ζ)| dµ(ζ) = ∥u′∥L1(µ) <∞.
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There is a nice formula for the angular derivative |u′(ζ)|, that uses the Nevan-
linna factorization of the inner function u.

Proposition 1.50. Let ζ ∈ T and u be an inner function with Nevanlinna decom-
position

u(z) =

(
∞∏
n=1

an
|an|

an − z
1− anz

)
exp

{
−
∫
T

ζ + z

ζ − z
dτ(ζ)

}
,

where {an}n are the zeros of u and τ a singular measure on T. Then, u has finite
ADC at ζ if and only if

∞∑
n=1

1− |an|2

|an − ζ|2
+

∫
T

2

|λ− ζ|2
dτ(λ) <∞.

Moreover, in this case,

|u′(ζ)| =
∞∑
n=1

1− |an|2

|an − ζ|2
+

∫
T

2

|λ− ζ|2
dτ(λ).

Proof. The proof is taken from Theorem 2.21 of [30] and Theorem 21.11 of [29].

It follows a characterization of the membership of inner functions in the classical
Dirichlet space D. For the details, see Corollary 7.6.10 of [23].

Corollary 1.51. The only inner functions in D are finite Blaschke products.

We conclude this part showing another property of inner functions, in relation
to the local Dirichlet integral. For a proof, see [23, Theorem 7.6.1].

Proposition 1.52. Let f ∈ H2, u an inner function and ζ ∈ T. Then,

Dζ(uf) = Dζ(f) + |f(ζ)|2Dζ(u). (1.22)

If the radial limit f(ζ) does not exist, then the right-hand side of (1.22) should
be interpreted as ∞. If the radial limit f(ζ) is equal to 0, then the product
|f(ζ)|2Dζ(u) should always be interpreted as 0.

As a corollary of the previous proposition, we deduce that the forward shift
S defines a bounded operator on Dµ, for every measure µ. This is taken from
Theorem 8.1.2 in [23].

Corollary 1.53. Let µ be a finite, positive, Borel measure on T. Then, the fol-
lowing hold.

(i) For every f ∈ Dµ, we have that f ∈ L2(µ) with

∥f∥L2(µ) ≤ (1 + µ(T)
1
2 )∥f∥Dµ

(ii) The forward shift
S : Dµ −→ Dµ

f 7−→ zf

is well-defined and bounded.
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Proof. We prove (i). For f ∈ Dµ ⊆ H2, consider g := S∗f ∈ H2. It holds that

zg(z) = f(z)− f(0), z ∈ D,

and that, by (1.22),
Dζ(zg) = Dζ(g) + |g(ζ)|2Dζ(z).

As Dζ(z) = 1 and f = zg + f(0), it holds

Dζ(f) = Dζ(zg) = Dζ(g) + |f(ζ)− f(0)|2.

In particular,∫
T
|f(ζ)− f(0)|2 dµ(ζ) ≤

∫
T
Dζ(f) dµ(ζ) = Dµ(f) <∞.

It follows that f ∈ L2(µ) and

∥f∥L2(µ) ≤ ∥f − f(0)∥L2(µ) + |f(0)|µ(T)
1
2

≤ Dµ(f)
1
2 + ∥f∥H2µ(T)

1
2

≤ (1 + µ(T)
1
2 )∥f∥Dµ .

Now, we prove (ii). For f ∈ Dµ, we have that

Dµ(zf) =

∫
T
Dζ(zf) dµ(ζ)

=

∫
T
Dζ(f) dµ(ζ) +

∫
T
|f(ζ)|2Dζ(z) dµ(ζ)

= Dµ(f) + ∥f∥2L2(µ) <∞,

so that zf ∈ Dµ. The boundedness of S follows from (i).



Chapter 2

Difference quotient operator

In this chapter, we discuss the difference quotient operator on de Branges–Rovnyak
spaces, with a special attention to the model spaces. We use the tools of operator
theory to study the quantities

f(z)− f(w)
z − w

,

given a function f in a suitable function space and appropriate points z, w. Ob-
viously, difference quotients are a key concept of mathematical analysis, they are
instrumental for the definition of the derivative, that is an idea that revolutionised
the history of mathematics and, thus, the history of mankind. Here, with a much
more humble and modest approach, we discuss the operator on H(b) that natu-
rally arises from different quotients at boundary points ζ ∈ T, and we study its
properties.

The analysis that we do in this chapter is very important for Chapter 3: as we
already mentioned in Subsection 1.3.3, difference quotients play an important role
for membership in the Dirichlet spaces. However, there are also original results
that are very significant on their own: for example, Theorem 2.12 provides a
new equivalent characterization for the property of being a one-component inner
function. We conclude this introduction saying that the content of this chapter
comes from a joint work with Carlo Bellavita and Javad Mashreghi. Now, we give
a proper introduction to the difference quotient operators.

Let X be a family of functions which are defined on the set Ω ⊂ C. Fix a point
w ∈ Ω. The mapping

(Qwf)(z) :=
f(z)− f(w)

z − w
, z ∈ Ω \ {w}, f ∈ X, (2.1)

appears in many discussions and it is called the difference quotient operator. In
particular, for the Hardy space on the unit disk H2, the very special but important
case w = 0 leads to the backward shift operator

S∗f(z) = Q0f(z) =
f(z)− f(0)

z
, z ∈ D \ {0}. (2.2)

37
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In this introductory part, we will report some results on the operator Qw on the
Hardy space H2, for w ∈ D. We follow [30, Chapter 4.6]. First of all, we recall
that the reproducing kernel of H2 is

cw(z) =
1

1− wz
, z, w ∈ D.

For z, w ∈ D, we have that

(I− wS)cw(z) = 1 = c0(z).

We recall that σ(S) = D, so that the operator I−wS is invertible for every w ∈ D.
In particular, cw = (I− wS)−1c0, and it follows that

f(w) = ⟨f, cw⟩H2 = ⟨f, (I− wS)−1c0⟩H2 = ⟨(I− wS∗)−1f, c0⟩H2 .

We define
Qw := (I− wS∗)−1S∗, w ∈ D, (2.3)

and we show that the operator Qw satisfies the difference quotient formula (2.1).
Note that Qw is bounded on H2 and, in particular, Q0 = S∗.

Proposition 2.1. For f ∈ H2 and w ∈ D, it holds

(Qwf)(z) =
f(z)− f(w)

z − w
, z ∈ D \ {w}.

Proof. We start with the following resolvent computation:

(I− zS∗)−1 − (I− wS∗)−1 =(I− zS∗)−1(I− wS∗)(I− wS∗)−1

− (I− zS∗)−1(I− zS∗)(I− wS∗)−1

=(I− zS∗)−1(wS∗ + zS∗)(I− wS∗)−1

=(z − w)(I− zS∗)−1(I− wS∗)−1S∗.

We write this as

(I− zS∗)−1(I− wS∗)−1S∗ =
(I− zS∗)−1 − (I− wS∗)−1

z − w
.

We now have

Qwf(z) = ⟨Qwf, cz⟩H2

= ⟨Qwf, (I− zS)−1c0⟩H2

= ⟨(I− zS∗)−1(I− wS∗)−1S∗f, c0⟩H2

=
1

z − w
(
⟨(I− zS∗)−1f, c0⟩H2 + ⟨(I− wS∗)−1f, c0⟩H2

)
=
f(z)− f(w)

z − w
.
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2.1 Difference quotient operator on H(b)

So far, we have formally introduced the difference quotient operator on H2 at a
point w ∈ D, as

Qwf(z) = (I− wS∗)−1S∗f(z) =
f(z)− f(w)

z − w
, z ∈ D, f ∈ H2.

On the space H2, it makes no sense to consider difference quotient operators Qζ at
points in the boundary ζ ∈ T. One the one hand, from a functional point of view,
not every function f in H2 admits the boundary value f(ζ), for the same fixed
ζ. On the other hand, from an operator-theoretic point of view, the spectrum of

S∗ is the whole closed disk Dcl
, and there is no natural extension for the resolvent

operator in formula (2.3) for points on the boundary. The situation changes if we
move to the special class of subsets of H2 that are H(b) spaces. In this context,
instead of S∗ we consider the operator Xb. We recall that, if b is non-extreme,

then σ(Xb) = σ(X∗
b ) = Dcl

, and if b is extreme then σ(X∗
b ) = σ(b)

cl
. We focus on

the latter case: the set σ(b)
cl
in general can be smaller than Dcl

. For ζ /∈ σ(b)
cl
,

the operator I− ζXb is invertible, for

I− ζXb = ζ(ζI−Xb) = ζ(ζI−X∗
b )

∗.

In light of the formula (2.3), we give the following definition.

Definition 2.2. Let b ∈ H∞
1 be such that σ(b)

cl
∩T ̸= T. Then, for ζ ∈ T\σ(b)

cl
,

we define the difference quotient operator Qb
ζ on H(b) as

Qb
ζ := (I− ζXb)

−1Xb. (2.4)

Notice that the assumption σ(b)
cl
∩ T ̸= T is possible only for functions b

that are extreme. For the rest of this chapter, we will only work with extreme

functions b with σ(b)
cl
∩ T ̸= T. Choosing ζ ∈ T \ σ(b)

cl
, then by Theorem

1.32 every function f in the de Branges-Rovnyak space H(b) admits an analytic
extension in a neighbourhood of the point ζ and, in particular, the boundary value
f(ζ) = limr→1 f(rζ) is always well-defined.

Following the same steps of the proof of Proposition 2.1, using the boundary
kernel kbζ instead of cw, one can check that for f ∈ H(b) it holds the difference
quotient formula

(Qb
ζf)(z) =

f(z)− f(ζ)
z − ζ

, z ∈ D.

This operator will be the object of study for this chapter. We start with the
study of the spectrum of the operator Qb

ζ , and we provide a lower bound for the

norm. We will simply write ∥Qb
ζ∥ to denote the operator norm ∥Qb

ζ∥B(H(b)).
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Theorem 2.3. Let b ∈ H∞
1 extreme and ζ ∈ T \ σ(b)

cl
. Then, the spectrum of the

operator Qb
ζ is the set

σ(Qb
ζ) =

{
η

1− ζη
: η ∈ σ(b)

cl
}
. (2.5)

Also, it holds the lower estimate

∥Qb
ζ∥ ≥

1

dist(ζ, σ(b)
cl
∩ T)

. (2.6)

Proof. We recall the definition (2.4), Qb
ζ := (I − ζXb)

−1Xb. For λ ∈ C, an easy
computation leads to the identity

λI−Qb
ζ = (I− ζXb)

−1[λI− (λζ + 1)Xb].

This shows that, for λ = −ζ, the operator λI − Qb
ζ is invertible. Moreover, for

λ ̸= −ζ it holds

λI−Qb
ζ = (λζ + 1)(I− ζXb)

−1

(
λ

1 + ζλ
I−Xb

)
. (2.7)

It would be more natural to work with the operator Xb. However, since we want
the set σ(b) to appear, which is directly related to its adjoint X∗

b , we write

λI−Qb
ζ = (λζ + 1)(I− ζXb)

−1

(
λ

1 + ζλ
I−X∗

b

)∗

.

This shows that

σ(Qb
ζ) =

{
λ ∈ C \ {−ζ} : λ

1 + ζλ
∈ σ(X∗

b )

}
.

For η ∈ σ(X∗
b ), one can check that

λ

1 + ζλ
= η ⇐⇒ λ =

η

1− ζη
,

proving the set identity in Equation (2.5), since by Theorem 1.34 we have that

σ(X∗
b ) = σ(b)

cl
. Now, the lower estimate (2.6) follows from the basic fact that

each point in spectrum of an operator has modulus less or equal than the operator

norm. In particular, for every η ∈ σ(b)
cl
∩ T we have that

∥Qb
ζ∥ ≥

1

|ζ − η|
,

and we conclude by taking the supremum. Notice that, if the intersection σ(b)
cl
∩T

is empty, then dist(ζ, σ(b)
cl
∩ T) = inf ∅ = +∞, and the statement is trivial.
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Theorem 2.3 shows in a quantitative way that, when a point ζ ∈ T \ σ(b)
cl

approaches the closure of the spectrum of b moving on the boundary T, then
the operator norm ∥Qb

ζ∥ explodes. This behaviour suggests that the choice of

considering points ζ ∈ T \ σ(b)
cl
is optimal, in order to have a bounded operator

associated to the difference quotient at ζ.
For what follows, we restrict to the case where b = u is an inner function.

We recall that the spectrum σ(u) is always a closed set. We prove another lower
estimate for ∥Qu

ζ∥, which turns out to be somewhat sharp at least in some special
cases that we will discuss. First, a lemma concerning the pointwise derivative f ′(ζ)
for functions f in Ku.

Lemma 2.4. Let u be an inner function, and let ζ ∈ T \ σ(u). Then, for every
f ∈ Ku the derivative f ′(ζ) exists and the linear mapping

Λζ : Ku −→ C
f 7−→ f ′(ζ)

is an element of the dual space (Ku)
∗, with norm

∥Λζ∥(Ku)∗ = ∥Qu
ζ (k

u
ζ )∥H2 .

In particular, we have that

|f ′(ζ)| ≤ ∥Qu
ζ (k

u
ζ )∥H2∥f∥H2 , f ∈ Ku. (2.8)

Proof. The first part of the proof is taken from Section 21.6 of [29]. Let f ∈ Ku.
Since ζ ∈ T \ σ(u), there exists δ > 0 such that f has an analytic extension in the
open ball BC(ζ, δ) := {w ∈ C : |w − ζ| < δ}. For w ∈ D ∩BC(ζ, δ), we have that∣∣∣∣〈f, kuw − kuζw − ζ

〉
H2

∣∣∣∣ =

∣∣∣∣f(w)− f(ζ)w − ζ

∣∣∣∣
=

∣∣∣∣ 1

w − ζ

∫ w

ζ

f ′(z) dz

∣∣∣∣ ≤ Cf <∞.

Hence, by the uniform boundedness principle, there exists a constant C > 0 such
that ∥∥∥∥kuw − kuζw − ζ

∥∥∥∥
H2

≤ C, w ∈ D ∩BC(ζ, δ).

We can extract a sequence (wn)n in D that converges to ζ such that the difference
quotients (wn − ζ)−1(kuwn

− kuζ ) weakly converge to a function ψζ ∈ Ku. Now, for
every f ∈ Ku one has that

⟨f, ψζ⟩H2 = lim
n

〈
f,
kuwn
− kuζ

wn − ζ

〉
H2

= lim
n

f(wn)− f(ζ)
wn − ζ

= f ′(ζ).

This proves that the operator Λζ is an element of the dual (Ku)
∗, and its norm

∥Λζ∥(Ku)∗ is equal to ∥ψζ∥H2 . To conclude the proof, it suffices to show that
∥ψζ∥H2 = ∥Qu

ζ (k
u
ζ )∥H2 . We compute the function ψζ .
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For z ∈ D, we have that

ψζ(z) = ⟨ψζ , k
u
z ⟩H2 = lim

n

〈
kuwn
− kuζ

wn − ζ
, kuz

〉
H2

= lim
n

kuz (wn)− kuz (ζ)
wn − ζ

= (kuz )
′ (ζ).

