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Abstract

As of the writing of this paper, lower bounds are not a staple of quantum chemistry

computations and for good reason. All previous attempts at applying lower bound

theory to Coulombic systems led to lower bounds whose quality was inferior to the Ritz

upper bounds so that their added value was minimal. Even our recent improvements

upon Temple’s lower bound theory were limited to Lanczos basis sets and these are

not available to atoms and molecules due to the Coulomb divergence singularity. In

the present paper we overcome these problems by deriving a rather simple eigenvalue

equation whose roots, under appropriate conditions, give lower bounds which are

competitive with the Ritz upper bounds. The input for the theory is the Ritz eigenvalues

and their associated standard deviations variance, there is no need to compute the full

matrix of the squared Hamiltonian. Along the way we present a Cauchy-Schwartz

inequality which underlies many aspects of lower bound theory. We also show that

within the matrix Hamiltonian theory used here, the method due to Lehmann and

our recent self-consistent lower bound theory (J. Chem. Phys. 115 (2020) 244110) are

identical. Examples include implementation to the Hydrogen and Helium atoms.
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I. Introduction

One of the outstanding challenges especially in ab-initio quantum chemistry is obtaining

lower bounds to atomic and molecular energies which are as accurate as the upper bounds

obtained with the Courant-Fischer theorem from the Ritz variational method1. Lower bound

methods abound, starting with Temple’s seminal expression derived in 19282. Landmarks

in the derivation of lower bounds are Weinstein’s lower bound of 19343,4 and Lehmann’s

optimization of Temple’s lower bound presented in 1949-505,6. Especially Lehmann’s expression

has turned out be quite accurate in different settings, however not so for Coulombic systems,

as exemplified by computations on the He7–10 and Li11 atoms.

In the past few years we have presented an improvement of Temple’s formula for lower

bounds of eigenvalues of Hermitian operators Ĥ 12–15 and like Lehmann’s theory it can become

as accurate as the Ritz upper bound estimates16. However, these results were derived through

explicit use of a Lanczos basis set17, which depends on a Krylov space18, in which one creates

basis vectors by repeated application of the Hamiltonian operator. This does not work for

unscreened Coulomb potentials19 due to the fact that the Coulomb singularity causes the

third and higher moments of the Hamiltonian to diverge.

In this paper we provide an answer to this challenge. Assuming an L dimensional subspace

of the Hilbert space (as is standard in Ritz variational theory) we present a lower bound

expression which depends only on the Ritz eigenvalues and associated variances. In contrast

to Lehmann’s method there is no need to compute the matrix representing Ĥ2 in the chosen

space. The theory utilizes Lehmann’s approach as well as our recent results. To distinguish

the present theory from previous ones, we will refer to it as the Pollak-Martinazzo lower

bound theory, using the abbreviation PM theory.

In Section II we review the known lower bound theories and their simplification when

using Lanczos basis sets. Especially for Lehmann’s theory, we derive a new and simplified

expression of the Lehmann eigenvalues, which replaces the necessity of knowing the full Ĥ2

matrix with the need to know only the variances of the Ritz eigenstates which, in turn,
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thanks to the Lanczos construct, are available from the Hamiltonian matrix only. We then

construct in Section III an L+ 1-dimensional auxiliary Hamiltonian matrix whose diagonal

elements are the L Ritz eigenvalues. The additional dimension is taken to be such that the

L + 1 dimensional matrix is parametrically dependent on one of its eigenvalues, which can

be set at will, and in practice is set formally to one of the true (unknown) eigenvalues of the

Hamiltonian operator. In this construct, the standard deviations associated with the Ritz

eigenvalues turn out to be coupling elements which couple the approximate eigenfunctions

associated with the Ritz eigenvalues to the exact eigenfunction associated with the chosen

exact eigenvalue. In Sections III.b and III.c we proceed to show that the resulting eigenvalue

expression is consistent with both the Lehmann and our previous self consistent lower bound

theory when applied to the L+ 1-dimensional auxiliary problem. The reader interested only

in the new lower bound theory and its implementation can skip these at a first reading.

To apply the theory in practice, it is necessary to determine a lower bound to one of

the roots of the eigenvalue expression. We show that this is readily obtained by considering

how the roots of the equation change with increasing dimensionality. As a result there is a

parallel to the so called Lehmann pole20 such that the Lehmann pole which is employed in the

”standard” Lehmann lower bound theory turns out to be also the pole needed to construct

lower bounds through the new lower bound expression. It cannot be over stressed that

the ”Pollak-Martinazzo” theory derived in this paper depends only on the Ritz eigenvalues

and their associated variances. Eigenfunctions associated with the Ritz eigenvalues are only

needed for computation of the associated variances but there is no need to compute the full

Ĥ2 matrix.

In Section IV we apply the resulting theory to the He atom using a scaled Schrödinger

basis set25 and to the hydrogen atom using a Gauss Hermite basis set. The resulting lower

bounds are superior to estimates based on Temple’s expression and the ”standard” Lehmann

theory, which is not only less accurate but also considerably more expensive since it is based

on computation of the L dimensional matrix of Ĥ2. We end with a Discussion of the
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advantages, future challenges and possible pitfalls in application of the new method to more

complex atoms and molecules.

II. Short review of previous lower bound theories

a. Framework

We start with a Hamiltonian operator, whose eigenvalues and eigenstates are denoted as:

Ĥ|ϕj〉 = εj|ϕj〉, j = 1, 2, ... (2.1)

The eigenvalues are ordered in ascending order, that is if j ≤ k then εj ≤ εk. The ground

state is given the index 1 (rather than 0) to simplify the notation later on. We also assume

the existence of a known orthonormal basis set |Ψj〉 = 1, 2, ... such that the Hamiltonian

operator may be represented exactly as

Ĥ =
∞∑

j=1,k=1

|Ψj〉Hjk〈Ψk| (2.2)

and

Hjk = 〈Ψj|Ĥ|Ψk〉. (2.3)

To simplify we will assume that all functions and associated overlaps are real, however

this is not essential, the important property is that the operator under study is Hermitian. As

in any practical computation, one never has the full Hamiltonian matrix (except for special

cases) but rather its representation in a finite basis set, say the first L states spanning a

space V . Henceforth, in order to simplify notation we will not indicate the dimensionality L,

and denote with P the projector onto V and with Q that onto its orthogonal complement.
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The Hamiltonian projected onto the finite basis set is

ĤV = PĤP (2.4)

and we assume that we know how to diagonalize this Hamiltonian in V such that it has

eigenvalues λj and normalized eigenfunctions |Φj〉

ĤV |Φj〉 = λj|Φj〉, j = 1, ..., L. (2.5)

With each state we also define a standard deviation σj

σ2
j = 〈Φj|Ĥ2 − λ2j |Φj〉 . (2.6)

The overlap squared of the jth eigenfunction in the projected space with the exact kth

eigenfunction is denoted as

akj = 〈ϕk|Φj〉2. (2.7)

For future reference we note that the variance may be rewritten as

σ2
j = 〈Φj|ĤQĤ|Φj〉 . (2.8)

b. The Weinstein and Temple lower bound expressions

Underlying the derivation of many lower bounds is the following Cauchy-Schwartz inequality

〈ϕj|Q̂Ĥ|Φj〉2 ≤ 〈ϕj|Q̂|ϕj〉〈Φj|ĤQ̂Ĥ|Φj〉. (2.9)

where Q̂ is a projector. For example choosing

Q̂ = Î − |Φj〉〈Φj|, (2.10)
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inserting it into the Cauchy-Schwartz inequality and rearranging gives the inequality

εj ≥ λj − σj

√
1− ajj
ajj

. (2.11)

Assuming that ajj ≥ 1/2 gives the Weinstein lower bound

εj ≥ λj − σj. (2.12)

As discussed in Ref.15, this assumption is somewhat less restrictive than the accepted

condition for the validity of the Weinstein lower bound4 which is that the Ritz eigenvalue

λj is the closest one to the true eigenvalue εj, that is

λj ≤
εj + εj+1

2
. (2.13)

To derive the Temple lower bound, we define with each eigenstate in the projected space

a ”residual energy” λ̄j such that

λj = ajjεj + (1− ajj) λ̄j. (2.14)

With this definition the residual energy may be expressed in terms of the overlaps and exact

eigenvalues as

λ̄j =

∑∞
k=1 akj (1− δjk) εk

(1− ajj)
(2.15)

where δjk is the Kronecker delta. It is a matter of straightforward algebra to show from Eq.

