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Abstract
Although traditionally considered sterile, human milk is currently recognized as an alive ecosystem that harbors not only 
bacteria, but also viruses, fungi and yeasts, and minor genera, collectively known as the human milk microbiome (HMM). 
The seeding of HMM is a complex phenomenon whose dynamics are still a matter of research. Many factors contribute to 
its determination, both maternal, neonatal, environmental, and related to human milk itself. The transmission of microorgan-
isms to the infant through breastfeeding may impact its present and future health, mainly shaping the GI tract microbiome 
and immune system. The existence and persistence of HMM as a conserved feature among different species may also have 
an evolutionary meaning, which will become apparent only in evolutionary times.

Conclusion: The complexities of HMM warrant further research in order to deepen our knowledge on its origin, determi-
nants, and impact on infants’ health. The practical and translational implications of research on HMM (e.g., reconstitution 
of donor human milk through inoculation of infant’s own mother milk, modulation of HMM through maternal dietary sup-
plementation) should not be overlooked.

What is Known:
•  Human milk harbors a wide variety of microorganisms, ranging from bacteria to viruses, fungi and yeasts, and minor genera.
•  Human milk microbiome is shaped over time by many factors: maternal, neonatal, environmental, and related to human milk itself.
•  The transmission of microorganisms through breastfeeding may impact the infant’s present and future health.
What is New:
•  We provide an overview on human milk microbiome, hopefully encouraging physicians to consider it among the other better-known breast-

feeding benefits.
•  Further studies, with standardized and rigorous study designs to enhance accuracy and reproducibility of the results, are needed to deepen 

our knowledge of the human milk microbiota and its role in newborn and infant’s health.
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Abbreviations
BMI  Body mass index
DHM  Donor human milk
GI  Gastro-intestinal
HM  Human milk
HMM  Human milk microbiome
HMOs  Human milk oligosaccharides
NGS  Next-generation sequencing

Introduction

Human milk (HM) was traditionally thought to be ster-
ile. However, the presence of bacteria in HM was never 
fully excluded. The first studies conducted between the  
end of the 19th and the beginning of the 20th century 
[1–3] focused on the potentially harmful nature of  
the bacteriological content of HM, failing to consider 
it, as it now is, as a precious resource. Still, in the late  
60s, the presence of bacteria in HM was considered a 
consequence of low levels of personal and environmen-
tal hygiene [4].

Later on, in 2003, interest in the microbiology of HM 
resurfaced with a new perspective. Based on the detection 
of allegedly endogenous lactic acid bacteria from HM of 
eight healthy mothers, it was suggested that HM could be 
considered a symbiotic food, harboring safe bacteria with 
a potential role in the prevention of neonatal infectious 
diseases [5].

Over time, the development of culture-independent 
techniques (e.g., quantitative polymerase chain reaction 
and next-generation sequencing—NGS), in addition to the 
already well established culture-dependent ones, has pro-
gressively allowed for the characterization of the composi-
tion, diversity, and variability of HM microflora in greater 
detail, albeit with some limitations [6].

Today, HM is considered “mother nature’s prototypi-
cal probiotic food” [7]. Growing research on this sub-
ject has led to a deeper understanding of the matter, 

discovering that HM is an alive universe populated by 
bacteria, viruses, fungi and yeasts that cooperate for  
the present and future health of the infant. This complex 
host-associated microbial community constitutes the HM 
microbiome (HMM).

The aim of this review is to provide an overview of 
what is currently known on HMM origin, composition, 
determinants, and role, eventually suggesting possible 
future directions for researchers who want to further 
explore this field.

Origin of HMM

The seeding of HMM is a complex and dynamic process, 
still not completely understood to date. Multiple, non-
mutually exclusive, sources of HMM have been suggested 
(Table 1). It is still up for debate whether the mammary 
gland hosts a resident microbiome (i.e., the mucosal inter-
face model) or it is simply a bystander subjected to a con-
stant influx of microbes from exogenous sources (i.e., the 
constant influx model). This latter model is supported by the 
current lack of evidence of bacterial adhesion to the mam-
mary epithelium outside of a mastitis setting, and of bacte-
rial reproduction within the mammary tissue. Conversely, 
the mucosal interface model is supported by evidence of a 
pre-lactation mammary gland microbiome [8]. However, the 
fact that nonlactating mammary gland microbiome differs 
from HMM does not allow to exclude the constant influx 
model [9].