Differentiating the kernel kuz , we obtain

ψζ(z) = −
u′(ζ)u(z)

1− ζz
+
z
(
1− u(ζ)u(z)

)
(1− ζz)2

, z ∈ D.

Hence,

∥ψζ∥2H2 =

∫
T

∣∣∣∣∣−u′(ζ)u(λ)λ(λ− ζ)
+
λu(λ)

(
u(λ)− u(ζ)

)
λ2(λ− ζ)2

∣∣∣∣2dm(λ)

=

∫
T

∣∣∣∣∣ u(λ)

λ(λ− ζ)

(
−u′(ζ) + u(λ)− u(ζ)

λ− ζ

)∣∣∣∣2dm(λ)

=

∫
T

∣∣∣∣∣ 1

λ− ζ

(
−u′(ζ) + u(ζ)

ζ

u(ζ)u(λ)− 1

ζλ− 1

)∣∣∣∣2dm(λ).

Factoring out ζu(ζ), which has modulus 1, it follows that

∥ψζ∥2H2 =

∫
T

∣∣∣∣∣ 1

λ− ζ

(
−u′(ζ)u(ζ)ζ + kuζ (λ)

) ∣∣∣∣2dm(λ).

Since by Theorem 1.31 it holds kuζ (ζ) = |u′(ζ)| = u′(ζ)ζu(ζ), we have that

∥ψζ∥2H2 =

∫
T

∣∣∣∣∣kuζ (λ)− kuζ (ζ)λ− ζ

∣∣∣∣2dm(λ) = ∥Qu
ζ (k

u
ζ )∥2H2 .

Notice that the same operator Λζ is bounded also in the context of de Branges–
Rovnyak spaces, mutatis mutandis, but the computation for the norm does not
hold: the assumption that b = u is inner allows us to compute the norm in H(b)
of the element ψζ simply as a norm in H2.

Using this lemma, we prove the following lower estimate for the norm of the
difference quotient operator.

Theorem 2.5. Let u be an inner function and ζ ∈ T \ σ(u). Then,

∥Qu
ζ∥ ≥

|u′′(ζ)|
2|u′(ζ)|

. (2.9)
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Proof. From Lemma 2.4, we have that

∥Qu
ζ (k

u
ζ )∥2H2 = sup

∥f∥Ku=1

|f ′(ζ)|2. (2.10)

We test (2.10) on the (normalized) boundary kernel itself. By direct computation,
it follows that

(kuζ
)′
(z) =

u(ζ)

ζ(ζ − z)

[
u(z)− u(ζ)

z − ζ
− u′(z)

]
, z ∈ D.

Expanding u(z) and u′(z) in Taylor series in a neighborhood of ζ, one can check
that

|(kuζ )′(ζ)| =
|u′′(ζ)|

2
.

In particular, (2.10) yields

∥Qu
ζ (k

u
ζ )∥2H2 ≥

|(kuζ )′(ζ)|2

∥kuζ ∥2H2

=
|u′′(ζ)|2

4|u′(ζ)|
.

We conclude that

∥Qu
ζ∥2 ≥

∥Qu
ζ (k

u
ζ )∥2H2

∥kuζ ∥2H2

≥ 1

∥kuζ ∥2H2

|u′′(ζ)|2

4|u′(ζ)|
=
|u′′(ζ)|2

4|u′(ζ)|2
.

Notice that we used the identity |u′(ζ)| = ∥kuζ ∥2H2 from Theorem 1.31.

We give more information on the quantity appearing in Theorem 2.5.

Proposition 2.6. Let u be an inner function, and consider an open arc ∆ ⊆
T \ σ(u) such that ∆

cl ∩ σ(u) ̸= ∅. If |u′| is unbounded on ∆, then also |u′′|
|u′| is

unbounded on ∆.

Proof. Since ∆
cl ∩ σ(u) ̸= ∅, the function u admits an analytic extension across

∆. Also, by Theorem 1.31, |u′| > 0 on ∆. This means that there exists an open
set Ω ⊂ C containing ∆ on which u′ is holomorphic and does not vanish. Without
loss of generality, we can assume that Ω is simply connected, so that the function
log(u′) is well defined and holomorphic on Ω, a neighbourhood of ∆. Notice that
it holds

u′′(z)

u′(z)
=
(
log(u′)

)′
(z), z ∈ Ω.

Since |u′| is unbounded on ∆, so is | log(u′)|. A standard argument using the
fundamental theorem of calculus shows that also |

(
log(u′)

)′| must be unbounded
on ∆, concluding the proof.
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2.2 One-component inner functions

In this section, we restrict to a special class of inner functions, the one-component
inner functions, for which we establish an upper estimate for the norm ∥Qu

ζ∥.
We will also show that, actually, the upper estimate that we provide is in fact
characterizing for such special class of inner functions. First, we introduce the
one-component inner functions.

Definition 2.7. We say that an inner function u is one-component if there exists
ε ∈ (0, 1) such that the sublevel set

Ωε := {z ∈ D : |u(z)| < ε}

is connected.

One-component inner functions were introduced in 1982 by Cohn [16], to study
the embeddings of model spaces in Lp(µ) spaces. Other equivalent descriptions of
the one-component inner functions have been given in [1], [12] and [45]. The model
spaces associated to one-component inner functions have been widely studied, see
for references [9] and [59]. In particular, the following characterization holds.

Theorem 2.8 (Aleksandrov, [1]). An inner function u is one-component if and
only if the following two conditions hold:

(i) The Lebesgue measure of its boundary spectrum σ(u) ∩ T is zero, and |u′| is
unbounded on every open arc ∆ ⊂ T \ σ(u) such that ∆

cl ∩ σ(u) ̸= ∅;

(ii) There exists a positive constant Cu such that for every ζ ∈ T \ σ(u) it holds
|u′′(ζ)| ≤ Cu|u′(ζ)|2.

Using Theorem 2.8, Bessonov characterized the Clark measures of the one-
component inner functions, see [12, Theorem 1]. We recall that, given an inner
function u and α ∈ T, the Clark measure σα is the unique finite, positive, Borel
measure on T such that

1− |u(z)|2

|α− u(z)|2
=

∫
T

1− |z|2

|z − ζ|2
dσα(ζ) , z ∈ D.

Following Bessonov’s notation, for every Borel measure µ on the unit circle
T, we denote by a(µ) the set of the isolated atoms of µ, and we define ρ(µ) :=
supp(µ) \ a(µ). We say that an atom ζ ∈ a(µ) has two neighbors if there is an
open arc (ζ−, ζ+) of T with endpoints ζ± ∈ a(µ) such that ζ is the only point in
(ζ−, ζ+) ∩ supp(µ).

Theorem 2.9 (Bessonov). Let u be a one-component inner function, and let α ∈
T. Then the associated Clark measure σα is a discrete measure on T with isolated
atoms such that m(supp(σα)) = 0. Moreover, every arc ∆ ⊂ T \ σ(u) contains
infinitely many atoms of a(σα) and every atom ζ ∈ a(σα) has two neighbors ζ± ∈
a(σα) such that

Au|ζ − ζ±| ≤ σα({ζ}) ≤ Bu|ζ − ζ±| (2.11)

for some positive constants Au, Bu depending only on u.
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We will assume that the atoms are indexed on the set of positive natural num-
bers. Using the information on the atoms of σα in Theorem 2.9 and Proposition
1.41, one can explicitly describe the Clark measures σα associated to the one-
component inner functions. In fact, σα is the purely atomic measure given by

σα =
∑
n∈N

σα({ζn}) δζn , (2.12)

where the boundary points ζn are the Clark points, the points where the atoms
are anchored, and they satisfy

∠ lim
z→ζn

u(z) = α

and

u′(ζn) = ∠ lim
z→ζn

u(z)− u(ζn)
z − ζn

=
αζn

σα({ζn})
̸= 0. (2.13)

In particular,

σα({ζn}) =
1

|u′(ζn)|
.

For each of these points ζn, we consider the associated (normalized) boundary
kernel, as we did in (1.15):

k̃n(z) :=
kuζn(z)

∥kuζn∥H2

=
1

∥kuζn∥H2

1− u(ζn)u(z)
1− ζnz

, z ∈ D.

With all of this in mind, we provide an upper bound for ∥Qu
ζ∥, when u is

one-component.

Theorem 2.10. Let u be a one-component inner function, and let ζ ∈ T \ σ(u).
Then, it holds

∥Qu
ζ∥ ≤ Cu|u′(ζ)|, (2.14)

where Cu is a positive quantity not depending on ζ.

Before the proof, we need a lemma. Since ζ does not belong to the spectrum
of u, we consider α := u(ζ) ∈ T and the associated Clark measure σα, that is
described in (2.12). Denoting (ζn)n∈N the atoms of the measure σα, thanks to

Lemma 1.44 we know that the collection of normalized boundary kernels {k̃n}n
defined as in (1.15) forms a complete orthonormal basis for the model space Ku.
We note that our original point ζ ∈ T \ σ(u) is an atom for σα, since by definition
α = u(ζ), and u is analytic in a neighbourhood of ζ. Let ℓ ∈ N be the index

such that ζℓ = ζ. This index ℓ will play a special role. We write k̃ℓ to denote the
normalized kernel kuζ /∥kuζ ∥. In the following lemma we compute the entries of the

infinite matrix associated to Qu
ζ , with respect to the basis {k̃n}n.
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Lemma 2.11. Let u be a one-component inner function and ζ ∈ T \ σ(u), as
above. Let (aij)i,j be the infinite matrix representing the operator Qu

ζ with respect

to the orthonormal basis {k̃n}n, i.e.

aij := ⟨Qu
ζ k̃j, k̃i⟩H2 , i, j ≥ 1.

Then, the matrix (aij)i,j has the form

1
ζ1−ζ

0 · · · 0
∥kuζ ∥
∥kuζ1∥

1
ζ−ζ1

0 · · ·

0 1
ζ2−ζ

· · · 0
∥kuζ ∥
∥kuζ2∥

1
ζ−ζ2

0 · · ·
...

...
. . .

...
...

... · · ·
0 0 · · · 1

ζℓ−1−ζ
0 0 . . .

(kuζ1
)′(ζ)

∥kuζ1∥∥k
u
ζ ∥

(kuζ2
)′(ζ)

∥kuζ2∥∥k
u
ζ ∥
· · ·

(kuζℓ−1
)′(ζ)

∥kuζℓ−1
∥∥kuζ ∥

(kuζ )
′(ζ)

∥kuζ ∥2
(kuζℓ+1

)′(ζ)

∥kuζℓ+1
∥∥kuζ ∥

· · ·

0 0 · · · 0
∥kuζ ∥

∥kuζℓ+1
∥

1
ζ−ζℓ+1

1
ζℓ+1−ζ

· · ·
...

...
...

...
...

...
. . .


.

In particular, all the non-zero coefficients are either on the diagonal, on the ℓ-th
row or on the ℓ-column, where ℓ is the index such that ζℓ = ζ.

We point out a necessary abuse of notation: in the matrix above, ∥·∥ represents
the H2-norm.

Proof of Lemma 2.11. The proof is technical and it splits in different cases. Keep
in mind that ζℓ = ζ. We start away from the ℓ-th row, taking i ̸= ℓ. For all j′s,
by the reproducing kernel property and writing Qu

ζ k̃j as the difference quotient, it
holds

aij = ⟨Qu
ζ k̃j, k̃i⟩H2

=

(
Qu

ζ k̃j
)
(ζi)

∥kuζi∥

=
1

∥kuζi∥
k̃j(ζi)− k̃j(ζ)

ζi − ζ

=
1

∥kuζi∥
1

∥kuζj∥
⟨kuζj , k

u
ζi
⟩H2 − ⟨kuζj , k

u
ζℓ
⟩H2

ζi − ζ
.

We distinguish three cases and we use the orthogonality relations. If j = i, then
⟨kuζj , k

u
ζi
⟩H2 = ∥kuζi∥

2 and ⟨kuζj , k
u
ζℓ
⟩H2 = 0, so that

i ̸= ℓ, j = i =⇒ aii =
1

ζi − ζ
.

If j = ℓ, then ⟨kuζj , k
u
ζi
⟩H2 = 0 and ⟨kuζj , k

u
ζℓ
⟩H2 = ∥kuζℓ∥

2, so that

i ̸= ℓ, j = ℓ =⇒ aiℓ = −
∥kuζ ∥
∥kuζi∥

1

ζi − ζ
.
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If j ̸= ℓ, j ̸= i, then all the inner products involved equal 0, and aij = 0. Now,
we move to the ℓ-th row: we take i = ℓ. This is more delicate, because we
are evaluating Qu

ζ k̃j, the difference quotient at ζ, precisely in the point ζ. Since
ζ ∈ T \ σ(u), by Theorem 1.32 every function in the model space Ku admits an
analytic extension in a neighborhood of ζ. In particular, for all j′s, we can write
the Taylor series

kuζj(z) =
∞∑

m=0

(
kuζj
)(m)

(ζ)

m!
(z − ζ)m

where
(
kuζj
)(m)

is the mth derivative of kuζj . We compute

(
Qu

ζ k
u
ζj

)
(z) =

kuζj(z)− k
u
ζj
(ζ)

z − ζ

=
1

z − ζ

[ ∞∑
m=0

(
kuζj
)(m)

(ζ)

m!
(z − ζ)m − kuζj(ζ)

]

=
∞∑

m=1

(
kuζj
)(m)

(ζ)

m!
(z − ζ)m−1.

One has
(
Qu

ζ k
u
ζj

)
(ζ) =

(
kuζj
)′
(ζ), so that

aℓj =

(
Qu

ζ k̃j
)
(ζℓ)

∥kuζℓ∥
=

(
Qu

ζ k
u
ζj

)
(ζ)

∥kuζj∥∥k
u
ζℓ
∥

=

(
kuζj
)′
(ζ)

∥kuζj∥∥k
u
ζ ∥
.

In particular, for j = ℓ,

aℓℓ =

(
kuζ
)′
(ζ)

∥kuζ ∥2
,

and the proof is complete.

Using the coefficients aij = ⟨Qu
ζ k̃j, k̃i⟩H2 , we prove Theorem 2.10.

Proof of Theorem 2.10. We can decompose any f ∈ Ku using the complete or-
thonormal basis of normalized boundary kernels {k̃n} as

f =
∑
i

γik̃i.

The coefficients γi := ⟨f, k̃i⟩H2 satisfy the Parseval identity∑
i

|γi|2 = ∥f∥2H2 .

By linearity, it holds

∥Qu
ζ (f)∥H2 ≤ |γℓ|∥Qu

ζ (k̃ℓ)∥H2 +

∥∥∥∥∥Qu
ζ

(∑
i ̸=ℓ

γik̃i

)∥∥∥∥∥
H2

. (2.15)
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Now, we work separately on each summand of (2.15). We start with the first one.

Using the orthonormal basis {k̃n} and coefficients aij, the Parseval identity yields

∥Qu
ζ (k̃ℓ)∥2H2 =

∑
i

∣∣∣⟨Qu
ζ (k̃ℓ), k̃i⟩H2

∣∣∣2 =∑
i

|aiℓ|2.