2.14 that

ajj =
λ̄j − λj
λ̄j − εj

. (2.16)

Inserting this identity into Eq. 2.11 and rearranging one finds the Temple lower bound
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expression

εj ≥ λj −
σ2
j

λ̄j − λj
. (2.17)

In the form of Eq. 2.17, the previous unknown overlap ajj has been replaced by the as

yet unknown residual energy λ̄j. But we have gained something. Consider the ground state

residual energy. For any k ≥ 2 we have, through the initial ordering of the eigenvalues, the

property εk ≥ ε2 so that

λ̄1 =

∑∞
k=2 ak1εk

(1− a11)
≥ ε2. (2.18)

The Temple lower bound for the ground state now takes the well known form

ε1 ≥ λ1 −
σ2
1

ε2 − λ1
≥ λ1 −

σ2
1

ε−2 − λ1
(2.19)

where ε−2 , which must be greater than λ1 the Ritz eigenvalue for the ground state, is defined

as a lower bound to the first excited state energy. It could be obtained through a variety

of lower bound methods such as the Weinstein3, Bazley21,22, Miller23 and Marmorino24

methods. Introduction of the residual energy made it possible to obtain a practical calculable

form of Temple’s lower bound formula.

If the Ritz eigenvalues converge to the exact energies when increasing the dimensionality

of V , so will the Weinstein and Temple lower bounds, since the variance vanishes for exact

eigenstates. However the convergence will be much slower than the Ritz convergence, due

especially to the variances. As noted in Ref.8, the integrand of a diagonal matrix element of

the Hamiltonian squared is always positive so that all errors in the approximate wavefunction

add up. This is not the case for the Hamiltonian itself, where positive and negative errors

tend to cancel each other out, leading to more rapid convergence. It is this slow convergence

of the Weinstein and Temple lower bounds, as exemplified by precise computations on the

He atom8, which has hindered their usage.
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c. The self consistent lower bound theory

Instead of using the crude separation of the Hilbert space as in Eq. 2.10, one may use the

projector Q onto the orthogonal complement to V and insert it into the Cauchy-Schwartz

inequality (Eq. 2.9). Upon rearranging, this leads to an improved lower bound inequality

εj ≥ λj −
σ2
j

λ̄j − λj

[
1 +

σ2
j

(λj − εj)2
L∑

k=1,k 6=j

ajk
ajj

]−1
(2.20)

This result is superior to Temple’s lower bound since the expression in square brackets is

always greater than unity. However, the overlaps ajk are unknown. As shown in our previous

papers14,15, the key to turning this result into a practical one is the use of a Lanczos basis

set so that the Hamiltonian has the form

Ĥ =
∞∑
k=1

(
Hkk|Ψk〉〈Ψk|+ Hk+1,k|Ψk+1〉〈Ψk|+ Hk,k+1|Ψk〉〈Ψk+1|

)
. (2.21)

This implies that the ”complementary part” of the Hamiltonian takes the form

QĤ =
∞∑

k=L+1

(
Hkk|Ψk〉〈Ψk|+ Hk,k−1|Ψk〉〈Ψk−1|+ Hk,k+1|Ψk〉〈Ψk+1|

)
. (2.22)

so that for example from Eq. 2.8 one finds

σ2
j = 〈Φj|ĤQĤ|Φj〉 = 〈Φj|ΨL〉2H2

L,L+1. (2.23)

Using the identity

〈ϕj|Ĥ|Φk〉 = εj〈ϕj|Φk〉 = λk〈ϕj|Φk〉+ 〈ϕj|QĤ|Φk〉. (2.24)
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one finds the needed relation

ajk
ajj

=
〈ϕj|Φk〉2

〈ϕj|Φj〉2
=

(λj − εj)2

(λk − εj)2
σ2
k

σ2
j

. (2.25)

Inserting this into Eq. 2.20 gives a practical improved lower bound expression

εj ≥ λj −
σ2
j

λ̄j − λj

[
1 +

j−1∑
k=1

σ2
k

(εj − λk)2
+

L∑
k=j+1

σ2
k

(λk − εj)2

]−1

≡ λj −
σ2
j(

λ̄j − λj
)

[1 + Tj (εj)]
(2.26)

One also notes, that the same considerations lead to an improved Weinstein lower bound.

Assuming as before that ajj ≥ 1/2, but using the projection operator Q one readily finds

that

εj ≥ λj − σj

[
1 +

σ2
j

(λj − εj)2
L∑

k=1,k 6=j

ajk
ajj

]−1/2
= λj −

σj√
1 + Tj (εj)

(2.27)

where the second line is valid only when using a Lanczos basis set.

The implementation of this result these results and its their improved convergence properties

have been discussed in some detail in Refs.14,15. The central drawback is that the expression

is derived by using the Lanczos basis set, which does not exist for Coulombic systems due

to the Coulomb divergence singularity. It is this challenge which is addressed in this paper.

d. Lehmann theory

The Temple lower bound as expressed in Eq. 2.17 is based on a particular choice of a

basis function, namely the eigenfunction of the Ritz eigenvalue. Lehmann noticed that

one may choose a better linear combination of states in the space V by solving a generalized
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eigenproblem in this space. The Lehmann equation is, in a form that suits best our purposes,

P
(
Ĥ − ρÎ

)2
|Ω〉 = κP

(
Ĥ − ρÎ

)
|Ω〉. (2.28)

where κ is the Lehmann eigenvalue and |Ω〉 ∈ V is the associated Lehmann eigenfunction.

The parameter ρ is known as the Lehmann pole and can be any real number but a Ritz

eigenvalue for the above eigenproblem to be well-defined. However, for Eq. 2.28 to provide

lower bounds τ = κ + ρ to the first L∗ ≤ L lowest eigenvalues (as is customarily needed

in quantum chemistry calculations) the sample space V must be ”good enough” such that

λL∗ ≤ εL∗+1 holds, and ρ must be limited by the condition λL∗ ≤ ρ ≤ εL∗+1. Only under

such circumstances will Eq. 2.28 deliver L∗ negative Lehmann eigenvalues and these can be

used to bound from below the first L∗ eigenvalues of Ĥ. In practice, then, L∗ is the highest

state for which the inequality λL∗ ≤ εL∗+1 holds and ρ is a lower bound to εL∗+1.

To understand the lower bound property of the Lehmann eigenvalues bounds (the τ ’s

obtained from the Lehmann eigenvalues according to κ+ ρ), it is useful to introduce

|y〉 =
(
Ĥ − ρÎ

)
|ω〉. (2.29)

for arbitrary |ω〉 ∈ V and to notice that the Lehmann equation amounts to the stationary

condition of an ordinary Rayleigh-Ritz quotient involving the resolvent G(ρ) = (Ĥ − ρÎ)−1.