Composition

Although historically the knowledge of HMM was only lim-
ited to bacterial species [15], recent evidence highlighted 
that HM contains a wide variety of microorganisms, includ-
ing viruses, fungi and yeasts, and new genera (Table 2).

Table 1  Overview of the main hypothesized sources of HMM

HM human milk, GI gastro-intestinal

Source Supporting evidence Alleged mechanism

Infant oral cavity Oral bacteria (e.g., Streptococcus salivarius, Streptococcus 
mitis, Rothia mucilaginosa, and Gemella spp.) in HM [10]

Retrograde flow of milk from infant oral cavity to mammary 
ducts

Maternal skin Human skin commensals (e.g., S. epidermidis, Corynebacte-
rium spp. and Malassezia) in HM [11]

Colonization of mammary gland by maternal skin microbiota 
through the nipple

Maternal GI tract Strict GI anaerobes (e.g., Bifidobacterium, Bacteroides, 
Clostridium [12]), and Saccharomyces [13] in HM

Internalization by dendritic cells during late pregnancy and 
lactation of live bacteria from the maternal GI tract, which 
then reach the mammary gland through lymphatic circula-
tion (entero-mammary pathway) [14]
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Bacteriome

The implementation of the new NGS techniques, such as 
metataxonomics (16SrRNA gene sequencing) and metagen-
omics (shot-gun sequencing), has allowed for the detection 
of several new bacterial species, including many anaerobes, 
adding up to a total of more than 1300 different species [12, 
16, 17, 22–27].

However, when trying to determine what constitutes the 
HM bacteriome, inter-individual variability, and geographic 
location of the study, methods used for HM collection, stor-
age, and analysis must be taken into consideration. Hence, 
the definition, and the existence itself, of a “core” HM bac-
teriome is still a matter of debate [28].

Using genomic analysis, different studies have detected 
a wide variety of soil and water-related microorganisms, 
such as Bradyrhizobium, Pseudomonas, and Stenotropho-
monas [8, 12, 16, 22, 26, 29]. However, these results must 
be critically interpreted, as such microorganisms could also 
be contained in molecular biology reagents, solutions, and 
kits, and their relative amounts could be amplified by DNA 
techniques, thus contributing to mistaken interpretations [22, 
30–32]. Furthermore, differentiating between live or dead 
microorganisms is critical. Therefore, appropriate techniques 
should be selected to limit possible biases [33].

Virome

Most (95%, [18]) of the HM virome is made of bacterio-
phages, with eukaryotic viruses and other viral particles 
constituting a lesser proportion.

HM virome has distinctive features that differentiate 
it from other viromes (e.g., adult stool, urine, saliva, and 
cerebrospinal fluid viromes) [34, 35]. Conversely, a signifi-
cant number of shared viruses have been identified between 
HM and infant stool from mother-infant pairs, supporting 
their vertical inheritance through breastfeeding [34, 36]. 

Interestingly, it has been noted [34] that the virome of infant 
stool bears a closer resemblance to HM than to adult stool.

Mycobiome and other ‑omes

Fungi are an important component of the human microbiome 
[37]. However, their presence in HM is a relatively recent 
discovery [20]. Although considering geographical variabil-
ity, the existence of a core mycobiome has been hypoth-
esized, thus suggesting that their transmission through HM 
is a conserved feature.

Other microorganisms, until recently neglected, contrib-
ute to the HMM. In particular, current research has been 
focusing on Archaea. The presence of archaeal DNA has 
been demonstrated in 8/10 HM samples analyzed, none of 
which belonging to women with mastitis, thus suggesting a 
protective role [17]. Conversely, other authors did not iden-
tify archaeal DNA in the HM samples analyzed [38].

Determinants Of HMM

The complex HM ecosystem appears to be shaped over time 
by many factors: maternal, neonatal, environmental, and 
related to HM itself (Fig. 1). The extremely dynamic nature 
of HMM composition may account for the often-contradic-
tory data reported in the Literature. Furthermore, it should 
be noted that many factors that have been implicated in the 
determination of HMM are closely intertwined.