Now, by Lemma 2.11, separating the index ℓ it holds

∥Qu
ζ (k̃ℓ)∥2H2 =

∑
i

|aiℓ|2 =
|(kuζ

)′
(ζ)|2

∥kuζ ∥4H2

+
∑
i ̸=ℓ

∥kuζ ∥2H2

∥kuζi∥
2
H2

1

|ζi − ζ|2
. (2.16)

By direct computation, it follows that

(kuζ
)′
(z) =

u(ζ)

ζ(ζ − z)

[
u(z)− u(ζ)

z − ζ
− u′(z)

]
, z ∈ D.

Expanding u(z) and u′(z) in Taylor series in a neighborhood of ζ, one can check
that

|(kuζ )′(ζ)| =
|u′′(ζ)|

2
.

Using property (ii) of Theorem 2.8, it holds that

|(kuζ
)′
(ζ)|2

∥kuζ ∥4H2

=
|u′′(ζ)|2

4|u′(ζ)|2
≤ Cu|u′(ζ)|2, (2.17)

where Cu is a positive constant that depends only on u. We can rewrite the second
summand in (2.16) as

∑
i ̸=ℓ

∥kuζ ∥2

∥kuζi∥2
1

|ζi − ζ|2
=|u′(ζ)|

∑
i ̸=ℓ

1

|ζi − ζ|2
σα({ζi})

=|u′(ζ)|
∫
T\{ζ}

1

|λ− ζ|2
dσα(λ).

Now, by [12, Equation (16)],∫
T\{ζ}

1

|λ− ζ|2
dσα(λ) ≤

Cu

σα({ζ})
,

and we conclude that
∥Qu

ζ (k̃ℓ)∥2H2 ≤ Cu|u′(ζ)|2. (2.18)

Note that we use the same symbol Cu for a positive constant that depends only
on u, although the various constants involved may be different from term to term.
We have obtained the desired estimate for the first of the two summands of (2.15),
since

|γℓ|∥Qu
ζ (k̃ℓ)∥H2 ≤

(∑
i

|γi|2
) 1

2

∥Qu
ζ (k̃ℓ)∥H2 ≤ Cu|u′(ζ)|∥f∥H2 .
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To conclude the proof, we exhibit a similar estimate for the second summand in
(2.15). Notice that, now, the indexes i involved are different from ℓ. For i ̸= ℓ, by
orthogonal decomposition it holds

Qu
ζ (k̃i) =

∑
j

⟨Qu
ζ (k̃i), k̃j⟩H2 k̃j =

∑
j

ajik̃j = aiik̃i + aℓik̃ℓ,

for all the other coefficients aji equal 0, by Lemma 2.11. Therefore, by linearity
and again Lemma 2.11,∥∥∥∥∥Qu

ζ

(∑
i ̸=ℓ

γik̃i

)∥∥∥∥∥
2

H2

=

∥∥∥∥∥∑
i ̸=ℓ

γiQ
u
ζ (k̃i)

∥∥∥∥∥
2

H2

=

∥∥∥∥∥∑
i ̸=ℓ

γi

(
aiik̃i + aℓik̃ℓ

)∥∥∥∥∥
2

H2

=

∥∥∥∥∥∑
i ̸=ℓ

γi

(
1

ζi − ζ
k̃i +

(
kuζi
)′
(ζ)

∥kuζi∥H2∥kuζ ∥H2

k̃ℓ

)∥∥∥∥∥
2

H2

=

∥∥∥∥∥∑
i ̸=ℓ

γi
ζi − ζ

k̃i +
1

∥kuζ ∥H2

(∑
i ̸=ℓ

γi

(
kuζi
)′
(ζ)

∥kuζi∥H2

)
k̃ℓ

∥∥∥∥∥
2

H2

.

Since {k̃n} is an orthonormal basis, the previous squared norm can be rewritten
as the sum of squares∥∥∥∥∥Qu

ζ

(∑
i ̸=ℓ

γik̃i

)∥∥∥∥∥
2

H2

=
∑
i ̸=ℓ

|γi|2

|ζi − ζ|2
+

1

∥kuζ ∥2H2

∣∣∣∣∣∑
i ̸=ℓ

γi

(
kuζi
)′
(ζ)

∥kuζi∥H2

∣∣∣∣∣
2

. (2.19)

In this last equation, we have rewritten the second and last summand of the
original (2.15) in a more suitable form. Once again, we work separately on the
two summands that appear in (2.19). We start with the first one. Notice that

∑
i ̸=ℓ

|γi|2

|ζi − ζ|2
≤ sup

i ̸=ℓ

1

|ζi − ζ|2
∑
i

|γi|2 =
∥f∥2H2

(infi ̸=ℓ |ζi − ζ|)2
.

By assumption, u is a one-component inner function, and this gives us information
about the atoms. In particular, the atom ζi that is closest to ζ is one of the
neighbors ζ±, so that

inf
i ̸=ℓ
|ζi − ζ| = min{|ζ − ζ+|, |ζ − ζ−|}.

By Theorem 2.9, we conclude that∑
i ̸=ℓ

|γi|2

|ζi − ζ|2
≤ Cu

σα({ζ})2
∥f∥2H2 = Cu|u′(ζ)|2∥f∥2H2 .
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Now, we move on to estimate the second (and last) summand of (2.19). Simply
by adding and subtracting the same term and using Young’s inequality, it holds
that ∣∣∣∣∣∑

i ̸=ℓ

γi

(
kuζi
)′
(ζ)

∥kuζi∥H2

∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∑
i

γi

(
kuζi
)′
(ζ)

∥kuζi∥H2

∣∣∣∣∣
2

+ 2|γℓ|2
∣∣(kuζℓ)′(ζ)∣∣2
∥kuζℓ∥

2
H2

.

By Lemma 2.4, since the operator Λζ : f 7→ f ′(ζ) is linear and bounded on Ku, we
have ∑

i

γi

(
kuζi
)′
(ζ)

∥kuζi∥H2

=
∑
i

γi
Λζ(k

u
ζi
)

∥kuζi∥H2

= Λζ

(∑
i

γik̃i

)
= Λζ(f)

= f ′(ζ).

Notice that, by definition of the index ℓ, k̃ℓ is the normalization of kuζ . By (2.8)
and (2.18), we have that

|f ′(ζ)|2 ≤ ∥f∥2H2∥Qu
ζ (k

u
ζ )∥2H2

= ∥f∥2H2∥kuζ ∥2H2∥Qu
ζ (k̃ℓ)∥2H2

≤ Cu∥f∥2H2|u′(ζ)|3.

This shows that∣∣∣∣∣∑
i ̸=ℓ

γi

(
kuζi
)′
(ζ)

∥kuζi∥H2

∣∣∣∣∣
2

≤ 2Cu∥f∥2H2 |u′(ζ)|3 + 2|γℓ|2
∣∣(kuζ )′(ζ)∣∣2
∥kuζ ∥2H2

.

For the last term in the previous sum, as in (2.17) it holds

|γℓ|2
∣∣(kuζ )′(ζ)∣∣2
∥kuζ ∥2H2

≤ Cu|γℓ|2|u′(ζ)|3 ≤ Cu∥f∥2H2|u′(ζ)|3.

Therefore, we can conclude that for (2.19) it holds∥∥∥∥∥Qu
ζ

(∑
i ̸=ℓ

γik̃i

)∥∥∥∥∥
2

H2

=
∑
i ̸=ℓ

|γi|2

|ζi − ζ|2
+

1

∥kuζ ∥2H2

∣∣∣∣∣∑
i ̸=ℓ

γi

(
kuζi
)′
(ζ)

∥kuζi∥H2

∣∣∣∣∣
2

≤ Cu|u′(ζ)|2∥f∥2H2 +
2

|u′(ζ)|
(
Cu∥f∥2H2|u′(ζ)|3

)
≤ Cu|u′(ζ)|2∥f∥2H2 ,

concluding the proof.
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Theorem 2.10 has a strong consequence: it provides a characterization of the
property of being one-component.

Theorem 2.12. Let u be an inner function. Then, u is a one-component inner
function if and only if m(σ(u)) = 0 and for every ζ ∈ T\σ(u) the inequality (2.14)
holds. More explicitly, u is one-component if and only if m(σ(u)) = 0 and there
exists a positive constant Cu depending only on u such that, for every ζ ∈ T \σ(u)
and every f ∈ Ku, it holds that∫

T

∣∣∣∣f(λ)− f(ζ)λ− ζ

∣∣∣∣2 dm(λ) ≤ Cu|u′(ζ)|2∥f∥2H2 .

Proof. If u is one-component, then by Theorem 2.8 the Lebesgue measure of σ(u)
is 0, and by Theorem 2.10 it holds (2.14). Viceversa, confronting (2.14) with (2.6)
we obtain

|u′(ζ)| ≥ Cu

dist(ζ, σ(u) ∩ T)
, ζ ∈ T \ σ(u),

showing that |u′| is unbounded on every open arc ∆ ⊆ T \ σ(u) such that ∆
cl ∩

σ(u) ̸= ∅. Also, confronting (2.14) with (2.9), we obtain

|u′′(ζ)| ≤ Cu|u′(ζ)|2, ζ ∈ T \ σ(u),

for some positive constant Cu depending only on u. By the characterization in
Theorem 2.8, we conclude that u is one-component.

Now, we show an example for which the lower estimate in Theorem 2.5 and
the upper estimate in Theorem 2.10 that we have produced have the same order of
infinity. Note that this example also shows that the exponents of the derivatives
of u involved in Theorems 2.5 and 2.10 are sharp.

Proposition 2.13. Let u be the singular inner function associated to the measure
δ1,

u(z) = exp

(
z + 1

z − 1

)
, z ∈ D.

Then, there exists a positive constant Cu such that for every ζ ∈ T\{1} the couple
of inequalities

1

2
|u′(ζ)| = 1

|ζ − 1|2
≤ ∥Qu

ζ∥ ≤
2Cu

|ζ − 1|2
= Cu|u′(ζ)|

hold.

Proof. The spectrum of the inner function u is the singleton {1}. A simple com-
putation shows that

|u′(ζ)| = 2

|ζ − 1|2
, ζ ̸= 1. (2.20)

Also, by directly computing the second derivative of u, we see that

u′′(z) =
4z u(z)

(z − 1)4
, z ∈ D. (2.21)
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In light of Aleksandrov’s Theorem 2.8, we have that u is a one-component inner
function. We note that this fact could also be easily proved directly, computing
the sublevel sets Ωε. According to Theorem 2.10, for every ζ ̸= 1,

∥Qu
ζ∥ ≤ Cu|u′(ζ)| =

2Cu

|ζ − 1|2
.

On the other hand, by Theorem 2.5 and equations (2.20), (2.21)

∥Qu
ζ∥ ≥

1

2

4

|ζ − 1|4
|ζ − 1|2

2
=

1

|ζ − 1|2
, ζ ̸= 1.

We have obtained the desidered inequalities

1

2
|u′(ζ)| = 1

|ζ − 1|2
≤ ∥Qu

ζ∥ ≤
2Cu

|ζ − 1|2
= Cu|u′(ζ)|,

and the proof is complete.

As a concluding remark, we note that the operator Qu
ζ appears in an explicit

expression of the norm of R(ζ, Su) = (ζI − Su)
−1, the resolvent operator of the

compressed shift.

Proposition 2.14. Let u be an inner function and let ζ ∈ T \ σ(u). Then,

∥R(ζ, Su)∥2 = ∥Qu
ζ∥2 + |u′(ζ)|. (2.22)

Proof. First, since X∗
u = Su, notice that

∥R(ζ, Su)∥ = ∥R(ζ,Xu)∥ = ∥(ζI −Xu)
−1∥ = ∥(I − ζXu)

−1∥.

From the definition (2.4) of the operator Qu
ζ , it follows that

(I − ζXu)
−1 = I + ζQu

ζ .

In fact,

I + ζQu
ζ = I + ζ(I − ζXu)

−1Xu

= (I − ζXu)(I − ζXu)
−1 + ζ(I − ζXu)

−1Xu

= (I − ζXu)
−1(I − ζXu + ζXu)

= (I − ζXu)
−1.

Thus, we have that

(I − ζXu)
−1f(z) = f(z) + ζ

f(z)− f(ζ)
z − ζ

=
zf(z)− ζf(ζ)

z − ζ
.

Computing the norm, we obtain that

∥(I − ζXu)
−1f∥2H2 =

∫
T

∣∣∣∣λf(λ)− ζf(ζ)λ− ζ

∣∣∣∣2dm(λ) = Dζ(Sf).
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We appeal to the local Dirichlet integral for convenience, since by (1.22) it holds

Dζ(Sf) = Dζ(zf) = Dζ(f) + |f(ζ)|2 = ∥Qu
ζf∥2 + |f(ζ)|2.

Finally, by Theorem 1.31, we have that

∥R(ζ, Su)∥2 = ∥Qu
ζ∥2 + ∥kuζ ∥2H2 = ∥Qu

ζ∥2 + |u′(ζ)|,

concluding the proof.
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Chapter 3

H(b) spaces and Dµ spaces

In this chapter, we discuss the embeddings and, in a special case, the equality,
between de Branges–Rovnyak spaces and harmonically weighted Dirichlet spaces.
For the sake of clarity, we say that H(b) embeds into Dµ, and we write H(b) ↪→ Dµ,
if H(b) ⊂ Dµ and

∥f∥Dµ ≤ C∥f∥H(b), f ∈ H(b),

where C is a positive constant. Notice that the simple set inequality would suf-
fice, for the boundedness follows automatically from the closed graph theorem. In
Section 3.1 we show a sufficient condition and a necessary condition for the embed-
ding H(b) ↪→ Dζ , with no particular assumptions on the function b. In Sections
3.2 and 3.3, respectively, we show a complete characterization for the embedding
H(b) ↪→ Dµ when b is inner and when b is non-extreme. In the latter case, we also
discuss the equality of spaces H(b) = Dµ. The content of Section 3.1 and Section
3.2 is taken from a recent paper, that is joint work of the author of this thesis and
Carlo Bellavita, [10].

Before entering into the technical details, we give a brief overview on the state
of the art. The first work in this direction dates back to 1997. In [55], Sarason
showed that the local Dirichlet space Dζ coincides with equality of norms with the
de Branges–Rovnyak space H(bζ) associated to the rational function

bζ(z) :=
(1− s0)ζz
1− s0ζz

, z ∈ D,

where s0 = (3 −
√
5)/2 is the smaller of the two solutions of the equation s =

(1− s)2. This means that H(bζ) = Dζ as sets and

∥f∥H(bζ) = ∥f∥Dζ
, f ∈ H(bζ). (3.1)

The author used this identification to give a new proof that the local Dirichlet
spaces are star-shaped, i.e. for every function f in Dζ the radial approximations
fr(z) := f(rz), for 0 < r < 1, converge to f in the norm of the space.