Specifically, for |y〉 arbitrary in the space (Ĥ − ρÎ)V , we have

δ

(
〈y|(Ĥ − ρÎ)−1|y〉

〈y|y〉

)
= 0 (2.30)

if and only if |y〉 ≡ |Y 〉 = (Ĥ − ρÎ) |Ω〉 where |Ω〉 satisfies Eq. 2.28, and in turn,

1

κ
=
〈Y |(Ĥ − ρÎ)−1|Y 〉

〈Y |Y 〉
(2.31)
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where κ−1 is the corresponding quotient (a Ritz eigenvalue of G(ρ)). Then, the Courant-

Fischer theorem guarantees that the negative values κ−1 bound the exact eigenvalues (εk −

ρ)−1 of G(ρ) from above, for εk lower than ρ; if the negative κ’s are sorted in order of

decreasing magnitude, |κL∗| ≤ |κL∗−1| ≤ ..|κ1|, then τn = ρ + κn is a lower bound to the

(L∗ − n + 1)th eigenvalue left of ρ, that is the lower bounds are ordered as τ1 ≤ ε1 ≤ τ2 ≤

ε2, ...,≤ τL∗ ≤ ρ.

To see the connection with Temple’s lower bound, one multiplies Eq. 2.28 with the bra

〈Ω| to find that

τ = 〈Ω|Ĥ|Ω〉 − σ2

ρ− 〈Ω|Ĥ|Ω〉
(2.32)

with

σ2 = 〈Ω|Ĥ2|Ω〉 − 〈Ω|Ĥ|Ω〉2. (2.33)

The Ritz variational theorem which underlies the Lehmann construct, as in Eq. 2.31 shows

that the Lehmann eigenfunction is the function that maximizes Temple’s lower bound.

To summarize thus far, the Lehmann method builds on the matrices of Ĥ2 and Ĥ in the

V space, diagonalization of Eq. 2.28 gives the lower bound eigenvalues. The condition that

ρ ≤ εL∗+1 implies that one needs knowledge of a non-trivial lower bound to the state εL∗+1

this could be a Weinstein or a Bazley related lower bound.

Interestingly, when using a Lanczos basis, one does not need to know the full Ĥ2 matrix in

the projected space, but only the variances σ2
k associated with the respective Ritz eigenvalues.

To see this, one multiplies Eq. 2.28 by the bra 〈Φk| to find

〈Φk|ĤQĤ|Ω〉 = (λk − τ) (ρ− λk) 〈Φk|Ω〉 (2.34)

so that

〈Φk|ΨL〉H2
L,L+1〈ΨL|Ω〉 = (λk − τ) (ρ− λk) 〈Φk|Ω〉. (2.35)
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Multiplying by 〈ΨL|Φk〉 gives

σ2
k〈ΨL|Ω〉 = (λk − τ) (ρ− λk) 〈ΨL|Φk〉〈Φk|Ω〉. (2.36)

Rearranging and summing over all k from 1 to L gives an eigenvalue equation, valid for the

Lanczos construct
L∑
k=1

σ2
k

(λk − τ) (ρ− λk)
= 1. (2.37)

and one notes expressly that the variances may be obtained from Eq. 2.23, that is, all the

information is in matrix elements of the Hamiltonian only. The challenge then is to obtain

similar results also in the case of Coulombic potentials where the Lanczos construct is not

possible.

III. Lower bounds for Coulombic systems

a. A Hamiltonian matrix construct for lower bounds

The ”Achilles heel” in the simplifications presented in the previous section is the need to

create a Lanczos basis with the full Hamiltonian. Of course, for a finite Hamiltonian matrix

representation, any power of the matrix is well defined and does not diverge. As before, in

the projected space V we assume that the L-dimensional Hamiltonian matrix is diagonal,

with known Ritz eigenvalues and associated variances. At this point, we do not discuss how

these variances are computed. We then expand the diagonal Hamiltonian matrix with one
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additional row and column such that it takes the form

K(ε) =



λ1 0 . . . 0 σ1

0 λ2 . . . 0 σ2
...

...
. . . 0

...

0 0 . . . λL σL

σ1 σ2 . . . σL ε+
∑L

k=1

σ2
k

λk−ε


. (3.1)

where ε is for the time being a parameter. Notice that, for the sake of clarity, we use a

simplified notation for K; henceforth, it is understood to have dimension (L + 1)× (L + 1)

where L = dimV . In this ”auxiliary” Hamiltonian matrix the standard deviations σj couple

the ”Ritz states” to the added new state and, because of the Cauchy interlacing theorem26,

its eigenvalues xk (k = 0, 1, ..L) are interlaced by the λk’s, that is, xk−1 ≤ λk ≤ xk. Among

these L+1 new eigenvalues, one will be the energy ε. To see this we note that the eigenvalue

equation is

0 = det [K− xI]

= ΠL
k=1 (λk − x)

[(
ε+

L∑
k=1

σ2
k

λk − ε
− x

)
−

L∑
k=1

σ2
k

λk − x

]
. (3.2)

The expression in the square brackets has to vanish and this implies that

x− ε =
L∑
k=1

σ2
k

λk − ε
−

L∑
k=1

σ2
k

λk − x
=

L∑
k=1

σ2
k (x− ε)

(λk − ε) (x− λk)
(3.3)

and clearly one solution is x = ε. The other L eigenvalues1 xj, j = 1, ..., L are the solutions

of the remaining polynomial equation

1 =
L∑
k=1

σ2
k

(λk − ε) (x− λk)
. (3.4)

1Henceforth we choose them to be sorted in ascending order, however the (L+1)th eigenvalue (i.e., x = ε)
can be anywhere on the real axis.
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Notice the interesting symmetry: if xk is an eigenvalue of K(ε) other than ε, then ε is an

eigenvalue of K(xk) other than xk.

As we shall show below, Eq. 3.4 lies at the heart of PM theory. Lower bounds on

the xk poles will lead under suitable conditions to lower bounds to the eigenvalue under

consideration. For example, when interested in the ground state energy ε1, we find that one

should expect that the first root x1 ≥ ε2 so that a lower bound on the first excited state

energy ε2 will give a lower bound to the ground state energy, provided of course, that the

Ritz eigenvalue for the ground state is lower than the lower bound for the first excited state.

Note the formal similarity between Eq. 3.4 and the Lanczos based Lehmann equation for

the lower bound derived in Eq. 2.37. It is in this sense that PM theory generalizes Lehmann

theory without the need to use a Lanczos basis set.

The eigenvalue equation 3.4 may also be rewritten as

x+
L∑
k=1

σ2
k

(λk − x)
= ε+

L∑
k=1

σ2
k

(λk − ε)
(3.5)

from which one finds that

∂x

∂ε

[
1 +

L∑
k=1

σ2
k

(λk − x)2

]
= 1 +

L∑
k=1

σ2
k

(λk − ε)2
(3.6)

or in other words the eigenvalues of K(ε) are increasing functions of the energy parameter ε.

