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1

Introduction

Having an optimized representation of any circuit is synonymous of handling
it in small size which turns into efficiency when computing the output. This
is useful especially when talking about cryptographic primitives that can be
described as systems of boolean equations, namely a circuit.

There are many reasons to search for the shortest way of computing the
output. First of all, think about Application-Specific Integrated Circuit (ASIC).
They are devices dedicated to compute a particular function, e.g. an encryption
algorithm. A smaller circuit for that means less costs when producing it and even
a reduced power consumption. The latter is very important when talking about
cryptographic security, because there exists side channel attacks [15, 45] that
exploit the differences in power consumption to guess the secret key in a reduced
set. In fact, the optimization is obtained keeping in mind to spend a constant
time from an algorithmic point of view, i.e. the same number of operations for
every input. Another security aspect affected by the optimization is to measure
the best brute-force performance that an attacker could exploit.

Secondly, it is well known that the new Internet of Things (IoT) technology
is already widespread. There are many devices in IoT, for instance medical
ones, that handle sensitive data and, for this reason, they need a stronger pro-
tection. Unfortunately the environment is resource constrained, thus, reducing
encryption algorithms could allow the integration of stronger cryptosystems in
those devices.

Thirdly, faster algorithms mean reduced latency when communicating over
Internet. For instance, think about a video-conference that needs to be secret.
The high speed of the algorithm offers an improved experience beside a strong
security. Moreover, if the key is compromised, good performances allow a fast
restoring of the privacy of the communication. This could be even scaled to
the scenario of a server that stores a big amount of keys. If it is optimized, it
restores confidential communication in the shortest theorical time.

In this dissertation, we will show two optimizations that improve the state
of art allowing better performances from both theoretical and practical point of
view.

The first improvement is about polynomial multiplication that is a common
operation in modern cryptography. We will deal only with multiplications hav-
ing two factors of same degree, this means that we can think about an enumer-
ation of multiplications, i.e. there is a one-to-one map between multiplications
and degrees. Multiplying two polynomials is an easy task and has a general
algorithm called School-book, working on any polynomial ring, even for any de-
gree. In particular, it can be defined recursively which means that we can take
the advantage of the improvements even from a single degree when studying the
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algorithm for higher one. It is well known that, in 1960, Anatolij Karatsuba
showed an algorithm [43] that can save some operations. It can be applied for
almost all degrees and it is the base for many other improvements. Although
the Karatsuba’s improvement comes from 60s, we have waited until 2000s for
new studies about polynomial multiplication [8], the author was Daniel Julius
Bernstein. He proposed a refinement of the Karatsuba’s formula and two new
algorithms.

• The first one is the Five-way recursion whose base is in the Projective
Lagrange Interpolation. It is currently the best when speaking about the
size of the circuit, but its advantage is taken after the degree 128. This fact
besides its high depth makes it less exploitable in real life implementations
than other ones.

• The second algorithm is Two-level seven-way recursion. It reduces the
size for degrees lower than 128 and has a good depth.

We will use the second algorithm as a base to reduce the number of the op-
erations required by some polynomial products especially when the underlying
ring has characteristic 2.

All these new algorithms lead to faster cryptographic primitives because
they usually require computations in Galois fields and it is for this reason that
polynomial product is widely studied. In 2015, Cenk and Hasan [19] proved
that asymptotic estimates can be improved by using Projective Lagrange Inter-
polation as Bernstein did for the finite case. By an inspection of their formula,
we will show how better asymptotic estimates can be reached although the
cardinality of the field has a non negligible growth.

It is also possible to show that some of these improvements have a real case
application. Quantum computers have been already built. Currently, they have
not enough qubits to break real instances of RSA cipher, but they are concrete
devices and this means that the menace is just a matter of time. Taking this
into account, the National Institute of Standards and Technology (NIST) has
started a standardization process for the Post-Quantum Cryptography (PQC).
Many ciphers have been proposed, one of them is the McEliece cryptosystem. Its
implementation take the advantage not only of the usual polynomial product,
but also of the product of polynomials whose coefficients are polynomials as
well. By replacing the implementation of the School-book algorithm with one of
the new polynomial product techniques and changing the usage of the memory,
the generation time of the McEliece key pair can be considerably decreased.

The second improvement is from a practical point of view and is about the
hash function SHA-1. Although the first SHA-1 collision attack has been carried
out in 2017 [76], the cryptographic hash function seems still robust against pre-
image attacks and it is still widespread [77, 18]. The aim of the second part of
this dissertation is to measure how many rounds of SHA-1 can be inverted in
practice using SAT solvers. To do so, we will first model the problem of finding
a pre-image of SHA-1 as a system of boolean formulas, explicitly describing the
procedure to obtain such model. Then, we will configure the model based on
different combinations of number of rounds and number of free bits in our target
pre-image. Finally, to find a solution of the model, we will use a SAT solver
on a server, testing several combinations of restart policies and polarity modes.
We analyze and report the number and positions of the pre-image bits that can
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be fixed to influence the ability of the SAT solver to find the remaining free bits
of the pre-image in a shorter time. In particular, we execute partial pre-image
attacks on 64-, 80-, 96-, 112- and 128-bit messages, outperforming the current
state-of-the-art records.
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Part I

Polynomial product
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1. Finite fields

In this chapter, we will review some facts about finite fields. They can be used
to understand the underlying mathematical structures in chapter 2. In partic-
ular, elements of a generic finite field of characteristic 2 can be represented as
polynomials having coefficients in the set {0, 1}. This leads to a natural repre-
sentations in hardware as bit-arrays and makes them suitable for cryptographic
algorithms. In fact, for instance, McEliece [57] and NTRU [38] are two cryp-
tosystems using algebra from fields of prime characteristic and have reached the
third round of the NIST Post-Quantum standardization process.

1.1. Existence and uniqueness

It is well known that when p is a prime number, then Z/pZ is a finite field, but
there are many more finite fields. We want now to show the general structure
of a finite field.

We are going to enunciate three facts that will be useful to depict the struc-
ture of a finite field.

• Characteristic. We start by defining what is the characteristic of the field.
Take a finite field (F ; +, ·) and consider the ring homomorphism

Z −→ F
n 7−→ n · 1F = 1F + 1F + . . .+ 1F .

The kernel of the map is different from {0}, therefore it exists an n such
that n · 1F = 0. The smallest positive n must be a prime number p,
otherwise F containts two nonzero elements whose product is zero. We
call the prime number p the characteristic of the field. It generates the
kernel, i.e. the principal ideal pZ. Therefore, we have an isomorphism
between Z/pZ and its image in F .

• Cardinality. Note also that the field Z/pZ has no automorphisms different
from the identity, since 1 maps to itself and additively generates Z/pZ.
At this point, we can see F as a finite vector space whose coefficients are
in Z/pZ. Let n be the dimension of the vector space, the cardinality of
the finite field will be pn.

• Order of an element. We need another fact that will help us to contruct
a finite field. Let G an abelian finite group. The order of g divides the
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cardinality of G for every g in G. To prove it, let a, b ∈ G and consider
the equivalence relation

a ρ b⇐⇒ ∃i : gi · a = b.

Every equivalence class has cardinality equal to ord(g) and the set of
equivalence classes is a partition of G.

We are now ready to see the general structure of a finite field.

Theorem 1.1. For every prime number p and every integer n ≥ 1, there exists
a finite field which order is pn. It is the splitting field of

f(X) = Xpn −X.

Its elements are the roots of this polynomial.

Proof. We basically need to prove that field elements are the roots of the poly-
nomial and there are pn such roots.

• Take r 6= 0 an element of the field. In particular, it is an element of the
group F× having cardinality pn − 1. As we have said, the order of an
element divides the cardinality of the group, therefore rp

n−1 = 1. We
have proved that field elements are the roots of the polynomiali f .

• The derivative of f is

f ′(X) = pnXpn−1 − 1 = −1,

being p the characteristic of the field. Since the derivative has no zeros, f
has no multiple roots, thus they are pn.

At this point, we simply need to prove that the set of the roots is effectively
a field.

- Additive group. Let r1 and r2 two roots of the polynomial f , r1 + r2 is
again a root of the polynomial since

(r1 + r2)p
n

− (r1 + r2) = rp
n

1 + rp
n

2 − r1 − r2.

0 is trivially a root of f . Let r be a root of f , we have

(−r)p
n

− (−r) = (−1)p
n

rp
n

+ r.

If p is odd, we have (−1)p
n

= −1. If p is even, the characteristic is 2, then
r = −r. In both cases, −r is again a root of f .

- Multiplicative group. Let r1 and r2 two roots of the polynomial f , r1r2 is
again a root of the polynomial since

(r1r2)p
n

− (r1r2) = rp
n

1 rp
n

2 − r1r2.

1 is trivially a root of f . Let r be a root of f , we have

(r−1)p
n

− r−1 = (rp
n

)−1 − r−1,

showing that r−1 is a root of f .
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We have currently proved that a finite field of cardinality pn exists, being p
a prime and n ≥ 1 an integer. The next question is: given a prime power, is
there a unique finite field? The answer is, somehow, yes.

Proposition 1.1. Let F a field and f ∈ F [X]. If F1 and F2 are both splitting
fields for f , then every F -homomorphism F1 → F2 is actually an isomorphism.
In particular, any two splitting fields for f are F -isomorphic.

Proof. [60, Proposition 2.7]

Since a finite field is unique up to an isomorphism, we will use Fpn to denote
a finite field of order pn. Therefore, given a finite field Fpn , we can see it as
a vector space whose coefficients are in Fp. For this reason it is trivial how to
perform the addition of two elements, but the multiplication is not so immediate.
We need to deepen the multiplicative structure of F×pn .

Proposition 1.2. Let φ the Euler function

φ = #{k : 1 ≤ k < n, gcd(k, n) = 1}

and G a group whose cardinality is n. The number of generators of G is φ(n).

Proof. Let g a generator of G. The number of the generators of G is the number
of integers i such that ord(gi) = n, i.e. n is the smallest integer r such that
(gi)r = 1. Since g is a generator, gir = 1 if and only if n divides ir. In order to
have no r < n such that n | ir, i and n must be coprime.

Euler φ has some properties that can be easily proved:

• if p is prime then φ(p) = p− 1;

• if gcd(n,m) = 1 then φ(nm) = φ(n)φ(m);

• if n =
∏
i p
mi
i , then φ(n) = n

∏
i(1− 1/pi);

•
∑
d|n φ(d) = n.

We can determine the number of elements whose order is r when r divides
(pn − 1).

Proposition 1.3. For every integer r such that r | (pn − 1), the number of
order r elements in F×pn is φ(r). The subgroup of order r in F×pn is unique.

Proof. The elements whose order divides r in F×pn are the roots of Xr − 1 be-
longing to F×pn . Let a ∈ F×pn an r order element. The cyclic group generated by
a coincides with the set of the roots of Xr − 1. In fact, every element of 〈a〉 is a
root of Xr− 1 and 〈a〉 has cardinality equal to r, whereas Xr− 1 has r roots at
most. Therefore the set of r order elements in F×pn is the multiplicative group
〈a〉.

Moreover, by proposition 1.2, 〈a〉 contains φ(r) elements whose order is r.
This clearly implies that, if an r order element exists in F×pn , then there are
exactly φ(r) such elements. Using the fact that every element’s order divides
(pn − 1) and the fact that

∑
r|pn−1 φ(r) = q − 1, we get that there are φ(r)

elements whose order is r for every r | (pn − 1).
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We have a direct consequence.

Corollary 1.1. The multiplicative group F×pn is cyclic of order (pn − 1) and
there exists φ(pn − 1) generators. Every generator is called primitive element.

Moreover, we need the following to understand how to generate a finite field.

Proposition 1.4. Every extension of finite fields is simple.

Proof. Consider E ⊃ F . Then E is a finite subgroup of the multiplicative group
of a field, and hence is cyclic. If α generates E as a multiplicative group, then
certainly E = F [α].

1.2. Representation

Let Fpn a finite field. By corollary 1.1, we can express every element of F×pn as a
generator power. We call this generator α. Therefore, we write F×pn = 〈α〉, i.e.
Fpn = 〈α〉 ∪ {0}.

Moreover, Fpn can be represented as a vector space whose coefficients are in
Fp. We choose the base

{α0, α1, . . . , αn−1}

for Fpn . So that, for every integer k, there exist ci ∈ Fp such that

αk = c0α
0 + c1α

1 + . . .+ cn−1α
n−1.

If we take a nonnegative k, this equation is a polynomial one and this suggests
that we have to use the polynomial ring to construct the finite field.

Theorem 1.2. Let p a prime number and f(X) ∈ Fp[X] a degree n irreducible
polynomial. The quotient Fp[X]/〈f(X)〉 containing the classes of residues mod-
ulo f(X) is a field containing pn elements.

Proof. Consider the set F of all the polynomials in Fp[X] whose degree is at
most (n − 1). It is a representation of the classes of residues modulo f(X). It
is trivial to prove that F is an abelian group with addition modulo f(X) and
0 is the neutral element. Moreover, it can be proven that the product of two
elements in F is again in F , 1 is the neutral element and the distributive law is
valid.

Therefore, we just need to prove that for every polynomial a different from
zero, there exists a polynomial b such that ab = 1. This could be done easily
by using the Bezout’s identity. Since f is irreducible, every polynomial whose
degree is at most (n− 1) is coprime with f . Thus, there exist two polynomials
u and v such that

au+ fv = 1.

We get au ≡ 1 (mod f), i.e. b ≡ u (mod f).

We can object that it is not guaranteed the existance of a degree n irreducible
polynomial whose coefficients are in Fp. The following proposition helps us.

Proposition 1.5. Let Fp a finite field. For every positive integer n there exists
a degree n irreducible polynomial.
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Proof. From theorem 1.1, the finite field Fpn exists. By corollary 1.1, the mul-
tiplicative group of every finite field is cyclic. If we take a generator α, using
proposition 1.4, we have Fpn = Fp[α]. In particular, the minimal polynomial of
α, which is irreducible, must have the degree equal to [Fpn : Fp], i.e. n.

Example 1.1. We show how to construct the field F8. First of all, we need a
degree 3 irreducible polynomial whose coefficients are in F2. There are 16 degree
3 polynomials whose coefficients are in F2. We choose f(X) = 1 +X +X3 and
it can be easily proved that it is irreducible, in fact f(0) = f(1) = 1. We know
by theorem 1.2 that the field can be represented as F2[X]/〈f(X)〉, therefore the
elements are polynomials belonging to F2[X] whose degree is at most 2.

Usually the notation is simplified using α, a representative for the residue
class of X. Using this notation we can represent the elements of F8 in a double
fashion: as α powers or as polynomials. Refer to table 1.1.

Table 1.1: the F8 elements.

powers - α0 α1 α2 α3 α4 α5 α6

polynomials 0 1 α α2 1 + α α+ α2 1 + α+ α2 1 + α2

We show two computation examples:

- Addition. Remember that the field characteristic is 2.

(α+ α2) + (1 + α) = 1 + α2

- Multiplication.

(α+ α2) · (1 + α) = α+ α3 ≡ 1 (mod f(X))

Moreover, we could observe that F×8 contains a unique element whose order
is 1 and 6 elements whose order is 7, since we respectively have φ(1) = 1 and
φ(7) = 6. Therefore, every element different from 0 and 1 is a generator of F×8 .

1.3. Polynomial product in cryptography

Many cryptographic algorithms use fields of characteristic 2. It is natural to
implement every element of such a field as a bit array. Recall the example 1.1.
The underlying field of coefficients is F2, i.e. the set {0, 1}. So, addition and
multiplication between coefficients in F2 correspond to XOR (ˆ) and AND (&)
operations for bits respectively. Moreover, recalling table 1.1, we could make a 1-
to-1 correspondence between field elements and their representation in computer
as bit arrays. The correspondence is given in figure 1.1.

We are going to show a complete example to see how the implementation of
a polynomial product algorithm works.

Example 1.2. Suppose you have to multiply two polynomials representing two
elements F and G in F8. They can be represented as
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Figure 1.1: the F8 elements as bit arrays.

0 0 0bit arrays

0polynomials

1 0 0

1

0 1 0

α

0 0 1

α2

1 1 0bit arrays

α+1polynomials

0 1 1

α2+α

1 1 1

α2+α+1

1 0 1

α2+1

F = f0 + f1α+ f2α
2 and G = g0 + g1α+ g2α

2.

The product is therefore

H = F ·G =

= f0g0 +(f0g1 +f1g0)α+(f0g2 +f1g1 +f2g0)α2 +(f1g2 +f2g1)α3 +(f2g2)α4.
(1.1)

Note that at this point we have to reduce the polynomial product in order to
express it as a degree 2 one because of the theory we have developed so far. We
discard this reduction step in this dissertation.

To allow a fast check of how many operations are needed to get the result
we present the so called Straight Line Program (SLP), using both mathematical
and computer science notation.

Mathematics

h0 = f0g0

t0 = f0g1

t1 = f1g0

h1 = t0 + t1

t2 = f0g2

t3 = f1g1

t4 = f2g0

t5 = t2 + t3

h2 = t5 + t4

t6 = f1g2

t7 = f2g1

h3 = t6 + t7

h4 = f2g2

Computer Science

h0 = f0 & g0

t0 = f0 & g1

t1 = f1 & g0

h1 = t0 ˆ t1

t2 = f0 & g2

t3 = f1 & g1

t4 = f2 & g0

t5 = t2 ˆ t3

h2 = t5 ˆ t4

t6 = f1 & g2

t7 = f2 & g1

h3 = t6 ˆ t7

h4 = f2 & g2

Note that we have used variables ti to store intermediate results. We can
see that

H = h0 + h1α+ h2α
2 + h3α

3 + h4α
4
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is exactly (1.1), i.e. the result we were searching for.
The algorithm we have presented is the classical School-book. In the next

chapter, after a brief recall of the state of art, we will present some new algo-
rithms which can improve the state of art. We will prefer the mathematical
notation.
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2. Improvements to the state of art

In this chapter we are going to see how to devise some improved polynomial
multiplication algorithms. Although most of the algorithms could be used for a
generic field, we will restrict our attention to polynomials whose coefficients are
in F2. Moreover, we will consider multiplications whose factors have the same
degree. This is done for one principal reason: avoid side channel attacks that
exploit energy consumption due to different lengths of the inputs. Doing this,
we perform always the same amount of operations with almost no differences in
energy consumption when executing.