Later, in 2010 [15], Chevrot, Guillot and Ransford showed that the case studied
by Sarason is basically the only case in which it holds H(b) = Dµ with equality of
norms as in (3.1). More precisely, they showed that H(b) = Dµ with equality of

55
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norms if and only if µ = cδζ with c > 0, i.e., µ is an atomic measure with a single
atom, and the function b is given by

b(z) = α

√
τζz

1− τζz
,

where α ∈ C and τ ∈ (0, 1] satisfy |α|2 = c and τ + 1/τ = 2 + c.
In [22], the authors studied the equality of norms in H(b) = Dω, with ω a

super-harmonic weight. In 2013 [17], Costara and Ransford showed that there can
be an equality of sets H(b) = Dµ with just an equivalence of norms. In particular,
they provided sufficient and necessary conditions for the equality H(b) = Dµ,
where b is a rational function and µ is a finitely supported measure, i.e. a finite
sum of Dirac deltas centered in boundary points.

There exist also results on the embedding between different de Branges–Rovnyak
spaces. We will use the following result, due to Ball and Kriete [6]. This is Corol-
lary 27.18 in [29].

Proposition 3.1. Suppose b1 is a non-extreme point of the closed unit ball of H∞,
and assume b1 is continuous on the closed unit disk. Let b2 be a function in H∞

and θ2 its inner factor. Then the following are equivalent:

(i) It holds the inclusion of de Branges–Rovnyak spaces H(b2) ⊂ H(b1).

(ii) The following conditions hold:

• {λ ∈ T : |b1(λ)| = 1} ∩ σ(θ2) = ∅.
• There exists γ > 0 such that 1− |b2|2 ≤ γ(1− |b1|2) a.e. on T.

3.1 Embedding H(b) ↪→ Dζ

This section comes from a joint work [10] by E. Dellepiane and C. Bellavita. We
provide a sufficient condition and a necessary one in order to have an embedding
H(b) ↪→ Dζ between de Branges–Rovnyak spaces and local Dirichlet spaces. We
make no special assumption on the function b, we only ask that ∥b∥H∞ = 1. The
conditions that we will discuss involve the boundary spectrum

σ(b) = {λ ∈ T : lim inf
z→λ

|b(z)| < 1},

introduced in the preliminaries section. We recall that every analytic function b
with ∥b∥H∞ = 1 can be factorized as b = Fu, where F is the outer function

F (z) := exp

{∫
T

ζ + z

ζ − z
log |b(ζ)| dm(ζ)

}
(3.2)

that satisfies ∥F∥H∞ = 1 and u is an inner function. In particular, according to
the Nevanlinna factorization, we can write

u(z) =

(
∞∏
n=1

an
|an|

an − z
1− anz

)
exp

{
−
∫
T

ζ + z

ζ − z
dτ(ζ)

}
, (3.3)
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where {an}n≥1 are the zeros of u and τ a positive singular measure.

The closure of the spectrum σ(b)
cl
is the smallest closed subset of T containing

the closure of the zero set {an}n and the supports of the (positive, finite) measures
τ and − log |b| dm. Also, the function b and every element of the space H(b) admit

an analytic extension through any open arc contained in T \ σ(b)
cl
. In particular,

|b| = 1 on such arcs. If b = u is an inner function, then it holds that

σ(u) = {λ ∈ T : lim inf
z→λ

|u(z)| = 0}.

In particular, the spectrum of inner functions is a closed set. We have the following
sufficient condition for the embedding H(b) ↪→ Dζ .

Theorem 3.2. Let b be a bounded analytic function with ∥b∥H∞ = 1, and let ζ ∈ T
be such that ζ /∈ σ(b)

cl
. Then, we have the embedding H(b) ↪→ Dζ.

Proof. The proof is short, it follows from the boundedness of the operator Qb
ζ

discussed in Section 2.1. By the local Douglas formula (1.19), and (1.10), for
every f ∈ H(b) we have

Dζ(f) =

∫
T

∣∣∣∣f(λ)− f(ζ)λ− ζ

∣∣∣∣2 dm(λ) = ∥Qb
ζf∥2H2 ≤ ∥Qb

ζf∥2H(b) <∞.

This proves the embedding. We also have the following estimate for the norm:

∥f∥2Dζ
= ∥f∥2H2 +Dζ(f) ≤

(
1 + ∥Qb

ζ∥2
)
∥f∥2H(b).

Notice that the sufficient condition of Theorem 3.2 can only hold for extreme
functions b. We have the following necessary condition, that is also a partial
converse result. For this, we do not require that b is extreme.

Theorem 3.3. Let b be a bounded analytic function with ∥b∥H∞ = 1, and let ζ ∈ T
be such that ζ ∈ σ(b). Then, the de Branges–Rovnyak space H(b) does not embed
into the local Dirichlet space Dζ.

Proof. By contradiction, let us suppose that the embedding H(b) ↪→ Dζ holds.
Let C > 0 be such that

Dζ(f) ≤ C∥f∥2H(b), f ∈ H(b). (3.4)

By assumption, ζ ∈ σ(b), hence there exists a sequence (ωn)n in D converging to
ζ such that

β := lim
n
|b(ωn)| < 1.

Let us consider the family of kernels

kn(z) := kbωn
(z) =

1− b(ωn)b(z)

1− ωnz
.
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Since H(b) ⊆ Dζ , by Theorem 1.47 every function of H(b) admits boundary value
at ζ. By Theorem 1.31, b(ζ) is well defined and unimodular. Therefore, one can
compute

kn(z)− kn(ζ) =
1− b(ωn)b(z)

1− ωnz
− 1− b(ωn)b(ζ)

1− ωnζ

=
ωn(z − ζ)− b(ωn)

(
b(z)− b(ζ)

)
+ ωnb(ωn)

(
ζb(z)− zb(ζ)

)
(1− ωnz)(1− ωnζ)

=
ωn(z − ζ)(1− b(ωn)b(ζ))− b(ωn)

(
b(z)− b(ζ)

)
(1− ωnζ)

(1− ωnz)(1− ωnζ)
.

Consequently,

kn(z)− kn(ζ)
z − ζ

=
ωn

1− ωnz

1− b(ωn)b(ζ)

1− ωnζ
− b(ωn)

1− ωnz

b(z)− b(ζ)
z − ζ

= ωncωn(z)kn(ζ)− b(ωn)cωn(z)b(ζ)ζk
b
ζ(z), (3.5)

where

cωn(z) =
1

1− ωnz

is the usual Cauchy-Szegö kernel, the reproducing kernel of the Hardy space H2.
The local Dirichlet integral can be computed as in (1.19), yielding

Dζ(kn) =

∥∥∥∥kn − kn(ζ)· − ζ

∥∥∥∥2
H2

=
〈
ωn kn(ζ)cωn − b(ωn)b(ζ)ζcωnk

b
ζ , ωn kn(ζ)cωn − b(ωn)b(ζ)ζcωnk

b
ζ

〉
H2

=|ωn|2|kn(ζ)|2∥cωn∥2H2 − 2ℜ
(
ωnkn(ζ)b(ωn)b(ζ)ζ⟨cωn , cωnk

b
ζ⟩H2

)
+ |b(ωn)|2∥cωnk

b
ζ∥2H2 .

We have written the local Dirichlet integral Dζ(kn) as a sum of three terms. We
leave the first one as it is, and work on the other two. We use the reproducing
property of the Cauchy-Szegö kernel, the fact that cωnk

b
ζ is an H

2 function and we
estimate the real part with the modulus, obtaining

ℜ
(
ωnkn(ζ)b(ωn)b(ζ)ζ⟨cωn , cωnk

b
ζ⟩H2

)
= ℜ

(
ωnkn(ζ)b(ωn)b(ζ)ζcωn(ωn)kbζ(ωn)

)
= ∥cωn∥2H2ℜ

(
ωnb(ωn)b(ζ)ζkn(ζ)

2
)

≤ ∥cωn∥2H2 |kn(ζ)|2 |ωnb(ωn)|.
For the third summand, using the triangular inequality, we have

∥cωnk
b
ζ∥2H2 =

∫
T

∣∣∣∣ 1

1− ωnλ

1− b(ζ)b(λ)
1− ζλ

∣∣∣∣2 dm(λ)

=

∫
T

∣∣∣∣ 1

1− ωnλ

1

1− ωnλ

(
1− b(ζ)b(λ)

1− ζλ

)2∣∣∣∣ dm(λ)

≥
∣∣∣∣ ∫

T

1

1− ωnλ

1

1− ωnλ

(
1− b(ζ)b(λ)

1− ζλ

)2

dm(λ)

∣∣∣∣.
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The function cωn

(
kbζ
)2

belongs to H1 and, in particular, by the Cauchy integral
formula (1.3) it holds∫

T

1

1− ωnλ

1

1− ωnλ

(
1− b(ζ)b(λ)

1− ζλ

)2

dm(λ) =

∫
T

cωn(λ)
(
kbζ
)2
(λ)

1− ωnλ
dm(λ)

= cωn(ωn)
(
kbζ
)2
(ωn).

Using this, we obtain

|b(ωn)|2∥cωnk
b
ζ∥2H2 ≥ |b(ωn)|2∥cωn∥2H2|kn(ζ)|2.

Now, computing the norms of the kernels

∥cωn∥2H2 =
1

1− |ωn|2
, ∥kn∥2H(b) =

1− |b(ωn)|2

1− |ωn|2
,

we obtain the lower bound

Dζ(kn)

∥kn∥2H(b)

≥ |ωn|2|kn(ζ)|2

1− |b(ωn)|2
− 2|kn(ζ)|2|ωnb(ωn)|

1− |b(ωn)|2
+
|b(ωn)|2|kn(ζ)|2

1− |b(ωn)|2

= |kn(ζ)|2
|ωn|2 − 2|ωnb(ωn)|+ |b(ωn)|2

1− |b(ωn)|2

=

∣∣∣∣1− b(ωn)b(ζ)

1− ωnζ

∣∣∣∣2
(
|ωn| − |b(ωn)|

)2
1− |b(ωn)|2

≥
(
1− |b(ωn)|

)2
|1− ωnζ|2

(
|ωn| − |b(ωn)|

)2
1− |b(ωn)|2

.

Since limn ωn = ζ and limn |b(ωn)| = β ∈ [0, 1), we conclude that

lim inf
n

Dζ(kn)

∥kn∥2H(b)

≥ lim inf
n

(1− β)2

|1− ωnζ|2
(1− β)2

1− β2
= +∞,

contradicting the uniform bound in (3.4).

The following result is contained in the proof of Theorem 3.3.

Corollary 3.4. Let b be an analytic function on D with ∥b∥H∞ ≤ 1 and let ζ ∈ T.
If b admits ADC at a point ζ ∈ T, then for all ω ∈ D the reproducing kernel kbω
belongs to Dζ.

Proof. From (3.5), it follows that

Dζ(k
b
ω) =

∥∥∥∥kbω − kbω(ζ)· − ζ

∥∥∥∥2
H2

= ∥ωkbω(ζ)cω − b(ω)b(ζ)ζcωkbζ∥2H2 <∞.

We have proved a positive result, that is, that H(b) ↪→ Dζ when ζ /∈ σ(b)
cl
,

and a negative one, that is, that if ζ ∈ σ(b), H(b) ⊈ Dζ . We now present some

examples to show that, for the remaining case ζ ∈ σ(b)
cl
\ σ(b), anything can

happen.
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Example. Set

s0 :=
3−
√
5

2
, (3.6)

let ζ ∈ T and define the function

bζ(z) =
(1− s0)ζz
1− s0ζz

.

By Proposition 2 in [55], H(bζ) = Dζ with equality of norms, guaranteeing the
embedding. Since bζ is continuous up to the boundary T, it holds

σ(bζ) = {λ ∈ T : |bζ(λ)| < 1}.

Writing ζ = eiη and λ = eiθ, if eiθ ̸= eiη, we have that

|1− s0ζλ|2 = 1− 2s0 cos(θ − η) + s20 > 1− 2s0 + s20 = |(1− s0)ζλ|2.

On the other hand, when eiθ = eiη,

|1− s0ζλ|2 = |(1− s0)ζλ|2.

This means that σ(bζ) = T \ {ζ}, providing a function in H∞ such that ζ ∈
σ(bζ)

cl
\ σ(bζ) while the embedding H(bζ) ↪→ Dζ holds.

Now we provide an example of an extreme function b with 1 ∈ σ(b)
cl
\ σ(b)

such that H(b) ↪→ D1 doesn’t hold. We use Proposition 3.1 as a criterion for the
inclusion.

Example. Let

b1(z) :=
(1− s0)z
1− s0z

, (3.7)

where s0 is the constant in (3.6), so that H(b1) = D1, and we construct an outer
function b2 as follows. We start by considering the function φ defined on T as

φ(λ) =

log
(√

1− |1− λ| 32
)
, if | arg(λ)| ≤ π

6
,

0, elsewhere.

The function φ is in L∞(T) and real-valued, and this allows us to define the outer
function

b2(z) := exp

{∫
T

λ+ z

λ− z
φ(λ) dm(λ)

}
,

that satisfies |b2| = eφ a.e. on T. The first condition of (ii) in Proposition 3.1 is
trivially true, since b2 is outer and therefore σ(θ2) = ∅. For the second condition
of (ii), it holds that

1− |b2(λ)|2 = |1− λ|
3
2 , for a.e. λ ∈ T with | arg(λ)| < π

6
.
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Since for all λ ∈ T it holds

1− |b1(λ)|2 =
(1− s0)2|1− λ|2

|1− s0λ|2
,

it follows that in proximity of the point 1 the condition (ii) of Proposition 3.1
fails, meaning that the inclusion H(b2) ⊂ H(b1) = D1 cannot hold. Finally, from
a classical argument with Poisson kernels found in the proof of [30, Theorem 1.9],
it follows that for every λ ∈ T with | arg λ| < π

6
, it holds that

lim
z→λ
|b2(z)| = eφ(λ) =

√
1− |1− λ| 32 ,

since φ is continuous on such λ’s and bounded on T. It follows that

σ(b) ∩ {λ ∈ T : | arg(λ)| < π/6} = {λ ∈ T : | arg(λ)| < π/6} \ {1},

so that 1 ∈ σ(b2)
cl
\ σ(b2) while H(b2) ̸⊂ D1.

3.1.1 Embedding H(b) ↪→ Dµ

In this section, we deal with the embedding H(b) ↪→ Dµ. Again, we provide a
sufficient condition and a necessary one for the embedding to hold, involving the
support of the measure µ and the boundary spectrum σ(b). We have the following
theorem.

Theorem 3.5. Let µ be a finite positive Borel measure on T and let b ∈ H∞
1 . If

supp(µ) ∩ σ(b)
cl
= ∅, then the embedding H(b) ↪→ Dµ holds.

Proof. By assumption, supp(µ) and σ(b)
cl
are disjoint compact sets, therefore

δ := dist
(
supp(µ), σ(b)

cl)
> 0.

We consider the open set

U :=
⋃

x∈σ(b)cl

{
z ∈ C : |z − x| < δ

2

}
.