Examination of Eq. 3.6 might suggest that this monotonicity is only in intervals, since

one encounters an infinity as either x or ε go through a Ritz eigenvalue. In reality, there is

no discontinuity, as ε comes close to a Ritz eigenvalue, the same will happen to all the roots

x of Eq. 3.4 except one. The result is that the roots can be arranged to define functions

x(k)(ε) that are continuous on the whole real axis except for a single pole singularity at a

Ritz eigenvalue λk, and which are monotonically increasing in each connected sub-domain

(−∞, λk), (λk,+∞). This property is discussed further in detail in the Appendix where it

is shown that the above mentioned singularity is harmless for the method described below.
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Monotonocity has far reaching implications. Let us set ε = ε1 and consider the limiting

situation where the Ritz eigenvalues λk approach the exact eigenenergies εk and have thus

vanishingly small variances σ2
k. We then choose the lowest L eigenvalues to construct the V

space and the auxiliary matrix. In this limit, the matrix K(ε1) has L eigenvalues matching

the Ritz values and one eigenvalue which diverges to +∞, since as can be seen, the (L+ 1)th

diagonal entry of the auxiliary matrix causes trK(ε1) to diverge. Having chosen one of the

eigenvalues of K(ε1) to be ε1 then, necessarily, all other roots of the eigenvalue equation 3.4

are such that xk(ε1) → λk+1. Moreover, this occurs from below because of the interlacing

theorem (λk ≤ xk(ε1) ≤ λk+1). In addition, since with increasing accuracy each λk+1 tends

to εk+1 from above the same holds for the roots xk(ε1) i.e. εk+1 ≤ xk(ε1) in this limit.

Now, we can revert the argument. Suppose that the calculation is sufficiently converged

such that λk ≤ εk+1 and that we know a rough lower bound (yet greater than λk) to the

(k + 1)th exact energy, call it ε−k+1. We know that there exists an ε such that K(ε) has ε−k+1

among its eigenvalues xk(ε). Indeed, thanks to the symmetry of Eq. 3.4, such an ε is just

the lowest eigenvalue of K(ε−k+1) and − this is the key point − since x(ε) is monotonically

increasing, ε is guaranteed to be left of (that is lower than) ε1. In other words, we have

managed to convert a lower bound to the (k+ 1)th energy into a lower bound to the ground-

state energy. This is further illuminated in Fig. 1 for the case k = 1. The question of

whether this ”map” produces a tight (hence useful) bound will be addressed numerically

below, where it will be shown to be indeed the case.

The condition xk(ε1) > εk+1 deserves some further comments since it is the key to obtain

lower bounds to the ground-state. For definiteness, let us focus on the case k = 1 considered

in the applications of Sec. IV. Expressing this property differently, As shown in Appendix, it

is the degree of convergence of the ground-state Ritz eigenvalue that determines the closeness

of x1 to λ2, irrespective of whether or not λ2 is close to ε2. Hence if λ1 is reasonably close

to ε1 then x1 should be close enough to λ2 to guarantee that x2 > ε1. As demonstrated

for the computations of lower bounds for the He and H atoms, this property is verifiable by
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Figure 1: A diagram showing the use of the auxiliary matrix K(ε). The top part (blue)
of the figure shows the spectrum of the matrix when the energy parameter ε = ε1 and the
bottom (in green) when the energy parameter is chosen as a lower bound to the first excited
state energy (ε = ε−2 ). Red dots indicate the positions of the exact energy levels εk and black
vertical bars that of the Ritz eigenvalues λk. Note that x1(ε

−
2 ) is a lower bound to ε1 and

x1(ε1) is an upper bound to ε2

considering the dependence of x1 on the dimensionality L of the computation. If, and this is

the typical case, it is a monotonically decreasing function of the dimensionality then due to

the limit that ultimately λ2 → ε2, the eigenvalue x1 is guaranteed to lie above ε2. The fact

that ε1 is not known is not critical, since the property of a monotonically decreasing value

of x1 with increasing dimensionality will hold for a range of ε values close to ε1. It is this

added property, which distinguishes PM theory from Lehmann theory, when the Lanczos

construction is not exploited or not possible. When the latter is used the above ordering

x1(ε1) > ε2 always holds and the two theories become equivalent to each other. This follows

from the above mentioned equivalence of the PM theory with method that holds under such

circumstances: In fact, if we had x1(ε1) < ε2 we could choose a pole ρ in Eq. 2.37 larger

than x1 and yet below ε2 (x1 ≤ ρ ≤ ε2), and bound in this way the ground-state from below.

But this is clearly impossible by virtue of monotonicity (Eq. 3.9), since ε1 ≤ x−11 (ρ).

The above considerations can be generalized to excited states. For the sake of clarity, let

us focus on the first excited state ε2 and set ε = ε2 in the auxiliary matrix. In the limiting

situation considered above the eigenvalues xk(ε2) approach the Ritz values from below, but

now, due to the interleaving theorem and our ordering of the eigenvalues, x1(ε2) ≤ λ1 and
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xk(ε2) ≤ λk+1 for 2 < k ≤ L. The lowest root - x1(ε2), is a lower bound to the ground-state

since, according to the above, we know that ε2 < x1(ε1) and we have to move x1 leftward

to match ε2. The remaining eigenvalues, on the other hand, are upper bounds to the states

higher than ε2, for the very same reasons given above. Hence, even a crude lower bound

ε−k+1 can be converted into a lower bound to ε−2 . As is usual when using a finite basis

set, the quality of the Ritz eigenvalues deteriorates as one ”goes up the eigenvalue ladder”.

There will be some value L∗ above which the interleaving property of the Ritz and exact

eigenvalues is no longer valid. However, the upper bound quality of the roots of the auxiliary

Hamiltonian remains up to L∗, that is xL∗ ≥ εL∗ . In practice, then, one can use the highest

index (k + 1 = L∗) for which εL∗ ≥ λL∗−1 holds and use a lower bound ε−L∗ (yet such that

ε−L∗ ≥ λL∗−1) to obtain lower bounds to all the lower lying states. This is the analog of the

pole in Lehmann theory.

The practical implementation of the PM theory parallels the practical implementation of

the Lehmann theory. One starts with a valid lower bound to the Lehmann pole. Then one

computes all roots of Eq. 3.4 which are below the lower bound to the Lehmann pole and

these will be lower bounds to the respective eigenvalues.

Apart from the increased lower bound accuracy obtained through the PM method, we

note that the computational expense may be lower than the effort involved in computing the

”standard” Lehmann lower bound. For the Lehmann equation one needs the full Ĥ2 matrix.

For the PM method one only needs the variances associated with the Ritz eigenfunctions.

This implies that if |Φj〉 is an eigenfunction one can compute directly diagonal matrix

elements of the sort 〈Φj|Ĥ2|Φj〉 and there is no need to first compute the Ĥ2 matrix.

In the next Section we will give a numerical example which shows that the present theory

gives improved lower bounds for the excited states as compared to any other existing method.
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b. The Lehmann eigenvalue equation for the Hamiltonian of Eq. 3.1

The result of the previous subsection has the flavor of the Lehmann lower bound and now we

will show that indeed it is identical to it provided that one uses in the Lehmann equation 2.28

the matrix Hamiltonian K(ε) (Eq. 3.1) instead of the full Hamiltonian Ĥ. For this purpose,

it is expedient to introduce an auxiliary vector |Ψ⊥〉 (which is only required to be orthogonal

to the |Φk〉 vectors, for k = 1, .., L) and interpret the matrix K(ε) as the representation of

an operator K̂(ε) acting in the enlarged, L + 1-dimensional space built with the |Φk〉’s and

|Ψ⊥〉. We then repeat the derivation of the Lehmann lower bound expression starting from

the eigenvalue equation 2.28, replacing the full Hamiltonian Ĥ with the Hamiltonian of Eq.

