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ABSTRACT

The wide diffusion of wearable sensors and mobile devices encouraged the study of bio-
metric recognition techniques that require a low level of cooperation from users. Among
them, the analysis of cardiac information extracted from plethysmographic (PPG) signals
is attracting the research community due to the possibility of performing continuous au-
thentications using low-cost devices that can acquire signals without any action required
from the users. Although PPG-based biometric systems are relatively recent technolo-
gies, machine learning techniques and deep learning strategies have shown accuracy in
heterogeneous application scenarios. This paper presents the first literature review of
PPG-based biometric recognition approaches. First, we describe the application contexts
suitable for PPG-based biometrics. Second, we analyze the systems in the literature,
describe the acquisition sensors, and present a classification of the processing methods.
Third, we summarize the available public datasets and the results achieved by recent
state-of-the-art approaches. Finally, we analyze the open problems in this research field.

© 2022 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

The wide availability of heterogeneous sensors integrated in
wearable and mobile devices encouraged the study of additional
biometric recognition methods with respect to the best-known
methods (e.g., face, fingerprint, and iris) [1, 2]. These recent
recognition modalities can be used in conjunction with other
biometric technologies to increase the robustness of the recog-
nition system [3] or can be designed for specific application
scenarios [4].

In this context, the interest of the research community in
heart biometrics (also referred to as cardiac biometrics) is con-
stantly increasing. Heart biometric systems aim to recognize
individuals from the analysis of cardiac signals noninvasively
measured through the surface of the human body. These signals
consist of waveforms providing information on heart activity
and can be acquired using heterogeneous technologies based
on different physical measurements [5]. Examples of cardiac
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signals suitable for biometric recognition are the electrocardio-
gram (ECG), photoplethysmogram (PPG), seismocardiogram
(SCG), and phonocardiogram (PCG).

With respect to other biometric characteristics widely used
in current identity recognition systems, cardiac signals present
relevant advantages [6] because they:

• are more difficult to counterfeit with respect to physio-
logical characteristics acquired using digital cameras since
physiological signals can only be acquired using dedicated
technologies;

• can be acquired only from living individuals, thus reducing
the need to include vitality check strategies in biometric
recognition systems;

• present additional information related to physiological, be-
havioral, and emotional conditions, which can be used for
complementary applications;

• can be acquired for long periods of time without requiring
any form of collaboration from the users, and are thus par-
ticularly suitable for continuous authentication systems.
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This paper focuses on PPG signals. PPG is a noninvasive
technique for measuring blood perfusion through tissues by the
emission of light rays [7]. PPG-based biometric recognition
systems present relevant advantages with respect to other heart
biometrics since the acquisition sensors are usually smaller, less
expensive, and frequently integrated in wearable and mobile
consumer devices.

PPG-based biometric systems are suitable for a wide set of
applications including those in which the signals are already
acquired and processed for different purposes, such as health
monitoring and fitness. PPG-based biometric systems can ac-
quire PPG signals using heterogeneous sensors in devices such
as medical instruments, wearables, smartphones, and digital
cameras. The biometric recognition process can be based on al-
gorithmic approaches or computational intelligence techniques.
The results reported in the literature proved that PPG has suf-
ficient discriminability and stability for a great variety of bio-
metric applications.

This paper presents the first literature review of PPG-based
biometric systems. Most of the literature reviews on heart bio-
metrics only treat ECG signals [8, 9, 10]. Furthermore, general
surveys on heart biometrics [5, 11] do not describe the charac-
teristics and processing schemas of PPG-based biometric sys-
tems.

This paper is organized as follows. Section 2 discusses appli-
cation scenarios suitable for PPG-based biometric recognition.
Section 3 describes the techniques usable to acquire PPG sig-
nals. Section 4 presents the processing methods used by PPG-
based biometric systems in the literature. Section 5 analyzes the
results of state-of-the-art techniques. Section 6 discusses open
problems. Section 7 concludes the work.