Notice that U ⊇ σ(b)
cl
and dist(U, supp(µ)) ≥ δ/2. For f ∈ H(b), we split the

harmonically weighted Dirichlet integral of f into the sum

Dµ(f) =
1

π

∫
D∩U
|f ′|2PµdA+

1

π

∫
D\U
|f ′|2PµdA.
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For the first summand, we use a classical Littlewood-Paley estimate, see Proposi-
tion 3.2 in [31]:

1

π

∫
D∩U
|f ′|2PµdA =

1

π

∫
D∩U
|f ′(z)|2(1− |z|2)

(∫
supp(µ)

dµ(ζ)

|z − ζ|2

)
dA(z)

≤ 4

πδ2
µ(T)

∫
D
|f ′(z)|2(1− |z|2) dA(z)

≤ 2

δ2
µ(T)

∫
T
|f(λ)− f(0)|2 dm(λ)

≤ 8

δ2
µ(T)∥f∥2H2 .

For the second summand, we recall that every function in the space H(b) admits

an analytic extension across T \ σ(b)
cl
. Hence, we have

1

π

∫
D\U
|f ′(z)|2Pµ(z) dA(z) ≤ max

Dcl\U
|f ′| 1

π

∫
D

∫
T

1− |z|2

|z − ζ|2
dµ(ζ) dA(z)

= max
Dcl\U

|f ′|
∫
T
dµ(ζ)

= max
Dcl\U

|f ′|µ(T).

We have proved that for every f ∈ H(b) it holds

Dµ(f) ≤
8

δ2
µ(T)∥f∥2H2 + max

Dcl\U
|f ′|µ(T) <∞.

The boundedness of the embedding Ku ↪→ Dµ follows from the closed graph the-
orem.

Notice that Theorem 3.5 could also be proved using the analyticity of the

mapping ζ ∈ T \ σ(b)
cl
7→ Qb

ζ ∈ B
(
H(b)

)
, where Qb

ζ is the difference quotient
operator. Now, we give a necessary condition for the embedding H(b) ↪→ Dµ.

Theorem 3.6. Let µ be a finite positive Borel measure on T and let b ∈ H∞
1 . If

the embedding H(b) ↪→ Dµ holds, then µ
(
σ(b)

)
= 0.

Proof. For the proof, we recall the function Vµ : C→ [0,+∞] defined as

Vµ(ω) :=

∫
T

1

|ζ − ω|2
dµ(ζ), ω ∈ C,

that was introduced in Section 1.1. We show that Vµ is finite on the boundary
spectrum σ(b)∩T, which we can assume to be non-empty without loss of generality.
Let C > 0 be a constant such that

Dµ(f) ≤ C∥f∥2H(b), f ∈ H(b).
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One could also take C to be the norm of such embedding. Let λ ∈ σ(b) and, as we
did in the proof of Theorem 3.3, let us consider a sequence (ωn)n in D such that
|b(ωn)| → β ∈ [0, 1) as n → ∞. By the disintegration formula in (1.18) and the
lower estimate for Dζ(kn) obtained in the proof of Theorem 3.3, we have that

C∥kn∥2H(b) ≥ Dµ(kn) =

∫
T
Dζ(kn) dµ(ζ)

≥
∫
T
∥kn∥2H(b)

(
1− |b(ωn)|

)2(|ωn| − |b(ωn)|
)2

|ζ − ωn|2
(
1− |b(ωn)|2

) dµ(ζ)

= ∥kn∥2H(b)

(
1− |b(ωn)|

)(
|ωn| − |b(ωn)|

)2
1 + |b(ωn)|

∫
T

1

|ζ − ωn|2
dµ(ζ).

Hence, by Fatou’s Lemma, it holds that

C ≥ lim inf
n

(
1− |b(ωn)|

)(
|ωn| − |b(ωn)|

)2
1 + |b(ωn)|

∫
T

1

|ζ − ωn|2
dµ(ζ)

≥ (1− β)3

1 + β

∫
T

1

|ζ − λ|2
dµ(ζ)

=
(1− β)3

1 + β
Vµ(λ).

In particular,

Vµ(λ) ≤ C
1 + β

(1− β)3
<∞, λ ∈ σ(b).

The theorem follows from the fact that Vµ =∞ µ-a.e. on T (see Proposition 1.5)
and therefore, necessarily, we have that µ

(
σ(b)

)
= 0.

Remark. We note that, if there exists an ε > 0 such that for every λ ∈ σ(b) we
have β < 1−ε, then the potential Vµ is uniformly bounded on σ(b). This happens,
for example, when b is inner. In this case, we can always choose β = 0. In general,
however, Vµ can be unbounded on σ(b). As an example, take the usual function
b1 as in (3.7) that realizes the equality H(b1) = D1. Clearly, the embedding holds,
but the potential associated to the measure µ = δ1,

Vµ(z) =
1

|z − 1|2
,

is not bounded on σ(b) = T \ {1}.
We have another necessary condition for the embedding H(b) ↪→ Dµ.

Proposition 3.7. Let µ be a finite positive Borel measure on T and let b ∈ H∞
1 .

If the embedding H(b) ↪→ Dµ holds, then b belongs to Dµ.

Notice that, when b is extreme, b /∈ H(b), so that in general the membership
b ∈ Dµ does not trivially follow from the embedding.
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Proof of Proposition 3.7. Consider ω ∈ D such that b(ω) ̸= 0. One has

b(z) =
1

b(ω)

[
1− (1− ωz) kbω(z)

]
, z ∈ D,

so that

b = b(ω)
−1 (

1− (I − ωS) kbω
)
∈ Dµ,

since kbω ∈ Dµ and the forward shift S is well defined on Dµ, by Corollary 1.53.

3.2 The case b = u inner

In this part, we choose b = u to be inner. In this case, Theorems 3.2 and 3.3
provide an equivalent characterization of the embedding Ku ↪→ Dµ.

Corollary 3.8. Let b be an analytic function with ∥b∥H∞ = 1 with closed boundary
spectrum, and let ζ ∈ T. Then, the embedding H(b) ↪→ Dζ holds if and only if
ζ /∈ σ(b). In particular, if u is an inner function, then the embedding Ku ↪→ Dζ

holds if and only if ζ /∈ σ(u).

Proof. The result follows using Theorems 3.2 and 3.3 and the fact that the spec-
trum of b is closed.

We can rewrite the embedding Ku ↪→ Dζ in terms of the boundedness of the
derivative operator, providing a corollary which is somehow related to the results
of Baranov about the boundedness of the differentiation operator acting on model
spaces, see [7].

Corollary 3.9. Let u be an inner function and ζ ∈ T. Let D be the derivative
operator

D : Ku → L2
(
PδζdA

)
, f 7→ f ′,

acting from the model space to the Lebesgue space L2(D, P δζdA). Then, D is
bounded if and only if ζ /∈ σ(u).

Proof. It follows at once from Corollary 3.8, for

∥f ′∥2
L2
(
PδζdA

) = ∫
D
|f ′(z)|2 1− |z|

2

|z − ζ|2
dA(z) = πDζ(f).

The embedding Ku ↪→ Dζ allows to find some Carleson measures for Ku. First,
let us recall the definition.

Definition 3.10. Let H be a Hilbert space of holomorphic functions on D. We
say that a positive Borel measure ν on D is a Carleson measure for H if there
exists a constant C > 0 such that∫

D
|f |2 dν ≤ C∥f∥2H , f ∈ H. (3.8)
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Carleson measures for the Hardy space H2 appeared in a very natural and
powerful way in the proof of the Corona Theorem for H∞, see [31]. Such measures
have been well studied, and they admit a nice geometric characterization in terms
of Carleson boxes.

Proposition 3.11. Let ν be a finite positive Borel measure on D. Given an arc
I ⊆ T, the Carleson box associated to I is

S(I) := {reiθ : eiθ ∈ I, 1− |I| < r < 1},

where |I| denotes the arc length of I. Then, ν is Carleson for H2 if and only if
there exists a constant C > 0 such that

ν(S(I)) ≤ C|I|, I ⊂ T. (3.9)

Carleson measures of Dζ have been characterized in [14] in terms of Carleson
measures of H2, as follows:

Proposition 3.12. Let ν be a finite positive Borel measure on D. Then, ν is a
Carleson measure for Dζ if and only if the measure |z − ζ|2 dν(z) is Carleson for
H2.

Note that every Carleson measure of Dζ has to be finite, since 1 ∈ Dζ . Having
mentioned these preliminary facts, we can state our result.

Corollary 3.13. Let u be an inner function and ν a finite positive Borel measure
on D. If there exists ζ ∈ T \ σ(u) such that |z − ζ|2 dν(z) is a Carleson measure
for H2, then ν is a Carleson measure for the model space Ku.

Proof. Since ζ /∈ σ(u), by Theorem 3.8 the embedding Ku ↪→ Dζ holds. Also, by
Proposition 3.12, the measure ν is a Carleson measure for Dζ . Then, for every
f ∈ Ku it holds ∫

D
|f |2 dν ≤ C∥f∥2Dζ

≤ C ′∥f∥2Ku
,

for some positive constants C,C ′, meaning that ν is a Carleson measure forKu.

We conclude this part with an example of a Carleson measure for D1 (and thus
for every model space Ku with 1 /∈ σ(u)) which is not Carleson for H2.

Example. Let ν be the measure defined on Borel sets of D as

ν(A) :=

∫
A∩[0,1]

1√
1− s

ds.

We use the characterization in Proposition 3.11 to prove that ν is not a Carleson
measure for H2. For δ > 0, consider the arc Iδ centered at 1 with arc length δ.
One can compute the measure of the Carleson boxes S(Iδ) and obtain

ν
(
S(Iδ)

)
=

∫ 1

1−δ

1√
1− s

ds = 2
√
δ,
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showing that the bound in (3.9) cannot hold as δ → 0. However, the measure ν
is a Carleson measure for the local Dirichlet space D1. We use Proposition 3.12,
and because of the definition of ν it suffices to consider only the arcs that contain
1, and one can show that the measure |z − 1|2 dν(z) satisfies (3.9).

We move now to the description of multipliers from the model space Ku into
the local Dirichlet space.

Definition 3.14. Let H1, H2 be Hilbert spaces of holomorphic functions on D.
The multipliers from H1 to H2 are defined as

M(H1, H2) := {ϕ ∈ Hol(D) : ϕH1 ⊆ H2}.

When H1 = H2 we simply write M(H1).

The multiplier algebra M(Dζ) of the local Dirichlet space is characterized as
follows. This result follows from Proposition 3.1 of [27]. For sake of completeness,
we provide an explicit proof.

Lemma 3.15. For ζ ∈ T, the multiplier algebra of Dζ is Dζ ∩H∞.

Proof. The fact that the multipliers of Dζ are in Dζ ∩H∞ follows from the stan-
dard argument which holds for many other reproducing kernel Hilbert spaces of
analytic functions, see for example Proposition 3.1 in [26]. Let us move to the
other inclusion: let ϕ ∈ Dζ ∩H∞, and let f ∈ Dζ . In light of the characterization
in Theorem 1.46, there exist functions η, g ∈ H2 such that

ϕ(z) = ϕ(ζ) + (z − ζ)η(z), f(z) = f(ζ) + (z − ζ)g(z), z ∈ D. (3.10)

Then, for z ∈ D it holds that

ϕ(z)f(z) =
(
ϕ(ζ) + (z − ζ)η(z)

)(
f(ζ) + (z − ζ)g(z)

)
= ϕ(ζ)f(ζ) + (z − ζ)[ϕ(ζ)g(z) + η(z)f(ζ) + (z − ζ)η(z)g(z)].

Again by Theorem 1.46, membership of the product ϕf in Dζ is equivalent to the
membership in H2 of the function

ϕ(ζ)g(z) + η(z)f(ζ) + (z − ζ)η(z)g(z).

Since η, g ∈ H2, it suffices to show that (z − ζ)η(z)g(z) belongs to H2, and this
follows from (3.10) and the assumption that ϕ ∈ H∞, for

(z − ζ)η(z)g(z) =
(
ϕ(z)− ϕ(ζ)

)
g(z).

In [26], multipliers between model spaces are studied. It is shown thatM(Ku) =
C, meaning that every function multiplying any model space into itself must be
constant. Furthermore, multipliers from model spaces to the Hardy space H2 are
characterized in terms of a Carleson condition on the unit circle. More precisely,
ϕ ∈ M

(
Ku, H

2
)
if and only if the measure |ϕ|2dm is a Carleson measure for Ku,

i.e. there exists a constant C > 0 such that∫
T
|fϕ|2 dm ≤ C∥f∥2Ku

, f ∈ Ku.
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Assuming the inclusion Ku ⊆ Dζ , the local Dirichlet space Dζ is an intermediate
space between Ku and H2. This is reflected in our following multiplier theorem.

Theorem 3.16. Let u be an inner function, ζ \ σ(u) and ϕ ∈ Hol(D). Then, ϕ is
a multiplier from Ku to Dζ if and only if the measure |ϕ|2dm is Carleson for Ku

and ϕ belongs to Dζ.

Proof. Let us assume that ϕ ∈ M(Ku,Dζ). Then, in particular, the measure
|ϕ|2 dm is a Carleson measure for Ku, so it suffices to show that every multiplier
from Ku to Dζ belongs to Dζ . If u(0) = 0, then 1 ∈ Ku, implying that the
multiplier ϕ belongs to Dζ . If u(0) ̸= 0, we consider the kernel

ku0 = 1− u(0)u.

Using Theorem 1.47, one can check that 1/ku0 ∈ H∞ ∩Dζ , so that by Lemma 3.15
the function 1/ku0 is a multiplier of Dζ . Thus,

ϕ =
1

ku0
ϕku0 ∈ Dζ

which implies the statement. Let us now prove the other implication. We assume
that |ϕ|2 dm is a Carleson measure for Ku and that ϕ belongs to Dζ . Since ϕ ∈
M
(
Ku, H

2
)
, for every f ∈ Ku the product ϕf belongs to H2. We compute the

local Dirichlet integral. We have

Dζ(fϕ) =

∫
T

∣∣∣∣f(λ)ϕ(λ)− f(ζ)ϕ(ζ)λ− ζ

∣∣∣∣2 dm(λ)

=

∫
T

∣∣∣∣f(λ)ϕ(λ)− ϕ(λ)f(ζ) + ϕ(λ)f(ζ)− f(ζ)ϕ(ζ)
λ− ζ

∣∣∣∣2 dm(λ)

≤ 2

∫
T
|ϕ(λ)|2

∣∣∣∣f(λ)− f(ζ)λ− ζ

∣∣∣∣2 dm(λ) + 2|f(ζ)|2
∫
T

∣∣∣∣ϕ(λ)− ϕ(ζ)λ− ζ

∣∣∣∣2 dm(λ)

= 2

∥∥∥∥f − f(ζ)· − ζ

∥∥∥∥2
L2(|ϕ|2dm)

+ 2|f(ζ)|2
∥∥∥∥ϕ− ϕ(ζ)· − ζ

∥∥∥∥2
H2

≤ C

∥∥∥∥f − f(ζ)· − ζ

∥∥∥∥2
Ku

+ 2|f(ζ)|2Dζ(ϕ)

≤
(
C + 2Dζ(ϕ)

)
∥f∥2Dζ

,

concluding the proof.