3.1. By definition

K̂(ε)|Φk〉 = λk|Φk〉+ σk|Ψ⊥〉, k = 1, ..., L (3.7)

and

K̂(ε)|Ψ⊥〉 =
L∑
j=1

σj|Φj〉+

(
ε+

L∑
k=1

σ2
k

λk − ε

)
|Ψ⊥〉 (3.8)

The Lehmann equation (2.28) remains as before. Multiplying it by the bra 〈Φk| and

rearranging gives
L∑
j=1

σj〈Φj|Ω〉 =
(λk − ρ) [κ− (λk − ρ)]

σk
〈Φk|Ω〉. (3.9)

We then use the notation

R ≡
L∑
j=1

σj〈Φj|Ω〉 (3.10)

so that

〈Φk|Ω〉 =
σk

(λk − ρ) [κ− (λk − ρ)]
R. (3.11)

Inserting this into left hand side of Eq. 3.9 leads to the eigenvalue equation

L∑
k=1

σ2
k

(λk − ρ) [κ− (λk − ρ)]
= 1. (3.12)
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Comparing with Eq. 3.4 we identify κ + ρ with ε and ρ with x. This Lehmann equation is

exact for the Hamiltonian K̂(ε) and is valid also for Coulombic systems. In other words, the

PM method is identical to the Lehmann method for systems with Lanczos basis functions as

may be inferred by comparing the PM equation and the Lehmann eigenvalue equation for

Lanczos systems as in Eq. 2.37. If however one uses the Lehmann equation 2.28 for systems

that cannot use the Lanczos construct such as Coulombic systems, then the PM method

gives superior results as shall be exemplified below. However, the PM method is identical to

Lehmann’s equation provided that one uses it with the matrix Hamiltonian rather than the

full Hamiltonian.

This then complements the previous proof of how one obtains lower bounds. Let us

suppose, that as before, L∗ is the highest state for which the interleaving property of the

Ritz and exact eigenvalues holds. We then use ε−L∗ as the Lehmann pole. The lower bound

property of the Lehmann equation remains valid so that we know that

εk ≥ ε−L∗ + κk, k < L∗. (3.13)

Finally, before closing this Section let us mention two further results that are instrumental

to the following section. Firstly, we notice that in the enlarged space the eigenvector of the

auxiliary Hamiltonian K̂(ε) with eigenvalue ε takes the simple form

|ε〉 =


√√√√1 +

L∑
k=1

σ2
k

(λk − ε)2

−1( L∑
j=1

σj
ε− λj

|Φj〉+ |Ψ⊥〉

)
(3.14)

as can be easily verified by inspection. Secondly, with some simple algebra it is possible to

recast the solutions for the eigenvalues other than ε as

xk = ε

[
1 +

L∑
k=1

σ2
k

λk (λk − ε)

][
1 +

L∑
k=1

σ2
k

λk (λk − xk)

]−1
. (3.15)
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and to write the associated eigenvectors in a form

|xk〉 =

√√√√1 +
L∑
j=1

σ2
j

(λj − xk)2

−1( L∑
j=1

σj
xk − λj

|Φj〉+ |Ψ⊥〉

)
, k = 1, ..., L. (3.16)

that closely parallels Eq. 3.14. We will make use of these expressions in the next section

where we shed light on the relationship between Eq. 3.4 and our recent findings14–16.

c. Improved self consistent lower bound theory using theHamiltonian

of Eq. 3.1

We may now also show that our previous improvements of Temple’s theory as described in

Refs.14–16 and Eq. 2.26, is also identical to Eq. 3.4. Choosing the parameter ε to be the

k-th eigenvalue of the Hamiltonian (Ĥ), the eigenfunction of the matrix Hamiltonian K̂(ε)

associated with this eigenvalue is denoted as |εk〉 and the eigenvectors associated with the

remaining roots of Eq. 3.4 as |xj〉 (see Eq.s 3.14 and 3.16, respectively). Similarly to the

development in Section II of this paper we may rewrite each Ritz eigenvalue as

λk = 〈Φk|εk〉2εk +
(
1− 〈Φk|εk〉2

)
λ̄k (3.17)

Denoting the eigenvectors associated with the remaining roots of Eq. as |xj〉 (see Eq. where

the residual energy when of the Hamiltonian is K̂(ε) becomes

λ̄k =

∑L
j=1,j 6=k〈Φk|xj〉2xj∑L
j=1,j 6=k〈Φk|xj〉2

. (3.18)

We then note that for the extended Hilbert space of the Hamiltonian K̂(ε) we have the

identity

〈εk|QK̂(ε)|Φj〉2 = (λj − εk)2 〈εk|Φj〉2 (3.19)
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but equivalently

〈εk|QK̂(ε)|Φj〉2 = 〈εk|Ψ⊥〉2〈Ψ⊥|K̂(ε)|Φj〉2

= 〈εk|Ψ⊥〉2σ2
j (3.20)

so that with our construct

(λk − εk)2 =
〈εk|Ψ⊥〉2

〈εk|Φk〉2
σ2
k

=

[
1− 〈εk|Φk〉2

〈εk|Φk〉2
−

L∑
j=1,j 6=k

〈ε1|Φk〉2

〈ε1|Φ1〉2

]
σ2
k. (3.21)

In view of Eqs. 3.19 and 3.20 we derive the analog of the Lanczos relation of Eq. 2.25

〈εk|Φj〉2

〈εk|Φk〉2
=

(λk − εk)2 σ2
j

σ2
k (λj − εk)2

(3.22)

and in view of Eq. 3.17

1− 〈εk|Φk〉2

〈εk|Φk〉2
=

(λk − εk)(
λ̄k − λk

) . (3.23)

Putting this all into Eq. 3.21 and rearranging, we get the identity

εk = λk −
σ2
k(

λ̄k − λk
) [1 +

L∑
j=1,j 6=k

σ2
j

(λj − εk)2

]−1
(3.24)

and this has the same form, as Eq. 2.26 without invoking a Lanczos basis set. To turn

this into a practical expression it is necessary to estimate the residual energy as defined in

Eq. 3.18 which differs from the residual energy as defined in Eq. 2.15. For this purpose,

one needs lower bounds to the roots xk and this could follow the same procedure as above

using the improved Weinstein lower bounds which now may be also derived by assuming as
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in Weinstein theory that 〈εk|Φk〉2 ≥ 1
2

to find that

εk = λk −
σk√

1 +
∑L

j=1,j 6=k
σ2
j

(λj − εk)2

(3.25)

Alternatively, one could use the Bazley related lower bounds to the corresponding eigenvalues

of the Hamiltonian.

To summarize this Section, we have two main results. The first and most important one is

the practical one. Given the ”Lehmann pole” we obtain lower bounds to eigenvalues without

need to compute the full Ĥ2 matrix, all one needs are diagonal elements of it. Secondly, we

have demonstrated identity of the Lehmann lower bound expression with the self consistent

Temple lower bound expression and both are in principle exact. It remains to show that this

methodology gives lower bounds for Coulombic systems that are superior to those obtained

through the ”standard” Lehmann methods, this is shown in the next Section.

