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Comparison of an improved 
self‑consistent lower bound 
theory with Lehmann’s method 
for low‑lying eigenvalues
Miklos Ronto1,2,5, Eli Pollak1,5* & Rocco Martinazzo3,4,5

Ritz eigenvalues only provide upper bounds for the energy levels, while obtaining lower bounds 
requires at least the calculation of the variances associated with these eigenvalues. The well‑known 
Weinstein and Temple lower bounds based on the eigenvalues and variances converge very slowly 
and their quality is considerably worse than that of the Ritz upper bounds. Lehmann presented a 
method that in principle optimizes Temple’s lower bounds with significantly improved results. We have 
recently formulated a Self‑Consistent Lower Bound Theory (SCLBT), which improves upon Temple’s 
results. In this paper, we further improve the SCLBT and compare its quality with Lehmann’s theory. 
The Lánczos algorithm for constructing the Hamiltonian matrix simplifies Lehmann’s theory and is 
essential for the SCLBT method. Using two lattice Hamiltonians, we compared the improved SCLBT 
(iSCLBT) with its previous implementation as well as with Lehmann’s lower bound theory. The novel 
iSCLBT exhibits a significant improvement over the previous version. Both Lehmann’s theory and 
the SCLBT variants provide significantly better lower bounds than those obtained from Weinstein’s 
and Temple’s methods. Compared to each other, the Lehmann and iSCLBT theories exhibit similar 
performance in terms of the quality and convergence of the lower bounds. By increasing the number 
of states included in the calculations, the lower bounds are tighter and their quality becomes 
comparable with that of the Ritz upper bounds. Both methods are suitable for providing lower bounds 
for low‑lying excited states as well. Compared to Lehmann’s theory, one of the advantages of the 
iSCLBT method is that it does not necessarily require the Weinstein lower bound for its initial input, 
but Ritz eigenvalue estimates can also be used. Especially owing to this property the iSCLBT method 
sometimes exhibits improved convergence compared to that of Lehmann’s lower bounds

According to the Ritz–MacDonald theorem, the eigenvalues of the Hamiltonian of a quantum mechanical system 
provide upper bounds for the true energy levels of the  system1,2. While these eigenvalues typically give sufficiently 
accurate upper estimates for the energy levels, they provide no information on their quality; that is, a tight 
bound from below the true energy level. The variational principle for eigenvalues is a fundamental theorem in 
physics and chemistry and not limited to the energy levels in quantum mechanics only. The first lower bound 
expression was introduced for vibrating systems by Temple in  19283, which is limited if no experimental data is 
available. The Weinstein lower  bound4 is based on the variance associated with the approximate eigenvalues of 
the Hamiltonian, and Stevenson verified its  validity5 and further generalized the  method6. These two approaches 
are the most important lower bound methods based on the variance of the Hamiltonian and several theoretical 
 studies7–16 and practical  implementations17–19 have improved their performance. A significant step forward was 
the development of Lehmann’s optimal inclusion intervals, which provided an optimization of the basis set that 
maximizes Temple’s lower  bound20–23. Another class of lower bound theories is based on the method of inter-
mediate  operators24,25. These approaches were first applied to He energy levels using a special choice by Bazley 
and  Fox26,27, and motivated several further improvements for Coulombic and other  potentials28–33. Bracketing 
functions have also been successfully applied to lower bound  problems34–38. Further lower bound calculation 
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strategies are also available for He  atoms39–42. A comprehensive discussion of these methods can be found in 
Ref.43 and a historical review on lower bound theories can be found in Ref.44.

Recently, novel lower bound  methods45,46 have been developed based on the Lánczos  construct47–49, which 
significantly improved Temple’s lower bound for energy levels, as tested on quartic oscillators. The Lánczos 
algorithm provides an orthogonalization of states on the Krylov space, and from the resulting tridiagonal matrix, 
the approximate eigenvalues and the corresponding variances can be readily determined for the original Ham-
iltonian. In these novel lower bound methods, the energy factor in Temple’s original lower bound formula is 
replaced by a “residual energy”, for which, based on the Lánczos construct, a well-defined and rigorous algorithm 
can be provided. The application of this residual energy enables the calculation of lower bounds for ground and 
low-lying excited states. As an improvement, Pollak and Martinazzo developed a self-consistent lower bound 
theory (SCLBT)50,51 and applied it for lattice  Hamiltonians50 and  quartic51 and double-well52 potentials. Using 
the concept of the residual energy, the SCLBT can systematically improve the quality of lower bounds based on 
the information from lower bounds for higher-lying eigenvalues: the higher the maximal considered level, the 
tighter the lower bounds to the levels below. In the present paper, the SCLBT is further improved by defining 
tighter bounds for certain parameters used in the theory. The performance of the improved SCLBT (iSCLBT) is 
tested and compared with that of the Lehmann lower bounds, using two lattice Hamiltonians.