We are going to see that the improvements affect not only degrees they are
designed for, but also the ones that rely part of the algorithm on the improved
degrees. The improvements are not only about the number of operations but
also in depth, allowing an high level of parallelization.

2.1. Algorithms for cryptographic applications

We are going to review the cornerstones when speaking about polynomial mul-
tiplication. Some of them will be clear at once, some others need a deeper
investigation to be understood.

2.1.1. School-book
The first algorithm we are going to examine is the well known School-book one.
Pay attention to the technique used for enumerating steps and computing the
number of operations since we will implicitly use the same technique for the
subsequent algorithms.

Given two n-bit polynomials

F = f0 + f1t+ . . .+ fn−1t
n−1 + fnt

n

and G = g0 + g1t+ . . .+ gn−1t
n−1 + gnt

n

let

Fn−1 = f0 + f1t+ · · ·+ fn−1t
n−1

and Gn−1 = g0 + g1t+ · · ·+ gn−1t
n−1.

We can rewrite F and G as

F = Fn−1 + fnt
n

and G = Gn−1 + gnt
n
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and resume the School-book algorithm as

F ·G = (Fn−1 + fnt
n) · (Gn−1 + gnt

n)

= Fn−1Gn−1 + Fn−1gnt
n +Gn−1fnt

n + fngnt
2n

(2.1)

The steps needed to obtain the result from (2.1) multiplication algorithm
are:

1. Multiply Fn−1 by Gn−1. Note that this is a recursive step and it is now
clear what we mean when we say that an algorithm for a specific degree
take the advantage from the lower ones. We simply denote its cost, i.e.
the number of operations, as M(n).

2. Multiply Fn−1 by gn. As it is a multiplication of a polynomial by a single
coefficient, it takes n operations.

3. Multiply Gn−1 by fn. Same as 2.

4. Multiply fn by gn. Note that this is a multiplication between coefficients,
therefore it takes just one operation.

5. Add Fn−1Gn−1, which is a degree 2n−2 polynomial and Fn−1gntn, which
is a degree 2n − 1 polynomial. It takes n − 1 operations. Note that the
multiplication by tn can be considered just a shift of Fn−1gn, therefore we
do not take into account the shift.

6. Add the result of the previous step toGn−1fntn. It takes now n operations.
Note that in the previous step we had two polynomials of degree 2n − 2
and degree 2n − 1, instead, we have here two polynomials: the first one
whose degree is 2n− 1, i.e. the result coming from the previous step and
the second one, Gn−1fntn, whose degree is 2n− 1.

7. We eventually add fngn to the result coming from the previous step, but,
since the power of fngn is 2n and the degree of the previuos result is 2n−1,
the operation has no cost.

Summing up all costs, we get the recursion formula for the School-book al-
gorithm.

M(n+ 1) ≤M(n) + 4n. (2.2)

As we can see, M(n + 1), the complexity of the multiplication for degree n +
1, is computed using M(n), the one for degree n. This clearly shows that
any advantage at any degree could become a chain of improvements for higher
degrees.

Moreover, let M(1) = 1 and consider just the School-book. We can write a
closed form

M(n) ≤ 2n2 − 2n+ 1 (2.3)

allowing us to predict an upper bound for the algorithm. We will review the
upper bounds in section 2.3 and improve the state of art in section 2.4.
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2.1.2. Karatsuba
We are now going to review the Karatsuba algorithm [43]. It was first published
in 1963, but it is useful nowadays, in fact, some degrees like 6 or 8 still use this
improvement [19].

Given two 2n-bit polynomials

F = f0 + f1t+ . . .+ f2n−1t
2n−1

and G = g0 + g1t+ . . .+ g2n−1t
2n−1

let

F0 = f0 + f1t+ . . .+ fn−1t
n−1

and F1 = fn + fn+1t+ . . .+ f2n−1t
n−1

doing the same for G, and rewrite F and G as

F = F0 + F1t
n

and G = G0 +G1t
n

We can write the Karatsuba algorithm as:

F ·G = (F0 + tnF1) · (G0 + tnG1)

= (1 + tn)F0G0 + tn(F0 + F1)(G0 +G1) + (tn + t2n)F1G1.
(2.4)

We repeat what we have done for the School-book.

1. Multiply F0 by G0, the cost is M(n).

2. Add F0G0 to tnF0G0. Remember that tnF0G0 is just F0G0 shifted by
n positions. Therefore, we get A1 = (1 + tn)F0G0 with a cost of n − 1
operations.

3. Add F0 to F1 and G0 to G1. We get F0 + F1 and G0 + G1 using 2n
operation.

4. Multiply (F0 + F1) by (G0 +G1) using M(n) operations.

5. Multiply F1 by G1 using M(n) operations again.

6. Add tnF1G1 to t2nF1G1. This is the same type of operation performed
in step 2, therefore we get A2 = (tn + t2n)F1G1 with a cost of n − 1
operations.

7. Add A1 to tn(F0 +F1)(G0 +G1). We get A3 = A1 + tn(F0 +F1)(G0 +G1)
using 2n− 1 operations.

8. The final addition A3 +A2 uses 2n− 1 operations.

Summing all costs, we get

M(2n) ≤ 3M(n) + 8n− 4. (2.5)

In section 2.3, we are going to see some results that allow us to resolve this
recursion in special cases and get closed form as we have done for the School-book
inequality (2.3).
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The Karatsuba algorithm was the first improvement regarding polynomial
multiplication, but we had waited until 2008 for having another improvement.
Daniel J. Bernstein was the author and firstly wrote his result in [9] and for-
mally announced the idea in [8]. His improvement, which we will call Refined-
Karatsuba is based on a little manipulation of the equation (2.4). Moreover,
we do a little generalization which could have been done also for the original
Karatsuba.

Given two (n+ k)-bit polynomials

F = f0 + f1t+ . . .+ fn+k−1t
n+k−1

and G = g0 + g1t+ . . .+ gn+k−1t
n+k−1

having n/2 ≤ k ≤ n, let

F0 = f0 + f1t+ . . .+ fn−1t
n−1

and F1 = fn + fn+1t+ . . .+ fn+k−1t
k−1

doing the same for G, and rewrite F and G as

F = F0 + F1t
n

and G = G0 +G1t
n

The Refined-Karatsuba can be written as follows.

F ·G = (F0 + tnF1)(G0 + tnG1)

= (1 + tn)F0G0 + tn(F0 + F1)(G0 +G1) + (tn + t2n)F1G1

= (1 + tn)F0G0 + tn(F0 + F1)(G0 +G1) + (1 + tn)tnF1G1

= (1 + tn)(F0G0 + tnF1G1) + tn(F0 + F1)(G0 +G1)

We describe the estimate of the cost of the algorithm in a concise way as we
have described all the details on how it can be devised along the School-book
and Karastuba. Each item in the following shows cost and operations.

1. M(n) +M(k): multiplications F0G0 and F1G1, respectively

2. n− 1: addition A1 = F0G0 + tnF1G1

3. 2k − 1: addition A2 = (1 + tn)A1

4. 2k: additions F0 + F1, G0 +G1

5. M(n): multiplication (F0 + F1)(G0 +G1)

6. 2n− 1: addition A3 = A2 + tn(F0 + F1)(G0 +G1)

The total cost of the algorithm is

M(n+ k) ≤ 2M(n) +M(k) + 3n+ 4k − 3,
n

2
≤ k ≤ n. (2.6)

If we take k = n, it is very clear that this refined version improves the original
Karatsuba estimate (2.5).
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2.1.3. Bernstein
In [8], Bernstein further improves the Refined-Karatsuba algorithm, presenting
the so called Two-level Seven-way. Basically, he just consider to split the factors
in four parts and apply three times the Refined-Karatsuba factoring out (1+tn).

Formally, given two (3n+ k)-bits polynomials

F = f0 + f1t+ . . .+ f3n+k−1t
3n+k−1

and G = g0 + g1t+ . . .+ g3n+k−1t
3n+k−1

having n/2 ≤ k ≤ n, let

F0 = f0 + f1t+ . . .+ fn−1t
n−1,

F1 = fn + fn+1t+ . . .+ f2n−1t
n−1,

F2 = f2n + f2n+1t+ . . .+ f3n−1t
n−1,

and F3 = f3n + f3n+1t+ . . .+ f3n+k−1t
k−1

doing the same for G, and rewrite F and G as

F = F0 + F1t
n + F2t

2n + F3t
3n

and G = G0 +G1t
n +G2t

2n +G3t
3n.

The Two-level Seven-way can be written as follows.

F ·G = (F0 + F1t
n + F2t

2n + F3t
3n)(G0 +G1t

n +G2t
2n +G3t

3n)

= (1 + t2n)
(

(1 + tn)(F0G0 + tnF1G1 + t2nF2G2 + t3nF3G3)

+ tn(F0 + F1)(G0 +G1) + t3n(F2 + F3)(G2 +G3)
)

+ t2n
(
F0 + F2 + tn(F1 + F3)

)(
G0 +G2 + tn(G1 +G3)

)
.

The cost evaluation is as follows.

1. 3M(n): multiplications F0G0, F1G1, F2G2

2. M(k): multiplication F3G3

3. 3(n− 1): additions A1 = F0G0 + tnF1G1 + t2nF2G2 + t3nF3G3

4. 2n+ 2k − 1: addition (1 + tn)A1

5. 2n+M(n): multiplication A2 = (F0 + F1)(G0 +G1)

6. 2k +M(n): multiplication A3 = (F2 + F3)(G2 +G3)

7. 4n− 2: additions A4 = (1 + tn)A1 + tnA2 + t3nA3

8. 2n+ 2k+M(2n): multiplication A5 = (F0 +F2 + tn(F1 +F3))(G0 +G2 +
tn(G1 +G3))

9. 6n+ 2k − 2: additions (1 + t2n)A4 + t2nA5

The total cost of the algorithm is

M(3n+ k) ≤M(2n) + 5M(n) +M(k) + 19n+ 8k − 8,
n

2
≤ k ≤ n.
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2.1.4. Find – Peralta
One of the most recent techniques (early 2018) is from Find and Peralta [35].
In this work, the authors devise a method to derive the so called Karatsuba-like
recurrences. Although this work contains a generalization of the methodology it
gives, the same technique was designed for a particular case some years before
by Cenk, Hasan and Negre in [20], which is based on [83]. In fact, in [19, Section
2] the Karatsuba-like improved 3-way split algorithm is recalled and it could be
checked that the recurrence (7) in [19] is exactly the one in [35, Section 4.3].

We are briefly going to review the Karatsuba-like algorithm by Find and
Peralta and give an example.

Given two kn-bits polynomials

F = f0 + f1t+ . . .+ fkn−1t
kn−1

and G = g0 + g1t+ . . .+ gkn−1t
kn−1

let

F0 = f0 + f1t+ . . .+ fn−1t
n−1,

F1 = fn + fn+1t+ . . .+ f2n−1t
n−1,

...

and Fk−1 = f(k−1)n + f(k−1)n+1t+ . . .+ fkn−1t
n−1,

doing the same for G, and rewrite F and G as

F = F0 + F1t
n + . . .+ Fk−1t

(k−1)n

and G = G0 +G1t
n + . . .+Gk−1t

(k−1)n.

The Karatsuba-like algorithm goes as follows.

• First of all, the product F ·G can be written as

F ·G =

2k−2∑
i=0

Uit
in

where Ui =
∑
a+b=i Fa ·Gb.

• This second step is very important as it fully determines all the sub-
sequent elements and complexities. Let F = (F0, F1, . . . , Fk−1), G =
(G0, G1, . . . , Gk−1) and U = (U0, U1, . . . , U2k−2). The heart of the algo-
rithm is:

U = R · [(T · F) ◦ (T ·G)], (2.7)

where ◦ is the Hadamard product1 and T is a matrix having a requirement:
the elements of the Hadamard product (T · F) ◦ (T ·G) span the target
bilinear forms in U. R is derived accordingly to the matrix T .
T is called top matrix and the heuristic from [12] can be used to compute
it. R is called main matrix and it can be derived using the heuristic for
small low-depth XOR circuits from [14].

1Let two vectors v = (v0, . . . , vn−1) and w = (w0, . . . , wn−1), the Hadamard product is
simply the vector v ◦ w = (v0w0, . . . , vn−1wn−1).
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• As one can notice by computing the previous step, some parts of the Ui
polynomials overlaps and a clever use of the Hadamard product can avoid
a waste of operations. Thus, let

P = (T · F) ◦ (T ·G) = (P0, . . . , Pτ−1),

we do not calculate R · P as in the equation (2.7), instead, we split the
generic polynomial Pi of P as

Pi = (L(Pi),M(Pi), H(Pi)),

where L(Pi), M(Pi), H(Pi) are respectively the first (n − 1) bits, the
middle bit and the last (n − 1) bits of Pi. This could be done since a
generic Pi is the product

∑
i∈S Fi ·

∑
i∈S Gi for some set S of indices,

therefore the number of coefficients of Pi is 2n− 1. At this point, we can
perform the products

H[n− 1]
H[2n− 1]

...
H[(2k − 1)n− 1]

 = R ·


M(P0)
M(P1)

...
M(Pτ−1)

 (2.8)

and 
H[0 .. n− 2]
H[n .. 2n− 2]

...
H[(2k − 1)n .. 2kn− 2]

 = E ·



L(P0)
...

L(Pτ−1)
H(P0)

...
H(Pτ−1)


(2.9)

where

E =


R0 0
R1 R0

...
...

R2k−2 R2k−3
0 R2k−2


and Ri are the rows of the matrix R.

• It’s not difficult to show that, sorting the vector H from the previous step
according to the indices given by (2.8) and (2.9), we get the coefficients of
the product F ·G.

The computation of the generic recursion representing the estimate of the
cost of the multiplication algorithm between two kn-bit polynomials goes as
follows.

1. The first important addendum of the cost is the number of operation
needed for the XOR circuit represented by matrix T . We generically call
it s(T ). Remember that we need 2 circuit, i.e. (T · F) and (T · G).
Remember also that each element of F (same for G) is represented by n
bits, so, for this first step we need 2n · s(T ).
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2. The second step is the Hadamard product (T ·F) · (T ·G). Every element
in both vectors (T ·F) and (T ·G) is an n-bit polynomial, thus, we simply
denote this cost as np · M(n). A rough estimate of the number of the
elements in a vector like (T · F) is trivially np < 2k since 0 cannot be a
result.

3. The third step are products in (2.8) and (2.9). Regarding (2.8) there are
no additional costs other than the complexity of the circuit as the M(Pi)
are one single bit. We denote s(R) the cost for circuit R. Regarding (2.9),
remember that each L(Pi) and each H(Pi) is a (n − 1)-bit vector, so, in
order to the estimate the cost, we need to multiply the complexity of the
XOR circuit s(E) by the size of the vector’s elements. The cost is then
(n− 1) · s(E).

Summing up, we have the recursion for the cost of Karatsuba-like algorithm:

M(kn) ≤ np ·M(n) + 2n · s(T ) + s(R) + (n− 1) · s(E).

Note that, likewise the algorithms so far, we can consider (kn + c)-bit polyno-
mials and compute the recursion accordingly. Of course, we need n/2 ≤ c ≤ n.
For the sake of simplicity, we have just considered kn-bit polynomials.

Recursions with explicit parameters are:

M(2n) ≤ 3M(n) + 7n− 3 (Refined-Karatsuba)
M(3n) ≤ 6M(n) + 18n− 6

M(4n) ≤ 9M(n) + 34n− 12

M(5n) ≤ 13M(n) + 54n− 19

M(6n) ≤ 17M(n) + 85n− 29

M(7n) ≤ 22M(n) + 107n− 34

(2.10)

There is the possibility to develop better algorithms by considering 8n-bit poly-
nomials or even an higher level of split, but the complexity of the E circuit is
beyond computational resources.

Example 2.1. We show how the Karatsuba-like algorithm acts when k = 2.
Given two 2n-bit polynomials

F = f0 + f1t+ . . .+ f2n−1t
2n−1

and G = g0 + g1t+ . . .+ g2n−1t
2n−1

let

F0 = f0 + f1t+ . . .+ fn−1t
n−1,

F1 = fn + fn+1t+ . . .+ f2n−1t
n−1,

doing the same for G, we have

H = F ·G = (F0 + F1t
n) · (G0 +G1t

n).

In order to show how the algorithm works, we are going to follow exactly the
steps of the explanation of the algorithm.
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• First of all we write the product

F ·G =

2∑
i=0

Uit
in

where Ui =
∑
a+b=i Fa ·Gb.

• Let F = (F0, F1) and G = (G0, G1) and U = (U0, U1, U2). By using the
heuristics from [12], we get

T =

1 0
1 1
0 1


and, by using the heuristic from [14], we get

R =

1 0 0
1 1 1
0 0 1

 .

At this point we have

U = R · [(T · F) ◦ (T ·G)],

in particular: U0 = P0, U1 = P0 + P1 + P2 and U2 = P2.

• Let
P = (T · F) ◦ (T ·G) = (P0, P1, P2),

and split the Pi as

P0 = (L(P0),M(P0), H(P0)),

P1 = (L(P1),M(P1), H(P1)),

P2 = (L(P2),M(P2), H(P2)).

Now, according to the products (2.8) and (2.9), compute: H[n− 1]
H[2n− 1]
H[3n− 1]

 =

1 0 0
1 1 1
0 0 1

 ·
M(P0)
M(P1)
M(P3)

 (2.11)

and

 H[0 .. n− 2]
H[0 .. 2n− 2]
H[3n .. 4n− 2]

 =


1 0 0 0 0 0
1 1 1 1 0 0
0 0 1 1 1 1
0 0 0 0 0 1

 ·

L(P0)
L(P1)
L(P2)
H(P0)
H(P1)
H(P2)

 (2.12)

• By sorting the vector H according to the indices, we obtain the product
of F and G.
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We perform also the estimate of the cost likewise its explanation.