It is natural to ask whether the condition in Theorem 3.16 guarantees the
boundedness of the multipliers, in other words, whether M(Ku,Dζ) is contained
or not in H∞. The answer to this question is negative. Considering the simplest
case u(z) = z, one has that Ku = C, and therefore M(Ku,Dζ) = Dζ , which
contains unbounded functions.
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3.2.1 Embedding Ku ↪→ Dµ

Given µ a finite positive Borel measure on T and an inner function u, Theorems 3.5
and 3.6 provide a sufficient condition and a necessary condition for the embedding
Ku ↪→ Dµ, respectively supp(µ)∩σ(u) = ∅ and µ

(
σ(u)

)
= 0. If µ = δζ , both these

conditions are equivalent to ζ /∈ σ(u), leading to the characterization

Ku ↪→ Dζ ⇐⇒ ζ /∈ σ(u).

Considering the Lebesgue measure µ = m, the two conditions do not coincide, but
the sufficient one is also necessary. This is because, if the inclusion Ku ↪→ D = Dm

holds, then by Proposition 3.7 the function u belongs to D. However, by Corollary
1.51, the only inner functions in the classical Dirichlet space are the finite Blaschke
products, resulting in the boundary spectrum σ(u) ∩ T being empty. Therefore,
we have the characterization

Ku ↪→ D ⇐⇒ supp(m) ∩ σ(u) = ∅ ⇐⇒ σ(u) = ∅.

As a consequence of Theorem 2.10, we know that in general the sufficient condition
supp(µ) ∩ σ(u) = ∅ is not necessary for Ku ↪→ Dµ.

Example. Let u be the one-component inner function considered in Proposition
2.13,

u(z) = exp

(
z + 1

z − 1

)
, z ∈ D.

Consider a measure µ such that µ({1}) = 0 and∫
T

1

|ζ − 1|2
dµ(ζ) <∞.

Then, the embedding Ku ↪→ Dµ holds. This is because, for every f ∈ Ku and
ζ ̸= 1,

Dζ(f) = ∥Qu
ζf∥2H2 ≤ ∥Qu

ζ∥2∥f∥2H2 ≤
Cu

|ζ − 1|2
∥f∥2H2 ,

so that

Dµ(f) =

∫
T\{1}

Dζ(f) dµ(ζ) ≤ Cu∥f∥2H2

∫
T

1

|ζ − 1|2
dµ(ζ) <∞.

We conclude this section discussing the compactness of the embeddings Ku ↪→
Dµ. Due to the trivial norm inequality ∥ · ∥H2 ≤ ∥ · ∥Dµ , the compactness of the
embedding Ku ↪→ Dµ implies the compactness of the identity map IKu . Therefore,
it is easy to see that the embedding Ku ↪→ Dµ is compact if and only if Ku is finite
dimensional, that is, if and only if u is a finite Blaschke product [30, Proposition
5.19].
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3.3 The case b non-extreme

This section comes from original results of the author. We consider a non-extreme
function b ∈ H∞

1 , i.e., such that log(1 − |b|) is integrable, and its Pythagorean
mate a. We recall that a is the unique outer function such that a(0) > 0 and

|b|2 + |a|2 = 1 a.e. on T. (3.11)

This function a is defined by

a(z) := exp

(∫
T

λ+ z

λ− z
log(1− |b(λ)|2)

1
2 dm(λ)

)
, z ∈ D.

We say that (b, a) is a pair. An application of the maximum principle for subhar-
monic functions yields that, in fact, if (b, a) is a pair, then

|b(z)|2 + |a(z)|2 ≤ 1 z ∈ D. (3.12)

Check also [29, Exercise 23.1.1]. We consider the following boundary zero set of
the function a,

Z(a) = {λ ∈ T : lim
r→1

a(rλ) = 0}.

This set is related to the spectrum of b, in particular to the boundary part σ(b)∩T.
Notice that

T \ σ(b) = {λ ∈ T : lim
z∈D,z→λ

|b(z)| = 1}.

Therefore, if λ ∈ T \ σ(b), then by (3.12) it follows that

lim sup
z→λ

|a(z)| ≤ lim sup
z→λ

√
1− |b(z)|2 = 0.

In particular, we have the set inequality

T \ σ(b) ⊆ Z(a).

We will show that a converse to this inequality does not hold, in general. If the
function b is continuous up to the boundary, then also the function a is continuous
up to the boundary, and in this case we have the set identity

Z(a) = T \ σ(b), (3.13)

and the set Z(a) is the usual zero set for the boundary function a. In particular, if
b is continuous up to the boundary, then Z(a) is closed. However, this is not true
in general.

Example. Consider the singular inner function associated to the Dirac measure δ1,

u(z) = exp

(
z + 1

z − 1

)
, z ∈ D.
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Since σ(u) = {1}, the function u admits an analytic extension across any open arc
∆ ⊆ T\{1} with |u| = 1 on ∆. Therefore, if we consider the non-extreme function

b =
1 + u

2

as in Proposition 1.35, we have that its mate is a = (1− u)/2 and

Z(a) \ {1} = {ζ ∈ T \ {1} : u(ζ) = 1} =
{
2kπi+ 1

2kπi− 1
: k ∈ Z

}
.

The set Z(a) accumulates at 1, however a computation shows that

lim
r→1

u(r) = 0,

proving that 1 /∈ Z(a).

The next example shows that the equality in (3.13) does not always hold. This
was suggested by T. Ransford, while the author was visiting Laval University, QC,
through private communication.

Example. We consider again the singular inner function u associated to the Dirac
measure δ1, and we set

b(z) :=
1 + z

2
u(z), z ∈ D.

Since |u| = 1 on T \ {1} and lim infz→1 |u(z)| = 0, we have that σ(b) ∩ T = T.
Its Pythagorean mate is a(z) := (1 − z)/2. Indeed, a is an outer function with
a(0) > 0, and for z ∈ T \ {1} we have

|b(z)|2 + |a(z)|2 = 1

4
(|1 + z|2 + |1− z|2) = 1.

In this case, we have that Z(a) = {1} and T \ σ(b) = ∅.
Given µ a finite positive Borel measure on T, we recall that its potential is

defined as

Vµ(w) :=

∫
T

1

|λ− w|2
dµ(λ), w ∈ C,

and it satisfies Vµ =∞ µ−a.e. on T. We need some technical results from [17].

Lemma 3.17. Let

cw(z) =
1

1− wz
, w, z ∈ D,

be the Cauchy-Szegö kernel. Then, if (b, a) is a pair,

∥cw∥2H(b) =
1 + |b(w)/a(w)|2

1− |w|2
, (3.14)

and if µ is a finite positive Borel measure on T, then

∥cw∥2Dµ
=

1 + |w|2Vµ(w)
1− |w|2

. (3.15)
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Proof. See Lemmas 3.4 and 3.5 of [17].

In the following, we will use the notation F ≲ G to denote that F/G is a
bounded function, and we will write F ≍ G when F ≲ G and G ≲ F .

Proposition 3.18. Let (b, a) be a pair and µ a finite positive Borel measure on
T. If the set inequality H(b) ⊆ Dµ holds, then Z(a) is a carrier for the measure

µ. In particular, it holds the set inclusion supp(µ) ⊆ Z(a)
cl
.

Proof. By the closed graph theorem and Lemma 3.17,

1 + Vµ(w) ≲ 1 +
|b(w)|2

|a(w)|2
, w ∈ D.

Let ζ be in T \ Z(a). In particular, there exist ε > 0 and a sequence rk in (0, 1)
converging to 1 as k →∞ such that limk |a(rkζ)| > ε. By Fatou’s Lemma,

Vµ(ζ) ≤ lim inf
k

Vµ(rkζ)

≲ lim inf
k

|b(rkζ)|2

|a(rkζ)|2

≤ 1

limk |a(rkζ)|2
<∞.

We have the set inclusion

T \ Z(a) ⊆ {ζ ∈ T : Vµ(ζ) <∞}.

Since Vµ = ∞ µ−a.e. on T, then µ(T \ Z(a)) = 0, meaning that Z(a) is a carrier
for the measure µ. Notice that by monotonicity it also holds

µ
(
T \ Z(a)

cl
)
= 0,

thus by definition of support we have that supp(µ) ⊆ Z(a)
cl
.

We study the reverse inclusion Dµ ⊆ H(b). First of all, we note that, if the
set inclusion Dµ ⊆ H(b) holds, then the space H(b) contains all the polynomials,
and therefore the function b is non-extreme. As usual, we will denote by a the
Pythagorean mate of b. We will make the assumption that (b, a) is a Corona pair,
i.e., that there exists δ > 0 such that

inf
z∈D

(|b(z)|+ |a(z)|) ≥ δ.

This is one of the two equivalent conditions in the Corona Theorem 1.26.

Proposition 3.19. Let µ be a measure and (b, a) a Corona pair. If the embedding
Dµ ↪→ H(b) holds, then Z(a) ⊆ supp(µ). Also, for every point ζ ∈ Z(a) that is an
isolated atom for µ, it holds the estimate

lim sup
w→ζ

|w − ζ|
|a(w)|

<∞. (3.16)
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Notice that, a priori, there might not be any point ζ in Z(a) that is also an
isolated atom for µ.

Proof. To prove the set inclusion Z(a) ⊆ supp(µ), we prove the opposite inclusion
between the complements of the sets. Let ζ ∈ T \ supp(µ). By definition of Vµ,
one can check that Vµ(ζ) <∞ and that

Vµ(w) ≤
µ(T)

dist(w, supp(µ))2
, w ∈ C. (3.17)

In particular, Vµ(ζ) < ∞. Also, again by the closed graph theorem and Lemma
3.17,

lim sup
r→1

|b(rζ)|2

|a(rζ)|2
≲ lim sup

r→1
r2Vµ(rζ) <∞.

With the assumption that (b, a) form a Corona pair, this shows that ζ /∈ Z(a).
Now, fix a point ζ ∈ Z(a) that is an isolated atom for µ, if there are any. By
(3.17), we have that

|b(w)|2

|a(w)|2
≲ |w|2Vµ(w) ≤

|w|2µ(T)
dist(w, supp(µ))2

, w ∈ D.

Thus, in an appropriate neighbourhood Uζ of ζ, since (b, a) form a Corona pair, it
holds

|w − ζ|
|a(w)|

≲ 1, w ∈ Uζ ,

concluding the proof.

Notice that the growth condition (3.16) gives information on how fast the
function a(rζ) tends to 0 as r → 1−. In particular, if a is analytic in ζ, then (3.16)
implies that a has a 0 of order 1 in ζ.

Confronting the two different inclusions, we obtain the following.

Theorem 3.20. Let (b, a) be a Corona pair and µ a finite positive Borel measure
on T. If H(b) = Dµ, then

supp(µ) = Z(a)
cl
.

Proof. It follows from Propositions 3.18 and 3.19.

Notice that, if b is a rational function or if b has the form (1 + u)/2 with u
inner, then (b, a) forms a Corona pair.

3.3.1 µ finite sum of atoms

In [17], the authors proved the following theorem.

Theorem 3.21. Let (b, a) be a pair such that a is rational, and let µ be a finite
positive measure on T. Then H(b) = Dµ if and only if the following conditions
hold:
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1. the zeros of a on T are all simple;

2. the support of µ is exactly equal to this set of zeros;

3. none of these zeros lie in the spectrum σ(bi), where bi is the inner factor of
b.

Using this theorem, we prove a similar result, but with a different point of
view. We consider a measure µ that is a finite sum of atoms, i.e.

µ =
N∑
j=1

αjδζj , (3.18)

where αj > 0 and ζj ∈ T, for j = 1, . . . , N . We characterize the conditions on the
pair (b, a) in order to have the equality H(b) = Dµ. As a corollary of Theorem
3.21, in [17] the authors showed that Dµ = H(bµ), where the function bµ can
be chosen as the non-extreme function of H∞

1 having for Pythagorean mate aµ a
polynomial with simple zeros in the atoms of µ. We can write

aµ(z) = C
N∏
j=1

(z − ζj), z ∈ D, (3.19)

where C ∈ C is an appropriate constant such that aµ(0) > 0 and ∥aµ∥H∞ ≤ 1.
Also, in [17] the function bµ is constructed starting from the function aµ defined
in (3.19) using the Fejér-Riesz Theorem. In particular, bµ can be chosen to be a
polynomial whose zeros lie outside the disk D.

The choice of the pair (bµ, aµ) is not unique, for example in [55] the equality
H(b) = Dζ is realized with the pair (bζ , aζ) given by

bζ(z) =
(1− s0)ζz
1− s0ζz

, aζ(z) =
(1− s0)(1− ζz)

1− s0ζz
, z ∈ D,

where

s0 =
3−
√
5

2
.

Being that Dµ = H(bµ), to study the equalities Dµ = H(b) for a general b we can
appeal to the following result from J. Ball and T. Kriete [6]. See also Theorem
27.15 of [29].

Theorem 3.22. Let b2 and b1 be two functions in the closed unit ball of H∞, with
b1 non-extreme. The following assertions are equivalent.

(i) H(b2) ⊆ H(b1);

(ii) There exist v, w ∈ H∞ and γ > 0 such that

(A) b1 + va1 = b2w

(B) 1− |b2|2 ≤ γ(1− |b1|2) a.e. on T.
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Using this theorem, we prove the following embedding result.

Theorem 3.23. Let b be a non-extreme function in H∞
1 , a its Pythagorean mate,

and µ an atomic measure as in (3.18). Then, we have the embedding H(b) ↪→ Dµ

if and only if the following conditions hold:

(i) There exists g ∈ H∞ such that a has the form

a =

(
N∏
j=1

(z − ζj)

)
g;

(ii) {ζ1, . . . , ζN} ∩ σ(b) = ∅.
Proof. We assume that H(b) ↪→ Dµ. Since

Dµ =
N⋂
j=1

Dζj ,

then by Theorem 3.6, necessarily ζj /∈ σ(b) for each j = 1, . . . , N . This proves (ii).
Now, applying (B) of Theorem 3.22 to our pair (b, a) and the pair (bµ, aµ) defined
in (3.19), there exists a positive constant γ such that

1− |b(λ)|2 ≤ γ(1− |bµ(λ)|2), a.e.λ ∈ T.

Since (b, a) and (bµ, aµ) form two Pythagorean pairs and aµ has the expression
(3.19), we have that

|a(λ)|2 ≤ γ|C|2
N∏
j=1

|λ− ζj|2, a.e.λ ∈ T.

In particular, the function defined for a.e. λ ∈ T

g(λ) :=
a(λ)∏N

j=1(λ− ζj)

belongs to L∞(T). We recall that the binomial z − ζj is outer. Being g a quotient
of outer functions, and therefore in the Smirnov class, by Theorem 1.15 we have
that

g(z) :=
a(z)∏N

j=1(z − ζj)
, z ∈ D,

belongs to H∞, proving (i). Now, we assume that (i) and (ii) hold. We recall that
Dµ = H(bµ), where the pair (bµ, aµ) is described in (3.19). Our goal is to apply
Theorem 3.22. Condition (B) is 1− |b|2 ≤ γ(1− |bµ|2), a.e. on T, and this follows
from (i) and the fact that g ∈ H∞. On the other hand, by assumption we have
that {ζ1, . . . , ζN} ∩ σ(b) = ∅, meaning that

lim
z∈D,z→ζj

|b(z)| = 1

for every j = 1, . . . , N . By the definition (3.19) of aµ, it follows that b and aµ form
a Corona pair. An application of the Corona Theorem 1.26 proves that condition
(A) holds. We conclude that H(b) ⊆ H(bµ) = Dµ.
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As an application of this theorem to the special case of one atom, N = 1, we
obtain a complete characterization for the embedding in the local Dirichlet space
H(b) ↪→ Dζ , completing Theorems 3.2 and 3.3, for a non-extreme b.