The remainder of the paper is organized as follows. First, the theory of Weinstein, Temple, SCLBT, and 
Lehmann lower bound methods is discussed on an equal footing provided by the theoretical framework of the 
Lánczos construct. Then, the numerical implementation using two lattice Hamiltonians is presented. The lower 
bounds from the previous implementation of the SCLBT are compared with those from the iSCLBT method 
presented in this paper for the ground-state energy levels of the lattice Hamiltonians. Finally, a comparison of 
the iSCLBT and Lehmann methods is discussed based on lower bounds calculated up to the fourth excited state 
of the models considered. The paper ends with a summary and the main conclusions.

Theory
General considerations. In this section, lower bound theories are considered for the energy levels of quan-
tum mechanical systems and for simplicity, real valued functions are assumed. Let us consider a Hermitian 
Hamiltonian operator Ĥ with energy eigenstates |ϕj� . The corresponding true energy levels εj can be determined 
from the time-independent Schrödinger equation

where the energy eigenvalues are in ascending order, with the ground state denoted by j = 1 (instead of j = 0 , 
typically accepted in the literature). The exact representation of the Hamiltonian operator using an orthonormal 
basis set {|�j� = 1, 2, . . .} can be written as

with

However, in numerical calculations the full Hamiltonian matrix H cannot be used: it needs to be represented in 
a finite basis set, with L states. Let us define a projection operator onto this L-dimensional subspace as

and the projection onto the complementary space as Q̂L such that the combination is the identity operator in 
the full Hilbert space as

The discretized Hamiltonian projected onto the finite basis can be written as

and we assume that it can be diagonalized as

where |�L,j� are normalized eigenfunctions and �L,j are real eigenvalues. According to the Ritz–Macdonald vari-
ational principle, any �L,j eigenvalue gives an upper bound to the exact eigenvalue εj as

For each �L,j eigenvalue, the corresponding variance σ 2
L,j is defined as

(1)Ĥ|ϕj� = εj|ϕj�, j = 1, 2, . . . ,

(2)
Ĥ =

∞
∑

j = 1
k = 1

|�j�Hjk��k|,

(3)Hjk = ��j|Ĥ|�k�.

(4)P̂L =

L
∑

j=1

|�j���j|

(5)P̂L + Q̂L = Î .

(6)ĤL = P̂LĤP̂L

(7)ĤL|�L,j� = �L,j|�L,j�, j = 1, . . . , L,

(8)�L,j ≥ εj .
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A central element of the theory is the set of basis vectors |�k� constructed using the Lánczos methodology, which 
brings the projected Hamiltonian to the form

and the complementary part of the Hamiltonian then has the form

Using these expressions, the variance in Eq. (9) can be conveniently rewritten as

showing that when using a Lánczos basis set, the variances can be obtained from the matrix elements of the 
Hamiltonian, without the explicit need to calculate elements of the Hamiltonian squared. Naturally, these are 
implicit in the Lánczos basis vectors.

Weinstein and Temple lower bounds. To discuss lower bound theories on an equal formal footing, let 
us introduce the square of the overlap of the jth eigenfunction in the projected space with the exact kth eigen-
function as

Lower bounds can be obtained by using a Cauchy–Schwartz inequality in the form of

where Q̂ is a projection operator. Inserting

into the Cauchy–Schwartz inequality and rearranging gives

and with the assumption that aL,jj ≥ 1/2 , the Weinstein lower bound can be obtained as

As discussed in Ref. 51, this assumption is further restricted by the accepted condition for the validity of the 
Weinstein lower  bound5:

To obtain the Temple lower bound formula, let us first define a “residual energy” �̄L,j for each eigenstate in 
the projected space such that the Ritz eigenvalue can be rewritten as

Using the overlap defined in Eq. (13), the residual energy is given by the relation

where εk is the exact eigenvalue and δjk is a Kronecker delta. Thus, from Eq. (19) the diagonal elements of the 
overlap can be written as

The Temple lower bound expression can be directly obtained by inserting this identity into Eq. (16), giving

(9)σ 2
L,j = ��L,j|

(

Ĥ2 − �
2
L,j Î

)

|�L,j�.

(10)ĤL =

L
∑

k=1

[

Hkk|�k���k| +Hk+1,k|�k+1���k| +Hk,k−1|�k���k−1|
]

(11)Q̂LĤ =

∞
∑

k=L+1

[

Hkk|�k���k| +Hk+1,k|�k+1���k| +Hk,k−1|�k���k−1|
]

.

(12)σ 2
L,j = ��L,j|ĤQ̂LĤ|�L,j� = ��L,j|�L�

2
H

2
L,L+1,

(13)aL,kj = �ϕk|�L,j�
2.

(14)|�ϕj|Q̂Ĥ|�L,j�|
2 ≤ �ϕj|Q̂|ϕj���L,j|ĤQ̂Ĥ|�L,j�,

(15)Q̂ = Î − |�L,j���L,j|

(16)εj ≥ �L,j − σL,j

√

1− aL,jj

aL,jj
,

(17)εj ≥ εWe
L,j ≡ �L,j − σL,j .

(18)�L,j ≤
εj + εj+1

2
.

(19)�L,j = aL,jjεj +
(

1− aL,jj
)

�̄L,j .