1. The first cost is the complexity of the circuit represented by the matrix T .
It is trivial to see that just the second line, which represent the addition
between F0 and F1, needs to be computed. Therefore the cost is 2n since
F0 and F1 have n bits and the same applies for G0 and G1.

2. The second cost is the Hadamard product. Since T has 3 rows and each
of the Fi and Gi have n-bits, it is straightforward that the cost is 3M(n).

3. The third cost are the complexities of (2.11) and (2.12). Regarding the
former, it is trivial to see that the only row that needs to be computed is
the second one and we cannot use less than two operations, therefore the
cost is 2 since every M(Pi) has one bit. Regarding the latter, we can use
the heuristic in [12] and retrive that we need 5 · (n − 1) operations since
every L(Pi) and H(Pi) has (n− 1) bits.

Summing all the costs, we obtain

M(2n) ≤ 2n+ 3M(n) + 2 + 5(n− 1)

which is
M(2n) ≤ 3M(n) + 7n− 3,

and coincides with the Refined-Karatsuba (2.6) proposed by Bernstein.

Giving this example, we have finished the review of the state of art and we
are going to see how to improve it.

2.2. Improvements of practical interest

The first improvement we are going to see is about algorithms of practical
interests. In fact, we are going to recall the Two-level Seven-Way and expand
it. We are going to see in the section 2.3 that the benefits of this improvement
are not only for the effective number of operations but also in estimates of upper
bounds.

We now formally present the so called Three-level recursion, first appeared
in [29]. Given two (7n+ k)-bit polynomials

F = f0 + f1t+ . . .+ f7n+k−1t
7n+k−1

and G = g0 + g1t+ . . .+ g7n+k−1t
7n+k−1

having n/2 ≤ k ≤ n, let

F0 = f0 + f1t+ . . .+ fn−1t
n−1,

F1 = fn + fn+1t+ . . .+ f2n−1t
n−1,

...

F6 = f6n + f6n+1t+ . . .+ f7n−1t
n−1,

and F7 = f7n + f7n+1t+ . . .+ f7n+k−1t
k−1
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doing the same for G, and rewrite F and G as

F = F0 + F1t
n + . . .+ F7t

7n

and G = G0 +G1t
n + . . .+G7t

7n.

The Three-level can be written as follows.

F ·G =

(
7∑
i=0

Fit
in

)(
7∑
i=0

Git
in

)

=

(
3∑
i=0

tinFi + t4n
3∑
i=0

tinFi+4

)(
3∑
i=0

tinGi + t4n
3∑
i=0

tinGi+4

)
As we can see, in this first step, we simply re-organize the eight parts of F in
two sums miming the first step of (2.4) and do the same for G. At this point
we apply the Refined-Karatsuba algorithm with the following equalities.

F00 =
3∑
i=0

tinFi F10 =

3∑
i=0

tinFi+4

G00 =

3∑
i=0

tinGi G10 =

3∑
i=0

tinGi+4

(2.13)

Note that the double subscript in (2.13) has the following meaning: the first
subscript refers to the Karatsuba algorithm, the second subscript is the level of
the recursion. We obtain

F ·G = (F00 + t4nF10)(G00 + t4nG10)

= (1 + t4n) (F00G00 + t4nF10G10)︸ ︷︷ ︸
T00

+t4n (F00 + F10)(G00 +G10)︸ ︷︷ ︸
T10

. (2.14)

Regarding term T10 in (2.14), we simply do some algebraic manipulation after
recalling the original terms.

T10 =

(
3∑
i=0

tinFi +

3∑
i=0

tinFi+4

)(
3∑
i=0

tinGi +

3∑
i=0

tinGi+4

)

=

(
3∑
i=0

tin(Fi + Fi+4)

)(
3∑
i=0

tin(Gi +Gi+4)

)
From now on, we are going to take care of T00, since the remaining parts in
(2.14) will not change. Recall what is T00.

T00 =

(
3∑
i=0

tinFi

)(
3∑
i=0

tinGi

)
︸ ︷︷ ︸

T01

+t4n

(
3∑
i=0

tinFi+4

)(
3∑
i=0

tinGi+4

)
︸ ︷︷ ︸

T11

We explicitly write what are T01 and T11, highlighting the power t4n in order
to better understand the transformation.

T01 = ((F0 + tnF1) + (F2 + tnF3)t2n)((G0 + tnG1) + (G2 + tnG3)t2n)

T11 = t4n((F4 + tnF5) + (F6 + tnF7)t2n)((G4 + tnG5) + (G6 + tnG7)t2n)
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Note that we can apply the Refined-Karatsuba once again on T01 and T11, getting
the following formulae.

T01 = (1 + t2n)
(

(F0 + tnF1)(G0 + tnG1) + t2n(F2 + tnF3)(G2 + tnG3)
)

+ t2n(F0 + F2 + (F1 + F3)tn)(G0 +G2 + (G1 +G3)tn)

T11 = t4n
[
(1 + t2n)

(
(F4 + tnF5)(G4 + tnG5) + t2n(F6 + tnF7)(G6 + tnG7)

)
+ t2n(F4 + F6 + (F5 + F7)tn)(G4 +G6 + (G5 +G7)tn)

]
= (1 + t2n)

(
t4n(F4 + tnF5)(G4 + tnG5) + t6n(F6 + tnF7)(G6 + tnG7)

)
+ t6n(F4 + F6 + (F5 + F7)tn)(G4 +G6 + (G5 +G7)tn)

We now re-write T00 factoring out (1 + t2n).

T00 = (1 + t2n)
(

(F0 + tnF1)(G0 + tnG1)︸ ︷︷ ︸
T02

+t2n (F2 + tnF3)(G2 + tnG3)︸ ︷︷ ︸
T12

+ t4n (F4 + tnF5)(G4 + tnG5)︸ ︷︷ ︸
T22

+t6n (F6 + tnF7)(G6 + tnG7)︸ ︷︷ ︸
T32

)
+ t2n(F0 + F2 + (F1 + F3)tn)(G0 +G2 + (G1 +G3)tn)

+ t6n(F4 + F6 + (F5 + F7)tn)(G4 +G6 + (G5 +G7)tn)

Finally, as could be easily noted, every Ti2 can be computed using again Refined-
Karatsuba.

T02 = (1 + tn)(F0G0 + tnF1G1) + tn(F0 + F1)(G0 +G1)

T12 = t2n
(

(1 + tn)(F2G2 + tnF3G3) + tn(F2 + F3)(G2 +G3)
)

T22 = t4n
(

(1 + tn)(F4G4 + tnF5G5) + tn(F4 + F5)(G4 +G5)
)

T32 = t6n
(

(1 + tn)(F6G6 + tnF7G7) + tn(F6 + F7)(G6 +G7)
)

Doing again a simple algebraic manipulation, we can factor out (1 + tn) from
every equation. This will be very useful to write the final formula.

T02 = (1 + tn)(F0G0 + tnF1G1) + tn(F0 + F1)(G0 +G1)

T12 = (1 + tn)(t2nF2G2 + t3nF3G3) + t3n(F2 + F3)(G2 +G3)

T22 = (1 + tn)(t4nF4G4 + t5nF5G5) + t5n(F4 + F5)(G4 +G5)

T32 = (1 + tn)(t6nF2G2 + t7nF3G3) + t7n(F2 + F3)(G2 +G3)
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We can now write the final formula for the Three-level agorithm.

F ·G = (1 + t4n)

{
(1 + t2n)

[
(1 + tn)

(
7∑
i=0

tinFiGi

)

+

3∑
j=0

t(2j+1)n(F2j + F2j+1)(G2j +G2j+1)

]
+ t2n(F0 + F2 + (F1 + F3)tn)(G0 +G2 + (G1 +G3)tn)

+ t6n(F4 + F6 + (F5 + F7)tn)(G4 +G6 + (G5 +G7)tn)

}

+ t4n

(
3∑
i=0

tin(Fi + Fi+4)

)(
3∑
i=0

tin(Gi +Gi+4)

)
(2.15)

If one follows carefully the second subscript of the T terms during all over the
explanation of the algorithm, it can be checked that there are three levels in
which Refined-Karatsuba is applied, this clarifies the name of the algorithm.
The cost evaluation is as follows.

1. 7M(n): multiplication FiGi, for i = 0, . . . , 6

2. M(k): multiplication F7 by G7

3. 7(n− 1): addition A1 =
∑7
i=0 t

inFiGi

4. 6n+ 2k − 1: addition A2 = (1 + tn)A1

5. 3(2n+M(n)): multiplication (F2j + F2j+1)(G2j +G2j+1), for j = 0, 1, 2

6. 2k +M(n): multiplication (F6 + F7)(G6 +G7)

7. 4(2n− 1): addition A3 = A2 +
∑3
j=0 t

(2j+1)n(F2j + F2j+1)(G2j +G2j+1)

8. 6n+ 2k − 1: addition A4 = (1 + t2n)A3

9. 4n+M(2n): multiplication
A5 = (F0 + F2 + (F1 + F3)tn)(G0 +G2 + (G1 +G3)tn)

10. 2n+ 2k +M(2n): multiplication
A6 = (F4 + F6 + (F5 + F7)tn)(G4 +G6 + (G5 +G7)tn)

11. 2(4n− 1): addition A7 = A4 + t2nA5 + t6nA6

12. 6n+ 2k − 1: addition A8 = (1 + t4n)A7

13. 6n+ 2k +M(4n): multiplication
A9 =

(∑3
i=0 t

in(Fi + Fi+4)
)(∑3

i=0 t
in(Gi +Gi+4)

)
14. 8n− 1: addition A8 + t4nA9
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Summing all the costs above, we get the recursion for the Three-level algorithm:

M(7n+ k) ≤M(4n) + 2M(2n) + 11M(n) +M(k)+

+ 67n+ 12k − 17,
n

2
≤ k ≤ n. (2.16)

Based on the technique explained to design the Three-level algorithm, one
can devise the Four-level algorithm for two (15n+ k)-bit polynomials, getting

M(15n+ k) ≤M(8n) + 2M(4n) + 4M(2n) + 23M(n) +M(k)+

+ 191n+ 16k − 34,
n

2
≤ k ≤ n, (2.17)

and the Five-level algorithm for two (31n+ k)-bit polynomials, getting

M(31n+ k) ≤M(16n) + 2M(8n) + 4M(4n) + 8M(2n) + 47M(n) +M(k)+

+ 491n+ 20k − 67,
n

2
≤ k ≤ n. (2.18)

The first thing to notice is that the recursions for {Three, Four, Five}-
level algorithms take the advantage of many more algorithms than the well
known Refined-Karatsuba or even the recent Karatsuba-like algorithms. The
state of art algorithms rely their optimization on one or two multiplication
algorithms, instead, these new {Three, Four, Five}-level algorithms discard the
inner multiplications on many more algorithms. It means that, for a generic
algorithm, one needs to optimize one specific algorithm. On the contrary, take
for instance the Five-level recursion (2.18). It uses six algorithms, therefore
there are many possibilities for further optimization.

The second feature of the recursions for {Three, Four, Five}-level algorithms
is about the nature of the algorithms on which they rely. In fact, it can be
noticed that every x-level algorithm rely on the previous levels. This makes a
sort of chain of improvements and this is the strength of this new technique.

2.2.1. Results
When designing an algorithm to improve the polynomial multiplication, one
needs also to take care of the depth. We can define the depth as the higher
number of operations which cannot be executed in parallel. A little example
will clarify what depth is.

Example 2.2. Recall the example 1.2. We can see that the algorithm is exe-
cuted in 13 operations. Looking carefully, we note that many operations could
be performed contemporary to other ones because they do not need to wait
for the input. Precisely, at most 9 out of those 13 operations could be done
in parallel, resulting in depth equal to 3. We depict in figure 2.1 the parallel
execution of the algorithm. The depth can be checked from left to right.

We can now show the results of the improvements due to {Three, Four,
Five}-level algorithms. They can be examined in table 2.1. Note that we
were not able to replicate an optimized XOR circuit for the highest level of the
Karatsuba-like algorithm, thus, the new results from {Three, Four, Five}-level
algorithms could be further improved.
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Figure 2.1: parallel execution of polynomial multiplication.

1

h0 = f0g0

t0 = f0g1

t1 = f1g0

t2 = f0g2

t3 = f1g1

t4 = f2g0

t6 = f1g2

t7 = f2g1

h4 = f2g2

2

h1 = t0 + t1

t5 = t2 + t3

h3 = t6 + t7

3

h2 = t5 + t4

execution (depth)

parallel
threads

Table 2.1: improvements for n-bit polynomial multiplication.

n n of operation before n of operation after depth before depth after algorithm

24 702 [19] 697 10 9 Three-level
32 1156 [19] 1148 11 10 Three-level
40 1703 [35] 1700 14 13 Three-level
47 2228 [35] 2214 13 11 Four-level
48 2259 [35] 2238 13 11 Four-level
63 3626 [35] 3612 14 12 Four-level
64 3673 [35] 3640 13 12 Four-level
72 4510 [35] 4510 25 15 Three-level
79 5329 [35] 5313 16 15 Four-level
80 5366 [35] 5345 16 15 Four-level
95 7073 [35] 6978 15 13 Five-level
96 7110 [35] 7006 16 13 Five-level
120 10438 [8] 10294 130 17 Three-level
127 11447 [8] 11277 17 14 Five-level
128 11466 [19] 11309 16 14 Five-level

A particular result is the one about 120-bit polynomials. It is not an error.
The high depth is due to the fact that the algorithm has been devised through an
interpolation technique that will be discuted in subsection 2.3.3. This technique
is particular efficient for polynomials having more than 128 bit only in number
of operations (gates), but it is not for the depth of the algorithm.
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2.3. Upper bounds

Recall the inequality (2.3). It can be seen not only as an upper bound for the
School-book algorithm itself but also as an upper bound at all. We are going
to see that improvements in section 2.2 could lead to better upper bounds. In
section 2.4, we will also develop further the technique presented in [19]. By
doing this we will see some improvements in upper bounds but not for practical
interests and this suggests to not investigate anymore this technique.

2.3.1. How to compute upper bounds
It’s not difficult to compute upper bounds from costs estimates shown in previ-
ous sections. We just need a little lemma.

Lemma 2.1 (from the Master Theorem). Let a, b and i be positive integers
and assume that a 6= b. Let n = bi and a 6= 1. The solution to the inductive
relation {

r1 = e

rn = arn/b + cn+ d

is
rn =

(
e+

bc

a− b
+

d

a− 1

)
nlogb a − bc

a− b
n− d

a− 1
.

Proof. The proof is trivial. Substituting in the inductive relation the expression
for rn and rn/b, we find an identity.

We are going to present how to compute the Refined-Karatsuba upper bound
using the above lemma.

Example 2.3. We start by recalling which is the Refined-Karatsuba recursion.

M(2n) ≤ 3M(n) + 7n− 3

It does not perfectly fit the lemma’s hypothesis but we simply manipulate the
variable.

M(n) ≤ 3M
(n

2

)
+

7

2
n− 3

The application of lemma is straightforward and leads to

M(n) ≤ 6.5nlog2 3 − 7n+ 1.5.

Unfortunately, the {Three, Four, Five}-level recursions have not an expres-
sion which is suitable for the lemma. Once again, a little trick could help us.
We are going to present how to compute the Two-level Seven-way upper bound
as an example to compute also {Three, Four, Five}-level upper bounds.

Example 2.4. Recall that, for k = n, the Two-level Seven-way recursion is

M(4n) ≤M(2n) + 6M(n) + 27n− 8.

At this stage we cannot apply lemma 2.1, but if we substitute the recursion
(2.6) from the Refined-Karatsuba for k = n, we get

M(4n) ≤ 9M(n) + 34n− 11.
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Note also that this is not the same recursion from (2.10), the Karatsuba-like
algorithm. At this point we can apply lemma 2.1, obtaining

M(n) ≤ 6.43nlog23 − 6.8n+ 1.38.

To enable an easy comparison of different algorithms, in table 2.2 we present
the upper bounds of the algorithms that we have presented so far. Note that
there is no an algorithm better than another one, since they apply to polynomials
with different number of terms.

We are going to present a new technique to devise better upper bounds. It
takes the advantage of finite fields larger than F2. We also need the Projective
Lagrange Interpolation.

Table 2.2: upper bounds comparison.

algorithm upper bound number of bits

Karatsuba [43] M(n) ≤ 7.00nlog2 3 − 8.00n+ 2.00 multiple of 2
Refined-Karatsuba [8] M(n) ≤ 6.50nlog2 3 − 7.00n+ 1.50 multiple of 2
Two-level Seven-way [8] M(n) ≤ 6.43nlog2 3 − 6.80n+ 1.38 multiple of 4
Karatsuba-like [35] M(n) ≤ 6.30nlog2 3 − 6.80n+ 1.50 multiple of 4
Karatsuba-like [35] M(n) ≤ 6.17nlog2 3 − 6.75n+ 1.58 multiple of 5
Karatsuba-like [35] M(n) ≤ 6.91nlog2 3 − 7.73n+ 1.81 multiple of 6
Karatsuba-like [35] M(n) ≤ 6.51nlog2 3 − 7.13n+ 1.62 multiple of 7
Three-level [29] M(n) ≤ 6.34nlog2 3 − 6.68n+ 1.35 multiple of 8
Four-level [29] M(n) ≤ 6.30nlog2 3 − 6.62n+ 1.31 multiple of 16
Five-level [29] M(n) ≤ 6.28nlog2 3 − 6.57n+ 1.30 multiple of 32

2.3.2. Projective Lagrange Interpolation
Let K a field and H ∈ K[x] a polynomial,

H(x) = h0 + h1x+ h2x
2 + . . .+ hnx

n. (2.19)

We need its value in n + 1 generic points to uniquely determine it. Thus,
take n + 1 values in the field, say {k0, . . . , kn} ⊆ K. We define the Lagrange
polynomials as follows:

li(x) =
∏
j 6=i

x− kj
ki − kj

i = 0, . . . , n.