Maternal determinants

Some authors [26, 39–41] demonstrated that, compared to 
women who underwent a C-section, vaginally delivered 
women’s HM samples showed higher bacterial diversity 
and richness, with higher levels of Bifidobacterium and 

Table 2  Composition of HMM

Microorganisms Load Main constituents

Bacteria 106 cells/ml [13] Two different “cores” hypothesized:
- Staphylococcus, Streptococcus, Serratia, Pseudomonas, Corynebacterium, Ralsto-

nia, Propionibacterium, Sphingomonas, and uncultured members of Bradyrhizobi-
aceae [16];

- Staphylococcus, Streptococcus, Bacteroides, Faecalibacterium, Ruminococcus, 
Lactobacillus, and Propionibacterium [17]

Viruses - - Phages: Myoviridae, Siphoviridae, and Podoviridae [18];
- Eukaryotic viruses: Herpesviridae, Poxviridae, Mimiviridae, and Iridoviridae [18]

Fungi and yeasts 2.5 to 3.5 ×  105 cells/ml 
[19, 20]

Malassezia, Davidiella, Sistotrema, and Penicillium [20]

Other - - Protozoa: Toxoplasma gondii and Giardia intestinalis (found in healthy women, 
without clinical sign of parasitic infection) [17];

- Archaea: Methanobrevibacter smithii and Methanobrevibacter oralis [21]
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Lactobacillus spp. However, other studies did not confirm 
such results [42, 43]. A potential influence of the mode of 
delivery on the virome and mycobiome of HM has been 
hypothesized as well [44, 45].

A decrease in the abundance of Lactobacillus, Bifido-
bacterium, Staphylococcus, and Eubacterium spp. in HM 
samples from mothers who received peri-natal antibiotics 
has been reported [8, 46, 47]. Maternal chemotherapy during 
lactation has also been associated with a reduction in HM 
bacterial diversity [48].

Maternal diet impacts HMM composition (allegedly 
more so during pregnancy than during lactation [49–51]). 
High-fiber and high-fat food dietary regimens [49] as well 
as vitamin intake (vitamin C and complex B vitamins) [51] 
have been shown to alter HMM composition. Furthermore, 
both pre-pregnancy BMI and weight gain during gestation 
are reflected in differential abundances of bacterial strains 
(mainly Streptococcus, Staphylococcus, and Bifidobacte-
rium) in HM [40, 52–54].

Compared to healthy women, mothers with celiac disease 
have lower levels of Bacteroides spp. and Bifidobacterium 
spp. in their milk [55]. Likewise, mastitis determines modi-
fications in bacterial load and microbial diversity in HMM, 
which subside once clinical symptoms disappear [56–58].

Maternal post-natal psychosocial distress (defined as 
symptoms of anxiety, stress, or depression during the post-
natal period) has been linked to lower HM bacterial diversity 

at 3 months post-delivery, with a progressive decrease in the 
relative abundance of Staphylococci and a parallel increase 
of some minority genera (Lactobacillus, Acinetobacter, and 
Flavobacterium) in mothers with low psychosocial distress 
[59].

Neonatal determinants

Lower counts of Enterococcus spp. and higher counts of 
Bifidobacterium spp. have been detected in HM samples 
from mothers who delivered at term compared to preterm 
mothers [39]. Conversely, other authors [42] did not detect 
any difference in microbial profiles based on length of ges-
tation, postulating a fail-safe mechanism that allows the 
mother to be “ready” to pass along her bacterial imprint 
regardless of gestational age at birth, as part of an evolu-
tionary pressure directed towards the baby’s benefit. Vari-
ations in HM virome and mycobiome composition accord-
ing to gestational age and birth weight have been recently 
demonstrated [44, 45].

Effect of newborn gender on HMM composition has been 
hypothesized [60], based on the detection of more Strepto-
cocci and less Staphylococci in HM from mothers of male 
infants compared to mothers of female infants. However, 
such differences have not been confirmed by other studies 
[42, 61].

Fig. 1  Overview of the main determinants of HMM (see text for explanation)
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Environmental determinants

The analysis of HM samples collected from selected popula-
tions in Europe, Africa, and Asia, suggested that HMM com-
position is related to the geographical study location [62]. 
Furthermore, a high variability in HM metabolites across 
study sites, and an association between variations in HM 
metabolome and specific features of HMM, have been docu-
mented [63]. However, a novel analysis of HM samples from 
Ethiopia, The Gambia, Ghana, Kenya, the USA, Peru, Spain, 
and Sweden, demonstrated that, while HM bacterial com-
munities varied geographically, they consistently contained 
the core genera Staphylococcus and Streptococcus [64]. 
Such results have been confirmed by a recent systematic 
review [65], which included twelve studies that used culture-
independent methods to identify bacteria at genus level in 
HM from healthy women. Notably, it has been speculated 
that at least part of the geographical variability in HMM 
composition might be related to differences in the setting and 
procedure of HM collection, storage, and analysis [66]. As 
for collection methods, it has been observed [61] that HM 
from mothers who use breast pumps have higher microbial 
load and lower abundance of cultivable staphylococci com-
pared to HM samples collected manually. Conversely, other 
authors found no difference in ɑ-diversity between samples 
collected by manual expression or by pumping with a single-
use sterile device [67].