(20)�̄L,j =

∞
∑

k=1

aL,kj
(

1− δjk
)

εk

1− aL,jj
,

(21)aL,jj =
�̄L,j − �L,j

�̄L,j − εj
.
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where the previously unknown overlap aL,jj is replaced by the residual energy �̄L,j . Although the residual energy 
is unknown as well, its lower bound estimates can be obtained directly. For example, from the definition in  
Eq.  (20) for j = 1 it can be readily found that �̄L,j ≥ ε2 for the ground state. A natural choice is then to substitute 
the Weinstein lower bound for the corresponding state; thus, a practical method is obtained for the calculation 
of lower bounds by Temple’s formula.

SCLBT. By substituting Q = Q̂L—the projection operator for the complementary space as defined in 
Eq.  (5)—into the Cauchy–Schwartz inequality in Eq.  (14) and using the residual energy, an improved lower 
bound inequality can be obtained:

This bound is better than the Temple one, because the denominator in the second term is always greater than 
one. Although the overlaps aL,jk are unknown, they can be determined by considering Eq. (12) obtained from 
the Lánczos construct. Using the identity

the overlaps can be rewritten in terms of eigenvalues, true energies, and variances as

Inserting this expression into Eq. (23) gives a lower bound  as50,51

where TL,j is defined as

with εL,j as the lower bound to the jth eigenvalue based on the L-dimensional space. This lower bound expression 
is a significant improvement over Temple’s lower bound. The lower bound provided by these expressions can be 
further improved by defining tighter bounds to the residual energy �̄L,j and to the overlap aL,kk as discussed below.

iSCLBT. In order to improve the SCLBT, a better estimate to the residual energy �̄L,j needs to be found. Let us 
first define an energy ηL,L∗ with the condition

where L∗ is the highest energy level, for which Eq. (28) can be satisfied also for the associated Ritz eigenvalue 
�L,L∗ . The value of L∗ is a parameter that can be varied according to the quality and validity of the Weinstein lower 
bound. Using these notations, the residual energy for the jth state can be rewritten as

which, considering that the second term with the infinite sum in Eq. (29) is positive, can be rewritten as

(22)εj ≥ εTeL,J ≡ �L,j −
σ 2
L,j

�̄L,j − �L,j

,

(23)εj ≥ �L,j −
σ 2
L,j

�

�̄L,j − �L,j

�















1+
σ 2
L,j

�

�L,j − εj
�2

L
�

k �= j
k = 1

aL,jk

aL,jj















−1

.

(24)�ϕj|Ĥ|�N ,k� = εj�ϕj|�N ,k� = �L,k�ϕj|�N ,k� + �ϕj|Q̂LĤ|�N ,k�,

(25)
aL,jk

aL,jj
=

�ϕj|�N ,k�
2

�ϕj|�N ,j�2
=

(

�L,j − εj
)2
σ 2
L,k

(

�L,k − εj
)2
σ 2
L,j

.

(26)

εj ≥�L,j −
σ 2
L,j

�

�̄L,j − �L,j

�






1+

j−1
�

k=1

σ 2
L,k

�

�L,j − �L,k

�2
+

L
�

k=j+1

σ 2
L,k

�

�L,k − εL,j

�2







−1

≡�L,j −
σ 2
L,j

�

�̄L,j − �L,j

��

1+ TL,j

� ,

(27)TL,j =

j−1
∑

k=1

σ 2
L,k

(

�L,j − �L,k

)2
+

L
∑

k=j+1

σ 2
L,k

(

�L,k − εL,j
)2

(28)εL∗ ≤ ηL,L∗ ≤ εL∗+1,

(29)�̄L,j = ηL,L∗ +
�̄L,j − εj

�L,j − εj















L∗
�

k �= j
k = 1

aL,kj
�

εk − ηL,L∗
�

+

∞
�

k=L∗+1

aL,kj
�

εk − ηL,L∗
�















,
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The expression for the residual energy can be rearranged as

where

For the working equations of the iSCLBT, estimates for ηL,L∗ and aL,kk need to be obtained. For the Lehmann 
expression, discussed in detail in the next section, it can be assumed that L∗ is the highest value for which the 
simple Weinstein lower bound condition given in Eq. (18) is satisfied, which implies that

However, for the iSCLBT ηL,L∗ = �L,L∗ can be used instead of using the Weinstein lower bound for εL∗ . Typically, 
there is a range lmin ≤ L ≤ lmax of L values for which L∗ is the highest state for which the Weinstein lower bound 
is  valid6. According to the Ritz theorem, �L,L∗ is a decreasing function of L. However, the highest possible value, 
�
min
L,L∗ , is required, which still satisfies Eq. (18): this is the worst Ritz estimate for εL∗ , that is still lower than εL∗+1 . 

Thus, the validity condition for the iSCLBT for L∗ is weaker than the Weinstein lower bound condition, which 
enables to obtain lower bounds to excited states for lower L values compared to Lehmann’s theory and provides 
improved lower bound estimates.