Note that the definition is designed that way to have li(ki) = 1 and li(kj) = 0,
∀j 6= i. This feature allows us to exactly reconstruct any polynomial H ∈ K[x]
as

H(x) =

n∑
i=0

H(ki) · li(x).

For our purposes, H will be a polynomial whose degree is the cardinality of
the field containing the values for the interpolation, we need one more value.
Since we have not, we extend the definition of the interpolation.
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Given again the polynomial H as in equation (2.19) and only n points, define
the following n− 1 degree polynomial:

H(x) =

n−1∑
i=0

H(ki) · li(x).

We still have H(ki) = H(ki), for i = 0, . . . , n− 1. Let

l∞(x) =

n−1∏
j=0

(x− kj)

and H(∞) = hn. Since H(∞) · l∞ vanishes at every ki and has degree n, we can
reconstruct H with the so-called Projective Lagrange Interpolation formula,

H(x) =

n−1∑
i=0

H(ki) · li(x) +H(∞) · l∞(x). (2.20)

2.3.3. Interlude: Five-way recursion
We will see that Projective Lagrange Interpolation will be very useful to get
better upper bounds but it can still be used also to devise better polynomial
multiplication algorithms of practical interest such as Five-way recursion [8].

Given two (2n+ k)-bit polynomials

F = f0 + f1t+ . . .+ f2n+k−1t
2n+k−1

and G = g0 + g1t+ . . .+ g2n+k−1t
2n+k−1

let

F0 = f0 + f1t+ . . .+ fn−1t
n−1

F1 = fn + fn+1t+ . . .+ f2n−1t
n−1

and F2 = f2n + f2n+1t+ . . .+ f2n+k−1t
k−1

doing the same for G, and rewrite F and G as

F = F0 + F1t
n + F2t

2n

and G = G0 +G1t
n +G2t

2n.

Instead of going directly to the algorithm, we do an abstraction. We define
tn = x and rewrite F and G as

F = F0 + F1x+ F2x
2

and G = G0 +G1x+G2x
2.

Thefore, the result from the multiplication of F and G will be as follows:

H = F ·G
= (F0 + F1x+ F2x

2) · (G0 +G1x+G2x
2)

= H0 +H1x+H2x
2 +H3x

3 +H4x
4.
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It seems that we can now apply the Projective Lagrange Interpolation, but a
problem arises: we just have 0 and 1 to use as values for x. We need two more
points. The trick is to consider t as a value. In fact, the polynomial H can
be reconstructed from the values H(0), H(1), H(t), H(t + 1), H(∞) by the
Projective Lagrange Interpolation formula

H = H(0)
(x+ 1)(x+ t)(x+ t+ 1)

t(t+ 1)
+H(1)

x(x+ t)(x+ t+ 1)

(1 + t)t

= H(t)
x(x+ 1)(x+ t+ 1)

t(t+ 1)
+H(t+ 1)

x(x+ 1)(x+ t)

(t+ 1)t

= H(∞)x(x+ 1)(x+ t)(x+ t+ 1).

Note that the denominator is the same in the four fractions. This and a manual
simplification allow to write the algorithm as follows

H = U +H(∞)(x4 + x) +
(U + V +H(∞)(t4 + t))(x2 + x)

t2 + t

where U = H(0) + (H(0) + H(1))x and V = H(t) + (H(t) + H(t + 1))(x + t).
The following cost evaluation tell us also how to perform the algorithm.

1. M(n): multiplication H(0) = F0G0

2. M(k): multiplication H(∞) = F2G2

3. 2(n+ 2), assuming k ≤ n: additions F0 + F1 + F2 and G0 +G1 +G2

4. M(n): multiplication H(1) = (F0 + F1 + F2)(G0 +G1 +G2)

5. 2(n− 1), or 2k if k ≤ n− 1: additions F1t+ F2t
2 and G1t+G2t

2

6. 2(n− 1): additions F0 + (F1t+ F2t
2) and G0 + (G1t+G2t

2)

7. M(n+ 2), or M(n+ 1) if k ≤ n− 1: multiplication H(t), i.e. the product
of F0 + (F1t+ F2t

2) and G0 + (G1t+G2t
2)

8. 2(n− 1): additions (F0 + F1 + F2) + (F1t+ F2t
2) and (G0 +G1 +G2) +

(G1t+G2t
2)

9. M(n+2), orM(n+1) if k ≤ n−1: multiplicationH(t+1), i.e. the product
of (F0 + F1 + F2) + (F1t+ F2t

2) and (G0 +G1 +G2) + (G1t+G2t
2)

10. 2n+ 1: addition H(t) +H(t+ 1)
The coefficients of t2n+2 and t2n+1 in H(t+ 1) are the same as the coeffi-
cients of t2n+2 and t2n+1 in H(t), so this sum has degree at most 2n

11. 3n+4, or 3n+2 if k ≤ n−1: additions V = H(t)+(H(t)+H(t+1))(tn+t)
Note that deg(V ) ≤ 3n.

12. 3n− 2: additions U = H(0) + (H(0) +H(1))tn

Note that deg(U) ≤ 3n− 2.

13. 4k + 3n− 3, assuming n ≥ 2: additions W = U + V +H(∞)(t4 + t)
Note that deg(W ) ≤ 3n.
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14. 3n− 2: division W/(t2 + t)
This division is exact and, for the same reason, some work could have been
skipped in the computation of W .)

15. 5n+ 2k − 4: additions H(∞)(t4n + tn) + (W/(t2 + t))(t2n + tn) + U

Thus, the total cost of the algorithm is{
M(2n+ k) ≤ 2M(n) +M(k) + 2M(n+ 1) + 25n+ 10k − 12 1 ≤ k ≤ n− 1

M(3n) ≤ 3M(n) + 2M(n+ 2) + 35n− 12 n ≥ 2

We list now some remarks about the Five-way recursion.

• Recall table 2.1. We have that using the Five-way recursion algorithm,
the product between two 120-bit polynomials can be done using 10438
operations with a depth equal to 130. This is precisely the drawback
of the interpolation technique. Even if the number of operations can be
considerably improved, the depth prevents an high level of parallelization
and thus the speed of execution.

• During the analysis of the algorithms, it has been taken into account the
possibility of considering new set of points such as {0, 1, t, t + 1, t2, t2 +
1, t2 + t+ 1}. No one of the set considered leaded to an improvement.

• In [19, Section 3.1], some improvements are proposed. Some experiments
show that the Five-way recursion algorithm and its improvements are the
best ones for products involving polynomials with more than 128 bits.

2.3.4. Cenk – Negre – Hasan
In [21], Cenk, Negre and Hasan suggest a new algorithm that takes the advan-
tage of the Projective Lagrange Interpolation. It does not lead to any improve-
ment for degrees of practical interest, instead, it is very useful to devise better
upper bounds.

Since an interpolation technique requires a field bigger than F2, authors use
F4. Since we have seen in chapter 1 that the representation could be non unique,
we explicitly say that we build F4 as the quotient F4[z]/〈f(z)〉 with f(z) =
z2 +z+1. Therefore, from now on, α will be a root of f(z), thus, respecting the
relation α2 + α + 1 = 0. Moreover we want now to distinguish multiplications
between polynomials in F2[t] and multiplications between polynomials in F4[t].
We will denote the first ones as M2(n) and the second ones as M4(n).

The algorithm by Cenk, Negre and Hasan is called 3-way split and uses
the same split and the same substitution of the Five-way recursion. Given two
3n-bit polynomials

F = f0 + f1t+ . . .+ f3n−1t
3n−1

and G = g0 + g1t+ . . .+ g3n−1t
3n−1

let

F0 = f0 + f1t+ . . .+ fn−1t
n−1

F1 = fn + fn+1t+ . . .+ f2n−1t
n−1

and F2 = f2n + f2n+1t+ . . .+ f3n−1t
n−1
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doing the same for G, and rewrite F and G as

F = F0 + F1t
n + F2t

2n

and G = G0 +G1t
n +G2t

2n.

Define tn = x and rewrite F and G as

F = F0 + F1x+ F2x
2

and G = G0 +G1x+G2x
2.

Thefore, the result from the multiplication of F and G will be as follows:

H = F ·G
= (F0 + F1x+ F2x

2) · (G0 +G1x+G2x
2)

= H0 +H1x+H2x
2 +H3x

3 +H4x
4.

In order to apply the Projective Lagrange Interpolation, we use F4 as the set of
values for the evaluation of interpolating points.

H(0) = F0G0

H(1) = (F0 + F1 + F2)(G0 +G1 +G2)

H(α) = (F0 + F2 + α(F1 + F2))(G0 +G2 + α(G1 +G2))

H(α+ 1) = (F0 + F1 + α(F1 + F2))(G0 +G1 + α(G1 +G2))

H(∞) = F2G2

Note that the formulae for H(α) and H(α+1) are correct when n is odd. When
n is even, we just exchange the formulae. At this point we just need to write
the Projective Lagrange Interpolation formula:

H = H(0)
(x+ 1)(x+ α)(x+ α+ 1)

α(α+ 1)
+H(1)

x(x+ α)(x+ α+ 1)

(1 + α)α

= H(α)
x(x+ 1)(x+ α+ 1)

α(α+ 1)
+H(α+ 1)

x(x+ 1)(x+ α)

(α+ 1)α

= H(∞)x(x+ 1)(x+ α)(x+ α+ 1).

Similar to the Five-way recursion, we get the same denominator for all the terms
but now we have even more. In fact, α was the root of f(z), i.e. α2 +α+ 1 = 0
and this means that α2 + α = 1. With an easy simplification, we get

F ·G =
(
H(0) + xH(∞)

)
(1 + x3)

+
(
H(1) + (1 + α)(H(α) +H(α+ 1))

)
(x+ x2 + x3)

+ α
(
H(α) +H(α+ 1)

)
x3 +H(α)x2 +H(α+ 1)x.

(2.21)

The cost evaluation is

M2(3n) ≤ 2M4(n) + 3M2(n) + 29n− 12.
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In [19] is described an improvement. Using the following relations

H(α) =
(
F0 + F2 + α(F1 + F2)

)(
G0 +G2 + α(G1 +G2)

)
= C0 + αC1

H(α+ 1) =
(
F0 + F1 + α(F1 + F2)

)(
G0 +G1 + α(G1 +G2)

)
= (C0 + C1) + αC1

it is possible to redefine (2.21).

F ·G = H(∞)x4 +H(0)

+
(
H(0) +H(1) + C1

)
x3

+
(
C0 +H(1) + C1

)
x2

+
(
H(∞) +H(1) + C0

)
x.

(2.22)

Therefore, the cost evaluation is refined to{
M2(3n) ≤ 3M2(n) +M4(n) + 20n− 5

M4(3n) ≤ 5M4(n) + 56n− 19
(2.23)

Note that we can solve the second recursion with lemma 2.1 which gives

M4(n) ≤ 30.25n1.46 − 28n+ 4.75.

By substituting this inequality in the first one of (2.23), we obtain

M2(3n) ≤ 3M2(n) + 30.25n1.46 − 8n− 0.25. (2.24)

We need one more lemma to solve it and get the final upper bound for the 3-way
split algorithm.

Lemma 2.2 (from the Master Theorem). Let a, b and i be positive integers.
Let n = bi, a = b, a 6= 1 and δ 6= 1. The solution to the inductive relation{

r1 = e

rn = arn/b + cn+ fnδ + d

is

rn =

(
e+

fbδ

a− bδ
+

d

a− 1

)
n− nδ

(
fbδ

a− bδ

)
+ cn logb n−

d

a− 1
.

Proof. It is just a calculation as in the proof of lemma 2.1.

Finally, we simply apply lemma 2.2 to the inequality (2.24), obtaining

M2(n) ≤ 15.125n1.46 − 14.25n− 2.67n log3 n+ 0.125.
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2.4. Improvements of upper bounds

We have seen in subsection 2.3.1, in particular in table 2.2, that the upper
bound for an algorithm of practical interest is O(n1.58). Moreover, we have just
seen that the algorithm (2.22) improves the estimate to O(n1.46). We are going
to see that a refinement of the 3-way split algorithm can lead to better upper
bounds.

2.4.1. A new algorithm
We take d a non negative integer and the factors F and G of the form

F (t) =

2d−1∑
i=0

Fi(t)t
in with Fi ∈ F2[t], degFi ≤ n− 1

In order to simplify notation, given a factor F (t) of the above form, we define

F̃ (x) =

2d−1∑
i=0

Fi(t)x
i

We are now ready to suggest a new efficient algorithm.
Let’s start with an observation. There is an interesting connection between

x2
d

+ x and Lagrange polynomials, indeed, we can prove the following three
equalities:

1. l0(x) =
x2

d

+ x

x
= x2

d−1 + 1

2. lαi(x) =
x2

d

+ x

x+ αi
i = 0, 1, . . . , 2d − 2

3. l∞ = x2
d

+ x = x(x2
d−1 + 1) = x · l0(x)

We now manipulate the interpolation law as follows:

H̃(x) = H̃(0) · l0(x) +

2d−2∑
i=0

H̃(αi) · lαi(x) + H̃(∞) · l∞(x)

H̃(x) = H̃(0) · l0(x) +

2d−2∑
i=0

H̃(αi) · lαi(x) + xH̃(∞) · l0(x)

H̃(x) = H̃(0) · (1 + x2
d−1) +

2d−2∑
i=0

H̃(αi)
x2

d

+ x

x+ αi
+ xH̃(∞) · (1 + x2

d−1)

reaching the following state

H̃(x) = (1 + x2
d−1)(H̃(0) + xH̃(∞)) +

2d−2∑
i=0

H̃(αi)
x2

d

+ x

x+ αi
(2.25)
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Notice that fractions in of Equation (2.25) are Lagrange polynomials of F×
2d
.

Using the naive division algorithm, we obtain

lαi(x) =
x2

d

+ x

x+ αi
=

2d−1∑
j=1

(αi)(j−1)x2
d−j (2.26)

and replacing equation (2.26) in (2.25), we get

H̃(x) = (1 + x2
d−1)(H̃(0) + xH̃(∞)) +

2d−2∑
i=0

H̃(αi)

2d−1∑
j=1

αi(j−1)x2
d−j

H̃(x) = (1 + x2
d−1)(H̃(0) + xH̃(∞))︸ ︷︷ ︸

SA

+

2d−1∑
j=1

2d−2∑
i=0

αi(j−1)H̃(αi)

x2
d−j

︸ ︷︷ ︸
SB

(2.27)
We will now discuss the costs of this algorithm.

Consider SA: it will always be the same in every field F2d . The cost of the
operations in SA is:

• M2(n): multiplication H̃(0) = F0G0

• M2(n): multiplication H̃(∞) = F2d−1G2d−1

• n− 1: sum H̃(0) + xH̃(∞)

• 0: sum (1 + x2
d−1)(H̃(0) + xH̃(∞))

The last estimate holds only for d 6= 1, otherwise polynomials H̃(0) + xH̃(∞)

and x(H̃(0) + xH̃(∞)) overlap on some bits and it becomes 2n− 1.
Consider now the sum SA + SB . The degree of SA is (2d + 2)n− 2, but its

structure lacks many powers. Indeed, SA is a polynomial that has two parts, the
first with powers whose degrees are running from 0 to 3n− 2, the second from
(2d−1)n to (2d+2)n−2. This is very useful because SB has powers with degrees
from n to (2d + 1)n− 2, so, SA and SB overlaps only in two parts. The first in
(3n−2)−n+1 = 2n−1 bits and the second in (2d+1)n−2−(2d−1)n+1 = 2n−1.
Since the cost of SA + SB does not depend on the field, it is

• 4n− 2: sum H(t) = SA + SB

Finally, consider the sums in SB . Supposing that the internal summation has
been computed, the external one is conducted over 2d − 1 polynomials. These
polynomials have powers from cn to cn+2n−2, with c = 1, . . . , 2d−1 and each
one overlaps the following on n− 1 bit. Therefore, the cost of the external sum
in SB is

• (2d − 2)(n− 1): sum S1x+ S2x
2 + · · ·+ S2d−1x

2d−1

We are left to compute the internal sums in SB . We will show that we do not
need to compute all H̃(αi).

Firstly, we start with showing that if i = 2qi′ for some q, then there will be
a connection between the coefficients of H̃(αi) and H̃(αi

′
).
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Theorem 2.1. If we take integers i and i′ such that i′ = 2qi for some q, then we
can express the coefficients of H̃(αi

′
) as a linear combination of the coefficients

of H̃(αi).

Proof. We have

H̃(αi) = F̃ (αi) · G̃(αi) =

2d−1∑
j=0

Fjα
ij

2d−1∑
k=0

Gkα
ik =

2d∑
l=0

 ∑
j+k=l

0≤j,k≤2d−1

FjGk

 (αi)l.

We define
Hl =

∑
j+k=l

0≤j,k≤2d−1

FjGk

thus

H̃(αi) =

2d∑
l=0

Hlα
il (2.28)

Remember that the field F2d can be viewed as vector space over F2. So, we
can write every power of α as a linear combination of the elements of the basis
{1, α, α2, . . . , αd−1}

αil =

d−1∑
b=0

cb,ilα
b (2.29)

and substitute (2.29) in (2.28), getting

H̃(αi) =

2d∑
l=0

Hl

d−1∑
b=0

cb,ilα
b =

d−1∑
b=0

 2d∑
l=0

Hlcb,il

αb

Take now H̃(αiw) with w > 1, from (2.29) we have

αilw = (αil)w =

(
d−1∑
b=0

cb,ilα
b

)w
.

In order to write coefficients of H̃(αiw) as linear combinations of the coefficients
of H̃(αi), we need the following equality:(

d−1∑
b=0

cb,ilα
b

)w
=

d−1∑
b=0

cb,ilα
bw (2.30)

Suppose it holds, then

H̃(αiw) =

2d∑
l=0

Hl

(
d−1∑
b=0

cb,ilα
b

)w
=

2d∑
l=0

Hl

d−1∑
b=0

cb,ilα
bw =

d−1∑
b=0

 2d∑
l=0

Hlcb,il

αbw.