The analysis of HMM from women living in the same 
Indian region but with different lifestyles (traditional 
vs. western-like), revealed that HM samples from “rural 
women” had higher diversity and greater abundance of  
sub-dominant bacterial lineages than those from “urban 
women” [68].

A study conducted in the Central Africa Republic within a 
small-scale society suggested that seasonality may influence 
the relative abundance of specific taxa in HMM, although it 
may be difficult to determine whether the variation in composi-
tion depends on differences in seasonal environmental expo-
sure and/or seasonal variation in diet [69]. The same study 
[69] explored the relationship between mother-infant social 
network size, and HMM composition and diversity, show-
ing how HM from mothers with larger networks, and infants 
with more caregivers, had higher microbial evenness (but not 
microbial richness) than HM from mothers whose infants had 
fewer caregivers.

HM determinants

Cabrera-Rubio et  al. [26] were the first to describe the 
changes HMM undergoes over time, from colostrum to tran-
sitional and mature milk. These authors reported a progres-
sively increased abundance of typical oral inhabitants (e.g., 

Veillonella, Leptotrichia, and Prevotella spp.) in transition 
and mature HM, and higher counts of Bifidobacterium at 
later stages of lactation. Other authors [39] later reported 
a greater influence of lactation stage on Bifidobacterium 
and Enterococcus spp. counts, which showed a progressive 
increase in their concentration from colostrum to mature 
HM, as did Lactobacillus and Staphylococcus spp. Differ-
ent patterns over time have been described. Analyzing HM 
samples collected at 3 time points over a 4-week interval,  
a set of 9 “core operational taxonomic units” was identified 
[16]. However, in some samples, HM bacterial communi-
ties were rather consistent over time, whereas, in others, 
the relative abundance of the bacterial genera shifted over 
time [16]. Some authors [60] observed a relative stability of 
HMM over time, with only small changes in some minority 
genera, while others [43] did not observe any effect of lacta-
tion stage on HMM composition. Regarding the virome, it 
was recently documented [44] that, although bacteriophages 
are predominant in both transient and mature HM samples, 
transient HM has a greater abundance of Podoviridae and 
Myoviridae, whereas in mature HM Podoviridae decreases, 
and Siphoviridae becomes the most abundant family. As for 
mycobiome, a recent study [45] analyzed samples of HM 
from different stages of lactation and found that, in transient 
HM samples, Saccharomyces cerevisiae and Aspergillus 
glaucus were the most abundant species, while Penicillium 
rubens and Aspergillus glaucus were predominant in mature 
HM samples.

It has been speculated that other HM components, such as 
HM oligosaccharides (HMOs—prebiotics), milk fatty acids, 
hormones, immune cells, and antibodies, could modulate the 
composition of HMM [70, 71]. In particular, HMOs may 
promote the growth of Staphylococcus spp. in the lactating 
mammary gland [72].

Donor human milk and HMM

When mother’s own milk is not available or insufficient, 
donor HM (DHM) is the second-best alternative [73–75]. 
However, pasteurization, needed to guarantee the neces-
sary microbiological safety standards, inevitably inacti-
vates several of HM nutritional and biological properties 
[76], including HMM. As a matter of fact, pasteurization 
eliminates most milk bacteria (except the spore-forming 
Bacillus species [77–79]). Nevertheless, viability of HMM 
is no longer considered essential. Indeed, the probiotic 
effect of beneficial microbes in HM has been hypothe-
sized to rely on the ability of the host’s cells to recognize 
specific bacterial components or products, thus activating 
the immune system. These “non-viable (more often heat-
inactivated) microbial cells (intact or broken) or crude cell 
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extracts (i.e., nucleic acids, cell-wall components)” are 
known as para-probiotics or ghost probiotics [80].

Role and benefits of HMM

HMM seeds the infant GI tract with pioneering bacteria, 
thus contributing to the establishment of both the infant oral 
and gut microbiota [81, 82]. However, not all the bacteria 
present in HM are found in the infant gut, but, rather, only a 
select few seem to colonize the newborn [42]. Nonetheless, 
it has been hypothesized that transient exposure could be just 
as effective as persistent colonization [83, 84]. Moreover, 
bacteria in HM may upregulate protective factors such as 
antibodies, immune cells, lactoferrin, and beta-defensins that 
would then be passed on to the neonate through breastfeed-
ing [42]. The HM virome, especially bacteriophages, likely 
contributes to the gut ecology of the infant, as well [18].