For the  SCLBT50,51, the upper bound for aL,kk is given as

which, using the Lánczos construct, can be rewritten as

However, a tighter bound can be obtained by considering the Cauchy–Schwartz inequality (Eq. (14)) using the 
projection operator Q̂L without introducing the residual energy such that

where TL,k is given in Eq. (27). Rearranging this expression gives a new bound for aL,kk as

The difference between this expression and Eq. (35) is the appearance of unity in the denominator, which provides 
a tighter upper bound to aL,kk . When the Weinstein lower bound is valid, �L,k−1 ≤ εk ≤ �L,k ; thus, the maximal 
aL,kk as a function of εk monotonically increases from 0 at εk = �L,k−1 to 1 at εk = �L,k . Using this expression and 
considering the above mentioned conditions for ηL,L∗ , Eq. (32) can be maximized as

where the exact eigenvalues have been replaced by their lower bounds εL,k . The lower bound equation  (31) can 
be rewritten as

(30)
�̄L,j ≥ ηL,L∗ −

�̄L,j − εj

�L,j − εj

L∗
∑

k �= j
k = 1

aL,kj
(

ηL,L∗ − εk
)

.

(31)�̄L,j − �L,j ≥
ηL,L∗ − �L,j − fL,j

�L,j − εj + fL,j

(

�L,j − εj
)

,

(32)
fL,j =

L∗
∑

k �= j
k = 1

aL,kj

aL,kk
aL,kk

(

ηL,L∗ − εk
)

.

(33)εL∗+1 ≥ 2�L,L∗ − εL∗ ≥ �L,L∗ .

(34)aL,kk ≤















1+

L∗
�

j �= k
j = 1

aL,kj

aL,kk















−1

,

(35)aL,kk ≤
σ 2
L,k

(

�L,k − εk
)2

[

σ 2
L,k

(

�L,k − εk
)2

+ TL,k

]−1

.

(36)
(

�L,k − εk
)2

≤
1− aL,kk

aL,kk

σ 2
L,k

1+ TL,k
,

(37)aL,kk ≤
σ 2
L,k

(

�L,k − εk
)2

[

1+
σ 2
L,k

(

�L,k − εk
)2

+ TL,k

]−1

.

(38)
f max
L,j =

L∗
∑

k �= j
k = 1

(

�
min
L,L∗ − εL,k

)
σ 2
L,j

(

�L,j − εL,k
)2

[

1+
σ 2
L,k

(

�L,k − εL,k
)2

+ TL,k

]−1

,
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where

For the iSCLBT method, Eqs. (27) and (38)–(40) need to be solved simultaneously and iteratively. Using an ini-
tial estimate, such as the Weinstein bound, for the exact eigenvalues εj in Eq. (27) the calculated lower bounds 
are substituted back into Eq. (27), until they converge. By increasing the highest considered state L∗ , the lower 
bounds below this state can be improved.

Lehmann theory. The Temple lower bound in Eq.  (22) was obtained by using a specific choice of basis 
functions, which were the eigenfunctions of the Ritz eigenvalue. Lehmann constructed a method by which the 
basis can be optimized to obtain a linear combination of the states in the projected L dimensional space that 
maximizes the Temple lower bound. The Lehmann eigenvalue equation can be written  as22

where κ is the Lehmann eigenvalue and |�κ � is the corresponding Lehmann eigenfunction in the projected L 
space. The parameter ρ is known as the Lehmann pole and it is restricted by the condition

where L∗ ≤ L is the highest state for which the inequality εL∗+1 ≥ �L,L∗ is satisfied. Thus, the Lehmann equation 
provides lower bounds only to states for which the corresponding Ritz eigenvalues are interleaving with the exact 
energies. Due to the square on the left-hand side of Eq. (41), this condition also implies that for lower bounds, 
the eigenvalue κ is negative.

For an insightful analysis of the Lehmann equation, let us define a non-normalized state

and rewrite the Lehmann equation as

where the inequality follows by applying the Ritz theorem to the resolvent operator appearing on the left-hand 
side. Considering the restriction in Eq. (42) on the Lehmann pole, it can be written as

where κL∗ is the largest of the negative Lehmann eigenvalues. Owing to the interleaving property of the Ritz 
eigenvalues, lower negative Lehmann eigenvalues provide lower bounds to all lower lying states. The connection 
with the Temple lower bound can be established by multiplying Eq. (41) by ��k| , which gives

with

Thus, according to the Ritz variational theorem, the Lehmann eigenfunction maximizes the Temple lower bound.
The Lehmann method requires the matrices of Ĥ2 and Ĥ in the L-space, and the lower bound eigenvalues 

can be obtained by the diagonalization of Eq. (41). According to the condition in Eq. (42), a non-trivial lower 
bound needs to be estimated for the state εL+1 , which can typically be a Weinstein lower bound. Nevertheless, 
when a Lánczos basis is used, the full Ĥ2 matrix in the projected space is not required, but only the variances σ 2

L,j 
associated with the respective Ritz eigenvalues. This can be shown by multiplying Eq. (41) by ��L,k| , which gives

such that

Multiplying Eq. (49) by ��L|�L,k� gives

(39)εj ≥ �L,j −
Amax
L,j

2

(

1+

√

1+
4f max
L,j

Amax
L,j

)

,

(40)Amax
L,j =

σ 2
L,j

(

�
min
L,L∗ − �L,j − f max

L,j

)

(

1+ TL,j

)

.