Finally, using (2.29), we obtain

H̃(αiw) =

d−1∑
b=0

 2d∑
l=0

Hlcb,il

αbw =

d−1∑
b=0

 2d∑
l=0

Hlcb,il

 d−1∑
t=0

ct,bwα
t =
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=

d−1∑
t=0

d−1∑
b=0

ct,bw

 2d∑
l=0

Hlcb,il

αt

Let’s go back to (2.30): since we are in characteristic two, the equality holds
when w = 2q, for some q.

Secondly, we have to remember that α2d = α. So, for every H̃(αi), with
i 6≡ 0 (mod 2d − 1), there are at most d different evaluations of H̃ that can be
computed with H̃(αi). They are the following set:

Pi = {H̃(αi), H̃(α2i), H̃(α22i), . . . , H̃(α2d−1i)}

We can count the number of Pi for every algebraic extension of F2, because it
depends only on the degree d.

Theorem 2.2. The number of different Pi is

P = −1 +
1

d

d−1∑
k=0

gcd(2k − 1, 2d − 1)

In particular, if 2d − 1 is prime, P = (2d − 2)/d.

We define an action of the (additive) group Z on Z/(2d − 1)Z as k · i = 2ki.
Since d acts trivially, this action induces an action of Z/dZ on Z/(2d − 1)Z:
if O(i) is the orbit of i ∈ Z/(2d − 1)Z, then Pi = {H̃(αj) : j ∈ O(i)}. We
have a trivial orbit O(0) = {0} which would correspond to the set P0 = {H̃(1)}
which we will not count. In order to prove the Theorem 2.2, we need a couple
of additional lemmata.

Lemma 2.3 (Burnside’s Lemma). If the finite group G acts on the finite set
X, then the number of orbits is

1

#G

∑
g∈G

# Fix(g)

where Fix(g) = {x ∈ X : g · x = x}.

Proof. See [68, Chapter 3].

Lemma 2.4. Fix an integer N and let x ∈ Z/NZ. Then

#{y ∈ Z/NZ : xy = 0} = gcd(x,N)

Proof. Let Z = {y ∈ Z/NZ : xy = 0}: it is not empty since it includes 0 and
it is straightforward to verify that Z is an ideal in Z/NZ, thus Z = 〈d〉 where
d is a divisor of N and Z has N/d elements. Let D = gcd(x,N), ν = N/D and
define x̃ as the smallest positive integer such that x̃ ≡ x mod N . Since

νx =
N

D
x ≡ N x̃

D
≡ 0 mod N
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we have that ν ∈ Z. Viceversa, if y ∈ Z and ỹ is the smallest positive integer
such that ỹ ≡ y mod N , we have that ỹx̃ = kN for some integer k ≥ 0. Thus

ỹ
x̃

D
= k

N

D
= kν; i.e., ỹ

x̃

D
≡ 0 mod ν

Since x̃/D and ν = N/D are relatively prime, this implies ỹ ≡ 0 mod ν, i.e., ν
divides ỹ, thus y ∈ 〈ν〉. This shows that Z = 〈ν〉, hence that #Z = N/ν =
gcd(x,N).

Theorem 2.2. Fix k ∈ Z/dZ: we want to compute Fix(k) = {x ∈ Z/(2d − 1)Z :
k · x = x}. If x ∈ Fix(k) then 2kx = x, that is (2k − 1)x = 0; and, viceversa, if
(2k− 1)x = 0 then k ·x = x. Hence, Fix(k) = {x ∈ Z/(2d− 1)Z : (2k− 1)x = 0}
has, by the previous lemma, gcd(2k − 1, 2d − 1) elements.

The thesis now follows from Burnside’s Lemma.

Let’s sum up the costs of Equation (2.27).

• M2(n): multiplication H̃(0) = F0G0

• M2(n): multiplication H̃(∞) = F2d−1G2d−1

• n− 1: sum H̃(0) + xH̃(∞)

• 0: sum (1 + x2
d−1)(H̃(0) + xH̃(∞))

• 4n− 2: sum H(t) = SA + SB

• (2d − 2)(n− 1): sums S1x+ S2x
2 + · · ·+ S2d−1x

2d−1

• ∆1: evaluation F̃ (αi), G̃(αi)

• M2(n): multiplication H̃(1)

• PM2d(n): multiplications H̃(αi)

• ∆2: sums Si, i = 1, . . . , 2d − 1

Some of the previous costs are left blank, in particular ∆1 and ∆2, since the
evaluation of F , G and the sums Si depends on the polynomial used to generate
the field F2d . Roughly speaking, we can say that ∆1 = An and ∆2 = B(2n−1),
obtaining the following estimation:

M((2d−1 + 1)n) ≤ 3M2(n) + PM2d(n) + (2d + 3 +A+ 2B)︸ ︷︷ ︸
Q1

n+ (−1− 2d −B)︸ ︷︷ ︸
Q2

M((2d−1 + 1)n) ≤ 3M2(n) + PM2d(n) +Q1n+Q2 (2.31)

Now, we want to apply the following result.
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Theorem 2.3 (Master Theorem). Let a and b be positive real numbers with
a ≥ 1 and b ≥ 2. Let T (n) be defined by

T (n) =

{
aT
(⌈n

b

⌉)
+ f(n) n > 1

d n = 1

Then

1. if f(n) = Θ(nc) where logb a < c, then T (n) = Θ(nc) = Θ(f(n)),

2. if f(n) = Θ(nc) where logb a = c, then T (n) = Θ(nlogb a logb n),

3. if f(n) = Θ(nc) where logb a > c, then T (n) = Θ(nlogb a).

The same results apply with ceilings replaced by floors.

Proof. See [64, Section 5.2].

We cannot apply theorem 2.3 to (2.31) since both M2 and M2d appear: we
will have to move everything down to F2-operations.

2.4.2. Bit operations and asymptotic estimation

As seen in subsection 2.4.1, we need to evaluate an F2d -polynomial F̃ of degree
2d− 1. Recall that the field F2d can be seen as an F2-vector space of dimension
d. Thus, for all i, we can evaluate F̃ (αi) as follows:

F̃ (αi) =

d−1∑
j=0

Fjα
j Fj ∈ F2[t]

To compute H̃(αi) we need to multiply the two evaluations of F̃ and G̃.

H̃(αi) = F̃ (αi)G̃(αi) =

d−1∑
j=0

Fjα
j
d−1∑
k=0

Gkα
k =

2d−2∑
l=0

 ∑
j+k=l

0≤j,k≤d−1

FjGk


︸ ︷︷ ︸

Hl

αl

We want now to compute Hl. We take care only of multiplications. If we
look at Hl, we note that it is formed by the sum of the products between Fj
and Gk such that j + k = l. We separate the two cases: j = k and j 6= k. If
j = k, we need the multiplication FjGj . If j 6= k, we need two multiplications,
which are FjGk and FkGj . For the latter, we exchange one multiplication with
four sums, since charF2d = 2 and we have already computed FjGj .

FjGk + FkGj = (Fj + Fk)(Gj +Gk) + FjGj + FkGk

The required multiplications are

d+

(
d

2

)
= d+

d(d− 1)

2
=
d2 + d

2
.
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Now, we can write the estimation for bit calculations over F2d , assuming a
generic estimate for the number of bit additions

M2d(n) ≤ d2 + d

2
M2(n) + Cn+D (2.32)

Substituting (2.32) in the estimation (2.31), we obtain a formula which we can
apply theorem 2.3 to:

M2((2d−1 + 1)n) ≤ 3M2(n) + P

(
d2 + d

2
M2(n) + Cn+D

)
+Q1n+Q2

M2((2d−1 + 1)n) ≤
(

3 +
P (d2 + d)

2

)
M2(n) + (Q1 + CP )n+ (Q2 +DP )

Applying the third case of theorem 2.3, we get:

M2(n) = Θ
(
nE
)
, where E =

log
(

3 + P (d2+d)
2

)
log(2d + 1)

If we compute the exponent E for 1 ≤ d ≤ 20, it is not difficult to see that E
decreases from 1.58 to 1.17.

Example 2.5 (Case d=2.). Using Equation (2.27), we are able to find a better
best case bound than that presented in [19] (see CNH 3-way split algorithm
(24)). Indeed,

• M2(n): multiplication H̃(0) = F0G0

• M2(k): multiplication H̃(∞) = F2G2

• 2k: sums S1 = F0 + F2, S2 = G0 +G2

• 2k: sums S3 = F1 + F2, S4 = G1 +G2

• 2n: sums S5 = S1 + F1, S6 = S2 +G1

• 0: multiplications P1 = αS3, P2 = αS3

• 0: sums S7 = S1 + P1, S8 = S2 + P2

• M2(n): multiplication H̃(1) = S5S6

• M4(n): multiplication H̃(α) = S7S8(= C0 + C1α)

• 2n− 1: sum S9 = H̃(1) + C1

• 2n− 1: sum S10 = S9 + C0

• 2n− 1: sum S11 = S10 + C1

• 2(n− 1): sums S12 = S9x
3 + S10x

2 + S11x

• n− 1: sum S13 = H̃(0) + xH̃(∞)

• 0: sum S14 = (1 + x3)S13
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• 4n− 2: sum H = S14 + S12

Summing all the costs, we obtain{
M(2n+ k) ≤ 2M2(n) +M2(k) +M4(n) + 15n+ 4k − 8 n/2 ≤ k ≤ n
M(3n) ≤ 3M2(n) +M4(n) + 19n− 8 k = n

(2.33)
But this is not enough. In order to get the best case bound, we have to

compute the costs for the same algorithm that uses polynomials over F4. In this
case, we cannot deduce the expression for H̃(α + 1) from H̃(α). In addition,
from equation

α(a0 + a1α) = a1 + (a0 + a1)α

we have that the cost of the multiplication by α is 1, and from

(a0 + a1α) + (b0 + b1α) = (a0 + b0) + (a1 + b1)α

we have that the cost of the sum between two polynomials is doubled. Thus,

• M4(n): multiplication H̃(0) = F0G0

• M4(n): multiplication H̃(∞) = F2G2

• 4n: sums S1 = F0 + F1, S2 = G0 +G1

• 4n: sums S3 = F1 + F2, S4 = G1 +G2

• 2n: multiplications P1 = αS3, P2 = αS4

• 4n: sums S5 = S1 + P1, S6 = S2 + P2

• 4n: sums S7 = S5 + S3, S8 = S6 + S4

• 4n: sums S9 = S1 + F2, S10 = S2 +G2

• M4(n): multiplication H̃(1) = S9S10

• M4(n): multiplication H̃(α) = S7S8

• M4(n): multiplication H̃(α+ 1) = S5S6

• 8n− 4: sum S13 = H̃(1) + H̃(α) + H̃(α+ 1)

• 10n− 5: sum S14 = H̃(1) + H̃(α+ 1) + α(H̃(α) + H̃(α+ 1))

• 4n− 2: sum S15 = H̃(1) + H̃(α) + α(H̃(α) + H̃(α+ 1))

• 4(n− 1): sums S16 = S13x
3 + S14x

2 + S15x

• 2(n− 1): sum S17 = H̃(0) + xH̃(∞)

• 0: sum S18 = (1 + x3)S17

• 8n− 4: sum H = S18 + S16
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The sum of the costs in F4 is

M4(3n) ≤ 5M4(n) + 58n− 21

We observe that this is not good as

M4(3n) ≤ 5M4(n) + 56n− 19 (2.34)

which can be found in [19]. Applying lemma 2.1 to (2.34), we get

M4(n) ≤ 30.25n1.46 − 28n+ 4.75

Then, we substitute the preceding inequality to the second of (2.33) obtaining

M2(3n) ≤ 3M2(n) + 30.25n1.46 − 9n− 3.25

Finally, to get the best case bound, we apply lemma 2.2:

M2(n) ≤ 15.125n1.46 − 3n log3 n− 15.75n+ 1.625.
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3. Real case implementation

Quantum computers are no longer ideas but concrete devices. They could rep-
resent a threat for public key cryptography, therefore in 2017 NIST initiated
a process to evaluate and standardize a number of quantum-resistant crypto-
graphic algorithms. Some of these algorithms handle large size keys that may
cause a reduction of performances in specific contexts. In this chapter, we are
going to investigate the possibility to speed up the key-pair generation phase
of McEliece cryptosystem. Taking the advantage of the improved polynomial
multiplication in field of characteristic 2 developed in chapter 2, remodelling ma-
trices and handling cache in a clever way, it is possible to speed up the generation
phase of private and public keys, paying a negligible amount of memory [22].

3.1. Post-Quantum Cryptography

Quantum computing theory and even more quantum computers represent a
threat for public key cryptography. Nowadays, they have been built but they
do not still have enough qubits to actually break a cipher like RSA implemented
with the recommended bit security level. In addition, key establishment schemes
and digital signature algorithms are not secure [55] anymore. Therefore, in the
last years, researchers have suggested new cryptographic algorithms which are
resistant to quantum and classic computers, and we will refer to them as Post-
Quantum Cryptography (PQC).

The National Institute of Standards and Technology (NIST) published a call
for proposals in order to find new good standards for Post-Quantum Cryptogra-
phy. Currently, we reached the third round, with seven finalists: four Public-key
Encryption and Key-establishment Algorithms, namely Classic McEliece (code-
based), CRYSTALS-KYBER (Learning With Errors), NTRU (lattice-based),
SABER (Module Learning With Rounding) and three Digital Signature Al-
gorithms, namely CRYSTALS-DILITHIUM (lattice-based), FALCON (lattice-
based) and Rainbow (multivariate). Moreover, there are eight Alternate Can-
didates, divided as follows: five Public-key Encryption and Key-establishment
Algorithms called BIKE (code-based), FrodoKEM (lattice-based), HQC (code-
based), NTRU Prime (lattice-based), SIKE (supersingular curves isogeny), and
three Digital Signature Algorithms, i.e. GeMSS (multivariate), Picnic (zero-
knowledge), SPHINCS+ (hash-based). Despite they were well known, the post-
quantum cryptographic algorithms had to address a number of issue [66]. For
example, the size of the keys were not negligible and post-quantum algorithms
were not optimized for real-time applications and resource-constrained devices.

We will focus on Classic McEliece, a promising algorithm that reached the
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third round of the NIST Post-Quantum Cryptography Standardization Pro-
cess. This algorithm is based upon a public key cryptosystem by Robert J.
McEliece [57] but has to address the problem of its large key sizes. Notice that
the key generation process takes a non-negligible time if compared with the
encryption/decryption process. One may think that there is no need to speed
up the key generation but, for instance, think about generating millions of keys
for the citizens of some State. In such a use case, a simple optimization may
positively affect the whole key generation process. When generating public and
private keys of Classic McEliece cipher, the most important operation is poly-
nomial multiplication. The aim in the following sections is to exploit such speed
ups, but not only, to improve the performances of the key-pair generation phase.

3.2. Classic McEliece

In this section, we briefly recall the code-based Classic McEliece cryptosystem,
that we will optimize in what follows.

Let n be the length of the code involved in our cryptosystem and t ≥ 2 its
error-correction capability. We consider a finite field Fq ≡ F2[z]/〈f(z)〉, where
q = 2m and m ∈ N, such that n ≤ q, mt < n and f(z) is a monic irreducible
polynomial in F2[z] of degree m, defining a representation of the finite field.
This defines the code dimension k = n−mt.

• Key generation phase:

1. select g(x) ∈ Fq[x], a random monic irreducible polynomial;

2. select (α1, α2, . . . , αn), n random distinct elements of Fq;

3. compute the t×n matrix Ĥ, where Ĥij =
αi−1j

g(αj)
, for i = 1, . . . , t and

j = 1, . . . , n;

4. compute the mt×n matrix H, replacing Ĥij = a0 + a1x+ a2x
2 + . . .

with its binary representation a0, a1, a2, . . .;

5. reduce H in the standard form H = [In−k | T ], through a binary
Gaussian elimination; if it is not possible return to the first step;

6. the (n−k)×k matrix T is the public key, while (g(x), α1, α2, . . . , αn)
is the private key.

• Encryption phase:

1. select a binary message e, which is a column vector of length n and
weight t;

2. construct H = [In−k | T ] using the public key;

3. compute the ciphertext c = He.

• Decryption phase:

1. define v = (c, 0), appending k zeroes to c;

2. compute the syndrome s = Hv and transform it in a polynomial of
Fq[x];
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3. find the value e, using s as input in the Berlekamp-Massey algo-
rithm; if w(e) = t and c = He, e is the right message, otherwise the
algorithm failed.

Notice that the algorithm could fail. Probabilistic cryptosystems are com-
mon in Post-Quantum cryptography. Another famous example is NTRU.

3.3. Software Optimization

In what follows, we present new software optimizations that make use of the
following technologies: CLMUL set instruction extension [37, 41], advanced poly-
nomial multiplication and a parallel implementation for the public key genera-
tion.

Classic McEliece has been proposed as a candidate to the NIST Post-Quan-
tum Cryptography with four different software implementations; due to its bet-
ter performances, the AVX implementation will be used as basis for the opti-
mizations we will develop in what follows.

Experimental results show that the big bottleneck of this cipher is the key-
pair generation. This is due to the high dimension of the public key which, in
this parameters’ configuration, reaches almost 1.4MB: compared to a 2048 bit
RSA key, it is clear why this cipher is not recommended in a lightweight environ-
ment. On the other hand, the encapsulation and decapsulation phases appear
to be very efficient, providing execution times that are in average lower than a
millisecond. Due to the previous insight, we concentrate our improvements only
on the key-pair generation. We identified in this phase five different operations
that could be strongly optimized, in order to obtain a global speedup: poly-
nomial multiplication (private key), Gaussian reduction (private key), Gaussian
reduction (public key), computation of a linear map (public key) and application
of the linear map (public key).