Early microbial exposure is essential to provide antigenic 
stimuli that promote the intestinal immune system maturation 
by encouraging a shift from the predominant intrauterine T 
helper (TH) 2 cell immune milieu to a TH1/TH2 balanced 
response, and triggering regulatory T cell differentiation [85].

Through modifications of the infant gut microbiota and 
by means of the gut-brain axis, HMM may also influence the 
development of a more convenient behavioral phenotype of 
the offspring, as hypothesized for other HM bioactives [86]. 
Indeed, in early infancy, HM may promote the colonization 
of a specific microbiota that influences offspring biobehav-
ioral regulation. A milk-oriented infant gut microbiota may 
produce a less energetically costly behavioral phenotype in 
order to more optimally allocate maternal energetic invest-
ment [86].

An association between breastfeeding and upper respira-
tory microbiota composition at 6 weeks was reported, with 
breastfed infants showing a significantly different microbial 
composition than formula-fed ones [87]. Interestingly, such 
association seems to disappear at 6 months of age (when 
weaning typically begins) [87, 88].

Finally, it has been hypothesized that HMM may ben-
efit the mother too, protecting her against infections such 
as mastitis [42].

Potential evolutionary significance of HMM

Breastfeeding represents a valuable route of maternal micro-
bial transmission both in humans and other animals (i.e., 
rhesus monkeys, cows, sheep, goats) [89–92]. Since the 
transmission of HMM appears to be a conserved feature 

among different species, a possible evolutionary purpose 
can be hypothesized.

Maternal microbial transmission provides offspring with 
important microbes early in life, rather than leaving their 
acquisition to chance during later stages of development. 
By shaping the offspring’s own microbiome, such microbes 
may determine evolutionary advantages in the recipient [11, 
93, 94]. Consequently, within a broader evolutionary con-
text, HMM transmission could be seen as at least partially 
capable of shaping the microbiome of the whole species over 
evolutionary time, since microbes that promote host fitness 
will increase their odds of reaching the next generation.

Future directions

Despite the progress made in the last decades, many unan-
swered questions still remain. However, the lack of interna-
tionally recognized “best practices” in HMM analysis (e.g., 
HM collection, storage, processing, DNA extraction, and 
sequencing) often limits comparison among studies. There-
fore, standardized and rigorous study designs are needed to 
promote accuracy and reproducibility of the results.

Many topics addressed in the present review represent 
interesting fields to explore. Firstly, the sources and path-
ways of HMM seeding should be further examined, possibly 
through experimental studies on animal models. Moreover, 
interactions between mother, infant, and environment should 
be better investigated, thus uncovering hidden mechanisms 
of coregulation between different microbiomes. Addition-
ally, all the members of the microbial community of HM 
should be equally considered. So far, bacteria have been 
the most studied microorganisms. Progressively, attention 
has shifted to viruses (although with a strong bias towards 
DNA viruses), fungi, and yeasts. The next frontier will be to 
explore the archaeome and to deepen our knowledge of the 
potential infant health implications of the “minor” compo-
nents of HMM. Finally, the functional significance of HMM 
and its impact on infants’ GI tract microbiome, immune sys-
tem, and later health would benefit from appropriate experi-
mental, possibly longitudinal, studies.

The practical and translational implications of research on 
HMM should also be considered. For example, studies on 
the reconstitution of DHM through inoculation of definite 
amounts of infant’s own mother milk aimed at restoring the 
live HMM, as described by Cacho et al. [95], should be 
incentivized. Likewise, the possible role of maternal dietary 
supplementation with pre- or postbiotics aimed at modulat-
ing HMM should be clarified, as well as the more suitable 
timing for such supplementation (e.g., during pregnancy 
and/or during lactation).

1816 European Journal of Pediatrics (2022) 181:1811–1820
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Conclusions

Although traditionally considered sterile, it is now clear that 
HM harbors a wide variety of microorganisms, ranging from 
bacteria to viruses, fungi and yeasts, and minor genera. The 
transmission of such microorganisms to the infant may help 
determine its present and future health, mainly shaping the 
neonatal GI tract microbiome and immune system. The com-
plexities of the HM ecosystem warrant further research to 
deepen our knowledge on HMM origin, determinants, and 
implications for infants’ health.
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