(41)P̂L

(

Ĥ − ρ Î
)2

|�κ � = κP̂L

(

Ĥ − ρ Î
)

|�κ �,

(42)εL∗+1 ≥ ρ ≥ �L,L∗ ≥ εL∗ ,

(43)|�̃κ � =
(

Ĥ − ρ Î
)

|�κ �

(44)1

κ
=

��̃κ |
(

Ĥ − ρ Î
)−1

|�̃κ �

��̃κ |�̃κ �
≥

1

ε − ρ
,

(45)εL∗ ≥ ρ + κL∗ ≡ ε�L∗
,

(46)ε�κ
= ��κ |Ĥ|�κ � −

σ 2
�κ

(

ρ − ��κ |Ĥ|�κ �
) ,

(47)σ 2
�κ

= ��κ |Ĥ
2|�κ � − ��κ |Ĥ|�κ �

2.

(48)��L,k|ĤQ̂LĤ|�� =
(

�L,k − ε�
)(

ρ − �L,k

)

��L,k|��,

(49)��L,k|�L�H
2
L,L+1��L|�� =

(

�L,k − ε�
)(

ρ − �L,k

)

��L,k|��.
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Rearranging and summing over all k from 1 to L gives an eigenvalue equation that is valid for the Lánczos 
construct as

The variances can be obtained from Eq. (12), that is, all the information is in the matrix elements of the 
Lánczos representation of the Hamiltonian only.

Results
For the comparison of the lower bounds calculated using the iSCLBT method with those of the SCLBT and 
Lehmann methods, the same two lattice systems were used as in Ref. 50. The first system was the Hubbard 
 Hamiltonian53

where i denotes the lattice sites, c†i,σ and ci,σ are creation and annihilation operators for the electron in site i with 
spin σ =↑,↓ , respectively, ni,σ = c†i,σ ci,σ is the number operator for the spin state σ on site i, ǫ is the “on-site” 
energy, which is set to zero in this case, t is the hopping energy between the nearest neighbors, and U > 0 is the 
Coulomb repulsion experienced by two electrons occupying the same site. The other model was the Heisenberg 
 system54, describing a set of spin-1/2 particles on a lattice, given by the Hamiltonian

where si and sj are the spin-1/2 operators on the lattice sites i and j, respectively, 〈i, j〉 denotes the nearest-neighbor 
pairs only, and J is the coupling (or “exchange”) constant weighting the “exchange term” sisj . The detailed analysis 
of these systems is outside of the scope of this study: they were chosen because they are well suited for diago-
nalization using the Lánczos algorithm. The data used in this study was obtained using the H� diagonalization 
 software55 and available in Ref. 50. In these calculations, the lattices were always considered periodic and the 
simulation cell was limited to a finite number N of sites with periodic boundary conditions. The diagonal ( α ) 
and off-diagonal ( β ) Lánczos coefficients of a Heisenberg square lattice with a unit cell of 5× 6 and of a Hub-
bard square lattice model at half-filling on a unit cell of 4× 4 were used. A tridiagonal matrix was created from 
the α and β coefficients and then, diagonalized using the double-precision Lapack dsyev  subroutine56 for real, 
symmetric matrices. The �L,j energy eigenvalues become unstable, that is, they started to increase and fluctuate, 
at L > 118 for the Hubbard and at L > 84 for the Heisenberg model.

The Weinstein lower bounds were calculated using Eq. (17), and their ranges of  validity5 were calculated 
according to Eq. (18). As the exact eigenvalues εj were not known, the lowest stable eigenvalues �M,j were used, 
at M = 117 for the Hubbard and M = 83 for the Heisenberg system. However, these values are sufficient, as only 
an estimation of the lowest L is required, from where the Weinstein lower bound can be considered valid. As 
L∗ = 2 is the lowest reference level for both the iSCLBT and Lehmann calculations, it is sufficient to determine 
the ranges of validity from �L,2 . The graphs of the eigenvalues as a function of dimensionality L were intersected 
by the line from the validity condition in Eq. (18), than the next highest integer L provided the lowest limit 
of validity. Figures 1 and S1 show the ranges of validity of the Weinstein lower bounds for the Hubbard and 
Heisenberg models, respectively. These ranges were used to determine the range of validity of the SCLBT and 
Lehmann calculations. As can be seen in Figures 1 and S1 at �L,5 there are only a few remaining valid states; thus, 
the highest achievable level is L∗ = 5 for both the Hubbard and the Heisenberg systems.

Given the Weinstein lower bounds and so the corresponding residual energies, we first compared the per-
formance of the iSCLBT described in the previous section with that of the previous SCLBT implementation 
given in Refs. 50,51. The quality of the lower bounds from these methods was compared using their gap ratios, 
defined as the ratio of the distances of the lower bound εL,j and the eigenvalue �L,j to the true energy level εj as

where �M,j is the lowest stable eigenvalue.
For the ground-state residual energy, �̄L,j , the first-excited state Weinstein lower bound εWe

2  was used for the 
SCLBT method based on Eq.(26). In the iSCLBT method, the εL,j bounds are calculated iteratively, by substituting 
the previously calculated lower bound back to the expression, until convergence is achieved. The residual energy 
�̄L,j was estimated from the Weinstein lower bound εWe