3.4. The private key

In McEliece cryptosystem the private key is a Goppa code; in mceliece8192128
this code is represented by an irreducible Goppa polynomial of degree t = 128,
obtained by a Gaussian reduction of a randomly defined 129×128 matrix, initial-
ized by the multiplication of two elements in F(213)128 , expressed in polynomial
form.

We start by optimizing the polynomial multiplication in F(213)128 , which
relies on the multiplication of their coefficients in F213 , represented again as
polynomials over F2. This means that we have to optimize two different mul-
tiplications, namely, gf_mul_13 for F213 and gf_mul_13_128 for F(213)128 . The
gf_mul_13 multiplication takes as an input two polynomials that can be repre-
sented in software in a very efficient way as 16-bit integer values. The speedup
has been obtained via the CLMUL and the PCLMULQQD instructions [37, 41]. We
can perform the operation in 5 instructions instead of the almost 50 required
by the original algorithm.

The gf_mul_13_128 multiplication requires a much more complex optimiza-
tion, involving the usage of advanced multiplication algorithms as the one de-
scribed in [29]. This algorithm, applied to the mceliece8192128 parameters,
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generates a total of 11309 operations, 3888 of which are multiplications and
7420 summations.

For a software implementation a problem needs to be addressed: the inter-
mediate results, produced during the computation, need to be stored in memory
and retrieved to calculate the subsequent intermediate results. Since the mul-
tiplications is repeated 127 times, we get some advantages in environment with
cache memory.

The needed modular reduction on the 25-bit polynomials we get as result for
gf_mul_13 cannot be improved, but since we store all 11309 intermediate re-
sults of the products, we can avoid to reduce at all: the result of a multiplication
on F213 will never be the input of another multiplication but only of summa-
tions, never growing over 25 bits. If we double the memory requirements for
memorizing the intermediate results, the modular reduction of gf_mul_13_128
can be almost completely removed. It remains necessary only for the final 255
polynomials that represent the coefficients of the gf_mul_13_128’s result. Af-
ter initializing the matrix with the polynomial multiplication, Classic McEliece
reduces it by means of the Gaussian elimination. Our optimization is based on
two aspects, namely that the reduction’s algorithm can be substituted with a
better one like PLU, PLUQ or CUP decomposition [42] and that the reduction’s
basic operations can be optimized (therefore, we are again using our multipli-
cation optimization). For the first aspect, the M4RIE library is the perfect
tool. It offers three different Gaussian reductions: naive, ple, newton-john and,
among them, the one performing better for small matrices is naive. The al-
gorithm used for the multiplication in M4RIE is very inefficient compared to
gf_mul_13, so we substituted it with gf_mul_13. The combination of the two
techniques generates a huge speedup.

3.5. The public key

The data structures used in the public key’s creation are two matrices. For
mceliece8192128 the main one is a 1664×128 matrix (mat), and the second one
is a 1664×26 (ops), both of which hold 64-bit integer values. The algorithms we
want to optimize share a basic logic in common: every operation performed on
the data structures is a mask application, obtained with a logical AND operation
(&) between one element of the matrix and one temporary element (the mask).
Another common feature is the low dependency between operations and data;
this means that we can produce an efficient parallel implementation of the same
algorithms. These common features allow a simple and similar optimization
on all of the targeted operations and, with a good memory handling, these
improvements can grant a huge speedup in the computation of the public key.

Changing the implementation with a parallel one, may change the memory
access pattern of the algorithm; rearranging rows and columns can drive to
very different performances. In order to obtain a good speedup, we need to
modify the matrices’ memory layout to allow efficient access in their parallel
implementation. Gaussian reduction and linear map computation use only the
first 26 columns of mat and the entire ops. The row access on these matrices is
efficient, the one in columns is not. The application of the linear map uses the
last 102 columns of mat and the entire ops. Both row and column accesses to
mat are efficient because now the number of columns is not as small as before.
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The Gaussian elimination algorithm performs an iterative reduction of a
sub-matrix in order to bring the initial matrix into echelon form. The sub-
matrix reduction is a complete parallel task (100% capable, without depen-
dencies among operations and data), which can be implemented efficiently with
multiple threads computation. The synchronization step slows down the parallel
computation, but this is unavoidable.

All the masks’ applications depend entirely on one single column i. If this
column is computed before the other 25 ones and the intermediate masks are
saved in temporary memory, we can apply the masks to the other 25 columns
completely in parallel without any synchronization among the columns. This
opens up to a good parallel implementation that heavily differs from the clas-
sical parallel Gaussian implementation. Every thread accesses a portion of the
25 columns and independently applies the masks to the matrix. To have an
efficient access to the columns we apply a transposition to the matrices. For the
implementation, we choose the OpenMP since it offers the thread-pool concept
and allows a fast and easy usage. We opt for a parallel section that encloses the
entire algorithm, every thread works only on a subset of columns (the dimension
is determined at runtime) and the threads synchronize on each, outermost, it-
eration by a #pragma omp barrier. The column, i, that generates dependency
among the other columns, needs to be computed in a non parallel section and
this can be realized with the #pragma omp single directive. The masks’ ap-
plications work in parallel where every thread applies the masks to its columns
subset. In the linear map’s creation the mask is based on a read-only data and
does not depend on previous values, therefore the application can be executed
on all 26 columns without any synchronization construct. The implementation
follows that for the Gaussian reduction; the entire algorithm is enclosed with a
parallel region, every thread processes a subset of columns, but this time no syn-
chronization is required, allowing the parallel computation to run at full speed.
The last step of the public key creation is the linear map’s application to the
matrix mat.

The map application’s complexity is higher than any other operation in the
cipher and, thanks to the 100% parallel implementation, we expect a great per-
formance boost. The parallelization is more or less the same as before, a unique
parallel region that encloses the entire algorithm, with no synchronization be-
cause the mask depends on read-only data. The main problem is the temporary
array that we need to store (one_row). In a sequential implementation we have
only one array but, in parallel, we need one array for each thread. The memory
cost of defining a new array for every thread is too high and so it is not afford-
able. A smarter approach is to use the first 26 columns of mat as a buffer to
hold the intermediate values of one_row.

The memory poses another problem. At this point ops is not in the orig-
inal form, but in its transposed one (ops_t). However, the original algorithm
performs access on ops’s rows, which are inefficient on ops_t. To cope with
this issue we have to transpose again the rows to their original form. In or-
der to do that, we transpose ops_t’columns onto mat_t’rows. Thanks to this
unusual transformation all memory accesses become efficient and the parallel
implementation can run at full speed.
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3.6. Testing and results

In this section, we test our improvements to see to which extent we can speedup
the original implementation. The test machine is a Dell XPS 15 9560, with the
following specifications:

• CPU: Intel i7-7700HQ, 2.8GHz to 3.8GHz, 4 Core;

• RAM: 8GB 2400MHz;

• GPU: Nvidia 1050 (not used by the cipher);

• OS: Ubuntu 19.10 virtualized with VMWare on a Windows 10 host system.

All tests have been conducted with the better performance mode offered
by the machine, using the electrical grid instead of the battery, as the power
source. The test of a specific optimization has been repeated many times, to
compensate variations on the machine status.

As illustrated by the specifications of the XPS machine, the CPU has 4 phys-
ical cores and respectively 8 virtual threads. As stated before, the parallelism
can be a great tool, but it requires a very careful setup. In theory, we could run
the parallel optimizations with 8 different logical threads (as the CPU allows),
but virtual threads share the same physical cores. This means that the threads
will be in conflict for the same hardware resources, thing that, in cryptography,
may become quite a big problem. In this scenario, the waiting imposed to the
threads would dramatically slow down the computation, instead of speeding it
up. With this in mind, the better configuration is to use the same amount of
logical threads as the number of physical cores the CPU contains.

One can improve even further with the binding of every logical thread to
a specific core: during the entire computation the thread will never switch to
another core, reducing the management overhead. Thanks to these considera-
tions, we have conducted all the following tests with 4 logical threads instead
of 8. This also means that the obtained results can be further improved with
a more powerful CPU. The optimization’s performances are highly bounded to
the hardware and configuration uses for the computation, a good mix of the two
can deliver a great speedup as reported in the following test.

3.6.1. Private Key
Polynomial multiplication. This operation has been optimized in its two
component gf_mul_13 and gf_mul_13_128. Thanks to PCLMULQQD, we can re-
move almost 40 machine instructions from gf_mul_13; this translates to a very
fast multiplication, which allows a good speed up on the private key computa-
tion since gf_mul_13 is used also in the Gaussian reduction. To evaluate this
optimization, we perform 10 millions multiplications and we report the results
in table 3.1. The result of this test gives an idea on how much we gain from
this dedicated, machine instruction, that directly executes a complex task. We
have a reduction in the computation times of almost an order of magnitude.

The gf_mul_13_128’s optimization gives a speedup of approximately 60%.
The following test concerns the timing of the entire matrix initialization phase.
This means that a single test repeats the gf_mul_13_128 operation 127 times.
Table 3.2 reports the performance of 4000 consecutive test.
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Table 3.1: Computation times of gf_mul_13 over 10.000.000 tests

gf_mul_13 Original Optimized

Total time (msec) 84,356 3,634

Table 3.2: Performance comparison of the entire polynomial multiplication
phase over 4000 tests.

Percentile Original (msec) Optimized (msec) Speedup (%)

25% 3,149 1,271 59,63
50% 3,211 1,281 60
75% 3,415 1,299 61,96

Gaussian reduction. Thanks to the very fast polynomial multiplication, the
advanced reduction algorithm can achieve its maximum performance, with a
speedup of almost 75%. This represents a huge increment of performance for
the private key generation since the Gaussian reduction constitutes almost 67%
of its computation time. Table 3.3 reports the results of 4000 tests, where the
same matrix has been reduced with the two different implementations.

Table 3.3: Private key Gaussian reduction comparison over 4000 tests.

Percentile Original (msec) Optimized (msec) Speedup (%)

25% 8,201 2,303 71,91
50% 8,320 2,313 72,20
75% 9,005 2,334 74

3.6.2. Public Key
The public key’s test can be negatively affected by the machine status and
configuration. Therefore, we conducted the following tests in the most stable
and quiet environment possible, with no other applications running (other than
the related OS).

Gaussian reduction. This parallel optimization is particularly difficult be-
cause of all the synchronization required to correctly execute the elimination
algorithm; also, for the same reason, the performance speedup is not as relevant
as the one obtained on the optimizations of the map creation and application.
To allow a fast execution of this optimization, a change in the memory layout
may be necessary. In table 3.4, the timings of the two versions are summarized;
it is easy to see that this operation is very complex to optimize and even with
a parallel implementation, the speedup barely reaches the 28%. The problem
related to the machine status can be seen in the maximum computation time
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registered, with 90,698 msec for the original implementation and 115,134 msec
for the optimized one.

Table 3.4: Public key Gaussian reduction comparison, over 4000 tests.

Percentile Original (msec) Optimized (msec) Speedup (%)

25% 37,329 28,151 24,58
50% 39,898 28,586 28,35
75% 43,073 35,103 18,50

Linear map creation. Thanks to the memory layout modifications, this op-
eration can be executed 100% in parallel without any synchronization, thus pro-
ducing very good performance. With these properties, the speedup is directly
related with the number of cores/threads at disposal and having zero synchro-
nization means to have a close to zero management overhead, so the threads
can run at full speed producing good overall performance. Table 3.5 reports the
timings of 4000 tests, the results indicate that this is the best optimization in
terms of percentage increment, with a peak of almost 80% speedup.

Table 3.5: Generation of the linear map, over 4000 tests.

Percentile Original (msec) Optimized (msec) Speedup (%)

25% 10,877 2,380 78
50% 11,117 2,398 78,42
75% 12,092 2,468 79,60

Application of the linear map. The same considerations made for the pre-
vious operation can be also applied to this one: full parallel implementation
with no synchronization is required. As reported in table 3.6, the test indicates
a lower percentage increment, but, since this operation is by far more complex
and costly than all the others, the overall decrease of computation time is defi-
nitely the best one. Thanks to this optimization, the entire key-pair generation
highly reduces its impact on the global execution time.

Table 3.6: Application of the linear map, over 4000 tests.

Percentile Original (msec) Optimized (msec) Speedup (%)

25% 62,112 17,474 71,86
50% 63,216 17,624 72,12
75% 70,300 18,574 73,57
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3.6.3. Key-pair
We give a global review of the two implementations’ timings, indicating the
overall optimization’s performance and speedups. In table 3.7 we reported the
timings of 2000 sequential tests. The results indicate a global speedup of 55% on
the fourth quartile and this represents quite a good improvement: the execution
times are almost halved.

Table 3.7: Timings compare, over 2000 tests.

Private key generation

Percentile Original (msec) Optimized (msec) Speedup (%)

25% 12,201 4,599 62,30
50% 12,356 4,628 62,50
75% 13,421 4,675 65,16

Public key generation

Percentile Original (msec) Optimized (msec) Speedup (%)

25% 111,852 49,388 55,84
50% 115,142 51,385 55,37
75% 127,750 67,702 47

Key-pair generation

Percentile Original (msec) Optimized (msec) Speedup (%)

25% 185,268 98,963 45,70
50% 191,184 107,776 43,63
75% 212,542 118,116 55,57

3.6.4. Memory consumption
In order to have a good optimization, the additional memory requirements need
to be very low, to prevent the explosion of an already problematic parameter.
In this section, we give a brief overview of the memory consumption of every
defined optimization.

• Polynomial multiplication: the gf_mul_13’s optimization uses only
the PCLMULQDQ instruction, so no additional memory is required;
gf_mul_13_128 requires the memorization of the entire intermediate re-
sults produced by the multiplication technique. In this configuration the
intermediate results are 11309 25-bit polynomials (remember the removal
of the modulo reduction); every polynomial is represented with a 32-bit
variable, meaning a total memory consumption of about 44KB;

• Private-key Gaussian reduction: this optimization is based on the
naive reduction function offered by the M4RIE library. Since the memory
requirement for this optimization depends entirely on a third party library,
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we do not include this quantity into the total count, because it could
change basing on the library’s version or future modification;

• Public-key Gaussian reduction: this optimization requires the mem-
orization of two different columns (holding the masks which generate the
dependencies) from the mat matrix. The matrix has 1664 row and every
element is a 64-bit variable, therefore the additional memory required is
25KB.

• Computation of the linear map: no additional memory is required.

• Application of the linear map: thanks to the smart reuse of ops_t no
further memory is required.

The analysis shows that the total additional memory used by the optimiza-
tions is, approximately, 70KB, while the total amount of memory required by
mceliece8192128 is 3.3MB (1.3MB for the public key memorization + 2MB for
the matrix used to compute the public key). The additional memory required
by the optimizations (excluding the M4RIE) is the 2% of the global memory re-
quired by Classic McEliece. At the end, the optimization’s evaluation is very
good: using almost 2% additional memory, we can halve the execution time
with a consumer CPU.
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Part II

Pre-image attack on SHA-1
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4. SAT

In this chapter, we are going to describe the satisfiability of a generic boolean
formula. The notion of satisfiability (SAT) was first introduced by Alfred Tarski
in the 1930s [11], but only in the 1960s a precise algorithm capable of solving a
satisfiability problem in a reasonable amount of time [28] appeared. The proof
that SAT is a NP-complete problem is due to Cook, in 1971 [24].

Although we are interested in using SAT for cryptanalysis, it can also be
used to model and solve problems in other fields such as the following ones.

• Hardware model checking: a model that checks automatically whether a
hardware design satisfies a given specification. SAT solvers have improved
the scalability of symbolic model checking, a technique that represents a
set of states and transition relations of circuits as a formula. Indeed, this
avoids the expensive enumeration of explicit states.

• Software systems: model to check dependencies among packages that con-
stitute a program. More precisely, SAT solvers are used to determine
whether a software configuration is safe or not. The dependencies among
packages are modeled using propositional logic. For example, package A
depends on package B and package C can be expressed by the clauses
(¬A ∨ B and ¬A ∨ C) [47]. SAT can also be used for installation opti-
mization. For example, it can be used to propose an installation with the
minimum number of packages or to reduce the amount of space on the
disk [47].

After giving a formal definition of the SAT problem, we describe Davis,
Putnam, Logemann, Loveland (DPLL) and Conflict-Driven Clause Learning
(CDCL), two of the many algorithms used to solve the SAT problem. Finally,
we will describe DIMACS, the widespread standard when implementing the
solving algorithms.

4.1. The problem

In order to give a formal definition of the boolean satisfiability problem, we start
by recalling the well known convention: 0 is the value for false and 1 for true.
In the following, there will be no other values.

Definition 4.1. A variable is an unknown truth value, so, its domain is {0, 1}.

This means that taking a generic variable x, it could assume only the value
0 or the value 1.
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As well as in algebra, we want now to define some operations in order to
combine variables. We are going to define just three of them because it is enough
in our discussion.

Definition 4.2. Let x1 and x2 two variables. We define the following three
operations.

• AND: we will use the symbol ∧ and we define x0 ∧ x1 = 1 if x0 = 1 and
x1 = 1, 0 otherwise.

• OR: we will use the symbol ∨ and we define x0 ∨ x1 = 0 if x0 = 0 and
x1 = 0, 1 otherwise.

• NOT: we will use the symbol ¬ and we define ¬x0 = 1 if x0 = 0 and
viceversa.

It table 4.1, we resume the complete evaluation of the three operations.

Table 4.1: evaluation of AND (∧), OR (∨) and NOT (¬).

x0 x1 x0 ∧ x1
0 0 0

0 1 0

1 0 0

1 1 1

x0 x1 x0 ∨ x1
0 0 0

0 1 1

1 0 1

1 1 1

x0 ¬x0
0 1

1 0

Sometimes each of the operations ∧, ∨, ¬ are called conjuction, disjunction
and negation respectively. In general, we can call each of them a connective.

At this time, we have variables and ways to combine them, so, we can now
give the definition [70] of what a formula is.

Definition 4.3. Every variable is a formula. If F1 and F2 are formulas then
F1 ∧ F2, F1 ∨ F2 and ¬F1 are formulas.