2. Application scenarios

Biometric systems based on PPG signals can be suitable for
access control applications in physical and digital contexts. As
an example, a PPG-based biometric system based on a wear-
able bracelet could be used to open a car as well as log in with
a smartphone without requiring any cooperation from the user.
Furthermore, biometric recognition systems based on PPG sig-
nals can adopt sensors already used for other applications and
thus have limited economic impact for a great variety of appli-
cations. As an example, PPG acquisition sensors integrated in
wearable devices are frequently used for health monitoring [12]
or for fitness purposes [13]. PPG acquisition sensors can also
be integrated in the steering wheel of a car to evaluate the atten-
tion level of the driver [14]. Furthermore, cameras integrated in
smartphones can be used to infer PPG signals to obtain health-
related information [15]. In the context of mobile devices, PPG
signals can be used to perform multimodal biometric recogni-
tion, for example, by combining PPG and face characteristics
[16]. Biometric systems based on signlas inferred from videos
could also be integrated into assistive robots such as Nao Robot
[17] and Pepper Robot [18]. This creates possibilities in health-
care and elderly assistance, other than playing an essential role
in social engineering.

PPG-based biometric systems in the literature can perform
different biometric recognition tasks.

(a) (b)

Fig. 1. Schematic of functioning principles of photoplethysmography sen-
sors: a) light transmission and b) light reflection.

• Verification: two samples are compared to confirm or
deny the claimed identity. All algorithmic matchers for
PPG-based biometric recognition [19, 20, 21, 22, 23] and
a limited number of systems based on computational intel-
ligence [24, 25, 26, 27] are designed for identity verifica-
tion.

• Closed-set identification: the identity corresponding to
a sample is searched in a biometric database. Most of
the computational intelligence approaches in the literature
[28, 29, 30, 31, 4, 32, 33] are designed for closed-set iden-
tification.

• Continuous authentication: the system periodically ver-
ifies the identity of the subject. Since wearable sensors
can acquire PPG signals continuously over time without
requiring any action from the user, PPG signals are partic-
ularly suitable for designing user-friendly continuous au-
thentication techniques.

3. Acquisition

PPG signals are usually acquired by using sensors placed
in contact with the skin surface. These sensors measure the
amount of infrared light absorbed or reflected by blood. The ac-
quired signals represent the volume changes of blood vessels,
which occur throughout the cardiac cycle [34]. PPG sensors
can be classified according to their functioning principles into
two categories: sensors based on light transmission and sensors
based on light reflection [7]. For the first class of sensors, the
LED light that passes through absorbent substances (the skin,
bone, arterial blood, and venous blood) is received by the de-
tector and quantified by filters and converters. For the second
class of sensors, the light reflected over the skin is received by
the detector and quantified by filters and converters. A sensor
based on light reflection can therefore be used for a wide set
of body parts. Regardless of the functioning principle, PPG
sensors are designed to be portable, lightweight, low cost, and
comfortable for users. Fig. 1 shows a schema of the two classes
of photoplethysmography sensors.

PPG signals can be measured from several sites that have
a rich arterial source. Examples of possible placements of
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PPG sensors are the fingers [35], forehead [36], wrist [37] and
ear [38]. The consumer market is therefore taking advantage
of this characteristic, integrating PPG sensors in wearable de-
vices such as smart bracelets, smart watches, wristbands, head-
phones, and earphones.

There are also techniques aiming at inferring signals similar
to those acquired using touch-based PPG sensors from videos
captured by using commercial cameras [39]. These techniques
are called remote optical PPG imaging methods, and the ob-
tained signals are commonly called remote PPGs (R-PPGs).
The videos can be collected from body parts such as the face
[40, 41] or fingertips [42].

4. Biometric recognition methods

Most biometric recognition systems that use PPG signals are
based on acquisitions performed using medical sensors or wear-
able devices. There have been preliminary studies on tech-
niques based on R-PPG signals [40, 41, 42]. Since R-PPG sig-
nals present relevant differences with respect to PPG signals
acquired using contact-based sensors, we separately describe
biometric systems based on PPG and R-PPG signals.