IV. Applications

a. He atom basis set

To demonstrate the practicality of the theory, we consider first the ground state of the He

atom. Our initial normalized function will be

Ψ1 =
α3

π
exp [−α (r1 + r2)] (4.1)

with r1, r2 the distances of the electrons from the nucleus and the variational parameter α

was chosen in all the computations as the value α = 27/16 which minimizes 〈Ψ1|Ĥ|Ψ1〉. The

basis set was constructed using the scaled Schrödinger approach of Nakatsuji25. The scaling
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function (with r12 the distance between the electrons) was chosen to be

g = r1r2r12 (4.2)

as this was the easiest one to manipulate and compute using Maple. The Hamiltonian is

Ĥ = T̂ +
1

r12
− 2

r1
− 2

r2
. (4.3)

and following Hylleraas27 the kinetic energy operator is

T̂ = −1

2

[
∂2

∂r21
+

2

r1

∂

∂r1
+

∂2

∂r22
+

2

r2

∂

∂r2
+ 2

∂2

∂r212
+

4

r12

∂

∂r12

]
−1

2

[
r21 + r212 − r22

r1r12

∂2

∂r1∂r12
+
r22 + r212 − r21

r2r12

∂2

∂r2∂r12

]
(4.4)

The volume integral is

∫
dτf (r1, r2, r12) = 8π2

∫ ∞
0

dr1

∫ ∞
0

dr2r1r2

∫ r1+r2

|r1−r2|
dr12r12f (r1, r2, r12)

= 8π2

∫ ∞
0

dr1

∫ r1

0

dr2r1r2

∫ r1+r2

r1−r2
dr12r12 [f (r1, r2, r12) + f (r2, r1, r12)] .

(4.5)

If as is often the case that

f (r1, r2, r12) = f (r2, r1, r12) (4.6)

then the volume integral may be simplified to

∫
dτf (r1, r2, r12) = 16π2

∫ ∞
0

dr1r1

∫ r1

0

dr2r2

∫ r1+r2

r1−r2
dr12r12f (r1, r2, r12) . (4.7)

As already mentioned, the basis set is constructed using the scaled Schrödinger equation.
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Thus the second normalized function will be

|Ψ2〉 =
1

σg2

[
gĤ − 〈Ψ1|gĤ|Ψ1〉

]
|Ψ1〉 (4.8)

with

σ2
g2 = 〈Ψ1|Ĥg2Ĥ|Ψ1〉 − 〈Ψ1|gĤ|Ψ1〉2. (4.9)

The third function will then be

|Ψ3〉 =
1

σg3

[
gĤ − 〈Ψ2|gĤ|Ψ2〉

]
|Ψ2〉 − 〈Ψ1|gĤ|Ψ2〉|Ψ1〉 (4.10)

with

σ2
g3 = 〈Ψ2|Ĥg2Ĥ|Ψ2〉 − 〈Ψ2|gĤ|Ψ2〉2 − 〈Ψ2|Ĥg|Ψ1〉〈Ψ1|gĤ|Ψ2〉 (4.11)

and one continues in this fashion to build up the basis set. Note explicitly that although

constructed similarly to the Lanczos algorithm this procedure does not lead to a tridiagonal

representation of the Hamiltonian.

In our computation, due to our use of Maple, we were limited to small dimensionality.

Even for the 7 dimensional computation, the second lowest eigenvalue is higher than ε3 so

that the lower bound computation is limited to the ground state. The same holds true of

course for the Lehmann lower bound where even at L = 7, one finds only one negative

eigenvalue which gives the lower bound to the ground state energy.

b. Lower bounds to the ground state energy of He

The lower bound property is based on the observation that the solutions of Eq. 3.4 are

monotonically decreasing functions of the dimensionality. This is shown for the specific case

of the Helium atom with our chosen basis set in Fig. 2 where we plot the dependence of

x1 (ε1) on the dimensionality of the basis set as it changes from 3 to 7. The monotonic

decrease is the same when changing the argument in the vicinity of the ground state energy.

4



Figure 2: The dependence of the eigenvalue x1(ε1) on the dimensionality L of the basis set
used for computation of the Helium atom energies (solid red line). Shown also is the second
Ritz eigenvalue λ2 as a function of L (long dashed purple line), it is always larger than x1(ε1)
and both slowly converge toward the energy ε2 (shown as the horizontal dash dotted blue
line) from above. This demonstrates that one may use the energy ε2 as a lower bound to
x1(ε1) and thus obtain lower bounds to the ground state energy.
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Figure 3: Lower bounds for the ground state energy of the Helium atom as functions of
the dimensionality of the basis set. The lowest (brown) long dashed line is the Temple
lower bound, the dashed (orange) line is the Lehmann lower bound and the solid blue line
is the present PM lower bound. The black dotted line is the exact ground state energy
and the upper dashed-dotted (green) line is the Ritz eigenvalue for the ground state. Note
the essential improvement of the lower bound obtained using the present Pollak-Martinazzo
theory.

One does not need to know the exact ground state energy to ascertain that the eigenvalue

decreases with increasing dimensionality. As described in Section III, it is the observation

that the eigenvalue x1 is ”trapped” between the Ritz eigenvalue λ2 and the exact eigenstate

ε2 which allows us to replace x1 in Eq. 3.4 with ε2 or a lower bound to it such that the

resulting lowest root of Eq. 3.4 will be a lower bound to the ground state energy.

To test the new theory and compare it with Lehmann we use the following strategy.

For the ”standard” Lehmann computation we choose the best possible Lehmann pole: ε2 =

−2.14597405. This is of course an idealization, typically if one knows one state, one knows

the other and certainly if ε2 is known then so is ε1. In a ”realistic” scenario the Lehmann

pole for the first excited state would be given by a Weinstein or Bazley type lower bound, but
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Figure 4: Gap ratios for the Lehmann and PM lower bounds for the Helium atom. Note that
the PM lower bounds are roughly as accurate as the Ritz upper bounds while the Lehmann
lower bounds do not come close.

for the sake of understanding the new theory without adding in other sources of approximate

values, we make this choice. Similarly, the value of ε2 was used to obtain the Temple lower

bound as well as the Pollak-Martinazzo (PM) lower bound derived from x1 (ε2). The resulting

lower bounds as well as the Ritz upper bounds are shown in Fig. 3. One notes the essential

improvement of the PM lower bound (solid blue line), which becomes competitive with the

Ritz upper bound when the dimensionality reaches 7. This is further exemplified in Fig. 4

where the gap ratio of the lower bound to the upper bound ( ε1−εlb
λ1−ε1 ) is plotted as a function

of dimensionality for the Lehmann (upper blue dashed line) and PM (lower solid red line)

lower bounds. At L = 7 the PM gap ratio is 1.03.

One notes that in the range 3 ≤ L ≤ 7 the Ritz upper bound and the Temple and

Lehmann lower bounds hardly change. The basis set we chose is not optimal in this sense, but

critically, as the dimension is increased, the Ritz upper bounds to the excited states improve
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significantly, as may be seen for the first excited state in Fig. 2. It is this improvement

in the Ritz eigenvalues and variances of the excited states which leads to the significant

improvement of the PM lower bound with dimensionality as shown in Fig. 3.

c. H atom

The energy levels of the Hydrogen atom are known analytically, yet it serves as a good

”playground” for studying lower bounds for this simplest of Coulombic systems. The Hamiltonian

for the Hydrogen atom is in atomic units (r is the electron proton distance)

Ĥ = −1

2

∂2

∂r2
− 1

r
, (4.12)

the ground state wavefunction is

ϕ1 (r) = 2r exp (−r) (4.13)

and the ground state energy is

ε1 = −1

2
. (4.14)

To test the lower bound expressions we used the normalized antisymmetric harmonic

oscillator basis set:

Ψk (r) =

√
1

22k (2k + 1)!
√
π
H(2k+1) (r) exp

(
−r

2

2

)
(4.15)

such that ∫ ∞
0

drΨ2
k (r) = 1 (4.16)

and H(k) (r) is the k-th order Hermite polynomial. This allows us to readily set up the

Hamiltonian and Hamiltonian squared matrices and so test the various lower bound theories.