L,j  . The  SCLBT51 improves Eq. (26) by self-consistently 
considering several states up to L∗ ; as shown in Ref. 52 increasing L∗ results in tighter lower bounds. For the 
iSCLBT method, Eqs. (27) and (38)–(40) were solved simultaneously and iteratively. The �min

L,L∗ value in Eqs. (38) 
and (40) was determined based on the validity of the Weinstein lower bound: this was the highest eigenvalue 
where the Weinstein lower bound was still valid. In the first step of the iteration, the εL,j values in Eq. (27) were 
estimated from the Weinstein lower bound εWe

L,j  and the subsequent iteration steps use the previously calculated 
εL,j values. Although any other estimated value could be used, such as the result εL−1,j from the previous state, 

(50)σ 2
L,j��L|�� =

(

�L,k − ε�
)(

ρ − �L,k

)

��L|�L,k���L,k|��.

(51)
L

∑

k=1

σ 2
L,j

(

�L,k − ε�
)(

ρ − �L,k

) = 1.

(52)HHubbard = ǫ
∑

i,σ

ci,σ c
†
i,σ − t

∑

�i,j�

ci,σ c
†
j,σ + U

∑

i

ni,↑ni,↓,

(53)HHeisenberg = J
∑

�i,j�

sisj ,

(54)Gap ratio =
|εL,j − εj|

|�L,j − εj|
≃

|εL,j − �M,j|

|�L,j − �M,j|
,
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the calculation converged to the same value, regardless of the initial input; thus, the method does not explicitly 
rely on the Weinstein lower bound. The lowest Lini value where proper convergence was achieved was slightly 
higher than the L value from where the Weinstein lower bound was valid.

A comparison of the SCLBT and iSCLBT results at L∗ = 2 , L∗ = 3 , L∗ = 4 , and L∗ = 5 is shown in Fig. 2. 
The noticeable variation of the functions is due to the fluctuation in the variances obtained from the Lánczos 
construct. As mentioned earlier, the SCLBT calculations start converging slightly later than the point where the 
Weinstein lower bound becomes valid. For example, the Weinstein lower bound for the third state εWe

3  becomes 
valid at L ≥ 62 , as shown in Fig. 1, while the iSCLBT at L∗ = 4 starts converging at L = 69 , as shown in Fig. 2. 
When in Eq. (39) the ratio 4f max

L,j /Amax
L,j < −1 , the lower bound becomes complex and thus, invalid. When the 
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Figure 1.  Ranges of validity of the Weinstein lower bound according to Eq. (18) for the Hubbard model. The 
blue, red, green, and violet lines indicate energy eigenvalues �2 , �3 , �4 , and �5 as a function of dimensionality 
L of the Lánczos basis set, respectively. The graphs of the eigenvalue functions were intersected by the line of 
the condition of validity. As the true energy levels εj are not known, the lowest eigenvalues �117,j are used. The 
Weinstein lower bounds are valid from the L value greater than the point of intersection.
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condition 4f max
L,j /Amax

L,j > −1 is satisfied, an appropriate convergence can be obtained for the lower bounds 
within a few iterations. At L∗ = 2 the iSCLBT simultaneously calculates lower bounds for the two lowest lying 
energy levels. It can be seen that the iSCLBT results are a significant improvement over the lower bounds from 
the SCLBT  method50 even at L∗ = 2 . With the increase in L∗ , the iSCLBT results improve further and converge: 
the lower bound gaps for L∗ = 4 (gray line) and L∗ = 5 (green line) are very close to each other. The Heisenberg 
results for the ground-state lower bounds are significantly better than the Hubbard results, because the vari-
ance of the ground state Heisenberg eigenvalue is approximately three orders of magnitude smaller than that of 
the Hubbard system. While results from  SCLBT50 are significantly better in the Heisenberg case than those of 
the Hubbard model case, the iSCLBT results are more accurate for both models, because the variances for the 
excited states are comparable.

The lower bound gap ratios calculated by the iSCLBT and the Lehmann theory were compared as well, 
using both lattice systems. Both methods can provide lower bounds not only for the ground state, but also for 
higher excited states. However, the number of treatable excited states is limited by the Lánczos construct, which 
provides reliable eigenvalues for the lowest lying energy levels only. While the iSCLBT does not depend on the 
Weinstein lower bound explicitly, the Lehmann theory relies on it. Theoretically, the Weinstein lower bound is a 
monotonically increasing function of L where it satisfies the condition of validity in Eq. (18). However, in practi-
cal calculations, due to the fluctuations of the variances with the increasing basis set size, the Weinstein lower 
bound function is not monotonic so that one uses the largest Weinstein lower bound. Specifically, if for basis set 
dimension L+ 1 the Weinstein lower bound is lower than for L, one uses the lower bound for L, etc., similar to the 
strategy employed in the  SCLBT50. For the Lehmann theory, the corrected Weinstein lower bounds correspond-
ing to L∗ were used for the Lehmann pole ρ in Eq. (51). This equation provides L∗ roots, which were calculated 
using the Mathematica software (Wolfram Research). The iSCLBT and Lehmann results were considered in the 
same ranges. As can be seen in Fig. 1, �L,5 is the highest eigenvalue where the variance and the Weinstein lower 
bound calculated from it are valid. Thus, the highest achievable state is L∗ = 5 , that is, the ground state and the 
four lowest lying excited states.