4.1. Biometric recognition based on PPG signals

The computational chain of biometric recognition systems
based on PPG signals usually consists of the following steps:
preprocessing, feature extraction, and matching. The prepro-
cessing techniques are similar in most of the studies in the lit-
erature, while the feature extraction and matching steps present
relevant differences. According to the feature extraction and
matching methods, state-of-the-art biometric recognition sys-
tems can be classified into algorithmic-based approaches and
approaches based on computational intelligence techniques.

4.1.1. Preprocessing
The preprocessing step consists of two main tasks: sample

extraction and signal enhancement.
Since most of the feature extraction techniques in the litera-

ture require an input of fixed length, the sample extraction task
aims at obtaining vectors of a predetermined number of values
from the PPG signals. Most of the methods in the literature
compute samples consisting of signals of known time duration
[19] or composed of a defined number of heartbeats [27]. To
segment heartbeats from PPG signals, the majority of the state-
of-the-art techniques analyze the second derivative of the input
signal for estimating fiducial points as the systolic peaks [43].
Fig. 2 shows the fiducial points commonly extracted from PPG
signals. Systems that estimate fiducial points are usually called
fiducial-based approaches, while systems that do not need any
fiducial point are called non-fiducial-based approaches.

The signal enhancement frequently consists of a bandpass
filter [25] applied with the aims of normalizing the signal base-
line and reducing artifacts introduced by the acquisition sen-
sor. Fig. 3 shows an example of a bandpass filter applied to a
PPG sample. Some systems can apply additional techniques for
heartbeat selection and optimized resampling algorithms [27].

Fig. 2. Fiducial points commonly extracted from PPG signals.
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Fig. 3. Example of preprocessing consisting of a bandpass filter.

4.1.2. Feature extraction and matching
Considering the feature extraction and matching approaches

used, PPG-based biometric technologies can be divided into
systems based on algorithmic approaches and systems based on
computational intelligence techniques. It is also possible to fur-
ther divide the second class of systems into methods based on
handcrafted features and methods based on deep learning (DL)
strategies. Fig. 4 shows a schema describing the proposed clas-
sification.

Algorithmic approaches can use feature vectors consisting
of signals or numerical descriptors inferred from PPG signals.

An example of a method using signals as feature vectors is
presented in [19]. The method computes templates composed
of a fixed number of signal portions extracted in time slots cen-
tered in the systolic peak to obtain a representation robust to
changes of the signal due to physical or emotional activities.
Every portion of the PPG signal, in fact, roughly corresponds
to the QRS region of ECG signals, which is the most stable
portion of the cardiac signal [44]. The matcher computes the
best cross-correlation value between the signals composing the
templates. The method presented in [23] does not need to com-
pute any fiducial point and compares PPG signals by using a
cross-correlation algorithm.

Methods that extract numerical descriptors from PPG signals
use more complex feature extraction algorithms but require less
complex matchers. The method presented in [45] computes fea-
tures related to the fiducial points and signal slopes, which are
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Fig. 4. Classification of PPG-based biometric recognition methods.

then compared by computing the Euclidean distance between
templates. The method proposed in [21] uses features extracted
from the Karhunen-Loève transform and compares the tem-
plates by computing the Euclidean distance. The study pre-
sented in [20] evaluates a set of feature extractors (based on the
time domain and the Karhunen-Loève transform) and matching
metrics (Manhattan and Euclidean distances). The approach de-
scribed in [22] extracts three types of feature vectors by com-
puting the autocorrelation of the PPG signal and its first and
second derivatives. The matching function consists of the Eu-
clidean distance between templates.

Computational intelligence approaches based on hand-
crafted features present relevant differences in the feature set
and classification approach used. According to the feature set
used, it is possible to distinguish methods that extract numer-
ical features from the derivative of the PPG signals, methods
using time and frequency domain features, methods based on
wavelet features, and methods based on two-dimensional rep-
resentations of PPG signals.