Moreover, the rules in definition 4.3 constitutes a minimal set in order to
build every logic formula.

It is trivial that for every formula using n variables, we have 2n possible
evaluation, corresponding to the possibility of assigning 0 or 1 to every variable.
We can easily see this through an example.

Example 4.1 (Formula). We take the formula (x0 ∨ x1) ∧ (x0 ∨ x2). We see
that there are 23 = 8 possible combinations and three of them evaluates the
formula to false: {x0 = 0, x1 = 0, x2 = 0}, {x0 = 0, x1 = 0, x2 = 1}, {x0 =
0, x1 = 1, x2 = 0}. It can be checked using rules in table 4.1.

We turn the above discussion in a formal way.

Definition 4.4. An assignment is a mapping from the variables to the values 0
or 1. This is denoted as {x0 = v0, x1 = v1, x2 = v2, . . .}, where xi are variables
and vi ∈ {0, 1}.
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We can now define the problem.

Problem 4.1 (Boolean SATisfiability). Given a formula, finding an assignment
such that the formula evaluates to 1, in this case we will say that the formula
is satisfiable.

The problem could be solved simply going through every possible solution,
but the computational time grows exponentially with respect to the cardinality
of the variables set.

Before describing the main approaches to solve the SAT problem, we intro-
duce a standard representation [70] of it.

Definition 4.5 (CNF formula, clauses, literals, pure literal). A boolean formula
F is in Conjunctive Normal Form (CNF) when it is written as

F = C0 ∧ C1 ∧ . . . Cm−1.

Ci are again formulas called clauses and must have the following form

Ci = li,0 ∨ li,1 ∨ . . . ∨ li,k−1,

where the li,j are literals, that is variables or variables negation:

li,j ∈ {x0, x1, . . . , xn−1} ∪ {¬x0,¬x1, . . . ,¬xn−1}.

Moreover, if a variable always occur in either affirmative or negative form in a
given CNF formula, we say that it is a pure literal.

It is widely accepted and a standard de facto that every formula has to be
transformed in CNF before trying to guess an assignment. Moreover, we remark
that standard input file for implementations has one clause per row with no ∨
connective and uses numbers instead of labels for variables [40]. We will go into
details in section 4.3.

4.2. Main solving algorithms

In literature, there is a wide range of solving techniques for SAT problem, but
many of them are refinements of two main approaches.

4.2.1. DPLL
The first we examine is Davis, Putnam, Logemann, Loveland (DPLL) algo-
rithm [28, 27]. It is based on backtracking, so, it goes basically through the
whole tree of solutions by iteratively rejecting inconsistent solutions.

DPLL is based on the usage of the following two procedures. Suppose that
a CNF form F is given.

1. Unit propagation. If there is in F a clause containing only one literal, we
simply choose the right assignment for the variable and propagate it, i.e.
we substitute the value in all other clauses of F .

2. Pure literal elimination. If there is a pure literal in F , we remove clauses
containing it. This is quite obvious, in fact, we can assign to the corre-
sponding variable the value that evaluates the pure literal to 1.
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Algorithm 1: Davis-Putnam-Logemann-Loveland
Input: F , a CNF formula
Output: SAT and A, a satisfying assignment otherwise UNSAT

1 A = ∅
2 Procedure DPLL(F , A):
3 if F = 1 then
4 return SAT and A

5 if F = 0 then
6 return UNSAT

7 if F contains a one literal clause then
8 add to A the assignment making literal true and propagate

9 if F contains a pure literal then
10 add to A the assignment making literal true and remove clauses

containing it
11 choose a variable a
12 assign a value to this variable
13 substitute such a value over F
14 return DPLL(F , A ∪ {a = 0}) ∨ DPLL(F , A ∪ {a = 1})

If we find an assignment of all variables such that F evaluates to true, we
can return it and say that the CNF is satisfiable, otherwise, we say that it is
unsatisfiable. The unsatisfiability is returned when we find a contradiction such
as x ∧ ¬x. We say that a conflict is detected and it is impossible to find an
assignment for F . A pseudo-code for DPLL can be found in algorithm 1.

We are going to show a little example of resolution using DPLL in order to
remark the importance of the two mentioned rules.

Example 4.2 (Satisfy CNF using DPLL). Find a satisfying assignment for the
following formula F .

F = (x0 ∨ x1 ∨ x2 ∨ x4)

∧ (x2 ∨ x3)

∧ (x2 ∨ ¬x3)

∧ (x1 ∨ ¬x2 ∨ x3)

∧ (¬x1 ∨ ¬x2 ∨ x3)

∧ (¬x0 ∨ x1 ∨ ¬x2)

∧ (¬x0 ∨ ¬x1 ∨ x2)

∧ x4
Note that F is already in CNF. In order to clarify the formula, each clause is in
a separate row.

• First of all, we see that the last clause is a unit clause, so, by applying
unit propagation rule, we set x4 = 1 and propagate its value in the whole
F .

• Then, ¬x0 becomes a pure literal, so, we set x0 = 0 in force of pure
elimination literal.
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• We have now to make a decision. We set x1 = 0.

• Another decision is unavoidable, so, we choose x2 = 0, but doing this,
a conflict between second and third clause is thrown. We backtrack to
x1 = 0 and we set x2 = 1.

• The only variable left is x3. It is now trivial that x3 = 1.

We remark the importance of unit propagation and pure literal elimination,
in fact, the former clears the CNF at the beginning of the example, as well as,
in general, during the algorithm, see e.g. the last step of the example, and the
latter keeps high the number of free variables, for example setting x1 = 0.

4.2.2. CDCL
The second main strategy to solve problem 4.1 is called Conflict-Driven Clause
Learning (CDCL) [54].

The basic idea is the same as DPLL, but with a slight change. CDCL does
not backtrack but backjump, meaning that it does not methodically go through
every node of the tree of the solution. Instead, it jumps to the appropriate
decision level. To achieve this, CDCL keeps track of the assignments in a more
accurate way than DPLL. In fact, it constructs the so called implication graph.
We need a preliminary definition.

Definition 4.6. Given a clause C containing a variable x, the antecedent as-
signments of x, denoted as AC(x), are defined as the set of assignments to
variables other than x with literals in C.

Intuitively, AC(x1) designates those variable assignments that are directly
responsible for implying the assignment of x0 in C. For example, let C =
x0 ∨ x1 ∨ ¬x2. We can say that AC(x0) = {¬x1, x2}, by writing this we mean
AC(x0) = {x1 = 0, x2 = 1}.

We define I, the implication graph, as follows:

• I is a directed graph;

• every node in I is labeled with an assignment;

• the predecessors of vertex with an assignment for x in I are the antecedent
assignments A(x);

• vertices corresponding to decision assignments have no predecessors.1

Besides this, CDCL keeps track also about any arbitrary assignment in a binary
tree. Every arbitrary assignment creates a new level in this tree and every
implied assignment is put at the same level it depends on.

When a conflict is found, we need to find the cut in graph for the conflict.
Suppose that we find a conflict (CD part) in variable x4, i.e. we have both x4
and ¬x4, as unit clauses. Then, we construct a new clause (CL part) in order
to avoid wrong assignment in this way: we take both A(x4) and A(¬x4) and we
construct the negation of the conjuction of literals in A(x4) ∪A(¬x4).

1An assignment can derive either from unit propagation, so, it has predecessors, or from an
arbitrary decision of SAT solver, in this case it cannot have predecessors (this is the meaning
of adjective decision).
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Algorithm 2: Clause-Driven Clause Learning
Input: F , a CNF formula and an assignment {xi = vi}
Output: SAT and A, a satisfying assignment otherwise UNSAT

1 A = {xi = vi}
2 Procedure CDCL(F ,A):
3 if unit propagation of {xi = vi} == conflict then
4 return UNSAT

5 decision level = 0
6 while not all variables are assigned do
7 choose new assignment: {xj = vj}
8 decision level += 1
9 A = A ∪ {xj = vj}

10 if unit propagation of {xj = vj} == conflict then
11 if decision level of the conflict cannot be found then
12 return UNSAT

13 else
14 backjump to decision level of the conflict

15 return SAT and A

Example 4.3 (Clause Learning). Suppose we have a CNF containing, among
others, two clauses:

. . . ∧ (¬x0 ∨ ¬x1 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ . . .

Suppose also that a conflict is raised due to A(x3) = {x0, x1} and A(¬x3) =
{x1, x2}. We write the negation of the conjunction of literals in A(x3)∪A(¬x3)

¬(x0 ∧ x1 ∧ x1 ∧ ¬x2),

in other words
¬x0 ∨ ¬x1 ∨ x2.

We add it to the CNF. Then, we search for the lowest level among those of the
variables and backjump to it, reversing the assignment.

We can summarize the technique in the algorithm 2.

4.3. Implementations

DIMACS is the de facto standard for input and output CNF formula when
implementing a SAT algorithm. There is no reference paper in which we can
find all the rules for the format, but they are few and widespread all over the
papers about the topic of SAT solvers as well as in their manuals. We summarize
the main rules of the format. Regarding the input, we have the following:

• the extension should be .cnf;

• comment lines start with c char, e.g.
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c This is a comment

• there must be a single-line mandatory header of the form

p cnf <number_of_variables> <number_of_clauses>

where <number_of_variables> and <number_of_clauses> are positive
integers whose meaning is quite clear;

• clauses appear immediately after the header and are sequence of integers
separated by a single space and terminated by 0, e.g.

x2 ∨ ¬x3 ∨ ¬x4
x4
x1 ∨ ¬x3

−→
2 -3 -4 0
4 0
1 -3 0

The output has this format:

• comment lines start with c char, e.g.

c This is a comment

this is the same convention for the input file;

• timing information should be in lines starting with t char, e.g.

t Time spent: 711s

but they can be considered like comments;

• the line of the satisfiability starts with s char and has the form s value
where value can be SATISFIABLE or UNSATISFIABLE (or INDETERMINATE
when an exception occurs, e.g., manual interrupt), e.g.

s SATISFIABLE

• lines of the assignment of variables starts with v char, e.g. suppose that
variables 1, 2 and 3 are found false and 4 is found true, then the line
for the assignment of variables is

v -1 -2 -3 4 0

Even if the experimental results we will show in chapter 6 are conducted
with the CryptoMiniSat software, we briefly describe the most famous imple-
mentations.

The first SAT solver to cite is undoubtedly MiniSat [32]. It defines itself fast
and lightweight. It is written only in C and C++ and this contributes with a great
speedup. Unfortunately, the last update dates back to more than ten years ago.
Despite this, it can be easily found in many Linux distribution repositories, such
as Ubuntu and Fedora.

CryptoMiniSat [73], derived from MiniSat, is a SAT solver dedicated to
cryptography. This comes from its capability to handle pure xor expression
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without transforming them in CNF. It has an high level of granularity when
handling all SAT and hardware features, in fact, we can choose between various
restart policies [69], such as geometry, glucose and luby and control sizes of
matrices in the Gauss simplification of xor clauses. The amount of threads and
memory used are customizable.

Glucose [5] is a SAT solver heavily based on MiniSat. It makes a clever use
the CDCL: it not only learns clauses, but also removes bad ones, keeping the
CNF formula clean and optimized. Moreover, in SAT 2011 competition, it was
placed fourth in the rank of parallel solvers despite the fact it was sequential.

Yices-sat [30] is a minimal SAT solver. It is part of a bigger project that
focuses on SMT. It is not customizable but its performances are comparable to
the Minisat and CryptoMiniSat ones. As for Minisat, it can be easily installed
from any Linux distribution.

MathSAT [23] is another SMT solver that works very well also for SAT
problems and has high performances. It does not have as many feature as
CryptoMiniSat, but it is still highly configurable. We can decide, for example,
restart policies, branching options and preprocessing usage. Unfortunately, it is
closed source.

We remark that all of the SAT solvers can be used in all three major plat-
forms: Linux, Mac OS and Windows. Some other details on SAT solvers can
be found in table 4.2.

Table 4.2: summary of the main SAT solvers.

Name License Features Interfaces

CryptoMiniSat MIT handling pure xor
storing learnt clauses
multithreading
cryptography oriented
highly customizable

command line
C++
Python

Gluecose MIT efficient clause learning command line

MathSAT Proprietary highly customizable
(preprocessor in particular)

command line
C

MiniSat MIT fast
lightweight

command line
C++

Yices-sat GNU GPL v3 not customizable
good performances

command line
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5. SHA-1

In this chapter, we are going to briefly review the mechanism of the crypto-
graphic hash function called SHA-1. A hash function is a function that, given
an arbitrary length sequence of bits as input, which is called message, returns
a fixed length sequence of bits as output, which is called digest. Actually, there
is a bound in the message length, but it is so high that it is very unlikely that
it could be reached.

A cryptographic hash function h is a hash function that satisfies three prop-
erties.

1. First pre-image resistance: given y, it is computationally infeasible to find
an x such that h(x) = y.

2. Second pre-image resistance: given x, it is computationally infeasible to
find an x′ such that h(x) = h(x′).

3. Collision resistance: it is computationally infeasible to find x and x′ such
that h(x) = h(x′).

Even if collisions for full SHA-1 has been found [76], the SHA-1 hash function
is still widely used in algorihms such as HMAC useful for instance in Wi-Fi
Protocol Access (WPA) [77] or in disk encryption like LUKS [18].

5.1. Notation

In order to explain the mechanism of SHA-1, we are going to follow the orginal
Request For Comments (RFC) 3174 [31].

Basic Notation. We now describe the notation for numbers.

• An hex digit is an element of the set {0, 1, . . . , 9, A, B, . . . , F}. Each of them
is the representation of a 4-bit string. For instance 7 = 0111, A = 1010.

• A word is a 32-bit string, therefore it can be represented as an 8-hex digit
string. For example

00000011110011001010110100010001 = 0x03CCAD11.

Note that we will prepend 0x chars to every hex digit string. We will
use capitalized letters for words except F that will be used for a specific
function and M that will be used for blocks.

• A block will be a 512-bit string. It can be viewed as a sequence of 16
words.
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Operations. Moreover we define the set of operations between words that we
will use in the following.

• The AND, OR, XOR and NOT will be simply applied bit per bit between words.

• We will use X � Y to denote the mod 32 addition between the numbers
represented by the words.

• The circular left shift operation X ≪ n, where X is a word and n is an
integer such that 0 ≤ n < 32, is defined by

X≪ n = (X � n) OR (X � 32− n).

In the above, X � n is obtained as follows: discard the left-most n bits
of X and then pad the result with n zeroes on the right (the result will
still be 32 bits). X � n is obtained by discarding the right-most n bits of
X and then padding the result with n zeroes on the left. Thus X≪ n is
equivalent to a circular shift of X by n positions to the left.

Functions. SHA-1 uses 4 functions depending on a parameter and acting on
three words.

• Ft(B,C,D) = (B AND C) OR ((NOT B) AND C) 0 ≤ t ≤ 19

• Ft(B,C,D) = B XOR C XOR D 20 ≤ t ≤ 39

• Ft(B,C,D) = (B AND C) OR (B AND D) OR (C AND D) 40 ≤ t ≤ 59

• Ft(B,C,D) = B XOR C XOR D 60 ≤ t ≤ 79

Constants. SHA-1 makes use of 4 constants. Similarly to the functions, the
choice of the constant depends on a parameter.

• Kt = 0x5A827999 0 ≤ t ≤ 19

• Kt = 0x6ED9EBA1 20 ≤ t ≤ 39

• Kt = 0x8F1BBCDC 40 ≤ t ≤ 59

• Kt = 0xCA62C1D6 60 ≤ t ≤ 79

5.2. Computation

SHA-1 has been designed following the so called Merkle-Damgård construc-
tion [59]. This is a method for building collision-resistant cryptographic hash
functions from collision-resistant one-way compression functions. Basically, we
can summarize the Merkle-Damgård construction in the five steps:

1. divide the message M in n blocks M1, . . ., Mn having the same length; if
it is not possible, choose a suitable padding;

2. choose an initial value IV0 ;

3. compute IVi applying the compression function to IVi−1 for all i =
1, 2, . . . , n;
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4. the output is IVn.

Merkle [58] and Damgård [25] have independently proven that if the compression
function is collision resistant then the above procedure defines another collision
resistant function.

SHA-1 algorithm is based on the Merkle-Damgård construction but in order
to use it, the message needs to be padded, thus, we can be described the SHA-1
algorithm in two stages: pre-processing and digest computation.

Pre-processing. Since a Merkle-Damgård construction acts on inputs whose
number of bits is multiple of a fixed amount, we need to pad the input in some
way. Therefore, suppose a message has l bits. We perform the following steps:

• append 1 getting a sequence of bit whose length is l + 1;

• append p zeros such that

l + 1 + p ≡ 448 (mod 512);

• append the 2-word representation of l, the number of bits in the original
message.

Note that after the third step we eventually reach a padded message whose
number of bits is multiple of 512, in fact we have

l + 1 + p+ 64 ≡ 448 + 64 = 512 ≡ 0 (mod 512).

Thus, the padded message will contain n blocks for some n > 0 and we will
denote them as M1,M2, . . . ,Mn.

Digest computation. Before processing any blocks, the H’s are initialized as
follows:

• H0 = 0x67452301

• H1 = 0xEFCDAB89

• H2 = 0x98BADCFE

• H3 = 0x10325476

• H4 = 0xC3D2E1F0.

Now M1,M2, . . . ,Mn are processed. To process Mi, we proceed as follows:

a. DivideMi into 16 wordsW0,W1, . . . ,W15, whereW0 is the left-most word.

b. For t = 16 to 79 let

Wt = (Wt−3 �Wt−8 �Wt−14 �Wt−16)≪ 1.

c. Let A = H0, B = H1, C = H2, D = H3, E = H4.

d. For t = 0 to 79 do
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T = (A≪ 5)� Ft(B,C,D)� E �Wt �Kt;

E = D;

D = C;

C = B≪ 30;

B = A;

A = T ;

Refer to the figure 5.1 for a graphical representation of this step

Figure 5.1: SHA-1: round function.
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≪ 30
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e. LetH0 = H0�A, H1 = H1�B, H2 = H2�C, H3 = H3�D, H4 = H4�E.