Figure 3 shows a comparison of the ground-state lower bound gap ratios for the Hubbard model calculated 
by the iSCLBT and Lehmann methods as a function of dimension L for different L∗ values, up to L∗ = 5 . The 
fluctuation of the gap ratios for both methods is due to the fluctuation in the variances. As indicated by the 
blue line, the iSCLBT gap ratios at L∗ = 2 are significantly better than the corresponding Lehmann results. The 
Lehmann gap ratio at L∗ = 2 is slightly better than the results of the SCLBT indicated by the violet line shown in 
the left panel of Fig. 2 and the shape of the two graphs is similar. This is because both of these methods are based 
on the Weinstein lower bounds. As indicated by the red line in Fig. 3, the lower bounds improve significantly at 
L∗ = 3 for both the iSCLBT and Lehmann calculations; in this case, the iSCLBT results are still superior to those 
of the Lehmann method. However, while the iSCLBT can provide good quality lower bounds at lower L values, 
the Lehmann method requires a larger basis set size to achieve similar performance. The Lehmann results are 
comparable to those of the iSCLBT above L ≃ 80 in this case. At L∗ = 4 and L∗ = 5 both methods converge: 
the Lehmann lower bounds are slightly better than those calculated by the iSCLBT. The converged gap ratios at 
L∗ = 5 are 1.880 for the iSCLBT and 1.640 for the Lehmann method. The ground-state results indicate that the 
increase in L∗ , the highest state to be considered, provides significant improvement in the lower bounds with a 
noticeable convergence for both lower bound methods, whose accuracy becomes similar.

A comparison of the first excited state lower bound gap ratios for the Hubbard model obtained from the 
iSCLBT and the Lehmann theory is shown in Fig. 4. In the left panel, the blue line indicates lower bound gap 
ratios from the iSCLBT at L∗ = 2 ; however, while the iSCLBT method can calculate lower bounds for both states 
(ground and first-excited), the quality of the roots provided by the Lehmann theory for the first excited state at 
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L∗ = 2 was extremely low and they monotonically increased with the increase in L. From L∗ = 3 , the convergence 
of both methods is similar to that of the ground-state case, and the two methods exhibit similar performance for 
all L∗ values. At L∗ = 3 the iSCLBT results are significantly better than those of the Lehmann calculations, while 
at L∗ = 4 and L∗ = 5 the Lehmann method provides slightly tighter lower bounds. At L∗ > 2 , the first excited 
state gap ratios are in the same range as those of the ground state and their converged gap ratios are similar as 
well: 2.236 for the iSCLBT and 2.113 for the Lehmann method. The second excited state results shown in Fig. 5 
exhibit similar behavior: the quality of the roots from the Lehmann results was very low at L∗ = 3 . In this case, 
the iSCLBT results are slightly better than the Lehmann bounds. At L∗ > 4 the gap ratios are in the range of 
those of the ground and first excited states. The converged gap ratios are 2.454 for the iSCLBT and 3.071 for the 
Lehmann calculations. Figure 6 shows results for the third and fourth excited states for the Hubbard model. 
The quality of the Lehmann results was very low for the third excited state (left panel) even at L∗ = 4 . The qual-
ity of the corresponding Weinstein lower bound directly determines the quality of the Lehmann bound, as it 
explicitly depends on it. In this case the Weinstein bound of the fourth excited state, εWe

L,4  has a local minimum 
at L = 90 and even when corrected as discussed above, it provides poor quality results. However, the iSCLBT 
can still provide good quality lower bounds regardless of the quality of the Weinstein lower bound, as shown in 
the left panel of Fig. 6. The convergence behavior of the iSCLBT result is similar to that of the previous cases, 
with a final gap ratio of 3.545. As can be seen in Fig. 1, the highest energy level for which lower bounds could be 
obtained for the Hubbard model was the fourth excited state. The right panel of Fig. 6 shows lower bound gap 
ratios for both methods at L∗ = 5 . Although the Weinstein lower bound εWe

L,5  has a local minimum as well, for 
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the final few states it results in good quality Lehmann bounds. The converged, final gap ratios are 5.764 for the 
iSCLBT and 6.024 for the Lehmann method. 

As can be seen in Figs. 3, 4, 5 and 6, the increase in L∗ always results in an improvement of the lower bound 
for both methods. While the iSCLBT can provide lower bounds for all energy levels at a given L∗ reference 
level, the quality of the lower bounds calculated by the Lehmann method at the lowest L∗ value is extremely 
low; furthermore, the lower bounds are sharply increasing with the increase in dimensionality L. Generally, the 
Lehmann method can only provide L∗ − 1 appropriate roots for a calculation using L∗ states. The convergence 
behavior of the iSCLBT and Lehmann methods is similar in all cases. The Ritz gaps together with the final iSCLBT 
and Lehmann gap ratios for the Hubbard model are summarized in Table 1. The final values were calculated at 
L = 106, where the lower bound gaps were still numerically reliable. It can be seen that as one goes up the lad-
der of states all gaps and gap ratios increase. As mentioned before, the quality of the third excited state gap ratio 
calculated by the Lehmann method is very low.