Corollary 3.24. Let b be a non-extreme function in H∞
1 , a its Pythagorean mate,

and ζ ∈ T. Then, it holds the embedding H(b) ↪→ Dζ if and only if the two
following conditions hold.

• ζ /∈ σ(b).

• There exists g ∈ H∞ such that a = (z − ζ)g.

Now, we move to the reverse inclusion Dµ ⊆ H(b).

Lemma 3.25. Let µ be an atomic measure as in (3.18), and (b, a) be a pair such
that a has the form

a =

(
N∏
j=1

(z − ζj)

)
g,

with g ∈ H∞. Then, we have the inclusion Dµ ⊆ H(b) if and only if infD |g| > 0.

Proof. This is again a consequence of Theorem 3.22. Since a is outer and so is
the product of the binomials (z − ζj), g is outer as well, for it cannot have inner
factors. Also, the condition (B) of Theorem 3.22 in this context can be rewritten
as

|aµ|2 ≤ γ|a|2 a.e. on T,

which is equivalent to saying that 1 ≲ |g| a.e. on T. By Smirnov’s Theorem 1.15,
this happens if and only if the function 1/g belongs to H∞, or, equivalently, if
and only if infD |g| > 0. Now, being bµ, aµ polynomials, necessarily the relation
|b|2 + |a|2 = 1 holds for every point on the boundary, and in particular |b(ζj)| = 1
for every j. Therefore, assuming that infD |g| > 0, then bµ and a form a Corona
pair and condition (A) of Theorem 3.22 is satisfied. This concludes the proof.

Theorem 3.26. Let b be a non-extreme function in H∞
1 , a its Pythagorean mate,

and µ an atomic measure as in (3.18). Then, we have the equality H(b) = Dµ if
and only if the following conditions hold:

(i) There exists g ∈ H∞ with infD |g| > 0 such that a has the form

a =

(
n∏

j=1

(z − ζj)

)
g;

(ii) {ζ1, . . . , ζN} ∩ σ(b) = ∅.

Proof. We assume that H(b) = Dµ. By Theorem 3.23, since H(b) ⊆ Dµ, the
function a has the form

a =

(
n∏

j=1

(z − ζj)

)
g
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for some g ∈ H∞ and it holds (ii). Now, applying Lemma 3.25 we conclude that
infD |g| > 0.

On the other hand, if conditions (i) and (ii) hold, then we automatically have
both the inclusions, concluding the proof.

To conclude this part, we show that neither one of the two conditions of The-
orem 3.26 implies the other. In the following examples, N = 1 and ζ1 = 1. These
examples were suggested to the author by Thomas Ransford through private com-
munication.

Example. Let b be the function defined by

b(z) =
1 + z

2
exp

(
z + 1

z − 1

)
, z ∈ D.

We considered the same function in a previous example, at the beginning of Section
3.3. In this case, the Pythagorean mate of b is a(z) := (1−z)/2. Clearly, condition
(i) holds with g = −1/2. However, because of the presence of the singular inner
factor in b,

lim inf
z→1

|b(z)| = 0,

so that 1 ∈ σ(b).
Example. Consider

b(z) =
1 + z2

2
, z ∈ D.

Then, its Pythagorean mate is a(z) := (1− z2)/2. Condition (ii) is easily satisfied:
since

lim
z→1
|b(z)| = 1,

then 1 /∈ σ(b). However, since by Proposition 1.35

a(z) =
1− z2

2
= (z − 1)

(
−1 + z

2

)
,

condition (i) cannot be satisfied.



Chapter 4

Generalized Cesàro means on
Dirichlet spaces

In this chapter we present some recent results obtained in collaboration with J.
Mashreghi, M. Nasri and W. Verreault (a preprint is now ready and currently
under review). The content of this chapter differs from the main topic of the
previous ones. So far, we have conducted a broad analysis on topics that cross
the two different realms of de Branges-Rovnyak spaces and harmonically weighted
Dirichlet spaces. However, in this last part of the thesis, the results that we
will present are aimed to answer a very natural and specific question about the
convergence of certain means on weighted Dirichlet spaces.

One of the fundamental facts in complex analysis is that every holomorphic
function f on the open unit disk D has the Taylor series expansion

f(z) =
∞∑
k=0

akz
k, z ∈ D.

Therefore, in any polynomial approximation scheme in a Banach space X consisting
of such analytic functions, it is natural to consider the Taylor polynomials

(Snf) (z) :=
n∑

k=0

akz
k, n ≥ 0, (4.1)

and explore if Snf → f in the ambient space X. For example, it is straightforward
to see that this holds in the Hardy space H2 and in the classical Dirichlet space
D. Moreover, it is a deep result of Hardy–Littlewood [33, 34] that it is also a valid
scheme in Hp-spaces for 1 < p <∞. However, this natural approximation method
fails in some settings such as the disk algebra A and the Hardy space H1.

As a first alternative to Taylor polynomials (4.1), the weighted versions

(σnf) (z) :=
n∑

k=0

(
1− k

n+ 1

)
akz

k, n ≥ 0, (4.2)

known as Cesàro means or Fejér polynomials, were considered. In fact, Hardy-
Littlewood demonstrated that σnf → f holds in both the disk algebra A and the

77
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Hardy space H1. They even considered more sophisticated means which we do not
discuss in this work.

We consider weighted Dirichlet spaces. For this part, we allow a greater gen-
erality for the weights: we consider superharmonic functions. Standard references
for this topic are [31, 47]. In literature, it is more common to define first the
subharmonic functions, rather than the superharmonic ones.

Definition 4.1. Let U ⊂ C be an open set. A function u : U → [−∞,+∞) is
called subharmonic if it is upper semicontinuous and it satisfies the local submean
inequality, i.e., given w ∈ U , there exists ρ > 0 such that the closed ball {z ∈
C : |z − w| ≤ ρ} is contained in U and

u(w) ≤ 1

2π

∫ 2π

0

u(w + reiθ) dθ, (0 ≤ r < ρ).

We say that a function v : U → (−∞,+∞] is superharmonic if −v is subharmonic.

Given a function ω that is positive and superharmonic on D, we define the
superharmonically weighted Dirichlet space

Dω := {f ∈ Hol(D) :
∫
D
|f ′(z)|2 ω(z) dA(z) <∞}.

These spaces were introduced by Alexandru Aleman in 1993 [2] as an interesting
generalization of the harmonically weighted ones. This generalization in the weight
comes with some differences in the structure and the properties of the space, with
respect to the harmonic case. For example, the forward shift S acts as a 2-isometric
operator on Dω if and only if the weight ω is harmonic. For more details, see [2].

In 2019, Mashreghi–Ransford [42] studied problems related to polynomial ap-
proximation on the spaces Dω. More explicitly, it was demonstrated that while
there are cases where ∥Snf−f∥Dw ̸→ 0, the approximation scheme ∥σnf−f∥Dw →
0 remains valid. Later in this chapter, we will give more details about this initial
work of Mashreghi–Ransford, to provide the reader with more context. In [41],
the generalized Cesàro means

(σα
nf)(z) =

(
n+ α

α

)−1 n∑
k=0

(
n− k + α

α

)
akz

k,

were considered on superharmonically weighted Dirichlet spaces. Here, α is a
parameter in the interval [0, 1], and notice that for α = 0 and α = 1 one recovers,
respectively, Sn and σn. It was shown that the approximation ∥σα

nf −f∥Dw → 0 is
valid for every superharmonic weight ω if and only if α > 1

2
. In this chapter, we are

interested in the asymptotic behavior of the norm of the operator σα
n associated to

the generalized Cesàro means on the spaces Dω, as n → ∞. To tackle this topic,
we will introduce the Hadamard multipliers and we will need several technical
estimates.
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4.1 Hadamard multipliers and main results

Definition 4.2. Given two formal power series f(z) :=
∑∞

k=0 akz
k and g(z) :=∑∞

k=0 bkz
k, their Hadamard product is the formal power series given by the formula

(f ∗ g)(z) :=
∞∑
k=0

(akbk)z
k.

It is trivial that if either f or g is a polynomial, then f ∗ g is also a polynomial.
In passing, we note that if f, g ∈ H2, the coefficients (ak)k∈N, (bk)k∈N are the Fourier
coefficients of their boundary functions. Then, the coefficients of the Hadamard
product f ∗ g are the coefficients of the convolution of the boundary functions
associated to f and g.

Definition 4.3. We say that an analytic function g on D is a Hadamard multiplier
for Dω if the product f ∗ g belongs to Dω for every f ∈ Dω.

The study of Hadamard multipliers on weighted Dirichlet spaces started in
2019 with a work by Mashreghi–Ransford [42]. The property of being a Hadamard
multiplier was associated to the boundedness of a special infinite matrix on ℓ2. For
a sequence of complex numbers (ck)k∈N, write Tc for the infinite matrix

Tc :=


c1 c2 − c1 c3 − c2 c4 − c3 . . .
0 c2 c3 − c2 c4 − c3 · · ·
0 0 c3 c4 − c3 . . .
0 0 0 c4 . . .
...

...
...

...
. . .

 . (4.3)

If this matrix is a bounded operator on ℓ2, we denote its operator norm by ∥Tc∥B(ℓ2).
For convenience of notation, if (ck)k∈N is the sequence of the Taylor coefficients of
an analytic function h, or even of a formal power series h(z) =

∑∞
k=0 ckz

k, we also
write Th in place of Tc. Note that the term c0 does not appear in the matrix Tc:
this is consistent with the fact that the Dirichlet integrals annihilate the constants.
The following central result is needed in our discussion.

Theorem 4.4 ([42]). The function h is a Hadamard multiplier of Dω, for any
superharmonic weight ω, if and only if Th defined as in (4.3) acts as a bounded
operator on ℓ2. Moreover, in this case, it holds the estimate

Dω(h ∗ f) ≤ ∥Th∥2B(ℓ2) Dω(f). (4.4)

The constant ∥Th∥2B(ℓ2) is optimal. To be more precise, we introduce the quan-
tity

∥Th∥2Dω→Dω
:= sup

f

Dω(h ∗ f)
Dω(f)

, (4.5)

where ω is a superharmonic weight and the supremum is taken over all non-
constant f ∈ Dω. Hence, we know that, for each weight ω,

∥Th∥Dω→Dω ≤ ∥Th∥B(ℓ2),
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and the sharpness of the constant ∥Th∥B(ℓ2) means that, when we take another
supremum with respect to weights ω, we obtain

sup
ω
∥Th∥Dω→Dω = ∥Th∥B(ℓ2).

In [42], it is shown that this supremum is attained by choosing the harmonic weight

ω1(z) :=
1− |z|2

|1− z|2
, z ∈ D.

The corresponding Dirichlet space is the local Dirichlet space D1. Our goal is to
further analyze

∥Th∥ := ∥Th∥B(ℓ2) = sup
f

D1(h ∗ f)
D1(f)

,

for the special class of polynomials h that give rise to the generalized Cesàro means.
Proper estimation of ∥Th∥ is crucial in applications.

After proving Theorem 4.4, the authors in [42] studied sufficient and necessary
conditions for the matrix Tc to be bounded on ℓ2. They also provided estimates for
the norm ∥Tc∥B(ℓ2), with important consequences for the function spaces Dω. For
example, interpreting the radial approximation fr(z) = f(rz) as the Hadamard
product f ∗ Pr, where Pr is the Poisson kernel given by

Pr(z) =
∞∑
k=0

rkzk,

they proved the following result: given ω a superharmonic weight and f ∈ Dω,
then for every r ∈ (0, 1) the function fr belongs to Dω and

Dω(fr) ≤ r2(2− r)Dω(f). (4.6)

Similar results were already known, but with these Hadamard multipliers tech-
niques the authors managed to give a direct proof with a better constant. Actually,
the estimate in (4.6) is the best one to date.

Now, we introduce the object of interest for this chapter: the generalized Cesàro
means. For the rest of this work, n > 1 will be a fixed natural number and α a
real number in the interval [0, 1].

Definition 4.5. For a power series f(z) =
∑∞

k=0 akz
k, the generalized Cesàro

operator σα
n acts on f as

(σα
nf)(z) =

(
n+ α

α

)−1 n∑
k=0

(
n− k + α

α

)
akz

k,

where the generalized binomial coefficient is defined for a pair of real numbers x, y
with x > y > −1 as (

x

y

)
:=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
.
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Here, Γ denotes the Gamma function. We set

ck = cαk,n =

(
n+ α

α

)−1(
n− k + α

α

)
, k = 0, . . . , n, (4.7)

and ck = 0 otherwise. In the language of Hadamard products, writing hαn(z) =∑n
k=0 ckz

k and assuming that Thα
n
acts on the formal power series, we see that

Thα
n
= σα

n .

We set ∥σα
n∥ := ∥Thα

n
∥, that is the quantity of interest for this chapter. Let us pay

more attention to two special cases.

1. For α = 0 and n ∈ N, the coefficients ck are equal to 1 for k = 0, . . . , n and
then they jump to zero for k > n. Hence, σ0

n is precisely equal to the n-th
partial sum operator

Snf(z) =
n∑

k=0

akz
k,

which is the Hadamard product of the Dirichlet kernelDn with f . It is known
that ∥σ0

n∥2 = n+1 with the maximizing function f(z) = nzn+1−(n+1)zn+1.

2. For α = 1, we have that σ1
n = σn is the Cesàro operator

σn(f) =
n∑

k=0

(
1− k

n+ 1

)
akz

k,

which satisfies σn(f) = Kn ∗ f , where Kn is the classical Fejér kernel. It is
known that ∥σ1

n∥2 = n/(n+1) with maximizing function f(z) = zn+1− (n+
1)z + n.

See [38, 39, 42] for further details.
Our main concern in this work is to estimate, as precisely as possible, the

quantity ∥σα
n∥ for different values of the parameter α. As mentioned above, the

value α = 1/2 is a threshold point, and that is why we have three different theorems
with different flavors about the behavior of ∥σα

n∥ corresponding to whether α >
1/2, α = 1/2, or α < 1/2. In the following, the notation f(n) ∼ g(n) means that

lim
n

f(n)

g(n)
= 1.

We state our main results.

Theorem 4.6. Let α < 1
2
. Then

∥σα
n∥ ∼ Cαn

1
2
−α,

where

Cα := Γ(α + 1)
Γ(1− 2α)1/2

Γ(1− α)
is a finite positive constant.
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Theorem 4.7. Let α = 1
2
. Then

∥σ
1
2
n ∥ ∼

1

2
log1/2 n.

Theorem 4.8. Let α ∈ (1
2
, 1). Then

max

{
1,

α

(2α− 1)1/2
(2α− 1)α−1/2

(2α)α

}
≤ lim inf

n→∞
∥σα

n∥ ≤ lim sup
n→∞

∥σα
n∥ ≤

α

(2α− 1)1/2
.

We add to the main theorems the following comments.