After processingMn, the message digest is the 160-bit string represented by the
5 words: H0, H1, H2, H3, H4.
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6. Pre-image attack

In this chapter, we are going to analyze how SHA-1 can be modeled as a sat-
isfiability problem. Furthermore, we explore a new way of computing the first
pre-image, measuring how many rounds can be reversed [7].

6.1. Related works

Since 2004, a vast literature studied the collision resistance of SHA-1 and of its
predecessor SHA-0, see e.g. [76, 50] and their references, that resulted in the
2017 discovery of the first collision of the full hash by Stevens et al. [76] in a
computation that required 263.1 SHA-1 applications.

SHA-1 is also subject to pre-image attacks. To date, none of these attacks to
the full SHA-1 algorithm have been published in the literature. Anyway, many
applications of hash functions rely on the pre-image resistance and breaking this
kind of resistance also allows to find collisions.

Theoretical pre-image attack history on SHA-1 starts in 2008 with the work
of De Cannière and Rechberger [17] (attack complexity of 2157 for 45-round
reduced SHA-1). In [3], the authors exploited a meet-in-the-middle attack to
present a pre-image attack on 48 out of 80 rounds with complexity of 2159. Their
work was improved by Knellwolf and Khovratovich, thanks to a differential view
on the MiTM approach (2158.7 for 57-round reduced SHA-1), and finally by
Espitan et al. in [33] thanks to higher order differential (62-round two-block
pre-image with padding with complexity 2159.3).

In all the above mentioned approaches, the purpose of the authors is to show
that the analyzed hash function is not ideal, but the computational cost of the
attacks is really high and practically out of reach.

One less explored approach in studying the security of a hash function is to
determine which is the maximum number of rounds for which a pre-image of the
hash can be found “in practice”. Of course, this expression mostly depends on
the computational power the attacker has at his disposal. This second approach
is very common in public key cryptography, where, for example, challenges
are proposed to break the largest possible parameters of a hard mathematical
problem such as, among many others, factorization [46] or decoding [4]. The
most recent work we could find in this direction is from Nejati et al. in 2017 [61].
Here, the problem of finding a pre-image of a reduced version of SHA-1 is
modeled into a SAT instance, and then different SAT solvers are used to solve
the instance. The authors claim that, with this method, pre-images for more
than 23 steps cannot be constructed in a reasonable amount of time even with
the latest techniques and hardware [63, 48, 49]. Moreover, they also assert 27
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round is their best result for a partial pre-image attack when leaving only 40
free bits of the input message.

6.2. Modelling SHA-1 as satisfiability problem

We have seen in chapter 5 that SHA-1 compresses arbitrary length inputs. Even
if the number of blocks can be arbitrary, we consider in our discussion a one block
message M . Therefore, SHA-1 can be represented as a function h : {0, 1}512 →
{0, 1}160 with h(M) = d, where M is a message block and d is the digest
corresponding toM . Theoretically, it is possible to explicitly express each digest
bit as a boolean expression depending onM , and to gather 160 such expressions
in a system representing the full hash function. Although 160 equations are
sufficient to do that, the number of literals of each expression is exponential
in the number of bits in M and IV — it is exponential even if we applied
heuristics [80] — making this approach not feasible in practice. A better solution
is to model each component of the cipher, by expressing the output bit of each
component as an expression of its input bits.

In what follows, we detail how to construct the SAT model that we use to
find pre-images of SHA-1.

Proposition 6.1. Given two 32-bits words x and y, the system of boolean for-
mulas that represents the modular addition modulo 232 between x and y and
returning the word z is:

c0 = x0 ∧ y0
ci = (xi ∧ yi) ∨ (xi ∧ ci−1) ∨ (yi ∧ ci−1) i = 1, . . . , 30

z0 = x0 ⊕ y0
zi = xi ⊕ yi ⊕ ci−1 i = 1, . . . , 31

The index i denotes the bit number where the MSB is indexed by 31.

a Input message M is divided in sixteen 32-bit words W0, . . . ,W15. Every
bit ofM is assigned to a variable, resulting in 512 variables for a one-block
message.

b Other sixty-four words W16, . . . ,W79 are computed through the message
expansion. For every 32-bit word we need 32 equations. The total number
of equations required is 64 · 32 = 2048. 2048 variables are introduced.

c 160 variables are added to represent the first state, that is A0, B0, C0,
D0, E0. The IVs H0, H1, H2, H3, H4 are assigned to this state. To do so,
we need 5 · 32 = 160 equations and 5 · 32 · 2 = 320 new variables.

d The SHA-1 step function is obtained as follows. Notice that the most
important operation is the addition modulo 232. We split the computation
of T , a 32-bit word, in four additions modulo 232.
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tt−1 = K(t−1) � Et−1
ut−1 = tt−1 � Ft−1(Bt−1, Ct−1, Dt−1)

vt−1 = ut−1 �At−1
Tt−1 = vt−1 �Wt−1

Et = Dt−1

Dt = Ct−1

Ct = Bt−1≪ 30

Bt = At−1

At = Tt−1

(6.1)

Using 6.1, four additions modulo 232 are represented by 4 · 63 = 252
equations. Moreover, we have five variables reassignments, namely 5 ·32 =
160 equations, hence 252 + 160 = 412 equations per round, that means a
total of 412 ·80 = 32960 equations. For each addition modulo 232 we need
an extra variable for the carry bit, therefore (16 + 4) · 32 = 640 variables
per round are required, that means a total of 640 · 80 = 51200 variables.
Notice that such number includes the 160 variables for each bit of A0, B0,
C0, D0, and E0, hence it can be reduced to 51200− 160 = 51040.

e We rewrite the final step: Z0 = H0 � A, Z1 = H1 � B, Z2 = H2 � C,
Z3 = H3�D, Z4 = H4�E. Again, using 6.1, these five additions modulo
232 require 5 · 63 = 315 equations. The variables used in these modular
additions come from the initial state and from the last round of step d
respectively. Therefore, we only need Z for each word and each bit, namely
5 · 32 = 160 variables.

To sum up, our model is represented by a system of 35483 equations and
54080 variables that can be simplified.

In particular, as described in [75, 39] we can substitute constants, input
values and remove equations with different names but same meaning. Notice
that if we have x = 0 and x + y + z = 0, after substituting the value of x in
the second equation, we get y = z and we can substitute the occurrences of
y. Therefore, this strategy is repeated iteratively until no more substitution is
possible.

In order to speed up the execution of our model, we tried to understand the
relationship between variables that appear in our CNF. We suppose that the
more a variable is connected to other variables, the more important it will be
because its truth value will affect many others. In our specific case, the number
of connections of a variable i is defined by the number of variables that appear
in the same clause of i.

Because SAT solvers usually work with a top-down approach, we rearrange
the CNF by placing the clauses that contains the most connected variables at
the top. Doing so, the SAT solver will immediately assign a value to these
variables, providing an answer to our satisfiability problem in a shorter time.
Looking closely at table 6.1, it is possible to measure this speed-up.
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Table 6.1: SHA1 pre-image attack before and after the optimizations, 440 bits
free

Number of After After Reorganization
Rounds Simplification Clauses

19 0.24s 0.20s

20 0.681s 0.61s

21 403.334s 335.93s

6.3. Experimental results

We implemented a Python tool called Shanatomy [72], to help us analyze the
boolean representation of SHA-1.

The tool can be used to generate the boolean representation of SHA-1 vari-
ants operating on words with any number of bits. Moreover, it translates the
boolean system into DIMACS standard, commonly used by SAT solvers. Han-
dling the extension of the SAT solver, the tool can also preserve oplus operations
(which usually is not part of the DIMACS standard). The advantages of keep-
ing opluss are obvious: the solver has much less equations since a oplus with n
inputs needs 2n−1 equations to be represented.

In order to test the efficiency of a pre-image attack to reduced versions of
SHA-1, we choose CryptoMiniSat5 [73]. In the plethora of SAT solvers, this
is not a random choice. Indeed, we experimentally observed that MiniSat [32],
MathSat [23] and Yices [30] seems to perform better than CryptoMiniSat up to
round 20, but they take more time than CryptoMiniSat to compute round 21
and above.

We run our code on a server equipped with (CPU) 2 x Intel ® Xeon ®
Gold 6258R @2.70GHz, (Memory) 768GB 2933MHz, (OS) Ubuntu 18.04.5 LTS
and on a cluster equipped with (CPU) 128 x IBM POWER9 AC922 @3.1GHz,
(Memory) 256GB 2666 MHz, (OS) Red Hat Enterprise Linux Server 7.6. The
SAT Solver adopted is Cryptominisat v5.8.0.

In our testing activities we run our code using all combinations between four
polarity modes (auto, false, random, true) and three restart policies (geom, glue,
luby), enabling the oplus extension of CryptoMiniSat. In order to run many
SAT instances and compare their running time, we set two upper thresholds.
Such thresholds are set on the basis of the average execution times of solved
instances measured on our server. More precisely, we set 10 seconds as maximum
execution time for round 20 and 180 seconds for round 21. For each polarity
mode (four), each restart policy (three) and each hardware configuration (four),
we executed 100 runs for a total of 4 × 3 × 4 × 100 = 4800 execution times
collected. Average values are reported in table 6.2 and table 6.3. Notice that we
highlighted with grey color the number of pre-images found (out of 100), and
we used the word “n.o.t.” to indicate the number of threads used. Due to
space constraint we omit data collected on our cluster where we have not found
significant new results but only better timings.

Experimental results (see tables 6.2 and 6.3) show that (a) although there



Pre-image attack 70

Table 6.2: Server: Average times (secs) to compute a pre-image, 440 bits free.

polar restart n.o.t. round 20 round 21

auto

geom
1 96/2.640 16/167.619
2 99/1.660 29/157.426
4 100/1.138 36/149.510
8 100/0.926 43/146.887

glue
1 97/2.662 23/163.576
2 99/2.074 19/166.040
4 100/1.421 16/167.765
8 100/1.224 19/167.341

luby
1 94/3.389 26/160.880
2 100/1.632 23/162.603
4 100/1.437 23/163.843
8 100/1.036 35/151.600

false

geom
1 95/2.558 17/171.267
2 99/1.837 11/173.127
4 100/1.357 20/165.835
8 100/0.940 29/156.152

glue
1 91/4.062 12/173.967
2 100/1.801 18/167.625
4 100/1.544 9/176.643
8 100/1.210 13/172.139

luby
1 97/3.304 8/174.264
2 100/1.686 14/168.858
4 100/1.237 18/167.466
8 100/1.044 25/163.203

isn’t a combination of "polarity mode–restart policy" which always performs
better than others, in our testing activities, on average, we achieved better
results with “auto”, “random” (polarity mode) and “geom” (restart policy). No-
tice that we received evidence of these results measuring the execution time;
(b) sometimes we had indirect evidence of the performance improvement by
measuring the number of pre-images found. In this case, also the combination
“true–luby”, round 21, is noteworthy; (c) a greater number of threads allows to
decrease the execution time, but this does not happen in a linear way. This
behaviour can be observed analyzing the computational time spent to execute,
for example, round 21, [auto, geom, 1-8] and [rnd, geom, 1-8].

Interestingly, the difficulty of finding a pre-image on round 22, 440 input bits
free, is sensibly higher. Indeed, our server was able to find only 3 pre-images
(out of 100) in less than one hour using 32 threads. Therefore, to find pre-images
for a larger number of rounds, we reduce the number of free input bits as near as
possible to 160 — recall that the complexity of a brute-force pre-image attack
is 2160. Firstly, we run our code leaving two consecutive 32-bit words Wi free,
i.e. 64 bits free. Collected data are shown in 6.4 and they represent an average
value of 30 measurements. In particular, this table shows that leaving 64 bits
free at the beginning of our input data, for example W6,W7, does not have the
same effect of leaving them at the end, namely W14,W15. The measured gap is
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Table 6.3: Server: Average times (secs) to compute a pre-image, 440 bits free.

polar restart n.o.t. round 20 round 21

rnd

geom
1 96/2.488 4/175.615
2 100/1.541 7/174.211
4 100/0.921 23/158.744
8 100/0.744 31/148.996

glue
1 69/5.914 2/178.810
2 100/1.840 10/171.939
4 100/1.425 11/168.737
8 100/1.181 5/176.104

luby
1 90/3.523 15/175.700
2 100/1.799 11/171.910
4 100/1.126 12/172.044
8 100/0.777 27/153.750

true

geom
1 96/2.460 27/163.243
2 100/1.430 21/167.822
4 100/1.267 29/161.265
8 100/0.974 35/151.634

glue
1 87/4.566 21/170.374
2 100/1.956 21/168.125
4 100/1.613 22/168.964
8 100/1.274 24/168.082

luby
1 91/3.698 25/165.653
2 100/1.741 19/169.599
4 100/1.374 35/153.619
8 100/0.961 43/152.214

noteworthy. In one case we talk about hours while in the other of hundredths
of a second.

Table 6.4: SAT based attack with two consecutive Wi unknown words.

Unknown Rounds
words Wi 21 22 23 24 25 26 27

6&7 4.16s
7&8 0.45s 1h 51m 19.23s
8&9 1m 17.31s 1m 40.51s
9&10 1.17s 2m 30.03s 1m 57.31s
10&11 0.02s 2.40s 2m 31.21s 2m 22.43s
11&12 0.02s 0.02s 2.10s 13.83s 2m 29.93s
12&13 0.01s 0.08s 3.75s 50.42s 56.13s 2h 12m 39.69s
13&14 0.01s 0.02s 0.19s 14.41s 17.33s 6m 43.31s
14&15 × 0.01s 0.02s 0.33s 13.46s 13.83s 7m 7.29s

Secondly, we adopt a slightly different approach. Due to its structure — we
are performing oplus operations on a ring of integers modulo 2, where Wi =
(Wi−3⊕Wi−8⊕Wi−14⊕Wi−16)≪ 1, for i = 16, . . . , 79 — it is possible unfold
the entire message expansion of SHA-1 and rewrite such expansion as a set of
any sixteen consecutive words, which do not have to be necessarily the first
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Table 6.5: Computational time (secs) spent to execute a partial SHA-1 pre-
image attack.

equivalent free bits
rounds 64 80 96 112 128

20 <0.01 <0.01 <0.01 0.01 0.03
21 <0.01 <0.01 0.01 0.02 5.94
22 <0.01 <0.01 0.22 6.84 2679.73
23 <0.01 0.01 0.17 5.32 6266.63
24 0.01 0.02 13.92 550.90 1766488.38
25 0.03 2.21 1727.79 106508.62
26 1.37 89.17 172552.81 528294.05
27 4.98 137.46
28 131.02 4717.71
29 4588.24 593366.71
30 9924.96
31 16255.33

sixteen. When we try to break round r, 64 bits free, fixing words from Wr−14
to Wr−1 is particularly effective.

In fact, guessing the value of the two words Wr−15 and Wr−16 we are able
to get the 16 words of the input message. Notice that, exploiting the equation
of the message schedule we can obtain relations between some input words, e.g.
W0⊕W2, also without guessingWr−15 andWr−16. Doing so, the computational
time spent by CryptoMiniSat to execute a pre-image attack gives better results
than those obtained fixing the input message words in other ways (e.g. first
14 words). In addition to 64 bits free, we also executed an attack leaving 80,
96, 112 and 128 bits free. Gathered data are reported in table 6.5 using the
bold notation to represent average values on 30 runs. Notice that, due time
consuming, the 25th round 112 bits free represents an average value on 16 runs.
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Part III

Conclusion
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7. Conclusion

In this final chapter, we are going to clarify the common theme of the two
previous parts that is the base of this work. As well, we are going to highlight
the results obtained. Lastly, we will describe possible future works based on
this one.

7.1. Work highlights

In the first part, we have seen how to improve the polynomial multiplication
algorithms. Note that it was done both from theorical and practical point of
view. In fact, we have shown how to decrease the complexity of the polynomial
multiplication algorithms and how to obtain new algorithms which are improved
both in terms of gates and in terms of depth respect to the ones currently in
the state of art. Remembering what an SLP is (refer to the end of chapter 1),
we can say that we have found new ways of representing the same algorithm.
In particular, techniques developed in this work are more efficient than the
existing ones [8, 19]. Moreover, we have proved through a real case application
that one of the new polynomial multiplication algorithms can be sucessfully
used to further improve the efficiency of the implementation of the McEliece
cryptosystem submitted to the NIST for the standardization of Post-Quantum
Cryptography.

Secondly, we have seen that a good and optimized CNF, can decrease the
computational effort needed to find a solution to a satisfiability problem. This
method, beside other assumptions, was used to recover a round reduced SHA-1
first pre-image outperforming in some cases the current state of art [3, 17, 33].

Summing up, we can say that, in this work, we achieved better representa-
tions for cryptographic primitives which is the common theme of the two parts.
In particular, this is crucial when analyzing the strenght of cryptographic sys-
tems, in fact, we can speed up algorithms such as the McEliece cryptosystem
with optimized polynomial multiplication or even measure the real strength of
an adversary when trying to break hash functions.

7.2. Future works

Regarding the first part, i.e. the polynomial multiplication algorithm, we need
to explore new algorithms. Even if many records were obtained and it is straight
to check that the minimum is obtained for low degrees, it is still not clear how
to reach the minimum number of operations nor the minimum depth for higher
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degrees. Although there are new promising techniques such as the Karatsuba-
like that could be used in general, it has been shown [35] that the old School-
book algorithm is still efficient in some cases and more research needs to be
conducted. Moreover, the new Post-Quantum Cryptography offers many real
case implementation in which this improvements can be employed to obtain the
highest speed possible.

Regarding the second part, i.e. the first pre-image attack to SHA-1, new
representations have to be explored. Satisfiability can be seen as an efficient
constraint solver, but its power needs to be exploited with good representation
of the problem. Therefore, possible future works include exploring new way of
representing hash functions and the usage of different solvers.
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