The derivative of PPG signals can be used to extract a set of
statistical features. As an example, the method proposed in [28]
computes acceleration-based features from the derivative of the
PPG signal and performs closed-set identification by using a
Bayesian Network and a k-Nearest Neighbor (k-NN) classifier.
The method described in [29] extracts features in a similar way
from the derivative of the PPG signal but performs the identi-
fication task by using a classifier based on Linear Discriminant
Analysis.

Time- and frequency-domain features can also be sufficiently
discriminative to achieve accurate biometric recognition. As an
example, the method presented in [30] processes PPG signals
using Empirical Mode Decomposition, computes a template
composed of a set time and frequency domain features, and uses
a Support Vector Machine (SVM) to identify the users. The
method presented in [31] searches a set of discriminative fea-
tures by performing statistical analyses to extract a redundant
set of characteristics and by applying a Forward Feature Se-
lection algorithm. This approach also compares different clas-
sifiers for closed-set identification such as k-NN, Fuzzy k-NN,
and the Gaussian Mixture Model. The method presented in [46]

compares feature sets by using a matcher based on fuzzy logic.
In contrast to the majority of the previously described ap-

proaches, methods based on wavelet features do not require the
computation of fiducial points. As an example, the method de-
scribed in [47, 24] extracts nonfiducial features and then ap-
plies Feedforward Neural Networks and SVMs to perform iden-
tity verifications. The study presented in [48] uses a similar
approach to investigate the biometric recognition accuracy for
PPG signals acquired in different mental and physical states.

Two-dimensional representations of PPG signals can also be
used to extract discriminative features, providing the advantage
of a simple visual inspection of the data from human opera-
tors. The method presented in [25] extracts a set of distinctive
features by applying Principal Component Analysis to a two-
dimensional representation obtained by processing the spectro-
gram of the PPG signal without computing any fiducial point.
The method can perform closed-set identifications by using a k-
NN or SVM, and it can perform identity verifications by using
an ensemble of SVMs.

Computational intelligence approaches based on DL
strategies automatically learn data representations from train-
ing samples. Furthermore, DL techniques can achieve impres-
sive performance for heterogeneous applications including the
biometric recognition of cardiac signals [8, 6].

In particular, Convolutional Neural Networks (CNNs) are
widely adopted by biometric recognition systems and have
achieved satisfactory results [49]. The method described in [26]
represents an example of a deep CNN designed for PPG-based
biometric recognition. It consists of an end-to-end deep CNN
designed to perform identity verifications for samples with a
time duration of one second. Similarly, the method presented
in [4] uses a one-dimensional CNN and a specially designed fil-
tering algorithm to perform closed-set identifications for signals
acquired using a sensor embedded in the steering wheel of a
car. The method proposed in [32, 33] overcomes the limitation
of requiring samples of fixed time duration by mixing CNNs
and Long Short-Term Memory (LSTM) layers. The network
is trained for closed-set identification. Similarly, the method
presented in [27] uses CNNs combined with an LSTM layer.
This method improves the recognition performance by using
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selection and data augmentation strategies. Furthermore, the
network is trained for identity verification.

DL strategies based on models different from CNNs can
also be used with satisfactory results for PPG-based biomet-
ric recognition. As an example, the method presented in [50] is
based on Deep Belief Networks and Restricted Boltzman Ma-
chines.

DL approaches can also be used to increase the number of
available samples and perform data normalizations. As an ex-
ample, the method presented in [51] uses a Generative Adver-
sarial Network to limit the negative effect of different acquisi-
tion sources on the biometric recognition accuracy.

4.2. Biometric recognition based on R-PPG signals
In the literature, there are only a few works on biometric

recognition approaches based on R-PPG signals. There is a
study on signals computed from videos of the finger skin ac-
quired using a smartphone camera [42], and there are two stud-
ies on R-PPG signals extracted from videos of the face [40, 41].