1. Theorems 4.6, 4.7 and 4.8 reaffirm that σα
n(f)→ f in Dω if and only if α >

1/2, as it was established in [41]. Additionally, the behavior at the critical
case α = 1/2 was conjectured and observed numerically in the doctoral
dissertation of P. Parisé.

2. For α < 1
2
, by Theorem 4.6 we have that ∥σα

n∥ ∼ Cαn
1
2
−α, with

Cα = Γ(α + 1)
Γ(1− 2α)1/2

Γ(1− α)
.

For each fixed n ≥ 1, interpreting Cαn
1
2
−α as a continuous function of α, we

have that

lim
α→0+

Cαn
1
2
−α = n

1
2 ,

which is coherent with the fact that the norm of Sn = σ0
n asymptotically

behaves as
√
n.

3. Handling the case α > 1/2 presented some challenges. For α ≤ 1/2, the
norm ∥σα

n∥ diverged as n → ∞, allowing us to isolate a dominant term
that represented its growth at infinity. This simplification enabled us to
disregard other terms that were overshadowed by the principal one. However,
as established and reaffirmed above, whenever α > 1/2, the norm ∥σα

n∥
remains bounded as n grows. Consequently, all contributing terms become
significant, making it more complex to determine the asymptotic behavior
of ∥σα

n∥ as n increases. The only case for which precise formulas have been
derived is α = 1 [38].

4.2 Proofs

We give some technical results that will be needed in the proofs of the three
theorems previously stated. Here is a simple observation about the eigenvalues of
Tc. As a matter of fact, we will just use a special case of (4.8), corresponding to
k = 1, which also follows from more substantial results in [42].
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Lemma 4.9. Let (ck)k≥1 be a sequence of complex numbers. Then ck, k ≥ 1, is
an eigenvalue of the matrix Tc, with corresponding eigenvector

vk =
k∑

i=1

ei,

where ei is the sequence given by ei(j) = δij, the Kronecker delta, for j ∈ N. In
particular, if Tc is bounded on ℓ2,

sup
k≥1
|ck| ≤ ∥Tc∥B(ℓ2). (4.8)

Proof. We prove by induction that Tcvk = ckvk. For k = 1, the result is trivial.
Assume that it holds for k ∈ N. Then

Tcvk+1 = Tcvk + Tcek+1 = ckvk +
k∑

i=1

(ck+1 − ck)ei + ck+1ek+1

= ckvk + (ck+1 − ck)vk + ck+1ek+1 = ck+1vk+1.

In [42], it was shown that for a polynomial h of degree n,

∥Th∥2 ≤ (n+ 1)
n∑

k=1

|ck+1 − ck|2 . (4.9)

Additionally, this estimate was complemented in [41] by the lower bounds

∥Th∥2 ≥ m
n∑

k=m

|ck+1 − ck|2 , (4.10)

that hold for every m ∈ {1, . . . , n}. Using these results, we derive explicit asymp-
totic expressions for generalized Cesàro means. We begin with the following pair
of inequalities, originally due to W. Gautschi [32]. For the reader’s convenience, a
sketch of the proof is provided.

Lemma 4.10 (Gautschi’s Inequality). Let x be a positive real number and α ∈
(0, 1). Then

(x+ 1)α−1 <
Γ(x+ α)

Γ(x+ 1)
< xα−1. (4.11)

Proof. Write Γ(x + α) = Γ
(
(1 − α)x + α(x + 1)

)
. By the strict log-convexity of

the Gamma function on the positive real axis [5], we have

Γ(x+ α) < Γ(x)1−αΓ(x+ 1)α

for x > 0 and α ∈ (0, 1). Hence, by the well-known multiplication formula for the
Gamma function, i.e., Γ(x+ 1) = xΓ(x), x > 0, we deduce that

Γ(x+ α) < xα−1Γ(x+ 1),
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proving the second inequality in (4.11).
For the first inequality, using similar arguments, we see that

Γ(x+ 1) = Γ
(
α(x+ α) + (1− α)(x+ α + 1)

)
< Γ(x+ α)αΓ(x+ α + 1)1−α

= Γ(x+ α)(x+ α)1−α,

concluding the proof.

Notice that, following the proof, we have actually obtained as a lower bound the
quantity (x+ α)α−1. However, since we are only concerned about the asymptotic
behavior as x → ∞, for the sake of simplicity we stick to the original statement.
We can now show an optimal upper estimate for the quantity appearing in (4.9).

Lemma 4.11. Let α ∈ (0, 1), n > 1, and let ck be as in (4.7). Let

S :=
n∑

k=1

|ck+1 − ck|2.

Then

S ≤ Γ(α + 1)2
(n+ 1)2−2α

(n+ α)2

(
1 +

(n− 1)2α−1

Γ(α)2(2α− 1)
+

2α− 2

Γ(α)2(2α− 1)

)
, if α ̸= 1

2
,

(4.12)
and

S ≤ π

4

n+ 1

(n+ 1
2
)2

(
1 +

1

π
(log(n− 1) + 1)

)
, if α =

1

2
. (4.13)

Proof. Since cn+1 = 0 and all the ck’s are real, then

S = c2n +
n−1∑
k=1

(ck+1 − ck)2.

For k = 1, . . . , n− 1,

ck+1 − ck =
(
n+ α

α

)−1((
n− k − 1 + α

α

)
−
(
n− k + α

α

))
=

(
n+ α

α

)−1
1

Γ(α + 1)

(
Γ(n− k + α)

Γ(n− k)
− Γ(n− k + α + 1)

Γ(n− k + 1)

)
= ck+1

(
1− n− k + α

n− k

)
= − α

n− k
ck+1.

Hence,

S = c2n

(
1 +

α2

Γ(α + 1)2

n−1∑
k=1

1

(n− k)2
Γ(n− k + α)2

Γ(n− k)2

)

= c2n

(
1 +

1

Γ(α)2

n−1∑
k=1

Γ(k + α)2

Γ(k + 1)2

)
.
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We start estimating cn. We have

c2n =

(
n+ α

α

)−2

=
Γ(α + 1)2Γ(n+ 1)2

Γ(n+ α + 1)2
< Γ(α + 1)2

(n+ 1)2−2α

(n+ α)2
, (4.14)

where we used Gautschi’s inequality (4.11). On the other hand, once more by
(4.11),

n−1∑
k=1

Γ(k + α)2

Γ(k + 1)2
<

n−1∑
k=1

k2α−2.

Now, estimating the sum with the corresponding integral, we see that

n−1∑
k=1

Γ(k + α)2

Γ(k + 1)2
< 1 +

n−1∑
k=2

k2α−2 ≤ 1 +

∫ n−1

1

x2α−2 dx.

At this point, we have to distinguish between two cases. If α ̸= 1
2
, then

n−1∑
k=1

Γ(k + α)2

Γ(k + 1)2
<

(n− 1)2α−1

2α− 1
+

2α− 2

2α− 1
,

and therefore (4.12) is proved. If α = 1
2
, we have

n−1∑
k=1

Γ(k + α)2

Γ(k + 1)2
< log(n− 1) + 1,

which gives (4.13). We also exploit the well-known identities

Γ

(
1

2

)
=
√
π, Γ

(
3

2

)
=

√
π

2
.

Similarly, we provide a lower estimate for the quantity in (4.10).

Lemma 4.12. Let α ∈ (0, 1), n > 1, let ck be as in (4.7), and let m be a natural
number with 1 ≤ m < n. Let

S̃m :=
n∑

k=m

|ck+1 − ck|2.

Then

S̃m > Γ(α + 1)2
n2−2α

(n+ α)2

(
1 +

(n−m+ 2)2α−1

Γ(α)2(2α− 1)
− 22α−1

Γ(α)2(2α− 1)

)
, if α ̸= 1

2
,

(4.15)
and

S̃m >
π

4

n

(n+ 1
2
)2

(
1 +

1

π

(
log(n−m+ 2)− log 2

))
, if α =

1

2
. (4.16)
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Proof. This proof has the same flavor as the previous proof, but we are interested
in the opposite inequalities. For m < n,

S̃m = c2n

(
1 +

1

Γ(α)2

n−1∑
k=m

Γ(n− k + α)2

Γ(n− k + 1)2

)

= c2n

(
1 +

1

Γ(α)2

n−m∑
k=1

Γ(k + α)2

Γ(k + 1)2

)
.

For the coefficient cn, we have

c2n =
Γ(α + 1)2Γ(n+ 1)2

Γ(n+ α + 1)2
> Γ(α + 1)2

n2−2α

(n+ α)2
. (4.17)

Note that in (4.10) we were allowed to pick m = n. However, in this case S̃n = c2n,
and the required estimate is precisely the established inequality (4.17). Then

n−m∑
k=1

Γ(k + α)2

Γ(k + 1)2
>

n−m∑
k=1

(k + 1)2α−2 ≥
∫ n−m+1

1

(x+ 1)2α−2 dx,

and we conclude the proof evaluating the integrals in the cases α ̸= 1
2
and α =

1
2
.

Note that comparing (4.14) and (4.17), we obtain the asymptotic

c2n ∼
Γ(α + 1)2

n2α
. (4.18)

Proof of Theorem 4.7. By (4.9) and (4.13), we have

∥σ
1
2
n ∥2

log n
≤ π

4

(n+ 1)2

(n+ 1
2
)2

(
1

log n
+

log(n− 1)

π log n
+

1

π log n

)
,

revealing that

lim sup
n

∥σ
1
2
n ∥2

log n
≤ 1

4
.

Now, let γ ∈ (0, 1), and set

m :=

[
n− 1

2γ

]
,

where [x] := max{k ∈ Z : k ≤ x} denotes the integer part of the real number x.
Then we have

m ≤ n− 1

2γ
< n− 1

and that, at least for n ≥ 7,

m ≥ n− 1

2γ
− 1 ≥ n− 1

2
− 1 =

n− 3

4
≥ 1.
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Therefore, for every n ≥ 7, equations (4.10) and (4.16) yield

∥σ
1
2
n ∥2 >

π

4

mn

(n+ 1
2
)2

(
1 +

1

π

(
log(n−m+ 2)− log 2

))
≥ π

4

(
n− 1

2γ
− 1

)
n

(n+ 1
2
)2

(
1 +

1

π

(
log

(
n(2γ − 1) + 1 + 2γ+1

2γ

)
− log 2

))
.

In particular, for every γ ∈ (0, 1),

lim inf
n

∥σ
1
2
n ∥2

log n
≥ 1

2γ
1

4
,

and the theorem follows taking the limit as γ → 0+.

Proof of Theorem 4.6. By Gautschi’s inequality (4.11),

Γ(k + α)2

Γ(k + 1)2
< k2(α−1), k ≥ 1. (4.19)

Since in this case 0 < α < 1
2
, we conclude that

∞∑
k=1

Γ(k + α)2

Γ(k + 1)2
<∞.

In fact, we can go further and observe that

Cα :=
1

Γ(α)2

∞∑
k=0

Γ(k + α)2

Γ(k + 1)2
=

∞∑
k=0

(
k + α− 1

α− 1

)2

=
∞∑
k=0

(
k + α− 1

k

)2

is the H2-norm of the function
∑∞

k=0

(
k+α−1

k

)
zk = (1 − z)−α (|z| < 1), so by

Parseval’s theorem we have that

1

Γ(α)2

∞∑
k=0

Γ(k + α)2

Γ(k + 1)2
=

1

2π

∫ π

−π

|1− eiθ|−2α dθ.

This can be rewritten as the double integral

1

2π

∫ π

−π

|1− eiθ|−2α dθ =
1

(2π)2

∫ π

−π

∫ π

−π

|eiθ1 − eiθ2 |−2α dθ1dθ2,

by rotational invariance in the θ2 coordinate. We obtained the Morris integral [44]
for n = 2 (or a version of the Selberg integral [56, 57, 58]), that equals

1

(2π)2

∫ π

−π

∫ π

−π

|eiθ1 − eiθ2 |−2α dθ1dθ2 =
Γ(1− 2α)

Γ(1− α)2
.
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Now, on the one hand, by (4.9),

∥σα
n∥2 ≤ (n+ 1)

n∑
k=1

|ck+1 − ck|2 = (n+ 1)c2n

(
1 +

1

Γ(α)2

n−1∑
k=1

Γ(k + α)2

Γ(k + 1)2

)
.

By the asymptotic (4.18), we have

lim sup
n

∥σα
n∥2

n1−2α
≤ Γ(α + 1)2

(
1 +

1

Γ(α)2

∞∑
k=1

Γ(k + α)2

Γ(k + 1)2

)
= Γ(α + 1)2

Γ(1− 2α)

Γ(1− α)2
.

On the other hand, choose

m :=

[
n− 1

2γ

]
,

where [·] denotes the integer part and γ ∈ (0, 1). Then, by (4.10), we obtain

∥σα
n∥2 ≥ mS̃m = mc2n

(
1 +

1

Γ(α)2

n−m∑
k=1

Γ(k + α)2

Γ(k + 1)2

)
.

Notice that m ≥ n−1
2γ
− 1 and

n−m ≥ n− n− 1

2γ
=

(2γ − 1)n+ 1

2γ
,

so that n−m→ +∞ as n→ +∞, and for every γ ∈ (0, 1) it holds

lim inf
n

∥σα
n∥2

n1−2α
≥ Γ(α + 1)2

2γ
Γ(1− 2α)

Γ(1− α)2
.

Taking the limit as γ → 0+, we conclude the proof.

Proof of Theorem 4.8. By (4.9) and (4.12),

∥σα
n∥2 ≤ (n+ 1)

n∑
k=1

|ck+1 − ck|2

≤ Γ(α + 1)2
(n+ 1)3−2α

(n+ α)2

(
1 +

(n− 1)2α−1

Γ(α)2(2α− 1)
+

2α− 2

Γ(α)2(2α− 1)

)
.

In particular, since 1
2
< α < 1,

lim sup
n
∥σα

n∥2 ≤
α2

2α− 1
.

For the other direction, by Lemma 4.9,

∥σα
n∥2 ≥ |c1|2 =

Γ(n+ 1)2

Γ(n+ α + 1)2
Γ(n+ α)2

Γ(n)2
=

n2

(n+ α)2
,
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and thus lim infn ∥σα
n∥2 ≥ 1. Moreover, by (4.10) and (4.15), we have

∥σα
n∥2 ≥ mS̃m > mΓ(α + 1)2

n2−2α

(n+ α)2

(
1 +

(n−m+ 2)2α−1

Γ(α)2(2α− 1)
− 22α−1

Γ(α)2(2α− 1)

)
,

for all m ∈ {1, . . . , n}. Put m =
[
n−1
2α

]
. This particular choice yields

∥σα
n∥2 ≥

n− 1− 2α

2α
Γ(α+1)2

n2−2α

(n+ α)2

1 +

(
(2α−1)n+3

2α

)2α−1

Γ(α)2(2α− 1)
− 22α−1

Γ(α)2(2α− 1)

 ,

so that

lim inf
n
∥σα

n∥2 ≥
1

2α
Γ(α + 1)2

(2α− 1

2α

)2α−1 1

Γ(α)2(2α− 1)
=
α2(2α− 1)2α−2

(2α)2α
.
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