As in the case of the Helium atom, we show in Fig. 5 that x1 (ε1) is a monotonically
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Figure 5: The dependence of the eigenvalue x1(ε1) on the dimensionality L of the
computation for the Hydrogen atom using a Gauss Hermite basis set. The upper dashed
(purple) line shows the difference λ2 − x1(ε1) between the Ritz upper bound for the second
state and the eigenvalue x1(ε1) while the lower (red) solid line shows the difference x1(ε1)−ε2
between the eigenvalue x1(ε1) and the exact second state energy ε2. Both lines are always
positive, demonstrating that the second state energy is indeed a lower bound to the eigenvalue
x1(ε1).
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Figure 6: Lower bounds for the ground state energy of the Hydrogen atom as functions of the
dimensionality of the basis set. The top dashed dotted (blue) line is the Ritz upper bound,
the (black) horizontal dotted line shows the exact ground state eigenvalue, the solid (red) line
is the present Pollak-Martinazzo lower bound, the long dashed (brown) line is the Lehmann
lower bound and the dashed (green) line is the Temple lower bound. Note the superiority
of the PM lower bound. The various bounds were computed for L = 3, 4, ..., 14, 15 and then
for L = 20, 25, 30, 35, 40, 45, 50, 60, 70. The small oscillations at the lower dimensionality are
a reflection of the basis set chosen. Adding in a new even function (k even in Eq. 4.15)
improves the Ritz upper bounds more than adding another odd function.
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Figure 7: Gap ratios for the Lehmann and PM lower bounds for the Hydrogen atom. The
upper dotted line is for the Lehmann lower bound, the lower dashed line is the Pollak-
Martinazzo lower bound gap ratio. Note that the gap ratios of the PM lower bounds are
substantially lower than those of the Lehmann lower bounds. At L = 70, the error in the
Ritz upper bound is 0.00033 while the PM gap ratio is 3.05 and the Lehmann gap ratio is
6.93.

decreasing function of the dimensionality, ultimately going down to ε2. Here, we plot both

the difference between the second Ritz eigenvalue and x1 (ε1) (top, brown long dashed line)

and the difference between x1 (ε1) and the second excited state energy (−1/8) (bottom red

solid line) as functions of the dimensionality. The dotted dashed blue line is 0, which should

be the limit of both lines with increasing dimensionality. For all values, the pole x1(ε) is in

between the Ritz eigenvalue λ2 and the exact energy ε2.

Then we compute as a function of L the Temple, Lehmann and Pollak-Martinazzo lower

bounds, in all of them using ε2 as the Lehmann pole energy. The results are shown in

Fig. 6 and one notices that Pollak-Martinazzo theory is again superior to the other lower

bounds. In Fig. 7 we plot the gap ratios for the Lehmann and PM lower bounds, at its worst

the PM gap ratio is ca. 23 and one sees that it improves significantly with the increasing

11



dimensionality of the basis set, reaching 3.05 when L = 70.

With our choice of basis set, for L ≥ 12 the second eigenvalue has the property that

ε2 ≤ λ2 ≤ ε3 so that from L = 12, using ε3 as the ”Lehmann pole” one will get lower bounds

for the ground and first excited state. This is shown in Fig. 8 where the two horizontal

lines are the ground and first excited state energies while the lower dashed line is the PM

lower bound to the ground state and the solid red line the PM lower bound to the second

state. Comparing with Fig. 6 one notes that the ground state lower bound here is not as

good as the one obtained with ε2 as the Lehmann pole. The reason is quite clear, the Ritz

eigenvalue λ2 converges more rapidly than λ3 so that the lower bound to x2(ε1) given by ε3

is worse than the lower bound of ε2 and compared to x1(ε2). However, as may be seen from

the plot one is getting a rather ”decent” lower bound for the second state - −0.1314734 at

L = 70 as compared to −0.125. Not as good as the Ritz upper bound (−0.124108), the gap

ratio at L = 70 is 36.45, but the PM lower bound for the first excited state is much more

accurate than the Lehmann lower bound which is −0.166806 with a gap ratio of 235.4 under

the same conditions.

V. Discussion

This work presents significant progress in lower bound theory:

1. A simple polynomial equation has been derived for the Lehmann lower bound, based

on the use of a Lanczos basis set.

2. Lower bound theories were shown to have their origin in a generalized Cauchy-Schwartz

inequality.

3. Using a finite Hamiltonian representation which is guaranteed to have one eigenvalue

of the operator Hamiltonian, the polynomial equation derived for the Lehmann lower

bound based on the Lanczos construct was generalized and shown to be valid even

when the Lanczos structure cannot be constructed as in Coulombic systems.
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Figure 8: Lower bounds for the first excited state of the Hydrogen atom using ε3 = −1/18
as the Lehmann pole. The horizontal lines show the numerically exact first and second
eigenvalues (−1/2,−1/8) the dashed lower (orange) line is the PM lower bound for the
ground state, the solid (red) line is the PM lower bound for the second state. The (blue)
dashed dotted line shows the second Ritz eigenvalue which bounds the second state from
above. As noted in the text, the lower bound shown here for the second state is superior to
the same obtained from the ”standard” Lehmann theory.
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4. The computational expense was significantly reduced since only Ritz eigenvalues and

their associated standard deviations are needed to construct the lower bounds, instead

of the construction of the full matrix of Ĥ2 as in ”standard” Lehmann theory.

5. The same derivation showed that both the Lehmann and the recent self consistent

lower bound method developed by the authors14,15 are within the present context of

the finite Hamiltonian construct, identical.

6. The resulting PM theory was shown to be robust for the Hydrogen and Helium atoms

and superior to any of the other lower bound theories. Lower bounds for Coulombic

systems were demonstrated to have accuracy similar in quality to the Ritz upper

bounds. The PM lower bound theory was implemented also for an excited state.

Yet there remain difficult challenges ahead. Obtaining a Ritz upper bound is easy and

straightforward. All that is needed is to construct the Hamiltonian matrix and diagonalize it.

Deriving lower bounds is more complex. Even within the present simplified framework one

still needs to verify that the xk’s are monotonically decreasing functions of the dimensionality

of the basis set used and it is necessary to compute the standard deviations associated with

the Ritz eigenvalues. This implies the need to compute not only the Ritz eigenvalues but

also their eigenfunctions. Perhaps, and this will be considered in future computations, it is

not necessary to obtain the full orthogonal diagonalization matrix but only those of the first

few dozen Ritz states to construct the matrix Hamiltonian and still obtain ”good” lower

bounds. But it will still be necessary to obtain the associated eigenfunctions of these lowest

lying states, increasing the numerical cost of the computations.

But the real challenge is not obtaining the eigenfunctions. A critical element in the

theory is obtaining an accurate lower bound to the so called ”Lehmann pole”. In the present

paper, we took the easy road, by using the known excited state energies for the Helium

and Hydrogen atoms. As stressed in the paper, the reason we did this was to provide a

fair and unbiased comparison of the different lower bound theories. We saw that the present
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Pollak-Martinazzo theory is superior to any other, yet the quality of the lower bound depends

critically on the choice of the Lehmann pole. A ”standard” methodology would be to use the

Weinstein lower bound. For Hubbard like Hamiltonians we have shown14 that this choice

is sufficient for obtaining tight lower bounds. The same is true for atoms, as long as one is

considering the ground state. But the rapid reduction of the level spacing between excited

states, as is the case in both Hydrogen, Helium and Lithium11 presents a serious challenge.

Although we have shown how to improve upon the Weinstein lower bound, as for example

in Eq. 2.27 the implementation is based on the assumption that the diagonal overlap matrix

element squared is greater than 1/2. The challenge is to know when this assumption holds.

In the ”standard” Weinstein theory one must consider the corresponding Ritz eigenvalue and

know that it is the closest to the true eigenstate of the Hamiltonian under consideration.