To extract R-PPG signals from videos of the finger skin, the
method presented in [42] analyzes the mean of the pixelwise
luma component from the pixels in each video frame. The
method performs identity verifications by applying a classifier
based on an Isolation Forest or on a one-class SVM. It uses a set
of features related to different characteristics of the signal (sta-
tistical, curve widths, frequency domain, and fiducial points).

The first study on biometric recognition of R-PPG signals
computed from face videos was presented in [40]. This method
extracts the R-PPG signal using the algorithm described in
[52]. The method performs closed-set identification by using
Radon-based features and a Decision Tree classifier. To obtain
more accurate results, the method presented in [41] extracts R-
PPG signals using a technique consisting of Laplacian pyramid-
based video amplification and performs identity verifications by
using a DL strategy based on Stacked Autoencoders.

5. Performance and datasets

This section describes the figures of merit used to evalu-
ate the accuracy of PPG-based biometric recognition systems,
presents publicly available datasets, and summarizes the perfor-
mance achieved by recent methods for public data.

The figures of merit used in the literature are different for
identity verification and closed-set identification. For identity
verification, studies in the literature use figures of merit typi-
cally adopted to evaluate the performance of biometric recog-
nition systems such as the false match rate (FMR), false non-
match rate (FNMR), equal error rate (EER), and area under the
curve (AUC) [53]. Since many PPG-based biometric recogni-
tion techniques are based on binary classifiers, another com-
monly used figure of merit is the average classification accu-
racy. For closed-set identification, the most commonly used
figure of merit is the classification accuracy, corresponding to
the rank-1 error [54].

Since the use of PPG signals as biometric traits is a recent
research topic, many studies in the literature on PPG-based bio-
metric systems are based on private datasets collected by the au-
thors using sensors with different characteristics. Researchers

recently started reporting results achieved for public datasets.
One of the most commonly used datasets in the literature is
CapnoBase PRRB [55, 56], which permits evaluation of the
performance of biometric recognition algorithms in ideal con-
ditions. This dataset is composed of samples acquired by physi-
cians in controlled conditions. However, this dataset has been
acquired in a single session and includes signals acquired from
42 individuals. PulseID [26] is another dataset acquired in con-
trolled conditions but includes 5 distinct acquisitions for each
of the 43 volunteers. The widest collection of PPG signals ac-
quired in controlled conditions is used to evaluate the accuracy
of biometric systems in MIMIC-II [57]. However, this dataset
includes acquisitions performed in an intensive care unit. An-
other widely used dataset acquired in controlled conditions is
Biosec 1 [27], which includes signals acquired with a time dif-
ference of 14 days from 43 individuals. To study the discrim-
inability of PPG signals for wider sets of people, Biosec 2 [27]
provides samples acquired from 100 individuals in controlled
conditions. In contrast to the previously described datasets ac-
quired in controlled conditions, TROIKA [58] was acquired us-
ing a wristband during physical activities. However, the signals
were acquired from a set of 12 users. Biosec exercise [48] was
collected from a wider set of users after they performed phys-
ical activities and by using a finger plethysmograph. Studies
in the literature also considered datasets of samples acquired
in heterogeneous emotional states, such as DEAP [59]. Table
1 summarizes the characteristics of the most commonly used
public datasets in the literature. For completeness, Table 1 re-
ports on studies in the literature that presented results achieved
for each public dataset, including works that used a subset of
the available data.

Since methods based on DL strategies achieve the best per-
formance in terms of biometric recognition accuracy, we sum-
marize the results obtained by these methods for public datasets
in Table 2. The reported results can be considered satisfactory
for a wide set of applications.

6. Open problems

Although PPG-based biometric systems in the literature
achieved remarkable accuracy, this kind of biometric recogni-
tion technique is relatively novel and thus requires further stud-
ies from the research community to obtain accurate and robust
recognition approaches applicable in uncontrolled and uncon-
strained conditions. In the following, we discuss some of the
main open problems in the field of PPG-based biometrics.

• Stability over long periods of time: Although there are
promising studies on multiple session datasets [27], the
considered time interval between the acquisitions is lim-
ited. The stability of PPG signals over long periods of
time (years or decades) has not yet been studied.