The same calculations were performed for the Heisenberg model; the results can be found in the Supplemen-
tary Information. As shown in Fig. S1, the Lánczos construct provides less eigenvalues for the Heisenberg model; 
thus, the number of treatable energy levels is lower. The Heisenberg results further confirm the convergence 
behavior demonstrated in the Hubbard system. The ground-state results shown in Fig. S2 are better than those 
of the Hubbard model because, as discussed before, the Heisenberg eigenvalues have smaller variances for the 
ground state. Similar to the Hubbard case, the iSCLBT is noticeably better at L∗ = 2 and L∗ = 3 . The converged 
gap values are 1.625 for the iSCLBT and 1.250 for the Lehmann method. For the first excited state lower bound 
shown in Fig. S3, the iSCLBT at L∗ = 2 provides better gap ratios at low L values. This does not indicate that 
the lower bounds are better in this region; it rather shows that the Ritz gaps are still wide at low L values. From 
L = 70 the two methods exhibit similar convergence characteristics as that of the ground-state case: at L∗ = 3 
the iSCLBT is better than the Lehmann result, while at higher L∗ values the Lehmann method is slightly better. 
The final lower bound gap values are 2.148 for the iSCLBT and 1.716 for the Lehmann method. The second and 
third excited state lower bounds can be seen in Figs. S4 and S5, respectively. The behavior and convergence of 
the iSCLBT and Lehmann results for the second excited state are similar to those of the Hubbard model. The 
converged lower bound gap ratios are 2.363 and 1.991 for the iSCLBT and Lehmann methods, respectively. In 
the Heisenberg model, the Lehmann method can provide reasonable lower bounds for the third excited state; 
however, these values are monotonically increasing with dimensionality L. As there is only one remaining value 
at L∗ = 5 , these results cannot be considered fully converged. The Ritz and lower bound gaps and final gap ratios 
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Table 1.  Ritz gaps and the final iSCLBT and Lehmann gap ratios at L∗ = 5 calculated at L = 106 for the 
Hubbard model.

State Ground 1st excited 2nd excited 3rd excited 4th excited

Ritz gap 4.441× 10−14 2.414× 10−12 1.663× 10−8 4.072× 10−6 3.970× 10−3

Final iSCLBT gap ratio 1.880 2.236 2.454 3.545 5.764

Final Lehmann gap ratio 1.640 2.113 3.071 18.516 6.024
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for both methods are summarized in Table 2. It should be noted that for the fourth excited state only one point 
could be used, as the Lánczos construct provided only a few numerically reliable eigenvalues. 

Discussion
In this paper, a further improvement of the existing SCLBT method was presented, termed iSCLBT. The lower 
bounds for the Ritz eigenvalues obtained from the iSCLBT were compared with those from the SCLBT and 
from the Lehmann methods. The framework provided by the Lánczos construct enabled the comparison of 
these methods on an equal formal footing. For the comparison, two model systems, a 5 × 6 Heisenberg and a 
4 × 4 Hubbard lattice Hamiltonian were used. The eigenvalues and variances were determined by the Lánczos 
algorithm by using the H� diagonalization software. By defining tighter bounds for the residual energy and 
for the diagonal elements of the overlap, the iSCLBT was improved over its previous implementation. First, the 
iSCLBT was compared with the SCLBT method for the ground-state energy. The improved theory provided 
significantly better lower bounds even at L∗ = 2 . Then, the lower bounds for the low-lying energy levels were 
calculated using the iSCLBT and the Lehmann method up to the fourth excited state. The effect of the highest 
considered level L∗ on the quality of the lower bounds was analyzed. Based on the analysis of the results, the 
following conclusions can be drawn:

• The definition of tighter bounds for the residual energy and for the diagonal elements of the overlap further 
improved the SCLBT.

• Both the iSCLBT and the Lehmann method can provide lower bounds that are significantly better than the 
Weinstein or Temple bounds.

• The quality of lower bounds improves with the increase in L∗ , the highest considered level.
• The iSCLBT and Lehmann methods exhibit similar performance and convergence behavior. This is not unex-

pected, considering that in Ref. 42, using a finite Hamiltonian construct and assuming a Lánczos basis set, 
we could find conditions under which the two theories would be identical. However, in general, and under 
the conditions of the present theory which differs from the one presented in Ref. 42, the Lehmann theory 
and iSCLBT are formally different.

• Compared to the iSCLBT, the Lehmann method requires a larger basis set and, as the Lehmann pole is 
estimated from the Weinstein lower bound, the quality of the Lehmann bounds is strongly affected by the 
quality of the Weinstein lower bound.

• The numerical implementation of iSCLBT is simpler than that of the Lehmann method and does not require 
the Weinstein lower bounds.

Both the iSCLBT and Lehmann methods are suitable to provide high quality lower bounds for the low-lying 
energy levels for the studied lattice systems. The number of treatable Ritz eigenvalues is determined by the size 
of the Lánczos basis set.

Code availability
Data and numerical codes are available from the authors upon reasonable request.
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