This is especially difficult when eigenstates come close together as for excited electronic

states of atoms. Here, one must show that the Ritz eigenvalue is closest to the eigenvalue

of the matrix Hamiltonian under consideration. These eigenvalues do not necessarily bunch

together and this is an advantage, however, one does need to construct an objective criterion

which would enable knowing that the overlap condition is valid, and this is not a trivial task.

Another challenge is understanding the choice of basis set. Even the Ritz upper bound

depends on the choice of basis set. Different basis sets could give different Ritz upper bounds

and PM lower bounds. For example, even in the present application of the theory to He, we

made a specific choice of the exponent α in the initial wavefunction. In principle, for a given

dimension of the basis set one could vary α to minimize the Ritz eigenvalue for the ground

state. One could also consider maximizing the PM lower bound for the ground state via

variation of α. The two variations need not give the same value of the parameter. Different

values imply different basis sets. The question of the ”best” basis set remains open to both

analytical as well as numerical research.
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Appendix: Monotonicitypropertiesof thepolesof thePM

equation 3.4

We focus in this Appendix on the behaviour of the eigenvalues of the auxiliary matrix K(ε)

when ε approaches a Ritz eigenvalue λs. We have already shown in the main text that ε is

always an eigenvalue of the matrix; here we show that when ε approaches λs the spectrum

of the matrix K(ε) comprises the full set of Ritz eigenvalues plus a value tending to ±∞ for

ε→ λ∓s , respectively. The finite eigenvalues are smooth functions of ε that can be arranged

to define solutions which are smooth and monotonically increasing on the whole real axis

except for a pole at a Ritz eigenvalue. We use the pole position for their labeling, that is

x(k)(ε) is such a solution that is singular (only) for ε = λk.

Let qε(x) be the characteristic polynomial of the auxiliary matrix,

qε(x) = det(K(ε)− xI) = pL(x)

[
ε− x+

L∑
k=1

σ2
k

λk − ε
−

L∑
k=1

σ2
k

λk − x

]

= pL(x)

[
ε− x+

L∑
k=1

σ2
k

λk − ε

]
+

L∑
k=1

σ2
kp

(k)
L (x)

where pL(x) = ΠL
k=1(λk − x) is the characteristic polynomial of the L×L upperleft block of

the matrix and p
(k)
L (x) = pL(x)/(λk − x) is a polynomial of degree L − 1. Henceforth, the

Ritz eigenvalues are supposed to be non-degenerate, otherwise additional care is required

in the analysis below but the result remains essentially unchanged. Furthermore, as in the

main text, we use the notation λk to denote the Ritz eigenvalues sorted in increasing order,

λ1 < λ2 < .. < λL.

For x ≈ λm, upon expanding pL(x) around x = λm and noticing that the required

derivative is −p(m)
L (λm), one finds

qε(x) ≈ −p(m)
L (λm)(x− λm)

[
ε− x+

L∑
k=1

σ2
k

λk − ε

]
+ σ2

mp
(m)
L (λm)
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Figure 9: Eigenvalues of the auxiliary matrix K(ε) for a model 3-state system with λk = 1, 2, 3
and σk = 0.20, 0.25, 0.30. The blue lines denote the continuous, monotonic functions x(k)(ε)
labeled according to the position of their pole (ε = λk), the red line is the trivial eigenvalue
ε.
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where use has been made of p
(k)
L (λm) = δkmp

(m)
L (λm). Taking the limit of this expression for

ε→ λs we find

qε(x) ≈ −p(m)
L (λm)(x− λm)

σ2
s

λs − ε
+ σ2

mp
(m)
L (λm)

= p
(m)
L (λm)

[
σ2
m − σ2

s

x− λm
ε− λs

]

which shows that, for ε approaching λs, the equation

x = λm +
σ2
m

σ2
s

(ε− λs)

defines an eigenvalue of the auxiliary matrix for any m = 1, ..L. The remaining eigenvalue

follows upon considering the limit for ε→ λs and x→ ±∞

qε(x) ≈ pL(x)

[
ε− x+

σ2
s

λs − ε

]

which is seen to vanish provided

x ≈ λs −
σ2
s

ε− λs

i.e., x → ±∞ for ε approaching λs from below / above. Written in this way, x takes the

form of a Temple-Lehmann bound in the worst scenario, i.e. for the “pole” ε approaching

the Ritz eigenvalue.

As for the finite solutions, it is evident from the above discussion that they are smooth

around ε = λs with derivative ∂x/∂ε = σ2
m/σ

2
s > 0. Since they are always continuous when ε

is not a Ritz eigenvalue and (as shown in the main text) they are also monotonic, they are in

fact continuous functions that keep increasing when ε sweeps the real axis, until they move

beyond the highest eigenvalue, λL. Suppose this happens for ε = λk−1, then for ε approaching

the next Ritz eigenvalue λk the solution tends to +∞ and, for ε > λk, it increases again

starting from −∞. We call this solution x(k)(ε) using the pole position for its labeling.
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Note that the divergence occurs for one solution at a time, since the interlacing property

guarantees that, for ε not a Ritz eigenvalue, there exists one (and only one) eigenvalue in

each of the intervals

(−∞, λ1), (λ1, λ2), ..(λL−1, λL), (λL,∞)

(taking into account that ε is always eigenvalue). Stated differently, we have the following

theorem

Theorem If the Ritz values λk are non-degenerate, the eigenvalues of the auxiliary matrix

K(ε) other than ε can be arranged to define functions x(k)(ε) which are smooth

and monotonically increasing on the whole real axis except for a pole at ε = λk.

Close to the latter we have x(k)(ε) = xL(ε) for ε < λk and x(k)(ε) = x1(ε) for

ε > λk, and beyond that point x(k) takes the next higher (lower) root every time

ε crosses a Ritz eigenvalue to its right (left).

The functions defined in this way are monotonic in each connected domain, i.e. separately

for (−∞, λk) and (λk,+∞), but this is harmless for the method described in the main text.

To see this, we first notice that, thanks to the symmetry between x and ε mentioned in the

main text, the inverse of the function x(k)(ε) is some other function x(l)(ε). The specific

value of l can be identified by inspecting the limiting value that x(k) attains for ε → ±∞,

since this gives the Ritz eigenvalue that makes the inverse singular (hence its label). We

have x(k)(ε)→ λ∓L+1−k for ε→ ±∞, hence l = L + 1− k. In other words, for any u, v ∈ R,

we have

x(k)(u) = v ⇐⇒ x(L+1−k)(v) = u

The situation is illustrated in Fig. 9 where we have plotted the solutions x(k)’s for a model

three-state problem, along with the eigenvalue ε (red line), as functions of ε. The figure makes

clear that continuity is a marginal problem and arises only when one insists in labeling the

eigenvalues according to their magnitude: each function takes a different xk in each interval

(λm, λm+1), m = 1, 2..L− 1. Noteworthy, the symmetry between the x(k)’s and their inverse
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is apparent from the symmetry of the graph with respect to the main diagonal.

In the main text, in order to bound the ground-state we have used k = L, hence the

function x(L) and its inverse x(1), as illustrated schematically in Fig. 10. Notice that on the

left of λ1 x
(L)(ε) is the lowest lying root (apart from ε) and the same happens for x(1)(ε)

when ε ∈ (λ1, λ2).

Figure 10: Close-up of Fig. 9 showing in detail the region [λ1, λ2] relevant for bounding the
ground-state, according to the procedure described in the manuscript using a lower bound
ε−2 to the first excited state. The red stars mark the exact eigenenergies on both the x and
the y axis (colors and symbols as in Fig. 1 of the main text).
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