• Discriminability of PPG samples for datasets com-
posed of relevant numbers of users: Studies in the lit-
erature considered datasets composed of samples acquired
from a maximum of approximately 100 users [27]. The
discriminability of PPG signals as biometric has not yet
been studied for wider sets of users.
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Table 1. Public datasets for PPG-based biometric recognition

Signal Sampling
Dataset Samples duration frequency Acquisition conditions Studies using the dataset

CapnoBase PRRB Single session 8 minutes 300 Hz Acquisitions performed by physicians [27, 25, 60, 20, 48, 47, 24]
[55, 56] for 42 subjects in monitored conditions

TROIKA 22 signals, 5 minutes 125 Hz Acquisitions performed using [51, 33, 26, 32, 50]
[58] 12 individuals a wirstband during fast running

PulseID 5 signals for 30 seconds 200 Hz Acquisitions performed using [26]
[26] 43 individuals a medical device

MIMIC-II 25,328 variable 125 Hz Acquisitions performed [20, 28]
[57] patient records in an intensive care unit

Biosec 1 2 sessions for 3 minutes 100 Hz Two sessions with at least [27, 48, 61]
[27] 31 individuals 14 days gap in between

Biosec 2 3 signals for 1.5 minutes 100 Hz After each acquisition, [27]
[27] 100 individuals the sensor was detached

Biosec exercise 41 subjects for session 1 3 minutes 100 Hz The second session has been acquired [48]
[48] 34 subjects for session 2 after physical activity

DEAP 40 signals for 1 minute 128 Hz Acquisitions performed [48]
[59] 32 indviduals in different emotional states

• Uncontrolled acquisitions: Although there are methods
designed to cope with challenging acquisition conditions
(e.g., during sport activities [50]), there are no studies con-
sidering datasets acquired in completely uncontrolled con-
ditions, performing daily life activities.

• Cross-domain recognition: Apart from a few spe-
cific studies [51], most of the works in the literature
present recognition methods trained and tuned for spe-
cific datasets. To obtain methods applicable in hetero-
geneous contexts, it is necessary to study cross-domanain
and cross-sensor approaches.

• Continuous authentication: In the literature, there are
only preliminary studies on continuous authentication
methods [19] because there are no publicly available
datasets of samples collected continuously for long peri-
ods of time.

7. Conclusion

This paper presented the first literature survey on biometric
systems based on photoplethysmographic (PPG) signals, de-
scribing application scenarios, acquisition techniques, process-
ing methods, state-of-the-art performance, and open problems.

PPG-based sensors are broadly diffused in wearable and mo-
bile devices, thus enabling the use of PPG-based biometric
recognition techniques in a wide set of applications. An anal-
ysis of the performance obtained by recent PPG-based bio-
metrics revealed that the accuracy of the approaches based on
computational intelligence techniques is satisfactory for a great
number of contexts. However, PPG-based biometric systems
are relatively recent technologies, and there are still problems
to be addressed to obtain robust and accurate biometric tech-
nologies. The research community is therefore working on col-
lecting large sets of samples under challenging conditions and

Table 2. State-of-the-art methods based on deep neural networks

Work Year Method Datasets Performance

[27] 2021 CNN + Biosec 1 AVG ACC = 87.0%
LSTM Biosec 2 AVG ACC = 87.1%

PRRB 1 ch.: AVG ACC = 99%

[51] 2020 GAN for In-house ACC = 95.68%
domain TROIKA ACC = 89.35%
adaption

[33] 2019 CNN + TROIKA AVG ACC = 96%
[32] 2018 LSTM

[26] 2018 End-to-end PulseID AUC = 78.2%
CNN TROIKA AUC = 83,2%

[50] 2016 DBN + TROIKA ACC = 96.1%
RBM

Notes: AVG ACC = average accuracy, ACC = accuracy, AUC = area under the
curve, ch. = channel.

on designing innovative and more robust recognition methods
mainly based on deep learning approaches.
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